2018年河南省商丘市柘城县中考数学模拟试卷-有答案

合集下载

河南省商丘市柘城县2018年中考数学一模试卷(解析版)

河南省商丘市柘城县2018年中考数学一模试卷(解析版)

2018年河南省商丘市柘城县中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分)1. ﹣的绝对值是()A. B. ﹣ C. 7 D. ﹣7【答案】A【解析】解:根据负数的绝对值等于它的相反数,得|﹣|=.故选A.2. 据统计,2013年河南省旅游业总收入达到约3875.5亿元.若将3875.5亿用科学记数法表示为3.8755×10n,则n等于()A. 10B. 11C. 12D. 13【答案】B【解析】试题分析:3875.5亿="3875" 5000 0000=3.8755×1011,故选:B.考点:科学记数法—较大的数.视频3. 如图所示的几何体的俯视图是()A. B. C. D.【答案】D【解析】试题分析:从上往下看,该几何体的俯视图与选项D所示视图一致.故选D.考点:简单组合体的三视图4. 分式方程的根为()A. ﹣1或3B. ﹣1C. 3D. 1或﹣3【答案】C........ .............5. 在一次体育测试中,小芳所在小组8人的成绩分别是:46,47,48,48,49,49,49,50,则这8人体育成绩的中位数和众数分别是()A. 47,46B. 48,47C. 48.5,49D. 49,49【答案】C【解析】解:这8个数据的中位数是第4、5个数据的平均数,即中位数为=48.5,由于49出现次数最多,所以众数为49.故选C.6. 下列方程是关于x的一元二次方程的是()A. x2+=1B. ax2+bx+c=0C. (x+1)(x+2)=1D. 3x2﹣2xy﹣5y=0【答案】C【解析】解:A.x2+=1是分式方程,故此选项错误;B.当a=0时,ax2+bx+c=0不是一元二次方程,故此选项错误;C.(x+1)(x+2)=1是一元二次方程,故此选项正确;D.3x2﹣2xy﹣5y=0是二元二次方程,故此选项错误.故选C.7. 如图所示,有一张一个角为60°的直角三角形纸片,沿其一条中位线剪开后,不能拼成的四边形是()A. 邻边不等的矩形B. 等腰梯形C. 有一个角是锐角的菱形D. 正方形【答案】D【解析】试题分析:如图:此三角形可拼成如图三种形状,(1)为矩形,∵有一个角为60°,则另一个角为30°,∴此矩形为邻边不等的矩形;(2)为菱形,有两个角为60°;(3)为等腰梯形.故选:D.考点:三角形中位线定理8. 三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A. B. C. D.【答案】A【解析】试题分析:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,∴两张卡片上的数字恰好都小于3概率=.故选A.考点:列表法与树状图法.9. 如图,在Rt△ABC中,∠C=90°,AC=1cm,BC=2cm,点P从点A出发,以1cm/s的速度沿折线AC→CB→BA 运动,最终回到点A,设点P的运动时间为x(s),线段AP的长度为y(cm),则能够反映y与x之间函数关系的图象大致是()A. B. C. D.【答案】A【解析】试题分析:这是分段函数:①点P在AC边上时,y=x,它的图象是一次函数图象的一部分;②点P在边BC上时,利用勾股定理求得y与x的函数关系式,根据关系式选择图象;③点P在边AB上时,利用线段间的和差关系求得y与x的函数关系式,由关系式选择图象.①当点P在AC边上,即0≤x≤1时,y=x,它的图象是一次函数图象的一部分;②点P在边BC上,即1<x≤3时,根据勾股定理得AP=,即y=,则其函数图象是y随x的增大而增大,且不是一次函数.故B、C、D错误;③点P在边AB上,即3<x≤3+时,y=+3﹣x=﹣x+3+,其函数图象是直线的一部分.综上所述,A选项符合题意.考点:动点问题的函数图象.视频10. 如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,把△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,A′C′交AB于点E,若AD=BE,则△A′DE的面积是()A. 3B. 5C. 11D. 6【答案】D【解析】解:Rt△ABC中,AB==10,由旋转的性质,设AD=A′D=BE=x,则DE=10﹣2x.∵△ABC 绕AB边上的点D顺时针旋转90°得到△A′B′C′,∴∠A′=∠A,∠A′DE=∠C=90°,∴△A′DE∽△ACB,∴=,即=,解得:x=3,∴S△A′DE=DE×A′D=×(10﹣2×3)×3=6.故选D.点睛:本题考查了相似三角形的判定与性质,勾股定理及旋转的性质的运用.关键是根据旋转的性质得出相似三角形,利用相似比求解.二、填空题(本大题共5小题,每小题3分,共15分)11. 计算:(﹣2)0﹣=_____.【答案】-1【解析】解:原式=1﹣2=﹣1.故答案为:﹣1.12. 不等式组的所有整数解的和为_____.【答案】-2【解析】,由①得:x⩾−2,由②得:x<2,∴−2⩽x<2,∴不等式组的整数解为:−2,−1,0,1.所有整数解的和为−2−1+0+1=−2.故答案为:−2.视频13. 已知点P(a,b)在反比例函数y=的图象上,若点P关于y轴对称的点在反比例函数y=的图象上,则k的值为_____.【答案】-2【解析】试题解析:∵点P(a,b)在反比例函数y=的图象上,∴ab=2,∵点P关于y轴对称的点的坐标是(-a,b),∴k=-ab=-2.考点:1.反比例函数图象上点的坐标特征;2.关于x轴、y轴对称的点的坐标.14. 如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为_____.【答案】12【解析】试题分析:连接AP,A′P′,过点A作AD⊥PP′于点D,由题意可得出:AP∥A′P′,AP=A′P′,∴四边形APP′A′是平行四边形,∴PO=,∠AOP=45°,又∵AD⊥OP,∴△ADO是等腰直角三角形,∴PP′=,∴AD=DO=sin45°•OA=,∴抛物线上PA段扫过的区域(阴影部分)的面积为:.考点:二次函数图象与几何变换.15. 如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为_____.【答案】或3【解析】试题分析:本题需要分情况进行讨论,即直角三角形中哪个角是直角,然后分别根据勾股定理进行计算得出答案.考点:折叠图形的性质三、解答题(本大题共8小题,共计75分)16. 先化简,再求值:(x+y)2﹣2y(x+y),其中x=,y=.【答案】﹣2【解析】试题分析:原式利用完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x与y的值代入计算即可求出值.试题解析:解:原式=x2+2xy+y2﹣2xy﹣2y2=x2﹣y2当x=﹣1,y=时,原式=3﹣2﹣3=﹣2.点睛:本题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解答本题的关键.17. 某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为_____;(2)请补全条形统计图;(3)该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×=108”,请你判断这种说法是否正确,并说明理由.【答案】144°;【解析】试题分析:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;故答案为:144°;(2)“经常参加”的人数为:300×40%=120人,喜欢篮球的学生人数为:120﹣27﹣33﹣20=120﹣80=40人;补全统计图如图所示;(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:1200×=160人;(4)这个说法不正确.理由如下:小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人.考点:①条形统计图;②扇形统计图.视频18. 如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O分别交AC,BM于点D,E.(1)求证:MD=ME;(2)填空:①若AB=6,当AD=2DM时,DE=_____;②连接OD,OE,当∠A的度数为_____时,四边形ODME是菱形.【答案】(1). 2(2). 60°【解析】试题分析:(1)根据直角三角形斜边的中线等于斜边的一半可得MA=MB,即可得∠A=∠MBA,再由∠ADE+∠ABE=180°,∠ADE+∠MDE=180°可得∠MDE=∠MBA.用同样的方法可得∠MDE=∠A.所以∠MDE=∠MED,即可得MD=ME.(2)①由MD=ME,又MA="MB," 可得DE∥AB,所以,又AD=2DM,即,所以,可得DE=2;②当∠A=600时, △AOD是等边三角形,这时∠DOE=600, △ODE和△MDE 都是等边三角形,且全等。

2018届河南省商丘市中考数学模拟试卷

2018届河南省商丘市中考数学模拟试卷

2018届河南省年商丘市中考数学模拟试卷一、选择题1. 下列各数中,绝对值最小的数是( )A .πB .12C .-2D .13-2. 下列运算正确的是( )A .2a 3+3a 2=5a 5B .3a 3b 2÷a 2b =3abC .(a -b )2=a 2-b 2D .(-a )3+a 3=2a 33. 已知关于x 的一元二次方程kx 2-2x +1=0有实数根,若k 为非负整数,则k 等于( )A .0B .1C .0,1D .24. 不等式组31220x x ->⎧⎨-⎩≥的解集在数轴上表示为( )A .B.C .021 D .0215. 一个不透明的袋子里装有质地、大小都相同的3个红球和1个绿球,随机从中摸出一球,不再放回,充分搅均后再随机摸出一球,则两次都摸到红球的概率是( )A .13B .23C .12D .146. 如图,BE ∥AF ,点D 是AB 上一点,且DC ⊥BE 于点C ,若∠A =35°,则∠ADC 的度数为( ) A .105°B .115°C .125°D .135°F E DC BAFE DCB A第6题图 第7题图7. 如图,在□ABCD 中,点E 是边AD 上一点,且AE =2ED ,EC 交对角线BD 于点F ,则EF FC等于( )A .13B .12C .23D .348. 如图,已知AB 是⊙O 直径,BC 是弦,∠ABC =40°,过圆心O 作OD ⊥BC 交弧BC 于点D ,连接DC ,则∠DCB 为( ) A .20°B .25°C .30°D .35°9. 已知一次函数y =(k +1)x +b 的图象与x 轴负半轴相交,且函数值y 随自变量x 的增大而增大,则k ,b 的取值情况为( )A .k >-1,b >0B .k >-1,b <0C .k <-1,b >0D .k <-1,b <010. 如图,已知二次函数y =ax 2+bx +c (a ≠0)图象与x 轴交于A ,B 两点,对称轴为直线x =2.下列结论:①abc >0;②4a +b =0;③若点A 坐标为(-1,0),则线段AB =5;④若点M (x 1,y 1),N (x 2,y 2)在该函数图象上,且满足0<x 1<1,2<x 2<3,则y 1<y 2.其中正确结论的序号为( ) A .①②B .②③C .③④D .②④二、填空题11.计算:2021)-+=__________. 12. 方程211x x x-=-的解为____________. 13. 如图,在平面直角坐标系中,函数y =kx +b (k ≠0)与my x=(m ≠0)的图象相交于点A (2,3),B (-6,-1),则关于x 的不等式kx +b >mx的解集是___________.第13题图第14题图14. 如图,在矩形ABCD 中,AB =6,E ,H 分别为AD ,CD 的中点,沿BE 将△ABE 折叠,若点A 恰好落在BH 上的F 处,则AD =_________.15. 如图,在Rt △ABC 中,∠B =90°,∠C =30°,BC ,以点B 为圆心,AB 为半径作弧交AC 于点E ,则图中阴影部分面积是______________.三、解答题(本大题共8小题,共75分)HFED CB A16. (8分)化简222323()4442x x x x x x x --÷---+-,并从1,2,3,-2四个数中,取一个合适的数作为x 的值代入求值.17. (9分)为了解家长对“学生在校带手机”现象的看法,某校“九年级兴趣小组”随机调查了该校学生家长若干名,并对调查结果进行整理,绘制如下不完整的统计图.20%25%很赞同赞同无所谓不赞同调查结果扇形统计图选项调查结果条形统计图请根据以上信息,解答下列问题:(1)这次接受调查的家长总人数为____________人;(2)在扇形统计图中,求“很赞同”所对应的扇形圆心角的度数;(3)若在这次接受调查的家长中,随机抽出一名家长,恰好抽到“无所谓”的家长概率是多少?18. (9分)如图,DE 是⊙O 的直径,过点D 作⊙O 的切线AD ,C 是AD 的中点,AE 交⊙O于点B ,且四边形BCOE 是平行四边形.(1)BC 是⊙O 的切线吗?若是,给出证明;若不是,请说明理由. (2)若⊙O 半径为1,求AD 的长.19.(9分)如图,湛河两岸AB与EF平行,小亮同学假期在湛河边A点处,测得对岸河边C处的视线与湛河岸的夹角∠CAB=37°,沿河岸前行140米到点B处,测得对岸C处的视线与湛河岸夹角∠CBA=45°.问湛河的宽度约多少米?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)FE CAB20.(9分)平高集团有限公司准备生产甲、乙两种开关,共8万件,销往东南亚国家和地区.已知2件甲种开关与3件乙种开关销售额相同;3件甲种开关比2件乙种开关的销售额多1 500元.(1)甲种开关与乙种开关的销售单价各为多少元?(2)若甲、乙两种开关的销售总收入不低于5 400万元,则至少销售甲种开关多少万件?21. (9分)如图,直线y =2x 与反比例函数ky x(k ≠0,x >0)的图象交于点A (1,m ),点B (n ,t )是反比例函数图象上一点,且n =2t .(1)求k 的值和点B 坐标;(2)若点P 在x 轴上,使得△PAB 的面积为2,直接写出点P 坐标.22. (11分)如图1,正方形ABCD 和正方形AEFG ,连接DG ,BE .(1)发现当正方形AEFG 绕点A 旋转,如图2,①线段DG 与BE 之间的数量关系是______________. ②直线DG 与直线BE 之间的位置关系是_________________. (2)探究如图3,若四边形ABCD 与四边形AEFG 都为矩形,且AD =2AB ,AG =2AE ,求证:直线DG ⊥BE . (3)应用在(2)情况下,连接GE (点E 在AB 上方),若GE ∥AB ,且AB AE =1,则线段DG 是多少?(直接写出结论)G FEDCB A GFE D CBAGFEDCB A图1 图2 图323.(11分)如图,抛物线y=ax2+bx(a≠0)的图象过原点O和点A(1,且与x轴交于点B,△AOB(1)求抛物线的解析式;(2)若抛物线的对称轴上存在一点M,使△AOM的周长最小,求M点的坐标;(3)点F是x轴上一动点,过F作x轴的垂线,交直线AB于点E,交抛物线于点P,且PE=3,直接写出点E的坐标(写出符合条件的两个点即可).备用图参考答案:。

2018年河南省商丘市柘城县中考数学三模试卷

2018年河南省商丘市柘城县中考数学三模试卷
线的对称轴交 x 轴于点 D,已知 A(﹣1,0),C(0,2) (1)求抛物线的表达式; (2)点 E 是线段 BC 上的一个动点,过点 E 作 x 轴的垂线与抛物线相交于点 F,当点 E 运
动到什么位置时,四边形 CDBF 的面积最大?求出四边形 CDBF 的最大面积及此时 E 点 的坐标; (3)在 y 轴上是否存在点 P 使得∠OBP+∠OBC=45°?若存在,请直接写出点 P 的坐标, 若不存在,请说明理由.
①求反比例函数 y= 的表达式;
②求经过 C,D 两点的直线所对应的函数解析式; (3)在(2)的条件下,设点 E 是 x 轴的动点,请直接写出使△OCE 为直角三角形的点 E
坐标.
21.(10 分)星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:
进价(元/台) 售价(元/台)
电饭煲
,其中 x= ﹣2,y=( )﹣1.
17.(9 分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为 了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用 A、B、 C、D 表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查, 并将调查情况绘制成如下两幅统计图(尚不完整).
图象如图 2,则等边三角形 ABC 的面积为

15.(3 分)如图,在 Rt△ABC 中,∠ACB=90°,AB=10,AC=6,点 D 是 BC 上一动点,
连接 AD,将△ACD 沿 AD 折叠,点 C 落在点 E 处,连接 DE 交 AB 于点 F,当△DEB 是
直角三角形时,DF 的长为

三、解答题(共 8 小题,满分 75 分) 16.(8 分)先化简,再求值:( ﹣1)÷

河南省商丘市柘城县2018届九年级下学期第一次模拟考试数学试题(图片版)

河南省商丘市柘城县2018届九年级下学期第一次模拟考试数学试题(图片版)

2018年中招模拟考试数学试卷答案一.选择题二.填空题或3 三.解答题16.解:化简得:……………………………………4分代入得,…………………………………8分17.解:(l)144:………………………………………………………………2分(2)(“篮球”选项的频数为40.正确补全条形统计图):………………………4分(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为1200×40300=160(人):………………………………………………………7分(4)这种说法不正确.理由如下:小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人。

………9分(注:只要解释合理即可)18.解:(1)在Rt△ABC中,点M是AC的中点,∴MA=MB,∴∠A=∠MBA. ……………………………………………………………2分∵四边形ABED是圆内接四边形,∴∠ADE+∠ABE=180°,又∠ADE+∠MDE=180°,∴∠MDE=∠MBA.同理可证:∠MED=∠A. ………………………………………………………………4分∴∠MDE=∠MED, ∴MD=ME. ……………………………………………………………5分(2)①2; ………………………………………………………………………………7分 ②60°(或60). ………………………………………………………………………9分19.解:如图,过点P 作PE AM ⊥于E ,PF AB ⊥于F .在Rt PME △中,30PME =∠,40PM =,20PE ∴=.四边形AEPF 是矩形,20FA PE ∴==. ··············································· 2分 设BF x =米.45FPB =∠,FP BF x ∴==. 60FPC =∠,tan 603CF PF x ∴==.80CB=, 80x ∴+=. 解得)401x =. ·············································································6分)4012060129AB ∴=+=+≈(米). 答:山高AB 约为129米. ········································································ 9分20. 解;(1)过点B 、D 作x 轴的的垂线,垂足分别为点M 、N.∵A (5.0)、B (2,6),∴OM =BC=2,BM=OC=6,AM=3.∵DN ∥BM,∴△AND ∽△ABM. ∴13DN AN AD BM AM AB === ∴DN =2,AN=1, ∴ON=4∴点D 的坐标为(4,2).………………………………………………………………3分 又∵ 双曲线y=k x (x >0)经过点D , ∴k=2×4=8∴双曲线的解析式为y=8x.…………………………………………………………5分 BCP EM A F(2)∵点E在BC上,∴点E的纵坐标为6.又∵点E在双曲线y=8x上,∴点E的坐标为(43,6),∴CE=43………………………………………………………7分∴S四边形ODBE=S梯形OABC-S△OCE-S△AOD=12×(BC+OA)×OC-12×OC×CE-12×OA×DN=12×(2+5)×6-12×6×43-12×5×2=12∴四边形ODBE的面积为12.…………………………………………………………9分21.解:(1)银卡消费:y=10x+150,普通票消费:y=20x………………4分对于银卡消费,当y=600时,10x+150=600,得x=45,所以C(45,600)当10x+150=20x时,得x=15 ,此时y=300,所以B(15,300)………………………………………………6分(3)当0<x<15时,选择普通票消费更合算(注:若写0≤x<15,不扣分).当x=15时,选择银卡、普通票消费所需总费用相同,均比金卡合算;……………7分当15<x<45时,选择银卡消费更合算;当x=45时,选择金卡、银卡消费所需费用相同,均比普通票合算;当x>45时,选择金卡消费更合算.…………………………………………………10分22.解:(1)①60;②AD=BE.……………………………………………………………2分(2)∠AEB=900;AE=2CM+BE.………………………………………………4分(注:若未给出本判断结果,但后续理由说明完全正确,不扣分)理由:∵△ACB和△DCE均为等腰直角三角形,∠ACB =∠DCE= 900,∴AC=BC, CD=CE, ∠ACB=∠DCB=∠DC E-∠DCB, 即∠ACD= ∠BCE∴△AC D≌△BCE.………………………………………………………………6分∴AD = BE, ∠BEC=∠ADC=1350.∴∠AEB=∠BE C-∠CED=1350-450=900.…………………………………7分在等腰直角三角形DCE中,CM为斜边DE上的高,∴CM= DM= ME,∴DE=2CM.∴AE=DE+AD=2CM+BE………………………………………………………8分10分23.解:(1)点A的坐标为(4,8)…………………1分将A (4,8)、C(8,0)两点坐标分别代入y=ax2+bx8=16a+4b得0=64a+8b解得a=-12,b=4∴抛物线的解析式为:y=-12x2+4x …………………3分(2)①在Rt△APE和Rt△ABC中,tan∠PAE=PEAP=BCAB,即PEAP=48∴PE=12AP=12t.PB=8-t.∴点E的坐标为(4+12t,8-t).∴点G的纵坐标为:-12(4+12t)2+4(4+12t)=-18t2+8. …………………5分∴EG=-18t2+8-(8-t)=-18t2+t.∵-18<0,∴当t=4时,线段EG最长为2. …………………7分②共有三个时刻. …………………8分16 3, t2=4013,t3= 51640 .…………………11分t1=。

2018年河南省商丘市柘城县中考数学一模试卷

2018年河南省商丘市柘城县中考数学一模试卷

2018年河南省商丘市柘城县中考数学一模试卷一、选择题1.下列各数中,大小在﹣1和﹣2之间的数是()A.﹣3 B.﹣C.0 D.|﹣3|2.一个几何体的三视图如图所示,则这个几何体是()A.圆柱 B.圆锥 C.长方体D.正方体3.为提升城市品位,改善城市环境,2015年2月27日,许昌市护城河环通工程开工建设,时隔一年,“桨声欸乃乃何叶碧,一舟环游许昌城”的诗情画意已基本成为现实.据悉,全长约5公里的护城河总蓄水量达37万立方米,将数据37万用科学记数法表示为()A.37×104B.3.7×104C.37×105D.3.7×1054.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()A.26°B.36°C.46°D.56°5.某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,10,8,9,16,12,7,这组数据的中位数和众数分别是()A.10,12 B.12,11 C.11,12 D.12,126.已知点P(3﹣m,m﹣1)在第四象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.7.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于BC长为半径画弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,正确的个数为()A.1个B.2个C.3个D.4个8.如图①,四边形ABCD中,BC∥AD,∠A=90°,点P从A点出发,沿折线AB→BC→CD运动,到点D时停止,已知△PAD的面积s与点P运动的路程x的函数图象如图②所示,则点P从开始到停止运动的总路程为()A.4 B.2+C.5 D.4+二、填空题:每小题3分,共21分.9.计算: +(﹣tan45°)2016=______.10.如图,在▱ABCD中,点E在AD边上,AE=2ED,连接EB交AC于点F,若AC=10,则AF为______.11.如图,反比例函数y=在一象限的图象上有两点A,B,它们的横坐标分别为1,3,则△OAB的面积为______.12.将二次函数y=x2﹣1的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,这样就形成了新的图象,当直线y=x+m与新图象有4个公共点时,m的取值范围是______.13.在一只不透明的口袋中装有标号为1,2,3,4的4个球,这些球除标号外都相同,充分搅匀,请你按照甲、乙、丙的摸球顺序从袋中各摸出一个球(不放回),摸到1号球胜出,则丙胜出的概率是______.14.如图,在菱形ABCD中,∠B=60°,AB=2,扇形AEF的半径为2,圆心角为60°,则阴影部分的面积是______.15.如图,△ABC和△DEF是两个全等的等腰直角三角形,点G在直角边BC上,BG=5,CG=1,将△DEF的顶点D放在直角边AC上,直角边DF经过点G,斜边DE经过点B,则CD=______.三、解答题:本大题共8小题,共75分.16.先化简,再求值:(1﹣)÷﹣,其中x满足x2﹣x﹣1=0.17.如图,AB是半圆O的直径,射线AM⊥AB,点P在AM上,连接OP交半圆O于点D,PC切半圆O于点C,连接BC.(1)求证:BC∥OP;(2)若半圆O的半径等于2,填空:①当AP=______时,四边形OAPC是正方形;②当AP=______时,四边形BODC是菱形.18.2016年3月全国两会胜利召开,某数学兴趣小组就两会期间出现频率最高的热词:A 脱贫攻坚.B.绿色发展.C.自主创新.D.简政放权等热词进行了抽样调查,每个同学只能从中选择一个“我最关注”的热词,如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了______名同学;(2)条形统计图中,m=______,n=______;(3)扇形统计图中,热词B所在扇形的圆心角的度数是______;(4)从该校学生中随机抽取一个最关注热词D的学生的概率是多少?19.已知关于x的方程x2+mx+m﹣2=0.(1)求证:不论m取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为1,求该方程的另一根.20.如图,为了固定一颗珍贵的古树AD,在树干A处向地面引钢管AB,与地面夹角为60°,向高CE1.5米的建筑物引钢管AC,与水平面夹角为30°,建筑物CE离古树的距离ED为6米,求钢管AB的长(结果保留整数,参考数据:=1.41,=1.73)21.星期天,小强从学校步行去图书馆,同时,先到图书馆的小华骑车返校取忘带的学生卡,拿到卡返回途中遇到小强,小强又坐车来到图书馆,如图是两人离开图书馆的距离y(米)与出发时间x(分)之间的函数图象,根据图象信息解答问题:(1)求小华返回时的速度;(2)小强比步行提前多少分钟到图书馆?(3)求小强与小华相距1000米的时间.22.(1)问题发现如图1,△ABC和△ADE均为等边三角形,点D在BC的延长线上,连接CE,请填空:①∠ACE的度数为______;②线段AC、CD、CE之间的数量关系为______.(2)拓展探究如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D在边BC的延长线上,连接CE请判断∠ACE的度数及线段AC、CD、CE之间的数量关系,并说明理由.(3)问题解决如图3,在Rt△ABC中,AC=3,BC=5,∠ACB=90°,若点P满足PA=PB,∠APB=90°,请直接写出线段PC的长度.23.如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A、C间的一个动点(含端点),过点P作PD⊥OA于点D,点E(8,2),F(0,6),连接PE、PF、EF.(1)直接写出抛物线和直线EF的解析式.(2)小明探究点P的位置发现:当点P与点A或点C重合时,PD与PF的和为定值,进而猜想:对于任意一点P,PD与PF的和为定值,请你判断该猜想是否正确,并说明理由.(3)小明进一步探究得出结论:①使得PD﹣PE最大的点P是否存在?若存在求出点P的坐标,否则说明理由.②若将“使△PEF得面积为整数”的点P记作“好点”,且存在多个“好点”,请直接写出所有“好点”的个数,求出使得△PEF的面积最大的好点P的坐标.2018年河南省商丘市柘城县中考数学一模试卷参考答案与试题解析一、选择题1.下列各数中,大小在﹣1和﹣2之间的数是()A.﹣3 B.﹣C.0 D.|﹣3|【考点】估算无理数的大小.【分析】根据各个数据与﹣1和﹣2的比较可以确定答案.【解答】解:A.∵﹣3<﹣2,不在﹣1与﹣2之间,∴A选项错误;B.∵由于1<<2,则﹣2<﹣<﹣1,B选项正确;C.∵0>﹣1,不在﹣1与﹣2之间,∴C选项错误;D.∵|﹣3|=3,∴|﹣3|>﹣1,不在﹣1与﹣2之间,∴D选项错误;故选B.【点评】本题考查了估算有理数以及无理数的大小,也考查了算术平方根,利用完全平方数和算术平方根对无理数的大小进行估算是解答此题的关键.2.一个几何体的三视图如图所示,则这个几何体是()A.圆柱 B.圆锥 C.长方体D.正方体【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得此几何体为圆柱.故选A.【点评】本题考查了由三视图判断几何体:由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.3.为提升城市品位,改善城市环境,2015年2月27日,许昌市护城河环通工程开工建设,时隔一年,“桨声欸乃乃何叶碧,一舟环游许昌城”的诗情画意已基本成为现实.据悉,全长约5公里的护城河总蓄水量达37万立方米,将数据37万用科学记数法表示为()A.37×104B.3.7×104C.37×105D.3.7×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将37万用科学记数法表示为3.7×105.故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()A.26°B.36°C.46°D.56°【考点】平行线的性质.【分析】如图,首先运用平行线的性质求出∠AOB的大小,然后借助平角的定义求出∠3即可解决问题.【解答】解:如图,∵直线l4∥l1,∴∠1+∠AOB=180°,而∠1=124°,∴∠AOB=56°,∴∠3=180°﹣∠2﹣∠AOB=180°﹣88°﹣56°=36°,故选B.【点评】该题主要考查了平行线的性质及其应用问题;应牢固掌握平行线的性质,这是灵活运用、解题的基础和关键.5.某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,10,8,9,16,12,7,这组数据的中位数和众数分别是()A.10,12 B.12,11 C.11,12 D.12,12【考点】众数;中位数.【专题】计算题.【分析】先把原数据按由小到大排列,然后根据中位数和众数的定义求解.【解答】解:原数据按由小到大排列为:7,8,9,10,12,12,14,16,所以这组数据的中位数==11,众数为12.故选C.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数的定义.6.已知点P(3﹣m,m﹣1)在第四象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集.【分析】根据第四象限内点的横坐标大于零,纵坐标小于零,可得不等式组,根据解不等式组,可得答案.【解答】解:由点P(3﹣m,m﹣1)在第四象限,得,解得1<m<3.故选:D.【点评】本题考查了点的坐标,利用第四象限内的点的横坐标大于零,纵坐标小于零得出不等式组是解题关键.7.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于BC长为半径画弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,正确的个数为()A.1个B.2个C.3个D.4个【考点】作图—基本作图;线段垂直平分线的性质.【分析】根据作图可得P到B、C两点距离相等,再由D是BC边的中点可得PD是BC的垂直平分线,进而可得①正确;再根据角的互余关系可证明∠A=∠EBA,故②正确;结论③不能证明,根据三角形中位线定理可得④正确.【解答】解:∵由作图可得P到B、C两点距离相等,又∵点D是BC边的中点,∴PD是BC的垂直平分线,故①正确;∵PD是BC的垂直平分线,∴EB=EC,∴∠C=∠EBC,∵∠ABC=90°,∴∠A+∠C=90°,∠ABE+∠EBC=90°,∴∠A=∠EBA,故②正确;根据所给条件无法证明EB平分∠AED,故③错误;∵∠A=∠EBA,∴AE=BE,∵BE=EC,∴EA=EC,∵D为BC中点,∴DE是△ABC的中位线,∴ED=AB,故④正确;正确的共有3个,故选:C.【点评】此题主要考查了基本作图,关键是掌握线段垂直平分线的作法和性质.8.如图①,四边形ABCD中,BC∥AD,∠A=90°,点P从A点出发,沿折线AB→BC→CD 运动,到点D时停止,已知△PAD的面积s与点P运动的路程x的函数图象如图②所示,则点P从开始到停止运动的总路程为()A.4 B.2+C.5 D.4+【考点】动点问题的函数图象.【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线AE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【解答】解:作CE⊥AD于点E,如下图所示,由图象可知,点P从A到B运动的路程是2,当点P与点B重合时,△ADP的面积是5,由B到C运动的路程为2,∴,解得,AD=5,又∵BC∥AD,∠A=90°,CE⊥AD,∴∠B=90°,∠CEA=90°,∴四边形ABCE是矩形,∴AE=BC=2,∴DE=AD﹣AE=5﹣2=3,∴CD=,∴点P从开始到停止运动的总路程为:AB+BC+CD=2+2+=4+,故选D.【点评】本题考查动点问题的函数图象,解题的关键是明确题意,能从函数图象中找到我们需要的信息,利用数形结合的思想解答问题.二、填空题:每小题3分,共21分.9.计算: +(﹣tan45°)2016=﹣1.【考点】实数的运算;特殊角的三角函数值.【分析】原式利用立方根定义,特殊角的三角函数值,以及乘方的意义计算即可得到结果.【解答】解:原式=﹣2+1=﹣1.故答案为:﹣110.如图,在▱ABCD中,点E在AD边上,AE=2ED,连接EB交AC于点F,若AC=10,则AF为4.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据平行四边形的对边相等可得AD=BC,然后求出AE=AD=BC,再根据平行线分线段成比例定理求出AF、FC的比,然后求解即可.【解答】解:在▱ABCD中,AD=BC,AD∥BC,∵AE=2ED,∴AE=AD=BC,∵AD∥BC,∴=,∵AC=10,∴AF=×10=4.故答案为:4.11.如图,反比例函数y=在一象限的图象上有两点A,B,它们的横坐标分别为1,3,则△OAB的面积为8.【考点】反比例函数系数k的几何意义.【分析】根据题意结合反比例函数图象上点的坐标性质S△ACO=S△OBD=3,得出S四边形AODB 的值是解题关键.【解答】解:如图所示:过点A作AC⊥y轴于点C,过点B作BD⊥x轴于点D,∵反比例函数y=在第一象限的图象上有两点A,B,它们的横坐标分别是2,6,∴x=1时,y=6;x=3时,y=2,故S△ACO=S△OBD=3,S=×(3+1)×4+3=11,四边形AODB故△AOB的面积是:11﹣3=8.故答案为:8.12.将二次函数y=x2﹣1的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,这样就形成了新的图象,当直线y=x+m与新图象有4个公共点时,m的取值范围是1<m<.【考点】二次函数图象与几何变换.【分析】先确定抛物线y=x2﹣1的顶点坐标为(0,﹣1)和抛物线y=x2﹣1与x轴的交点为(﹣1,0),(1,0),画出抛物线,然后把抛物线y=x2﹣1图象x轴下方的部分沿x轴翻折到x轴上方,则翻折部分的抛物线解析式为y=﹣x2+1(﹣1≤x≤1),有图象可得当直线y=x+m 过点A时,直线y=x+m与该新图象恰好有三个公共点,易得对应的m的值为1;当直线y=x+m 与抛物线y=﹣x2+1(﹣1≤x≤1)相切时,直线y=x+m与该新图象恰好有三个公共点,即﹣x2+1=x+m有相等的实数解,利用根的判别式的意义可求出此时m的值,进而得到直线y=x+m 与新图象有4个公共点时,m的取值范围.【解答】解:∵y=x2﹣1,∴抛物线y=x2﹣1的顶点坐标为(0,﹣1),当y=0时,x2﹣1=0,解得x1=﹣1,x2=1,则抛物线y=x2﹣1与x轴的交点为(﹣1,0),(1,0),把抛物线y=x2﹣1图象x轴下方的部分沿x轴翻折到x轴上方,则翻折部分的抛物线解析式为y=﹣x2+1(﹣1≤x≤1),如图,把直线y=x向上平移,当平移后的直线y=x+m过点A时,直线y=x+m与该新图象恰好有三个公共点,所以﹣1+m=0,解得m=1;当直线y=x+m与抛物线y=﹣x2+1(﹣1≤x≤1)相切时,直线y=x+m与该新图象恰好有三个公共点,即﹣x2+1=x+m有相等的实数解,整理得x2+x+m﹣1=0,△=12﹣4(m﹣1)=0,解得m=,所以当直线y=x+m与新图象有4个公共点时,m的取值范围是1<m<.故答案为1<m<.13.在一只不透明的口袋中装有标号为1,2,3,4的4个球,这些球除标号外都相同,充分搅匀,请你按照甲、乙、丙的摸球顺序从袋中各摸出一个球(不放回),摸到1号球胜出,则丙胜出的概率是.【考点】列表法与树状图法.【分析】根据题意可得到一共有多少种可能性和丙胜出的可能性,从而可以求得丙胜出的概率,本题得以解决.【解答】解:由题意可得,按照甲、乙、丙的摸球顺序从袋中各摸出一个球(不放回),有4×3×2=24种可能性,如果丙摸到1号球的可能性有3×2=6种,故丙胜出的概率是:6÷24=,故答案为:.14.如图,在菱形ABCD中,∠B=60°,AB=2,扇形AEF的半径为2,圆心角为60°,则阴影部分的面积是﹣.【考点】扇形面积的计算;菱形的性质.【分析】根据菱形的性质得出△ADC和△ABC是等边三角形,进而利用全等三角形的判定得出△ADH≌△ACG,得出四边形AGCH的面积等于△ADC的面积,进而求出即可.【解答】解:∵四边形ABCD是菱形,∴∠B=∠D=60°,AB=AD=DC=BC=2,∴∠BCD=∠DAB=120°,∴∠1=∠2=60°,∴△ABC、△ADC都是等边三角形,∴AC=AD=2,∵AB=2,∴△ADC的高为,AC=2,∵扇形BEF的半径为1,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AF、DC相交于HG,设BC、AE相交于点G,在△ADH和△ACG中,,∴△ADH≌△ACG(ASA),∴四边形AGCH的面积等于△ADC的面积,∴图中阴影部分的面积是:S﹣S△ACD=﹣×2×=﹣,扇形AEF故答案为:﹣.15.如图,△ABC和△DEF是两个全等的等腰直角三角形,点G在直角边BC上,BG=5,CG=1,将△DEF的顶点D放在直角边AC上,直角边DF经过点G,斜边DE经过点B,则CD=2或3.【考点】等腰直角三角形.【分析】作DM⊥AB于M,设CD=x,由等腰直角三角形的性质得出AC=BC=6,∠A=∠EDF=45°,∠C=90°,AB=BC=6,AD=6﹣x,证出△ADM是等腰直角三角形,得出AM=AD=(6﹣x),因此BM=6﹣(6﹣x),证明△CDG∽△MBD,得出对应边成比例,得出方程,解方程即可.【解答】解:作DM⊥AB于M,如图所示:设CD=x,∵△ABC和△DEF是两个全等的等腰直角三角形,BG=5,CG=1,∴AC=BC=6,∠A=∠EDF=45°,∠C=90°,∴AB=BC=6,AD=6﹣x,△ADM是等腰直角三角形,∴AM=AD=(6﹣x),∴BM=6﹣(6﹣x),∵∠BDC=∠CDG+∠EDF=∠A+∠MBD,∴∠CDG=∠MBD,又∵∠DMB=90°=∠C,∴△CDG∽△MBD,∴,即=,解得:x=2,或x=3,∴CD=2或3;故答案为:2或3.三、解答题:本大题共8小题,共75分.16.先化简,再求值:(1﹣)÷﹣,其中x满足x2﹣x﹣1=0.【考点】分式的化简求值.【分析】原式第一项括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,已知方程变形后代入计算即可求出值.【解答】解:原式=•﹣=•﹣=x﹣=,∵x2﹣x﹣1=0,∴x2=x+1,则原式=1.17.如图,AB是半圆O的直径,射线AM⊥AB,点P在AM上,连接OP交半圆O于点D,PC切半圆O于点C,连接BC.(1)求证:BC∥OP;(2)若半圆O的半径等于2,填空:①当AP=2时,四边形OAPC是正方形;②当AP=2时,四边形BODC是菱形.【考点】圆的综合题.【分析】(1)根据切线的性质,可以得到OP⊥AC,由AB是圆O的直径,可以得到AC⊥BC,从而可以得到BC∥OP;(2)①若四边形OAPC是正方形,根据正方形的性质可以得到AP的长;②若四边形BODC是菱形,根据菱形的性质,通过变形,可以得到AP的长.【解答】(1)证明:连接OC,AC,如右图所示,∵AB是直径,AM⊥AB,∴BC⊥AC,AP是圆的切线,∵PC切半圆O于点C,∴PA=PC,又∵OA=OC,∴OP⊥AC,∴BC∥OP;(2)①若四边形OAPC是正方形,则OA=AP,∵OA=2,∴AP=2.故答案为:2;②若四边形BODC是菱形,则CB=BO=OD=DC,∵AB=2OB,∠ACB=90°,∴AB=2BC,∴∠BAC=30°,∠ABC=60°,∵BC∥OP,∴∠AOP=∠ABC=60°,又∵∠OAP=90°,OA=2,∴∠OPA=30°,∴OP=4,∴AP=,故答案为:2.18.2016年3月全国两会胜利召开,某数学兴趣小组就两会期间出现频率最高的热词:A 脱贫攻坚.B.绿色发展.C.自主创新.D.简政放权等热词进行了抽样调查,每个同学只能从中选择一个“我最关注”的热词,如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了300名同学;(2)条形统计图中,m=60,n=90;(3)扇形统计图中,热词B所在扇形的圆心角的度数是72°;(4)从该校学生中随机抽取一个最关注热词D的学生的概率是多少?【考点】概率公式;扇形统计图;条形统计图.【分析】(1)根据A的人数为105人,所占的百分比为35%,求出总人数,即可解答;(2)C所对应的人数为:总人数×30%,B所对应的人数为:总人数﹣A所对应的人数﹣C 所对应的人数﹣D所对应的人数,即可解答;(3)根据B所占的百分比×360°,即可解答;(4)根据概率公式,即可解答.【解答】解:(1)105÷35%=300(人).故答案为:300;(2)n=300×30%=90(人),m=300﹣105﹣90﹣45=60(人).故答案为:60,90;(3)×360°=72°.故答案为:72°;(4)从该校学生中随机抽取一个最关注热词D的学生的概率是=.答:从该校学生中随机抽取一个最关注热词D的学生的概率是.19.已知关于x的方程x2+mx+m﹣2=0.(1)求证:不论m取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为1,求该方程的另一根.【考点】根与系数的关系;根的判别式.【分析】(1)由方程的各系数结合根的判别式可得出△=(m﹣2)2+4>0,由此即可证出结论;(2)将x=1代入原方程,得出关于m的一元一次方程,解方程求出m的值,将其代入原方程得出关于x的一元二次方程,结合根与系数的关系找出x1+x2=﹣=﹣,由此即可得出方程的另一根.【解答】(1)证明:∵在关于x的方程x2+mx+m﹣2=0中:△=m2﹣4×1×(m﹣2)=m2﹣4m+8=(m﹣2)2+4>0,∴不论m取何实数,该方程都有两个不相等的实数根.(2)解:将x1=1代入方程x2+mx+m﹣2=0中得:1+m+m﹣2=0,解得:m=.∴原方程为x2+x﹣=0,∴x1+x2=﹣=﹣,∵x1=1,∴x2=﹣.故若该方程的一个根为1,该方程的另一根为﹣.20.如图,为了固定一颗珍贵的古树AD,在树干A处向地面引钢管AB,与地面夹角为60°,向高CE1.5米的建筑物引钢管AC,与水平面夹角为30°,建筑物CE离古树的距离ED为6米,求钢管AB的长(结果保留整数,参考数据:=1.41,=1.73)【考点】解直角三角形的应用.【分析】过点C作CF⊥AD于点F,于是得到CF=DE=6,AF=CFtan30°,在Rt△ABD中,根据三角函数的定义即可得到结论.【解答】解:过点C作CF⊥AD于点F,则CF=DE=6,AF=CFtan30°=6×=3.∴AD=AF+DF=2+1.5,在Rt△ABD中,AB==(2+1.5)÷=4+≈6米.答:钢管AB的长约为6米.21.星期天,小强从学校步行去图书馆,同时,先到图书馆的小华骑车返校取忘带的学生卡,拿到卡返回途中遇到小强,小强又坐车来到图书馆,如图是两人离开图书馆的距离y(米)与出发时间x(分)之间的函数图象,根据图象信息解答问题:(1)求小华返回时的速度;(2)小强比步行提前多少分钟到图书馆?(3)求小强与小华相距1000米的时间.【考点】一次函数的应用.【分析】(1)由“速度=路程÷时间”代入数据即可得出结论;(2)由小华返回的速度结合“路程=速度×时间”即可得出点B的纵坐标,再根据“速度=路程÷时间”得出小强步行的速度,由点B与点D的纵坐标结合“时间差=步行全程的时间﹣到达的时间,即可得出结论;(3)结合图象上的点的坐标,利用待定系数法即可分别求出线段OA、AB和BD的函数解析式,按x值的不同分两种情况考虑,利用两函数解析式之差的绝对值为1000可得出关于x的方程,解方程即可得出结论.【解答】解:(1)小华返回的速度为3000÷(50﹣30)=150(米/分).答:小华返回时的速度为150米/分.(2)点B的纵坐标为:150×(50﹣45)=750.小强步行的速度为:÷45=50(米/分),小强比步行提前到图书馆的时间为:3000÷50﹣50=10(分钟).答:小强比步行提前10分钟到图书馆.(3)设直线OA的解析式为y=kx+b,将点O(0,0),A(30,3000)代入y=kx+b中得:,解得:.∴线段OA的解析式为y=100x(0≤x≤30);同理可得:线段AB的解析式为y=﹣150x+7500(30<x≤45);线段BD的解析式为y=﹣50x+3000.当0≤x≤30时,令|﹣50x+3000﹣100x|=1000,解得:x1=,x2=;当30<x≤45时,令﹣150x+7500﹣(﹣50x+3000)=1000,解得:x3=35.∴小强与小华相距1000米的时间为、或35分钟.22.(1)问题发现如图1,△ABC和△ADE均为等边三角形,点D在BC的延长线上,连接CE,请填空:①∠ACE的度数为60°;②线段AC、CD、CE之间的数量关系为AC=CE﹣CD.(2)拓展探究如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D在边BC的延长线上,连接CE请判断∠ACE的度数及线段AC、CD、CE之间的数量关系,并说明理由.(3)问题解决如图3,在Rt△ABC中,AC=3,BC=5,∠ACB=90°,若点P满足PA=PB,∠APB=90°,请直接写出线段PC的长度.【考点】三角形综合题.【分析】(1)根据等边三角形的性质得到AB=AC=BC,∠BAC=60°,AD=AE,∠DAE=60°,利用等量代换得∠BAD=∠CAE,则可根据“SAS”判断△ABD≌△ACE,根据全等三角形的想知道的BD=CE,于是得到结论;(2)根据等腰直角三角形的性质得到AB=AC,∠BAD=∠CAE,AD=AE,根据全等三角形的性质得到∠ACE=∠B=45°,BD=CE,等量代换即可得到结论;(3)如图3,点C,P在AB的同侧根据勾股定理得到AB=,过D作DE⊥AB于E,根据已知条件得到A,B,P,C四点共圆,AP=PB=AB=,设AE=DE=x,则BE= x,根据相似三角形的性质得到PC=,如图4,点C,P在AB的异则,过A作AD⊥PC 于D,根据等腰直角三角形的性质得到CD=AD=AC=,根据勾股定理得到PD= =,求得PC=CD+PD=4.【解答】解:(1)①∵△ABC为等边三角形,∴AB=AC=BC,∠BAC=60°,∵△ADE为等边三角形,∴AD=AE,∠DAE=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,∴△ABD≌△ACE(SAS),∴∠ACE=∠B=60°;②∵△ABD≌△ACE,∴BD=CE,∴BC=BD﹣CD=CE﹣CD,∴AC=CE﹣CD;故答案为:60°,AC=CE﹣CD;(2)∵△ABC和△ADE均为等腰直角三角形,∴AB=AC,∠BAD=∠CAE,AD=AE,在△ACE与△ABD中,,∴△ACE≌△ABD,∴∠ACE=∠B=45°,BD=CE,即BC+CD=CE,∴BC=CE﹣CD,∴AC=CE﹣CD;(3)如图3,点C,P在AB的同侧,∵AC=3,BC=5,∠ACB=90°,∴AB=,过D作DE⊥AB于E,∵PA=PB,∠APB=90°,∴∠PAB=∠PBA=45°,且A,B,P,C四点共圆,AP=PB=AB=,设AE=DE=x,则BE=x,∴x+x=,∴x=,∴AE=DE=,∴AD=AE=,∴PD=AP﹣AD=,∴BD==,∵A,B,P,C四点共圆,∴∠PCB=∠PAB,∠CPA=∠ABC,∴△PCD∽△ABD,∴,∴PC=,如图4,点C,P在AB的异则,过A作AD⊥PC于D,∵∠ACB=∠APB=90°,∴A,B,P,C四点共圆,∴∠ACD=∠ABC=45°,∠APD=∠ABC,∴CD=AD=AC=,∴PD==,∴PC=CD+PD=4,综上所述:线段PC的长度是或4.23.如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A、C间的一个动点(含端点),过点P作PD⊥OA于点D,点E(8,2),F(0,6),连接PE、PF、EF.(1)直接写出抛物线和直线EF的解析式.(2)小明探究点P的位置发现:当点P与点A或点C重合时,PD与PF的和为定值,进而猜想:对于任意一点P,PD与PF的和为定值,请你判断该猜想是否正确,并说明理由.(3)小明进一步探究得出结论:①使得PD﹣PE最大的点P是否存在?若存在求出点P的坐标,否则说明理由.②若将“使△PEF得面积为整数”的点P记作“好点”,且存在多个“好点”,请直接写出所有“好点”的个数,求出使得△PEF的面积最大的好点P的坐标.【考点】二次函数综合题.【分析】(1)用待定系数法求出抛物线解析式和直线解析式;(2)设出点P的坐标,用勾股定理计算即可;(3)由y=﹣x+6与y=﹣x2+8求出交点坐标,建立S△PEF与m的函数关系式即可.【解答】解:(1)∵正方形的边长为8,∴OC=OA=8,∴A(8,0),C(0,8)设抛物线的解析式为y=ax2+8,∵点A在抛物线上,∴0=a×64+8,∴a=﹣,∴y=﹣x2+8,∵点E(8,2),F(0,6),∴直线EF的解析式为y=﹣x+6;(2)猜想正确;理由:设P(m,﹣m2+8),根据勾股定理得,PF==m2+2,PD=﹣m2+8,则PF+PD=10,(3)①存在.∵PD﹣PE=10﹣PF﹣PE=10﹣(PF+PE),PE+PF≥EF,EF=4,∴PD﹣PE≤10﹣EF=10﹣4,当F、P、D三点共线时,PD﹣PE有最大值10﹣4.∵y=﹣x+6与y=﹣x2+8,∴x=2+2,或x=2﹣2(舍),∴P的坐标为P(2+2,5﹣);②设△PEF的面积为S,PD与EF交于点G,G(m,﹣m+6),当点P在直线EF上方时,S△PEF=×8×(﹣m2+8+m﹣6)=﹣(m﹣2)2+10,∴当m=2时,S的最大值为10,此时P(2,7.5)∴0≤m<2+2,0<S△PEF≤10.∴由对称性知,好点有12个;当点P在直线EF下方时,S△PEF=×8×(﹣m2﹣8+m+66)=(m﹣2)2﹣10.2+2<m≤8,∴0<S△PEF≤8.好点有8个.综上:好点共有20个,其中△PEF的面积最大时好点P的坐标为P(2,7.5).。

河南省商丘市柘城中学中考数学一模试卷

河南省商丘市柘城中学中考数学一模试卷

各位同学在查看时请点击全屏查看2018年商丘中考数学复习题一、选择题(每小题3分,共30分.下列各小题均有四个答案,其中只有一个正确选项)1.﹣3的倒数是()A.3ﻩB。

﹣3ﻩC.ﻩD.2.下列各运算中,计算正确的是()A。

=±3ﻩB.235 C.(﹣32)2=9a2b4ﻩD.(a﹣b)22﹣b23。

据新华社北京2017年1月20日电国家统计局20日发布数据,初步核算,2016年我国国内生产总值()约74万亿元,若将74万亿用科学记数法表示为( )A.7。

4×1013ﻩB.7。

4×1012ﻩC。

74×1013ﻩD.0。

74×10124.如图是由棱长为1的正方体搭成的某几何体三视图,则图中棱长为1的正方体的个数是()A.5ﻩB。

6ﻩC.7ﻩD.85.小红同学四次中考数学模拟考试成绩分别是:96,104,104,116,关于这组数据下列说法错误的是()A.平均数是105ﻩB.众数是104ﻩC.中位数是104 D。

方差是506.方程(x﹣2)(x﹣4)=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为( )A.6ﻩB。

8ﻩC.10ﻩD.8或107.一次函数﹣3和1的图象如图所示,其交点为P(3,4),则不等式1≥﹣3的解集在数轴上表示正确的是()A.ﻩB.ﻩC。

ﻩD.8.现有四张完全相同的卡片,上面分别标有数字0,1,2,3,把卡片背面朝上洗匀,然后从中随机抽取两张卡片组成一个两位数,则这个两位数是偶然的概率是()A。

ﻩB.ﻩC。

ﻩD.9.若点A(﹣4,y1),B(﹣1,y2),C(1,y3)在抛物线﹣(2)2﹣1上,则()A.y1〈y3<y2 ﻩB。

y2<y1<y3ﻩC。

y3<y2〈y1D.y3<y1〈y210.如图,在▱中,与相交于点O,E为的中点,连接并延长交于点F,则S△:S△的值为()A。

1:3ﻩB。

1:5ﻩC。

1:6ﻩD.1:11二、填空题(每小题3分,共15分)11.计算:|﹣2|﹣= .12.如图,若∥,∠60°,则∠∠度.13.如图,已知第一象限内的点A在反比例函数上,第二象限的点B在反比例函数上,且⊥,,则k的值为。

2018年河南省商丘市柘城县中考数学模拟试卷-有答案

2018年河南省商丘市柘城县中考数学模拟试卷-有答案

2018年河南省商丘市柘城县中考数学模拟试卷一、选择题(每小题3分,共30分)1.(3分)﹣2018的绝对值是()A.±2018 B.﹣2018 C.﹣D.20182.(3分)据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是()A.55×106 B.0.55×108C.5.5×106D.5.5×1073.(3分)如图所示的几何体的俯视图是()A.B.C.D.4.(3分)下列各式计算正确的是()A.(b+2a)(2a﹣b)=b2﹣4a2B.2a3+a3=3a6C.a3•a=a4D.(﹣a2b)3=a6b35.(3分)某校九年级一班全体学生2017年中招理化生实验操作考试的成绩统计如下表,根据表中的信息判断,下列结论中错误的是()32B.该班学生这次考试成绩的平均数为29.4分C.该班学生这次考试成绩的众数为30分D.该班学生这次考试成绩的中位数为28分6.(3分)已知关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,则m的取值范围是()A.m>1 B.m<1 C.m≥1 D.m≤17.(3分)如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD:BD=5:3,CF=6,则DE的长为()A.6 B.8 C.10 D.128.(3分)现有四张分别标有数字1、2、2、3的卡片,他们除数字外完全相同.把卡片背面朝上洗匀,从中随机抽出一张后放回,再背朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率()A.B.C.D.9.(3分)如图,一段抛物线:y=﹣x(x﹣5)(0≤x≤5),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,得到一“波浪线”,若点P(2018,m)在此“波浪线”上,则m的值为()A.4 B.﹣4 C.﹣6 D.610.(3分)如图,直角三角形ABC中,∠C=90°,AC=2,AB=4,分别以AC、BC为直径作半圆,则图中阴影部分的面积为()A.2π﹣B.π+C.π+2D.2π﹣2二、填空题(每小题3分,共15分)11.(3分)20180+=.12.(3分)不等式组的非负整数解的个数是.13.(3分)如图,正比例函数y1=k1x和反比例函数y2=的图象交于A(﹣1,2),B(1,﹣2)两点,若y1>y2,则x的取值范围是.14.(3分)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4,则△CEF的周长为.15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为.三、解答题(本大题共8小题,共75分)16.(8分)先化简÷(﹣x+1),然后从﹣<x<的范围内选取一个合适的整数作为x的值代入求值.17.(9分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)①表中a的值为,中位数在第组;②频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.18.(9分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.19.(9分)如图,港口B位于港口A的南偏东37°方向,灯塔C恰好在AB的中点处.一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5km到达E处,测得灯塔C在北偏东45°方向上,这时,E处距离港口A有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)20.(9分)如图,∠AOB=90°,反比例函数y=﹣(x<0)的图象过点A(﹣1,a),反比例函数y=(k>0,x>0)的图象过点B,且AB∥x轴.(1)求a和k的值;(2)过点B作MN∥OA,交x轴于点M,交y轴于点N,交双曲线y=于另一点C,求△OBC的面积.21.(10分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.22.(10分)如图1,在Rt△ABC中,∠C=90°,AC=BC=2,点D、E分别在边AC、AB上,AD=DE=AB,连接DE.将△ADE绕点A逆时针方向旋转,记旋转角为θ.(1)问题发现①当θ=0°时,=;②当θ=180°时,=.(2)拓展探究试判断:当0°≤θ<360°时,的大小有无变化?请仅就图2的情形给出证明;(3)问题解决①在旋转过程中,BE的最大值为;②当△ADE旋转至B、D、E三点共线时,线段CD的长为.23.(11分)如图1,在平面直角坐标系中,直线y=﹣x+1与抛物线y=ax2+bx+c(a≠0)相交于点A(1,0)和点D(﹣4,5),并与y轴交于点C,抛物线的对称轴为直线x=﹣1,且抛物线与x轴交于另一点B.(1)求该抛物线的函数表达式;(2)若点E是直线下方抛物线上的一个动点,求出△ACE面积的最大值;(3)如图2,若点M是直线x=﹣1的一点,点N在抛物线上,以点A,D,M,N为顶点的四边形能否成为平行四边形?若能,请直接写出点M的坐标;若不能,请说明理由.2018年河南省商丘市柘城县中考数学模拟试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)﹣2018的绝对值是()A.±2018 B.﹣2018 C.﹣D.2018【解答】解:﹣2018的绝对值是2018.故选:D.2.(3分)据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是()A.55×106 B.0.55×108C.5.5×106D.5.5×107【解答】解:55000000=5.5×107,故选:D.3.(3分)如图所示的几何体的俯视图是()A.B.C.D.【解答】解:从上往下看,该几何体的俯视图与选项D所示视图一致.故选:D.4.(3分)下列各式计算正确的是()A.(b+2a)(2a﹣b)=b2﹣4a2B.2a3+a3=3a6C.a3•a=a4D.(﹣a2b)3=a6b3【解答】解:A、原式=4a2﹣b2,不符合题意;B、原式=3a3,不符合题意;C、原式=a4,符合题意;D、原式=﹣a6b3,不符合题意,故选:C.5.(3分)某校九年级一班全体学生2017年中招理化生实验操作考试的成绩统计如下表,根据表中的信息判断,下列结论中错误的是()B.该班学生这次考试成绩的平均数为29.4分C.该班学生这次考试成绩的众数为30分D.该班学生这次考试成绩的中位数为28分【解答】解:A、32+4+2+1+1=40,该班共有40名学生,故本选项错误;B、(30×32+29×4+28×2+×1+18×1)÷40=29.4,故本选项错误;C、30分出现的次数最多,众数为30,故本选项错误;D、第20和21两个数的平均数为30,故中位数为30,故本选项正确;故选:D.6.(3分)已知关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,则m的取值范围是()A.m>1 B.m<1 C.m≥1 D.m≤1【解答】解:∵关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,∴△=b2﹣4ac=22﹣4×1×[﹣(m﹣2)]≥0,解得m≥1,故选:C.7.(3分)如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD:BD=5:3,CF=6,则DE的长为()A.6 B.8 C.10 D.12【解答】解:∵DE∥BC,∴∠ADE=∠B.∵∠ADE=∠EFC,∴∠B=∠EFC,∴BD∥EF,∵DE∥BF,∴四边形BDEF为平行四边形,∴DE=BF.∵DE∥BC,∴△ADE∽△ABC,∴===,∴BC=DE,∴CF=BC﹣BF=DE=6,∴DE=10.故选:C.8.(3分)现有四张分别标有数字1、2、2、3的卡片,他们除数字外完全相同.把卡片背面朝上洗匀,从中随机抽出一张后放回,再背朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率()A.B.C.D.【解答】解:由题意可得,两次抽出的卡片所标数字不同的概率是:,故选:A.9.(3分)如图,一段抛物线:y=﹣x(x﹣5)(0≤x≤5),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,得到一“波浪线”,若点P(2018,m)在此“波浪线”上,则m的值为()A.4 B.﹣4 C.﹣6 D.6【解答】解:当y=0时,﹣x(x﹣5)=0,解得x1=0,x2=5,则A1(5,0),∴OA1=5,∵将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,得到一“波浪线”,∴A1A2=A2A3=…=OA1=5,∴抛物线C404的解析式为y=(x﹣5×403)(x﹣6×404),即y=(x﹣2015)(x﹣2020),当x=2018时,y=(2018﹣2015)(2018﹣2020)=﹣6,即m=﹣6.故选:C.10.(3分)如图,直角三角形ABC中,∠C=90°,AC=2,AB=4,分别以AC、BC为直径作半圆,则图中阴影部分的面积为()A.2π﹣B.π+C.π+2D.2π﹣2【解答】解:连接CD.∵∠C=90°,AC=2,AB=4,∴BC=2.∴阴影部分的面积=+﹣×2×2=2π﹣2.故选:D.二、填空题(每小题3分,共15分)11.(3分)20180+=1.【解答】解:原式=1+2﹣2=1.故答案为:1.12.(3分)不等式组的非负整数解的个数是5.【解答】解:解不等式3x+7≥2,得:x≥﹣,解不等式2x﹣9<1,得:x<5,则不等式组的解集为﹣≤x<5,则其非负整数解为0、1、2、3、4这5个,故答案为:5.13.(3分)如图,正比例函数y1=k1x和反比例函数y2=的图象交于A(﹣1,2),B(1,﹣2)两点,若y1>y2,则x的取值范围是x<﹣1或0<x<1.【解答】解:如图,结合图象可得:①当x<﹣1时,y1>y2;②当﹣1<x<0时,y1<y2;③当0<x<1时,y1>y2;④当x>1时,y1<y2.综上所述:若y1>y2,则x的取值范围是x<﹣1或0<x<1.故答案为:x<﹣1或0<x<1.14.(3分)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4,则△CEF的周长为8.【解答】解:∵在▱ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,∴∠BAF=∠DAF,∵AB∥DF,∴∠BAF=∠F,∴∠F=∠DAF,∴△ADF是等腰三角形,AD=DF=9;∵AD∥BC,∴△EFC是等腰三角形,且FC=CE.∴EC=FC=9﹣6=3,∴AB=BE.∴在△ABG中,BG⊥AE,AB=6,BG=,可得:AG=2,又∵BG⊥AE,∴AE=2AG=4,∴△ABE的周长等于16,又∵▱ABCD,∴△CEF∽△BEA,相似比为1:2,∴△CEF的周长为8.故答案为8.15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4.【解答】解:(i)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)当CB′=CD时,∵EB=EB′,CB=CB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠可知点F与点C重合,不符合题意,舍去.综上所述,DB′的长为16或4.故答案为:16或4.三、解答题(本大题共8小题,共75分)16.(8分)先化简÷(﹣x+1),然后从﹣<x<的范围内选取一个合适的整数作为x的值代入求值.【解答】解:÷(﹣x+1)====,当x=﹣2时,原式=.17.(9分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)①表中a的值为12,中位数在第3组;②频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.1【解答】解:(1)①a=50﹣(6+8+14+10)=12,中位数为第25、26个数的平均数,而第25、26个数均落在第3组内,所以中位数落在第3组,故答案为:12,3;②(2)×100%=44%,答:本次测试的优秀率是44%;(3)设小明和小强分别为A、B,另外两名学生为:C、D,则所有的可能性为:(AB﹣CD)、(AC﹣BD)、(AD﹣BC)所以小明和小强分在一起的概率为:.18.(9分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.【解答】(1)证明:连接OB,如图所示:∵E是弦BD的中点,∴BE=DE,OE⊥BD,=,∴∠BOE=∠A,∠OBE+∠BOE=90°,∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DB C=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切线;(2)解:∵OB=6,BC=8,BC⊥OB,∴OC==10,∵△OBC的面积=OC•BE=OB•BC,∴BE===4.8,∴BD=2BE=9.6,即弦BD的长为9.6.19.(9分)如图,港口B位于港口A的南偏东37°方向,灯塔C恰好在AB的中点处.一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5km到达E处,测得灯塔C在北偏东45°方向上,这时,E处距离港口A有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【解答】解:如图作CH⊥AD于H.设CH=xkm,在Rt△ACH中,∠A=37°,∵tan37°=,∴AH==,在Rt△CEH中,∵∠CEH=45°,∴CH=EH=x,∵CH⊥AD,BD⊥AD,∴CH∥BD,∴=,∵AC=CB,∴AH=HD,∴=x+5,∴x=≈15,∴AE=AH+HE=+15≈35km,∴E处距离港口A有35km.20.(9分)如图,∠AOB=90°,反比例函数y=﹣(x<0)的图象过点A(﹣1,a),反比例函数y=(k>0,x>0)的图象过点B,且AB∥x轴.(1)求a和k的值;(2)过点B作MN∥OA,交x轴于点M,交y轴于点N,交双曲线y=于另一点C,求△OBC的面积.【解答】解:(1)∵反比例函数y=﹣(x<0)的图象过点A(﹣1,a),∴a=﹣=2,∴A(﹣1,2),过A作AE⊥x轴于E,BF⊥⊥x轴于F,∴AE=2,OE=1,∵AB∥x轴,∴BF=2,∵∠AOB=90°,∴∠EAO+∠AOE=∠AOE+∠BOF=90°,∴∠EAO=∠BOF,∴△AEO∽△OFB,∴,∴OF=4, ∴B (4,2), ∴k=4×2=8;(2)∵直线OA 过A (﹣1,2), ∴直线AO 的解析式为y=﹣2x , ∵MN ∥OA ,∴设直线MN 的解析式为y=﹣2x +b , ∴2=﹣2×4+b , ∴b=10,∴直线MN 的解析式为y=﹣2x +10, ∵直线MN 交x 轴于点M ,交y 轴于点N , ∴M (5,0),N (0,10),解得,或,∴C (1,8),∴△OBC 的面积=S △OMN ﹣S △OCN ﹣S △OBM =5×10﹣×10×1﹣×5×2=15.21.(10分)某商店销售10台A 型和20台B 型电脑的利润为4000元,销售20台A 型和10台B 型电脑的利润为3500元.(1)求每台A 型电脑和B 型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍,设购进A 型电脑x 台,这100台电脑的销售总利润为y 元. ①求y 关于x 的函数关系式;②该商店购进A 型、B 型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A 型电脑出厂价下调m (0<m <100)元,且限定商店最多购进A 型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.【解答】解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得解得答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,﹣50<0,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,33≤x≤70①当0<m<50时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润;③当50<m<100时,m﹣50>0,y随x的增大而增大,∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.22.(10分)如图1,在Rt△ABC中,∠C=90°,AC=BC=2,点D、E分别在边AC、AB上,AD=DE=AB,连接DE.将△ADE绕点A逆时针方向旋转,记旋转角为θ.(1)问题发现①当θ=0°时,=;②当θ=180°时,=.(2)拓展探究试判断:当0°≤θ<360°时,的大小有无变化?请仅就图2的情形给出证明;(3)问题解决①在旋转过程中,BE的最大值为2+2;②当△ADE旋转至B、D、E三点共线时,线段CD的长为+1或﹣1.【解答】解:(1)①当θ=0°时,在Rt△ABC中,AC=BC=2,∴∠A=∠B=45°,AB=2,∵AD=DE=AB=,∴∠AED=∠A=45°,∴∠ADE=90°,∴DE∥CB,∴,∴,∴,故答案为:,②当θ=180°时,如图1,∴DE∥BC,∴,∴,即:,∴==,故答案为:;(2)当0°≤θ<360°时,的大小没有变化,理由:∵∠CAB=∠DAE,∴∠CAD=∠BAE,∵,∴△ADC∽△AEB,∴==;(3)①当点E在BA的延长线时,BE最大,在Rt△ADE中,AE=AD=2,AE=2+2;∴BE最大=AB+②如图2,当点E在BD上时,∵∠ADE=90°,∴∠ADB=90°,在Rt△ADB中,AB=2,AD=,根据勾股定理得,DB==,∴BE=BD+DE=+,由(2)知,,∴CD===+1,如图3,当点D在BE的延长线上时,在Rt△ADB中,AD=,AB=2,根据勾股定理得,BD==,∴BE=BD﹣DE=﹣,由(2)知,,∴CD===﹣1.故答案为: +1或﹣1.23.(11分)如图1,在平面直角坐标系中,直线y=﹣x+1与抛物线y=ax2+bx+c(a≠0)相交于点A(1,0)和点D(﹣4,5),并与y轴交于点C,抛物线的对称轴为直线x=﹣1,且抛物线与x轴交于另一点B.(1)求该抛物线的函数表达式;(2)若点E是直线下方抛物线上的一个动点,求出△ACE面积的最大值;(3)如图2,若点M是直线x=﹣1的一点,点N在抛物线上,以点A,D,M,N为顶点的四边形能否成为平行四边形?若能,请直接写出点M的坐标;若不能,请说明理由.【解答】解:(1)∵A(1,0),抛物线的对称轴为x=﹣1,∴B(﹣3,0).设抛物线的解析式为y=a(x+3)(x﹣1),将点D的坐标代入得:5a=5,解得a=1,∴抛物线的解析式为y=x2+2x﹣3.(2)如图1所示:过点E作EF∥y轴,交AD与点F,过点C作CH⊥EF,垂足为H.设点E(m,m2+2m﹣3),则F(m,﹣m+1).∴EF=﹣m+1﹣m2﹣2m+3=﹣m2﹣3m+4∴△ACE的面积=△EFA的面积﹣△EFC的面积=EF•AG﹣EF•HC=EF•OA=﹣(m+)2+.∴△ACE的面积的最大值为.(3)当AD为平行四边形的对角线时.设点M的坐标为(﹣1,a),点N的坐标为(x,y).∵平行四边的对角线互相平分,∴=,=.解得:x=﹣2,5﹣a.将点N的坐标代入抛物线的解析式得:5﹣a=﹣3,∴a=8.∴点M的坐标为(﹣1,8).当AD为平行四边形的边时.设点M的坐标为(﹣1,a).∵四边形MNAD为平行四边形,∴点N的坐标为(﹣6,a+5)或(4,a﹣5).∵将x=﹣6,y=a+5代入抛物线的解析式得:a+5=36﹣12﹣3,解得:a=16,∴M(﹣1,16).将x=4,y=a﹣5代入抛物线的解析式得:a﹣5=16+8﹣3,解得:a=26,∴M(﹣1,26).综上所述,当点M的坐标为(﹣1,26)或(﹣1,16)或(﹣1,8)时,以点A,D,M,N为顶点的四边形能成为平行四边形.。

2018年河南省商丘市中考一模数学试卷(解析版)

2018年河南省商丘市中考一模数学试卷(解析版)

2018年河南省商丘市中考数学一模试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)﹣6的绝对值是()A.﹣6B.6C.D.﹣2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)如图,一个正方体切去一个三棱锥后所得几何体的俯视图是()A.B.C.D.4.(3分)方程x2﹣2x=0的根是()A.x1=x2=0B.x1=x2=2C.x1=0,x2=2D.x1=0,x2=﹣2 5.(3分)如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为()A.85°B.70°C.75°D.60°6.(3分)某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分7.(3分)不等式组的解集是x>1,则m的取值范围是()A.m≥1B.m≤1C.m≥0D.m≤08.(3分)如图,在5×5的正方形网格中,从在格点上的点A,B,C,D中任取三点,所构成的三角形恰好是直角三角形的概率为()A.B.C.D.9.(3分)如图.在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y 轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为()A.B.C.D.10.(3分)如图,在扇形AOB中,∠AOB=90°,点C,D为半径OA,OB的中点,点E为的中点,连接CE,DE,若OA=4,则阴影部分的面积为()A.2π﹣2B.4π﹣4C.2π+2D.4π+4二、填空题(共5小题,每小题3分,满分15分)11.(3分)计算:+(﹣2)0=.12.(3分)如图,a∥b∥c,BC=1,DE=4.5,EF=1.5,则AC=.13.(3分)如图,四边形ABCO是平行四边形,OA=2,AB=6,点C在x轴的负半轴上,将▱ABCO绕点A逆时针旋转得到▱ADEF,AD经过点O,点F恰好落在x轴的正半轴上,若点D在反比例函数y=(x<0)的图象上,则k 的值为.14.(3分)如图1,点E,F,G分别是等边三角形ABC三边AB,BC,CA上的动点,且始终保持AE=BF=CG,设△EFG的面积为y,AE的长为x,y 关于x的函数图象大致为图2所示,则等边三角形ABC的边长为.15.(3分)如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为.三、解答题(共8小题,满分75分)16.(8分)先化简,再求值:﹣÷,其中a=+117.(9分)为了了解学生的体能状况,某学校从七年级学生中随机抽取部分学生的体能测试结果进行分析,并根据收集的数据绘制了两幅不完整的统计图,请根据这两幅统计图中的信息回答下列问题:(测试结果分“优秀”、“良好”、“及格”、“不及格”四个等级)(1)本次抽样调查共抽取多少名学生?(2)补全条形统计图.(3)在扇形统计图中,求测试结果为“良好”等级所对应圆心角的度数.(4)若该学校七年级共有600名学生,请你估计该学校七年级学生中测试结果为“不及格”等级的学生有多少名?18.(9分)如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC边交于点D,过点D作⊙O的切线交BC于点E,连接OE(1)证明OE∥AD;(2)①当∠BAC=°时,四边形ODEB是正方形.②当∠BAC=°时,AD=3DE.19.(9分)某数学兴趣小组想测量商丘电视台电视塔的高度,如图,该小组在商丘电视塔BC前一座楼房楼顶A处所观测到电视塔最高点B的仰角为65°,电视塔最低点C的仰角为30°,楼顶A与电视塔的水平距离AD为90米,求商丘电视塔BC的高度.(结果精确到1米,参考数据≈1.41,≈1.73,sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)20.(9分)某文具店出售A,B两种笔记本,其中购买2本A型笔记本和3本B 型笔记本花费42元,购买3本A型笔记本和2本B型笔记本花费38元.(1)A型笔记本和B型笔记本的单价为多少元?(2)若一次购买B型笔记本超过20本时,超过20本部分的B型记笔记价格打8折,分别写出两种笔记本的付款金额y(元)关于购买量x(本)的函数解析式;(3)某校准备在一次学习竞赛后购买这90本两种笔记本用于奖励,其中A型笔记本数量不超过B型笔记本的一半,两种笔记本各买多少时,总费用最少,最少费用是多少元?21.(10分)某班“数学兴趣小组”对函数y=+x的图象与性质进行了探究,探究过程如下,请补充完整.(1)函数y=+x的自变量x的取值范围是;(2)下表是y与x的几组对应值.求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(2,3),结合函数的图象,写出该函数的其它性质(一条即可):.(5)小明发现,①该函数的图象关于点(,)成中心对称;②该函数的图象与一条垂直于x轴的直线无交点,则这条直线为;③直线y=m与该函数的图象无交点,则m的取值范围为.22.(10分)在△ABC中,∠ACB是锐角,点D在射线BC上运动,连接AD,将线段AD绕点A逆时针旋转90°,得到AE,连接EC.(1)操作发现:若AB=AC,∠BAC=90°,当D在线段BC上时(不与点B 重合),如图①所示,请你直接写出线段CE和BD的位置关系和数量关系是,;(2)猜想论证:在(1)的条件下,当D在线段BC的延长线上时,如图②所示,请你判断(1)中结论是否成立,并证明你的判断.(3)拓展延伸:如图③,若AB≠AC,∠BAC≠90°,点D在线段BC上运动,试探究:当锐角∠ACB等于度时,线段CE和BD之间的位置关系仍成立(点C、E 重合除外)?此时若作DF⊥AD交线段CE于点F,且当AC=3时,请直接写出线段CF的长的最大值是23.(11分)如图,抛物线y=ax2+bx﹣2与y轴的交点为A,抛物线的顶点为B (1,﹣3).(1)求出抛物线的解析式;(2)点P为x轴上一点,当三角形P AB的周长最小时,求出点P的坐标;(3)水平移动抛物线,新抛物线的顶点为C,两抛物线的交点为D,当O,C,D在一条直线上时,请直接写出平移的距离.2018年河南省商丘市中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)﹣6的绝对值是()A.﹣6B.6C.D.﹣【解答】解:﹣6的绝对值是6.故选:B.2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,是中心对称图形,故此选项正确;故选:D.3.(3分)如图,一个正方体切去一个三棱锥后所得几何体的俯视图是()A.B.C.D.【解答】解:所给图形的俯视图是D选项所给的图形.故选:D.4.(3分)方程x2﹣2x=0的根是()A.x1=x2=0B.x1=x2=2C.x1=0,x2=2D.x1=0,x2=﹣2【解答】解:x2﹣2x=0x(x﹣2)=0,解得:x1=0,x2=2.故选:C.5.(3分)如图,将一副三角板叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为()A.85°B.70°C.75°D.60°【解答】解:∵AB∥OC,∠A=60°,∴∠A+∠AOC=180°,∴∠AOC=120°,∴∠BOC=120°﹣90°=30°,∴∠DEO=∠C+∠BOC=45°+30°=75°;故选:C.6.(3分)某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分【解答】解:由加权平均数的公式可知===86,故选:D.7.(3分)不等式组的解集是x>1,则m的取值范围是()A.m≥1B.m≤1C.m≥0D.m≤0【解答】解:不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0,故选:D.8.(3分)如图,在5×5的正方形网格中,从在格点上的点A,B,C,D中任取三点,所构成的三角形恰好是直角三角形的概率为()A.B.C.D.【解答】解:∵从点A,B,C,D中任取三点能组成三角形的一共有4种可能,其中△ABD,△ADC,△ABC是直角三角形,∴所构成的三角形恰好是直角三角形的概率为.故选:D.9.(3分)如图.在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y 轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为()A.B.C.D.【解答】解:如图,过D作DF⊥AF于F,∵点B的坐标为(1,3),∴AO=1,AB=3,根据折叠可知:CD=OA,而∠D=∠AOE=90°,∠DEC=∠AEO,∴△CDE≌△AOE,∴OE=DE,OA=CD=1,设OE=x,那么CE=3﹣x,DE=x,∴在Rt△DCE中,CE2=DE2+CD2,∴(3﹣x)2=x2+12,∴x=,又DF⊥AF,∴DF∥EO,∴△AEO∽△ADF,而AD=AB=3,∴AE=CE=3﹣=,∴,即,∴DF=,AF=,∴OF=﹣1=,∴D的坐标为(﹣,).故选:A.10.(3分)如图,在扇形AOB中,∠AOB=90°,点C,D为半径OA,OB的中点,点E为的中点,连接CE,DE,若OA=4,则阴影部分的面积为()A.2π﹣2B.4π﹣4C.2π+2D.4π+4【解答】解:连接OE,作EF⊥OA于点F,作EG⊥OB于点G,如右图所示,由题意可得,∠AOB=90°,∠AOE=∠BOE=45°,∵OA=4,∴OE=4,∴EF=EG=2,∴阴影部分的面积是:=4π﹣4,故选:B.二、填空题(共5小题,每小题3分,满分15分)11.(3分)计算:+(﹣2)0=3.【解答】解:+(﹣2)0=2+1=3.故答案为:3.12.(3分)如图,a∥b∥c,BC=1,DE=4.5,EF=1.5,则AC=4.【解答】解:∵a∥b∥c,∴=,即=,解得,AB=3,∴AC=AB+BC=4,故答案为:4.13.(3分)如图,四边形ABCO是平行四边形,OA=2,AB=6,点C在x轴的负半轴上,将▱ABCO绕点A逆时针旋转得到▱ADEF,AD经过点O,点F恰好落在x轴的正半轴上,若点D在反比例函数y=(x<0)的图象上,则k的值为4.【解答】解:如图所示:过点D作DM⊥x轴于点M,由题意可得:∠BAO=∠OAF,AO=AF,AB∥OC,则∠BAO=∠AOF=∠AFO=∠OAF,故∠AOF=60°=∠DOM,∵OD=AD﹣OA=AB﹣OA=6﹣2=4,∴MO=2,MD=2,∴D(﹣2,﹣2),∴k=﹣2×(﹣2)=4.故答案为:4.14.(3分)如图1,点E,F,G分别是等边三角形ABC三边AB,BC,CA上的动点,且始终保持AE=BF=CG,设△EFG的面积为y,AE的长为x,y 关于x的函数图象大致为图2所示,则等边三角形ABC的边长为2.【解答】解:设等边三角形ABC边长为a,则可知等边三角形ABC的面积为设BE=x,则BF=a﹣xS△BEF=易证△BEF≌△AGE≌△CFGy=﹣3()=当x=时,△EFG的面积为最小.此时,△EFG的边长为1EF等边三角形ABC的中位线,则AC=2故答案为:215.(3分)如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为或1.【解答】解:如图所示,当∠CFE=90°时,△ECF是直角三角形,由折叠可得,∠PFE=∠A=90°,AE=FE=DE,∴∠CFP=180°,即点P,F,C在一条直线上,在Rt△CDE和Rt△CFE中,,∴Rt△CDE≌Rt△CFE(HL),∴CF=CD=4,设AP=FP=x,则BP=4﹣x,CP=x+4,在Rt△BCP中,BP2+BC2=PC2,即(4﹣x)2+62=(x+4)2,解得x=,即AP=;如图所示,当∠CEF=90°时,△ECF是直角三角形,过F作FH⊥AB于H,作FQ⊥AD于Q,则∠FQE=∠D=90°,又∵∠FEQ+∠CED=90°=∠ECD+∠CED,∴∠FEQ=∠ECD,∴△FEQ∽△ECD,∴==,即==,解得FQ=,QE=,∴AQ=HF=,AH=,设AP=FP=x,则HP=﹣x,∵Rt△PFH中,HP2+HF2=PF2,即(﹣x)2+()2=x2,解得x=1,即AP=1.综上所述,AP的长为1或.三、解答题(共8小题,满分75分)16.(8分)先化简,再求值:﹣÷,其中a=+1【解答】解:原式=﹣•=﹣=,当x=+1时,原式==.17.(9分)为了了解学生的体能状况,某学校从七年级学生中随机抽取部分学生的体能测试结果进行分析,并根据收集的数据绘制了两幅不完整的统计图,请根据这两幅统计图中的信息回答下列问题:(测试结果分“优秀”、“良好”、“及格”、“不及格”四个等级)(1)本次抽样调查共抽取多少名学生?(2)补全条形统计图.(3)在扇形统计图中,求测试结果为“良好”等级所对应圆心角的度数.(4)若该学校七年级共有600名学生,请你估计该学校七年级学生中测试结果为“不及格”等级的学生有多少名?【解答】解:(1)18÷30%=60,即本次抽样调查共抽取60名学生;(2)及格的学生有:60﹣18﹣24﹣3=15(名),补全的条形统计图如右图所示;(3)360°×=144°,即测试结果为“良好”等级所对应圆心角的是144°;(4)600×=30(名),即该学校七年级学生中测试结果为“不及格”等级的学生有30名.18.(9分)如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC边交于点D,过点D作⊙O的切线交BC于点E,连接OE(1)证明OE∥AD;(2)①当∠BAC=45°时,四边形ODEB是正方形.②当∠BAC=30°时,AD=3DE.【解答】解:(1)连接OD,∵DE是⊙O的切线,∴OD⊥DE,在Rt△ODE和Rt△OBE中,,∴Rt△ODE≌Rt△OBE,∴∠BOE=∠DOB,∵OA=OD,∴∠A=∠DOB,∴∠BOE=∠A,∴OE∥AD;(2)①当四边形ODEB是正方形时,BO=BE,∴∠BOE=45°,∵OE∥AD,∴∠BAC=45°;②当∠BAC=30°时,AD=3DE,证明:作OF⊥AD于F,由垂径定理可知,AF=DF=AD,∵∠BAC=30°,∴∠ODF=∠DOE=30°,∴OD==AD,OD==DE,∴AD=3DE.19.(9分)某数学兴趣小组想测量商丘电视台电视塔的高度,如图,该小组在商丘电视塔BC前一座楼房楼顶A处所观测到电视塔最高点B的仰角为65°,电视塔最低点C的仰角为30°,楼顶A与电视塔的水平距离AD为90米,求商丘电视塔BC的高度.(结果精确到1米,参考数据≈1.41,≈1.73,sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)【解答】解:在Rt△ADB中,∵∠BAD=65°,AD=90m,∴DB=AD•tan65°≈90×2.14=192.6,同理,在Rt△ADC中,∵∠DAC=30°,AD=90m,∴CD=AD•tan30°=(m).∴BC=BD+CD=192.6+51.96=244.56米.20.(9分)某文具店出售A,B两种笔记本,其中购买2本A型笔记本和3本B 型笔记本花费42元,购买3本A型笔记本和2本B型笔记本花费38元.(1)A型笔记本和B型笔记本的单价为多少元?(2)若一次购买B型笔记本超过20本时,超过20本部分的B型记笔记价格打8折,分别写出两种笔记本的付款金额y(元)关于购买量x(本)的函数解析式;(3)某校准备在一次学习竞赛后购买这90本两种笔记本用于奖励,其中A型笔记本数量不超过B型笔记本的一半,两种笔记本各买多少时,总费用最少,最少费用是多少元?【解答】解:(1)设购买一本A型笔记本和一本B型笔记本分别需要x元、y元,,得,答:购买一本A型笔记本和一本B型笔记本分别需要6元、10元;(2)由题意可得:A型笔记本的付款金额y(元)关于购买量x(本)的函数解析式为:y=6x;B型笔记本的付款金额y(元)关于购买量x(本)的函数解析式为:y=20×10+(x﹣20)×0.8×10=8x+40;(3)设A型笔记本数量为a,根据题意可得:a≤,解得:a≤30,当a=30,90﹣a=60时,总费用最少,最少费用是6×30+8×60+40=700元,即A型笔记本数量为30本,B型笔记本数量为60本时,总费用最少,最少费用是700元.21.(10分)某班“数学兴趣小组”对函数y=+x的图象与性质进行了探究,探究过程如下,请补充完整.(1)函数y=+x的自变量x的取值范围是x≠1;(2)下表是y与x的几组对应值.求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(2,3),结合函数的图象,写出该函数的其它性质(一条即可):x>2时y随x的增大而增大.(答案不唯一).(5)小明发现,①该函数的图象关于点(1,1)成中心对称;②该函数的图象与一条垂直于x轴的直线无交点,则这条直线为x=1;③直线y=m与该函数的图象无交点,则m的取值范围为﹣1<m<3.【解答】解:(1)函数y=+x的自变量x的取值范围是x≠1.故答案为x≠1.(2)x=4时,y=,∴m=.(3)函数图象如图所示:(4)x>2时y随x的增大而增大.(答案不唯一)故答案为:x>2时y随x的增大而增大.(5)①该函数的图象关于点(1,1)成中心对称;②该函数的图象与一条垂直于x轴的直线无交点,则这条直线为x=1;③直线y=m与该函数的图象无交点,则m的取值范围为﹣1<m<3;故答案为1,1,x=1,﹣1<m<3;22.(10分)在△ABC中,∠ACB是锐角,点D在射线BC上运动,连接AD,将线段AD绕点A逆时针旋转90°,得到AE,连接EC.(1)操作发现:若AB=AC,∠BAC=90°,当D在线段BC上时(不与点B 重合),如图①所示,请你直接写出线段CE和BD的位置关系和数量关系是CE=BD,CE⊥BD;(2)猜想论证:在(1)的条件下,当D在线段BC的延长线上时,如图②所示,请你判断(1)中结论是否成立,并证明你的判断.(3)拓展延伸:如图③,若AB≠AC,∠BAC≠90°,点D在线段BC上运动,试探究:当锐角∠ACB等于45度时,线段CE和BD之间的位置关系仍成立(点C、E重合除外)?此时若作DF⊥AD交线段CE于点F,且当AC=3时,请直接写出线段CF的长的最大值是【解答】解:(1)①∵AB=AC,∠BAC=90°,∵线段AD绕点A逆时针旋转90°得到AE,∴AD=AE,∠BAD=∠CAE,∴△BAD≌△CAE,∴CE=BD,∠ACE=∠B,∴∠BCE=∠BCA+∠ACE=90°,∴线段CE,BD之间的位置关系和数量关系为:CE=BD,CE⊥BD;故答案为:CE=BD,CE⊥BD;(2)(1)中的结论仍然成立.理由如下:如图2,∵线段AD绕点A逆时针旋转90°得到AE,∴AE=AD,∠DAE=90°,∵AB=AC,∠BAC=90°∴∠CAE=∠BAD,∴△ACE≌△ABD,∴CE=BD,∠ACE=∠B,∴∠BCE=90°,所以线段CE,BD之间的位置关系和数量关系为:CE=BD,CE⊥BD;(3)45°;;过A作AM⊥BC于M,过E点作EN垂直于MA延长线于N,如图3,∵线段AD绕点A逆时针旋转90°得到AE,∴∠DAE=90°,AD=AE,∴∠NAE=∠ADM,易证得Rt△AMD≌Rt△ENA,∴NE=AM,∵CE⊥BD,即CE⊥MC,∴∠MCE=90°,∴四边形MCEN为矩形,∴NE=MC,∴AM=MC,∴∠ACB=45°,∵四边形MCEN为矩形,∴Rt△AMD∽Rt△DCF,∴=,设DC=x,∵在Rt△AMC中,∠ACB=45°,AC=3,∴AM=CM=3,MD=3﹣x,∴=,∴CF=﹣x2+x=﹣(x﹣)2+,∴当x=时有最大值,最大值为.故答案为:45°,.23.(11分)如图,抛物线y=ax2+bx﹣2与y轴的交点为A,抛物线的顶点为B (1,﹣3).(1)求出抛物线的解析式;(2)点P为x轴上一点,当三角形P AB的周长最小时,求出点P的坐标;(3)水平移动抛物线,新抛物线的顶点为C,两抛物线的交点为D,当O,C,D在一条直线上时,请直接写出平移的距离.【解答】解:(1)根据题意得:A(0,﹣2)设抛物线解析式y=a(x﹣1)2﹣3过点A(0,﹣2)∴﹣2=a﹣3∴a=1∴抛物线解析式y=(x﹣1)2﹣3=x2﹣2x﹣2(2)∵A(0,﹣2),B(1,﹣3)∴AB=,∵△ABP的周长=P A+PB+AB=P A+PB+∴当P A+PB最小时,△ABP的周长最小作A点关于x轴的对称点A'(0,2),连接A'B设直线A'B解析式y=kx+b根据题意得:解得:k=﹣5,b=2∴直线A'B的解析式y=﹣5x+2当y=0时,x=∴P(,0)(3)设向平移m个单位长度∴平移后抛物线解析式y=(x﹣1﹣m)2﹣3∴C(1+m,﹣3)∴根据题意可得∴∴D(1+,)∵C(1+m,﹣3,),O(0,0)∴直线CO解析式y=x∵O,C,D三点共线∴=解得:m1=0(不合题意舍去),m2=﹣3,m3=2∴向右平移2个单位长度,或向左平移3个单位长度,O,C,D三点共线.∴平移距离为2或3。

河南省商丘市柘城县实验中学2018届九年级数学下学期第

河南省商丘市柘城县实验中学2018届九年级数学下学期第

河南省商丘市柘城县实验中学2018届九年级数学下学期第二次模拟考试试题数学参考答案1.A 2.C 3.A 4.B 5.B 6.C 7.A 8.A 9.C 10.A解:设A(a,﹣),由题意知,点A关于原点的对称点B((a,﹣),)在直线y2=kx+1+k上,则=﹣ak+1+k,整理,得:ka2﹣(k+1)a+1=0 ①,即(a﹣1)(ka﹣1)=0,∴a﹣1=0或ka﹣1=0,则a=1或ka﹣1=0,若k=0,则a=1,此时方程①只有1个实数根,即两个函数图象上的“友好点”只有1对;若k≠0,则a=,此时方程①有2个实数根,即两个函数图象上的“友好点”有2对,综上,这两个函数图象上的“友好点”对数情况为1对或2对,故选:A.11.12. 13. 60°14.322π-15. ①②④【解答】解:①∵AF是AB翻折而来,∴AF=AB=6,∵AD=BC=3,∴DF==3,∴F是CD中点;∴①正确;②连接OP,∵⊙O与AD相切于点P,∴OP⊥AD,∵AD⊥DC,∴OP∥CD,∴=,设OP=OF=x,则=,解得:x=2,∴②正确;③∵RT△ADF中,AF=6,DF=3,∴∠DAF=30°,∠AFD=60°,∴∠EAF=∠EAB=30°,∴AE=2EF;∵∠AFE=90°,∴∠EFC=90°﹣∠AFD=30°,∴EF=2EC,∴AE=4CE,∴③错误;④连接OG,作OH⊥FG,∵∠AFD=60°,OF=OG,∴△OFG为等边△;同理△OPG为等边△;∴∠POG=∠FOG=60°,OH=OG=,S扇形OPG=S扇形OGF,∴S阴影=(S矩形OPDH﹣S扇形OPG﹣S△OGH)+(S扇形OGF﹣S△OFG)=S矩形OPDH﹣S△OFG=2×﹣(×2×)=.∴④正确;故答案为①②④.16.解:(1﹣)÷=×=,当x=﹣1时,原式=.17.(1)50;(2)作图见解析;(3)360;(4)13.【解析】解:(1)本次调查共抽取的学生有3÷6%=50(名);(2)选择“友善”的人数有50﹣20﹣12﹣3=15(名),占1550=30%,“爱国”占2050=40%,“敬业”占1250=24%.条形统计图和扇形统计图如图所示:(3)该校九年级共有1200名学生,请估计选择以“友善”为主题的九年级学生有1200×30%=360名;(4)记小义、小玉和大力分别为A、B、C,树状图如图所示:共有6种情形,小义和小玉同学的征文同时被选中的有2种情形,小义和小玉同学的征文同时被选中的概率=1 3.18. 【解答】解:如图,AC⊥PC,∠APC=60°,∠BPC=45°,AP=200,在Rt△APC中,∵cos∠APC=,∴PC=20•cos60°=10,∴AC==10,在△PBC中,∵∠BPC=45°,∴△PBC为等腰直角三角形,∴BC=PC=10,∴AB=AC﹣BC=10﹣10(海里).答:轮船航行途中与灯塔P的最短距离是(10﹣10)海里.19.【解答】(1)证明:∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC.∵DE是⊙O的切线,OD是半径,∴DE⊥OD,∴DE⊥AC;(2)如图,过点O作OH⊥AF于点H,则∠ODE=∠DEH=∠OHE=90°,∴四边形ODEH是矩形,∴OD=EH,OH=DE.设AH=x.∵DE+AE=8,OD=10,∴AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:AH2+OH2=OA2,即x2+(x﹣2)2=102,解得x1=8,x2=﹣6(不合题意,舍去).∴AH=8.∵OH⊥AF,∴AH=FH=AF,∴AF=2AH=2×8=16.20.【解答】解:(1)把点A(4,2)代入反比例函数y=,可得m=8,∴反比例函数解析式为y=,∵OB=6,∴B(0,﹣6),把点A(4,2),B(0,﹣6)代入一次函数y=kx+b,可得,解得,∴一次函数解析式为y=2x﹣6;(2)在y=2x﹣6中,令y=0,则x=3,即C(3,0),∴CO=3,设P(a,),则由S△POC=9,可得×3×=9,解得a=,∴P(,6).21.【解答】解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,解得,答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:≤a≤,因为a是整数,所以a=6,7,8;则(10﹣a)=4,3,2;三种方案:①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.22.【解答】解:(1)如图1中,∵△ABC是等边三角形,∴AB=CB=AC=6,∠A=∠B=60°,∵DE∥BC,∠EDF=60°,∴∠BND=∠EDF=60°,∴∠BDN=∠ADM=60°,∴△ADM,△BDN都是等边三角形,∴S1=22=,S2=(4)2=4,∴S1S2=12,故答案为12.(2)如图2中,设AM=x,BN=y.∵∠MDB=∠MDN+∠NDB=∠A+∠AMD,∠MDN=∠A,∴∠AMD=∠NDB,∵∠A=∠B,∴△AMD∽△BDN,∴=,∴=,∴xy=8,∵S1=AD╳AMsin60°=x,S2=DBsin60°=y,∴S1S2=x y=xy=12.(3)Ⅰ如图3中,设AM=x,BN=y,同法可证△AMD∽△BDN,可得xy=ab,∵S1=AD╳AMsinα=axsinα,S2=DB╳BNsinα=bysinα,∴S1S2=(ab)2sin2α.Ⅱ如图4中,设AM=x,BN=y,同法可证△AMD∽△BDN,可得xy=ab,∵S1=AD╳AMsinα=axsinα,S2=DB╳BNsinα=bysinα,∴S1S2=(ab)2sin2α.23.【解答】解:(1)①△OBC与△ABD全等,理由是:如图1,∵△OAB和△BCD是等边三角形,∴∠OBA=∠CBD=60°,OB=AB,BC=BD,∴∠OBA+∠ABC=∠CBD+∠ABC,即∠OBC=∠ABD,∴△OBC≌△ABD(SAS);②∵△OBC≌△ABD,∴∠BAD=∠BOC=60°,∴∠OBA=∠BAD,∴OB∥AD,∴无论点C如何移动,AD始终与OB平行;(2)如图2,∵AC2=AEAD,∴,∵∠EAC=∠DAC,∴△AEC∽△ACD,∴∠ECA=∠ADC,∵∠BAD=∠BAO=60°,∴∠DAC=60°,∵∠BED=∠AEC,∴∠ACB=∠ADB,∴∠ADB=∠ADC,∵BD=CD,∴DE⊥BC,Rt△ABE中,∠BAE=60°,∴∠ABE=30°,∴AE=AB=×2=1,Rt△AEC中,∠EAC=60°,∴∠ECA=30°,∴AC=2AE=2,∴C(4,0),等边△OAB中,过B作BH⊥x轴于H,∴BH==,∴B(1,),设y1的解析式为:y=ax(x﹣4),把B(1,)代入得: =a(1﹣4),a=﹣,∴设y1的解析式为:y1=﹣x(x﹣4)=﹣x2+x,过E作EG⊥x轴于G,Rt△AGE中,AE=1,∴AG=AE=,EG==,∴E(,),设直线AE的解析式为:y=kx+b,把A(2,0)和E(,)代入得:,解得:,∴直线AE的解析式为:y=x﹣2,则,解得:,,∴P(3,)或(﹣2,﹣4);(3)如图3,y1=﹣x2+x=﹣(x﹣2)2+,顶点(2,),∴抛物线y2的顶点为(2,﹣),∴y2=(x﹣2)2﹣,当m=0时,y=x与图形M两公共点,当y2与l相切时,即有一个公共点,l与图形M有3个公共点,则,=﹣,x2﹣7x﹣3m=0,△=(﹣7)2﹣4×1×(﹣3m)≥0,m≥﹣,∴当l与M的公共点为3个时,m的取值是:﹣≤m<0.。

河南省2018年中考数学模拟试题及答案解析(word版)

河南省2018年中考数学模拟试题及答案解析(word版)

河南省2018年中考数学模拟试题及答案解析(word版)————————————————————————————————作者:————————————————————————————————日期:2018年河南省中考数学试卷一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣ B.C.﹣ D.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103 C.2.147×1010D.0.2147×10113.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=15.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是06.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=08.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣=.12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为.13.(3分)不等式组的最小整数解是.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D 逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE 的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF 为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m日销售利润w(元)87518751875875(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M 的坐标.2018年河南省中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣ B.C.﹣ D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103 C.2.147×1010D.0.2147×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:214.7亿,用科学记数法表示为2.147×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=1【分析】分别根据幂的乘方、同类项概念、同底数幂相乘及合并同类项法则逐一计算即可判断.【解答】解:A、(﹣x2)3=﹣x6,此选项错误;B、x2、x3不是同类项,不能合并,此选项错误;C、x3•x4=x7,此选项正确;D、2x3﹣x3=x3,此选项错误;故选:C.【点评】本题主要考查整式的运算,解题的关键是掌握幂的乘方、同类项概念、同底数幂相乘及合并同类项法则.5.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是0【分析】直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.【解答】解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;C、(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C错误;D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选:B.【点评】此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.6.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.【分析】设设合伙人数为x人,羊价为y线,根据羊的价格不变列出方程组.【解答】解:设合伙人数为x人,羊价为y线,根据题意,可列方程组为:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系是解题的关键.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0【分析】根据一元二次方程根的判别式判断即可.【解答】解:A、x2+6x+9=0△=62﹣4×9=36﹣36=0,方程有两个相等实数根;B、x2=xx2﹣x=0△=(﹣1)2﹣4×1×0=1>0两个不相等实数根;C、x2+3=2xx2﹣2x+3=0△=(﹣2)2﹣4×1×3=﹣8<0,方程无实根;D、(x﹣1)2+1=0(x﹣1)2=﹣1,则方程无实根;故选:B.【点评】本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a ≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.8.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.【分析】直接利用树状图法列举出所有可能进而求出概率.【解答】解:令3张用A1,A2,A3,表示,用B表示,可得:,一共有12种可能,两张卡片正面图案相同的有6种,故从中随机抽取两张,则这两张卡片正面图案相同的概率是:.故选:D.【点评】此题主要考查了树状图法求概率,正确列举出所有的可能是解题关键.9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC于点G,则点G的坐标为()A.(﹣1,2)B.(,2)C.(3﹣,2)D.(﹣2,2)【分析】依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=﹣1,可得G(﹣1,2).【解答】解:∵▱AOBC的顶点O(0,0),A(﹣1,2),∴AH=1,HO=2,∴Rt△AOH中,AO=,由题可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴HG=﹣1,∴G(﹣1,2),故选:A.【点评】本题主要考查了角平分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【解答】解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2.∴AD=a∴∴DE=2当点F从D到B时,用s∴BD=Rt△DBE中,BE=∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=故选:C.【点评】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣=2.【分析】直接利用二次根式以及绝对值的性质分别化简得出答案.【解答】解:原式=5﹣3=2.故答案为:2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为140°.【分析】直接利用垂直的定义结合互余以及互补的定义分析得出答案.【解答】解:∵直线AB,CD相交于点O,EO⊥AB于点O,∴∠EOB=90°,∵∠EOD=50°,∴∠BOD=40°,则∠BOC的度数为:180°﹣40°=140°.故答案为:140°.【点评】此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.13.(3分)不等式组的最小整数解是﹣2.【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.【解答】解:∵解不等式①得:x>﹣3,解不等式②得:x≤1,∴不等式组的解集为﹣3<x≤1,∴不等式组的最小整数解是﹣2,故答案为:﹣2.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D 逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为π.【分析】利用弧长公式L=,计算即可;【解答】解:△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边AB上,CA′⊥AB,∴∠ACA′=∠BCA′=45°,∴∠BCB′=135°,∴S==π.阴【点评】本题考查旋转变换、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为4或4.【分析】当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB的长;②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.【解答】解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'B=8,由勾股定理得:AB2=BC2﹣AC2,∴AB==4;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4或4;故答案为:4或4;【点评】本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.【分析】根据分式的运算法则即可求出答案,【解答】解:当x=+1时,原式=•=1﹣x=﹣【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有2000人;(2)扇形统计图中,扇形E的圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.【分析】(1)将A选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.【解答】解:(1)本次接受调查的市民人数为300÷15%=2000人,故答案为:2000;(2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°,故答案为:28.8°;(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为70×40%=28(万人).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.【分析】(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.【解答】解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.【点评】本题考查了作图﹣应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为30°时,四边形ECFG为菱形;②当∠D的度数为22.5°时,四边形ECOG为正方形.【分析】(1)连接OC,如图,利用切线的性质得∠1+∠4=90°,再利用等腰三角形和互余证明∠1=∠2,然后根据等腰三角形的判定定理得到结论;(2)①当∠D=30°时,∠DAO=60°,证明△CEF和△FEG都为等边三角形,从而得到EF=FG=GE=CE=CF,则可判断四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,利用三角形内角和计算出∠COE=45°,利用对称得∠EOG=45°,则∠COG=90°,接着证明△OEC≌△OEG得到∠OEG=∠OCE=90°,从而证明四边形ECOG为矩形,然后进一步证明四边形ECOG为正方形.【解答】(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°﹣67.5°﹣67.5°=45°,∴∠AOC=45°,∴∠COE=45°,利用对称得∠EOG=45°,∴∠COG=90°,易得△OEC≌△OEG,∴∠OEG=∠OCE=90°,∴四边形ECOG为矩形,而OC=OG,∴四边形ECOG为正方形.故答案为30°,22.5°.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了菱形和正方形的判定.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE 的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF 为80.3°.求高、低杠间的水平距离CH的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)【分析】利用锐角三角函数,在Rt△ACE和Rt△DBF中,分别求出AE、BF的长.计算出EF.通过矩形CEFH得到CH的长.【解答】解:在Rt△ACE中,∵tan∠CAE=,∴AE==≈≈21(cm)在Rt△DBF中,∵tan∠DBF=,∴BF==≈=40(cm)∵EF=EA+AB+BF≈21+90+40=151(cm)∵CE⊥EF,CH⊥DF,DF⊥EF∴四边形CEFH是矩形,∴CH=EF=151cm答:高、低杠间的水平距离CH的长为151cm.【点评】本题考查了锐角三角函数解直角三角形.题目难度不大,注意精确度.21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m日销售利润w(元)87518751875875(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是80元,当销售单价x=100元时,日销售利润w最大,最大值是2000元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【分析】(1)根据题意和表格中的数据可以求得y关于x的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.【解答】解;(1)设y关于x的函数解析式为y=kx+b,,得,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.【点评】本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为1;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC 交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC∽△BOD,则∠AMB=90°,,可得AC的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.【点评】本题是三角形的综合题,主要考查了三角形全等和相似的性质和判定,几何变换问题,解题的关键是能得出:△AOC∽△BOD,根据相似三角形的性质,并运用类比的思想解决问题,本题是一道比较好的题目.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M 的坐标.【分析】(1)利用一次函数解析式确定C(0,﹣5),B(5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程﹣x2+6x﹣5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以AM=2,接着根据平行四边形的性质得到PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到PD=PQ=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),讨论:当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=4;当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5),然后分别解方程即可得到P点的横坐标;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,﹣2),AC的解析式为y=5x﹣5,E点坐标为(,﹣),利用两直线垂直的问题可设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入求出b得到直线EM1的解析式为y=﹣x﹣,则解方程组得M1点的坐标;作直线BC上作点M1关于N点的对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),根据中点坐标公式得到3=,然后求出x即可得到M2的。

2018年河南省商丘市柘城县中考二模试卷数学

2018年河南省商丘市柘城县中考二模试卷数学

2018年河南省商丘市柘城县中考二模试卷数学一、选择题(共10小题,每小题3分,满分30分)1.下列各数中,最小的数是( )A.-1B.-1 2C.0D.1解析:∵-1<-12<0<1,∴最小的数为-1.答案:A2.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.0.0000025用科学记数法可表示为( )A.2.5×10-5B.0.25×10-7C.2.5×10-6D.25×10-5解析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.0.0000025=2.5×10-6.答案:C3.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的左视图为( )A.B.C.D.解析:从左面看可得到从左到右分别是3,2个正方形. 答案:A4.分式方程221033xx x-=--的解是( )A.x=3B.x=2C.x=0D.x=4解析:两边都乘以x-3,得:2+2x=10(x-3),解得:x=4,检验:当x=4时,x-3=1≠0,所以原分式方程的解为x=4.答案:D5.下列计算错误的是( )3====解析:A=是正确的,不符合题意;B=是正确的,不符合题意;C==D. 答案:D6.下列说法正确的是( )A.“掷一枚硬币正面朝上的概率是12”表示每抛硬币2次就有1次正面朝上B.一组数据2,2,3,6的众数和中位数都是2C.要了解全市人民的低碳生活状况,适宜采用抽样调查的方法D.随机抽取甲、乙两名同学的5次数学成绩,计算得平均分都是90分,方差分别是S甲2=5,S乙2=12,说明乙的成绩较为稳定解析:A、“掷一枚硬币正面朝上的概率是12”表示每抛硬币2次就有1次正面朝上的可能性很大,但不是一定就有1次正面朝上,故本选项错误;B、一组数据2,2,3,6的众数是2,中位数是232=2.5,故本选项错误;C、要了解全市人民的低碳生活状况,适宜采用抽样调查的方法,故本选项正确;D、乙两名同学的5次数学成绩,计算得平均分都是90分,方差分别是S甲2=5,S乙2=12,说明甲的成绩较为稳定,故本选项错误.答案:C7.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是( )A.AB=BCB.AC=BCC.∠B=60°D.∠ACB=60°解析:∵将△ABC沿BC方向平移得到△DCE,∴AB平行且等于CD,∴四边形ABCD为平行四边形,当AB=BC时,平行四边形ACED是菱形.答案:A8.随着“国家宝藏”的热播,小颖和小梅计划利用假期时间到河南博物院担任“贾湖骨笛”,“妇好鸮尊”,“云纹铜禁”的讲解员,由于能力水平的限制,她们一人只能讲解其中一个文物,小颖和小梅制作了三张质地大小完全相同的卡片,背面朝上洗匀后各自抽取一张(第一人抽取后不放回),则“贾湖骨笛”未被抽到的概率为( )A.1 2B.1 3C.2 3D.1 6解析:画树状图为:(用A、B、C分别表示担任“贾湖骨笛”,“妇好鸮尊”,“云纹铜禁”的讲解员)共有6种等可能的结果数,其中”贾湖骨笛”未被抽到的结果数为2,所以贾湖骨笛”未被抽到的概率=2163=. 答案:B9.如图,在平面直角坐标系中,已知⊙D 经过原点O ,与x 轴、y 轴分别交于A 、B 两点,B点坐标为(0,,OC 与⊙D 相交于点C ,∠OCA=30°,则图中阴影部分的面积为( )A.2πB.4πC.4πD.2π解析:∵∠AOB=90°,∴AB 是直径,连接AB , 根据同弧对的圆周角相等得∠OBA=∠C=30°,由题意知,OA=OBtan ∠ABO=OBtan30°3=2,AB=AO ÷sin30°=4 即圆的半径为2,∴阴影部分的面积等于半圆的面积减去△ABO 的面积,S 阴=S 半-S △=2222221ππ-⨯⨯=-答案:A10.如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P 、Q 同时从点B 出发,点P 以1cm/秒的速度沿折线BE-ED-DC 运动到点C 时停止,点Q 以2cm/秒的速度沿BC 运动到点C 时停止.设P 、Q 同时出发t 秒时,△BPQ 的面积为ycm2.已知y 与t 的函数关系图象如图(2)(其中曲线OG 为抛物线的一部分,其余各部分均为线段),则下列结论:①当0<t≤5时,y=45t2;②当t=6秒时,△ABE≌△PQB;③cos∠CBE=12;④当t=292秒时,△ABE∽△QBP;其中正确的是( )A.①②B.①③④C.③④D.①②④解析:根据图(2)可得,点Q到达点C时时间为5秒,点P到达点E时间为10秒,∵点P、Q的运动的速度分别是1cm/秒、2cm/秒,∴BC=BE=10,∴AD=BC=10.又∵从M到N的变化是4,∴ED=4,∴AE=AD-ED=10-4=6.∵AD∥BC,∴∠1=∠2,∴cos∠1=cos∠2=63105AEBE==.故③错误;如图1,过点P作PF⊥BC于点F,∵AD ∥BC ,∴∠1=∠2,∴sin ∠1=sin ∠2=84105AB BE ==,∴PF=PB ·sin ∠1=45t , ∴当0<t ≤5时,y=2442112255BQ PF t t t ⋅=⨯⨯=,故①正确;如图3,当t=6秒时,点P 在BE 上,点Q 静止于点C 处.在△ABE 与△PQB 中,612AE BP BE BC ==⎧⎪∠=∠⎨⎪=⎩,,,∴△ABE ≌△PQB(SAS).故②正确;如图4,当t=292秒时,点P 在CD 上, 此时,29291115104822222PD BE ED PQ CD PD =--=--==-=-=,, ∵84104156332AB BQ AB BQ AE PQ AE PQ ====∴=,,,又∵∠A=∠Q=90°,∴△ABE ∽△QBP ,故④正确. 综上所述,正确的结论是①②④. 答案:D二、填空题(共5小题,每小题3分,满分15分)11.计算:(-12)2-cos60°= . 解析:原式=121144-=-.答案:-1412.已知点A(x 1,y 1),B(x 2,y 2),C(x 3,y 3)是反比例函数y=5x-图象上的三点,且x 1>x 2>0>x 3,则y 1,y 2,y 3的大小关系为 .解析:∵反比例函数y=5x-中,k=-5<0,∴此函数图象在二、四象限, ∵点A(x 1,y 1),B(x 2,y 2),C(x 3,y 3)是反比例函数y=5x-图象上的三点,且x 1>x 2>0>x 3,∴点C(x 3,y 3)在第二象限,∴y 3>0,∵点A(x 1,y 1),B(x 2,y 2)在第四象限,∴y 1<0,y 2<0,∵函数图象在第四象限内y 随x 的增大而增大,x 1>x 2,∴y 1>y 2.∴y 1,y 2,y 3的大小关系为y 3>y 1>y 2.答案:y 3>y 1>y 213.如图,在△ABC 中,AB <AC ,按以下步骤作图:分别以点A 和点C 为圆心,大于AC 一半的长为半径作圆弧,两弧相交于点M 和点N ,作直线MN 交BC 于点D ;连结AD.若∠B=55°,∠C=30°,则∠BAD 的大小为 度.解析:由题可得,DN 垂直平分线AC ,∴DC=DA ,∴∠C=∠DAC=30°, 又∵∠B=55°,∴∠BAD=180°-55°-2×30°=65°. 答案:6514.如图,已知二次函数y=ax 2+bx+c(a ≠0)的图象与x 轴交于点A(-1,0),对称轴为直线x=1,与y 轴的交点B 在(0,2)和(0,3)之间(包括这两点),下列结论正确的是 .①当x >3时,y <0;②3a+b <0;③-1≤a ≤23-;④4ac-b 2>8a. 解析:∵二次函数y=ax 2+bx+c(a ≠0)的图象与x 轴交于点A(-1,0),对称轴为直线x=1, ∴x=-1和x=3时的函数值相等,∴当x=3时,y=0,当x >3时,y <0,故①正确, ∵2ba-=1,∴2a+b=0, ∵a <0,∴3a+b <0,故②正确,∵02023a b c a b c -+=⎧⎪+=⎨⎪≤≤⎩,,,解得,-1≤a ≤-23,故③正确,∵244ac b a->2,a <0,∴4ac-b 2<8a ,故④错误.答案:①②③15.如图,在Rt △ABC 中,∠C=90°,AC=3,BC=4,点D ,E 为AC ,BC 上两个动点,若将∠C 沿DE 折叠,点C 的对应点C ′恰好落在AB 上,且△ADC ′恰好为直角三角形,则此时CD 的长为 .解析:①如图,当∠ADC ′=90°时,∠ADC ′=∠C ,∴DC ′∥CB ,∴△ADC ′∽△ACB ,又∵AC=3,BC=4,∴43AD DC =', 设CD=C ′D=x ,则AD=3-x ,∴334x x -=,解得x=127, 经检验:x=127是所列方程的解,∴CD=127;②如图,当∠DC ′A=90°时,∠DCB=90°,由折叠可得,∠C=∠DC ′E=90°,∴C ′B 与CE 重合,由∠C=∠AC ′D=90°,∠A=∠A ,可得△ADC ′∽△ABC ,Rt △ABC 中,AB=5,∴54AD AB C D CB ==', 设CD=C ′D=x ,则AD=3-x ,∴354x x -=,解得x=43,∴CD=43. 答案:127或43三、解答题(共8小题,满分75分)16.先化简,再求值:2211x y x y x y x y xy ⎛⎫+--⎛⎫⎪ ⎪⎝⎭⋅⎝--⎭+,其中解析:根据分式的减法和乘法可以化简题目中的式子,然后将x 、y 的值代入化简后的式子即可解答本题. 答案:2211x y x y x y x y xy ⎛⎫+--⎛⎫⎪ ⎪⎝⎭⋅⎝--⎭+=()()()()222222x y x y y x x y x y x y+---⋅-+ =()()()()224y x y x xyx y x y x y +-⋅-+ =4xy-,当=4443=-=--.17.2017年10月18日至10月24日“中共十九大”在北京顺利召开,这次大会的主题是:不忘初心,牢记使命,高举中国特色社会主义伟大旗帜,决胜全面建成小康社会,夺取新时代中国特色社会主义伟大胜利,为实现中华民族伟大复兴的中国梦不懈奋斗.为实现中华民族的伟大复兴,某校图书馆计划购买一批新书以丰富学生的知识,为此,图书管理员随机抽取部分学生进行问卷调查,选项有科普、文学、体育、艺术和其他类图书,请学生选择最喜欢的种类(每人只限一类),并将统计的数据绘制成如下不完整的扇形统计图和条形统计图:(1)这次调查随机抽取的学生总人数是名,扇形统计图中,最喜欢“体育”类书籍的学生所占圆心角的度数是;(2)请补全条形统计图;(3)若该校共有1800名学生,请估计最喜欢“科普”类书籍的学生人数.解析:(1)由文学类人数及其所占百分比可得总人数,再用360°乘以体育类人数所占比例可得;(2)用总人数乘以艺术类人数所占比例求得其人数,据此可补全条形图;(3)总人数乘以样本中科普类人数所占比例可得.答案:(1)这次调查随机抽取的学生总人数是90÷30%=300人,扇形统计图中,最喜欢“体育”类书籍的学生所占圆心角的度数是360°×40300=48°.(2)艺术类的人数为300×20%=60人,补全条形图如下:(3)估计最喜欢“科普”类书籍的学生有1800×80300=480人.18.如图,已知△ABC内接于⊙O,AB是直径,OD∥AC,AD=OC.(1)求证:四边形OCAD是平行四边形;(2)填空:①当∠B= 时,四边形OCAD是菱形;②当∠B= 时,AD与⊙O相切. 解析:(1)根据已知条件求得∠OAC=∠OCA=∠AOD=∠ADO,然后根据三角形内角和定理得出∠AOC=∠OAD,从而证得OC∥AD,即可证得结论;(2)①若四边形OCAD是菱形,则AC=OC,从而证得OC=OA=AC,得出∠AOC=60°,即可求得∠B=12∠AOC=30°;②若AD与⊙O相切,根据切线的性质得出∠OAD=90°,根据AD∥OC,内错角相等得出∠AOC=90°,从而求得∠B=12∠AOC=45°.答案:(1)∵OA=OC,AD=OC,∴OA=AD,∴∠OAC=∠OCA,∠AOD=∠ADO,∵OD∥AC,∴∠OAC=∠AOD,∴∠OAC=∠OCA=∠AOD=∠ADO,∴∠AOC=∠OAD,∴OC∥AD,∴四边形OCAD是平行四边形;(2)①∵四边形OCAD是菱形,∴OC=AC,又∵OC=OA,∴OC=OA=AC,∴∠AOC=60°,∴∠B=12∠AOC=30°;②∵AD与⊙O相切,∴∠OAD=90°,∵AD∥OC,∴∠AOC=90°,∴∠B=12∠AOC=45°.19.被誉为“中原第一高楼”的郑州会展宾馆(俗称“玉米楼”)坐落在风景如画的如意湖畔,也是来郑州观光的游客留影的最佳景点.学完了三角函数知识后,刘明和王华决定用自己学到的知识测量“玉米楼”的高度.如图,刘明在点C处测得楼顶B的仰角为45°,王华在高台上的D处测得楼顶的仰角为40°.若高台DE高为5米,点D到点C的水平距离EC为47.4米,A,C,E三点共线,求“玉米楼”AB的高度.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,结果保留整数).解析:作DM⊥AB于M,交BC于F,作CG⊥DM于G,设BM=x米,根据题意和正切的定义表示出DM、FM,列出方程,计算即可.答案:作DM⊥AB于M,交BC于F,作CG⊥DM于G,设BM=x 米,由题意得,DG=47.4米,CG=5米,∠BFM=45°,∠BDM=40°, 则GF=CG=5米,DF=DG+GF=52.4米,FM=BM=x 米,∴DM=tan 0.84BM xBDM =∠,∵DM-FM=DF ,∴0.84x-x=52.4,解得,x ≈275,275+5=280(米). 答:“玉米楼”AB 的高约为280米.20.如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,A 、C 分别在坐标轴上,点B 的坐标为(4,2),直线y=- 12x+3交AB ,BC 分别于点M ,N ,反比例函数y=kx的图象经过点M ,N.(1)求反比例函数的解析式;(2)若点P 在y 轴上,且△OPM 的面积与四边形BMON 的面积相等,求点P 的坐标. 解析:(1)求出OA=BC=2,将y=2代入y=-12x+3求出x=2,得出M 的坐标,进而将x=4代入y=-12x+3得:y=1,求出N 点坐标,把M 的坐标代入反比例函数的解析式即可求出答案; (2)利用S 四边形BMON =S 矩形OABC -S △AOM -S △CON ,再求出OP 的值,即可求出P 的坐标. 答案:(1)∵B(4,2),四边形OABC 是矩形,∴OA=BC=2,将y=2代入y=-12x+3得:x=2,∴M(2,2), 将x=4代入y=-12x+3得:y=1,∴N(4,1),把M 的坐标代入y=k x 得:k=4,∴反比例函数的解析式是y=4x;(2)由题意可得:S 四边形BMON =S 矩形OABC -S △AOM -S △CON =4×2-122212⨯⨯-×4×1=4;∵△OPM的面积与四边形BMON的面积相等,∴12OP×AM=4,∵AM=2,∴OP=4,∴点P的坐标是(0,4)或(0,-4).21.“五一”期间,甲、乙两家商店以同样价格销售相同的商品,两家优惠方案分别为:甲店一次性购物中超过200元后的价格部分打七折;乙店一次性购物中超过500元后的价格部分打五折,设商品原价为x元(x≥0),购物应付金额为y元.(1)求在甲商店购物时y与x之间的函数关系;(2)两种购物方式对应的函数图象如图所示,求交点C的坐标;(3)根据图象,请直接写出“五一”期间选择哪家商店购物更优惠.解析:(1)根据题意分当0≤x≤200时,当x>200时两种情形分别求出y1即可.(2)求出直线BC,列方程组即可解决问题.(3)利用图象即可解决问题.答案:(1)当0≤x≤200时,y1=x,当x>200时,y1=0.7(x-200)+200=0.7x+60.(2)直线BC解析式为y=0.5(x-500)+500=0.5X+250,由0.52500.760y xy x=+⎧⎨=+⎩,,解得950725xy==⎧⎨⎩,,∴点C坐标(950,725).(3)由图象可知,0≤x≤200或x=950时,选择甲、乙两家费用一样.200<x<950时,选择甲费用优惠,x>950时,选择乙费用优惠.22.在正方形ABCD中,点M是射线BC上一点,点N是CD延长线上一点,且BM=DN.直线BD 与MN相交于E.(1)如图1,当点M 在BC 上时,求证:;(2)如图2,当点M 在BC 延长线上时,BD 、DE 、BM 之间满足的关系式是 ; (3)在(2)的条件下,连接BN 交AD 于点F ,连接MF 交BD 于点G ,连接CG.若且AF :FD=1:2时,求线段DG 的长.解析:(1)过点M 作MF ⊥BC 交BD 于点F ,推出FM=DN ,根据AAS 证△EFM 和△EDN 全等,推出DE=EF ,根据正方形的性质和勾股定理求出即可; (2)过点M 作MF ⊥BC 交BD 于点F ,推出FM=DN ,根据AAS 证△EFM 和△EDN 全等,推出DE=EF ,根据正方形的性质和勾股定理求出即可;(3)根据已知求出CM 的长,证△ABF ∽△DNF ,得出比例式,代入后求出CD 长,求出FM 长即可.答案:(1)过点M 作MF ⊥BC 交BD 于点F ,∵四边形ABCD 是正方形,∴∠C=90°,∴FM ∥CD ,∴∠NDE=∠MFE ,∴FM=BM , ∵BM=DN ,∴FM=DN ,在△EFM 和△EDN 中,NDE MFE NED MEF DN FM ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△EFM ≌△EDN ,∴EF=ED ,∴BD-2DE=BF ,根据勾股定理得:,即(2)过点M 作MF ⊥BC 交BD 于点F ,与(1)证法类似:.BD BF ==(3)由(2)知,,,∵CM=2,∵AB∥CD,∴△ABF∽△DNF,∴AF:FD=AB:ND,∵AF:FD=1:2,∴AB:ND=1:2,∴CD:ND=1:2,CD:(CD+2)=1:2,∴CD=2,∴FD=43,∴FD:BM=1:3,∴DG:BG=1:3,∴.23.如图,已知抛物线y=-14x2+bx+4与x轴相交于A,B两点,与y轴相交于点C,若已知B点的坐标为B(8,0).(1)求抛物线的解析式及其对称轴.(2)连接AC、BC,试判断△AOC与△COB是否相似?并说明理由.(3)M为抛物线上BC之间的一点,N为线段BC上的一点,若MN∥y轴,求MN的最大值;(4)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q 点坐标;若不存在,请说明理由.解析:(1)把点B的坐标代入抛物线解析式求出b的值,即可得到抛物线解析式,再根据对称轴方程列式计算即可得解;(2)令y=0,解方程求出点A的坐标,令x=0求出y的值得到点C的坐标,再求出OA、OB、OC,然后根据对应边成比例,夹角相等的两个三角形相似证明;(3)设直线BC的解析式为y=kx+b,利用待定系数法求出解析式,再表示出MN,然后根据二次函数的最值问题解答;(4)利用勾股定理列式求出AC ,过点C 作CD ⊥对称轴于D ,然后分①AC=CQ 时,利用勾股定理列式求出DQ ,分点Q 在点D 的上方和下方两种情况求出点Q 到x 轴的距离,再写出点的坐标即可;②点Q 为对称轴与x 轴的交点时,AQ=CQ ,再写出点Q 的坐标即可. 解析:(1)∵点B(8,0)在抛物线y=14-x 2+bx+4上,∴14-×64+8b+4=0,解得:b=32, ∴抛物线的解析式为y=21342x -++4,对称轴为直线x=32124⎛⎫ ⎪⎝--⎭⨯=3;(2)△AOC ∽△COB. 理由如下:令y=0,则21342x -++4=0,即x 2-6x-16=0, 解得:x 1=-2,x 2=8,∴点A 的坐标为(-2,0),令x=0,则y=4,∴点C 的坐标为(0,4),∴OA=2,OB=8,OC=4, ∵OC OBOA OC==2,∠AOC=∠COB=90°,∴△AOC ∽△COB ; (3)设直线BC 的解析式为y=kx+b ,则804k b b +=⎧⎨=⎩,,解得:142k b =-=⎧⎪⎨⎪⎩,,∴直线BC 的解析式为y=-12x+4,∵MN ∥y 轴,∴MN=()22221311311444442444224224x x x x x x x x x -++--+=-+⎛⎫⎪++-=-+⎭--⎝=+,∴当x=4时,MN 的值最大,最大值为4;(4)由勾股定理得,=C 作CD ⊥对称轴于D ,则CD=3,①AC=CQ 时,==点Q 在点D 的上方时,点Q 到x轴的距离为,此时点Q 1(3,),点Q 在点D的下方时,点Q到x轴的距离为,此时点Q2(3,),②点Q为对称轴与x轴的交点时,AQ=5,,∴AQ=CQ,此时,点Q3(3,0),③当AC=AQ时,∵A到对称轴的距离为5,5,∴这种情形不存在.综上所述,点Q的坐标为(3,)或(3,)或(3,0)时,△ACQ为等腰三角形.。

2018年河南省商丘市柘城县中考数学三模试卷(解析版)

2018年河南省商丘市柘城县中考数学三模试卷(解析版)

2018年河南省商丘市柘城县中考数学三模试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)的倒数是()A.﹣2B.2C.D.2.(3分)已知地球上海洋面积约为316 000 000km2,数据316 000 000用科学记数法可表示为()A.3.16×109B.3.16×107C.3.16×108D.3.16×1063.(3分)如图,几何体是由3个完全一样的正方体组成,它的左视图是()A.B.C.D.4.(3分)如图,∠B=∠C,∠A=∠D,下列结论:①AB∥CD;②AE∥DF;③AE⊥BC;④∠AMC=∠BND,其中正确的结论有()A.①②④B.②③④C.③④D.①②③④5.(3分)解分式方程,分以下四步,其中,错误的一步是()A.方程两边分式的最简公分母是(x﹣1)(x+1)B.方程两边都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6C.解这个整式方程,得x=1D.原方程的解为x=16.(3分)某校在一次科普知识抢答比赛中,7名选手的得分分别为:10,9,8,x,7,7,6,已知数据10,9,8,x,7,7,6的平均数是8,则这组数据的中位数是()A.7B.9C.8D.D、7.(3分)下列命题是真命题的是()A.若一组数据是1,2,3,4,5,则它的方差是3B.若分式方程有增根,则它的增根是1C.对角线互相垂直的四边形,顺次连接它的四边中点所得四边形是菱形D.若一个角的两边分别与另一个角的两边平行,则这两个角相等8.(3分)若关于x的一元二次方程(m﹣1)x2+x﹣1=0有实数根,则m的取值范围是()A.m B.m且m≠1C.m且m≠1D.m且m≠1 9.(3分)如图,Rt△ABC中,∠ACB=90°,在以AB的中点O为坐标原点,AB所在直线为x轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴的正半轴上的A′处,若AO=OB=1,则阴影部分面积为()A.πB.π﹣1C.+1D.10.(3分)如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为()A.2017πB.2034πC.3024πD.3026π二、填空题(共5小题,每小题3分,满分15分)11.(3分)计算:2﹣(3.14﹣π)0+()﹣1=.12.(3分)从数﹣2,1,2,5,8中任取一个数记作k,则正比例函数y=kx的图象经过第二、四象限的概率是.13.(3分)如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣8,6),则△AOC的面积为.14.(3分)如图1,则等边三角形ABC中,点P为BC边上的任意一点,且∠APD=60°,PD交AC于点D,设线段PB的长度为x,CD的长度为y,若y与x的函数关系的大致图象如图2,则等边三角形ABC的面积为.15.(3分)如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=6,点D是BC上一动点,连接AD,将△ACD沿AD折叠,点C落在点E处,连接DE交AB于点F,当△DEB是直角三角形时,DF的长为.三、解答题(共8小题,满分75分)16.(8分)先化简,再求值:(﹣1)÷,其中x=﹣2,y=()﹣1.17.(9分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)求扇形统计图中C所对圆心角的度数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.18.(9分)如图,AC是⊙O的直径,点P在线段AC的延长线上,且PC=CO,点B在⊙O 上,且∠CAB=30°.(1)求证:PB是⊙O的切线;(2)若D为圆O上任一动点,⊙O的半径为5cm时,当弧CD长为时,四边形ADPB 为菱形,当弧CD长为时,四边形ADCB为矩形.19.(9分)如图,一辆摩托单车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于底面的水平线上,A、B之间的距离约为49cm,现测得AC、BC与AB的夹角分别为45°与68°,若点C到地面的距离CD为28cm,坐垫中轴E处与点B的距离BE为4cm,求点E到地面的距离(结果保留一位小数).(参考数据:sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)20.(9分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,交AB于点D,且AD=3(1)设点A的坐标为(4,4)则点C的坐标为;(2)若点D的坐标为(4,n).①求反比例函数y=的表达式;②求经过C,D两点的直线所对应的函数解析式;(3)在(2)的条件下,设点E是x轴的动点,请直接写出使△OCE为直角三角形的点E 坐标.21.(10分)星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中赚了多少钱?(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的,问橱具店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?22.(10分)△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°(1)如图1,点D,E在AB,AC上,则BD,CE满足怎样的数量关系和位置关系?(2)如图2,点D在△ABC内部,点E在△ABC外部,连结BD,CE,则BD,CE满足怎样的数量关系和位置关系?请说明理由.(3)如图3,点D,E都在△ABC外部,连结BD,CE,CD,EB,BD与CE相交于F点.①若BD=4,求四边形BCDE的面积.②若AB=2,AD=1,设CD2=x,EB2=y,求y与x之间的函数关系式.23.(11分)如图,抛物线y=﹣x2+mx+n与x轴交于A,B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2)(1)求抛物线的表达式;(2)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;(3)在y轴上是否存在点P使得∠OBP+∠OBC=45°?若存在,请直接写出点P的坐标,若不存在,请说明理由.2018年河南省商丘市柘城县中考数学三模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)的倒数是()A.﹣2B.2C.D.【解答】解:﹣的倒数是﹣2.故选:A.2.(3分)已知地球上海洋面积约为316 000 000km2,数据316 000 000用科学记数法可表示为()A.3.16×109B.3.16×107C.3.16×108D.3.16×106【解答】解:316 000 000用科学记数法可表示为3.16×108,故选:C.3.(3分)如图,几何体是由3个完全一样的正方体组成,它的左视图是()A.B.C.D.【解答】解:从左边看第一层是一个小正方形,第二层是一个小正方形,故选:B.4.(3分)如图,∠B=∠C,∠A=∠D,下列结论:①AB∥CD;②AE∥DF;③AE⊥BC;④∠AMC=∠BND,其中正确的结论有()A.①②④B.②③④C.③④D.①②③④【解答】解:∵∠B=∠C,∴AB∥CD,∴∠A=∠AEC,又∵∠A=∠D,∴∠AEC=∠D,∴AE∥DF,∴∠AMC=∠FNM,又∵∠BND=∠FNM,∴∠AMC=∠BND,故①②④正确,由条件不能得出∠AMC=90°,故③不一定正确;故选:A.5.(3分)解分式方程,分以下四步,其中,错误的一步是()A.方程两边分式的最简公分母是(x﹣1)(x+1)B.方程两边都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6C.解这个整式方程,得x=1D.原方程的解为x=1【解答】解:分式方程的最简公分母为(x﹣1)(x+1),方程两边乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6,解得:x=1,经检验x=1是增根,分式方程无解.故选:D.6.(3分)某校在一次科普知识抢答比赛中,7名选手的得分分别为:10,9,8,x,7,7,6,已知数据10,9,8,x,7,7,6的平均数是8,则这组数据的中位数是()A.7B.9C.8D.D、【解答】解:由题意得,=8,解得:x=9,则这组数据按照从小到大的顺序排列为:6,7,7,8,9,9,10,则中位数为:8.故选:C.7.(3分)下列命题是真命题的是()A.若一组数据是1,2,3,4,5,则它的方差是3B.若分式方程有增根,则它的增根是1C.对角线互相垂直的四边形,顺次连接它的四边中点所得四边形是菱形D.若一个角的两边分别与另一个角的两边平行,则这两个角相等【解答】解:A、若一组数据是1,2,3,4,5,则它的平均数是3,它的方差是[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=2,故错误,是假命题;B、若分式方程有增根,则它的增根是1或﹣1,去分母得,4﹣m(x+1)=(x+1)(x﹣1),当增根为1时,4﹣2m=0,∴m=2,当增根是﹣1时,4=0,∴不存在,∴故正确,是真命题;C、对角线互相垂直的四边形,顺次连接它的四边中点所得四边形是矩形,故错误,是假命题;D、若一个角的两边分别与另一个角的两边平行,则这两个角相等或互补,故错误,是假命题,故选:B.8.(3分)若关于x的一元二次方程(m﹣1)x2+x﹣1=0有实数根,则m的取值范围是()A.m B.m且m≠1C.m且m≠1D.m且m≠1【解答】解:∵关于x的一元二次方程(m﹣1)x2+x﹣1=0有实数根,∴△≥0且m﹣1≠0,即1﹣4×(m﹣1)×(﹣1)≥0且m≠1,解得m≥且m≠1,故选:C.9.(3分)如图,Rt△ABC中,∠ACB=90°,在以AB的中点O为坐标原点,AB所在直线为x轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴的正半轴上的A′处,若AO=OB=1,则阴影部分面积为()A.πB.π﹣1C.+1D.【解答】解:∵∠ACB=90°,OA=OB=1,∴AC=BC=,∴△ABC是等腰直角三角形,∴AB=2OA=2,∵△ABC绕点B顺时针旋转点A在A′处,∴BA′=AB=2,∴BA′=2OB,∴∠OA′B=30°,∴∠A′BA=60°,即旋转角为60°,S阴影=S扇形BAA′+S△A′BC′﹣S△ABC﹣S扇形BCC′,=S扇形ABA′﹣S扇形CBC′,=﹣,=﹣=.故选:D.10.(3分)如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为()A.2017πB.2034πC.3024πD.3026π【解答】解:∵AB=4,BC=3,∴AC=BD=5,转动一次A的路线长是:=2π,转动第二次的路线长是:=π,转动第三次的路线长是:=π,转动第四次的路线长是:0,以此类推,每四次循环,故顶点A转动四次经过的路线长为:π+π+2π=6π,∵2017÷4=504…1,∴顶点A在整个旋转过程中所经过的路径总长为:6π×504+2π=3026π,故选:D.二、填空题(共5小题,每小题3分,满分15分)11.(3分)计算:2﹣(3.14﹣π)0+()﹣1=6+2.【解答】解:原式=2×3﹣1+3=6+2.故答案为:6+2.12.(3分)从数﹣2,1,2,5,8中任取一个数记作k,则正比例函数y=kx的图象经过第二、四象限的概率是.【解答】解:∵从数﹣2,1,2,5,8中任取一个数记作k,有5种情况,其中使正比例函数y=kx的图象经过第二、四象限的k值只有1种,即k=﹣2,∴满足条件的概率为.故答案为.13.(3分)如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣8,6),则△AOC的面积为18.【解答】解:∵点D为线段OA的中点,且点A的坐标为(﹣8,6),∴点D的坐标为(﹣4,3).将点D(﹣4,3)代入到y=中得:3=,解得:k=﹣12.∴双曲线的解析式为y=﹣.令x=﹣8,则有y=﹣=,即点C的坐标为(﹣8,).∵AB⊥BO,∴点B(﹣8,0),AC=6﹣=,OB=0﹣(﹣8)=8,∴△AOC的面积S=AC•OB=××8=18.故答案为:18.14.(3分)如图1,则等边三角形ABC中,点P为BC边上的任意一点,且∠APD=60°,PD交AC于点D,设线段PB的长度为x,CD的长度为y,若y与x的函数关系的大致图象如图2,则等边三角形ABC的面积为16.【解答】解:由题可得,∠APD=60°,∠ABC=∠C=60°,∴∠BAP=∠CPD,∴△ABP∽△PCD,设AB=a,则,∴y=,当x=时,y取得最大值2,即P为BC中点时,CD的最大值为2,∴此时∠APB=∠PDC=90°,∠CPD=30°,∴PC=BP=4,∴等边三角形的边长为为8,∴根据等边三角形的性质,可得S=×82=16.故答案为:16.15.(3分)如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=6,点D是BC上一动点,连接AD,将△ACD沿AD折叠,点C落在点E处,连接DE交AB于点F,当△DEB是直角三角形时,DF的长为3或.【解答】解:①如图1中,当∠EDB=90°,四边形ACDE是正方形,此时CD=AC=6,∵BC==8,∴BD=BC﹣CD=8﹣6=2,∵tan∠ABC==,∴DF=.②如图2中,当∠DEB=90°时,AC=AE=6,则BE=4,设CD=DE=x,在Rt△BDE中,(8﹣x)2=x2+42,∴x=3,综上所述,满足条件的DF的值为3或.故答案为3或.三、解答题(共8小题,满分75分)16.(8分)先化简,再求值:(﹣1)÷,其中x=﹣2,y=()﹣1.【解答】解:(﹣1)÷===x+y,当x=﹣2,y=()﹣1=2时,原式=﹣2+2=.17.(9分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)求扇形统计图中C所对圆心角的度数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.【解答】解:(1)本次参加抽样调查的居民人数是:60÷10%=600(人);(2)C类的人数是:600﹣180﹣60﹣240=120(人),C类所占的百分比是:×100%=20%,A类所占的百分比是:×100%=30%.;(3)扇形统计图中C所对圆心角的度数是:360°×20%=72°;(4)画树状图如下:则他第二个吃到的恰好是C粽的概率是:=.18.(9分)如图,AC是⊙O的直径,点P在线段AC的延长线上,且PC=CO,点B在⊙O 上,且∠CAB=30°.(1)求证:PB是⊙O的切线;(2)若D为圆O上任一动点,⊙O的半径为5cm时,当弧CD长为cm时,四边形ADPB为菱形,当弧CD长为cm时,四边形ADCB为矩形.【解答】解:(1)如图连接OB、BC.∵OA=OB,∴∠OAB=∠OBA=30°,∴∠COB=∠OAB+∠OBA=60°,∵OB=OC,∴△OBC是等边三角形,∴BC=OC,∵PC=OA=OC,∴BC=CO=CP,∴∠PBO=90°,∴OB⊥PB,∴PB是⊙O的切线.(2)①的长为cm时,四边形ADPB是菱形.∵四边形ADPB是菱形,∠ADB=△ACB=60°,∴∠COD=2∠CAD=60°,∴的长==cm.②当四边形ADCB是矩形时,易知∠COD=120°,∴的长==cm.故答案为cm,cm;19.(9分)如图,一辆摩托单车放在水平的地面上,车把头下方A处与坐垫下方B处在平行于底面的水平线上,A、B之间的距离约为49cm,现测得AC、BC与AB的夹角分别为45°与68°,若点C到地面的距离CD为28cm,坐垫中轴E处与点B的距离BE为4cm,求点E到地面的距离(结果保留一位小数).(参考数据:sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)【解答】解:过点C作CH⊥AB于点H,过点E作EF垂直于AB延长线于点F,设CH=x,则AH=CH=x,BH=CH cot68°=0.4x,由AB=49 知x+0.4x=49,解得:x=35,∵BE=4,∴EF=BE sin68°=3.72,则点E到地面的距离为CH+CD+EF=35+28+3.72≈66.7(cm),答:点E到地面的距离约为66.7cm.20.(9分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=(x>0)的图象经过AO的中点C,交AB于点D,且AD=3(1)设点A的坐标为(4,4)则点C的坐标为(2,2);(2)若点D的坐标为(4,n).①求反比例函数y=的表达式;②求经过C,D两点的直线所对应的函数解析式;(3)在(2)的条件下,设点E是x轴的动点,请直接写出使△OCE为直角三角形的点E 坐标.【解答】解:(1)∵点C是OA的中点,A(4,4),O(0,0),∴C(,),∴C(2,2);故答案为(2,2).(2)①∵AD=3,D(4,n),∴A(4,n+3),∵点C是OA的中点,∴C(2,),∵点C,D(4,n)在双曲线y=上,∴,解得:,∴反比例函数解析式为y=.②由①知,n=1,∴C(2,2),D(4,1),设直线CD的解析式为y=ax+b,则,解得:∴直线CD的解析式为y=﹣x+3.(3)当∠OEC=90°时,点E的横坐标与点C的横坐标相等,C(2,2),∴E(2,0).当∠OCE=90°时.∵C(2,2),∴∠COB=45°.∴△OCE为等腰直角三角形.∴E(4,0).综上所述,点E的坐标为(2,0)或(4,0).21.(10分)星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中赚了多少钱?(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的,问橱具店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?【解答】解:(1)设橱具店购进电饭煲x台,电压锅y台,依题意得,解得,所以,20×(250﹣200)+10×(200﹣160)=1400(元).答:橱具店在该买卖中赚了1400元;(2)设购买电饭煲a台,则购买电压锅(50﹣a)台,依题意得,解得22≤a≤25.又∵a为正整数,∴a可取23,24,25.故有三种方案:①购买电饭煲23台,则购买电压锅27台;②购买电饭煲24台,则购买电压锅26台;③购买电饭煲25台,则购买电压锅25台.(3)设橱具店赚钱数额为W元,当a=23时,W=23×(250﹣200)+27×(200﹣160)=2230;当a=24时,W=24×(250﹣200)+26×(200﹣160)=2240;当a=25时,W=25×(250﹣200)+25×(200﹣160)=2250;综上所述,当a=25时,W最大,此时购进电饭煲、电压锅各25台.22.(10分)△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°(1)如图1,点D,E在AB,AC上,则BD,CE满足怎样的数量关系和位置关系?(2)如图2,点D在△ABC内部,点E在△ABC外部,连结BD,CE,则BD,CE满足怎样的数量关系和位置关系?请说明理由.(3)如图3,点D,E都在△ABC外部,连结BD,CE,CD,EB,BD与CE相交于F点.①若BD=4,求四边形BCDE的面积.②若AB=2,AD=1,设CD2=x,EB2=y,求y与x之间的函数关系式.【解答】解:(1)∵△ABC和△ADE都是等腰直角三角形,∴AB=AC,AD=AE,∴BD=CE,BD⊥CE;(2)BD=CE,BD⊥CE,理由如下:延长BD,分别交AC、CE于F、G,∵△ABC和△ADE都是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∵∠BAD=∠BAC﹣∠DAC,∠CAE=∠DAE﹣∠DAC∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE,∴BD=CE,∠ABD=∠ACE,∵∠AFB=∠GFC,∴∠CGF=∠BAF=90°,即BD⊥CE;(3)①∵△ABC和△ADE都是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=90°,∵∠BAD=∠BAC+∠DAC,∠CAE=∠DAE+∠DAC,∴∠BAD=∠CAE,∴△ABD≌△ACE,∴BD=CE,∠ABD=∠ACE,∵∠AOB=∠FOC,∴∠BFC=∠BAC=90°,∴S四边形BCDE=S△BCE+S△DCE=×CE×BF+×CE×DF=×CE×BD=8,②在Rt△ABC中,AB=AC=2,∴BC=2同理:DE=∵∠BHC=90°∴CD2+EB2=CF2+FD2+EF2+FB2=CH2+HB2+EH2+HD2=BC2+DE2=(2)2+()2=10∴y=10﹣x.23.(11分)如图,抛物线y=﹣x2+mx+n与x轴交于A,B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2)(1)求抛物线的表达式;(2)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标;(3)在y轴上是否存在点P使得∠OBP+∠OBC=45°?若存在,请直接写出点P的坐标,若不存在,请说明理由.【解答】解:(1)将A(﹣1,0),C(0,2)代入抛物线解析式得,解得,抛物线解析式为y=﹣x2+x+2;(2)如图1,∵抛物线的对称轴为直线x=﹣=,∴D(,0),B(4,0),设直线BC的解析式为y=kx+b,将B、C点坐标代入得,解得,∴直线BC的解析式为y=﹣x+2,设F(x,﹣x2+x+2)(0<x<4),则E(x,﹣x+2),∴EF=﹣x2+x+2﹣(﹣x+2)=﹣x2+2x,∴S△BCF=•4•(﹣x2+2x)=﹣x2+4x,四边形CDBF的面积=S△BCF+S△BCD=﹣x2+4x+•2•(4﹣)=﹣x2+4x+=(x﹣2)2+当x=2时,四边形CDBF的面积最大,最大值为,此时E点坐标为(2,1);(3)①作PE⊥BC于E点,如图2,∠OBP+∠OBC=45°,设P(0,n),∠PBE=45°,PE=PB,PB=,h=,BC==2,由三角形的面积,得BC•h=OB•CP,即×2=×4(2﹣n),化简,得3n2﹣32n﹣48=0,解得n1=﹣,n2=12(不符合题意,舍),P(0,﹣),②∵△OPB≌△OP1B,∴∠OBP1=∠OBP,OP1=OP=,∠OBP1+∠OBC=45°,∴P1(0,),综上所述:P点的坐标为(0,)或(0,﹣).。

河南省商丘市柘城县实验中学九年级数学下学期第二次模拟考试试题(扫描版)

河南省商丘市柘城县实验中学九年级数学下学期第二次模拟考试试题(扫描版)

河南省商丘市柘城县实验中学2018届九年级数学下学期第二次模拟考试试题数学参考答案1.A 2.C 3.A 4.B 5.B 6.C 7.A 8.A 9.C 10.A解:设A(a,﹣),由题意知,点A关于原点的对称点B((a,﹣),)在直线y2=kx+1+k上,则=﹣ak+1+k,整理,得:ka2﹣(k+1)a+1=0 ①,即(a﹣1)(ka﹣1)=0,∴a﹣1=0或ka﹣1=0,则a=1或ka﹣1=0,若k=0,则a=1,此时方程①只有1个实数根,即两个函数图象上的“友好点”只有1对;若k≠0,则a=,此时方程①有2个实数根,即两个函数图象上的“友好点”有2对,综上,这两个函数图象上的“友好点”对数情况为1对或2对,故选:A.11.12. 13. 60°14.322π-15. ①②④【解答】解:①∵AF是AB翻折而来,∴AF=AB=6,∵AD=BC=3,∴DF==3,∴F是CD中点;∴①正确;②连接OP,∵⊙O与AD相切于点P,∴OP⊥AD,∵AD⊥DC,∴OP∥CD,∴=,设OP=OF=x,则=,解得:x=2,∴②正确;③∵RT△ADF中,AF=6,DF=3,∴∠DAF=30°,∠AFD=60°,∴∠EAF=∠EAB=30°,∴AE=2EF;∵∠AFE=90°,∴∠EFC=90°﹣∠AFD=30°,∴EF=2EC,∴AE=4CE,∴③错误;④连接OG,作OH⊥FG,∵∠AFD=60°,OF=OG,∴△OFG为等边△;同理△OPG为等边△;∴∠POG=∠FOG=60°,OH=OG=,S扇形OPG=S扇形OGF,∴S阴影=(S矩形OPDH﹣S扇形OPG﹣S△OGH)+(S扇形OGF﹣S△OFG)=S矩形OPDH﹣S△OFG=2×﹣(×2×)=.∴④正确;故答案为①②④.16.解:(1﹣)÷=×=,当x=﹣1时,原式=.17.(1)50;(2)作图见解析;(3)360;(4)13.【解析】解:(1)本次调查共抽取的学生有3÷6%=50(名);(2)选择“友善”的人数有50﹣20﹣12﹣3=15(名),占1550=30%,“爱国”占2050=40%,“敬业”占1250=24%.条形统计图和扇形统计图如图所示:(3)该校九年级共有1200名学生,请估计选择以“友善”为主题的九年级学生有1200×30%=360名;(4)记小义、小玉和大力分别为A、B、C,树状图如图所示:共有6种情形,小义和小玉同学的征文同时被选中的有2种情形,小义和小玉同学的征文同时被选中的概率=1 3.18. 【解答】解:如图,AC⊥PC,∠APC=60°,∠BPC=45°,AP=200,在Rt△APC中,∵cos∠APC=,∴PC=20•cos60°=10,∴AC==10,在△PBC中,∵∠BPC=45°,∴△PBC为等腰直角三角形,∴BC=PC=10,∴AB=AC﹣BC=10﹣10(海里).答:轮船航行途中与灯塔P的最短距离是(10﹣10)海里.19.【解答】(1)证明:∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC.∵DE是⊙O的切线,OD是半径,∴DE⊥OD,∴DE⊥AC;(2)如图,过点O作OH⊥AF于点H,则∠ODE=∠DEH=∠OHE=90°,∴四边形ODEH是矩形,∴OD=EH,OH=DE.设AH=x.∵DE+AE=8,OD=10,∴AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:AH2+OH2=OA2,即x2+(x﹣2)2=102,解得x1=8,x2=﹣6(不合题意,舍去).∴AH=8.∵OH⊥AF,∴AH=FH=AF,∴AF=2AH=2×8=16.20.【解答】解:(1)把点A(4,2)代入反比例函数y=,可得m=8,∴反比例函数解析式为y=,∵OB=6,∴B(0,﹣6),把点A(4,2),B(0,﹣6)代入一次函数y=kx+b,可得,解得,∴一次函数解析式为y=2x﹣6;(2)在y=2x﹣6中,令y=0,则x=3,即C(3,0),∴CO=3,设P(a,),则由S△POC=9,可得×3×=9,解得a=,∴P(,6).21.【解答】解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,解得,答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:≤a≤,因为a是整数,所以a=6,7,8;则(10﹣a)=4,3,2;三种方案:①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.22.【解答】解:(1)如图1中,∵△ABC是等边三角形,∴AB=CB=AC=6,∠A=∠B=60°,∵DE∥BC,∠EDF=60°,∴∠BND=∠EDF=60°,∴∠BDN=∠ADM=60°,∴△ADM,△BDN都是等边三角形,∴S1=22=,S2=(4)2=4,∴S1S2=12,故答案为12.(2)如图2中,设AM=x,BN=y.∵∠MDB=∠MDN+∠NDB=∠A+∠AMD,∠MDN=∠A,∴∠AMD=∠NDB,∵∠A=∠B,∴△AMD∽△BDN,∴=,∴=,∴xy=8,∵S1=AD╳AMsin60°=x,S2=DBsin60°=y,∴S1S2=x y=xy=12.(3)Ⅰ如图3中,设AM=x,BN=y,同法可证△AMD∽△BDN,可得xy=ab,∵S1=AD╳AMsinα=axsinα,S2=DB╳BNsinα=bysinα,∴S1S2=(ab)2sin2α.Ⅱ如图4中,设AM=x,BN=y,同法可证△AMD∽△BDN,可得xy=ab,∵S1=AD╳AMsinα=axsinα,S2=DB╳BNsinα=bysinα,∴S1S2=(ab)2sin2α.23.【解答】解:(1)①△OBC与△ABD全等,理由是:如图1,∵△OAB和△BCD是等边三角形,∴∠OBA=∠CBD=60°,OB=AB,BC=BD,∴∠OBA+∠ABC=∠CBD+∠ABC,即∠OBC=∠ABD,∴△OBC≌△ABD(SAS);②∵△OBC≌△ABD,∴∠BAD=∠BOC=60°,∴∠OBA=∠BAD,∴OB∥AD,∴无论点C如何移动,AD始终与OB平行;(2)如图2,∵AC2=AEAD,∴,∵∠EAC=∠DAC,∴△AEC∽△ACD,∴∠ECA=∠ADC,∵∠BAD=∠BAO=60°,∴∠DAC=60°,∵∠BED=∠AEC,∴∠ACB=∠ADB,∴∠ADB=∠ADC,∵BD=CD,∴DE⊥BC,Rt△ABE中,∠BAE=60°,∴∠ABE=30°,∴AE=AB=×2=1,Rt△AEC中,∠EAC=60°,∴∠ECA=30°,∴AC=2AE=2,∴C(4,0),等边△OAB中,过B作BH⊥x轴于H,∴BH==,∴B(1,),设y1的解析式为:y=ax(x﹣4),把B(1,)代入得: =a(1﹣4),a=﹣,∴设y1的解析式为:y1=﹣x(x﹣4)=﹣x2+x,过E作EG⊥x轴于G,Rt△AGE中,AE=1,∴AG=AE=,EG==,∴E(,),设直线AE的解析式为:y=kx+b,把A(2,0)和E(,)代入得:,解得:,∴直线AE的解析式为:y=x﹣2,则,解得:,,∴P(3,)或(﹣2,﹣4);(3)如图3,y1=﹣x2+x=﹣(x﹣2)2+,顶点(2,),∴抛物线y2的顶点为(2,﹣),∴y2=(x﹣2)2﹣,当m=0时,y=x与图形M两公共点,当y2与l相切时,即有一个公共点,l与图形M有3个公共点,则,=﹣,x2﹣7x﹣3m=0,△=(﹣7)2﹣4×1×(﹣3m)≥0,m≥﹣,∴当l与M的公共点为3个时,m的取值是:﹣≤m<0.。

柘城县初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

柘城县初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

柘城县初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)如果方程组与有相同的解,则a,b的值是()A. B. C. D.【答案】A【考点】解二元一次方程组【解析】【解答】解:由已知得方程组,解得,代入,得到,解得.【分析】把4x-5y=41和2x+3y=-7组成方程组,剩下的两个组成方程组,由4x-5y=41和2x+3y=-7解得x和y 的值,并把它们代入到另一个方程组中,求出a和b的值.2、(2分)当x=3时,下列不等式成立的是()A.x+3>5B.x+3>6C.x+3>7D.x+3<5【答案】A【考点】不等式的解及解集【解析】【解答】解:A、当x=3时,x+3=3+3=6>5,所以x+3>5成立;B、当x=3时,x+3=3+3=6,所以x+3>6不成立;C、当x=3时,x+3=3+3=6<7,所以;x+3>7不成立;D、当x=3时,x+3=3+3=6>5,所以x+3<5不成立.故答案为:A【分析】把x=3分别代入各选项中逐个进行判断即可。

3、(2分)a是非负数的表达式是()A.a>0B.≥0C.a≤0D.a≥0【答案】D【考点】不等式及其性质【解析】【解答】解:非负数是指大于或等于0的数,所以a≥0,故答案为:D.【分析】正数和0统称非负数,根据这个定义作出判断即可。

4、(2分)某校对全体学生进行体育达标检测,七、八、九三个年级共有800名学生,达标情况如表所示.则下列三位学生的说法中正确的是()甲:“七年级的达标率最低”;乙:“八年级的达标人数最少”;丙:“九年级的达标率最高”A. 甲和乙B. 乙和丙C. 甲和丙D. 甲乙丙【答案】C【考点】扇形统计图,条形统计图【解析】【解答】解:由扇形统计图可以看出:八年级共有学生800×33%=264人;七年级的达标率为×100%=87.8%;九年级的达标率为×100%=97.9%;八年级的达标率为.则九年级的达标率最高.则甲、丙的说法是正确的.故答案为:C【分析】先根据扇形统计图计算八年级的学生人数,然后计算三个年级的达标率即可确定结论.5、(2分)已知方程,则x+y的值是()A. 3B. 1C. ﹣3D. ﹣1 【答案】D【考点】解二元一次方程组【解析】【解答】解:,①+②得:2x+2y=﹣2,则x+y=﹣1.故答案为:D.【分析】观察方程组中同一未知数的系数特点,由(①+②)÷2,就可求出x+y的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年河南省商丘市柘城县中考数学模拟试卷一、选择题(每小题3分,共30分)1.(3分)﹣2018的绝对值是()A.±2018 B.﹣2018 C.﹣D.20182.(3分)据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是()A.55×106 B.0.55×108C.5.5×106D.5.5×1073.(3分)如图所示的几何体的俯视图是()A.B.C.D.4.(3分)下列各式计算正确的是()A.(b+2a)(2a﹣b)=b2﹣4a2B.2a3+a3=3a6C.a3•a=a4D.(﹣a2b)3=a6b35.(3分)某校九年级一班全体学生2017年中招理化生实验操作考试的成绩统计如下表,根据表中的信息判断,下列结论中错误的是()B.该班学生这次考试成绩的平均数为29.4分C.该班学生这次考试成绩的众数为30分D.该班学生这次考试成绩的中位数为28分6.(3分)已知关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,则m的取值范围是()A.m>1 B.m<1 C.m≥1 D.m≤17.(3分)如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD:BD=5:3,CF=6,则DE的长为()A.6 B.8 C.10 D.128.(3分)现有四张分别标有数字1、2、2、3的卡片,他们除数字外完全相同.把卡片背面朝上洗匀,从中随机抽出一张后放回,再背朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率()A.B.C.D.9.(3分)如图,一段抛物线:y=﹣x(x﹣5)(0≤x≤5),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,得到一“波浪线”,若点P(2018,m)在此“波浪线”上,则m的值为()A.4 B.﹣4 C.﹣6 D.610.(3分)如图,直角三角形ABC中,∠C=90°,AC=2,AB=4,分别以AC、BC为直径作半圆,则图中阴影部分的面积为()A.2π﹣B.π+C.π+2D.2π﹣2二、填空题(每小题3分,共15分)11.(3分)20180+=.12.(3分)不等式组的非负整数解的个数是.13.(3分)如图,正比例函数y1=k1x和反比例函数y2=的图象交于A(﹣1,2),B(1,﹣2)两点,若y1>y2,则x的取值范围是.14.(3分)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4,则△CEF的周长为.15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为.三、解答题(本大题共8小题,共75分)16.(8分)先化简÷(﹣x+1),然后从﹣<x<的范围内选取一个合适的整数作为x的值代入求值.17.(9分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)①表中a的值为,中位数在第组;②频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.18.(9分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.19.(9分)如图,港口B位于港口A的南偏东37°方向,灯塔C恰好在AB的中点处.一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5km到达E处,测得灯塔C在北偏东45°方向上,这时,E处距离港口A有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)20.(9分)如图,∠AOB=90°,反比例函数y=﹣(x<0)的图象过点A(﹣1,a),反比例函数y=(k>0,x>0)的图象过点B,且AB∥x轴.(1)求a和k的值;(2)过点B作MN∥OA,交x轴于点M,交y轴于点N,交双曲线y=于另一点C,求△OBC 的面积.21.(10分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.22.(10分)如图1,在Rt△ABC中,∠C=90°,AC=BC=2,点D、E分别在边AC、AB上,AD=DE=AB,连接DE.将△ADE绕点A逆时针方向旋转,记旋转角为θ.(1)问题发现①当θ=0°时,=;②当θ=180°时,=.(2)拓展探究试判断:当0°≤θ<360°时,的大小有无变化?请仅就图2的情形给出证明;(3)问题解决①在旋转过程中,BE的最大值为;②当△ADE旋转至B、D、E三点共线时,线段CD的长为.23.(11分)如图1,在平面直角坐标系中,直线y=﹣x+1与抛物线y=ax2+bx+c(a≠0)相交于点A(1,0)和点D(﹣4,5),并与y轴交于点C,抛物线的对称轴为直线x=﹣1,且抛物线与x轴交于另一点B.(1)求该抛物线的函数表达式;(2)若点E是直线下方抛物线上的一个动点,求出△ACE面积的最大值;(3)如图2,若点M是直线x=﹣1的一点,点N在抛物线上,以点A,D,M,N为顶点的四边形能否成为平行四边形?若能,请直接写出点M的坐标;若不能,请说明理由.2018年河南省商丘市柘城县中考数学模拟试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)﹣2018的绝对值是()A.±2018 B.﹣2018 C.﹣D.2018【解答】解:﹣2018的绝对值是2018.故选:D.2.(3分)据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是()A.55×106 B.0.55×108C.5.5×106D.5.5×107【解答】解:55000000=5.5×107,故选:D.3.(3分)如图所示的几何体的俯视图是()A.B.C.D.【解答】解:从上往下看,该几何体的俯视图与选项D所示视图一致.故选:D.4.(3分)下列各式计算正确的是()A.(b+2a)(2a﹣b)=b2﹣4a2B.2a3+a3=3a6C.a3•a=a4D.(﹣a2b)3=a6b3【解答】解:A、原式=4a2﹣b2,不符合题意;B、原式=3a3,不符合题意;C、原式=a4,符合题意;D、原式=﹣a6b3,不符合题意,故选:C.5.(3分)某校九年级一班全体学生2017年中招理化生实验操作考试的成绩统计如下表,根据表中的信息判断,下列结论中错误的是()B.该班学生这次考试成绩的平均数为29.4分C.该班学生这次考试成绩的众数为30分D.该班学生这次考试成绩的中位数为28分【解答】解:A、32+4+2+1+1=40,该班共有40名学生,故本选项错误;B、(30×32+29×4+28×2+×1+18×1)÷40=29.4,故本选项错误;C、30分出现的次数最多,众数为30,故本选项错误;D、第20和21两个数的平均数为30,故中位数为30,故本选项正确;故选:D.6.(3分)已知关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,则m的取值范围是()A.m>1 B.m<1 C.m≥1 D.m≤1【解答】解:∵关于x的一元二次方程x2+2x﹣(m﹣2)=0有实数根,∴△=b2﹣4ac=22﹣4×1×[﹣(m﹣2)]≥0,解得m≥1,故选:C.7.(3分)如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD:BD=5:3,CF=6,则DE的长为()A.6 B.8 C.10 D.12【解答】解:∵DE∥BC,∴∠ADE=∠B.∵∠ADE=∠EFC,∴∠B=∠EFC,∴BD∥EF,∵DE∥BF,∴四边形BDEF为平行四边形,∴DE=BF.∵DE∥BC,∴△ADE∽△ABC,∴===,∴BC=DE,∴CF=BC﹣BF=DE=6,∴DE=10.故选:C.8.(3分)现有四张分别标有数字1、2、2、3的卡片,他们除数字外完全相同.把卡片背面朝上洗匀,从中随机抽出一张后放回,再背朝上洗匀,从中随机抽出一张,则两次抽出的卡片所标数字不同的概率()A.B.C.D.【解答】解:由题意可得,两次抽出的卡片所标数字不同的概率是:,故选:A.9.(3分)如图,一段抛物线:y=﹣x(x﹣5)(0≤x≤5),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,得到一“波浪线”,若点P(2018,m)在此“波浪线”上,则m的值为()A.4 B.﹣4 C.﹣6 D.6【解答】解:当y=0时,﹣x(x﹣5)=0,解得x1=0,x2=5,则A1(5,0),∴OA1=5,∵将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,得到一“波浪线”,∴A1A2=A2A3=…=OA1=5,∴抛物线C404的解析式为y=(x﹣5×403)(x﹣6×404),即y=(x﹣2015)(x﹣2020),当x=2018时,y=(2018﹣2015)(2018﹣2020)=﹣6,即m=﹣6.故选:C.10.(3分)如图,直角三角形ABC中,∠C=90°,AC=2,AB=4,分别以AC、BC为直径作半圆,则图中阴影部分的面积为()A.2π﹣B.π+C.π+2D.2π﹣2【解答】解:连接CD.∵∠C=90°,AC=2,AB=4,∴BC=2.∴阴影部分的面积=+﹣×2×2=2π﹣2.故选:D.二、填空题(每小题3分,共15分)11.(3分)20180+=1.【解答】解:原式=1+2﹣2=1.故答案为:1.12.(3分)不等式组的非负整数解的个数是5.【解答】解:解不等式3x+7≥2,得:x≥﹣,解不等式2x﹣9<1,得:x<5,则不等式组的解集为﹣≤x<5,则其非负整数解为0、1、2、3、4这5个,故答案为:5.13.(3分)如图,正比例函数y1=k1x和反比例函数y2=的图象交于A(﹣1,2),B(1,﹣2)两点,若y1>y2,则x的取值范围是x<﹣1或0<x<1.【解答】解:如图,结合图象可得:①当x<﹣1时,y1>y2;②当﹣1<x<0时,y1<y2;③当0<x<1时,y1>y2;④当x>1时,y1<y2.综上所述:若y1>y2,则x的取值范围是x<﹣1或0<x<1.故答案为:x<﹣1或0<x<1.14.(3分)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4,则△CEF的周长为8.【解答】解:∵在▱ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,∴∠BAF=∠DAF,∵AB∥DF,∴∠BAF=∠F,∴∠F=∠DAF,∴△ADF是等腰三角形,AD=DF=9;∵AD∥BC,∴△EFC是等腰三角形,且FC=CE.∴EC=FC=9﹣6=3,∴AB=BE.∴在△ABG中,BG⊥AE,AB=6,BG=,可得:AG=2,又∵BG⊥AE,∴AE=2AG=4,∴△ABE的周长等于16,又∵▱ABCD,∴△CEF∽△BEA,相似比为1:2,∴△CEF的周长为8.故答案为8.15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4.【解答】解:(i)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)当CB′=CD时,∵EB=EB′,CB=CB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠可知点F与点C重合,不符合题意,舍去.综上所述,DB′的长为16或4.故答案为:16或4.三、解答题(本大题共8小题,共75分)16.(8分)先化简÷(﹣x+1),然后从﹣<x<的范围内选取一个合适的整数作为x的值代入求值.【解答】解:÷(﹣x+1)====,当x=﹣2时,原式=.17.(9分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)①表中a的值为12,中位数在第3组;②频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.【解答】解:(1)①a=50﹣(6+8+14+10)=12,中位数为第25、26个数的平均数,而第25、26个数均落在第3组内,所以中位数落在第3组,故答案为:12,3;②(2)×100%=44%,答:本次测试的优秀率是44%;(3)设小明和小强分别为A、B,另外两名学生为:C、D,则所有的可能性为:(AB﹣CD)、(AC﹣BD)、(AD﹣BC)所以小明和小强分在一起的概率为:.18.(9分)如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.【解答】(1)证明:连接OB,如图所示:∵E是弦BD的中点,∴BE=DE,OE⊥BD,=,∴∠BOE=∠A,∠OBE+∠BOE=90°,∵∠DBC=∠A,∴∠BOE=∠DBC,∴∠OBE+∠DB C=90°,∴∠OBC=90°,即BC⊥OB,∴BC是⊙O的切线;(2)解:∵OB=6,BC=8,BC⊥OB,∴OC==10,∵△OBC的面积=OC•BE=OB•BC,∴BE===4.8,∴BD=2BE=9.6,即弦BD的长为9.6.19.(9分)如图,港口B位于港口A的南偏东37°方向,灯塔C恰好在AB的中点处.一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5km到达E处,测得灯塔C在北偏东45°方向上,这时,E处距离港口A有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【解答】解:如图作CH⊥AD于H.设CH=xkm,在Rt△ACH中,∠A=37°,∵tan37°=,∴AH==,在Rt△CEH中,∵∠CEH=45°,∴CH=EH=x,∵CH⊥AD,BD⊥AD,∴CH∥BD,∴=,∵AC=CB,∴AH=HD,∴=x+5,∴x=≈15,∴AE=AH+HE=+15≈35km,∴E处距离港口A有35km.20.(9分)如图,∠AOB=90°,反比例函数y=﹣(x<0)的图象过点A(﹣1,a),反比例函数y=(k>0,x>0)的图象过点B,且AB∥x轴.(1)求a和k的值;(2)过点B作MN∥OA,交x轴于点M,交y轴于点N,交双曲线y=于另一点C,求△OBC 的面积.【解答】解:(1)∵反比例函数y=﹣(x<0)的图象过点A(﹣1,a),∴a=﹣=2,∴A(﹣1,2),过A作AE⊥x轴于E,BF⊥⊥x轴于F,∴AE=2,OE=1,∵AB∥x轴,∴BF=2,∵∠AOB=90°,∴∠EAO+∠AOE=∠AOE+∠BOF=90°,∴∠EAO=∠BOF,∴△AEO ∽△OFB ,∴,∴OF=4, ∴B (4,2), ∴k=4×2=8;(2)∵直线OA 过A (﹣1,2), ∴直线AO 的解析式为y=﹣2x , ∵MN ∥OA ,∴设直线MN 的解析式为y=﹣2x +b , ∴2=﹣2×4+b , ∴b=10,∴直线MN 的解析式为y=﹣2x +10, ∵直线MN 交x 轴于点M ,交y 轴于点N , ∴M (5,0),N (0,10),解得,或,∴C (1,8),∴△OBC 的面积=S △OMN ﹣S △OCN ﹣S △OBM =5×10﹣×10×1﹣×5×2=15.21.(10分)某商店销售10台A 型和20台B 型电脑的利润为4000元,销售20台A 型和10台B 型电脑的利润为3500元.(1)求每台A 型电脑和B 型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍,设购进A 型电脑x 台,这100台电脑的销售总利润为y 元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.【解答】解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得解得答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,﹣50<0,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,33≤x≤70①当0<m<50时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润;③当50<m<100时,m﹣50>0,y随x的增大而增大,∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.22.(10分)如图1,在Rt△ABC中,∠C=90°,AC=BC=2,点D、E分别在边AC、AB上,AD=DE=AB,连接DE.将△ADE绕点A逆时针方向旋转,记旋转角为θ.(1)问题发现①当θ=0°时,=;②当θ=180°时,=.(2)拓展探究试判断:当0°≤θ<360°时,的大小有无变化?请仅就图2的情形给出证明;(3)问题解决①在旋转过程中,BE的最大值为2+2;②当△ADE旋转至B、D、E三点共线时,线段CD的长为+1或﹣1.【解答】解:(1)①当θ=0°时,在Rt△ABC中,AC=BC=2,∴∠A=∠B=45°,AB=2,∵AD=DE=AB=,∴∠AED=∠A=45°,∴∠ADE=90°,∴DE∥CB,∴,∴,∴,故答案为:,②当θ=180°时,如图1,∴DE∥BC,∴,∴,即:,∴==,故答案为:;(2)当0°≤θ<360°时,的大小没有变化,理由:∵∠CAB=∠DAE,∴∠CAD=∠BAE,∵,∴△ADC∽△AEB,∴==;(3)①当点E在BA的延长线时,BE最大,在Rt△ADE中,AE=AD=2,AE=2+2;∴BE最大=AB+②如图2,当点E在BD上时,∵∠ADE=90°,∴∠ADB=90°,在Rt△ADB中,AB=2,AD=,根据勾股定理得,DB==,∴BE=BD+DE=+,由(2)知,,∴CD===+1,如图3,当点D在BE的延长线上时,在Rt△ADB中,AD=,AB=2,根据勾股定理得,BD==,∴BE=BD﹣DE=﹣,由(2)知,,∴CD===﹣1.故答案为: +1或﹣1.23.(11分)如图1,在平面直角坐标系中,直线y=﹣x+1与抛物线y=ax2+bx+c(a≠0)相交于点A(1,0)和点D(﹣4,5),并与y轴交于点C,抛物线的对称轴为直线x=﹣1,且抛物线与x轴交于另一点B.(1)求该抛物线的函数表达式;(2)若点E是直线下方抛物线上的一个动点,求出△ACE面积的最大值;(3)如图2,若点M是直线x=﹣1的一点,点N在抛物线上,以点A,D,M,N为顶点的四边形能否成为平行四边形?若能,请直接写出点M的坐标;若不能,请说明理由.【解答】解:(1)∵A(1,0),抛物线的对称轴为x=﹣1,∴B(﹣3,0).设抛物线的解析式为y=a(x+3)(x﹣1),将点D的坐标代入得:5a=5,解得a=1,∴抛物线的解析式为y=x2+2x﹣3.(2)如图1所示:过点E作EF∥y轴,交AD与点F,过点C作CH⊥EF,垂足为H.设点E(m,m2+2m﹣3),则F(m,﹣m+1).∴EF=﹣m+1﹣m2﹣2m+3=﹣m2﹣3m+4∴△ACE的面积=△EFA的面积﹣△EFC的面积=EF•AG﹣EF•HC=EF•OA=﹣(m+)2+.∴△ACE的面积的最大值为.(3)当AD为平行四边形的对角线时.设点M的坐标为(﹣1,a),点N的坐标为(x,y).∵平行四边的对角线互相平分,∴=,=.解得:x=﹣2,5﹣a.将点N的坐标代入抛物线的解析式得:5﹣a=﹣3,∴a=8.∴点M的坐标为(﹣1,8).当AD为平行四边形的边时.设点M的坐标为(﹣1,a).∵四边形MNAD为平行四边形,∴点N的坐标为(﹣6,a+5)或(4,a﹣5).∵将x=﹣6,y=a+5代入抛物线的解析式得:a+5=36﹣12﹣3,解得:a=16,∴M(﹣1,16).将x=4,y=a﹣5代入抛物线的解析式得:a﹣5=16+8﹣3,解得:a=26,∴M(﹣1,26).综上所述,当点M的坐标为(﹣1,26)或(﹣1,16)或(﹣1,8)时,以点A,D,M,N为顶点的四边形能成为平行四边形.。

相关文档
最新文档