2018年初中数学中考德阳试题解析
四川德阳2018中考试题
(1)甲组同学按照如图所示的装置,通过实验检验草酸晶体的分解产物。仪器a的名称是_________。装置B的主要作用是_________________。装置C中有气泡逸出,澄清石灰水变浑浊。由此可知草酸晶体分解的产物中一定有______________。
(2)乙组同学认为草酸晶体分解的产物中还有CO。为进行验证,选用甲组实验中的装置A、B和下图所示的部分装置(可以重复选用)进行实验。
A.丁烯中C、H元素的质量比为1:2B.丁烯中碳元素位于元素周期表第二周期
C.丁烯分子中碳原子的结构示意图为 D.丁烯分子中含有4个碳元素和8个氢元素
4.下图表示两种气体发生化学反应的微观示意图,其中相同的球代表同种原子。下列有关说法错误的是
A.该反应属于化合反应B.反应前后原子的种类和数目都不变
C.生成物一定是氧化物D.反应前后各元素的化合价发生了变化
C.滤出的固体中含有银7.6gD.滤出的固体中含有铜6.4g
二、填空题
9.防治空气污染、改善生态环境已成为全民共识。近年来,一些城市空气中出现可吸入悬浮颗粒物与雾形成“雾霾”天气。粒径不大于2.5μm的可吸入悬浮颗粒物(PM2.5)富含大量有毒、有害物质。
(1)下列行为可能会导致“雾霾”加重的是________(填标号)。
(2)若B+E+F→C,则C是___________(填名称或化学式)。
(3)反应④的化学方程式是_______________________________。
(4)反应⑤的化学方程式是_________________的化工原料,某矿石由MgO、Fe2O3、CuO和SiO2组成。用它制备氢氧化镁的流程示意图如下:
a.燃煤脱硫b.植树造林c.静电除尘d.燃放鞭炮
2018年四川省中考数学真题汇编解析:数与式、方程不等式
2018年全国各地中考数学真题汇编(四川专版)数与式、方程不等式参考答案与试题解析一.选择题(共10小题)1.(2018•绵阳)在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人解:设参加酒会的人数为x人,根据题意得:x(x﹣1)=55,整理,得:x2﹣x﹣110=0,解得:x1=11,x2=﹣10(不合题意,舍去).答:参加酒会的人数为11人.故选:C.2.(2018•乐山)方程组==x+y﹣4的解是()A.B.C.D.解:由题可得,,消去x,可得2(4﹣y)=3y,解得y=2,把y=2代入2x=3y,可得x=3,∴方程组的解为.故选:D.3.(2018•乐山)估计+1的值,应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间解:∵≈2.236,∴+1≈3.236,故选:C.4.(2018•南充)不等式x+1≥2x﹣1的解集在数轴上表示为()A.B.C.D.解:移项,得:x﹣2x≥﹣1﹣1,合并同类项,得:﹣x≥﹣2,系数化为1,得:x≤2,将不等式的解集表示在数轴上如下:,故选:B.5.(2018•绵阳)将全体正奇数排成一个三角形数阵:13 57 9 1113 15 17 1923 25 27 29…按照以上排列的规律,第25行第20个数是()A.639 B.637 C.635 D.633解:根据三角形数阵可知,第n行奇数的个数为n个,则前n﹣1行奇数的总个数为1+2+3+…+(n﹣1)=个,则第n行(n≥3)从左向右的第m数为为第+m奇数,即:1+2[+m﹣1]=n2﹣n+2m﹣1n=25,m=20,这个数为639,故选:A.6.(2018•眉山)若α,β是一元二次方程3x2+2x﹣9=0的两根,则+的值是()A.B.﹣C.﹣D.解:∵α、β是一元二次方程3x2+2x﹣9=0的两根,∴α+β=﹣,αβ=﹣3,∴+====﹣.故选:C.7.(2018•乐山)已知实数a、b满足a+b=2,ab=,则a﹣b=()A.1 B.﹣C.±1 D.±解:∵a+b=2,ab=,∴(a+b)2=4=a2+2ab+b2,∴a2+b2=,∴(a﹣b)2=a2﹣2ab+b2=1,∴a﹣b=±1,故选:C.8.(2018•眉山)已知关于x的不等式组仅有三个整数解,则a的取值范围是()A.≤a<1 B.≤a≤1 C.<a≤1 D.a<1解:由x>2a﹣3,由2x>3(x﹣2)+5,解得:2a﹣3<x≤1,由关于x的不等式组仅有三个整数:解得﹣2≤2a﹣3<﹣1,解得≤a<1,故选:A.9.(2018•南充)已知=3,则代数式的值是( )A .B .C .D .解:∵=3,∴=3,∴x ﹣y=﹣3xy ,则原式====, 故选:D .10.(2018•眉山)我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是( ) A .8% B .9%C .10%D .11%解:设平均每次下调的百分率为x ,由题意,得 6000(1﹣x )2=4860,解得:x 1=0.1,x 2=1.9(舍去). 答:平均每次下调的百分率为10%. 故选:C .二.填空题(共10小题)11.(2018•自贡)分解因式:ax 2+2axy +ay 2= a (x +y )2 . 解:原式=a (x 2+2xy +y 2)…(提取公因式) =a (x +y )2.…(完全平方公式)12.(2018•成都)已知a >0,S 1=,S 2=﹣S 1﹣1,S 3=,S 4=﹣S 3﹣1,S 5=,…(即当n 为大于1的奇数时,S n=;当n为大于1的偶数时,S n=﹣S n﹣1﹣1),按此规律,S2018=﹣.解:S1=,S2=﹣S1﹣1=﹣﹣1=﹣,S3==﹣,S4=﹣S3﹣1=﹣1=﹣,S5==﹣(a+1),S6=﹣S5﹣1=(a+1)﹣1=a,S7==,…,∴S n的值每6个一循环.∵2018=336×6+2,∴S2018=S2=﹣.故答案为:﹣.13.(2018•自贡)六一儿童节,某幼儿园用100元钱给小朋友买了甲、乙两种不同的玩具共30个,单价分别为2元和4元,则该幼儿园购买了甲、乙两种玩具分别为10、20个.解:设甲玩具购买x个,乙玩具购买y个,由题意,得,解得,甲玩具购买10个,乙玩具购买20个,故答案为:10,20.14.(2018•绵阳)已知a>b>0,且++=0,则=.解:由题意得:2b(b﹣a)+a(b﹣a)+3ab=0,整理得:2()2+﹣1=0,解得=,∵a>b>0,∴=,故答案为.15.(2018•南充)若2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,则m﹣n的值为.解:∵2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,∴4n2﹣4mn+2n=0,∴4n﹣4m+2=0,∴m﹣n=.故答案是:.16.(2018•达州)若关于x的分式方程=2a无解,则a的值为1或.解:去分母得:x﹣3a=2a(x﹣3),整理得:(1﹣2a)x=﹣3a,当1﹣2a=0时,方程无解,故a=;当1﹣2a≠0时,x==3时,分式方程无解,则a=1,故关于x的分式方程=2a无解,则a的值为:1或.故答案为:1或.17.(2018•自贡)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有6055个○.解:观察图形可知:第1个图形共有:1+1×3,第2个图形共有:1+2×3,第3个图形共有:1+3×3,…,第n个图形共有:1+3n,∴第2018个图形共有1+3×2018=6055,故答案为:6055.18.(2018•眉山)已知关于x的分式方程﹣2=有一个正数解,则k的取值范围为k<6且k≠3.解;﹣2=,方程两边都乘以(x﹣3),得x=2(x﹣3)+k,解得x=6﹣k≠3,关于x的方程程﹣2=有一个正数解,∴x=6﹣k>0,k<6,且k≠3,∴k的取值范围是k<6且k≠3.故答案为:k<6且k≠3.19.(2018•达州)已知:m2﹣2m﹣1=0,n2+2n﹣1=0且mn≠1,则的值为3.解:由n2+2n﹣1=0可知n≠0.∴1+﹣=0.∴﹣﹣1=0,又m2﹣2m﹣1=0,且mn≠1,即m≠.∴m,是方程x2﹣2x﹣1=0的两根.∴m+=2.∴=m+1+=2+1=3,故答案为:3.20.(2018•遂宁)A,B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x千米/小时,则根据题意,可列方程﹣=.解:设乙车的速度是x千米/小时,则根据题意,可列方程:﹣=.故答案为:﹣=.三.解答题(共16小题).(2018•攀枝花)解方程:﹣=1.解:去分母得:3(x﹣3)﹣2(2x+1)=6,去括号得:3x﹣9﹣4x﹣2=6,移项得:﹣x=17,系数化为1得:x=﹣17.22.(2018•遂宁)计算:()﹣1+(﹣1)0+2sin45°+|﹣2|.解:原式=3+1+2×+2﹣=4++2﹣=6.23.(2018•自贡)解不等式组:,并在数轴上表示其解集.解:解不等式①,得:x≤2;解不等式②,得:x>1,∴不等式组的解集为:1<x≤2.将其表示在数轴上,如图所示.24.(2018•遂宁)先化简,再求值•+.(其中x=1,y=2)解:当x=1,y=2时,原式=•+=+==﹣325.(2018•攀枝花)攀枝花市出租车的收费标准是:起步价5元(即行驶距离不超过2千米都需付5元车费),超过2千米以后,每增加1千米,加收1.8元(不足1千米按1千米计).某同学从家乘出租车到学校,付了车费24.8元.求该同学的家到学校的距离在什么范围?解:设该同学的家到学校的距离是x千米,依题意:24.8﹣1.8<5+1.8(x﹣2)≤24.8,解得:12<x≤13.故该同学的家到学校的距离在大于12小于等于13的范围.26.(2018•遂宁)已知关于x的一元二次方程x2﹣2x+a=0的两实数根x1,x2满足x1x2+x1+x2>0,求a的取值范围.解:∵该一元二次方程有两个实数根,∴△=(﹣2)2﹣4×1×a=4﹣4a≥0,解得:a≤1,由韦达定理可得x1x2=a,x1+x2=2,∵x1x2+x1+x2>0,∴a+2>0,解得:a>﹣2,∴﹣2<a≤1.27.(2018•宜宾)我市经济技术开发区某智能手机有限公司接到生产300万部智能手机的订单,为了尽快交货,增开了一条生产线,实际每月生产能力比原计划提高了50%,结果比原计划提前5个月完成交货,求每月实际生产智能手机多少万部.解:设原计划每月生产智能手机x万部,则实际每月生产智能手机(1+50%)x万部,根据题意得:﹣=5,解得:x=20,经检验,x=20是原方程的解,且符合题意,∴(1+50%)x=30.答:每月实际生产智能手机30万部.28.(2018•泸州)某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?解:(1)设乙图书每本价格为x元,则甲图书每本价格是2.5x元,根据题意可得:﹣=24,解得:x=20,经检验得:x=20是原方程的根,则2.5x=50,答:乙图书每本价格为20元,则甲图书每本价格是50元;(2)设购买甲图书本数为x,则购买乙图书的本数为:2x+8,故50x+20(2x+8)≤1060,解得:x≤10,故2x+8≤28,答:该图书馆最多可以购买28本乙图书.29.(2018•绵阳)有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完.其中每辆大货车一次运货花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?解:(1)设1辆大货车和1辆小货车一次可以分别运货x吨和y吨,根据题意可得:,解得:,答:1辆大货车和1辆小货车一次可以分别运货4吨和1.5吨;(2)设货运公司拟安排大货车m辆,则安排小货车(10﹣m)辆,根据题意可得:4m+1.5(10﹣m)≥33,解得:m≥7.2,令m=8,大货车运费高于小货车,故用大货车少费用就小则安排方案有:大货车8辆,小货车1辆,30.(2018•内江)某商场计划购进A,B两种型号的手机,已知每部A型号手机的进价比每部B 型号手机进价多500元,每部A型号手机的售价是2500元,每部B型号手机的售价是00元.(1)若商场用50000元共购进A型号手机10部,B型号手机20部,求A、B两种型号的手机每部进价各是多少元?(2)为了满足市场需求,商场决定用不超过7.5万元采购A、B两种型号的手机共40部,且A 型号手机的数量不少于B型号手机数量的2倍.①该商场有哪几种进货方式?②该商场选择哪种进货方式,获得的利润最大?解:(1)设A、B两种型号的手机每部进价各是x元、y元,根据题意得:,解得:,答:A、B两种型号的手机每部进价各是2000元、1500元;(2)①设A种型号的手机购进a部,则B种型号的手机购进(40﹣a)部,根据题意得:,解得:≤a≤30,∵a为解集内的正整数,∴a=27,28,29,30,∴有4种购机方案:方案一:A种型号的手机购进27部,则B种型号的手机购进13部;方案二:A种型号的手机购进28部,则B种型号的手机购进12部;方案三:A种型号的手机购进29部,则B种型号的手机购进11部;方案四:A种型号的手机购进30部,则B种型号的手机购进10部;②设A种型号的手机购进a部时,获得的利润为w元.根据题意,得w=500a+600(40﹣a)=﹣100a+24000,∵﹣10<0,∴w随a的增大而减小,∴当a=27时,能获得最大利润.此时w=﹣100×27+24000=300(元).因此,购进A种型号的手机27部,购进B种型号的手机13部时,获利最大.答:购进A种型号的手机27部,购进B种型号的手机13部时获利最大.31.(2018•乐山)已知关于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0).(1)求证:无论m为任何非零实数,此方程总有两个实数根;(2)若抛物线y=mx2+(1﹣5m)x﹣5=0与x轴交于A(x1,0)、B(x2,0)两点,且|x1﹣x2|=6,求m的值;(3)若m>0,点P(a,b)与Q(a+n,b)在(2)中的抛物线上(点P、Q不重合),求代数式4a2﹣n2+8n的值.(1)证明:由题意可得:△=(1﹣5m)2﹣4m×(﹣5)=1+25m2﹣10m+20m=25m2+10m+1=(5m+1)2≥0,故无论m为任何非零实数,此方程总有两个实数根;(2)解:mx2+(1﹣5m)x﹣5=0,解得:x1=﹣,x2=5,由|x1﹣x2|=6,得|﹣﹣5|=6,解得:m=1或m=﹣;(3)解:由(2)得,当m>0时,m=1,此时抛物线为y=x2﹣4x﹣5,其对称轴为:x=2,由题已知,P,Q关于x=2对称,∴=2,即2a=4﹣n,∴4a2﹣n2+8n=(4﹣n)2﹣n2+8n=16.32.(2018•南充)已知关于x的一元二次方程x2﹣(2m﹣2)x+(m2﹣2m)=0.(1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为x1,x2,且x12+x22=10,求m的值.解:(1)由题意可知:△=(2m﹣2)2﹣4(m2﹣2m)=4>0,∴方程有两个不相等的实数根.(2)∵x1+x2=2m﹣2,x1x2=m2﹣2m,∴+=(x1+x2)2﹣2x1x2=10,∴(2m﹣2)2﹣2(m2﹣2m)=10,∴m2﹣2m﹣3=0,∴m=﹣1或m=333.(2018•广安)某车行去年A型车的销售总额为6万元,今年每辆车的售价比去年减少400元.若卖出的数量相同,销售总额将比去年减少20%.(1)求今年A型车每辆车的售价.(2)该车行计划新进一批A型车和B型车共45辆,已知A、B型车的进货价格分别是1100元、1400元,今年B型车的销售价格是2000元,要求B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获得最大利润,最大利润是多少?解:(1)设今年A型车每辆售价为x元,则去年每辆售价为(x+400)元,根据题意得:=,解得:x=1600,经检验,x=1600是原分式方程的解,∴今年A型车每辆车售价为1600元.(2)设今年新进A型车a辆,销售利润为y元,则新进B型车(45﹣a)辆,根据题意得:y=(1600﹣1100)a+(2000﹣1400)(45﹣a)=﹣100a+27000.∵B型车的进货数量不超过A型车数量的两倍,∴45﹣a≤2a,解得:a≥15.∵﹣100<0,∴y随a的增大而减小,∴当a=15时,y取最大值,最大值=﹣100×15+27000=25500,此时45﹣a=30.答:购进15辆A型车、30辆B型车时销售利润最大,最大利润是25500元.34.(2018•资阳)为了美化市容市貌,政府决定将城区旁边一块162亩的荒地改建为湿地公园,规划公园分为绿化区和休闲区两部分.(1)若休闲区面积是绿化区面积的20%,求改建后的绿化区和休闲区各有多少亩?(2)经预算,绿化区的改建费用平均每亩35000元,休闲区的改建费用平均每亩25000元,政府计划投入资金不超过550万元,那么绿化区的面积最多可以达到多少亩?解:(1)设改建后的绿化区面积为x亩.由题意:x+20%•x=162,解得x=135,162﹣135=27,答:改建后的绿化区面积为135亩和休闲区面积有27亩.(2)设绿化区的面积为m亩.由题意:35000m+25000(162﹣m)≤5500000,解得m≤145,答:绿化区的面积最多可以达到145亩.35.(2018•自贡)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707﹣1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:x=log a N.比如指数式24=16可以转化为4=log6,对数式2=log525可以转化为52=25.我们根据对数的定义可得到对数的一个性质:log a(M•N)=log a M+log a N(a>0,a≠1,M>0,N >0);理由如下:设log a M=m,log a N=n,则M=a m,N=a n∴M•N=a m•a n=a m+n,由对数的定义得m+n=log a(M•N)又∵m+n=log a M+log a N∴log a(M•N)=log a M+log a N解决以下问题:(1)将指数43=64转化为对数式3=log464;(2)证明log a=log a M﹣log a N(a>0,a≠1,M>0,N>0)(3)拓展运用:计算log32+log36﹣log34=1.解:(1)由题意可得,指数式43=64写成对数式为:3=log464,故答案为:3=log464;(2)设log a M=m ,log a N=n ,则M=a m ,N=a n ,∴==a m ﹣n ,由对数的定义得m ﹣n=log a ,又∵m ﹣n=log a M ﹣log a N ,∴log a =log a M ﹣log a N (a >0,a ≠1,M >0,N >0);(3)log 32+log 36﹣log 34,=log 3(2×6÷4),=log 33,=1,故答案为:1.36.(2018•南充)某销售商准备在南充采购一批丝绸,经调查,用10000元采购A 型丝绸的件数与用8000元采购B 型丝绸的件数相等,一件A 型丝绸进价比一件B 型丝绸进价多100元. (1)求一件A 型、B 型丝绸的进价分别为多少元?(2)若销售商购进A 型、B 型丝绸共50件,其中A 型的件数不大于B 型的件数,且不少于16件,设购进A 型丝绸m 件.①求m 的取值范围.②已知A 型的售价是800元/件,销售成本为2n 元/件;B 型的售价为600元/件,销售成本为n 元/件.如果50≤n ≤150,求销售这批丝绸的最大利润w (元)与n (元)的函数关系式(每件销售利润=售价﹣进价﹣销售成本).解:(1)设B 型丝绸的进价为x 元,则A 型丝绸的进价为(x +100)元根据题意得:解得400=x经检验,400=x 为原方程的解 500100=+x答:一件A 型、B 型丝绸的进价分别为500元,400元.(2)①根据题意得:∴m 的取值范围为:16≤m ≤25②设销售这批丝绸的利润为y根据题意得:y=(800﹣500﹣2n )m +(600﹣400﹣n )•(50﹣m )=(100﹣n)m+10000﹣50n∵50≤n≤150∴(Ⅰ)当50≤n<100时,100﹣n>0m=25时,销售这批丝绸的最大利润w=25(100﹣n)+10000﹣50n=﹣75n+12500(Ⅱ)当n=100时,100﹣n=0,销售这批丝绸的最大利润w=5000(Ⅲ)当100<n≤150时,100﹣n<0当m=16时,销售这批丝绸的最大利润w=﹣66n+11600。
【真题】四川省德阳市2018年中考数学试题(含解析)
【答案】德阳市2018年初中毕业生学业考试与高中阶段学校招生考试第I卷(选择题,共36分)一、选择题(本大题共12个小题,每小题3分,共36分)1.如果把收入100元记作+100元,那么支出80元记作十20 元 及+100 元 ^80 元 IX~80 元解析:考察实数的概念,易选02丨下列计算或运算中,正确的是丄06^02^0^及(^2)3^(口一9 IX ^02~62解析:考查幂运算与整式乘法,易选匸选项丄06 ^02 ^04选项 5:考查了立方:(七2)3^-8。
6选项0考查了平方差公式:所以卜一3乂3十…选项从考查了完全平方差公式:3|如图,直线…|6,V是截线且交于点儿若21 = 60。
,22= 100。
,则乙4二^^400 5.50。
^6000.70。
解析:考查三线八角,利用平行转移角,易选2^幺 1=23=60。
,之2二之4=100。
7^4+25=180。
,人 25=80。
(第3题图)4卜列计算或运算中,正确的是^ 8 ―^8 二2^6715-2^= 3745 IX-3^= 7^解析:考查二次根式的加减乘除与化简,易选5选项丄2^^二2^^二々X 士二选项 5:^8-^8^ 3^2-272=72选项 06^15^273 = ^^=3752^3选项从~3^35^把实数1 12X10^3用小数表示为10.0612 5.6120 0.0.00612 612000解析:考查科学计数法,易选匸6^下列说法正确的是儿“明天降雨的概率为50^”,意味着明天一定有半天都在降雨凡了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查〕方式 匕掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是必然事件IX —组数据的方差越大,则这组数据的波动也越大解析:考查方差、事件、概率统计,易选01.受央视《朗读者》节目的启发的影响,某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班学生平均每天的阅读事件,统计结果如下表所示,则在本次调查中,全班学生 平均每天阅读时间的中位数和众数分别是每天阅读时间(小吋〉0.511.52人数819103克 2,1召.1,1.5匕 1,2解析:考查中位数和众数,易选8丨如图是一个几何体的三视图,根据图中数据计算这个几何体 的表面积是丄 16冗 127110^IX 4^解析:考査三视图与圆锥计算.根据左视图可知,底面圆半径为2,为侧面扇形半径为6,因此侧面扇形面积为1/7^1x 2x 24x 6=12;^因此,表面积为:4冗十12冗 二16:,易选丄9丨已知圆内接正三角形的面积为巧,则该圆的内接正六边形的边心距是克2 凡1 匕6 0.4解析:如图.设的边长为由正三角形的面积公式得IX 1’ 1俯视阁(第8题阁)因此底面圆面积为4疋;又因由120。
2018年四川省德阳市中考数学试卷
2018年四川省德阳市中考数学试卷一、选择题(本大题共12个小题.每小题3分.共36分)1.(3分)如果把收入100元记作+100元.那么支出80元记作()A.+20元B.+100元C.+80元D.﹣80元2.(3分)下列计算或运算中.正确的是()A.a6÷a2=a3B.(﹣2a2)3=﹣8a3C.(a﹣3)(3+a)=a2﹣9D.(a﹣b)2=a2﹣b23.(3分)如图.直线a∥b.c.d是截线且交于点A.若∠1=60°.∠2=100°.则∠A=()A.40°B.50°C.60°D.70°4.(3分)下列计算或运算中.正确的是()A.2=B.﹣=C.6÷2=3D.﹣3= 5.(3分)把实数6.12×10﹣3用小数表示为()A.0.0612B.6120C.0.00612D.6120006.(3分)下列说法正确的是()A.“明天降雨的概率为50%”.意味着明天一定有半天都在降雨B.了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查)方式C.掷一枚质地均匀的骰子.骰子停止转动后.6点朝上是必然事件D.一组数据的方差越大.则这组数据的波动也越大7.(3分)受央视《朗读者》节目的启发的影响.某校七年级2班近期准备组织一次朗诵活动.语文老师调查了全班学生平均每天的阅读时间.统计结果如下表所示.则在本次调查中.全班学生平均每天阅读时间的中位数和众数分别是()0.51 1.52每天阅读时间(小时)人数89103A.2.1B.1.1.5C.1.2D.1.18.(3分)如图是一个几何体的三视图.根据图中数据计算这个几何体的表面积是()A.16πB.12πC.10πD.4π9.(3分)已知圆内接正三角形的面积为.则该圆的内接正六边形的边心距是()A.2B.1C .D .10.(3分)如图.将边长为的正方形绕点B逆时针旋转30°.那么图中阴影部分的面积为()A.3B .C.3﹣D.3﹣11.(3分)如果关于x的不等式组的整数解仅有x=2、x=3.那么适合这个不等式组的整数a、b组成的有序数对(a.b)共有()A.3个B.4个C.5个D.6个12.(3分)如图.四边形AOEF是平行四边形.点B为OE的中点.延长FO至点C.使FO=3OC.连接AB、AC、BC.则在△ABC中S△ABO :S△AOC:S△BOC=()A.6:2:1B.3:2:1C.6:3:2D.4:3:2二、填空题(每小题3分.共15分)13.(3分)分解因式:2xy2+4xy+2x= .14.(3分)已知一组数据10.15.10.x.18.20的平均数为15.则这组数据的方差为.15.(3分)如下表.从左到右在每个小格子中都填入一个整数.使得其中任意三个相邻格子中所填整数之和都相等.则第2018个格子的数为.3a b c﹣12……16.(3分)如图.点D为△ABC的AB边上的中点.点E为AD的中点.△ADC为正三角形.给出下列结论.①CB=2CE.②tan∠B=.③∠ECD=∠DCB.④若AC=2.点P是AB上一动点.点P到AC、BC边的距离分别为d1.d2.则d12+d22的最小值是3.其中正确的结论是(填写正确结论的番号).17.(3分)已知函数y=使y=a成立的x的值恰好只有3个时.a 的值为.三、解答题(共69分.解答应写出文字说明、证明过程或推演步骤)18.(6分)计算:+()﹣3﹣(3)0﹣4cos30°+.19.(7分)如图.点E、F分别是矩形ABCD的边AD、AB上一点.若AE=DC=2ED.且EF⊥EC.(1)求证:点F为AB的中点;(2)延长EF与CB的延长线相交于点H.连结AH.已知ED=2.求AH的值.20.(11分)某网络约车公司近期推出了”520专享”服务计划.即要求公司员工做到“5星级服务、2分钟响应、0客户投诉”.为进一步提升服务品质.公司监管部门决定了解“单次营运里程”的分布情况.老王收集了本公司的5000个“单次营运里程”数据.这些里程数据均不超过25(公里).他从中随机抽取了200个数据作为一个样本.整理、统计结果如下表.并绘制了不完整的频数分布直方图(如图).组别单次营运里程“x”(公频数里)第一组0<x≤572第二组5<x≤10a第三组10<x≤1526第四组15<x≤2024第五组20<x≤2530根据统计表、图提供的信息.解答下面的问题:(1)①表中a= ;②样本中“单次营运里程”不超过15公里的频率为;③请把频数分布直方图补充完整;(2)请估计该公司这5000个“单次营运里程”超过20公里的次数;(3)为缓解城市交通压力.维护交通秩序.来自某市区的4名网约车司机(3男1女)成立了“交通秩序维护”志愿小分队.若从该小分队中任意抽取两名司机在某一路口维护交通秩序.请用列举法(画树状图或列表)求出恰好抽到“一男一女”的概率.21.(10分)如图.在平面直角坐标系中.直线y1=kx+b(k≠0)与双曲线y2=(a≠0)交于A、B两点.已知点A(m.2).点B(﹣1.﹣4).(1)求直线和双曲线的解析式;(2)把直线y1沿x轴负方向平移2个单位后得到直线y3.直线y3与双曲线y2交于D、E两点.当y2>y3时.求x的取值范围.22.(10分)为配合“一带一路”国家倡议.某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A、B两个工程公司承担建设.已知A工程公司单独建设完成此项工程需要180天.A工程公司单独施工45天后.B工程公司参与合作.两工程公司又共同施工54天后完成了此项工程.(1)求B工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制.物流园区管委会决定将此项工程划包成两部分.要求两工程公司同时开工.A工程公司建设其中一部分用了m天完成.B工程公司建设另一部分用了n天完成.其中m.n均为正整数.且m<46.n<92.求A、B 两个工程公司各施工建设了多少天?23.(11分)如图.在直角三角形ABC中.∠ACB=90°.点H是△ABC的内心.AH的延长线和三角形ABC的外接圆O相交于点D.连结DB.(1)求证:DH=DB;(2)过点D作BC的平行线交AC、AB的延长线分别于点E、F.已知CE=1.圆O 的直径为5.①求证:EF为圆O的切线;②求DF的长.24.(14分)如图.在等腰直角三角形ABC中.∠BAC=90°.点A在x轴上.点B在y轴上.点C(3.1).二次函数y=x2+bx﹣的图象经过点C.(1)求二次函数的解析式.并把解析式化成y=a(x﹣h)2+k的形式;(2)把△ABC沿x轴正方向平移.当点B落在抛物线上时.求△ABC扫过区域的面积;(3)在抛物线上是否存在异于点C的点P.使△ABP是以AB为直角边的等腰直角三角形?如果存在.请求出所有符合条件的点P的坐标;如果不存在.请说明理由.2018年四川省德阳市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题.每小题3分.共36分)1.(3分)如果把收入100元记作+100元.那么支出80元记作()A.+20元B.+100元C.+80元D.﹣80元【分析】根据题意得出:收入记作为正.支出记作为负.表示出来即可.【解答】解:如果收入100元记作+100元.那么支出80元记作﹣80元.故选:D.【点评】本题考查了正数和负数.能用正数和负数表示题目中的数是解此题的关键.2.(3分)下列计算或运算中.正确的是()A.a6÷a2=a3B.(﹣2a2)3=﹣8a3C.(a﹣3)(3+a)=a2﹣9D.(a﹣b)2=a2﹣b2【分析】根据同底数幂的除法、积的乘方与幂的乘方、平方差公式、完全平方公式逐一判断可得.【解答】解:A、a6÷a2=a4.此选项错误;B、(﹣2a2)3=﹣8a6.此选项错误;C、(a﹣3)(3+a)=a2﹣9.此选项正确;D、(a﹣b)2=a2﹣2ab+b2.此选项错误;故选:C.【点评】本题主要考查整式的混合运算.解题的关键是掌握同底数幂的除法、积的乘方与幂的乘方、平方差公式、完全平方公式.3.(3分)如图.直线a∥b.c.d是截线且交于点A.若∠1=60°.∠2=100°.则∠A=()A.40°B.50°C.60°D.70°【分析】依据∠2是△ABC的外角.即可得到∠A=∠2﹣∠1=40°.也可以利用平行线的性质以及三角形内角和定理.即可得到∠A的度数.【解答】解法一:如图.∵∠2是△ABC的外角.∴∠A=∠2﹣∠1=100°﹣60°=40°.故选:A.解法二:如图.∵a∥b.∴∠1=∠3=60°.∠2=∠4=100°.∴∠5=180°﹣∠4=80°.∴∠A=180°﹣∠3﹣∠5=180°﹣60°﹣80°=40°.故选:A.【点评】本题主要考查了三角形外角性质以及平行线的性质的运用.解题时注意:三角形的外角等于与它不相邻的两个内角的和.4.(3分)下列计算或运算中.正确的是()A.2=B.﹣=C.6÷2=3D.﹣3=【分析】根据二次根性质和运算法则逐一判断即可得.【解答】解:A、2=2×=.此选项错误;B、﹣=3﹣2=.此选项正确;C、6÷2=3.此选项错误;D、﹣3=﹣.此选项错误;故选:B.【点评】本题主要考查二次根式的混合运算.解题的关键是掌握二次根式的混合运算顺序和运算法则及二次根式的性质.5.(3分)把实数6.12×10﹣3用小数表示为()A.0.0612B.6120C.0.00612D.612000【分析】绝对值小于1的正数也可以利用科学记数法表示.一般形式为a×10﹣n.与较大数的科学记数法不同的是其所使用的是负指数幂.指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:6.12×10﹣3=0.00612.故选:C.【点评】本题考查用科学记数法表示较小的数.一般形式为a×10﹣n.其中1≤|a|<10.n为由原数左边起第一个不为零的数字前面的0的个数所决定.6.(3分)下列说法正确的是()A.“明天降雨的概率为50%”.意味着明天一定有半天都在降雨B.了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查)方式C.掷一枚质地均匀的骰子.骰子停止转动后.6点朝上是必然事件D.一组数据的方差越大.则这组数据的波动也越大【分析】根据概率的意义.事件发生可能性的大小.可得答案.【解答】解:A、明天降雨的概率是50%表示明天有可能降雨.此选项错误;B、了解全国快递包裹产生的包装垃圾数量适合采用抽样调查方式.此选项错误;C、掷一枚质地均匀的骰子.骰子停止转动后.6点朝上是随机事件.此选项错误;D、一组数据的方差越大.则这组数据的波动也越大.此选项正确;故选:D.【点评】本题考查了概率的意义、随机事件.利用概率的意义.事件发生可能性的大小是解题关键.7.(3分)受央视《朗读者》节目的启发的影响.某校七年级2班近期准备组织一次朗诵活动.语文老师调查了全班学生平均每天的阅读时间.统计结果如下表所示.则在本次调查中.全班学生平均每天阅读时间的中位数和众数分别是()0.51 1.52每天阅读时间(小时)人数89103A.2.1B.1.1.5C.1.2D.1.1【分析】根据表格中的数据可知七年级2班有30人.从而可以得到全班学生平均每天阅读时间的中位数和众数.本题得以解决.【解答】解:由表格可得.全班学生平均每天阅读时间的中位数和众数分别是1、1.5.故选:B.【点评】本题考查众数、加权平均数、中位数.解答本题的关键是明确题意.会求一组数据的众数和中位数.8.(3分)如图是一个几何体的三视图.根据图中数据计算这个几何体的表面积是()A.16πB.12πC.10πD.4π【分析】由主视图和左视图确定是柱体.锥体还是球体.再由俯视图确定具体形状.确定圆锥的母线长和底面半径.从而确定其表面积.【解答】解:由主视图和左视图为三角形判断出是锥体.由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6.底面半径为2.故表面积=πrl+πr2=π×2×6+π×22=16π.故选:A.【点评】考查学生对三视图掌握程度和灵活运用能力.关键是由主视图和左视图确定是柱体.锥体还是球体.9.(3分)已知圆内接正三角形的面积为.则该圆的内接正六边形的边心距是()A.2B.1C.D.【分析】根据题意可以求得半径.进而解答即可.【解答】解:因为圆内接正三角形的面积为.所以圆的半径为.所以该圆的内接正六边形的边心距×sin60°=.故选:B.【点评】本题考查正多边形和圆.解答本题的关键是明确题意.求出相应的图形的边心距.10.(3分)如图.将边长为的正方形绕点B逆时针旋转30°.那么图中阴影部分的面积为()A.3B.C.3﹣D.3﹣【分析】连接BM.根据旋转的性质和四边形的性质.证明△ABM≌△C′BM.得到∠2=∠3=30°.利用三角函数和三角形面积公式求出△ABM的面积.再利用阴影部分面积=正方形面积﹣2△ABM的面积即可得到答案.【解答】解:连接BM.在△ABM和△C′BM中..∴△ABM≌△C′BM.∠2=∠3==30°.在△ABM中.AM=×tan30°=1.S△ABM==.正方形的面积为:=3.阴影部分的面积为:3﹣2×=3﹣.故选:C.【点评】本题考查旋转的性质和正方形的性质.利用旋转的性质和正方形的性质证明两三角形全等是解决本题的关键.11.(3分)如果关于x的不等式组的整数解仅有x=2、x=3.那么适合这个不等式组的整数a、b组成的有序数对(a.b)共有()A.3个B.4个C.5个D.6个【分析】求出不等式组的解集.根据已知求出1≤2、3<4.求出2<a≤4、9≤b<12.即可得出答案.【解答】解:解不等式2x﹣a≥0.得:x≥.解不等式3x﹣b≤0.得:x≤.∵不等式组的整数解仅有x=2、x=3.则1≤2、3<4.解得:2<a≤4、9≤b<12.则a=3时.b=9、10、11;当a=4时.b=9、10、11;所以适合这个不等式组的整数a、b组成的有序数对(a.b)共有6个.故选:D.【点评】本题考查了解一元一次不等式组.不等式组的整数解.有序实数对的应用.解此题的根据是求出a、b的值.12.(3分)如图.四边形AOEF是平行四边形.点B为OE的中点.延长FO至点C.使FO=3OC.连接AB、AC、BC.则在△ABC中S△ABO :S△AOC:S△BOC=()A.6:2:1B.3:2:1C.6:3:2D.4:3:2【分析】连接BF.设平行四边形AFEO的面积为4m.由FO:OC=3:1.BE=OB.AF∥OE可得S△OBF =S△AOB=m.S△OBC=m.S△AOC=.由此即可解决问题;【解答】解:连接BF.设平行四边形AFEO的面积为4m.∵FO:OC=3:1.BE=OB.AF∥OE∴S△OBF =S△AOB=m.S△OBC=m.S△AOC=.∴S△AOB :S△AOC:S△BOC=m::m=3:2:1故选:B.【点评】本题主要考查了平行四边形的性质.等高模型等知识.解题的关键是学会利用参数解决问题.属于中考常考题型.二、填空题(每小题3分.共15分)13.(3分)分解因式:2xy2+4xy+2x= 2x(y+1)2 .【分析】原式提取公因式.再利用完全平方公式分解即可.【解答】解:原式=2x(y2+2y+1)=2x(y+1)2.故答案为:2x(y+1)2【点评】此题考查了提公因式法与公式法的综合运用.熟练掌握因式分解的方法是解本题的关键.14.(3分)已知一组数据10.15.10.x.18.20的平均数为15.则这组数据的方差为.【分析】先根据平均数为15列出关于x的方程.解之求得x即可知完整的数据.再根据方差公式计算可得.【解答】解:∵数据10.15.10.x.18.20的平均数为15.∴=15.解得:x=17.则这组数据为10.15.10.17.18.20.∴这组数据的方差是:[2×(10﹣15)2+(15﹣15)2+(17﹣15)2+(18﹣15)2+(20﹣15)2]=.故答案为:.【点评】本题主要考查算术平均数、方差.解题的关键是熟练掌握算术平均数的定义与方差的计算公式.15.(3分)如下表.从左到右在每个小格子中都填入一个整数.使得其中任意三个相邻格子中所填整数之和都相等.则第2018个格子的数为﹣1 .3a b c﹣12……【分析】根据三个相邻格子的整数的和相等列式求出a、c的值.再根据第9个数是3可得b=2.然后找出格子中的数每3个为一个循环组依次循环.再用2018除以3.根据余数的情况确定与第几个数相同即可得解.【解答】解:∵任意三个相邻格子中所填整数之和都相等.∴a+b+c=b+c+(﹣1).3+(﹣1)+b=﹣1+b+c.∴a=﹣1.c=3.∴数据从左到右依次为3、﹣1、b、3、﹣1、b.∵第9个数与第3个数相同.即b=2.∴每3个数“3、﹣1、2”为一个循环组依次循环.∵2018÷3=672…2.∴第2018个格子中的整数与第2个格子中的数相同.为﹣1.故答案为:﹣1.【点评】此题考查数字的变化规律以及有理数的加法.仔细观察排列规律求出a、b、c的值.从而得到其规律是解题的关键.16.(3分)如图.点D为△ABC的AB边上的中点.点E为AD的中点.△ADC为正三角形.给出下列结论.①CB=2CE.②tan∠B=.③∠ECD=∠DCB.④若AC=2.点P是AB上一动点.点P到AC、BC边的距离分别为d1.d2.则d12+d22的最小值是3.其中正确的结论是①③④(填写正确结论的番号).【分析】由题意可得△BCE是含有30°的直角三角形.根据含有30°的直角三角形的性质可判断①②③.易证四边形PMCN是矩形.可得d12+d22=MN2=CP 2.根据垂线段最短.可得CP的值即可求d12+d22的最小值.即可判断④.【解答】解:∵D是AB中点∴AD=BD∵△ACD是等边三角形.E是AD中点∴AD=CD.∠ADC=60°=∠ACD.CE⊥AB.∠DCE=30°∴CD=BD∴∠B=∠DCB=30°.且∠DCE=30°.CE⊥AB∴∠ECD=∠DCB.BC=2CE.tan∠B=故①③正确.②错误∵∠DCB=30°.∠ACD=60°∴∠ACB=90°若AC=2.点P是AB上一动点.点P到AC、BC边的距离分别为d1.d2.∴四边形PMCN是矩形∴MN=CP∵d12+d22=MN2=CP2∴当CP为最小值.d12+d22的值最小∴根据垂线段最短.则当CP⊥AB时.d12+d22的值最小此时:∠C AB=60°.AC=2.CP⊥AB∴CP=∴d12+d22=MN2=CP2=3即d12+d22的最小值为3故④正确故答案为①③④【点评】本题考查了解直角三角形.等边三角形的性质和判定.利用垂线段最短求d 12+d22的最小值是本题的关键.17.(3分)已知函数y=使y=a成立的x的值恰好只有3个时.a 的值为 2 .【分析】首先在坐标系中画出已知函数y=的图象.利用数形结合的方法即可找到使y=a成立的x值恰好有3个的a值.【解答】解:函数y=的图象如图:根据图象知道当y=2时.对应成立的x值恰好有三个.∴a=2.故答案:2.【点评】此题主要考查了利用二次函数的图象解决交点问题.解题的关键是把解方程的问题转换为根据函数图象找交点的问题.三、解答题(共69分.解答应写出文字说明、证明过程或推演步骤)18.(6分)计算:+()﹣3﹣(3)0﹣4cos30°+.【分析】根据零指数幂、负整数指数幂、特殊角的三角函数值进行计算.【解答】解:原式=3+8﹣1﹣4×+2=10﹣2+2=10.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式.然后进行二次根式的乘除运算.再合并即可.在二次根式的混合运算中.如能结合题目特点.灵活运用二次根式的性质.选择恰当的解题途径.往往能事半功倍.19.(7分)如图.点E、F分别是矩形ABCD的边AD、AB上一点.若AE=DC=2ED.且EF⊥EC.(1)求证:点F为AB的中点;(2)延长EF与CB的延长线相交于点H.连结AH.已知ED=2.求AH的值.【分析】(1)根据全等三角形的判定.证得△AEF≌△DCE.再根据全等三角形的性质.证得ED=AF.进而得证;(2)根据全等三角形的判定方法.证明△AEF≌△BHF.进而求得HB=AB=AE=4.再利用勾股定理求出AH的值即可.【解答】(1)证明:∵EF⊥EC.∴∠CEF=90°.∴∠AEF+∠DEC=90°.∵四边形ABCD是矩形.∴∠AEF+∠AFE=90°.∠DEC+∠DCE=90°.∴∠AEF=∠DCE.∠AFE=∠DEC.∵AE=DC.∴△AEF≌△DCE.∴ED=AF.∵AE=DC=AB=2DE.∴AB=2AF.∴F为AB的中点;(2)解:由(1)知AF=FB.且AE∥BH.∴∠FBH=∠FAE=90°.∠AEF=∠FHB.∴△AEF≌△BHF.∴HB=AE.∵ED=2.且AE=2ED.∴AE=4.∴HB=AB=AE=4.∴AH2=AB2+BH2=16+16=32.∴AH=.【点评】本题主要考查矩形的性质.全等三角形的性质和判定.勾股定理的综合应用.解决此类问题的关键是能灵活运用相关的性质找出相等的线段.20.(11分)某网络约车公司近期推出了”520专享”服务计划.即要求公司员工做到“5星级服务、2分钟响应、0客户投诉”.为进一步提升服务品质.公司监管部门决定了解“单次营运里程”的分布情况.老王收集了本公司的5000个“单次营运里程”数据.这些里程数据均不超过25(公里).他从中随机抽取了200个数据作为一个样本.整理、统计结果如下表.并绘制了不完整的频数分布直方图(如图).频数组别单次营运里程“x”(公里)第一组0<x≤572第二组5<x≤10a第三组10<x≤1526第四组15<x≤2024第五组20<x≤2530根据统计表、图提供的信息.解答下面的问题:(1)①表中a= 48 ;②样本中“单次营运里程”不超过15公里的频率为0.73 ;③请把频数分布直方图补充完整;(2)请估计该公司这5000个“单次营运里程”超过20公里的次数;(3)为缓解城市交通压力.维护交通秩序.来自某市区的4名网约车司机(3男1女)成立了“交通秩序维护”志愿小分队.若从该小分队中任意抽取两名司机在某一路口维护交通秩序.请用列举法(画树状图或列表)求出恰好抽到“一男一女”的概率.【分析】(1)①由频数分布直方图可直接得出a的值;②用第一、二、三组的频数和除以总数量可得;③根据分布表中数据即可得;(2)用总数量乘以样本中“单次营运里程”超过20公里的次数所占比例即可得;(3)画树状图展示所有12种等可能的结果数.找出抽到一男一女的结果数.然后根据概率公式求解.【解答】解:(1)①由条形图知a=48;②样本中“单次营运里程”不超过15公里的频率为=0.73;③补全图形如下:故答案为:①48;②0.73;(2)估计该公司这5000个“单次营运里程”超过20公里的次数为5000×=750次;(3)画树状图为:共有12种等可能的结果数.其中恰好抽到一男一女的结果数为6.∴恰好抽到“一男一女”的概率为=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n.再从中选出符合事件A或B的结果数目m.然后利用概率公式求事件A或B的概率.也考查了统计图和统计表.要熟练从统计图表中得出解题所需数据.21.(10分)如图.在平面直角坐标系中.直线y1=kx+b(k≠0)与双曲线y2=(a≠0)交于A、B两点.已知点A(m.2).点B(﹣1.﹣4).(1)求直线和双曲线的解析式;(2)把直线y1沿x轴负方向平移2个单位后得到直线y3.直线y3与双曲线y2交于D、E两点.当y2>y3时.求x的取值范围.【分析】(1)把点B 代入双曲线求出a的值.即可得到双曲线的解析式;把点A 代入双曲线求出m的值.确定A点坐标.再利用待定系数法求出直线的解析式.即可解答;(2)先求出y3的解析式.再解方程组求出点D点E的坐标.即可解答.【解答】解:(1)∵点B(﹣1.﹣4)在双曲线y2=(a≠0)上.∴a=(﹣1)×(﹣4)=4.∴双曲线的解析式为:.∵点A(m.2)在双曲线上.∴2m=4.∴m=2.∴点A的坐标为:(2.2)∵点A(m.2).点B(﹣1.﹣4)在直线y1=kx+b(k≠0)上.∴解得:∴直线的解析式为:y1=2x﹣2.(2)∵把直线y1沿x轴负方向平移2个单位后得到直线y3.∴y2=2(x+2)﹣2=2x+2.解方程组得:或.∴点D(1.4).点E(﹣2.﹣2).∴由函数图象可得:当y2>y3时.x的取值范围为:x<﹣2或0<x<1.【点评】本题考查了反比例函数与一次函数的交点.解决本题的关键是求出直线和双曲线的解析式.22.(10分)为配合“一带一路”国家倡议.某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A、B两个工程公司承担建设.已知A工程公司单独建设完成此项工程需要180天.A工程公司单独施工45天后.B工程公司参与合作.两工程公司又共同施工54天后完成了此项工程.(1)求B工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制.物流园区管委会决定将此项工程划包成两部分.要求两工程公司同时开工.A工程公司建设其中一部分用了m天完成.B工程公司建设另一部分用了n天完成.其中m.n均为正整数.且m<46.n<92.求A、B 两个工程公司各施工建设了多少天?【分析】(1)设B工程公司单独完成需要x天.根据题意列出关于x的分式方程.求出分式方程的解得到x的值.经检验即可得到结果;(2)根据题意列出关于m与n的方程.由m与n的范围.确定出正整数m与n的值.即可得到结果.【解答】解:(1)设B工程公司单独完成需要x天.根据题意得:45×+54(+)=1.解得:x=120.经检验x=120是分式方程的解.且符合题意.答:B工程公司单独完成需要120天;(2)根据题意得:m×+n×=1.整理得:n=120﹣m.∵m<46.n<92.∴120﹣m<92.解得42<m<46.∵m为正整数.∴m=43.44.45.又∵120﹣m为正整数.∴m=45.n=90.答:A、B两个工程公司各施工建设了45天和90天.【点评】此题考查了分式方程的应用.以及二元一次方程的应用.找出题中的等量关系是解本题的关键.23.(11分)如图.在直角三角形ABC中.∠ACB=90°.点H是△ABC的内心.AH的延长线和三角形ABC的外接圆O相交于点D.连结DB.(1)求证:DH=DB;(2)过点D作BC的平行线交AC、AB的延长线分别于点E、F.已知CE=1.圆O 的直径为5.①求证:EF为圆O的切线;②求DF的长.【分析】(1)先判断出∠DAC=∠DAB.∠ABH=∠CBH.进而判断出∠DHB=∠DBH.即可得出结论;(2))①先判断出OD∥AC.进而判断出OD⊥EF.即可得出结论;②先判断出△CDE≌△BDG.得出GB=CE=1.再判断出△DBG∽△ABD.求出DB2=5.即DB=.DG=2.进而求出AE=AG=4.最后判断出△OFD∽△AFE即可得出结论.【解答】解:(1)证明:连接HB.∵点H是△ABC的内心.∴∠DAC=∠DAB.∠ABH=∠CBH.∵∠DBC=∠DAC.∴∠DHB=∠DAB+∠ABH=∠DAC+∠CBH.∵∠DBH=∠DBC+∠CBH.∴∠DHB=∠DBH.∴DH=DB;(2)①连接OD.∵∠DOB=2∠DAB=∠BAC∴OD∥AC.∵AC⊥BC.BC∥EF.∴AC⊥EF.∴OD⊥EF.∵点D在⊙O上.∴EF是⊙O的切线;②过点D作DG⊥AB于G.∵∠EAD=∠DAB.∴DE=DG.∵DC=DB.∠CED=∠DGB=90°.∴△CDE≌△BDG.∴GB=CE=1.在Rt△ADB中.DG⊥AB.∴∠DAB=∠BDG.∵∠DBG=∠ABD.∴△DBG∽△ABD.∴.∴DB2=AB•BG=5×1=5.∴DB=.DG=2.∴ED=2.∵H是内心.∴AE=AG=4.∵DO∥AE.∴△OFD∽△AFE.∴.∴.∴DF=.【点评】此题是圆的综合题.主要考查了三角形内心.圆的有关性质.相似三角形的判定和性质.切线的判定.平行线的性质和判定.求出DB是解本题的关键.24.(14分)如图.在等腰直角三角形ABC中.∠BAC=90°.点A在x轴上.点B在y轴上.点C(3.1).二次函数y=x2+bx﹣的图象经过点C.(1)求二次函数的解析式.并把解析式化成y=a(x﹣h)2+k的形式;(2)把△ABC沿x轴正方向平移.当点B落在抛物线上时.求△ABC扫过区域的面积;(3)在抛物线上是否存在异于点C的点P.使△ABP是以AB为直角边的等腰直角三角形?如果存在.请求出所有符合条件的点P的坐标;如果不存在.请说明理由.【分析】(1)将点C的坐标代入抛物线的解析式可求得b的值.从而可得到抛物线的解析式.然后利用配方法可将抛物线的解析式变形为y=a(x﹣h)2+k的形式;(2)作CK⊥x轴.垂足为K.首先证明△BAO≌△ACK.从而可得到OA=CK.OB=AK.于是可得到点A、B的坐标.然后依据勾股定理求得AB的长.然后求得点D的坐标.从而可求得三角形平移的距离.最后.依据△ABC扫过区域的面积=S四边形ABDE +S△DEH求解即可;(3)当∠ABP=90°时.过点P作PG⊥y轴.垂足为G.先证明△BPG≌△ABO.从而可得到点P的坐标.然后再判断点P是否在抛物线的解析式即可.当∠PAB=90°.过点P作PF⊥x轴.垂足为F.同理可得到点P的坐标.然后再判断点P是否在抛物线的解析式即可.【解答】解:(1)∵点C(3.1)在二次函数的图象上.∴x2+bx﹣=1.解得:b=﹣.∴二次函数的解析式为y=x2﹣x﹣y=x2﹣x﹣=(x2﹣x+﹣)﹣=(x﹣)2﹣(2)作CK⊥x轴.垂足为K.∵△ABC为等腰直角三角形.∴AB=AC.又∵∠BAC=90°.∴∠BAO+∠CAK=90°.又∵∠CAK+∠ACK=90°.∴∠BAO=∠ACK.在△BAO和△ACK中.∠BOA=∠AKC.∠BAO=∠ACK.AB=AC.∴△BAO≌△ACK.∴OA=CK=1.OB=AK=2.∴A(1.0).B(0.2).∴当点B平移到点D时.D(m.2).则2=m2﹣m﹣.解得m=﹣3(舍去)或m=.∴AB==.∴△ABC扫过区域的面积=S四边形ABDE +S△DEH=×2+××=9.5(3)当∠ABP=90°时.过点P作PG⊥y轴.垂足为G.∵△APB为等腰直角三角形.∴PB=AB.∠PBA=90°.∴∠PBG+∠BAO=90°.又∵∠PBG+∠BPG=90°.∴∠BAO=∠BPG.在△BPG和△ABO中.∠BOA=∠PGB.∠BAO=∠BPG.AB=PB.∴△BPG≌△ABO.∴PG=OB=2.AO=BG=1.∴P(﹣2.1).当x=﹣2时.y≠1.∴点P(﹣2.1)不在抛物线上.当∠PAB=90°.过点P作PF⊥x轴.垂足为F.同理可知:△PAF≌△ABO.∴FP=OA=1.AF=OB=2.∴P(﹣1.﹣1).当x=﹣1时.y=﹣1.∴点P(﹣1.﹣1)在抛物线上.【点评】本题主要考查的是二次函数的综合应用.解答本题主要应用了待定系数法求二次函数的解析式、平移的性质、全等三角形的性质和判定.作辅助线构造全等三角形是解答本题的关键.。
2018年四川德阳市中考数学试卷(含解析)
2018年四川省德阳市初中毕业、升学考试数学(满分120分,考试时间120分钟)第Ⅰ卷一、选择题:本大题共12小题,每小题3分,共36分.不需写出解答过程,请把最后结果填在题后括号内.1.(2018四川省德阳市,题号1,分值:3)如果把收入记作+100元,那么支出80元记作()A.+20元B.+100元C.+80元D.-80元【答案】D.【解析】由题意可知收入记作“+”,那么支出记作“-”,则支出80元记作-80元.【知识点】实数2.(2018四川省德阳市,题号2,分值:3)下列计算或运算,正确的是()A.a6÷a2=a3B.(-2a2)3=-8a3C.(a-3)(3+a)=a2-9D.(a-b)2=a2-b2【答案】C.【解析】因为a6÷a2=a6-2=a4,所以A错误;因为(-2a2)3=-8a2×3=-8a6,所以B错误;因为(a-3)(3+a)=a2-9,所以C正确;因为(a-b)2=a2-2ab+b2,所以D错误.【知识点】整式的运算3.(2018四川省德阳市,题号3,分值:3)如图,直线a∥b,c,d是截线且交于带你A,若∠1=60°,∠2=100°,则∠A=()A.40°B.50°C.60°D.70°【答案】A.【解析】∵a∥b,∴∠1=∠3=60°,∠2=∠4=100°.∵∠4+∠5=180°,∴∠5=80°.∴∠A=180°-∠3-∠5=40°.【知识点】平行线的性质4.(2018四川省德阳市,题号4,分值:3)下列计算或运算,正确的是()A.2√a2=√a B.√18−√8=√2 C.6√15÷2√3=3√45 D.-3√3=√27【答案】B.【解析】因为2√a2=√a√2=√2a,所以A错误;因为√18−√8=3√2−2√2=√2,所以B错误;因为6√15÷2√3=√152√3=3√5,所以C正确;因为-3√3=−√9×3=−√27,所以D错误.【知识点】二次根式的加减和化简 5.(2018四川省德阳市,题号5,分值:3)把实数6.12×10-3用小数表示为() A.0.0612 B.6120 C.0.00612 D.612000 【答案】C.【解析】6.12×10-3=0.00612. 【知识点】科学记数法 6.(2018四川省德阳市,题号6,分值:3)下列说法正确的是() A.“明天将于的概率为50%”,意味着明天一定有半天都在降雨B.了解全国快递包裹生产的包装垃圾数量适合采用全面调查(普查)方式C.掷一枚质地均匀的骰子,骰子停止转动,6点朝上是必然事件D.一组数据的方差越大,则这组数据的波动越大 【答案】D.【解析】因为“明天将于的概率为50%”,说明明天可能下雨也可能不下雨,并不意味着明天一定有半天都在降雨,所以A 错误;由于全国快递包裹生产的包装垃圾数量很大,可采用抽样调查方式,所以B 错误; 掷一枚质地均匀的骰子,骰子停止转动,六个面均可能朝上朝上,所以C 错误; 一组数据的方差越大,则这组数据越不稳定,则这组数据的波动越大,所以D 正确. 【知识点】事件,方差 7.(2018四川省德阳市,题号7,分值:3)受央视《朗读者》节目的启发的影响,某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班平均每天的阅读时间,统计结果如下表所示,则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()A.2,1B.1,1.5C.1,2D.1,1 【答案】D.【解析】将这组数据从小到大排列0.5小时的有8人,1小时的有19人,1.5小时的有10人,2小时的有3人,可知中位数为第20和第21个数的平均数,第20个数为1,第21个数为1,所以中位数为1,则出现最多的是19人的1小时,则众数为1,所以中位数为1,众数为1. 【知识点】中位数,众数 8.(2018四川省德阳市,题号8,分值:3)如图是一个几何体的三视图,根据图中数据计算这个几何体的表面积是()A.16πB.12πC.10πD.4π【答案】A.【解析】由左视图可知底面半径为2,则底面圆的面积为4π,再根据左视图可知扇形半径为6,则扇形的面积为12rl=12×6×2π×2=12π,所以,表面积为4π+12π=16π.【知识点】几何体的三视图,扇形的面积9.(2018四川省德阳市,题号9,分值:3)已知圆内接正三角形的面积为√3,则该圆的内接正六边形的边心距是()A.2B.1C.√3D.√32第9题答图【答案】B.【解析】如图,设△ABC 的边长为a ,由正三角形的面积公式得S △ABC =√34a 2, ∴=√34a 2=√3,解得a=2或-2(舍), ∴BC=2.∵∠BAC=60°,BO=CO , ∴∠BOC=120°, 则∠BCO=30°. ∵OH ⊥BC , ∴BH=12BC=1,在Rt △BOH 中,BO=BH ÷cos30°=2√33, 所以圆的半径r=2√33.则OF=2√33. 如图,正六边形内接于圆,且半径为2√33,可知∠EOF=60°, 在△EOF 中,OE=OF ,OD ⊥EF , ∴∠EOD=30°.在Rt △DOE 中,OD=OF ·cos30°=2√33×√32=1. 所以边心距为1.【知识点】正多边形和圆10.(2018四川省德阳市,题号10,分值:3)如图,将边长为√3的正方形绕点B 逆时针旋转30°,那么图中阴影部分的面积为() A.3 B.√3 C.3-√3 D.3-√32【答案】C.【解析】由旋转可知∠1=∠4=30°, ∴∠2+∠3=60°.∵∠BAM=∠BC ′M=90°,且AB=BC ′, ∴∠2=∠3=30°.在Rt △ABM 中,AB=√3,∠2=30°, 则AM=tan30°×AB=1. ∴S △ABM =S △BMC ′=√32,∴S 阴影=S 正方形-(S △ABM + S △BMC ′)=3-√3.【知识点】正方形的性质,旋转的性质,特殊角的三角函数值11.(2018四川省德阳市,题号11,分值:3)如果关于x 的不等式组{2x −a ≥0,3x −b ≤0.的整数解仅有x=2,x=3,那么适合这个不等式组的整数a ,b 组成的有序数对(a ,b )共有() A.3个 B.4个 C.5个 D.6个 【答案】D.【解析】{2x −a ≥0,3x −b ≤0.解得a2≤x ≤b3,又∵整数解有x=2,x=3, ∴{1<a 2≤2,3≤b3<4. 解得{2<a ≤4,9≤b <12.又∵a ,b 为整数,∴a=3或4,b=9或10或11, ∴(a ,b )共有(3,9),(3,10),(3,11),(4,9),(4,10),(4,11),有6种. 【知识点】不等式组的整数解 12.(2018四川省德阳市,题号12,分值:3)如图,四边形AOEF 是平行四边形,点B 为OE 的中点,延长FO 至点C ,使FO=3OC ,连接AB ,AC ,BC ,则在△ABC 中,S △ABO :S △AOC :S △BOC ( ) A.6:2:1 B.3:2:1 C.6:3:2 D.4:3:2【答案】B.【解析】∵四边形AOEF是平行四边形,∴AF∥EO,∴∠AFM=∠BOM,∠FAM=∠MBO,∴△AFM∽△BOM,∴OMFM =BMAM=BOAF=12.设S△BOM=S,则S△AOM=2S.∵FO=3OC,OM=12FM,∴OM=OC,∴S△AOC=S△AOM=2S,S△BOC=S△BOM=S,∴S△ABO:S△AOC:S△BOC=3:2:1.【知识点】相似三角形的性质和判定,平行四边形的性质二、填空题:本大题共5小题,每小题3分,共15分.不需写出解答过程,请把最后结果填在题中横线上.13.(2018四川省德阳市,题号13,分值:3)分解因式:2xy2+4xy+2x=____.【答案】2x(y+1)2.【解析】2xy2+4xy+2x=2x(y2+2y+1)=2x(y+1)2.【知识点】因式分解14.(2018四川省德阳市,题号14,分值:3)已知乙组数据10,15,10,x,18,20的平均数为15,则这组数据的方差为____.【答案】443.【解析】解:10+15+10+x+18+206=15,∴x=17.则S2=16×[(10−15)2+(15−15)2+(10−15)2+(17−15)2+(18−15)2+(20−15)2],=16×(25+0+25+4+9+25),=443.【知识点】平均数,方差15.(2018四川省德阳市,题号15,分值:3)如下表,从左到右造每个格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子的数为____.【答案】-1.【解析】由题意可知3+a+b=a+b+c,可得c=3,同理可得a=-1,b=2.格子中的数每3个数字形成一个循环,易得2018÷3=672……2,得第2018个格子的数为-1.【知识点】探究规律16.(2018四川省德阳市,题号16,分值:3)如图,点D为△ABC的AB边上的中点,点E为AD的中点,△ADC,③∠ECD=∠DCB,④若AC=2,点P是AB上一动点,为正三角形,给出下列结论,①CB=2CE,②tan∠B=34点P到AC,BC边的距离分别为d1,d2,则d12+d22的最小值是3.其中正确的结论是____(填写正确结论的番号).【答案】①③④.【解析】①由题意得,AE=DE,AD=BD=CD.∵△ACD是正三角形,∴∠CDA=60°,CE⊥AD,∴∠B=∠DCB=30°.在Rt△BCE中,∠B=30°,CB=2CE.②∵∠B=30°,.∴tan∠B=√33③在正△ACD中,CE是△ACD的中线,∠ACD=30°,∴∠ECD=12∴∠ECD=∠DCB.④如图,PM=d1,PN=d2.在Rt△MPN中,d12+d22=MN2,∵∠ACB=∠CMP=∠CNP=90°,∴四边形MPNC为矩形,∴MN=CP.要使d12+d22最小,只需MN最小,即PC最小,当CP⊥AB时,即P与E重合时,d12+d22最小,,在Rt△ACE中,cos∠ACE=CEAC∵AC=2,∠ACE=30°,∴CE=AC·cos30°=√3,则CE2=3,∴d12+d22的最小值为3.所以正确的有①③④.【知识点】等边三角形的性质,特殊角的三角函数,矩形的判定17.(2018四川省德阳市,题号17,分值:3)已知函数y={(x −2)2−2,x ≤4,(x −6)2−2,x >4.使y=a 成立的x 的值恰好只有3个时,a 的值为____. 【答案】2. 【解析】画出函数解析式的图像,要使y=a 成立的x 的值恰好只有3个,即函数图像与y=2这条直线有3个交点,即a=2.第17题答图【知识点】二次函数的应用三、解答题(本大题共9小题,满分69分,解答应写出文字说明、证明过程或演算步骤) 18.(2018四川省德阳市,题号18,分值:6)计算:√(−3)2+(12)−3−(3√2)0−4cos30°√3.【思路分析】先根据√(−3)2=3,(12)−3=8,(3√2)0=1,cos30°=√32,再代入计算即可.【解题过程】原式=3+8-1-4×√32+2√3,………………………………………………….…..2分=3+8-1-2√3+2√3,………………….……………………………………………………….…4分 =10……………………………………………………………………………………………….6分 【知识点】实数的运算 19.(2018四川省德阳市,题号19,分值:7)如图点E ,F 分别是矩形ABCD 的边AD ,AB 上一点,若AE=DC=2ED ,且EF ⊥EC.(1)求证:点F 为AB 的中点.(2)延长EF 与CB 的延长线相交于点H ,连接AH ,已知ED=2,求AH 的值.第19题图【思路分析】对于(1),先根据矩形的性质证明△AEF ≌△DCE ,可得ED=AF ,进而根据A E=DC=2ED ,可得答案.对于(2),先说明△AEF≌△BHF,可知AE,进而得出AB=BH,再根据AH2=AB2+BH2得出答案.【解题过程】证明:∵EF⊥EC,∴∠CEF=90°,∴∠AEF+∠DEC=90°.∵四边形ABCD是矩形,∴∠AEF+∠AFE=90°,∠DEC+∠DCE=90°,∴∠AEF=∠DCE,∠AFE=∠DEC.∵AE=DC,∴△AEF≌△DCE,………………………………………………………………………………2分∴ED=AF.∵AE=DC=AB=2DE,∴AB=2AF,∴F是AB的中点…………………………………………………………………………………3分(2)解:由(1)得AF=FB,且AE∥BH,∴∠FBH=∠FAE=90°,∠AEF=∠FHB,∴△AEF≌△BHF,………………………………………………………………………………4分∴HB=AE.∵ED=2,且AE=2ED,∴AE=4,…………………………………………………………………………………………5分∴HB=AB=AE=4,∴AH2=AB2+BH2=16+16=32,……………………………………………………………………6分∴AH=4√2………………………………………………………………………………………7分【知识点】矩形的性质,全等三角形的性质和判定,勾股定理20.(2018四川省德阳市,题号20,分值:11)某网络约车公司近期推出了“520专享”服务计划,即要求公司员工做到“5星级服务,2分钟响应,0客户投诉”,为进一步提升服务品质,公司监管部门决定了解“单次营运里程”分布情况.老王收集了本公司的5000个“单次营运里程”数据,这些数据均不超过25(公里),他从中随机抽取了200个数据作为一个样本,整理,统计结果如下表,并绘制了不完整的频数分布直方图.根据统计表,图提供的信息,解答下面的问题:(1)①表中a=____;②样本中“单次营运历程”不超过15公里的频数为____;③请把频数分布直方图补充完整;(2)请估计该公司这5000个“单次营运里程”超过20公里的次数;(3)为缓解城市交通压力,维护交通秩序,来自某市区的4名网约车司机(3男1女)成立了“交通秩序维护”志愿小分队,若从该小组中任意抽取两名司机在某一路口维护交通秩序,请用列举法(画树状图或列表)求出恰好抽到“一男一女”的概率.【思路分析】对于(1),根据总数-除第二组以外各组的频数,即可求出a值,然后求出不超过15公里的频数,进而求出频率,再补全频数分布直方图.对于(2),用样本估计总体的思想解答,即求出超过20公里的频率,再用总数×频率即可.对于(3),画出树状图得出所有可能出现的结果,并得出符合条件的结果,进而根据概率公式得出答案.【解题过程】(1)200-72-26-24-30=48,则a=48;……………………………………………1分由统计表可知不超过15公里的频数为72+48+26=146,所以不超过15公里的频数为146÷200=0.73……………………………………………………………………………………3分 补全频数分布直方图如上……………………………………………………………………5分 (2)这5000个“单次营运里程”超过20公里的次数为30200×5000=750(次)…………7分(3)画出树状图如下:…………………..9分一共有12种可能出现的结果,出现“一男一女”的有6种, ∴P (抽到的恰好是“一男一女”)=612=12……………………………………………………11分【知识点】频数分布直方图,树状图求概率21.(2018四川省德阳市,题号21,分值:10)如图,在平面直角坐标系中,直线y 1=kx+b (k ≠0)与双曲线y 2=ax(a ≠0)交于A ,B 两点,已知点A (m ,2),点B (-1,-4). (1)求直线和双曲线的解析式.(2)把直线y 1沿x 轴负方向平移2个单位后得到直线y 3,直线与双曲线y 2交于D ,E 两点,当y 2>y 3时,求x的取值范围.【思路分析】对于(1),将点B 的坐标代入关系式,求出a ,即可得出关系式,再将点A ,B 的坐标代入y 1=kx+b ,求出k ,b 即可得出关系式. 对于(2),先根据平移求出y 3的关系式,再联立得到方程组求出点D ,E ,再根据反比例函数图像在一次函数图像的上方得出取值范围即可. 【解题过程】(1)∵B (-1,-4),点B 在双曲线上,即a=(-1)×(-4)=4,∵点A 在双曲线上,即2m=4,即m=2,A (2,2)………………………………………….1分 ∵点A (2,2),B (-1,-4)在直线y 1=kx+b 上, ∴{2=2k +b −4=−k +b..............................................................2分 解得{k =2,b =2..................................................................3分∴直线和双曲线的解析式分别为y 1=2x-2和y 2=4x……………………………………………4分(2)∵直线y 3是直线y 1沿x 轴负方向平移2个单位得到,∴y 3=2(x+2)-2=2x+2,…………………………………………………………………………6分解方程组{y =4x ,y =2x +2.得{x =1,y =4.或{x =−2,y =−2...............................................................................8分∴点D (1,4),E (-2,-2),………………………………………………………………..9分 ∴当y 2>y 3时,x 的取值范围是x <-2或0<x <1…………………………………………10分 【知识点】一次函数和反比例函数的综合应用 22.(2018四川省德阳市,题号22,分值:10)为配合“一带一路”国家倡议,某铁路货运集装箱物流园区启动了2期扩建工程.一项地基基础加固处理工程由A ,B 两个工程公司承担建设,已知A 工程公司单独建设完成此项工程需要180天.A 工程公司单独施工45天后,B 工程公司参与合作,两工程公司又共同施工54天后完全了此项工程.(1)求B 工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划包成两部分,要求两工程公司同时开工,A 工程公司建设其中一部分用了m 天完成,B 工程公司建设另一部分用了n 天完成,其中m ,n 均为正整数,且m <46,n <92,求A ,B 两个工程公司各施工建设了多少天? 【思路分析】对于(1),设B 工程公司单独建设完成这项工程需要x 天,进而表示出A ,B 两个公司的工作效率,然后根据A 公司施工45的工作量+A ,B 公司合作54天的工作量=1,列出方程,求出解即可. 对于(2),由(1)可知A ,B 两公司的工作效率,再根据A 公司施工m 天的工作量+B 公司施工n 天的工作量=1,可用含m 的代数式表示n ,进而得出关于m 的不等式组,求出m 的解集,再根据m ,n 都是正整数,求出m ,n 的值即可. 【解题过程】(1)设B 工程公司单独建设完成这项工程需要x 天,由题意得 45×1180+54×(1180+1x)=1,……………………………………………………………………..2分解得x=120,经检验,x=120是方程的解且符合题意.答:B 工程单独建设需要120天完成…………………………………………………………4分 (2)∵A 工程公司建设其中一部分用了m 天完成,B 工程公司建设另一部分用了m 天完成. ∴m ×1180+n ×1120=1,……………………………………………………………………………5分即n=120-23m ……………………………………………………………………………………..6分 又∵m <46,n <92,∴{m <46,120−23m <92............................................................8分 解得42<m <46. ∵m 为正整数, ∴m=43,44,45,而n=120-23m 也是正整数,……………………………………………………………………..9分∴m=45,n=90.答:A 工程公司建设了45天,B 工程公司建设了90天………………………………….10分 【知识点】分式方程的应用,一元一次不等式组的应用 23.(2018四川省德阳市,题号24,分值:11)如图,在直角三角形ABC 中,∠ACB=90°,点H 是△ABC 的内心,AH 的延长线和三角形ABC 的外接圆O 相交于点D ,连结DB. (1)求证:DH=DB.(2)过点D作BC的平行线交AC,AB的延长线分别于点E,F,已知CE=1,圆O的直径为5,①求证:EF为圆O的切线;②求DF的长.【思路分析】对于(1),连接HB,根据三角形内心的性质可知∠DAC=∠DAB,∠ABH=∠CBH,再根据等弧所对的圆周角相等,得∠DBC=∠DAC,然后根据三角形的外角的性质可知∠DHB=∠DAB+∠ABH=∠DAC+∠CBH,及∠DBH=∠DBC+∠CBH,进而根据等角对等边得出答案.(2),对于①,连接OD,根据同弧所对的圆周角等于其所对的圆心角的一半,得∠DOB=∠BAC,可知OD∥AC,再根据BC∥EF,可知AC⊥EF,进而得出OD⊥EF,可得答案.对于②,先作DG⊥AB,再根据“HL”证明△CDE≌△BDG,可得GB=1,然后根据两角分别相等的两个三角形相似,得DB2=AB·BG,即可求出DB,DG,ED,再说明△OFD∽△AFE,根据相似三角形的对应边成比例得出答案. 【解题过程】(1)证明:连接HB,∵点H是△ABC的内心,∴∠DAC=∠DAB,∠ABH=∠CBH,………………………………………………………………1分而∠DBC=∠DAC,∠DHB=∠DAB+∠ABH=∠DAC+∠CBH.又∵∠DBH=∠DBC+∠CBH,∴∠DHB=∠DBH,………………………………………………………………………………2分∴DH=DB…………………………………………………………………………………………3分(2)①连接OD,∵∠DOB=2∠DAB=∠BAC,∴OD∥AC………………………………………………………………………………………4分∵AC⊥BC,BC∥EF,∴AC⊥EF,……………………………………………………………………………………5分∴OD⊥EF,∴EF是圆O的切线……………………………………………………………………………6分②如图,过点D作DG⊥AB于点G,∵∠EAD=∠DAB,∴DE=DG,DC=DB,∠CED=∠DGB=90°,∴△CDE≌△BDG,∴GB=CE=1……………………………………………………………………………………7分在Rt△ADB中,DG⊥AB,∴∠ADB=∠DGB,∠DBG=∠ABD,∴△DBG∽△ABD,…………………………………………………………………………8分∴DB2=AB·BG=5×1=5,∴DB=√5,DG=2,∴ED=2…………………………………………………………………………………………9分∵H为内心,AE=AG=4,而DO∥AE,∴△OFD∽△AFE,………………………………………………………………………………10分∴DF DF+DE=OD AE ,即DF DF+2=524, ∴DF=103…………………………………………………………………………………………11分【知识点】三角形内心的性质,圆周角定理,全等三角形的性质和判定,相似三角形的性质和判定24.(2018四川省德阳市,题号24,分值:14)如图,在等腰直角三角形ABC 中,∠BAC=90°,点A 在x 轴上,点B 在y 轴上,点C (3,1),二次函数y=13x 2+bx-32的图像经过点C.(1)求二次函数的解析式,并把解析式化成y=a(x-h)2+k 的形式;(2)把△ABC 沿x 轴正方向平移,当点B 落在抛物线上时,求△ABC 扫过区域的面积;(3)在抛物线上是否存在异于点C 的点P ,使△ABP 是以AB 为直角边的等腰三角形?如果存在,请求出所有符合条件的点P 的坐标;如果不存在,请说明理由.【思路分析】对于(1),将点C 代入关系式求出b 值,即可得出关系式,并写成顶点式.对于(2),作CK ⊥x 轴,再根据“AAS ”得出△ACK ≌△BAO ,并结合全等三角形对应边相等,得出点B 的坐标,再设点D (m ,2),求出m 的值,进而得出AB ,AC ,再根据△ABC 扫过的面积=S 四边形AEDB +S △ABC 得出答案. 对于(3),当∠BAP=90°,可知△ACK ≌△APF ,可知点P 的坐标,再代入关系式验证即可.当∠ABP=90°时,求出点P 的坐标,再代入验证.【解题过程】(1)∵点C (3,1)在二次函数的图象上,∴1=13×32+3b-32,解得b=-16,……………………………………………………………………………………..1分 ∴二次函数的解析式为y=13x 2--16x--32,………………………………………………………2分 化成y=a(x-h)2+k 的形式为y=-13(x--14)2--7348;………………………………………………..3分 (2)作CK ⊥x 轴,∵∠ABO+∠BAO=90°,∠BAO+∠CAK=90°,∴∠ABO=∠CAK …………………………………………………………………………………4分∵AB=AC ,∠AOB=∠AKC=90°,∴△ACK ≌△BAO ,………………………………………………………………………………5分∴OA=CK=1,AK=OB=2,即B (0,2),…………………………………………………………………………………6分∴当点B 平移到抛物线上的点D 时,D (m ,2),由2=-13m 2--16m--32, 解得m 1=-3,m 2=-72…………………………………………………………………………….8分 而AB=AC=2+1=√5,∴△ABC 扫过的面积=S 四边形AEDB +S △ABC =-72×2+-12×√5×√5=9.5………………………………10分 (3)①当∠BAP=90°,由△ACK ≌△APF ,此时,点P (-1,-1),当x=-1时,y=-13×(-1)2--16×(-1)- -32=-1,点P (-1,-1)在抛物线上;②当∠ABP=90°时,同理可得点P (-2,1),………………………………………………12分 当x=-2时,y=13×(-2)2-16×(-2)-32≠1,此时点P(-2,1)不在抛物线上.综上所述,符合条件的点P 有一个,P (-1,-1)…………………………………………14分【知识点】二次函数的应用,全等三角形的性质和判定。
2018年四川省德阳市中考数学试卷
四川省德阳市2018年中考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1.(3分)(2018•德阳)实数﹣的相反数是()A.﹣2 B.C.2D.﹣|﹣0.5|考点:相反数.分析:根据相反数的概念:只有符号不同的两个数叫做互为相反数即可得到答案.解答:解:﹣的相反数是,故选:B.点评:此题主要考查了相反数,正确把握相反数的概念即可.2.(3分)(2018•德阳)如图,直线a∥b,∠A=38°,∠1=46°,则∠ACB的度数是()A.84°B.106°C.96°D.104°考点:平行线的性质.分析:根据两直线平行,内错角相等可得∠ABC=∠1,再根据三角形的内角和定理列式计算即可得解.解答:解:∵a∥b,∴∠ABC=∠1=46°,∵∠A=38°,∴∠ACB=180°﹣∠A﹣∠ABC=180°﹣38°﹣46°=96°.故选C.点评:本题考查了平行线的性质,三角形的内角和定理,熟记性质是解题的关键.3.(3分)(2018•德阳)下列运算正确的是()A.a2+a=2a4B.a3•a2=a6C.2a6÷a2=2a3D.(a2)4=a8考点:整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、原式不能合并,错误;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式利用单项式除以单项式法则计算得到结果,即可做出判断;D、原式利用幂的乘方运算法则计算得到结果,即可做出判断.解答:解:A、原式不能合并,错误;B、原式=a5,错误;C、原式=2a4,错误;D、原式=a8,正确,故选D点评:此题考查了整式的除法,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.4.(3分)(2018•德阳)如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据俯视图是从上面看到的图形判定则可.解答:解:从上面可看到第一横行左下角有一个正方形,第二横行有3个正方形,第三横行中间有一个正方形.故选B.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5.(3分)(2018•德阳)如图是某射击选手5次设计成绩的折线图,根据图示信息,这5次成绩的众数、中位数分别是()A.7、8 B.7、9 C.8、9 D.8、10考点:折线统计图;中位数;众数.分析:由折线图可知,射击选手五次射击的成绩为:7、7、8、10、9,再根据众数、中位数的计算方法即可求得.解答:解:∵射击选手五次射击的成绩为:7、7、8、10、9,∴众数为7,中位数为8,故选:A.点评:本题考查了折线图的意义和众数、中位数的概念.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是数据中出现最多的一个数.6.(3分)(2018•德阳)已知⊙O1与⊙O2的半径分别是3cm和5cm,两圆的圆心距为4cm,则两圆的位置关系是()A.相交B.内切C.外离D.内含考点:圆与圆的位置关系.分析:先求两圆半径的和或差,再与圆心距进行比较,确定两圆位置关系.解答:解:∵⊙O1和⊙O2的半径分别为5cm和3cm,圆心距O1O2=4cm,5﹣3<4<5+3,∴根据圆心距与半径之间的数量关系可知⊙O1与⊙O2相交.故选A.点评:本题考查了由数量关系来判断两圆位置关系的方法.设两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R﹣r<P<R+r;内切P=R﹣r;内含P<R﹣r.7.(3分)(2018•德阳)已知0≤x≤,那么函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5 B.2C.﹣2.5 D.﹣6考点:二次函数的最值.分析:把二次函数的解析式整理成顶点式形式,然后确定出最大值.解答:解:∵y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2.∴该抛物线的对称轴是x=2,且在x<2上y随x的增大而增大.又∵0≤x≤,∴当x=时,y取最大值,y最大=﹣2(﹣2)2+2=﹣2.5.故选:C.点评:本题考查了二次函数的最值.确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.8.(3分)(2018•德阳)如图所示,边长为2的正三角形ABO的边OB在x轴上,将△ABO 绕原点O逆时针旋转30°得到三角形OA1B1,则点A1的坐标为()A.(,1)B.(,﹣1)C.(1,﹣)D.(2,﹣1)考点:坐标与图形变化-旋转;等边三角形的性质.分析:设A1B1与x轴相交于C,根据等边三角形的性质求出OC、A1C,然后写出点A1的坐标即可.解答:解:如图,设A1B1与x轴相交于C,∵△ABO是等边三角形,旋转角为30°,∴∠A1OC=60°﹣30°=30°,∴A1B1⊥x轴,∵等边△ABO的边长为2,∴OC=×2=,A1C=×2=1,∴点A1的坐标为(,﹣1).故选B.点评:本题考查了坐标与图形变化﹣旋转,等边三角形的性质,熟记等边三角形的性质是解题的关键.9.(3分)(2018•德阳)下列说法中正确的个数是()①不可能事件发生的概率为0;②一个对象在实验中出现的次数越多,频率就越大;③在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值;④收集数据过程中的“记录结果”这一步,就是记录每个对象出现的频率.A.1B.2C.3D.4考点:利用频率估计概率;概率的意义.分析:利用概率的意义、利用频率估计概率的方法对各选项进行判断后即可确定正确的选项.解答:解:①不可能事件发生的概率为0,正确;②一个对象在实验中出现的次数越多,频率就越大,正确;③在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值,正确;④收集数据过程中的“记录结果”这一步,就是记录每个对象出现的频率,错误,故选C.点评:本题考查了用频率估计概率的知识,解题的关键是了解多次重复试验事件发生的频率可以估计概率.10.(3分)(2018•德阳)如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,且CD=,如果Rt△ABC的面积为1,则它的周长为()A.B.+1 C.+2 D.+3考点:勾股定理;直角三角形斜边上的中线.分析:根据“直角三角形斜边上的中线等于斜边的一半求得AB=;然后利用勾股定理、三角形的面积求得(AC+BC)的值,则易求该三角形的周长.解答:解:如图,∵在Rt△ABC中,∠ACB=90°,点D是AB的中点,且CD=,∴AB=2CD=.∴AC2+BC2=5又Rt△ABC的面积为1,∴AC•BC=1,则AC•BC=2.∴(AC+BC)2=AC2+BC2+2AC•BC=9,∴AC+BC=3(舍去负值),∴AC+BC+AB=3+,即△ABC的周长是3+.故选:D.点评:本题考查了勾股定理,直角三角形斜边上的中线.此题借助于完全平方和公式求得(AC+BC)的长度,减少了繁琐的计算.11.(3分)(2018•德阳)如图,四边形ABCD中,AB=AD,AD∥BC,∠ABC=60°,∠BCD=30°,BC=6,那么△ACD的面积是()A.B.C.2D.考点:勾股定理;含30度角的直角三角形.分析:如图,过点A作AE⊥BC于E,过点D作DF⊥BC于F.构建矩形AEFD和直角三角形,通过含30度角的直角三角形的性质求得AE的长度,然后由三角形的面积公式进行解答即可.解答:解:如图,过点A作AE⊥BC于E,过点D作DF⊥BC于F.设AB=AD=x.又∵AD∥BC,∴四边形AEFD是矩形形,∴AD=EF=x.在Rt△ABE中,∠ABC=60°,则∠BAE=30°,∴BE=AB=x,∴DF=AE==x,在Rt△CDF中,∠FCD=30°,则CF=DF•cot30°=x.又BC=6,∴BE+EF+CF=6,即x+x+x=6,解得x=2∴△ACD的面积是:AD•DF=x×x=×22=,故选:A.点评:本题考查了勾股定理,三角形的面积以及含30度角的直角三角形.解题的难点是作出辅助线,构建矩形和直角三角形,目的是求得△ADC的底边AD以及该边上的高线DF的长度.12.(3分)(2018•德阳)已知方程﹣a=,且关于x的不等式组只有4个整数解,那么b的取值范围是()A.﹣1<b≤3 B.2<b≤3 C.8≤b<9 D.3≤b<4考点:分式方程的解;一元一次不等式组的整数解.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到a的值,经检验确定出分式方程的解,根据已知不等式组只有4个正整数解,即可确定出b的范围.解答:解:分式方程去分母得:3﹣a﹣a2+4a=﹣1,即(a﹣4)(a+1)=0,解得:a=4或a=﹣1,经检验a=4是增根,分式方程的解为a=﹣1,已知不等式组解得:﹣1<x≤b,∵不等式组只有4个3整数解,∴3≤b<4.故选D点评:此题考查了分式方程的解,以及一元一次不等式组的整数解,弄清题意是解本题的关键.二、填空题(每小题3分,共18分,将答案填在答题卡对应的题号后的横线上)13.(3分)(2018•德阳)下列运算正确的个数有1个.①分解因式ab2﹣2ab+a的结果是a(b﹣1)2;②(﹣2)0=0;③3﹣=3.考点:提公因式法与公式法的综合运用;零指数幂;二次根式的加减法.分析:①先提取公因式a,再根据完全平方公式进行二次分解;②根据任何非零数的零指数次幂等于1解答;③合并同类二次根式即可.解答:解:①ab2﹣2ab+a,=a(b2﹣2b+1),=a(b﹣1)2,故本小题正确;②(﹣2)0=1,故本小题错误;③3﹣=2,故本小题错误;综上所述,运算正确的是①共1个.故答案为:1.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(3分)(2018•德阳)一组数据3,4,5,x,7,8的平均数为6,则这组数据的方差是.考点:方差;算术平均数.分析:先由平均数的公式计算出x的值,再根据方差的公式计算.解答:解:∵3,4,5,x,7,8的平均数是6,∴x=9,∴s2= [(3﹣6)2+(4﹣6)2+(5﹣6)2+(9﹣6)2+(7﹣6)2+(8﹣6)2]=×28=,故答案为:.点评:本题考查方差的定义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15.(3分)(2018•德阳)半径为1的圆内接正三角形的边心距为.考点:正多边形和圆.分析:作出几何图形,再由外接圆半径、边心距和边长的一半组成的三角形中,已知外接圆半径和特殊角,可求得边心距.解答:解:如图,△ABC是⊙O的内接等边三角形,OB=1,OD⊥BC.∵等边三角形的内心和外心重合,∴OB平分∠ABC,则∠OBD=30°;∵OD⊥BC,∴BD=DC,又∵OB=1,∴OD=.故答案是:.点评:考查了等边三角形的性质.注意:等边三角形的外接圆和内切圆是同心圆,圆心到顶点的距离等于外接圆半径,边心距等于内切圆半径.16.(3分)(2018•德阳)如图,△ABC中,∠A=60°,将△ABC沿DE翻折后,点A落在BC边上的点A′处.如果∠A′EC=70°,那么∠A′DE的度数为65°.考点:翻折变换(折叠问题).分析:首先求得∠AEA′,根据折叠的性质可得∠A′ED=∠AED=∠AEA′,在△A′DE 中利用三角形内角和定理即可求解.解答:解:∵∠AEA′=180°﹣∠A′EC=180°﹣70°=110°,又∵∠A′ED=∠AED=∠AEA′=55°,∠DA′E=∠A=60°,∴∠A′DE=180°﹣∠A′ED﹣∠DA′E=180°﹣55°﹣60°=65°.故答案是:65°.点评:本题考查了折叠的性质,找出图形中相等的角和相等的线段是关键.17.(3分)(2018•德阳)如图,直线a∥b,△ABC是等边三角形,点A在直线a上,边BC在直线b上,把△ABC沿BC方向平移BC的一半得到△A′B′C′(如图①);继续以上的平移得到图②,再继续以上的平移得到图③,…;请问在第100个图形中等边三角形的个数是301.考点:等边三角形的判定与性质;平移的性质.专题:规律型.分析:先证出阴影的三角形是等边三角形,又观察图可得,第n个图形中大等边三角形有n+1个,小等边三角形有2n个,据此求出第100个图形中等边三角形的个数.解答:解:如图①∵△ABC是等边三角形,∴AB=BC=AC,∵A′B′∥AB,BB′=B′C=BC,∴B′O=AB,CO=AC,∴△B′OC是等边三角形,同理阴影的三角形都是等边三角形.又观察图可得,第1个图形中大等边三角形有2个,小等边三角形有2个,第2个图形中大等边三角形有3个,小等边三角形有4个,第3个图形中大等边三角形有4个,小等边三角形有6个,…依次可得第n个图形中大等边三角形有n+1个,小等边三角形有2n个.故第100个图形中等边三角形的个数是:100+1+2×100=301.故答案为:301.点评:本题主要考查了等边三角形的判定和性质及平移的性质,解题的关键是据图找出规律.18.(3分)(2018•德阳)在四边形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB 边上一点,∠BCE=15°,且AE=AD.连接DE交对角线AC于H,连接BH.下列结论正确的是①③④.(填番号)①AC⊥DE;②=;③CD=2DH;④=.考点:直角梯形;全等三角形的判定与性质;含30度角的直角三角形;等腰直角三角形.分析:在等腰直角△ADE中,根据等腰三角形三线合一的性质可得AH⊥ED,即AC⊥ED,判定①正确;进而可判定③;因为△CHE为直角三角形,且∠HEC=60°所以EC=2EH,因为∠ECB=15°,所以EC≠4EB,所以不成立②错误;根据全等三角形对应边相等可得CD=CE,再求出∠CED=60°,得到△CDE为等边三角形,判定③正确;过H 作HM⊥AB于M,所以HM∥BC,所以△AHM∽△ABC,利用相似三角形的性质以及底相等的三角形面积之比等于高之比即可判定④正确.解答:解:∵∠BAD=90°,AB=BC,∴∠BAC=45°,∴∠CAD=∠BAD﹣∠BAC=90°﹣45°=45°,∴∠BAC=∠CAD,∴∴AH⊥ED,即AC⊥ED,故①正确;∵△CHE为直角三角形,且∠HEC=60°∴EC=2EH∵∠ECB=15°,∴EC≠4EB,∴EH≠2EB;故②错误.:∵∠BAD=90°,AB=BC,∴∠BAC=45°,∴∠CAD=∠BAD﹣∠BAC=90°﹣45°=45°,∴∠BAC=∠CAD,在△ACD和△ACE中,,∴△ACD≌△ACE(SAS),∴CD=CE,∵∠BCE=15°,∴∠BEC=90°﹣∠BCE=90°﹣15°=75°,∴∠CED=180°﹣∠BEC﹣∠AED=180°﹣75°﹣45°=60°,∴△CDE为等边三角形,∴∠DCH=30°,∴CD=2DH,故③正确;过H作HM⊥AB于M,∴HM∥BC,∴△AHM∽△ABC,∴,∵DH=AH,∴,∵△BEH和△CBE有公共底BE,∴,故④正确,故答案为:①③④.点评:此题考查了直角梯形的性质、全等三角形的判定与性质、相似三角形的判定好性质、等边三角形的判定与性质以及等腰直角三角形性质.此题难度较大,注意掌握数形结合思想的应用.熟记各性质是解题的关键.三、解答题(共66分.解答应写出文字说明、证明过程或推演步骤)19.(6分)(2018•德阳)计算:﹣25+()﹣1﹣|﹣8|+2cos60°.考点:实数的运算;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用乘方的意义化简,第二项利用负指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.解答:解:原式=﹣32+2﹣4+1=﹣33.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(11分)(2018•德阳)为增强环境保护意识,争创“文明卫生城市”,某企业对职工进行了依次“生产和居住环境满意度”的调查,按年龄分组,得到下面的各组人数统计表:各组人数统计表组号年龄分组频数(人)频率第一组20≤x<25 50 0.05第二组25≤x<30 a 0.35第三组35≤x<35 300 0.3第四组35≤x<40 200 b第五组40≤x≤45 100 0.1(1)求本次调查的样本容量及表中的a、b的值;(2)调查结果得到对生产和居住环境满意的人数的频率分布直方图如图,政策规定:本次调查满意人数超过调查人数的一半,则称调查结果为满意.如果第一组满意人数为36,请问此次调查结果是否满意;并指出第五组满意人数的百分比;(3)从第二张和第四组对生产和居住环境满意的职工中分别抽取3人和2人作义务宣传员,在这5人中随机抽取2人介绍经验,求第二组和第四组恰好各有1人被抽中介绍经验的概率.考点:频数(率)分布直方图;频数(率)分布表;列表法与树状图法.分析:(1)根据第一组的人数是50,频率是0.05即可求得总人数,则根据频率公式即可求得a、b的值;(2)根据第一组的频数是36人,频率是0.06据此即可求得调查的总人数,则满意度即可求得;(3)用A表示从第二组抽取的人,用B表示从第四组抽取的人,利用列举法即可求解.解答:解:(1)调查的总人数:50÷0.05=1000(人),则a=1000×0.35=350,b==0.2;(2)满意的总人数是:36÷0.06=600(人),则调查的满意率是:=0.6,则此次调查结果为满意;第五组的满意的人数是:600×0.16=96(人),则第五组的满意率是:×100%=96%;(3)用A表示从第二组抽取的人,用B表示从第四组抽取的人.,总共有20种情况,则第二组和第四组恰好各有1人被抽中的概率是:=.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.(10分)(2018•德阳)如图,已知矩形OABC的一个顶点B的坐标是(4,2),反比例函数y=(x>0)的图象经过矩形的对称中心E,且与边BC交于点D.(1)求反比例函数的解析式和点D的坐标;(2)若过点D的直线y=mx+n将矩形OABC的面积分成3:5的两部分,求此直线的解析式.考点:矩形的性质;待定系数法求一次函数解析式;待定系数法求反比例函数解析式.分析:(1)根据中心对称求出点E的坐标,再代入反比例函数解析式求出k,然后根据点D 的纵坐标与点B的纵坐标相等代入求解即可得到点D的坐标;(2)设直线与x轴的交点为F,根据点D的坐标求出CD,再根据梯形的面积分两种情况求出OF的长,然后写出点F的坐标,再利用待定系数法求一次函数解析式求出直线解析式即可.解答:解:(1)∵矩形OABC的顶点B的坐标是(4,2),E是矩形ABCD的对称中心,∴点E的坐标为(2,1),代入反比例函数解析式得,=1,解得k=2,∴反比例函数解析式为y=,∵点D在边BC上,∴点D的纵坐标为2,∴y=2时,=2,解得x=1,∴点D的坐标为(1,2);(2)如图,设直线与x轴的交点为F,矩形OABC的面积=4×2=8,∵矩形OABC的面积分成3:5的两部分,∴梯形OFDC的面积为×8=3,或×8=5,∵点D的坐标为(1,2),∴若(1+OF)×2=3,解得OF=2,此时点F的坐标为(2,0),若(1+OF)×2=5,解得OF=4,此时点F的坐标为(4,0),与点A重合,当D(1,2),F(2,0)时,,解得,此时,直线解析式为y=﹣2x+4,当D(1,2),F(4,0)时,,解得,此时,直线解析式为y=﹣x+,综上所述,直线的解析式为y=﹣2x+4或y=﹣x+.点评:本题考查了矩形的性质,待定系数法求反比例函数解析式,待定系数法求一次函数解析式,(1)根据中心对称求出点E的坐标是解题的关键,(2)难点在于要分情况讨论.22.(11分)(2018•德阳)为落实国家“三农”政策,某地政府组织40辆汽车装运A、B、C 三种农产品共200吨到外地销售,按计划,40辆车都要装运,每辆车只能装运同一种农产品,且必须装满,根据下表提供的信息,解答下列问题:农产品种类 A B C每辆汽车的装载量(吨)4 5 6(1)如果装运C种农产品需13辆汽车,那么装运A、B两种农产品各需多少辆汽车?(2)如果装运每种农产品至少需要11辆汽车,那么车辆的装运方案有几种?写出每种装运方案.考点:一元一次不等式组的应用;二元一次方程组的应用.分析:(1)设装运A、B两种农产品各需x、y辆汽车.等量关系:40辆车都要装运,A、B、C三种农产品共200吨;(2)关系式为:装运每种农产品的车辆数≥11.解答:解:(1)设装运A、B两种农产品各需x、y辆汽车.则,解得.答:装运A、B两种农产品各需13、14辆汽车;(2)设装运A、B两种农产品各需x、y辆汽车.则4x+5y+6(40﹣x﹣y)=200,解得:y=﹣2x+40.由题意可得如下不等式组:,即,解得:11≤x≤14.5因为x是正整数,所以x的值可为11,12,13,14;共4个值,因而有四种安排方案.方案一:11车装运A,18车装运B,11车装运C方案二:12车装运A,16车装运B,12车装运C.方案三:13车装运A,14车装运B,13车装运C.方案四:14车装运A,12车装运B,14车装运C.点评:本题考查了二元一次方程组和一元一次不等式组的应用,解决本题的关键是读懂题意,根据关键描述语,找到所求量的等量关系,确定x的范围,得到装载的几种方案是解决本题的关键.23.(14分)(2018•德阳)如图,⊙O中,FG、AC是直径,AB是弦,FG⊥AB,垂足为点P,过点C的直线交AB的延长线于点D,交GF的延长线于点E,已知AB=4,⊙O的半径为.(1)分别求出线段AP、CB的长;(2)如果OE=5,求证:DE是⊙O的切线;(3)如果tan∠E=,求DE的长.考点:切线的判定.专题:证明题.分析:(1)根据圆周角定理由AC为直径得∠ABC=90°,在Rt△ABC中,根据勾股定理可计算出BC=2,再根据垂径定理由直径FG⊥AB得到AP=BP=AB=2;(2)易得OP为△ABC的中位线,则OP=BC=1,再计算出==,根据相似三角形的判定方法得到△EOC∽△AOP,根据相似的性质得到∠OCE=∠OPA=90°,然后根据切线的判定定理得到DE是⊙O的切线;(3)根据平行线的性质由BC∥EP得到∠DCB=∠E,则tan∠DCB=tan∠E=,在Rt △BCD中,根据正切的定义计算出BD=3,根据勾股定理计算出CD=,然后根据平行线分线段成比例定理得=,再利用比例性质可计算出DE=.解答:(1)解:∵AC为直径,∴∠ABC=90°,在Rt△ABC中,AC=2,AB=4,∴BC==2,∵直径FG⊥AB,∴AP=BP=AB=2;(2)证明:∵AP=BP,∴OP为△ABC的中位线,∴OP=BC=1,∴=,而==,∴=,∵∠EOC=∠AOP,∴△EOC∽△AOP,∴∠OCE=∠OPA=90°,∴OC⊥DE,∴DE是⊙O的切线;(3)解:∵BC∥EP,∴∠DCB=∠E,∴tan∠DCB=tan∠E=在Rt△BCD中,BC=2,tan∠DCB==,∴BD=3,∴CD==,∵BC∥EP,∴=,即=,∴DE=.点评:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了垂径定理、圆周角定理、勾股定理和相似三角形的判定与性质.24.(14分)(2018•德阳)如图,已知抛物线经过点A(﹣2,0)、B(4,0)、C(0,﹣8).(1)求抛物线的解析式及其顶点D的坐标;(2)直线CD交x轴于点E,过抛物线上在对称轴的右边的点P,作y轴的平行线交x轴于点F,交直线CD于M,使PM=EF,请求出点P的坐标;(3)将抛物线沿对称轴平移,要使抛物线与(2)中的线段EM总有交点,那么抛物线向上最多平移多少个单位长度,向下最多平移多少个单位长度.考点:二次函数综合题;解一元二次方程-因式分解法;根的判别式;待定系数法求一次函数解析式;待定系数法求二次函数解析式.专题:综合题.分析:(1)由于抛物线与x轴的两个交点已知,抛物线的解析式可设成交点式:y=a(x+2)(x﹣4),然后将点C的坐标代入就可求出抛物线的解析式,再将该解析式配成顶点式,即可得到顶点坐标.(2)先求出直线CD的解析式,再求出点E的坐标,然后设点P的坐标为(m,n),从而可以用m的代数式表示出PM、EF,然后根据PM=EF建立方程,就可求出m,进而求出点P的坐标.(3)先求出点M的坐标,然后设平移后的抛物线的解析式为y=x2﹣2x﹣8+c,然后只需考虑三个临界位置(①向上平移到与直线EM相切的位置,②向下平移到经过点M的位置,③向下平移到经过点E的位置)所对应的c的值,就可以解决问题.解答:解:(1)根据题意可设抛物线的解析式为y=a(x+2)(x﹣4).∵点C(0,﹣8)在抛物线y=a(x+2)(x﹣4)上,∴﹣8a=﹣8.∴a=1.∴y=(x+2)(x﹣4)=x2﹣2x﹣8=(x﹣1)2﹣9.∴抛物线的解析式为y=x2﹣2x﹣8,顶点D的坐标为(1,﹣9).(2)如图,设直线CD的解析式为y=kx+b.∴解得:.∴直线CD的解析式为y=﹣x﹣8.当y=0时,﹣x﹣8=0,则有x=﹣8.∴点E的坐标为(﹣8,0).设点P的坐标为(m,n),则PM=(m2﹣2m﹣8)﹣(﹣m﹣8)=m2﹣m,EF=m﹣(﹣8)=m+8.∵PM=EF,∴m2﹣m=(m+8).整理得:5m2﹣6m﹣8=0.∴(5m+4)(m﹣2)=0解得:m1=﹣,m2=2.∵点P在对称轴x=1的右边,∴m=2.此时,n=22﹣2×2﹣8=﹣8.∴点P的坐标为(2,﹣8).(3)当m=2时,y=﹣2﹣8=﹣10.∴点M的坐标为(2,﹣10).设平移后的抛物线的解析式为y=x2﹣2x﹣8+c,①若抛物线y=x2﹣2x﹣8+c与直线y=﹣x﹣8相切,则方程x2﹣2x﹣8+c=﹣x﹣8即x2﹣x+c=0有两个相等的实数根.∴(﹣1)2﹣4×1×c=0.∴c=.②若抛物线y=x2﹣2x﹣8+c经过点M,则有22﹣2×2﹣8+c=﹣10.∴c=﹣2.③若抛物线y=x2﹣2x﹣8+c经过点E,则有(﹣8)2﹣2×(﹣8)﹣8+c=0.∴c=﹣72.综上所述:要使抛物线与(2)中的线段EM总有交点,抛物线向上最多平移个单位长度,向下最多平移72个单位长度.点评:本题考查了用待定系数法求二次函数的解析式、用待定系数法求一次函数的解析式、解一元二次方程、根的判别式、抛物线与直线的交点问题等知识,而把抛物线与直线相切的问题转化为一元二次方程有两个相等的实数根的问题是解决第三小题的关键,有一定的综合性.。
中考数学试题-2018年德阳市中考数学试卷及答案 最新
2018年怀化市初中毕业学业考试试卷数学亲爱的同学,请你仔细审题,细心答题,相信你一定会有出色的表现,本学科试题共三道大题,时量120分钟,满分100分.一、选择题(考生注意,本大题共10个小题,每题2分,共20分,在每个小题给出1.下列计算正确的是( ) A.0(2)0-=B.239-=- 3=2.2018年8月第29届奥运会将在北京开幕,5个城市的国标标准时间(单位:时)在数轴上表示如图所示,那么北京时间2018年8月8日20时应是( ) A.伦敦时间2018年8月8日11时 B.巴黎时间2018年8月8日13时 C.纽约时间2018年8月8日5时 D.汉城时间2018年8月8日19时3.下列交通标志中既是中心对称图形,又是轴对称图形的是( ) 4.怀化市2018年的国民生产总值约为333.9亿元,预计2018年比上一年增长10%,用科学计数法表示2018年怀化市的国民生产总值应是(结果保留3个有效数字)( ) A.103.6710⨯元 B.103.67310⨯元 C.113.6710⨯元D.83.6710⨯元5.已知点(23)P -,关于y 轴的对称点为()Q ab ,,则a b +的值是( ) A.1 B.1- C.5 D.5- 6.一个几何体是由若干个相同的正方体组成的,其主视图和左视图如图所示,则这个几何体最多..可由多少个这样的正方体组成?( ) A.12个B.13个C.14个 D.18个7.圆的半径为13cm ,两弦AB CD ∥,24cm AB =,10cm CD =,则两弦AB CD ,的距离是( ) A.7cm B.17cm C.12cm D.7cm 或17cmA. B. C. D.北京 汉城 巴黎 伦敦 纽约 5-0189主视图 左视图8.均匀地向一个如图所示的容器中注水,最后把容器注满,在注水过程中水面高度h 随时间t 变化的函数图象大致是( )9.如图,菱形ABCD 的周长为40cm ,DE AB ⊥,垂足为E ,3sin 5A =,则下列结论正确的有()①6cm DE = ②2cm BE =③菱形面积为260cm④BD =A.1个B.2个C.3个D.4个10.已知甲乙两组数据的平均数都是5,甲组数据的方差2112S =甲,乙组数据的方差2110S =乙则( )A.甲组数据比乙组数据的波动大 B.乙组数据比甲组数据的波动大 C.甲组数据与乙组数据的波动一样大 D.甲乙两组数据的波动大小不能比较 二、填空题(本大题共10个小题,每小题2个,共20分) 11.函数13y x =-中,自变量x 的取值范围是 .12.分解因式:2a ab -=.13.如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指钝角)是 度.14.方程组3520x y x y +=⎧⎨-=⎩的解是.15.两圆有多种位置关系,图中不存在的位置关系是.16.已知方程230x x k -+=有两个相等的实数根,则k =.17.如图,将一张等腰直角三角形纸片沿中位线剪开可以拼成不同形状的四边形,请写出其中一种四边形的名称 .A. B. C. D. DCBEA第13题图第15题图第17题图18.为响应国家要求中小学生每天锻练1小时的号召,某校开展了形式多样的“阳光体育运动”活动,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的图1和图2,请在图1中将“乒乓球”部分的图形补充完整.19.如图:111A B C ,,分别是BC AC AB ,,的中点,2A ,2B ,2C 分别是11B C ,11AC ,11A B 的中点这样延续下去.已知ABC △的周长是1,111A B C △的周长是1L ,222A B C △的周长是2n n n L A B C 的周长是n L ,则n L =.20.如图所示的圆柱体中底面圆的半径是2π,高为2,若一只小虫从A 点出发沿着圆柱体的侧面爬行到C 点,则小虫爬行的最短路程是 (结果保留根号)三、解答题(本大题8个小题,满分60分) 21.先化简,再求值.(本题满分7分)3(2)(2)()a b a b ab ab -++÷-,其中a =1b =-22.(本题满分7分)如图,AB AD =,AC AE =,12∠=∠, 求证:BC DE = 23.(本题满分7分)BE兴趣爱好图1 图2 …^ABC2A1C1B1A2B2C第19题图C第20题图解方程25231x x x x +=++ 24.(本题满分7分)九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度3m CD =,标杆与旗杆的水平距离15m BD =,人的眼睛与地面的高度1.6m EF =,人与标杆CD 的水平距离2m DF =,求旗杆AB 的高度.25.(本题满分7分)2018年我市某县筹备20周年县庆,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A B ,两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A 种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B 种造型需甲种花卉50盆,乙种花卉90盆. (1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来. (2)若搭配一个A 种造型的成本是800元,搭配一个B 种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元? 26.(本题满分7分)“六一”儿童节前夕,我市某县“关心下一代工作委员会”决定对品学兼优的“留守儿童”进行表彰,某校八年级8个班中只能选两个班级参加这项活动,且8(1)班必须参加,另外再从其他班级中选一个班参加活动.8(5)班有学生建议采用如下的方法:将一个带着指针的圆形转盘分成面积相等的4个扇形,并在每个扇形上分别标上1,2,3,4四个数字,转动转盘两次,将两次指针所指的数字相加,(当指针指在某一条等分线上时视为无效,重新转动)和为几就选哪个班参加,你认为这种方法公平吗?请说明理由. 27.(本题满分8分) 如图,在平面直角坐标系xoy 中,M 是x 轴正半轴上一点,M 与x 轴的正半轴交于A B ,两点,A 在B 的左侧,且OA OB ,的长是方程212270x x -+=的两根,ON 是M 的切线,N 为切点,N 在第四象限. (1)求M 的直径.(2)求直线ON 的解析式.(3)在x 轴上是否存在一点T ,使OTN △是等腰三角形,若存在请在图2中标出T 点所在位置,并画出OTN △(要求尺规作图,保留作图痕迹,不写作法,不证明,不求T 的坐标)若不存在,请说明理由.AH28.(本题满分10分)两个直角边为6的全等的等腰直角三角形Rt AOB △和Rt CED △按图1所示的位置放置A 与C 重合,O 与E 重合.(1)求图1中,A B D ,,三点的坐标.(2)Rt AOB △固定不动,Rt CED △沿x 轴以每秒2个单位长的速度向右运动,当D 点运动到与B 点重合时停止,设运动x 秒后Rt CED △和Rt AOB △重叠部分面积为y ,求y 与x 之间的函数关系式.(3)当Rt CED △以(2)中的速度和方向运动,运动时间4x 秒时Rt CED △运动到如图2所示的位置,求经过A G C ,,三点的抛物线的解析式.(4)现有一半径为2,圆心P 在(3)中的抛物线上运动的动圆,试问P 在运动过程中是否存在P 与x 轴或y 轴相切的情况,若存在请求出P 的坐标,若不存在请说明理由.图1图2 图1图2怀化市2018年初中毕业学业考试数学试卷参考答案及评分标准二、填空题3x ≠ (1)(1)a b b +- 12012x y =⎧⎨=⎩内切94平行四边形、矩形、等腰梯形(三种中任选一种均给满分) 补全的条形图的高与5对应12n21.解:3(2)(2)()a b a b ab ab -++÷-2224()a b b =-+- ························································································· 4分 (答对22(2)(2)4a b a b a b -+=-给2分,答对32()ab ab b ÷-=-给2分)225a b =- ···································································································· 5分当a =1b =-时,原式225(1)=-⨯-3=- ··········································································································· 7分22.证明:12=∠∠12DAC DAC ∴+=+∠∠∠∠ 即:BAC DAE =∠∠ ···················································································· 2分 又AB AD =,AC AE = ABC ADE ∴△≌△ ······················································································· 5分 BC DE ∴= ·································································································· 7分23.解:原方程可化为:523(1)1x x x x +=++ ···························································· 1分去分母得:523x x += ··················································································· 4分 解得:1x =- ································································································ 5分 经检验可知,1x =-是原方程的增根 ·································································· 6分∴原方程无解 ································································································ 7分 24.解:CD FB ⊥,AB FB ⊥ CD AB ∴∥CGE AHE ∴△∽△ ······················································································· 3分CG EGAH EH∴= ································································································ 4分即:CD EF FDAH FD BD -=+3 1.62215AH -∴=+ ·························································································· 5分11.9AH ∴= ································································································ 6分11.9 1.613.5(m)AB AH HB AH EF ∴=+=+=+= ··········································· 7分 25.解:设搭配A 种造型x 个,则B 种造型为(50)x -个,依题意,得:8050(50)34904090(50)2950x x x x +-⎧⎨+-⎩≤≤ ···························································· 2分解这个不等式组,得:3331x x ⎧⎨⎩≤≥,3133x ∴≤≤ ················································ 3分x 是整数,x ∴可取313233,,, ∴可设计三种搭配方案:①A 种园艺造型31个 B 种园艺造型19个②A 种园艺造型32个 B 种园艺造型18个 ③A 种园艺造型33个 B 种园艺造型17个. ······················································ 4分 (2)方法一:由于B 种造型的造价成本高于A 种造型成本.所以B 种造型越少,成本越低,故应选择方案③,成本最低,最低成本为:338001796042720⨯+⨯=(元) ·········· 7分 方法二:方案①需成本:318001996043040⨯+⨯=(元) 方案②需成本:328001896042880⨯+⨯=(元) 方案③需成本:338001796042720⨯+⨯=元 ····················································· 6分∴应选择方案③,成本最低,最低成本为42720元 ··············································· 7分 26.解:方法不公平 ······················································································· 2分 说理方法1:(用表格说明)············································· 4分所以,八(2)班被选中的概率为:116,八(3)班被选中的概率为:21168=, 八(4)班被选中的概率为:316,八(5)班被选中的概率为:41164=, 八(6)班被选中的概率为:316,八(7)班被选中的概率为:21168=, 八(8)班被选中的概率为:116,所以这种方法不公平 ································· 7分说理方法2(用树状图说明)····································4分所以,八(2)班被选中的概率为:116,八(3)班被选中的概率为:21168=,八(4)班被选中的概率为:316,八(5)班被选中的概率为:41164=,八(6)班被选中的概率为:316,八(7)班被选中的概率为:21168=,八(8)班被选中的概率为:116,所以这种方法不公平 ·································7分27.解:(1)解方程212270x x-+=,得19x=,23x=A在B的左侧3OA∴=,9OB=6AB OB OA∴=-=OM∴的直径为6 ··························································································1分(2)过N作NC OM⊥,垂足为C,连结MN,则MN ON⊥31sin62MNMONOM===∠30MON∴=∠又cosONMONOM=∠cos3033ON OM∴=⨯=在Rt OCN△中9cos30332OC ON===1sin30332CN ON===1234开始1 22 33 44 51 32 43 54 61 42 53 6471 52 63748和N ∴的坐标为92⎛- ⎝⎭, ··············································································· 3分(用其它方法求N 的坐标,只要方法合理,结论正确,均可给分.) 设直线ON 的解析式为y kx =92x =k ∴= ∴直线ON的解析式为y x =····································································· 4分 (3)如图2,1T ,2T ,3T ,4T 为所求作的点,1OT N △,2OT N △,3OT N △,4OT N △为所求等腰三角形.(每作出一种图形给一分) ····················································· 8分28.解:(1)(06)A ,,(60)B ,,(60)D -, ·························································· 2分(2)当03x <≤时,位置如图A所示,作GH DB ⊥,垂足为H ,可知:2OE x =,EH x =, 62DO x =-,6DH x =-,22()GHD IOD IOHG y S S S ∴==-△△梯形22112(6)(62)22x x ⎡⎤=---⎢⎥⎣⎦223263122x x x x ⎛⎫=-+=-+ ⎪⎝⎭ ········································································ 3分 当36x ≤≤时,位置如图B所示.可知:122DB x =-212DGBy S DB ⎫∴==⎪⎪⎝⎭△2212)12362x x x ⎤=-=-+⎥⎣⎦································································· 4分 (求梯形IOHG 的面积及DGB △的面积时只要所用方法适当,所得结论正确均可给分)y ∴与x 的函数关系式为:22312(03)1236(36)x x x y x x x ⎧-+<⎪=⎨-+⎪⎩≤≤≤ ····································· 5分(3)图2中,作GH OE ⊥,垂足为H ,当4x =时,28OE x ==,1224DB x =-=122GH DH DB ∴===,1666242OH HB DB =-=-=-= ∴可知:(06)A ,,(42)G ,,(86)C , ·································································· 6分∴经过A G C ,,三点的抛物线的解析式为:221(4)22644x y x x =-+=-+ ············ 7分 (4)当P 在运动过程中,存在P 与坐标轴相切的情况,设P 点坐标为00()x y ,当P 与y 轴相切时,有02x =,02x =±,由02x =-得:011y =,1(211)P ∴-, 由02x =,得03y =,2(23)P ∴, 当P 与x 轴相切时,有02y =21(4)204y x =-+> 02y ∴=,得:04x =,3(42)P ∴, 综上所述,符合条件的圆心P 有三个,其坐标分别是:1(211)P -,,2(23)P ,,3(42)P , ································· 10分(每求出一个点坐标得1分)。
(中考精品卷)四川省德阳市中考数学真题(解析版)
数学试卷第Ⅰ卷(选择题,共48分)一、选择题(本大题共12个小题,每小题4分,共48分,在每小题给出的四个选项中,有且仅有一项是符合题目要求的.)1. -2的绝对值是()A. 2B. -2C. ±2D.1 2【答案】A【解析】【分析】在数的前面添上或者去掉负号既可以求出绝对值.【详解】解:﹣2的绝对值是2;故选:A.【点睛】本题考查绝对值的定义,数轴上一个点到原点的距离即为这个数的绝对值.2. 下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.【答案】A【解析】【分析】根据轴对称和中心对称的定义逐项判断即可.轴对称图形是把一个图形沿一条直线折叠,直线两旁的部分能够互相重合;中心对称图形是把一个图形绕某一点旋转180°,旋转后的图形能够与原来的图形重合.【详解】A、既是中心对称图形,又是轴对称图形,符合题意;B、是轴对称图形,但不是中心对称图形,不符合题意;C、是轴对称图形,但不是中心对称图形,不符合题意;D、是中心对称图形,但不是轴对称图形,不符合题意;故选:A.【点睛】此题考查中心对称图形和轴对称图形,解决本题的关键是熟练地掌握中心对称图形和轴对称图形的判断方法.3. 下列计算正确的是( )A. ()222a b a b -=-1=C. 1a a a a÷⋅= D. 32361126ab a b ⎛⎫-=- ⎪⎝⎭【答案】B【解析】 【分析】根据完全平方公式、二次根式的化简、同底数幂的乘除法则、积的乘法法则逐项判断即可.【详解】A.222()2a b a ab b -=-+,故本选项错误;1==,故本选项符合题意;C.1111a a a a a ÷⋅=⋅=,故本选项错误;D.23332336111228()()ab a b a b ⨯-=-=-,故本选项错误; 故选:B .【点睛】本题考查了完全平方公式、二次根式化简、同底数幂的乘除法则、积的乘法法则,熟练掌握同底数幂的乘除法则、积的乘法法则是解答本题的关键.4. 如图,直线m n ∥,1100∠=,230∠=︒,则3∠=( )A. 70︒B. 110︒C. 130︒D. 150︒【答案】C【解析】 【分析】设∠1的同位角为为∠4,∠2的对顶角为∠5,根据平行的性质得到∠1=∠4=100°,再根据三角形的外角和定理 即可求解.【详解】设∠1的同位角为为∠4,∠2的对顶角为∠5,如图,的∥,∠1=100°,∵m n∴∠1=∠4=100°,∵∠2=30°,∠2与∠5互为对顶角,∴∠5=∠2=30°,∴∠3=∠4+∠5=100°+30°=130°,故选:C.【点睛】本题考查了平行线的性质、三角形的外角和定理等知识,掌握平行线的性质是解答本题的关键.5. 下列事件中,属于必然事件的是()A. 抛掷硬币时,正面朝上B. 明天太阳从东方升起C. 经过红绿灯路口,遇到红灯D. 玩“石头、剪刀、布”游戏时,对方出“剪刀”【答案】B【解析】【分析】根据随机事件、必然事件的概念即可作答.【详解】A.抛硬币时,正面有可能朝上也有可能朝下,故正面朝上是随机事件;B.太阳从东方升起是固定的自然规律,是不变的,故此事件是必然事件;C.经过路口,有可能出现红灯,也有可能出现绿灯、黄灯,故遇到红灯是随机事件;D.对方有可能出“剪刀”,也有可能出“石头”、“布”,出现对方出“剪刀”随机事假.故选:B.【点睛】本题考查了随机事件、必然事件的概念,充分理解随机事件的概念是解答本题的关键.6. 在学校开展的劳动实践活动中,生物兴趣小组7个同学采摘到西红柿的质量(单位:kg)分别是:5,9,5,6,4,5,7,则这组数据的众数和中位数分别是()A. 6,6B. 4,6C. 5,6D. 5,5 【答案】D【解析】【分析】将这7个数从小到大排列,第4个数就是这组数的中位数.出现次数最多的数即是众数.【详解】将这7个数从小到大排列:4、5、5、5、6、7、9,第4个数5,则这组数的中位数为:5,出现次数最多的数是5,故这组数的众数是5,故选:D .【点睛】本题考查了中位数、众数的定义,充分理解中位数、众数的定义是解答本题的基础.7. 八一中学校九年级2班学生杨冲家和李锐家到学校的直线距离分别是5km 和3km .那么杨冲,李锐两家的直线距离不可能是( )A. 1kmB. 2kmC. 3kmD. 8km【答案】A【解析】【分析】利用构成三角形的条件即可进行解答.【详解】以杨冲家、李锐家以及学校这三点来构造三角形,设杨冲家与李锐家的直线距离为a ,则根据题意有:5-353a +<<,即28a <<,当杨冲家、李锐家以及学校这三点共线时,538a =+=或者532a =-=,综上a 的取值范围为:28a ≤≤,据此可知杨冲家、李锐家的距离不可能是1km ,故选:A .【点睛】本题考查了构成三角形的条件的知识,构成三角的条件:三角形中任意的两边之和大于第三边,任意的两边之差小于第三边.8. 一个圆锥的底面直径是8,母线长是9,则圆锥侧面展开图的面积是( )A. 16πB. 52πC. 36πD. 72π 【答案】C【解析】【分析】首先求得圆锥的底面周长,即侧面的扇形弧长,然后根据扇形的面积公式即可求解.【详解】解:根据题意得:圆锥侧面展开图的弧长为8π, 为∴圆锥侧面展开图的面积是189362ππ⨯⨯=. 故选:C【点睛】本题主要考查了圆锥的计算,正确理解圆锥的侧面展开图是扇形是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.9. 一次函数1y ax =+与反比例函数a y x=-在同一坐标系中的大致图象是( )A. B. C. D.【答案】B【解析】【分析】A 选项可以根据一次函数与y 轴交点判断,其他选项根据图象判断a 的符号,看一次函数和反比例函数判断出a 的符号是否一致;【详解】一次函数与y 轴交点为(0,1),A 选项中一次函数与y 轴交于负半轴,故错误; B 选项中,根据一次函数y 随x 增大而减小可判断a <0,反比例函数过一、三象限,则-a >0,即a <0,两者一致,故B 选项正确;C 选项中,根据一次函数y 随x 增大而增大可判断a >0,反比例函数过一、三象限,则-a >0,即a <0,两者矛盾,故C 选项错误;D 选项中,根据一次函数y 随x 增大而减小可判断a <0,反比例函数过二、四象限,则-a <0,即a >0,两者矛盾,故D 选项错误;故选:B .【点睛】本题考查了一次函数、反比例函数图象共存问题,解决此类题目要熟练掌握一次函数、反比例函数图象与系数的关系.10. 如图,在四边形ABCD 中,点E ,F ,G ,H 分别是AB ,BC ,CD ,DA 边上的中点,则下列结论一定正确的是( )A. 四边形EFGH 是矩形B. 四边形EFGH 的内角和小于四边形ABCD 的内角和C. 四边形EFGH 的周长等于四边形ABCD 的对角线长度之和D. 四边形EFGH 的面积等于四边形ABCD 面积的14 【答案】C【解析】【分析】连接,AC BD ,根据三角形中位线的性质12EH FG BD ==,12EF HG AC ==,,EF AC HG EH BD FG ∥∥∥∥,继而逐项分析判断即可求解. 【详解】解:连接,AC BD ,设交于点O ,点E ,F ,G ,H 分别是AB ,BC ,CD ,DA 边上的中点, ∴12EH FG BD ==,12EF HG AC ==,,EF AC HG EH BD FG ∥∥∥∥A. 四边形EFGH 是平行四边形,故该选项不正确,不符合题意;B. 四边形EFGH 的内角和等于于四边形ABCD 的内角和,都为360°,故该选项不正确,不符合题意;C. 四边形EFGH 的周长等于四边形ABCD 的对角线长度之和,故该选项正确,符合题意;D. 四边形EFGH 的面积等于四边形ABCD 面积的12,故该选项不正确,不符合题意; 故选C【点睛】本题考查了中点四边形的性质,三角形中位线的性质,掌握三角形中位线的性质是解题的关键.11. 关于x 的方程211x a x +=-的解是正数,则a 的取值范围是( ) A. a >-1B. a >-1且a ≠0C. a <-1D. a <-1且a ≠-2【答案】D【解析】 【分析】将分式方程变为整式方程求出解,再根据解为正数且不能为增根,得出答案.【详解】方程左右两端同乘以最小公分母x-1,得2x+a=x-1.解得:x=-a-1且x 为正数.所以-a-1>0,解得a <-1,且a≠-2.(因为当a=-2时,方程不成立.)【点睛】本题难度中等,易错点:容易漏掉了a≠-2这个信息.12. 如图,点E 是ABC 的内心,AE 的延长线和ABC 的外接圆相交于点D ,与BC 相交于点G ,则下列结论:①BAD CAD ∠=∠;②若60BAC ∠=︒,则120∠=︒BEC ;③若点G 为BC 的中点,则90BGD ∠=︒;④BD DE =.其中一定正确的个数是( )A. 1B. 2C. 3D. 4【答案】C【解析】 【分析】根据点E 是ABC 的内心,可得BAD CAD ∠=∠,故①正确;连接BE ,CE ,可得∠ABC +∠ACB =2(∠CBE +∠BCE ),从而得到∠CBE +∠BCE =60°,进而得到∠BEC =120°,故②正确;若点G 为BC 的中点,无法证明△ABG ≌△ACG ,则90BGD ∠=︒不一定成立,故③错误;根据点E 是ABC 的内心和三角形的外角的性质,可得()12BED BAC ABC ∠=∠+∠,再由圆周角定理可得()12DBE BAC ABC ∠=∠+∠,从而得到∠DBE =∠BED ,故④正确;即可求解. 【详解】解:∵点E 是ABC 的内心,∴BAD CAD ∠=∠,故①正确;如图,连接BE ,CE ,∵点E 是ABC 的内心,∴∠ABC =2∠CBE ,∠ACB =2∠BCE ,∴∠ABC +∠ACB =2(∠CBE +∠BCE ),∵∠BAC =60°,∴∠ABC +∠ACB =120°,∴∠CBE +∠BCE =60°,∴∠BEC =120°,故②正确;∵点E 是ABC 的内心,∴BAD CAD ∠=∠,∵点G 为BC 的中点,∴BG =CG ,∵AG =AG ,无法证明△ABG ≌△ACG ,∴∠AGB 不一定等于∠AGC ,即90BGD ∠=︒不一定成立,故③错误;∵点E 是ABC 的内心, ∴11,22BAD CAD BAC ABE CBE ABC ∠=∠=∠∠=∠=∠, ∵∠BED =∠BAD +∠ABE , ∴()12BED BAC ABC ∠=∠+∠, ∵∠CBD =∠CAD ,∴∠DBE =∠CBE +∠CBD =∠CBE +∠CAD , ∴()12DBE BAC ABC ∠=∠+∠, ∴∠DBE =∠BED ,∴BD DE =,故④正确;∴正确的有3个.故选:C【点睛】本题主要考查了三角形内心问题,圆周角定理,三角形的内角和等知识,熟练的掌握三角形的内心问题,圆周角定理,三角形的内角和等知识是解题的关键.第Ⅱ卷(非选择题,共102分)二、填空题(本大题共6个小题,每小题4分,共24分,将答案填在答题卡对应的题号后的横线上)13. 分解因式:2ax a -=______.【答案】a (x +1)(x -1)【解析】【分析】先提公因式a ,再运用平方差公式分解即可.【详解】解:ax 2-a=a (x 2-1)=a (x +1)(x -1)故答案为:a (x +1)(x -1).【点睛】本题考查提公因式法与公式法综合运用,熟练掌握分解因式的提公因式法与公式法两种方法是解题的关键.14. 学校举行物理科技创新比赛,各项成绩均按百分制计,然后按照理论知识占20%,创新设计占50%,现场展示占30%计算选手的综合成绩(百分制),某同学本次比赛的各项成绩分别是:理论知识85分,创新设计88分,现场展示90分,那么该同学的综合成绩是______分.【答案】88【解析】【分析】利用加权平均数的求解方法即可求解.【详解】综合成绩为:85×20%+88×50%+90×30%=88(分),故答案为:88.【点睛】此题主要考查了加权平均数的求法,解题的关键是理解各项成绩所占百分比的含义.15. 已知(x+y )2=25,(x ﹣y )2=9,则xy=___.【答案】4【解析】【分析】根据完全平方公式的运算即可.【详解】∵()225x y +=,()29x y -=∵()2x y ++()2x y -=4xy =16,∴xy =4.【点睛】此题主要考查完全平方公式的灵活运用,解题的关键是熟知完全平方公式的应用. 16. 如图,直角三角形ABC 纸片中,90ACB ∠=︒,点D 是AB 边上的中点,连接CD ,将ACD △沿CD 折叠,点A 落在点E 处,此时恰好有CE AB ⊥.若1CB =,那么CE =______.【解析】【分析】根据D 为AB 中点,得到AD =CD =BD ,即有∠A =∠DCA ,根据翻折的性质有∠DCA =∠DCE ,CE =AC ,再根据CE ⊥AB ,求得∠A =∠BCE ,即有∠BCE =∠ECD =∠DCA =30°,则有∠A =30°,在Rt △ACB 中,即可求出AC ,则问题得解.【详解】∵∠ACB =90°,∴∠A +∠B =90°,∵D 为AB 中点,∴在直角三角形中有AD =CD =BD ,∴∠A =∠DCA ,根据翻折的性质有∠DCA =∠DCE ,CE =AC ,∵CE ⊥AB ,∴∠B +∠BCE =90°,∵∠A +∠B =90°,∴∠A =∠BCE ,∴∠BCE =∠ECD =∠DCA ,∵∠BCE +∠ECD +∠DCA=∠ACB =90°,∴∠BCE =∠ECD =∠DCA =30°∴∠A =30°,∴在Rt △ACB 中,BC =1,则有1tan tan 30BC AC A ===∠o∴CE AC ==【点睛】本题考查了翻折的性质、直角三角形斜边中线的性质、等边对等角以及解直角三角形的知识,求出∠BCE =∠ECD =∠DCA =30°是解答本题的关键.17. 古希腊的毕达哥拉斯学派对整数进行了深入的研究,尤其注意形与数的关系,“多边形数”也称为“形数”,就是形与数的结合物.用点排成的图形如下:其中:图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是123+=,第三个三角形数是1236++=,……图②的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是134+=,第三个正方形数是1359++=,……由此类推,图④中第五个正六边形数是______.【答案】45 【解析】【分析】根据题意找到图形规律,即可求解. 【详解】根据图形,规律如下表:12(1)n +++-L 12(1)n +++-L 12(1)n +++-L 12(1)n +++-L 12(1)n +++-L 12(1)n +++-L 12(1)(3)12(1)n m n +++-⎫⎪-⎬⎪+++-⎭由上表可知第n 个M 边形数为:12)[12(1)]()(3S n n m +++++++-=-L L , 整理得:1)(1)(3)2(2n n n n m S --+=+, 则有第5个正六边形中,n=5,m=6,代入可得:((1)(1)(3)15)55(51)(63)452222n n n S n m +--+--+=+==, 故答案为:45.【点睛】本题考查了整式--图形类规律探索,理解题意是解答本题的关键.18. 如图,已知点()2,3A -,()2,1B ,直线y kx k =+经过点()1,0P -.试探究:直线与线段AB 有交点时k 的变化情况,猜想k 的取值范围是______.【答案】13k ≥或3k ≤-##3k ≤-或13k ≥ 【解析】分析】根据题意,画出图象,可得当x =2时,y ≥1,当x =-2时,y ≥3,即可求解. 【详解】解:如图,观察图象得:当x =2时,y ≥1, 即21k k +≥,解得:13k ≥, 【当x =-2时,y ≥3,即23k k -+≥,解得:3k ≤-, ∴k 的取值范围是13k ≥或3k ≤-. 故答案为:13k ≥或3k ≤- 【点睛】本题主要考查了一次函数的图象和性质,利用数形结合思想解答是解题的关键.三、解答题(本大题共7小题,共78分.解答应写出文字说明、证明过程或推演步骤)19. ())023.143tan 6012π---︒+--. 【答案】14【解析】【分析】根据二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则分别化简后再进行实数的加减法运算. 【详解】解:023.143tan 601())2π-+--︒+-- 1114=+-+14=. 【点睛】此题考查实数的运算法则,正确掌握二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则是解题的关键.20. 据《德阳县志》记载,德阳钟鼓楼始建于明朝成化年间,明末因兵灾焚毁,清乾隆五十二年重建.在没有高层建筑的时代,德阳钟鼓楼一直流传着“半截还在云里头”的故事.1971年,因破四旧再次遭废.现在的钟鼓楼是老钟鼓楼的仿制品,于2005年12月27日破土动工,2007年元旦落成,坐落东山之巅,百尺高楼金碧辉煌,流光溢彩;万丈青壁之间,银光闪烁,蔚为壮观,已经成为人们休闲的打卡胜地.学校数学兴趣小组在开展“数学与传承”探究活动中,进行了“钟鼓楼知识知多少”专题调查活动,将调查问题设置为“非常了解”、“比较了解”、“基本了解”、“不太了解”四类.他们随机抽取部分市民进行问卷调查,并将结果绘制成了如下两幅统计图:(1)设本次问卷调查共抽取了m名市民,图2中“不太了解”所对应扇形的圆心角是n 度,分别写出m,n的值.(2)根据以上调查结果,在12000名市民中,估计“非常了解”的人数有多少?(3)为进一步跟踪调查市民对钟鼓楼知识掌握的具体情况,兴趣组准备从附近的3名男士和2名女士中随机抽取2人进行调查,请用列举法(树状图或列表)求恰好抽到一男一女的概率.【答案】(1)200,7.2(2)3360 (3)3 5【解析】【分析】(1)先用“基本了解”的人数除以其所对应的百分比,可得调查的总人数,再求出“非常了解”的人数,进而得到“不太了解”的人数,最后用“不太了解”的人数所占的百分比乘以360°,即可求解;(2)用12000乘以“非常了解”的人数所占的百分比,即可求解;(3)根据题意,列出表格,可得一共有20种等可能结果,其中恰好抽到一男一女的有12种,再根据概率公式,即可求解.【小问1详解】解:根据题意得:4020%200m=÷=人,∴“非常了解”的人数为20028%56⨯=人,∴“不太了解”的人数为20056100404---=人,∴“不太了解”所对应扇形的圆心角43607.2200⨯︒=︒,即7.2n=;【小问2详解】解:“非常了解”的人数有1200028%3360⨯=人;【小问3详解】解:根据题意,列出表格,如下:男1 男2 男3 女1 女2 男1男2、男1 男3、男1 女1、男1 女2、男1 男2 男1、男2男3、男2 女1、男2 女2、男2 男3 男1、男3 男2、男3女1、男3 女2、男3 女1 男1、女1 男2、女1 男3、女1女2、女1 女2男1、女2男2、女2男3、女2女1、女2一共有20种等可能结果,其中恰好抽到一男一女的有12种, ∴恰好抽到一男一女的概率为123205=. 【点睛】本题主要考查了扇形统计图和条形统计图,用样本估计总体,利用树状图和列表法求概率,明确题意,准确从统计图中获取信息是解题的关键. 21. 如图,一次函数312y x =-+与反比例函数ky x=的图象在第二象限交于点A ,且点A 的横坐标为-2.(1)求反比例函数的解析式;(2)点B 的坐标是()3,0-,若点P 在y 轴上,且AOP 的面积与AOB 的面积相等,求点P 的坐标. 【答案】(1)8y x=-(2)()0,6或()06-,【解析】【分析】(1)将点A 的横坐标代入一次函数解析式,求得点A 的纵坐标,进而将A 的坐标代入反比例函数解析式即可求解.(2)根据三角形面积公式列出方程即可求解. 【小问1详解】一次函数312yx =-+与反比例函数ky x=的图象在第二象限交于点A ,且点A 的横坐标为-2, 当2x =-时,()32142y =-⨯-+=,则()2,4A -, 将()2,4A -代入ky x=,可得8k =-, ∴反比例函数的解析式为8y x=-, 【小问2详解】点B 的坐标是()3,0-,()2,4A -,3BO ∴=,1134622AOB A S BO y ∴=⨯=⨯⨯= , AOP 的面积与AOB 的面积相等,设()0,P p ,112622AOP A S OP x p ∴=⨯=⨯ ,解得6p =或6p =-,()0,6P ∴或()0,6P -.【点睛】本题考查了一次函数与反比例数综合,坐标与图形,求点点A 的坐标是解题的关键.22. 如图,在菱形ABCD 中,60ABC ∠=︒,AB =,过点D 作BC 的垂线,交BC 的延长线于点H .点F 从点B 出发沿BD 方向以2cm/s 向点D 匀速运动,同时,点E从点H 出发沿HD 方向以1cm/s 向点D 匀速运动.设点E ,F 的运动时间为t (单位:s ),且03t <<,过F 作FG BC ⊥于点G ,连结EF .(1)求证:四边形EFGH 是矩形.(2)连结FC ,EC ,点F ,E 在运动过程中,BFC △与DCE 是否能够全等?若能,求出此时t 的值;若不能,请说明理由. 【答案】(1)见解析 (2)BFC △与DCE 能够全等,此时1t =【解析】【分析】(1)根据题意可得2,BF t EH t ==,再根据菱形的性质和直角三角形的性质可得12FG BF t ==,从而得到FG =EH ,再由FG ∥EH ,可得四边形EFGH 是平行四边形,即可求证;(2)根据菱形的性质和直角三角形的性质可得∠CBF =∠CDE ,cos 3DH CD CDE =⋅∠=,然后分两种情况讨论,即可求解.【小问1详解】证明:根据题意得:2,BF t EH t ==, 在菱形ABCD 中,AB =BC ,AC ⊥BD ,OB =OD ,∵∠ABC =60°,AB =,∴AC BC AB ===,∠CBO =30°, ∴12FG BF t ==, ∴FG =EH ,∵FG BC ⊥,DH ⊥BH , ∴FG ∥EH ,∴四边形EFGH 是平行四边形, ∵∠H =90°,∴四边形EFGH 是矩形. 【小问2详解】 解:能,∵AB ∥CD ,∠ABC =60°, ∴∠DCH =60°, ∵∠H =90°,∴∠CDE =30°,∴∠CBF =∠CDE ,cos 3DH CD CDE =⋅∠=, ∴3DE DH EH t =-=-, ∵BC =DC ,∴当∠BFC =∠CED 或∠BFC =∠DCE 时,BFC △与DCE 能够全等, 当∠BFC =∠CED 时,D BFC EC ≅ △,此时BF =DE , ∴23t t =-,解得:t =1;当∠BFC =∠DCE 时,BC 与DE 是对应边, 而3DE DH ≤=,∴BC ≠DE ,则此时不成立;综上所述,BFC △与DCE 能够全等,此时1t =.【点睛】本题主要考查了菱形的性质,矩形的判定,直角三角形的性质,解直角三角形,熟练掌握相关知识点是解题的关键.23. 习近平总书记对实施乡村振兴战略作出重要指示强调:实施乡村振兴战略,是党的十九大作出的重大决策部署,是新时代做好“三农”工作的总抓手.为了发展特色产业,红旗村花费4000元集中采购了A 种树苗500株,B 种树苗400株,已知B 种树苗单价是A 种树苗单价的1.25倍.(1)求A 、B 两种树苗的单价分别是多少元?(2)红旗村决定再购买同样的树苗100株用于补充栽种,其中A 种树苗不多于25株,在单价不变,总费用不超过480元的情况下,共有几种购买方案?哪种方案费用最低?最低费用是多少元?【答案】(1)A 种树苗的单价是4元,则B 种树苗的单价是5元(2)有6种购买方案,购买A 种树苗,25棵,购买B 种树苗75棵费用最低,最低费用是475元. 【解析】【分析】(1)设A 种树苗的单价是x 元,则B 种树苗的单价是1.25x 元,根据“花费4000元集中采购了A 种树苗500株,B 种树苗400株,”列出方程,即可求解;(2)设购买A 种树苗a 棵,则购买B 种树苗(100-a )棵,其中a 为正整数,根据题意,列出不等式组,可得2025a ≤≤,从而得到有6种购买方案,然后设总费用为w 元,根据题意列出函数关系式,即可求解. 【小问1详解】解:设A 种树苗的单价是x 元,则B 种树苗的单价是1.25x 元,根据题意得:500400 1.254000x x +⨯=,解得:4x =,∴1.25x =5,答:A 种树苗的单价是4元,则B 种树苗的单价是5元; 【小问2详解】解:设购买A 种树苗a 棵,则购买B 种树苗(100-a )棵,其中a 为正整数,根据题意得:()02545100480a a a ≤≤⎧⎨+-≤⎩, 解得:2025a ≤≤, ∵a 为正整数,∴a 取20,21,22,23,24,25, ∴有6种购买方案, 设总费用为w 元,∴()45100500w a a a =+-=-+, ∵-1<0,∴w 随a 的增大而减小,∴当a =25时,w 最小,最小值为475, 此时100-a =75,答:有6种购买方案,购买A 种树苗,25棵,购买B 种树苗75棵费用最低,最低费用是475元.【点睛】本题主要考查了一元一次方程的应用,一元一次不等式组的应用,一次函数的应用,明确题意,准确得到数量关系是解题的关键.24. 如图,AB 是O 的直径,CD 是O 的弦,AB CD ⊥,垂足是点H ,过点C 作直线分别与AB ,AD 的延长线交于点E ,F ,且2ECD BAD ∠=∠.(1)求证:CF 是O 的切线; (2)如果10AB =,6CD =, ①求AE 的长; ②求AEF 的面积.【答案】(1)证明过程见详解(2)①454②2258【解析】【分析】(1)连接OC 、BC ,根据垂径定理得到AB 平分弦CD ,AB 平分 CD,即有∠BAD =∠BAC =∠DCB ,再根据∠ECD =2∠BAD ,证得∠BCE =∠BCD ,即有∠BCE =∠BAC ,则有∠ECB =∠OCA ,即可得∠ECB +∠OCB =90°,即有CO ⊥FC ,则问题得证;(2)①利用勾股定理求出OH 、BC 、AC ,在Rt △ECH 中,2223(1)EC BE =++,在Rt △ECO 中,222(5)5EC BE =+-,即可得到5BE 4=,则问题得解; ②过F 点作FP ⊥AB ,交AE 的延长线于点P ,先证△PAF ∽△HAC ,再证明△PEF ∽△HEC ,即可求出PF ,则△PEF 的面积可求. 【小问1详解】 连接OC 、BC ,如图,∵AB 是⊙O 的直径, ∴∠ACB =90°,AO =OB , ∵AB ⊥CD ,∴AB 平分弦CD ,AB 平分 CD, ∴CH =HD , BCBD =,∠CHA =90°=∠CHE , ∴∠BAD =∠BAC =∠DCB , ∵∠ECD =2∠BAD , ∴∠ECD =2∠BAD =2∠BCD , ∵∠ECD=∠ECB +∠BCD , ∴∠BCE =∠BCD , ∴∠BCE =∠BAC , ∵OC =OA , ∴∠BAC =∠OCA ,∵∠ACB =90°=∠OCA +∠OCB ,∴∠ECB +∠OCB =90°,∴CO ⊥FC ,∴CF 是⊙O 的切线;【小问2详解】①∵AB =10,CD =6,∴在(1)的结论中有AO =OB =5,CH =HD =3,∴在Rt △OCH 中,4OH ===,同理利用勾股定理,可求得BC =AC =,∴BH =OB -OH =5-4=1,HA =OA +OH =4+5=9,即HE =BH +BE ,在Rt △ECH 中,222223(1)EC HC HE BE =+=++,∵CF 是⊙O 的切线,∴∠OCB =90°,∴在Rt △ECO 中,2222222()5(5)5EC OE OC OB BE BE =-=+-=+-,∴2222(5)53(1)BE BE =+-++, 解得:5BE 4=, ∴5451044AE AB BE =+=+= ②过F 点作FP ⊥AB ,交AE 的延长线于点P ,如图,∵∠BAD =∠CAB ,∠CHA =90°=∠P ,∴△PAF ∽△HAC , ∴PF AP HC HA =,即39PF AP =, ∴3PF AP =,∵∠PEF =∠CEH ,∠CHB =90°=∠P ,∴PE PF HE HC=,即3PA AE PF HB BE -=+, ∵HB =1,5BE 4=,454AE =,3PF AP =, ∴45345314PF PF -=+, 解得:5PF =, ∴114522552248AEF S AE PF =⨯⨯=⨯⨯=△, 故△AEF 的面积为2258. 【点睛】本题主要考查了垂径定理、切线的判定与性质、相似三角形的判定与性质、勾股定理等知识,掌握垂径定理是解答本题的关键.利用相似三角形的性质是解题的难点. 25. 抛物线的解析式是24y x x a =-++.直线2y x =-+与x 轴交于点M ,与y 轴交于点E ,点F 与直线上的点()5,3G -关于x 轴对称.(1)如图①,求射线MF 的解析式;(2)在(1)的条件下,当抛物线与折线EMF 有两个交点时,设两个交点的横坐标是x 1,x 2(12x x <),求12x x +的值;(3)如图②,当抛物线经过点()0,5C 时,分别与x 轴交于A ,B 两点,且点A 在点B 的左侧.在x 轴上方的抛物线上有一动点P ,设射线AP 与直线2y x =-+交于点N .求PN AN的最大值. 【答案】(1)2y x =-,2x ≥(2)4(3)3712【解析】 【分析】(1)先求出直线2y x =-+与坐标轴的交点M 、E 的坐标,根据G (5,-3)、F 关于x 轴对称求出F 点坐标,再利用待定系数法即可求解;(2)求出抛物线的对称轴x =2,可确定M 点在抛物线对称轴上,可确定抛物线24y x x a =-++与折线EMF 的两个交点,必然是一个点落在射线ME 上,一个点落在射线MF ,即可得到211122224242x x a x x x a x ⎧-++=-+⎨-++=-⎩①②,①-②,得到1212(1)[4()]0x x x x ---+=,则问题得解;(3)先求出抛物线的解析式,再求出抛物线与x 轴的交点A 、B 坐标,设P 点坐标为2(,45)a a a -++,根据A 、P 的坐标求出直线AP 的解析式,即可求出AP 与ME 的交点N 的坐标,即可用含a 的代数式表示出2AN 和2PN ,即可得到22375()423533a PN A a a N --=-+=+,则问题得解. 【小问1详解】∵直线2y x =-+与坐标轴交于点M 、E ,∴令x =0时,y =2;令y =0时,x =2,∴M 点坐标为(2,0),E 点坐标为(0,2),∵G (5,-3),且点G 、F 关于x 轴对称,∴F (5,3),设射线MF 的解析式为y kx b =+,2x ≥,∵M 点坐标为(2,0),F (5,3),∴ 2053k b k b +=⎧⎨+=⎩,解得:12k b =⎧⎨=-⎩, ∴射线MF 的解析式为2y x =-,2x ≥,【小问2详解】根据题意可知射线ME 的解析式为:2y x =-+,2x ≤,在(1)中已求得射线MF 的解析式为2y x =-,2x ≥,∵24y x x a =-++的对称轴为x =2,又∵M 点(2,0),∴M 点刚好在24y x x a =-++的对称轴为x =2上,∴抛物线24y x x a =-++与折线EMF 的两个交点,必然是一个点落在射线ME 上,一个点落在射线MF ,∵12x x <,∴此时交点的坐标为11(,2)x x -+、22(,2)x x -,且12x ≤、22x ≥,∵11(,2)x x -+、22(,2)x x -在抛物线24y x x a =-++上, ∴211122224242x x a x x x a x ⎧-++=-+⎨-++=-⎩①②, 由①-②,得:221212124()4x x x x x x -++-=--,整理得:1212(1)[4()]0x x x x ---+=∵12x ≤、22x ≥,∴121x x +<,∴1210x x --<,∴124()0x x -+=,∴124x x +=;【小问3详解】 ∵抛物线24y x x a =-++过点C (0,5),∴代入C 点坐标可得a =5,∴抛物线解析式245y x x =-+,令y =0,得2450x x -++=,解得:1-1x =,25x =,∴A 点坐标(-1,0)、B 点坐标为(5,0),∵P 点在抛物线245y x x =-++上,∴设P 点坐标为2(,45)a a a -++,显然A 、P 不重合,即a ≠-1,∵P 点在x 轴上方,∴15a -<<,设直线AP 的解析式为y kx b =+,∴即有2045k b ka b a a -+=⎧⎨+=-++⎩,解得55k a b a =-⎧⎨=-⎩, 即直线AP 的解析式为:(5)(5)y a x a =-+-,为联立(5)(5)2y a x a y x =-+-⎧⎨=-+⎩,解得361536a x a a y a -⎧=⎪⎪-⎨-⎪=⎪-⎩, ∴N 点坐标为315(6)3,6a a a a----, ∵P 点坐标为2(,45)a a a -++,A 点坐标(-1,0), ∴2222231539[(5)1]166()((6)a a a a a a AN ---+=+--+=-, ∴2222222223153(53)(5)14566(6[]()()a a a a P a a N a a a a a ---++-+-++---=-=-+, ∴22222222222(53)(5)1(53)(6)9[(5)1](6)[]9a a a a a a a a PN AN -++-+-++=+=---, ∴222222(5375[()]3)4299a PN AN a a --==-++, ∵15a -<<,且通过图像可知,只有当P 点在直线ME 上方时,PN AN的值才有可能取得最大值,∴2452x x x -++-+>,即2530x x -++>,∴即有2530a a -++>, ∴22375()423533a PN A a a N --=-+=+, ∴当52a =时,PN AN 取的最大值,且最大值为:23755()37422312PN AN --==, 即PN AN 的最大值为3712. 【点睛】本题考查了用待定系数法求解析式、抛物线与一元二次方程的根的知识、勾股定理、二次函数求最值等知识,本题的计算量较大,仔细化简所表示出2AN 和2PN 的代数式是解答本题的关键。
2018年四川省德阳市中考数学试卷(work解析版)
2018年四川省德阳市中考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分)1.(3分)如果把收入100元记作+100元,那么支出80元记作()A.+20元B.+100元C.+80元D.﹣80元2.(3分)下列计算或运算中,正确的是()A.a6÷a2=a3B.(﹣2a2)3=﹣8a3C.(a﹣3)(3+a)=a2﹣9D.(a﹣b)2=a2﹣b23.(3分)如图,直线a∥b,c,d是截线且交于点A,若∠1=60°,∠2=100°,则∠A=()A.40°B.50°C.60°D.70°4.(3分)下列计算或运算中,正确的是()A.2=B .﹣=C.6÷2=3D.﹣3=5.(3分)把实数6.12×10﹣3用小数表示为()A.0.0612B.6120C.0.00612D.6120006.(3分)下列说法正确的是()A.“明天降雨的概率为50%”,意味着明天一定有半天都在降雨B.了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查)方式C.掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是必然事件D.一组数据的方差越大,则这组数据的波动也越大7.(3分)受央视《朗读者》节目的启发的影响,某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()A .2,1B .1,1.5C .1,2D .1,18.(3分)如图是一个几何体的三视图,根据图中数据计算这个几何体的表面积是( )A .16πB .12πC .10πD .4π9.(3分)已知圆内接正三角形的面积为,则该圆的内接正六边形的边心距是( ) A .2 B .1 C . D .10.(3分)如图,将边长为的正方形绕点B 逆时针旋转30°,那么图中阴影部分的面积为( )A .3B .C .3﹣D .3﹣11.(3分)如果关于x 的不等式组的整数解仅有x=2、x=3,那么适合这个不等式组的整数a 、b 组成的有序数对(a ,b )共有( )A .3个B .4个C .5个D .6个12.(3分)如图,四边形AOEF 是平行四边形,点B 为OE 的中点,延长FO 至点C ,使FO=3OC ,连接AB 、AC 、BC ,则在△ABC 中S △ABO :S △AOC :S △BOC =( )A.6:2:1B.3:2:1C.6:3:2D.4:3:2二、填空题(每小题3分,共15分)13.(3分)分解因式:2xy2+4xy+2x=.14.(3分)已知一组数据10,15,10,x,18,20的平均数为15,则这组数据的方差为.15.(3分)如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子的数为.16.(3分)如图,点D为△ABC的AB边上的中点,点E为AD的中点,△ADC为正三角形,给出下列结论,①CB=2CE,②tan∠B=,③∠ECD=∠DCB,④若AC=2,点P是AB上一动点,点P到AC、BC边的距离分别为d1,d2,则d12+d22的最小值是3.其中正确的结论是(填写正确结论的番号).17.(3分)已知函数y=使y=a成立的x的值恰好只有3个时,a的值为.三、解答题(共69分.解答应写出文字说明、证明过程或推演步骤)18.(6分)计算:+()﹣3﹣(3)0﹣4cos30°+.19.(7分)如图,点E、F分别是矩形ABCD的边AD、AB上一点,若AE=DC=2ED,且EF⊥EC.(1)求证:点F为AB的中点;(2)延长EF与CB的延长线相交于点H,连结AH,已知ED=2,求AH的值.20.(11分)某网络约车公司近期推出了”520专享”服务计划,即要求公司员工做到“5星级服务、2分钟响应、0客户投诉”,为进一步提升服务品质,公司监管部门决定了解“单次营运里程”的分布情况.老王收集了本公司的5000个“单次营运里程”数据,这些里程数据均不超过25(公里),他从中随机抽取了200个数据作为一个样本,整理、统计结果如下表,并绘制了不完整的频数分布直方图(如图).根据统计表、图提供的信息,解答下面的问题:(1)①表中a=;②样本中“单次营运里程”不超过15公里的频率为;③请把频数分布直方图补充完整;(2)请估计该公司这5000个“单次营运里程”超过20公里的次数;(3)为缓解城市交通压力,维护交通秩序,来自某市区的4名网约车司机(3男1女)成立了“交通秩序维护”志愿小分队,若从该小分队中任意抽取两名司机在某一路口维护交通秩序,请用列举法(画树状图或列表)求出恰好抽到“一男一女”的概率.21.(10分)如图,在平面直角坐标系中,直线y1=kx+b(k≠0)与双曲线y2=(a≠0)交于A、B两点,已知点A(m,2),点B(﹣1,﹣4).(1)求直线和双曲线的解析式;(2)把直线y1沿x轴负方向平移2个单位后得到直线y3,直线y3与双曲线y2交于D、E两点,当y2>y3时,求x的取值范围.22.(10分)为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A、B两个工程公司承担建设,已知A工程公司单独建设完成此项工程需要180天,A工程公司单独施工45天后,B工程公司参与合作,两工程公司又共同施工54天后完成了此项工程.(1)求B工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划包成两部分,要求两工程公司同时开工,A工程公司建设其中一部分用了m天完成,B工程公司建设另一部分用了n天完成,其中m,n均为正整数,且m<46,n<92,求A、B两个工程公司各施工建设了多少天?23.(11分)如图,在直角三角形ABC中,∠ACB=90°,点H是△ABC的内心,AH的延长线和三角形ABC的外接圆O相交于点D,连结DB.(1)求证:DH=DB;(2)过点D作BC的平行线交AC、AB的延长线分别于点E、F,已知CE=1,圆O的直径为5.①求证:EF为圆O的切线;②求DF的长.24.(14分)如图,在等腰直角三角形ABC中,∠BAC=90°,点A在x轴上,点B在y轴上,点C(3,1),二次函数y=x2+bx﹣的图象经过点C.(1)求二次函数的解析式,并把解析式化成y=a(x﹣h)2+k的形式;(2)把△ABC沿x轴正方向平移,当点B落在抛物线上时,求△ABC扫过区域的面积;(3)在抛物线上是否存在异于点C的点P,使△ABP是以AB为直角边的等腰直角三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.2018年四川省德阳市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分)1.(3分)如果把收入100元记作+100元,那么支出80元记作()A.+20元B.+100元C.+80元D.﹣80元【解答】解:如果收入100元记作+100元,那么支出80元记作﹣80元,故选:D.2.(3分)下列计算或运算中,正确的是()A.a6÷a2=a3B.(﹣2a2)3=﹣8a3C.(a﹣3)(3+a)=a2﹣9D.(a﹣b)2=a2﹣b2【解答】解:A、a6÷a2=a4,此选项错误;B、(﹣2a2)3=﹣8a6,此选项错误;C、(a﹣3)(3+a)=a2﹣9,此选项正确;D、(a﹣b)2=a2﹣2ab+b2,此选项错误;故选:C.3.(3分)如图,直线a∥b,c,d是截线且交于点A,若∠1=60°,∠2=100°,则∠A=()A.40°B.50°C.60°D.70°【解答】解法一:如图,∵∠2是△ABC的外角,∴∠A=∠2﹣∠1=100°﹣60°=40°,故选:A.解法二:如图,∵a∥b,∴∠1=∠3=60°,∠2=∠4=100°,∴∠5=180°﹣∠4=80°,∴∠A=180°﹣∠3﹣∠5=180°﹣60°﹣80°=40°,故选:A.4.(3分)下列计算或运算中,正确的是()A.2=B.﹣=C.6÷2=3D.﹣3=【解答】解:A、2=2×=,此选项错误;B、﹣=3﹣2=,此选项正确;C、6÷2=3,此选项错误;D、﹣3=﹣,此选项错误;故选:B.5.(3分)把实数6.12×10﹣3用小数表示为()A.0.0612B.6120C.0.00612D.612000【解答】解:6.12×10﹣3=0.00612,故选:C.6.(3分)下列说法正确的是()A.“明天降雨的概率为50%”,意味着明天一定有半天都在降雨B.了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查)方式C.掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是必然事件D.一组数据的方差越大,则这组数据的波动也越大【解答】解:A、明天降雨的概率是50%表示明天有可能降雨,此选项错误;B、了解全国快递包裹产生的包装垃圾数量适合采用抽样调查方式,此选项错误;C、掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是随机事件,此选项错误;D、一组数据的方差越大,则这组数据的波动也越大,此选项正确;故选:D.7.(3分)受央视《朗读者》节目的启发的影响,某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()A.2,1B.1,1.5C.1,2D.1,1【解答】解:由表格可得,全班学生平均每天阅读时间的中位数和众数分别是1、1.5,故选:B.8.(3分)如图是一个几何体的三视图,根据图中数据计算这个几何体的表面积是()A.16πB.12πC.10πD.4π【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6,底面半径为2,故表面积=πrl+πr2=π×2×6+π×22=16π,故选:A.9.(3分)已知圆内接正三角形的面积为,则该圆的内接正六边形的边心距是()A.2B.1C.D.【解答】解:因为圆内接正三角形的面积为,所以圆的半径为,所以该圆的内接正六边形的边心距×sin60°=,故选:B.10.(3分)如图,将边长为的正方形绕点B逆时针旋转30°,那么图中阴影部分的面积为()A.3B.C.3﹣D.3﹣【解答】解:连接BM,在△ABM和△C′BM中,,∴△ABM≌△C′BM,∠2=∠3==30°,在△ABM中,AM=×tan30°=1,S△ABM==,正方形的面积为:=3,阴影部分的面积为:3﹣2×=3﹣,故选:C.11.(3分)如果关于x的不等式组的整数解仅有x=2、x=3,那么适合这个不等式组的整数a、b组成的有序数对(a,b)共有()A.3个B.4个C.5个D.6个【解答】解:解不等式2x ﹣a ≥0,得:x ≥,解不等式3x ﹣b ≤0,得:x ≤,∵不等式组的整数解仅有x=2、x=3,则1≤2、3<4,解得:2<a ≤4、9≤b <12,则a=3时,b=9、10、11;当a=4时,b=9、10、11;所以适合这个不等式组的整数a 、b 组成的有序数对(a ,b )共有6个,故选:D .12.(3分)如图,四边形AOEF 是平行四边形,点B 为OE 的中点,延长FO 至点C ,使FO=3OC ,连接AB 、AC 、BC ,则在△ABC 中S △ABO :S △AOC :S △BOC =( )A .6:2:1B .3:2:1C .6:3:2D .4:3:2【解答】解:连接BF .设平行四边形AFEO 的面积为4m .∵FO :OC=3:1,BE=OB ,AF ∥OE∴S △OBF =S △AOB =m ,S △OBC =m ,S △AOC =, ∴S △AOB :S △AOC :S △BOC =m ::m=3:2:1 故选:B .二、填空题(每小题3分,共15分)13.(3分)分解因式:2xy 2+4xy +2x= 2x (y +1)2 .【解答】解:原式=2x (y 2+2y +1)=2x (y +1)2,故答案为:2x (y +1)214.(3分)已知一组数据10,15,10,x ,18,20的平均数为15,则这组数据的方差为 .【解答】解:∵数据10,15,10,x,18,20的平均数为15,∴=15,解得:x=17,则这组数据为10,15,10,17,18,20,∴这组数据的方差是:[2×(10﹣15)2+(15﹣15)2+(17﹣15)2+(18﹣15)2+(20﹣15)2]=,故答案为:.15.(3分)如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子的数为﹣1.【解答】解:∵任意三个相邻格子中所填整数之和都相等,∴a+b+c=b+c+(﹣1),3+(﹣1)+b=﹣1+b+c,∴a=﹣1,c=3,∴数据从左到右依次为3、﹣1、b、3、﹣1、b,∵第9个数与第3个数相同,即b=2,∴每3个数“3、﹣1、2”为一个循环组依次循环,∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为﹣1.故答案为:﹣1.16.(3分)如图,点D为△ABC的AB边上的中点,点E为AD的中点,△ADC为正三角形,给出下列结论,①CB=2CE,②tan∠B=,③∠ECD=∠DCB,④若AC=2,点P是AB上一动点,点P到AC、BC边的距离分别为d1,d2,则d12+d22的最小值是3.其中正确的结论是①③④(填写正确结论的番号).【解答】解:∵D是AB中点∴AD=BD∵△ACD是等边三角形,E是AD中点∴AD=CD,∠ADC=60°=∠ACD,CE⊥AB,∠DCE=30°∴CD=BD∴∠B=∠DCB=30°,且∠DCE=30°,CE⊥AB∴∠ECD=∠DCB,BC=2CE,tan∠B=故①③正确,②错误∵∠DCB=30°,∠ACD=60°∴∠ACB=90°若AC=2,点P是AB上一动点,点P到AC、BC边的距离分别为d1,d2,∴四边形PMCN是矩形∴MN=CP∵d12+d22=MN2=CP2∴当CP为最小值,d12+d22的值最小∴根据垂线段最短,则当CP⊥AB时,d12+d22的值最小此时:∠CAB=60°,AC=2,CP⊥AB∴CP=∴d12+d22=MN2=CP2=3即d12+d22的最小值为3故④正确故答案为①③④17.(3分)已知函数y=使y=a成立的x的值恰好只有3个时,a的值为2.【解答】解:函数y=的图象如图:根据图象知道当y=2时,对应成立的x值恰好有三个,∴a=2.故答案:2.三、解答题(共69分.解答应写出文字说明、证明过程或推演步骤)18.(6分)计算:+()﹣3﹣(3)0﹣4cos30°+.【解答】解:原式=3+8﹣1﹣4×+2=10﹣2+2=10.19.(7分)如图,点E、F分别是矩形ABCD的边AD、AB上一点,若AE=DC=2ED,且EF⊥EC.(1)求证:点F为AB的中点;(2)延长EF与CB的延长线相交于点H,连结AH,已知ED=2,求AH的值.【解答】(1)证明:∵EF⊥EC,∴∠CEF=90°,∴∠AEF+∠DEC=90°,∵四边形ABCD是矩形,∴∠AEF+∠AFE=90°,∠DEC+∠DCE=90°,∴∠AEF=∠DCE,∠AFE=∠DEC,∵AE=DC,∴△AEF≌△DCE.∴ED=AF,∵AE=DC=AB=2DE,∴AB=2AF,∴F为AB的中点;(2)解:由(1)知AF=FB,且AE∥BH,∴∠FBH=∠FAE=90°,∠AEF=∠FHB,∴△AEF≌△BHF,∴HB=AE,∵ED=2,且AE=2ED,∴AE=4,∴HB=AB=AE=4,∴AH2=AB2+BH2=16+16=32,∴AH=.20.(11分)某网络约车公司近期推出了”520专享”服务计划,即要求公司员工做到“5星级服务、2分钟响应、0客户投诉”,为进一步提升服务品质,公司监管部门决定了解“单次营运里程”的分布情况.老王收集了本公司的5000个“单次营运里程”数据,这些里程数据均不超过25(公里),他从中随机抽取了200个数据作为一个样本,整理、统计结果如下表,并绘制了不完整的频数分布直方图(如图).根据统计表、图提供的信息,解答下面的问题:(1)①表中a=48;②样本中“单次营运里程”不超过15公里的频率为0.73;③请把频数分布直方图补充完整;(2)请估计该公司这5000个“单次营运里程”超过20公里的次数;(3)为缓解城市交通压力,维护交通秩序,来自某市区的4名网约车司机(3男1女)成立了“交通秩序维护”志愿小分队,若从该小分队中任意抽取两名司机在某一路口维护交通秩序,请用列举法(画树状图或列表)求出恰好抽到“一男一女”的概率.【解答】解:(1)①由条形图知a=48;②样本中“单次营运里程”不超过15公里的频率为=0.73;③补全图形如下:故答案为:①48;②0.73;(2)估计该公司这5000个“单次营运里程”超过20公里的次数为5000×=750次;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到一男一女的结果数为6,∴恰好抽到“一男一女”的概率为=.21.(10分)如图,在平面直角坐标系中,直线y1=kx+b(k≠0)与双曲线y2=(a≠0)交于A、B两点,已知点A(m,2),点B(﹣1,﹣4).(1)求直线和双曲线的解析式;(2)把直线y1沿x轴负方向平移2个单位后得到直线y3,直线y3与双曲线y2交于D、E两点,当y2>y3时,求x的取值范围.【解答】解:(1)∵点B(﹣1,﹣4)在双曲线y2=(a≠0)上,∴a=(﹣1)×(﹣4)=4,∴双曲线的解析式为:.∵点A(m,2)在双曲线上,∴2m=4,∴m=2,∴点A的坐标为:(2,2)∵点A(m,2),点B(﹣1,﹣4)在直线y1=kx+b(k≠0)上,∴解得:∴直线的解析式为:y1=2x﹣2.(2)∵把直线y1沿x轴负方向平移2个单位后得到直线y3,∴y2=2(x+2)﹣2=2x+2,解方程组得:或,∴点D(1,4),点E(﹣2,﹣2),∴由函数图象可得:当y2>y3时,x的取值范围为:x<﹣2或0<x<1.22.(10分)为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A、B两个工程公司承担建设,已知A工程公司单独建设完成此项工程需要180天,A工程公司单独施工45天后,B工程公司参与合作,两工程公司又共同施工54天后完成了此项工程.(1)求B工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划包成两部分,要求两工程公司同时开工,A工程公司建设其中一部分用了m天完成,B工程公司建设另一部分用了n天完成,其中m,n均为正整数,且m<46,n<92,求A、B两个工程公司各施工建设了多少天?【解答】解:(1)设B工程公司单独完成需要x天,根据题意得:45×+54(+)=1,解得:x=120,经检验x=120是分式方程的解,且符合题意,答:B工程公司单独完成需要120天;(2)根据题意得:m×+n×=1,整理得:n=120﹣m,∵m<46,n<92,∴120﹣m<92,解得42<m<46,∵m为正整数,∴m=43,44,45,又∵120﹣m为正整数,∴m=45,n=90,答:A、B两个工程公司各施工建设了45天和90天.23.(11分)如图,在直角三角形ABC中,∠ACB=90°,点H是△ABC的内心,AH的延长线和三角形ABC的外接圆O相交于点D,连结DB.(1)求证:DH=DB;(2)过点D作BC的平行线交AC、AB的延长线分别于点E、F,已知CE=1,圆O的直径为5.①求证:EF为圆O的切线;②求DF的长.【解答】解:(1)证明:连接HB,∵点H是△ABC的内心,∴∠DAC=∠DAB,∠ABH=∠CBH,∵∠DBC=∠DAC,∴∠DHB=∠DAB+∠ABH=∠DAC+∠CBH,∵∠DBH=∠DBC+∠CBH,∴∠DHB=∠DBH,∴DH=DB;(2)①连接OD,∵∠DOB=2∠DAB=∠BAC∴OD∥AC,∵AC⊥BC,BC∥EF,∴AC⊥EF,∴OD⊥EF,∵点D在⊙O上,∴EF是⊙O的切线;②过点D作DG⊥AB于G,∵∠EAD=∠DAB,∴DE=DG,∵DC=DB,∠CED=∠DGB=90°,∴△CDE≌△BDG,∴GB=CE=1,在Rt△ADB中,DG⊥AB,∴∠DAB=∠BDG,∵∠DBG=∠ABD,∴△DBG∽△ABD,∴,∴DB2=AB•BG=5×1=5,∴DB=,DG=2,∴ED=2,∵H是内心,∴AE=AG=4,∵DO∥AE,∴△OFD∽△AFE,∴,∴,∴DF=.24.(14分)如图,在等腰直角三角形ABC中,∠BAC=90°,点A在x轴上,点B在y轴上,点C(3,1),二次函数y=x2+bx﹣的图象经过点C.(1)求二次函数的解析式,并把解析式化成y=a(x﹣h)2+k的形式;(2)把△ABC沿x轴正方向平移,当点B落在抛物线上时,求△ABC扫过区域的面积;(3)在抛物线上是否存在异于点C的点P,使△ABP是以AB为直角边的等腰直角三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.【解答】解:(1)∵点C(3,1)在二次函数的图象上,∴x2+bx﹣=1,解得:b=﹣,∴二次函数的解析式为y=x2﹣x﹣y=x2﹣x﹣=(x2﹣x+﹣)﹣=(x﹣)2﹣(2)作CK⊥x轴,垂足为K.∵△ABC为等腰直角三角形,∴AB=AC.又∵∠BAC=90°,∴∠BAO+∠CAK=90°.又∵∠CAK+∠ACK=90°,∴∠BAO=∠ACK.在△BAO和△ACK中,∠BOA=∠AKC,∠BAO=∠ACK,AB=AC,∴△BAO≌△ACK.∴OA=CK=1,OB=AK=2.∴A(1,0),B(0,2).∴当点B平移到点D时,D(m,2),则2=m2﹣m﹣,解得m=﹣3(舍去)或m=.∴AB==.∴△ABC扫过区域的面积=S四边形ABDE +S△DEH=×2+××=9.5(3)当∠ABP=90°时,过点P作PG⊥y轴,垂足为G.∵△APB为等腰直角三角形,∴PB=AB,∠PBA=90°.∴∠PBG+∠BAO=90°.又∵∠PBG+∠BPG=90°,∴∠BAO=∠BPG.在△BPG和△ABO中,∠BOA=∠PGB,∠BAO=∠BPG,AB=PB,∴△BPG≌△ABO.∴PG=OB=2,AO=BG=1,∴P(﹣2,1).当x=﹣2时,y≠1,∴点P(﹣2,1)不在抛物线上.当∠PAB=90°,过点P作PF⊥x轴,垂足为F.同理可知:△PAF≌△ABO,∴FP=OA=1,AF=OB=2,∴P(﹣1,﹣1).当x=﹣1时,y=﹣1,∴点P(﹣1,﹣1)在抛物线上.。
2018年四川省德阳市中考数学试卷含解析(完美打印版)
2018年四川省德阳市中考数学试卷(含解析)一、选择题(本大题共12个小题,每小题3分,共36分)1.(3分)如果把收入100元记作+100元,那么支出80元记作()A.+20元B.+100元C.+80元D.﹣80元2.(3分)下列计算或运算中,正确的是()A.a6÷a2=a3B.(﹣2a2)3=﹣8a3C.(a﹣3)(3+a)=a2﹣9D.(a﹣b)2=a2﹣b23.(3分)如图,直线a∥b,c,d是截线且交于点A,若∠1=60°,∠2=100°,则∠A=()A.40°B.50°C.60°D.70°4.(3分)下列计算或运算中,正确的是()A.2=B.﹣=C.6÷2=3D.﹣3=5.(3分)把实数6.12×10﹣3用小数表示为()A.0.0612B.6120C.0.00612D.6120006.(3分)下列说法正确的是()A.“明天降雨的概率为50%”,意味着明天一定有半天都在降雨B.了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查)方式C.掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是必然事件D.一组数据的方差越大,则这组数据的波动也越大7.(3分)受央视《朗读者》节目的启发的影响,某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()A.2,1B.1,1.5C.1,2D.1,18.(3分)如图是一个几何体的三视图,根据图中数据计算这个几何体的表面积是()A.16πB.12πC.10πD.4π9.(3分)已知圆内接正三角形的面积为,则该圆的内接正六边形的边心距是()A.2B.1C.D.10.(3分)如图,将边长为的正方形绕点B逆时针旋转30°,那么图中阴影部分的面积为()A.3B.C.3﹣D.3﹣11.(3分)如果关于x的不等式组的整数解仅有x=2、x=3,那么适合这个不等式组的整数a、b组成的有序数对(a,b)共有()A.3个B.4个C.5个D.6个12.(3分)如图,四边形AOEF是平行四边形,点B为OE的中点,延长FO至点C,使FO=3OC,连接AB、AC、BC,则在△ABC中S△ABO:S△AOC:S△BOC=()A.6:2:1B.3:2:1C.6:3:2D.4:3:2二、填空题(每小题3分,共15分)13.(3分)分解因式:2xy2+4xy+2x=.14.(3分)已知一组数据10,15,10,x,18,20的平均数为15,则这组数据的方差为.15.(3分)如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子的数为.16.(3分)如图,点D为△ABC的AB边上的中点,点E为AD的中点,△ADC为正三角形,给出下列结论,①CB=2CE,②tan∠B=,③∠ECD=∠DCB,④若AC=2,点P是AB上一动点,点P到AC、BC边的距离分别为d1,d2,则d12+d22的最小值是3.其中正确的结论是(填写正确结论的番号).17.(3分)已知函数y=使y=a成立的x的值恰好只有3个时,a的值为.三、解答题(共69分.解答应写出文字说明、证明过程或推演步骤)18.(6分)计算:+()﹣3﹣(3)0﹣4cos30°+.19.(7分)如图,点E、F分别是矩形ABCD的边AD、AB上一点,若AE=DC=2ED,且EF⊥EC.(1)求证:点F为AB的中点;(2)延长EF与CB的延长线相交于点H,连结AH,已知ED=2,求AH的值.20.(11分)某网络约车公司近期推出了”520专享”服务计划,即要求公司员工做到“5星级服务、2分钟响应、0客户投诉”,为进一步提升服务品质,公司监管部门决定了解“单次营运里程”的分布情况.老王收集了本公司的5000个“单次营运里程”数据,这些里程数据均不超过25(公里),他从中随机抽取了200个数据作为一个样本,整理、统计结果如下表,并绘制了不完整的频数分布直方图(如图).根据统计表、图提供的信息,解答下面的问题:(1)①表中a=;②样本中“单次营运里程”不超过15公里的频率为;③请把频数分布直方图补充完整;(2)请估计该公司这5000个“单次营运里程”超过20公里的次数;(3)为缓解城市交通压力,维护交通秩序,来自某市区的4名网约车司机(3男1女)成立了“交通秩序维护”志愿小分队,若从该小分队中任意抽取两名司机在某一路口维护交通秩序,请用列举法(画树状图或列表)求出恰好抽到“一男一女”的概率.21.(10分)如图,在平面直角坐标系中,直线y1=kx+b(k≠0)与双曲线y2=(a≠0)交于A、B两点,已知点A(m,2),点B(﹣1,﹣4).(1)求直线和双曲线的解析式;(2)把直线y1沿x轴负方向平移2个单位后得到直线y3,直线y3与双曲线y2交于D、E两点,当y2>y3时,求x的取值范围.22.(10分)为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A、B两个工程公司承担建设,已知A工程公司单独建设完成此项工程需要180天,A工程公司单独施工45天后,B工程公司参与合作,两工程公司又共同施工54天后完成了此项工程.(1)求B工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划包成两部分,要求两工程公司同时开工,A工程公司建设其中一部分用了m天完成,B工程公司建设另一部分用了n天完成,其中m,n 均为正整数,且m<46,n<92,求A、B两个工程公司各施工建设了多少天?23.(11分)如图,在直角三角形ABC中,∠ACB=90°,点H是△ABC的内心,AH的延长线和三角形ABC的外接圆O相交于点D,连结DB.(1)求证:DH=DB;(2)过点D作BC的平行线交AC、AB的延长线分别于点E、F,已知CE=1,圆O的直径为5.①求证:EF为圆O的切线;②求DF的长.24.(14分)如图,在等腰直角三角形ABC中,∠BAC=90°,点A在x轴上,点B在y轴上,点C(3,1),二次函数y=x2+bx﹣的图象经过点C.(1)求二次函数的解析式,并把解析式化成y=a(x﹣h)2+k的形式;(2)把△ABC沿x轴正方向平移,当点B落在抛物线上时,求△ABC扫过区域的面积;(3)在抛物线上是否存在异于点C的点P,使△ABP是以AB为直角边的等腰直角三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.2018年四川省德阳市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分)1.(3分)如果把收入100元记作+100元,那么支出80元记作()A.+20元B.+100元C.+80元D.﹣80元【分析】根据题意得出:收入记作为正,支出记作为负,表示出来即可.【解答】解:如果收入100元记作+100元,那么支出80元记作﹣80元,故选:D.2.(3分)下列计算或运算中,正确的是()A.a6÷a2=a3B.(﹣2a2)3=﹣8a3C.(a﹣3)(3+a)=a2﹣9D.(a﹣b)2=a2﹣b2【分析】根据同底数幂的除法、积的乘方与幂的乘方、平方差公式、完全平方公式逐一判断可得.【解答】解:A、a6÷a2=a4,此选项错误;B、(﹣2a2)3=﹣8a6,此选项错误;C、(a﹣3)(3+a)=a2﹣9,此选项正确;D、(a﹣b)2=a2﹣2ab+b2,此选项错误;故选:C.3.(3分)如图,直线a∥b,c,d是截线且交于点A,若∠1=60°,∠2=100°,则∠A=()A.40°B.50°C.60°D.70°【分析】依据∠2是△ABC的外角,即可得到∠A=∠2﹣∠1=40°.也可以利用平行线的性质以及三角形内角和定理,即可得到∠A的度数.【解答】解法一:如图,∵∠2是△ABC的外角,∴∠A=∠2﹣∠1=100°﹣60°=40°,故选:A.解法二:如图,∵a∥b,∴∠1=∠3=60°,∠2=∠4=100°,∴∠5=180°﹣∠4=80°,∴∠A=180°﹣∠3﹣∠5=180°﹣60°﹣80°=40°,故选:A.4.(3分)下列计算或运算中,正确的是()A.2=B.﹣=C.6÷2=3D.﹣3=【分析】根据二次根性质和运算法则逐一判断即可得.【解答】解:A、2=2×=,此选项错误;B、﹣=3﹣2=,此选项正确;C、6÷2=3,此选项错误;D、﹣3=﹣,此选项错误;故选:B.5.(3分)把实数6.12×10﹣3用小数表示为()A.0.0612B.6120C.0.00612D.612000【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:6.12×10﹣3=0.00612,故选:C.6.(3分)下列说法正确的是()A.“明天降雨的概率为50%”,意味着明天一定有半天都在降雨B.了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查)方式C.掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是必然事件D.一组数据的方差越大,则这组数据的波动也越大【分析】根据概率的意义,事件发生可能性的大小,可得答案.【解答】解:A、明天降雨的概率是50%表示明天有可能降雨,此选项错误;B、了解全国快递包裹产生的包装垃圾数量适合采用抽样调查方式,此选项错误;C、掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是随机事件,此选项错误;D、一组数据的方差越大,则这组数据的波动也越大,此选项正确;故选:D.7.(3分)受央视《朗读者》节目的启发的影响,某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()A.2,1B.1,1.5C.1,2D.1,1【分析】根据表格中的数据可知七年级2班有30人,从而可以得到全班学生平均每天阅读时间的中位数和众数,本题得以解决.【解答】解:由表格可得,全班学生平均每天阅读时间的中位数和众数分别是1、1.5,故选:B.8.(3分)如图是一个几何体的三视图,根据图中数据计算这个几何体的表面积是()A.16πB.12πC.10πD.4π【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6,底面半径为2,故表面积=πrl+πr2=π×2×6+π×22=16π,故选:A.9.(3分)已知圆内接正三角形的面积为,则该圆的内接正六边形的边心距是()A.2B.1C.D.【分析】根据题意可以求得半径,进而解答即可.【解答】解:因为圆内接正三角形的面积为,所以圆的半径为,所以该圆的内接正六边形的边心距×sin60°=,故选:B.10.(3分)如图,将边长为的正方形绕点B逆时针旋转30°,那么图中阴影部分的面积为()A.3B.C.3﹣D.3﹣【分析】连接BM,根据旋转的性质和四边形的性质,证明△ABM≌△C′BM,得到∠2=∠3=30°,利用三角函数和三角形面积公式求出△ABM的面积,再利用阴影部分面积=正方形面积﹣2△ABM的面积即可得到答案.【解答】解:连接BM,在△ABM和△C′BM中,,∴△ABM≌△C′BM,∠2=∠3==30°,在△ABM中,AM=×tan30°=1,S△ABM==,正方形的面积为:=3,阴影部分的面积为:3﹣2×=3﹣,故选:C.11.(3分)如果关于x的不等式组的整数解仅有x=2、x=3,那么适合这个不等式组的整数a、b组成的有序数对(a,b)共有()A.3个B.4个C.5个D.6个【分析】求出不等式组的解集,根据已知求出1≤2、3<4,求出2<a≤4、9≤b<12,即可得出答案.【解答】解:解不等式2x﹣a≥0,得:x≥,解不等式3x﹣b≤0,得:x≤,∵不等式组的整数解仅有x=2、x=3,则1≤2、3<4,解得:2<a≤4、9≤b<12,则a=3时,b=9、10、11;当a=4时,b=9、10、11;所以适合这个不等式组的整数a、b组成的有序数对(a,b)共有6个,故选:D.12.(3分)如图,四边形AOEF是平行四边形,点B为OE的中点,延长FO至点C,使FO=3OC,连接AB、AC、BC,则在△ABC中S△ABO:S△AOC:S△BOC=()A.6:2:1B.3:2:1C.6:3:2D.4:3:2【分析】连接BF.设平行四边形AFEO的面积为4m.由FO:OC=3:1,BE=OB,AF∥OE可得S△OBF =S△AOB=m,S△OBC=m,S△AOC=,由此即可解决问题;【解答】解:连接BF.设平行四边形AFEO的面积为4m.∵FO:OC=3:1,BE=OB,AF∥OE∴S△OBF=S△AOB=m,S△OBC=m,S△AOC=,∴S△AOB:S△AOC:S△BOC=m::m=3:2:1故选:B.二、填空题(每小题3分,共15分)13.(3分)分解因式:2xy2+4xy+2x=2x(y+1)2 .【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=2x(y2+2y+1)=2x(y+1)2,故答案为:2x(y+1)214.(3分)已知一组数据10,15,10,x,18,20的平均数为15,则这组数据的方差为.【分析】先根据平均数为15列出关于x的方程,解之求得x即可知完整的数据,再根据方差公式计算可得.【解答】解:∵数据10,15,10,x,18,20的平均数为15,∴=15,解得:x=17,则这组数据为10,15,10,17,18,20,∴这组数据的方差是:[2×(10﹣15)2+(15﹣15)2+(17﹣15)2+(18﹣15)2+(20﹣15)2]=,故答案为:.15.(3分)如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子的数为﹣1.【分析】根据三个相邻格子的整数的和相等列式求出a、c的值,再根据第9个数是3可得b=2,然后找出格子中的数每3个为一个循环组依次循环,再用2018除以3,根据余数的情况确定与第几个数相同即可得解.【解答】解:∵任意三个相邻格子中所填整数之和都相等,∴a+b+c=b+c+(﹣1),3+(﹣1)+b=﹣1+b+c,∴a=﹣1,c=3,∴数据从左到右依次为3、﹣1、b、3、﹣1、b,∵第9个数与第3个数相同,即b=2,∴每3个数“3、﹣1、2”为一个循环组依次循环,∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为﹣1.故答案为:﹣1.16.(3分)如图,点D为△ABC的AB边上的中点,点E为AD的中点,△ADC为正三角形,给出下列结论,①CB=2CE,②tan∠B=,③∠ECD=∠DCB,④若AC=2,点P是AB上一动点,点P到AC、BC边的距离分别为d1,d2,则d12+d22的最小值是3.其中正确的结论是①③④(填写正确结论的番号).【分析】由题意可得△BCE是含有30°的直角三角形,根据含有30°的直角三角形的性质可判断①②③,易证四边形PMCN是矩形,可得d12+d22=MN2=CP2,根据垂线段最短,可得CP的值即可求d12+d22的最小值,即可判断④.【解答】解:∵D是AB中点∴AD=BD∵△ACD是等边三角形,E是AD中点∴AD=CD,∠ADC=60°=∠ACD,CE⊥AB,∠DCE=30°∴CD=BD∴∠B=∠DCB=30°,且∠DCE=30°,CE⊥AB∴∠ECD=∠DCB,BC=2CE,tan∠B=故①③正确,②错误∵∠DCB=30°,∠ACD=60°∴∠ACB=90°若AC=2,点P是AB上一动点,点P到AC、BC边的距离分别为d1,d2,∴四边形PMCN是矩形∴MN=CP∵d12+d22=MN2=CP2∴当CP为最小值,d12+d22的值最小∴根据垂线段最短,则当CP⊥AB时,d12+d22的值最小此时:∠CAB=60°,AC=2,CP⊥AB∴CP=∴d12+d22=MN2=CP2=3即d12+d22的最小值为3故④正确故答案为①③④17.(3分)已知函数y=使y=a成立的x的值恰好只有3个时,a的值为2.【分析】首先在坐标系中画出已知函数y=的图象,利用数形结合的方法即可找到使y=a成立的x值恰好有3个的a值.【解答】解:函数y=的图象如图:根据图象知道当y=2时,对应成立的x值恰好有三个,∴a=2.故答案:2.三、解答题(共69分.解答应写出文字说明、证明过程或推演步骤)18.(6分)计算:+()﹣3﹣(3)0﹣4cos30°+.【分析】根据零指数幂、负整数指数幂、特殊角的三角函数值进行计算.【解答】解:原式=3+8﹣1﹣4×+2=10﹣2+2=10.19.(7分)如图,点E、F分别是矩形ABCD的边AD、AB上一点,若AE=DC=2ED,且EF⊥EC.(1)求证:点F为AB的中点;(2)延长EF与CB的延长线相交于点H,连结AH,已知ED=2,求AH的值.【分析】(1)根据全等三角形的判定,证得△AEF≌△DCE,再根据全等三角形的性质,证得ED=AF,进而得证;(2)根据全等三角形的判定方法,证明△AEF≌△BHF,进而求得HB=AB=AE=4,再利用勾股定理求出AH的值即可.【解答】(1)证明:∵EF⊥EC,∴∠CEF=90°,∴∠AEF+∠DEC=90°,∵四边形ABCD是矩形,∴∠AEF+∠AFE=90°,∠DEC+∠DCE=90°,∴∠AEF=∠DCE,∠AFE=∠DEC,∵AE=DC,∴△AEF≌△DCE.∴ED=AF,∵AE=DC=AB=2DE,∴AB=2AF,∴F为AB的中点;(2)解:由(1)知AF=FB,且AE∥BH,∴∠FBH=∠F AE=90°,∠AEF=∠FHB,∴△AEF≌△BHF,∴HB=AE,∵ED=2,且AE=2ED,∴AE=4,∴HB=AB=AE=4,∴AH2=AB2+BH2=16+16=32,∴AH=.20.(11分)某网络约车公司近期推出了”520专享”服务计划,即要求公司员工做到“5星级服务、2分钟响应、0客户投诉”,为进一步提升服务品质,公司监管部门决定了解“单次营运里程”的分布情况.老王收集了本公司的5000个“单次营运里程”数据,这些里程数据均不超过25(公里),他从中随机抽取了200个数据作为一个样本,整理、统计结果如下表,并绘制了不完整的频数分布直方图(如图).根据统计表、图提供的信息,解答下面的问题:(1)①表中a=48;②样本中“单次营运里程”不超过15公里的频率为0.73;③请把频数分布直方图补充完整;(2)请估计该公司这5000个“单次营运里程”超过20公里的次数;(3)为缓解城市交通压力,维护交通秩序,来自某市区的4名网约车司机(3男1女)成立了“交通秩序维护”志愿小分队,若从该小分队中任意抽取两名司机在某一路口维护交通秩序,请用列举法(画树状图或列表)求出恰好抽到“一男一女”的概率.【分析】(1)①由频数分布直方图可直接得出a的值;②用第一、二、三组的频数和除以总数量可得;③根据分布表中数据即可得;(2)用总数量乘以样本中“单次营运里程”超过20公里的次数所占比例即可得;(3)画树状图展示所有12种等可能的结果数,找出抽到一男一女的结果数,然后根据概率公式求解.【解答】解:(1)①由条形图知a=48;②样本中“单次营运里程”不超过15公里的频率为=0.73;③补全图形如下:故答案为:①48;②0.73;(2)估计该公司这5000个“单次营运里程”超过20公里的次数为5000×=750次;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到一男一女的结果数为6,∴恰好抽到“一男一女”的概率为=.21.(10分)如图,在平面直角坐标系中,直线y1=kx+b(k≠0)与双曲线y2=(a≠0)交于A、B两点,已知点A(m,2),点B(﹣1,﹣4).(1)求直线和双曲线的解析式;(2)把直线y1沿x轴负方向平移2个单位后得到直线y3,直线y3与双曲线y2交于D、E两点,当y2>y3时,求x的取值范围.【分析】(1)把点B代入双曲线求出a的值,即可得到双曲线的解析式;把点A代入双曲线求出m的值,确定A点坐标,再利用待定系数法求出直线的解析式,即可解答;(2)先求出y3的解析式,再解方程组求出点D点E的坐标,即可解答.【解答】解:(1)∵点B(﹣1,﹣4)在双曲线y2=(a≠0)上,∴a=(﹣1)×(﹣4)=4,∴双曲线的解析式为:.∵点A(m,2)在双曲线上,∴2m=4,∴m=2,∴点A的坐标为:(2,2)∵点A(m,2),点B(﹣1,﹣4)在直线y1=kx+b(k≠0)上,∴解得:∴直线的解析式为:y1=2x﹣2.(2)∵把直线y1沿x轴负方向平移2个单位后得到直线y3,∴y2=2(x+2)﹣2=2x+2,解方程组得:或,∴点D(1,4),点E(﹣2,﹣2),∴由函数图象可得:当y2>y3时,x的取值范围为:x<﹣2或0<x<1.22.(10分)为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A、B两个工程公司承担建设,已知A工程公司单独建设完成此项工程需要180天,A工程公司单独施工45天后,B工程公司参与合作,两工程公司又共同施工54天后完成了此项工程.(1)求B工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划包成两部分,要求两工程公司同时开工,A工程公司建设其中一部分用了m天完成,B工程公司建设另一部分用了n天完成,其中m,n 均为正整数,且m<46,n<92,求A、B两个工程公司各施工建设了多少天?【分析】(1)设B工程公司单独完成需要x天,根据题意列出关于x的分式方程,求出分式方程的解得到x的值,经检验即可得到结果;(2)根据题意列出关于m与n的方程,由m与n的范围,确定出正整数m与n的值,即可得到结果.【解答】解:(1)设B工程公司单独完成需要x天,根据题意得:45×+54(+)=1,解得:x=120,经检验x=120是分式方程的解,且符合题意,答:B工程公司单独完成需要120天;(2)根据题意得:m×+n×=1,整理得:n=120﹣m,∵m<46,n<92,∴120﹣m<92,解得42<m<46,∵m为正整数,∴m=43,44,45,又∵120﹣m为正整数,∴m=45,n=90,答:A、B两个工程公司各施工建设了45天和90天.23.(11分)如图,在直角三角形ABC中,∠ACB=90°,点H是△ABC的内心,AH的延长线和三角形ABC的外接圆O相交于点D,连结DB.(1)求证:DH=DB;(2)过点D作BC的平行线交AC、AB的延长线分别于点E、F,已知CE=1,圆O的直径为5.①求证:EF为圆O的切线;②求DF的长.【分析】(1)先判断出∠DAC=∠DAB,∠ABH=∠CBH,进而判断出∠DHB=∠DBH,即可得出结论;(2))①先判断出OD∥AC,进而判断出OD⊥EF,即可得出结论;②先判断出△CDE≌△BDG,得出GB=CE=1,再判断出△DBG∽△ABD,求出DB2=5,即DB=,DG=2,进而求出AE=AG=4,最后判断出△OFD∽△AFE即可得出结论.【解答】解:(1)证明:连接HB,∵点H是△ABC的内心,∴∠DAC=∠DAB,∠ABH=∠CBH,∵∠DBC=∠DAC,∴∠DHB=∠DAB+∠ABH=∠DAC+∠CBH,∵∠DBH=∠DBC+∠CBH,∴∠DHB=∠DBH,∴DH=DB;(2)①连接OD,∵∠DOB=2∠DAB=∠BAC∴OD∥AC,∵AC⊥BC,BC∥EF,∴AC⊥EF,∴OD⊥EF,∵点D在⊙O上,∴EF是⊙O的切线;②过点D作DG⊥AB于G,∵∠EAD=∠DAB,∴DE=DG,∵DC=DB,∠CED=∠DGB=90°,∴△CDE≌△BDG,∴GB=CE=1,在Rt△ADB中,DG⊥AB,∴∠DAB=∠BDG,∵∠DBG=∠ABD,∴△DBG∽△ABD,∴,∴DB2=AB•BG=5×1=5,∴DB=,DG=2,∴ED=2,∵H是内心,∴AE=AG=4,∵DO∥AE,∴△OFD∽△AFE,∴,∴,∴DF=.24.(14分)如图,在等腰直角三角形ABC中,∠BAC=90°,点A在x轴上,点B在y轴上,点C(3,1),二次函数y=x2+bx﹣的图象经过点C.(1)求二次函数的解析式,并把解析式化成y=a(x﹣h)2+k的形式;(2)把△ABC沿x轴正方向平移,当点B落在抛物线上时,求△ABC扫过区域的面积;(3)在抛物线上是否存在异于点C的点P,使△ABP是以AB为直角边的等腰直角三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.【分析】(1)将点C的坐标代入抛物线的解析式可求得b的值,从而可得到抛物线的解析式,然后利用配方法可将抛物线的解析式变形为y=a(x﹣h)2+k的形式;(2)作CK⊥x轴,垂足为K.首先证明△BAO≌△ACK,从而可得到OA=CK,OB=AK,于是可得到点A、B的坐标,然后依据勾股定理求得AB的长,然后求得点D的坐标,从而可求得三角形平移的距离,最后,依据△ABC扫过区域的面积=S四边形ABDE+S△DEH求解即可;(3)当∠ABP=90°时,过点P作PG⊥y轴,垂足为G,先证明△BPG≌△ABO,从而可得到点P的坐标,然后再判断点P是否在抛物线的解析式即可,当∠P AB=90°,过点P作PF⊥x轴,垂足为F,同理可得到点P的坐标,然后再判断点P是否在抛物线的解析式即可.【解答】解:(1)∵点C(3,1)在二次函数的图象上,∴x2+bx﹣=1,解得:b=﹣,∴二次函数的解析式为y=x2﹣x﹣y=x2﹣x﹣=(x2﹣x+﹣)﹣=(x﹣)2﹣(2)作CK⊥x轴,垂足为K.∵△ABC为等腰直角三角形,∴AB=AC.又∵∠BAC=90°,∴∠BAO+∠CAK=90°.又∵∠CAK+∠ACK=90°,∴∠BAO=∠ACK.在△BAO和△ACK中,∠BOA=∠AKC,∠BAO=∠ACK,AB=AC,∴△BAO≌△ACK.∴OA=CK=1,OB=AK=2.∴A(1,0),B(0,2).∴当点B平移到点D时,D(m,2),则2=m2﹣m﹣,解得m=﹣3(舍去)或m=.∴AB==.∴△ABC扫过区域的面积=S四边形ABDE+S△DEH=×2+××=9.5(3)当∠ABP=90°时,过点P作PG⊥y轴,垂足为G.∵△APB为等腰直角三角形,∴PB=AB,∠PBA=90°.∴∠PBG+∠BAO=90°.又∵∠PBG+∠BPG=90°,∴∠BAO=∠BPG.在△BPG和△ABO中,∠BOA=∠PGB,∠BAO=∠BPG,AB=PB,∴△BPG≌△ABO.∴PG=OB=2,AO=BG=1,∴P(﹣2,1).当x=﹣2时,y≠1,∴点P(﹣2,1)不在抛物线上.当∠P AB=90°,过点P作PF⊥x轴,垂足为F.同理可知:△P AF≌△ABO,∴FP=OA=1,AF=OB=2,∴P(﹣1,﹣1).当x=﹣1时,y=﹣1,∴点P(﹣1,﹣1)在抛物线上.。
2018四川德阳中考数学解析
2018年四川省德阳市初中毕业、升学考试数学(满分120分,考试时间120分钟)第Ⅰ卷一、选择题:本大题共12小题,每小题3分,共36分.不需写出解答过程,请把最后结果填在题后括号内.1.(2018四川省德阳市,题号1,分值:3)如果把收入记作+100元,那么支出80元记作()A.+20元B.+100元C.+80元D.-80元【答案】D.【解析】由题意可知收入记作“+”,那么支出记作“-”,则支出80元记作-80元.【知识点】实数2.(2018四川省德阳市,题号2,分值:3)下列计算或运算,正确的是()A.a6÷a2=a3B.(-2a2)3=-8a3C.(a-3)(3+a)=a2-9D.(a-b)2=a2-b2【答案】C.【解析】因为a6÷a2=a6-2=a4,所以A错误;因为(-2a2)3=-8a2×3=-8a6,所以B错误;因为(a-3)(3+a)=a2-9,所以C正确;因为(a-b)2=a2-2ab+b2,所以D错误.【知识点】整式的运算3.(2018四川省德阳市,题号3,分值:3)如图,直线a∥b,c,d是截线且交于带你A,若∠1=60°,∠2=100°,则∠A=()A.40°B.50°C.60°D.70°【答案】A.【解析】∵a∥b,∴∠1=∠3=60°,∠2=∠4=100°.∵∠4+∠5=180°,∴∠5=80°.∴∠A=180°-∠3-∠5=40°.【知识点】平行线的性质4.(2018四川省德阳市,题号4,分值:3)下列计算或运算,正确的是()A.2√a2=√a B.√18−√8=√2 C.6√15÷2√3=3√45 D.-3√3=√27【答案】B.【解析】因为2√a2=√a√2=√2a,所以A错误;因为√18−√8=3√2−2√2=√2,所以B错误;因为6√15÷2√3=√152√3=3√5,所以C正确;因为-3√3=−√9×3=−√27,所以D错误.【知识点】二次根式的加减和化简5.(2018四川省德阳市,题号5,分值:3)把实数6.12×10-3用小数表示为() A.0.0612 B.6120 C.0.00612 D.612000 【答案】C.【解析】6.12×10-3=0.00612. 【知识点】科学记数法 6.(2018四川省德阳市,题号6,分值:3)下列说法正确的是() A.“明天将于的概率为50%”,意味着明天一定有半天都在降雨B.了解全国快递包裹生产的包装垃圾数量适合采用全面调查(普查)方式C.掷一枚质地均匀的骰子,骰子停止转动,6点朝上是必然事件D.一组数据的方差越大,则这组数据的波动越大 【答案】D.【解析】因为“明天将于的概率为50%”,说明明天可能下雨也可能不下雨,并不意味着明天一定有半天都在降雨,所以A 错误;由于全国快递包裹生产的包装垃圾数量很大,可采用抽样调查方式,所以B 错误; 掷一枚质地均匀的骰子,骰子停止转动,六个面均可能朝上朝上,所以C 错误; 一组数据的方差越大,则这组数据越不稳定,则这组数据的波动越大,所以D 正确. 【知识点】事件,方差 7.(2018四川省德阳市,题号7,分值:3)受央视《朗读者》节目的启发的影响,某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班平均每天的阅读时间,统计结果如下表所示,则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()A.2,1B.1,1.5C.1,2D.1,1 【答案】D.【解析】将这组数据从小到大排列0.5小时的有8人,1小时的有19人,1.5小时的有10人,2小时的有3人,可知中位数为第20和第21个数的平均数,第20个数为1,第21个数为1,所以中位数为1,则出现最多的是19人的1小时,则众数为1,所以中位数为1,众数为1. 【知识点】中位数,众数 8.(2018四川省德阳市,题号8,分值:3)如图是一个几何体的三视图,根据图中数据计算这个几何体的表面积是()A.16πB.12πC.10πD.4π【答案】A.【解析】由左视图可知底面半径为2,则底面圆的面积为4π,再根据左视图可知扇形半径为6,则扇形的面积为12rl=12×6×2π×2=12π,所以,表面积为4π+12π=16π. 【知识点】几何体的三视图,扇形的面积9.(2018四川省德阳市,题号9,分值:3)已知圆内接正三角形的面积为√3,则该圆的内接正六边形的边心距是()A.2B.1C.√3D.√32第9题答图【答案】B.【解析】如图,设△ABC 的边长为a ,由正三角形的面积公式得S △ABC =√34a 2, ∴=√34a 2=√3, 解得a=2或-2(舍), ∴BC=2.∵∠BAC=60°,BO=CO , ∴∠BOC=120°, 则∠BCO=30°. ∵OH ⊥BC , ∴BH=12BC=1,在Rt △BOH 中,BO=BH ÷cos30°=2√33, 所以圆的半径r=2√33.则OF=2√33. 如图,正六边形内接于圆,且半径为2√33,可知∠EOF=60°, 在△EOF 中,OE=OF ,OD ⊥EF ,∴∠EOD=30°.在Rt △DOE 中,OD=OF ·cos30°=2√33×√32=1. 所以边心距为1.【知识点】正多边形和圆10.(2018四川省德阳市,题号10,分值:3)如图,将边长为√3的正方形绕点B 逆时针旋转30°,那么图中阴影部分的面积为() A.3 B.√3 C.3-√3 D.3-√32【答案】C.【解析】由旋转可知∠1=∠4=30°, ∴∠2+∠3=60°.∵∠BAM=∠BC ′M=90°,且AB=BC ′, ∴∠2=∠3=30°.在Rt △ABM 中,AB=√3,∠2=30°, 则AM=tan30°×AB=1. ∴S △ABM =S △BMC ′=√32,∴S 阴影=S 正方形-(S △ABM + S △BMC ′)=3-√3.【知识点】正方形的性质,旋转的性质,特殊角的三角函数值11.(2018四川省德阳市,题号11,分值:3)如果关于x 的不等式组{2x −a ≥0,3x −b ≤0.的整数解仅有x=2,x=3,那么适合这个不等式组的整数a ,b 组成的有序数对(a ,b )共有() A.3个 B.4个 C.5个 D.6个 【答案】D.【解析】{2x −a ≥0,3x −b ≤0.解得a2≤x ≤b3,又∵整数解有x=2,x=3, ∴{1<a 2≤2,3≤b3<4.解得{2<a ≤4,9≤b <12.又∵a ,b 为整数,∴a=3或4,b=9或10或11, ∴(a ,b )共有(3,9),(3,10),(3,11),(4,9),(4,10),(4,11),有6种. 【知识点】不等式组的整数解 12.(2018四川省德阳市,题号12,分值:3)如图,四边形AOEF 是平行四边形,点B 为OE 的中点,延长FO 至点C ,使FO=3OC ,连接AB ,AC ,BC ,则在△ABC 中,S △ABO :S △AOC :S △BOC ( ) A.6:2:1 B.3:2:1 C.6:3:2 D.4:3:2【答案】B.【解析】∵四边形AOEF是平行四边形,∴AF∥EO,∴∠AFM=∠BOM,∠FAM=∠MBO,∴△AFM∽△BOM,∴OMFM =BMAM=BOAF=12.设S△BOM=S,则S△AOM=2S.∵FO=3OC,OM=12FM,∴OM=OC,∴S△AOC=S△AOM=2S,S△BOC=S△BOM=S,∴S△ABO:S△AOC:S△BOC=3:2:1.【知识点】相似三角形的性质和判定,平行四边形的性质二、填空题:本大题共5小题,每小题3分,共15分.不需写出解答过程,请把最后结果填在题中横线上.13.(2018四川省德阳市,题号13,分值:3)分解因式:2xy2+4xy+2x=____.【答案】2x(y+1)2.【解析】2xy2+4xy+2x=2x(y2+2y+1)=2x(y+1)2.【知识点】因式分解14.(2018四川省德阳市,题号14,分值:3)已知乙组数据10,15,10,x,18,20的平均数为15,则这组数据的方差为____.【答案】443.【解析】解:10+15+10+x+18+206=15,∴x=17.则S2=16×[(10−15)2+(15−15)2+(10−15)2+(17−15)2+(18−15)2+(20−15)2],=16×(25+0+25+4+9+25),=443.【知识点】平均数,方差15.(2018四川省德阳市,题号15,分值:3)如下表,从左到右造每个格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子的数为____.【答案】-1.【解析】由题意可知3+a+b=a+b+c ,可得c=3, 同理可得a=-1,b=2.格子中的数每3个数字形成一个循环, 易得2018÷3=672……2, 得第2018个格子的数为-1. 【知识点】探究规律 16.(2018四川省德阳市,题号16,分值:3)如图,点D 为△ABC 的AB 边上的中点,点E 为AD 的中点,△ADC为正三角形,给出下列结论,①CB=2CE ,②tan ∠B=34,③∠ECD=∠DCB ,④若AC=2,点P 是AB 上一动点,点P 到AC ,BC 边的距离分别为d 1,d 2,则d 12+d 22的最小值是3.其中正确的结论是____(填写正确结论的番号).【答案】①③④.【解析】①由题意得,AE=DE ,AD=BD=CD. ∵△ACD 是正三角形,∴∠CDA=60°,CE ⊥AD , ∴∠B=∠DCB=30°.在Rt △BCE 中,∠B=30°,CB=2CE. ②∵∠B=30°, ∴tan ∠B=√33.③在正△ACD 中,CE 是△ACD 的中线, ∴∠ECD=12∠ACD=30°,∴∠ECD=∠DCB.④如图,PM=d 1,PN=d 2.在Rt △MPN 中,d 12+d 22=MN 2, ∵∠ACB=∠CMP=∠CNP=90°, ∴四边形MPNC 为矩形, ∴MN=CP.要使d 12+d 22最小,只需MN 最小,即PC 最小,当CP ⊥AB 时, 即P 与E 重合时,d 12+d 22最小, 在Rt △ACE 中,cos ∠ACE=CEAC , ∵AC=2,∠ACE=30°,∴CE=AC ·cos30°=√3,则CE 2=3, ∴d 12+d 22的最小值为3. 所以正确的有①③④.【知识点】等边三角形的性质,特殊角的三角函数,矩形的判定17.(2018四川省德阳市,题号17,分值:3)已知函数y={(x −2)2−2,x ≤4,(x −6)2−2,x >4.使y=a 成立的x 的值恰好只有3个时,a 的值为____.【答案】2. 【解析】画出函数解析式的图像,要使y=a 成立的x 的值恰好只有3个,即函数图像与y=2这条直线有3个交点,即a=2.第17题答图【知识点】二次函数的应用三、解答题(本大题共9小题,满分69分,解答应写出文字说明、证明过程或演算步骤) 18.(2018四川省德阳市,题号18,分值:6)计算:√(−3)2+(12)−3−(3√2)0−4cos30°√3.【思路分析】先根据√(−3)2,(12)−3=8,(3√2)0=1,cos30°=√32,再代入计算即可. 【解题过程】原式=3+8-1-4×√32+2√3,………………………………………………….…..2分=3+8-1-2√3+2√3,………………….……………………………………………………….…4分 =10……………………………………………………………………………………………….6分 【知识点】实数的运算 19.(2018四川省德阳市,题号19,分值:7)如图点E ,F 分别是矩形ABCD 的边AD ,AB 上一点,若AE=DC=2ED ,且EF ⊥EC.(1)求证:点F 为AB 的中点.(2)延长EF 与CB 的延长线相交于点H ,连接AH ,已知ED=2,求AH 的值.第19题图【思路分析】对于(1),先根据矩形的性质证明△AEF ≌△DCE ,可得ED=AF ,进而根据A E=DC=2ED ,可得答案.对于(2),先说明△AEF ≌△BHF ,可知AE ,进而得出AB=BH ,再根据AH 2=AB 2+BH 2得出答案. 【解题过程】证明:∵EF ⊥EC , ∴∠CEF=90°,∴∠AEF+∠DEC=90°.∵四边形ABCD是矩形,∴∠AEF+∠AFE=90°,∠DEC+∠DCE=90°,∴∠AEF=∠DCE,∠AFE=∠DEC.∵AE=DC,∴△AEF≌△DCE,………………………………………………………………………………2分∴ED=AF.∵AE=DC=AB=2DE,∴AB=2AF,∴F是AB的中点…………………………………………………………………………………3分(2)解:由(1)得AF=FB,且AE∥BH,∴∠FBH=∠FAE=90°,∠AEF=∠FHB,∴△AEF≌△BHF,………………………………………………………………………………4分∴HB=AE.∵ED=2,且AE=2ED,∴AE=4,…………………………………………………………………………………………5分∴HB=AB=AE=4,∴AH2=AB2+BH2=16+16=32,……………………………………………………………………6分∴AH=4√2………………………………………………………………………………………7分【知识点】矩形的性质,全等三角形的性质和判定,勾股定理20.(2018四川省德阳市,题号20,分值:11)某网络约车公司近期推出了“520专享”服务计划,即要求公司员工做到“5星级服务,2分钟响应,0客户投诉”,为进一步提升服务品质,公司监管部门决定了解“单次营运里程”分布情况.老王收集了本公司的5000个“单次营运里程”数据,这些数据均不超过25(公里),他从中随机抽取了200个数据作为一个样本,整理,统计结果如下表,并绘制了不完整的频数分布直方图.根据统计表,图提供的信息,解答下面的问题:(1)①表中a=____;②样本中“单次营运历程”不超过15公里的频数为____;③请把频数分布直方图补充完整;(2)请估计该公司这5000个“单次营运里程”超过20公里的次数;(3)为缓解城市交通压力,维护交通秩序,来自某市区的4名网约车司机(3男1女)成立了“交通秩序维护”志愿小分队,若从该小组中任意抽取两名司机在某一路口维护交通秩序,请用列举法(画树状图或列表)求出恰好抽到“一男一女”的概率.【思路分析】对于(1),根据总数-除第二组以外各组的频数,即可求出a值,然后求出不超过15公里的频数,进而求出频率,再补全频数分布直方图.对于(2),用样本估计总体的思想解答,即求出超过20公里的频率,再用总数×频率即可.对于(3),画出树状图得出所有可能出现的结果,并得出符合条件的结果,进而根据概率公式得出答案.【解题过程】(1)200-72-26-24-30=48,则a=48;……………………………………………1分由统计表可知不超过15公里的频数为72+48+26=146,所以不超过15公里的频数为146÷200=0.73……………………………………………………………………………………3分补全频数分布直方图如上……………………………………………………………………5分(2)这5000个“单次营运里程”超过20公里的次数为30200×5000=750(次)…………7分(3)画出树状图如下:…………………..9分一共有12种可能出现的结果,出现“一男一女”的有6种, ∴P (抽到的恰好是“一男一女”)=612=12……………………………………………………11分【知识点】频数分布直方图,树状图求概率21.(2018四川省德阳市,题号21,分值:10)如图,在平面直角坐标系中,直线y 1=kx+b (k ≠0)与双曲线y 2=ax(a ≠0)交于A ,B 两点,已知点A (m ,2),点B (-1,-4). (1)求直线和双曲线的解析式.(2)把直线y 1沿x 轴负方向平移2个单位后得到直线y 3,直线与双曲线y 2交于D ,E 两点,当y 2>y 3时,求x的取值范围.【思路分析】对于(1),将点B 的坐标代入关系式,求出a ,即可得出关系式,再将点A ,B 的坐标代入y 1=kx+b ,求出k ,b 即可得出关系式. 对于(2),先根据平移求出y 3的关系式,再联立得到方程组求出点D ,E ,再根据反比例函数图像在一次函数图像的上方得出取值范围即可. 【解题过程】(1)∵B (-1,-4),点B 在双曲线上,即a=(-1)×(-4)=4,∵点A 在双曲线上,即2m=4,即m=2,A (2,2)………………………………………….1分 ∵点A (2,2),B (-1,-4)在直线y 1=kx+b 上, ∴{2=2k +b −4=−k +b..............................................................2分 解得{k =2,b =2..................................................................3分∴直线和双曲线的解析式分别为y 1=2x-2和y 2=4x ……………………………………………4分 (2)∵直线y 3是直线y 1沿x 轴负方向平移2个单位得到,∴y 3=2(x+2)-2=2x+2,…………………………………………………………………………6分解方程组{y =4x ,y =2x +2.得{x =1,y =4.或{x =−2,y =−2...............................................................................8分∴点D (1,4),E (-2,-2),………………………………………………………………..9分 ∴当y 2>y 3时,x 的取值范围是x <-2或0<x <1…………………………………………10分 【知识点】一次函数和反比例函数的综合应用 22.(2018四川省德阳市,题号22,分值:10)为配合“一带一路”国家倡议,某铁路货运集装箱物流园区启动了2期扩建工程.一项地基基础加固处理工程由A ,B 两个工程公司承担建设,已知A 工程公司单独建设完成此项工程需要180天.A 工程公司单独施工45天后,B 工程公司参与合作,两工程公司又共同施工54天后完全了此项工程.(1)求B 工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划包成两部分,要求两工程公司同时开工,A 工程公司建设其中一部分用了m 天完成,B 工程公司建设另一部分用了n 天完成,其中m ,n 均为正整数,且m <46,n <92,求A ,B 两个工程公司各施工建设了多少天? 【思路分析】对于(1),设B 工程公司单独建设完成这项工程需要x 天,进而表示出A ,B 两个公司的工作效率,然后根据A 公司施工45的工作量+A ,B 公司合作54天的工作量=1,列出方程,求出解即可. 对于(2),由(1)可知A ,B 两公司的工作效率,再根据A 公司施工m 天的工作量+B 公司施工n 天的工作量=1,可用含m 的代数式表示n ,进而得出关于m 的不等式组,求出m 的解集,再根据m ,n 都是正整数,求出m ,n 的值即可. 【解题过程】(1)设B 工程公司单独建设完成这项工程需要x 天,由题意得 45×1180+54×(1180+1x )=1,……………………………………………………………………..2分 解得x=120,经检验,x=120是方程的解且符合题意.答:B 工程单独建设需要120天完成…………………………………………………………4分 (2)∵A 工程公司建设其中一部分用了m 天完成,B 工程公司建设另一部分用了m 天完成. ∴m ×1180+n ×1120=1,……………………………………………………………………………5分 即n=120-23m ……………………………………………………………………………………..6分又∵m <46,n <92,∴{m <46,120−23m <92............................................................8分 解得42<m <46. ∵m 为正整数, ∴m=43,44,45,而n=120-23m 也是正整数,……………………………………………………………………..9分∴m=45,n=90.答:A 工程公司建设了45天,B 工程公司建设了90天………………………………….10分 【知识点】分式方程的应用,一元一次不等式组的应用 23.(2018四川省德阳市,题号24,分值:11)如图,在直角三角形ABC 中,∠ACB=90°,点H 是△ABC 的内心,AH 的延长线和三角形ABC 的外接圆O 相交于点D ,连结DB. (1)求证:DH=DB.(2)过点D 作BC 的平行线交AC ,AB 的延长线分别于点E ,F ,已知CE=1,圆O 的直径为5, ①求证:EF 为圆O 的切线; ②求DF 的长.【思路分析】对于(1),连接HB,根据三角形内心的性质可知∠DAC=∠DAB,∠ABH=∠CBH,再根据等弧所对的圆周角相等,得∠DBC=∠DAC,然后根据三角形的外角的性质可知∠DHB=∠DAB+∠ABH=∠DAC+∠CBH,及∠DBH=∠DBC+∠CBH,进而根据等角对等边得出答案.(2),对于①,连接OD,根据同弧所对的圆周角等于其所对的圆心角的一半,得∠DOB=∠BAC,可知OD∥AC,再根据BC∥EF,可知AC⊥EF,进而得出OD⊥EF,可得答案.对于②,先作DG⊥AB,再根据“HL”证明△CDE≌△BDG,可得GB=1,然后根据两角分别相等的两个三角形相似,得DB2=AB·BG,即可求出DB,DG,ED,再说明△OFD∽△AFE,根据相似三角形的对应边成比例得出答案. 【解题过程】(1)证明:连接HB,∵点H是△ABC的内心,∴∠DAC=∠DAB,∠ABH=∠CBH,………………………………………………………………1分而∠DBC=∠DAC,∠DHB=∠DAB+∠ABH=∠DAC+∠CBH.又∵∠DBH=∠DBC+∠CBH,∴∠DHB=∠DBH,………………………………………………………………………………2分∴DH=DB…………………………………………………………………………………………3分(2)①连接OD,∵∠DOB=2∠DAB=∠BAC,∴OD∥AC………………………………………………………………………………………4分∵AC⊥BC,BC∥EF,∴AC⊥EF,……………………………………………………………………………………5分∴OD⊥EF,∴EF是圆O的切线……………………………………………………………………………6分②如图,过点D作DG⊥AB于点G,∵∠EAD=∠DAB,∴DE=DG,DC=DB,∠CED=∠DGB=90°,∴△CDE≌△BDG,∴GB=CE=1……………………………………………………………………………………7分在Rt△ADB中,DG⊥AB,∴∠ADB=∠DGB,∠DBG=∠ABD,∴△DBG∽△ABD,…………………………………………………………………………8分∴DB2=AB·BG=5×1=5,∴DB=√5,DG=2,∴ED=2…………………………………………………………………………………………9分∵H为内心,AE=AG=4,而DO∥AE,∴△OFD∽△AFE,………………………………………………………………………………10分∴DFDF+DE =ODAE,即DFDF+2=524,∴DF=103…………………………………………………………………………………………11分【知识点】三角形内心的性质,圆周角定理,全等三角形的性质和判定,相似三角形的性质和判定24.(2018四川省德阳市,题号24,分值:14)如图,在等腰直角三角形ABC 中,∠BAC=90°,点A 在x 轴上,点B 在y 轴上,点C (3,1),二次函数y=13x 2+bx-32的图像经过点C.(1)求二次函数的解析式,并把解析式化成y=a(x-h)2+k 的形式;(2)把△ABC 沿x 轴正方向平移,当点B 落在抛物线上时,求△ABC 扫过区域的面积;(3)在抛物线上是否存在异于点C 的点P ,使△ABP 是以AB 为直角边的等腰三角形?如果存在,请求出所有符合条件的点P 的坐标;如果不存在,请说明理由.【思路分析】对于(1),将点C 代入关系式求出b 值,即可得出关系式,并写成顶点式.对于(2),作CK ⊥x 轴,再根据“AAS ”得出△ACK ≌△BAO ,并结合全等三角形对应边相等,得出点B 的坐标,再设点D (m ,2),求出m 的值,进而得出AB ,AC ,再根据△ABC 扫过的面积=S 四边形AEDB +S △ABC 得出答案. 对于(3),当∠BAP=90°,可知△ACK ≌△APF ,可知点P 的坐标,再代入关系式验证即可.当∠ABP=90°时,求出点P 的坐标,再代入验证.【解题过程】(1)∵点C (3,1)在二次函数的图象上,∴1=13×32+3b-32, 解得b=-16,……………………………………………………………………………………..1分 ∴二次函数的解析式为y=13x 2--16x--32,………………………………………………………2分化成y=a(x-h)2+k 的形式为y=-13(x--14)2--7348;………………………………………………..3分 (2)作CK ⊥x 轴,∵∠ABO+∠BAO=90°,∠BAO+∠CAK=90°,∴∠ABO=∠CAK…………………………………………………………………………………4分∵AB=AC ,∠AOB=∠AKC=90°,∴△ACK ≌△BAO ,………………………………………………………………………………5分∴OA=CK=1,AK=OB=2,即B (0,2),…………………………………………………………………………………6分∴当点B 平移到抛物线上的点D 时,D (m ,2),由2=-13m 2--16m--32,解得m 1=-3,m 2=-72…………………………………………………………………………….8分而AB=AC=√22+1=√5,∴△ABC 扫过的面积=S 四边形AEDB +S △ABC =-72×2+-12×√5×√5=9.5………………………………10分 (3)①当∠BAP=90°,由△ACK ≌△APF ,此时,点P (-1,-1),当x=-1时,y=-13×(-1)2--16×(-1)- -32=-1,点P (-1,-1)在抛物线上;②当∠ABP=90°时,同理可得点P (-2,1),………………………………………………12分 当x=-2时,y=13×(-2)2-16×(-2)-32≠1,此时点P(-2,1)不在抛物线上.综上所述,符合条件的点P 有一个,P (-1,-1)…………………………………………14分【知识点】二次函数的应用,全等三角形的性质和判定。
2018四川省凉山州中考数学试卷含答案解析
四川省凉山州2018年中考数学试卷一、选择题(本大题共10小题,共30分) 1. 比1小2的数是A. B. C. D. 1【答案】A 【解析】解:. 故选:A .求比1小2的数就是求1与2的差.本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数这是需要熟记的内容.2. 下列运算正确的是A.B .C . D.【答案】C【解析】解:A 、应为,故本选项错误; B 、应为,故本选项错误; C 、,正确; D 、应为,故本选项错误. 故选:C .根据同底数的幂的运算法则、合并同类项法则及完全平方公式计算.本题考查同底数幂的乘法,同底数幂的除法,合并同类项法则,完全平方公式,计算时要认真.3. 长度单位1纳米米,目前发现一种新型病毒直径为25 100纳米,用科学记数法表示该病毒直径是A.米 B. 米 C. 米 D.米【答案】D 【解析】解:米故选D . 先将25100用科学记数法表示为,再和相乘.中,a 的整数部分只能取一位整数,此题中的n 应为负数.4. 小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路囗都是绿灯,但实际这样的机会是A.B.C.D.【答案】B【解析】解:画树状图,得共有8种情况,经过每个路口都是绿灯的有一种,实际这样的机会是,故选:B.列举出所有情况,看个路口都是绿灯的情况占总情况的多少即可.此题考查了树状图法求概率,树状图法适用于三步或三步以上完成的事件,解题时要注意列出所有的情形用到的知识点为:概率所求情况数与总情况数之比.5.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是A. 和B. 谐C. 凉D. 山【答案】D【解析】解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”.故选:D.本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.注意正方体的空间图形,从相对面入手,分析及解答问题.6.一组数据:3,2,1,2,2的众数,中位数,方差分别是A. 2,1,B. 2,2,C. 3,1,2D. 2,1,【答案】B【解析】解:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,2处在第3位为中位数平均数为,方差为,即中位数是2,众数是2,方差为.故选:B.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个利用方差公式计算方差.本题属于基础题,考查了确定一组数据的中位数、方差和众数的能力注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求如果是偶数个则找中间两位数的平均数.7.若,则正比例函数与反比例函数在同一坐标系中的大致图象可能是A. B. C. D.【答案】B【解析】解:,分两种情况:当,时,正比例函数数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;当,时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.故选:B.根据及正比例函数与反比例函数图象的特点,可以从,和,两方面分类讨论得出答案.本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.8.下列图形中既是轴对称图形,又是中心对称图形的是A. B. C. D.【答案】D【解析】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、既不是轴对称图形,也不是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形.故选:D.根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9.如图将矩形ABCD沿对角线BD折叠,使C落在处,交AD于点E,则下到结论不一定成立的是A.B.C. ∽D.【答案】C【解析】解:A、,,,所以正确.B、,,EDB正确.D、,.故选:C.主要根据折叠前后角和边相等找到相等的边之间的关系,即可选出正确答案.本题主要用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.10.如图,是的外接圆,已知,则的大小为A.B.C.D.【答案】A【解析】解:中,,,,,故选:A.首先根据等腰三角形的性质及三角形内角和定理求出的度数,再利用圆周角与圆心角的关系求出的度数.本题主要考查了圆周角定理的应用,涉及到的知识点还有:等腰三角形的性质以及三角形内角和定理.二、填空题(本大题共6小题,共24分)11.分解因式:______,______.【答案】;【解析】解:;.观察原式,找到公因式a后,发现符合平方差公式的形式,直接运用公式可得;观察原式,找到公因式2后,发现符合完全平方差公式的形式,直接运用公式可得.本题考查整式的因式分解一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法.12.已知∽且::2,则AB:______.【答案】1:【解析】解:∽,:::2,::.根据相似三角形的面积比等于相似比的平方求解即可.本题的关键是理解相似三角形的面积比等于相似比的平方.13.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是______.【答案】小林【解析】解:由于小林的成绩波动较大,根据方差的意义知,波动越大,成绩越不稳定,故新手是小林.故填小林.观察图象可得:小明的成绩较集中,波动较小,即方差较小;故小明的成绩较为稳定;根据题意,一般新手的成绩不太稳定,故新手是小林.本题考查方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.已知一个正数的平方根是和,则这个数是______.【答案】【解析】解:根据题意可知:,解得,所以,,故答案为:.由于一个非负数的平方根有2个,它们互为相反数依此列出方程求解即可.本题主要考查了平方根的逆运算,平时注意训练逆向思维.15.若不等式组的解集是,则______.【答案】【解析】解:由不等式得,,,,,,.故答案为.解出不等式组的解集,与已知解集比较,可以求出a、b的值,然后相加求出2009次方,可得最终答案.本题是已知不等式组的解集,求不等式中另一未知数的问题可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.16.将绕点B逆时针旋转到,使A、B、在同一直线上,若,,,则图中阴影部分面积为______.【答案】【解析】解:,,,,,,,阴影部分面积.故答案为:.易得整理后阴影部分面积为圆心角为,两个半径分别为4和2的圆环的面积.本题利用了直角三角形的性质,扇形的面积公式求解.三、计算题(本大题共3小题,共24分)17.先化简,再选择一个你喜欢的数要合适哦代入求值:.【答案】解:,当时,原式.【解析】根据分式的加法和除法可以化简题目中的式子,再选取一个使得原分式有意义的值代入即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式的化简求值的计算方法.18.如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知C点周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东方向上,从A向东走600米到达B处,测得C在点B的北偏西方向上.是否穿过原始森林保护区,为什么?参考数据:若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高,则原计划完成这项工程需要多少天?【答案】解:理由如下:如图,过C作于H.设,由已知有,,则,.在中,,在中,,,,解得米米.不会穿过森林保护区.设原计划完成这项工程需要y天,则实际完成工程需要天.根据题意得:解得:.经检验知:是原方程的根.答:原计划完成这项工程需要25天.【解析】要求MN是否穿过原始森林保护区,也就是求C到MN的距离要构造直角三角形,再解直角三角形;根据题意列方程求解.考查了构造直角三角形解斜三角形的方法和分式方程的应用.19.我们常用的数是十进制数,如,数要用10个数码又叫数字:0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数那么二进制中的数101011等于十进制中的哪个数?【答案】解:,所以二进制中的数101011等于十进制中的43.【解析】利用新定义得到,然后根据乘方的定义进行计算.本题考查了有理数的乘方:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.四、解答题(本大题共7小题,共72分)20.计算:.【答案】解:原式.【解析】直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质、负指数幂的性质进而化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.21.观察表中的结果,你能发现a、b、c之间有什么关系吗?请写出关系式.【答案】解:填表如下:个面,共有2n个顶点,共有3n条棱;故a,b,c之间的关系:.【解析】结合三棱柱、四棱柱和五棱柱的特点,即可填表,根据已知的面、顶点和棱与几棱柱的关系,可知n 棱柱一定有个面,2n个顶点和3n条棱,进而得出答案,利用前面的规律得出a,b,c之间的关系.此题主要考查了欧拉公式,熟记常见棱柱的特征,可以总结一般规律:n棱柱有个面,2n个顶点和3n条棱是解题关键.22.如图,在方格纸中请在方格纸上建立平面直角坐标系,使,,并求出B点坐标;以原点O为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形;计算的面积S.【答案】解:如图所示,即为所求的直角坐标系;;如图:即为所求;.【解析】直接利用A,C点坐标得出原点位置进而得出答案;利用位似图形的性质即可得出;直接利用中图形求出三角形面积即可.此题主要考查了位似变换以及三角形面积求法,正确得出对应点位置是解题的关键画位似图形的一般步骤为:确定位似中心;分别连接并延长位似中心和关键点;根据位似比,确定位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.23.我国沪深股市交易中,如果买、卖一次股票均需付交易金额的作费用张先生以每股5元的价格买入“西昌电力”股票1000股,若他期望获利不低于1000元,问他至少要等到该股票涨到每股多少元时才能卖出?精确到元【答案】解:设涨到每股x元时卖出,根据题意得,分解这个不等式得,即分答:至少涨到每股元时才能卖出分【解析】根据关系式:总售价两次交易费总成本列出不等式求解即可.本题考查的是一元一次不等式在生活中的实际运用,解决本题的关键是读懂题意根据“总售价两次交易费总成本”列出不等关系式.24.已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球.求从中随机抽取出一个黑球的概率是多少?若往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,求y与x之间的函数关系式.【答案】解:一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球,从中随机抽取出一个黑球的概率是:;往口袋中再放入x个白球和y个黑球,从口袋中随机取出一个白球的概率是,,则.【解析】直接利用概率公式直接得出取出一个黑球的概率;直接利用从口袋中随机取出一个白球的概率是,进而得出答案函数关系式.此题主要考查了概率公式,正确掌握概率求法是解题关键.25.如图,在平面直角坐标系中,点的坐标为,以点为圆心,8为半径的圆与x轴交于A,B两点,过A作直线l与x轴负方向相交成的角,且交y轴于C点,以点为圆心的圆与x轴相切于点D.求直线l的解析式;将以每秒1个单位的速度沿x轴向左平移,当第一次与外切时,求平移的时间.【答案】解:由题意得,点坐标为.在中,,.点的坐标为设直线l的解析式为,由l过A、C两点,得,解得直线l的解析式为:.如图,设平移t秒后到处与第一次外切于点P,与x轴相切于点,连接,.则.轴,,在中,.,,秒.平移的时间为5秒.【解析】求直线的解析式,可以先求出A、C两点的坐标,就可以根据待定系数法求出函数的解析式.设平移t秒后到处与第一次外切于点P,与x轴相切于点,连接,.在直角中,根据勾股定理,就可以求出,进而求出的长,得到平移的时间.本题综合了待定系数法求函数解析式,以及圆的位置关系,其中两圆相切时的辅助线的作法是经常用到的.26.如图,已知抛物线经过,两点,顶点为D.求抛物线的解析式;将绕点A顺时针旋转后,点B落到点C的位置,将抛物线沿y轴平移后经过点C,求平移后所得图象的函数关系式;设中平移后,所得抛物线与y轴的交点为,顶点为,若点N在平移后的抛物线上,且满足的面积是面积的2倍,求点N的坐标.【答案】解:已知抛物线经过,,,解得,所求抛物线的解析式为;,,,,可得旋转后C点的坐标为,当时,由得,可知抛物线过点,将原抛物线沿y轴向下平移1个单位后过点C.平移后的抛物线解析式为:;点N在上,可设N点坐标为,将配方得,其对称轴为直线.时,如图,,,此时,点的坐标为.当时,如图, 同理可得,, 此时,点N 的坐标为.当时,由图可知,N 点不存在,舍去.综上,点N 的坐标为或. 【解析】利用待定系数法,将点A ,B 的坐标代入解析式即可求得;根据旋转的知识可得:,,,,可得旋转后C 点的坐标为,当时,由得,可知抛物线过点将原抛物线沿y 轴向下平移1个单位后过点平移后的抛物线解析式为:;首先求得,的坐标,根据图形分别求得即可,要注意利用方程思想.此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题. 此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用.。
2018年四川德阳市中考数学模拟试题含答案详解
德阳市2018年初中毕业生学业考试与高中阶段学校招生考试模拟试卷(满分:120分考试时间:120分钟)第I卷选择题(共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列根式中,与是同类二次根式的是()A.B.C.D.2.已知点A(a,1)与点A′(﹣5,b)是关于原点O的对称点,则a+b的值为()A.1 B.5C.6D.43.已知x=2是一元二次方程x2+mx+2=0的一个解,则m的值是()A.﹣3 B.3C.0D.0或34.下列图形中,既是轴对称图形又是中心对称图形的有()①平行四边形;②正方形;③等腰梯形;④菱形;⑤矩形;⑥圆.A.1个B.2个C.3个D.4个5.如图,⊙O中,弦AB、CD相交于点P,∠A=40°,∠APD=75°,则∠B=()第5题A.15°B.40°C.75°D.35°6.下列关于概率知识的说法中,正确的是()A.“明天要降雨的概率是90%”表示:明天有90%的时间都在下雨B.“抛掷一枚硬币,正面朝上的概率是”表示:每抛掷两次,就有一次正面朝上C.“彩票中奖的概率是1%”表示:每买100张彩票就肯定有一张会中奖D.“抛掷一枚质地均匀的正方体骰子,朝上的点数是1的概率是”表示:随着抛掷次数的增加,“抛出朝上点数是1”这一事件的频率是7.已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2013的值为()A.2011 B.2012 C.2013 D.20148.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=3 B.(x﹣2)2=3 C.(x﹣2)2=5 D.(x+2)2=59.要使代数式有意义,则a的取值范围是()A.a≥0 B.a≠C.a≥0且a≠D.一切实数10.如图,已知⊙O的直径CD垂直于弦AB,垂足为点E,∠ACD=22.5°,若CD=6cm,则AB的长为()第10题A.4cm B.3cm C.2cm D.2cm11.到2014底,我县已建立了比较完善的经济困难学生资助体系.某校2012年发放给每个经济困难学生450元,2014年发放的金额为625元.设每年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.450(1+x)2=625 B.450(1+x)=625C.450(1+2x)=625 D.625(1+x)2=45012.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中正确结论的有()第12题A.①②③B.①③④C.③④⑤D.②③⑤第II卷非选择题(共84分)二、填空题(本大题共5小题,每小题3分,共15分.请把答案填在题中的横线上)13.如图,BC=EC,∠1=∠2,要使△ABC≌△DEC,则应添加的一个条件为.(答案不唯一,只需填一个).第13题14.关于x的一元二次方程﹣x2+(2m+1)x+1﹣m2=0无实数根,则m的取值范围是.15.化简:=.16.如图,在反比例函数y=(x>0)的图象上,有点P1,P2,P3,P4,它们的横坐标依次为1,2,3,4.分别过这些点作x轴与y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,则S1+S2+S3=.第16题17.观察下面的图形,它们是按一定规律排列的,依照此规律,第个图形共有120个★.第17题三、解答题(本大题共7小题,共69分,解答应写出必要的文字说明,证明过程或演算步骤)18.(4分)计算:.19.(6分)如图,把质地均匀的A、B两个转盘都分成三等分,玲玲和兰兰利用它们做游戏,同时自由转动两个转盘,当两个指针所停区域(停在分界线上重转)的数都是奇数或都是偶数时,则玲玲获胜,当两个指针所停区域的数是一奇一偶时,则兰兰获胜,列表或画树状图,用概率的知识说明这个游戏对她们是否公平?第19题20.(8分)某德阳特产专卖店销售“中江柚”,已知“中江柚”的进价为每个10元,现在的售价是每个16元,每天可卖出120个.市场调查反映:如调整价格,每涨价1元,每天要少卖出10个;每降价1元,每天可多卖出30个.(1)如果专卖店每天要想获得770元的利润,且要尽可能的让利给顾客,那么售价应涨价多少元?(2)请你帮专卖店老板算一算,如何定价才能使利润最大,并求出此时的最大利润?21.(12分)如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A,B的坐标分别是A(3,3)、B(1,2),△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出△A1OB1,直接写出点A1,B1的坐标;(2)在旋转过程中,点B经过的路径的长;(3)求在旋转过程中,线段AB所扫过的面积.第21题22.(12分)如图,已知A(﹣4,2)、B(a,﹣4)是一次函数y=kx+b的图象与反比例函数的图象的两个交点;(1)求此反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围;(3)求△AOB的面积.第22题23.(13分)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)求证:∠C=2∠DBE;(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)第23题24.(14分)如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M是x轴上的一个动点,当△DCM的周长最小时,求点M的坐标.第24题德阳市2018年初中毕业生学业考试与高中阶段学校招生考试模拟试卷(参考答案)一、1.A解析:A、与被开方数相同,是同类二次根式;B、=2 与被开方数不同,不是同类二次根式;C、=2与被开方数不同,不是同类二次根式;D、与的根指数不同,不是同类二次根式.故选A.2.D解析:∵点A(a,1)与点A′(﹣5,b)是关于原点O的对称点,∴a=5,b=﹣1,∴a+b=4,故选D.3.A解析:∵x=2是一元二次方程x2+mx+2=0的一个解,∴4+2m+2=0,∴m=﹣3.故选A.4.D解析:①不是轴对称图形,是中心对称图形,不符合题意;②即是轴对称图形,又是中心对称图形,符合题意;③是轴对称图形,不是中心对称图形,不符合题意;④既是轴对称图形,又是中心对称图形,符合题意.⑤既是轴对称图形,又是中心对称图形.符合题意;⑥既是轴对称图形,又是中心对称图形.符合题意.共4个既是轴对称图形又是中心对称图形.故选D.5.D解析:∵∠APD=75°,∴∠BPD=105°,由圆周角定理,可知∠A=∠D(同弧所对的圆周角相等),在三角形BDP中,∠B=180°﹣∠BPD﹣∠D=35°,故选D.6.D解析:A、“明天要降雨的概率是90%”表示:明天有90%下雨的可能,故此选项错误;B、抛掷一枚硬币,正面朝上的概率是”表示,每抛掷一次出现正面向上与向下的可能都是,并不是一定是,故此选项错误;C、“彩票中奖的概率是1%”表示:每买100张彩票就可能有一张会中奖,故此选项错误;D、“抛掷一枚质地均匀的正方体骰子,朝上的点数是1的概率是”表示:随着抛掷次数的增加,“抛出朝上点数是1”这一事件的频率是,此选项正确.故选D.7.A 解析:根据题意,得m2﹣m﹣1=0,所以m2﹣m=1,所以m2﹣m+2013=1+2013=2014.故选D.8.A解析:方程移项,得x2+4x=﹣1,配方,得x2+4x+4=3,即(x+2)2=3.故选A.9.C解析:根据题意,得,解得a≥0且a≠.故选C.10.B解析:连结OA,如图,∵∠ACD=22.5°,∴∠AOD=2∠ACD=45°,∵⊙O的直径CD垂直于弦AB,∴AE=BE,△OAE为等腰直角三角形,∴AE=OA,∵CD=6,∴OA=3,∴AE=,∴AB=2AE=3(cm).故选B.11.A解析:设每年发放的资助金额的平均增长率为x,则2012年发放给每个经济困难学生450(1+x)元,2013年发放给每个经济困难学生450(1+x)2元,由题意,得450(1+x)2=625.故选A.12.C 解析:①由图象可知:a<0,b>0,c>0,abc<0,故①错误;②当x=﹣1时,y=a﹣b+c<0,即b>a+c,故②错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故③正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故④正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b>am2+bm,即a+b>m(am+b),故⑤正确.综上所述,③④⑤正确.故选C.二、13.AC=CD解析:添加的条件是AC=CD,理由是:∵∠1=∠2,∴∠1+∠ECA=∠2+∠ECA,∴∠BCA=∠ECD,∵在△ABC和△DCE中,,∴△ABC≌△DCE.14.m<﹣解析:∵关于x的一元二次方程﹣x2+(2m+1)x+1﹣m2=0的二次项系数a=﹣1,一次项系数b=(2m+1),常数项c=1﹣m2,∴△=(2m+1)2﹣4×(﹣1)(1﹣m2),即△=4m+5,又∵原方程无实根,∴△<0,即4m+5<0,解得m<﹣.15.a﹣b解析:原式=(﹣)÷=•=a ﹣b.16.解析:由题意,可知点P1、P2、P3、P4坐标分别为:(1,2),(2,1),(3,),(4,).解法一:∵S1=1×(2﹣1)=1,S2=1×(1﹣)=,S3=1×(﹣)=,∴S1+S2+S3=1++ =.解法二:∵图中所构成的阴影部分的总面积正好是从点P1向x轴、y轴引垂线构成的长方形面积减去最下方的长方形的面积,∴1×2﹣×1=.17.15解析:通过观察,得到星的个数分别是,1,3,6,10,15,…,第一个图形为:1×(1+1)÷2=1,第二个图形为:2×(2+1)÷2=3,第三个图形为:3×(3+1)÷2=6,第四个图形为:4×(4+1)÷2=10,…,所以第n个图形为:n(n+1)÷2个星,设第m个图形共有120个星,则m(m+1)÷2=120,解得m=15.三、18.解:原式=1+2+3﹣5﹣2=4﹣5.19.解:同时自由转动两个转盘,出现的情况如图,共有9种等可能的结果,两个指针所停区域的数都是奇数的概率为,两个指针所停区域的数都是偶数的概率为,两个指针所停区域的数是一奇一偶的概率为+>,所以这个游戏对他们不公平,玲玲获胜的可能性大.20.解:(1)设售价应涨价x元,则(16+x﹣10)(120﹣10x)=770,解得x1=1,x2=5.又要尽可能的让利给顾客,则涨价应最少,所以x2=5(舍去).所以x=1.答:专卖店涨价1元时,每天可以获利770元.(2)设单价涨价x元时,每天的利润为w1元,则w1=(16+x﹣10)(120﹣10x)=﹣10x2+60x+720 =﹣10(x﹣3)2+810(0≤x≤12),即定价为16+3=19(元)时,专卖店可以获得最大利润810元.设单价降价z元时,每天的利润为w2元,则w2=(16﹣z﹣10)(120+30z)=﹣30z2+60z+720 =﹣30(z﹣1)2+750(0≤z≤6),即定价为16﹣1=15(元)时,专卖店可以获得最大利润750元.综上所述,专卖店将单价定为每个19元时,可以获得最大利润810元.21.解:(1)△A1OB1如图所示,A1(﹣3,3),B1(﹣2,1).(2)由勾股定理,得OB==,所以弧BB1==π.(3)由勾股定理,得OA==3,S扇形OAA1==π,S扇形OBB1==π,则线段AB所扫过的面积为:π﹣π=π.22.解:(1)∵m=xy=(﹣4)×2=﹣8,∴﹣4a=﹣8,∴a=2,则y=kx+b过A(﹣4,2),B(2,﹣4)两点,∴解得k=﹣1,b=﹣2.故B(2,﹣4),一次函数的解析式为y=﹣x﹣2.(2)一次函数的值小于反比例函数值的x的取值范围:﹣4<x<0或x>2.(3)由(1),得一次函数y=﹣x﹣2,令x=0,解得y=﹣2,∴一次函数与y轴交点为C(0,﹣2),∴OC=2,∴S△AOB=S△AOC+S△BOC=OC•|y点A横坐标|+OC•|y点B横坐标|=×2×4+×2×2=6.S△AOB=6.23.(1)证明:连结OD,∵BC是⊙O的切线,∴∠ABC=90°,∵CD=CB,∴∠CBD=∠CDB,∵OB=OD,∴∠OBD=∠ODB,∴∠ODC=∠ABC=90°,即OD⊥CD,∵点D在⊙O上,∴CD为⊙O的切线;(2)证明:如图,∠DOE=∠ODB+∠OBD=2∠DBE,由(1),得OD⊥EC于点D,∴∠E+∠C=∠E+∠DOE=90°,∴∠C=∠DOE=2∠DBE;(3)解:作OF⊥DB于点F,连结AD,由EA=AO可得:AD是Rt△ODE斜边的中线,∴AD=AO=OD,∴∠DOA=60°,∴∠OBD=30°,又∵OB=AO=2,OF⊥BD,∴OF=1,BF=,∴BD=2BF=2,∠BOD=180°﹣∠DOA=120°,∴S阴影=S扇形OBD﹣S△BOD=﹣×2×1=﹣.24.解:(1)∵点A(﹣1,0)在抛物线上,∴,解得,∴抛物线的解析式.∵,∴顶点D的坐标为;(2)△ABC是直角三角形.理由如下:当x=0时,y=﹣2,∴C(0,﹣2),则OC=2.当y=0时,,∴x1=﹣1,x2=4,则B(4,0),∴OA=1,OB=4,∴AB=5.∵AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,∴AC2+BC2=AB2,∴△ABC是直角三角形;(3)作出点C关于x轴的对称点C′,则C'(0,2).连结C′D交x轴于点M,根据轴对称性及两点之间线段最短可知,CD一定,当MC+MD的值最小时,△CDM的周长最小.设直线C′D的解析式为y=ax+b(a≠0),则,解得,∴.当y=0时,,则,∴.。
四川省德阳市2018年中考数学试题(解析)
2018年四川省德阳市中考数学试卷解读一、选择题<共12小题,每小题3分,满分36分)1.<2018•德阳)实数﹣3的相反数是< )A.3B.C.D.﹣2考点:实数的性质。
专题:常规题型。
分析:根据相反数的定义,只有符合不同的两个数叫做互为相反数解答.解答:解:﹣3的相反数是3.故选A.点评:本题考查了互为相反数的定义,熟记概念是解题的关键.2.<2018•德阳)某厂2018年用于购买原材料的费用2350000元,实数2350000用科学记数法表示为< )lNSrI31BEeA.2.35×105B.23.5×105C.0.235×105D.2.35×106考点:科学记数法—表示较大的数。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将2350000用科学记数法表示为:2.35×106.故选:D.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.<2018•德阳)使代数式有意义的x的取值范围是< )A.x≥0B.C.x≥0且D.一切实数考点:二次根式有意义的条件;分式有意义的条件。
分析:根据分式有意义的条件可得2x﹣1≠0,根据二次根式有意义的条件可得x≥0,解出结果即可.解答:解:由题意得:2x﹣1≠0,x≥0,解得:x≥0,且x ≠,故选:C.点评:此题主要考查了分式有意义的条件,二次根式有意义的条件,二次根式中的被开方数是非负数;分式有意义的条件是分母不等于零.4.<2018•德阳)某物体的侧面展开图如图所示,那么它的左视图为< )A.B.C.D.考点:几何体的展开图;简单几何体的三视图。
四川省德阳市2018届九年级数学上学期半期考试试题 新人教版
四川省德阳市2018届九年级数学上学期半期考试试题一、选择题(本大题共12小题;每小题3分,共36分.给出的四个选项中,只有一项是符合题目要求的.请把正确结果填在答题卡对应的位置上.)1.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A. B. C. D.2.一元二次方程x2=x的根是()A.x=1 B.x=0 C.x1=0,x2=1 D.x1=0,x2=-13.一元二次方程4x2+1=4x的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根4.抛物线y=-x 2+2x+3的顶点坐标为()A.(1,3) B.(-1,4)C.(-1,3)D.(1,4)5.如图,A,B,C是⊙O上的三点,∠BOC=70°,则∠A的度数为()A.35°B.45° C.40° D.70°6.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x﹣1)=1035B.x(x﹣1)=1035×2C.x(x+1)=1035 D.2x(x+1)=10357.已知二次函数y=-(x+k)2+h,当x>-2时,y随x的增大而减小,则函数中k的取值范围是()A. k≥-2 B.k≤-2 C.k≥2 D.k≤28.⊙O的直径为10,圆心O到弦AB的距离为3,则弦AB的长是()A.4 B.6 C.7 D.89.在△ABC 中,∠A=90°,AB =3cm ,AC =4cm ,若以A 为圆心2.5cm 为半径作⊙O,则BC 与⊙O 的位置关系是( )A .相交B .相离C .相切D .不能确定10.如图,点A ,点B 的坐标分别是(0,1),(a ,b),将线段AB 绕A 旋转180°后得到线段AC ,则点C 的坐标为( )A .(-a ,-b +1)B .(-a ,-b -1)C .(-a ,-b +2)D .(-a ,-b -2)11.如图,四边形ABCD 内接于半圆O ,AB 为直径,AB=4,AD=DC=1,则BC 的长为( ) A. 47 B .15C .32 D .27 12.如图是抛物线y=ax 2+bx+c (a ≠0),其顶点为(1,n ),且与x 轴的一个交点在点(3,0)和(4,0)之间,则下列结论正确的是( )①若抛物线与x 轴的另一个交点为(k ,0),则-2<k <-1; ②c -a=n ;③若x <-m 时,y 随x 的增大而增大,则m=-1;④若x <0时,ax 2+(b+2)x <0.A .①②④B .①③④C .①②D .①②③④10题图 11题图 12题图二、填空题(本大题共6小题;每小题3分,共18分.请把最后结果填在答题卡对应的位置上.)13.如图(见第3页),在Rt △ABC 中,∠ACB=90°,∠A=25°,将△ABC 绕C 点旋转到△A′B′C 的位置,其中A′、B′分别是A 、B 的对应点,且点B 在斜边A′B′上,直角边CA′交AB 于D ,则旋转角等于度.14.若3)2)((2222=-++y x y x ,则22y x += . 15.当2.5≤x ≤5时,二次函数y=-(x -1)2+2的最大值为.16. 如图(见第3页),Rt△ABC 的内切圆⊙O 与两直角边AB 、BC 分别相切于点D 、E ,过劣弧DE ︵(不包括端点D 、E)上任一点作⊙O 的切线MN 与AB 、BC 分别交于点M 、N.若AC=10,BC=6,则△MBN 的周长为.17.如图(见第3页),正六边形ABCDEF 内接于⊙O ,M 为EF 的中点,连接DM ,若⊙O 的半径为2,则MD 的长度为.18.已知关于x 的一元二次方程22(21)0x m x m +-+=有两个实数根1x 和2x .当22120x x -=时,则m 的值为.13题图 16题图 17题图三、解答题(本大题共6小题,共66分.解答时将文字说明、证明过程或演算步骤写在答题卡相应的位置上.)19.(10分)(1)解方程:155)3)(12(-=-+x x x(2)解方程:x x x 4)1)(1(2=-+20.(8分)把两个三角形按如图1放置,其中∠ACB=∠DEC=90°,∠CAB=45°,∠CDE=30°,且AB=6,DC=7,把△DCE 绕点C 顺时针旋转15°得△D 1CE 1,如图2,这时AB 与CD 1相交于点O 、与D 1E 1相交于点F ;(1)求∠ACD 1的度数;(2)求线段AD 1的长.21.(8分)如图,⊙O的半径OD⊥弦AB于点C,联结AO并延长交⊙O于点E,联结EC.已知AB=8,CD=2.(1)求OA的长度;(2)求CE的长度.22. (8分)如图,已知抛物线与x轴交于A(﹣1,0)、B(4,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式;(2)在x轴下方的抛物线上是否存在一点P,使△PAB的面积等于△ABC的面积?若存在,求出点P的坐标;若不存在,请说明理由.23.(10分)为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知2015年该市投入基础教育经费5000万元,2017年投入基础教育经费7200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划2018年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台?24.(10分)如图,在△ABC中,∠C=90°,AC=6,BC=8,点O在AC上,OA=2,以OA为半径的⊙O 交AB于点D,AC于G,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)求证:直线DE是⊙O的切线;(2)求线段DE的长;(3)求线段AD的长.25.(12分)如图,抛物线y=﹣x2+bx+c与x轴分别交于A(﹣1,0),B(5,0)两点.(1)求抛物线的解析式;(2)在第二象限内取一点C,作CD垂直X轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.德阳五中初2015级2017年秋期半期数学参考答案一、 选择题1.B2.C.3.C.4.D5.A.6.A.7.B.8.D9.A 10.C 11.D 12.A二、 填空题13. 50;14. 3; 15.41-; 16. 4; 17. 7; 18. 41 三、解答题19.解:(1)x 1=3,x 2=2.(2) x 1=21+,x 2=21-.20.解:(1)∵把△DCE 绕点C 顺时针旋转15°得△D 1CE 1,∴∠BCE 1=15°,∴∠D 1CB=60°﹣15°=45°,∴∠AC D 1=45°;(2)∵∠AC D 1=∠BC D 1=45°,且AC=CB ,∴AO=BO=AB=3,CD 1⊥AB ,∴CO=AB=3,∴O D 1=7﹣3=4,在Rt △AO D 1中有AO 2+O D 12=A D 12∴A D 1=2243+=5.21.(1)解:∵在⊙O 中,OD ⊥弦AB , ∴=4,设OA 为x ,则OD=OA=x ,∵CD=2,∴OC=x ﹣2在Rt △ACO 中,AC 2+OC 2=AO 2∴42+(x ﹣2)2=x 2,解得x=5,∴OA=5;(2)解:连接BE ,∵OA=OE ,AC=BC ,∴OC∥BE且,∴∠EBA=∠OCA=90°,∵OC=OD﹣CD=5﹣2=3,∴BE=6,在Rt△ECB中,BC2+EB2=EC2∴42+62=EC2,∴.22.(1)设抛物线的解析式为y=ax2+bx+c,∵抛物线与y轴交于点C的坐标(0,3),∴y=ax2+bx+3,又∵抛物线与x轴交于点A(﹣1,0)、B(4,0),∴,∴抛物线的解析式为;(2)存在一点P,使△PAB的面积等于△ABC的面积,∵△ABC的底边AB上的高为3,设△PAB的高为h,则|h|=3,又点P在x轴下方,∴点P的纵坐标为﹣3,,∴点P的坐标为,,23.解:(1)设该市这两年投入基础教育经费的年平均增长率为x,根据题意得:5000(1+x)2=7200,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:该市这两年投入基础教育经费的年平均增长率为20%.(2)2018年投入基础教育经费为7200×(1+20%)=8640(万元),设购买电脑m台,则购买实物投影仪(1500﹣m)台,根据题意得:3500m+2000(1500﹣m)≤86400000×5%,解得:m≤880.答:2018年最多可购买电脑880台.24.(1)证明:连接OD ,∵EF 垂直平分BD ,∴EB=ED ,∴∠B=∠EDB ,∵OA=OD ,∴∠ODA=∠A ,∵∠C=90°,∴∠A+∠B=90°,∴∠EDB+∠ODA=90°,∴∠ODE=90°,∴OD ⊥DE 于D ,∴DE 是⊙O 的切线.(2)解:连接OE ,设DE=BE=x ,CE=8﹣x ,∵OE 2=DE 2+OD 2=EC 2+OC 2,∴42+(8﹣x )2=22+x 2,解得x=4.75,∴DE=4.75.(3)连结BG,DG.∵AG 是直径,∴GD ⊥AB由S △ABG=21AG ·BC=21AB ·GD 可得:4×8=10×GD, ∴GD=3.2∴AD=22222.34-=-GD AG =2.425. 解:(1)∵抛物线y=﹣x 2+bx+c 与x 轴分别交于A (﹣1,0),B (5,0)两点, ∴,解得, ∴抛物线解析式为y=﹣x 2+4x+5;(2)∵AD=5,且OA=1,∴OD=6,且CD=8,∴C (﹣6,8),设平移后的点C 的对应点为C′,则C′点的纵坐标为8,代入抛物线解析式可得8=﹣x 2+4x+5,解得x=1或x=3,∴C′点的坐标为(1,8)或(3,8),∵C (﹣6,8),∴当点C落在抛物线上时,向右平移了7或9个单位,∴m的值为7或9;(3)∵y=﹣x2+4x+5=﹣(x﹣2)2+9,∴抛物线对称轴为x=2,∴可设P(2,t),由(2)可知E点坐标为(1,8),①当BE为平行四边形的边时,连接BE交对称轴于点M,过E作EF⊥x轴于点F,过Q作对称轴的垂线,垂足为N,如图,则∠BEF=∠BMP=∠QPN,可得△PQN≌△EFB(AAS),∴NQ=BF=OB﹣OF=5﹣1=4,设Q(x,y),则QN=|x﹣2|,∴|x﹣2|=4,解得x=﹣2或x=6,当x=﹣2或x=6时,代入抛物线解析式可求得y=﹣7,∴Q点坐标为(﹣2,﹣7)或(6,﹣7);②当BE为对角线时,∵B(5,0),E(1,8),∴线段BE的中点坐标为(3,4),则线段PQ的中点坐标为(3,4),设Q(x,y),且P(2,t),∴x+2=3×2,解得x=4,把x=4代入抛物线解析式可求得y=5,∴Q(4,5);综上可知Q点的坐标为(﹣2,﹣7)或(6,﹣7)或(4,5).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
德阳市2018年初中毕业生学业考试与高中阶段学校招生考试
数学试卷(解析)
第I 卷(选择,共36分)
一、选择题(本大共12个小,每小3分,共36分)
在每小题给出的四个选项中,有且仅有一项是符合题目要求的.
1一5的绝对值是
A. 5
B. 15
C. -15
D. -5 答案:A
解析:-5的绝对值是它的相反数,所以,选A 。
2.已知空气的单位体积质量为1.24×10-3克/厘米3,将1.24×10-3用小数表示为
A: 0. 000124 B .0.0124 C.一0.00124 D 、0.00124
答案:D
解析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把
原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数。
1.24×10-3=0.00124
3、如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是
答案:C
解析:长方体的三视图为矩形,只有二个视图一样,圆柱的正视图与侧视图为矩形,俯视图为圆,三棱柱的正、侧视图为矩形,俯视图为三角形,只有球的三个视图都是圆。
4.下列计算正确的是
答案:B
解析:222()2a b a ab b -=-+,1111a a a a a
÷⨯=⨯=,2(4)4-=,所以,
A 、C 、D 都错,只是
B 的计算是正确的。
5.如图.圆O 的直径CD 过弦EF 的中点G, ∠DCF=20°.,则∠EOD 等于
A. 10°
B. 20°
C. 40°
D. 80°
答案:C
解析:因为直径过弦EF 的中点G ,所以,CD ⊥EF ,且平分弧EF ,因此,弧
ED 与弧BD 的度数都为40°,所以,∠EOD =40°,选C 。
6.如图,热气球的探测器显示,从热气球A看一栋高楼顶部B的仰角为300,看这栋高楼底部C的俯角为600,热气球A与高楼的水平距离为120m,这栋高楼BC的高度为
A. 40 3m
B. 803m
C. 1203m
D. 160 3m
答案:D
解析:过A作AD⊥BC于D,则∠BAD=30°,∠CAD=60°,AD=120。
BC=BD+CD=120tan30°+120tan60°=1603,选D。
7,某校八年级二班的10名团员在“情系芦山”的献爱心捐款活动中,捐款清况如下(单位:元):10, 8,12, 15,10,12,11,9,13,10,则这组数据的
A、众数是10.5 B.方差是3.8 C.极差是8D,中位数是10
答案:B
解析:从数据可以看出,众数为10,极差为:15-8=7,中位数为:10.5,故A、C、D都错,由方差的计算公式可求得方差为3.8,选B。
8.适合不等式组的全部整数解的和是
A.一1 B、0 C.1 D.2
答案:B
解析:解(1)得:
3
2
x>-,解(2)得:1
x≤,所以,原不等式组的解为:
3
1
2
x
-<≤,所有整
数为:-1,0,1,和为0,故选B。
9.如果三角形的两边分别为3和5,那么连结这个三角形三边中点所得的三角形的周长可能是
A. 5. 5 B、5 C.4.5 D.4
答案:A
解析:设第三边长为x,则2<x<8,三角形的周长设为p,则10<p<16,连结三边中点所得三角形的周长范围应在5到8之间,只有A符合。
10.如图.在ABCD中,AB=6、AD=9,∠BAD的平分
线交BC于点E,DC的延长线于点F, BG⊥AE,垂足为G,
若BG=42,则△CEF的面积是。