探索三角形全等的条件(二)
12.2三角形全等的判定(2)(SAS)(可用)
A
D
C A DE C
证明三角形全等的步骤:
1.写出在哪两个三角形中证明全等。 (注意把表示对应顶点的字母写在对 应的位置上).
2.按边、角、边的顺序列出三个条件, 用大括号合在一起. 3.证明全等后要有推理的依据.
问题 : 如图有一池塘。要测池塘两端 A 、 B的距离,可 无法直接达到,因此这两点的距离无法直接量出。你能想 出办法来吗?
A A′
∠C=∠C′
BC=B′C′
B
C
C′
B′
∴△ABC≌△A′B′C′(SAS)
练习
1.在下列图中找出全等三角形
30º
Ⅰ
Ⅱ
Ⅲ Ⅲ
Ⅳ Ⅳ
5 cm
30º
Ⅵ
Ⅴ
30º
Ⅶ
Ⅷ
2.在下列推理中填写需要补充 的条件,使结论成立:
如图,在△AOB和△DOC中
A
D
O B
C
AO=DO(已知)
______=________( ∠ DOC 对顶角相等 ) ∠ AOB
A 证明:在△ABC和△DEC中, 分析:已知两边(相等) AC=DC(已知) 找第三边( SSS) ) ∠ACB= ∠DCE(对顶角相等 BC=EC(已知) 找夹角 (SAS) ∴△ABC≌△DEC(SAS)E ∴AB=DE (全等三角形的对应边相等)
C
D
例2.已知:如图,AD=CB,AD∥BC.
A D
B
E
F
C
探索两边和Байду номын сангаас边的对角
C
10cm
8cm
8cm
45° A
B
B′
显然:△ABC与△AB′C不全等 SSA不存在
第三课时 探索三角形全等的条件(二)
第三课时 探索三角形全等的条件(二)一、 学习目标:掌握三角形的“角边角”、“角角边”的全等条件;二、温故知新:1、三边对应相等的两个三角形全等,简写为__________或___________;2、如图,在△ABC 中,PA=PB ,PC 是AB 边上的中线,PC 能平分∠APB 吗?证明∵PC 是AB 边上的中线,∴AC=__________( )在_________________________中∴________≌__________ (___________)∴_________=_________ (__________________)∴PC 平分∠APB3、如图, (1)∵AB ∥CD (已知)∴∠_____=∠_____(_______________)(2)∵AD ∥BC (已知)∴∠_____=∠_____(_______________)4、如图,∵EA ⊥AD ,FD ⊥AD (已知)∴∠______=∠______=90°(______________)三、探索新知:1、如果“两角及一边”条件中的边是两角所夹的边,比如三角形的两个内角分别是60°和80°,它们所夹的边为2cm ,你能画出这个三角形吗?你画出的三角形与同伴画的一定全等吗?结论:________及其_________分别__________的两个三角形____________; 简写成“____________”或“___________”2、如果“两角及一边”条件中的边是其中一角的对边,比如三角形的两个内角分别是60°和45°,一条边长为3cm ,你能画出这个三角形吗?你画出的三角形与同伴画的一定全等吗?结论:_______分别_______其中一组______的对边_____的两个三角形_______; 简写成“____________”或“___________”⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________四、巩固新知:1、图中的两个三角形全等吗?依据是什么?依据(_____________) 依据(_____________)2、如图,AB=AC ,∠B=∠C ,你能证明△ABD ≌△ACE 吗?证明:在_________________________中∴________≌__________ (___________)3、如图,∠B=∠C ,AD 平分∠BAC ,你能证明,△ABD ≌△ACD 吗?若BD=3cm ,则CD 有多长? 解:∵,AD 平分∠BAC (已知)∴∠________=∠________ ( )在_________________________中∴________≌__________ (___________)∴BD=________=________(___________)4、如图,已知AB=CD ,∠B=∠C ,求证△ABO ≌△DCO ;证明: 在_________________________中∴________≌__________ (_________)⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________五、提高练习:5、如图,已知AC 与BD 交于点O ,AD ∥BC ,且AD=BC ,你能说明BO=DO 吗? 证明:∵AD ∥BC ,(已知)∴∠_____=∠_____∠_____=∠_____ ( )在_________________________中∴________≌__________ (___________)∴________=________ (______________________)6、如图,在△ABC 中,AD 是BC 边上的中线, 且BE ⊥AD 于E ,CF ⊥AD 于F , 求证:BE=CF证明:∵AD 是BC 边上的中线,(已知)∴_______=________ ( )∵BE ⊥AD ,CF ⊥AD∴_________=_________ =90°( )在_________________________中∴________≌__________ (___________)∴________=________ (______________________)7、如果,AB ∥CD ,∠A=∠D ,BF=CE ,∠AEB=80°,求∠DFC 的度数? 证明:∵AB ∥CD , (已知)∴ ∠______=∠_______ ( )∵BF=CE∴BF-______=CE-________即_______=________在_________________________中∴________≌__________ (___________)∴∠DFC =________=________ (______________________)⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________8、如图,AB=AD ,∠1=∠2,∠ABC=∠ADE ,求证△ABC ≌△ADE ; 证明:∵∠1=∠2, (已知)∴ ∠1-_______=∠2-_______ ( )∴ __________=__________在_________________________中∴_________≌_________ (___________)9、如图,AB=AD ,∠1=∠2,∠ABC=∠ADE ,求证△ABC ≌△ADE ; 证明:∵∠1=∠2, (已知)∴ ∠1+______=∠2+_______ ( )∴ __________=__________在_________________________中∴_________≌_________ (___________)10、如图,AB ⊥BC 于B ,DF ⊥AC 于F ,BC=BE ,△ABC ≌△DBE ; 证明:∵AB ⊥BC , (已知)∴ ∠______=∠______=90°( )∵DF ⊥AC , (已知)∴ ∠______=90° ( )∴ ______+∠C=______+∠C∴ __________=__________在_________________________中∴_________≌_________ (___________)⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________⎪⎩⎪⎨⎧(_____)__________(_____)__________(_____)__________。
第3讲探索三角形全等的条件(二)
(1)一个锐角和这个角的对边对应相等;( )
(2)一个锐角和斜边对应相等;
()
(3)两直角边对应相等;
()
(4)一条直角边和斜边对应相等. ( )
【答案】(1)全等,“AAS”;(2)全等,“AAS”;(3)全等,“SA根据全等三角形的判定来判断.
4、【答案】A 【解析】解:∵OM=ON,CM=CN,OC 为公共边, ∴△MOC≌△NOC(SSS).∴∠MOC=∠NOC 故选:A.
5【答案】AH=CB; 【解析】∵AD⊥BC,CE⊥AB,垂足分别为 D、E, ∴∠BEC=∠AEC=90°, 在 Rt△AEH 中,∠EAH=90°﹣∠AHE, 又∵∠EAH=∠BAD, ∴∠BAD=90°﹣∠AHE, 在 Rt△AEH 和 Rt△CDH 中,∠CHD=∠AHE, ∴∠EAH=∠DCH, ∴∠EAH=90°﹣∠CHD=∠BCE, 所以根据 AAS 添加 AH=CB 或 EH=EB; 根据 ASA 添加 AE=CE. 可证△AEH≌△CEB.
【总结升华】直角三角形全等可用的判定方法有 5 种:SAS、ASA、AAS、SSS、HL.
例 3、如图,AB⊥AC 于 A,BD⊥CD 于 D,若 AC=DB,则下列结论中不正确的是( )
A.∠A=∠D B.∠ABC=∠DCB C.OB=OD D.OA=OD 【答案与解析】根据已知及全等三角形的判定方法进行分析,从而得到答案.做题时要结合 已知条件与全等的判定方法逐一验证. 解:∵AB⊥AC 于 A,BD⊥CD 于 D ∴∠A=∠D=90°(A 正确) 又∵AC=DB,BC=BC ∴△ABC≌△DCB(HL) ∴∠ABC=∠DCB(B 正确) ∴AB=CD 又∵∠AOB=∠C ∴△AOB≌△DOC(AAS) ∴OA=OD(D 正确) C 中 OD、OB 不是对应边,不相等. 故选 C. 【总结升华】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、 SAS、ASA、AAS、HL.注意:AAA、SSA 不能判定两个三角形全等,判定两个三角形全 等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
12.2三角形全等的判定(2)
12.2三角形全等的判定(2) 授课时间:9.14 授课班级:八年级编导人:敖晓磊学习目标课前预习(仔细阅读课本37--38页内容)互动课堂1.探索三角形全等的“边角边”的条件.2.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程.3..能运用“SAS”证明简单的三角形全等问题.先任意画出△ABC,再画出一个△A’B’C’,使A’B’=AB,A’C’=AC,∠A’=∠A(即两边和他们的夹角分别相等)。
观察这样的两个三角形全等吗?AB C得出结论:三角形全等的条件:和它们的对应相等的两个三角形全等,简写成“边角边”或“”注:及其一边所对的相等,两个三角形不一定全等。
让我们来应用“边角边”定理解决一些实际问题吧!例:已知:如图,AD、BE相交与点C,AC=DC,BC=EC,求证:AB∥EDA BCE D教与学应用拓展回馈目标当堂检测课后反思如图,点C E B F,,,在同一直线上,C F∠=∠,AC DF=,EC BF=.ABC△与DEF△全等吗?说明你的结论.本节课你学到了哪些知识还有什么困惑?1、如图1,已知AD∥BC,AD=CB,要用边角边公理证明△ABC≌△CDA,需A要三个条件,这三个条件中,已具有两个条件,一是AD=CB(已知),二是 B___________;还需要一个条件_____________(这个条件可以证得吗?).2、已知:如图,AB=AC,F、E分别是AB、AC的中点.求证:△ABE≌△ACF.AF EB CCEDFBA。
数学(七下)3.3探索三角形全等的条件(二)
1、角.边.角;
2、角.角.边
每种情况下得到的三角形都全等吗?
做一做
1.角.边.角;
若三角形的两个内角分别是60°和80° 它们所夹的边为4cm,你能画出这个三角形吗?
2cm
60°
80°
做一做
2.角.角.边
若三角形的两个内角分别是60°和45°,且45° 所对的边为3cm,你能画出这个三角形吗?
2
C
∴△ABC≌△DCB( AAS )
巩固练习:
如图,O是AB的中点,∠A=∠B,△AOC 与△BOD全等吗?为什么? 我的思考过程如下: 两角与夹边对应相 等 A
C O B D
∴△AOC≌△BOD
补充练习
1﹑请在下列空格中填上适当的条件, 使△ABC≌△DEF。 在△ABC和△DEF中 A D
课堂小结
通过这堂课的学习你有 什么收获?知道了哪些 新知识?学会了做什么?
布置作业
P83 知识技能2.3; 问题解决。
第三章
三角形
3 探索三角形全等的条件(第2课时)
情境导入
我们已学过识别两个三角形全等的方法 是什么?识别三角形全等是不是还有其 它方法呢?
情境导入
有一块三角形纸片撕去了一个角, 要去剪一块新的,如果你手头没 有测量的仪器,你能保证新 剪的纸片形状、大小和原来的一 样吗?
实践探究
我们知道:如果给出一个三角形三条边的长度, 那么因此得到的三角形都是全等.如果已知一个 三角形的两角及一边,那么有几边对应相等的两个三 角形全等,简写成“角边角”或“ASA”
两角和其中一角的对边对应相等的两个 三角形全等,简写成“角角边”或“AAS”
练一练
1.如图,已知AB=DE, ∠A =∠D, ,∠B=∠E, 则△ABC ≌△DEF的理由是:角边角(ASA) 2.如图,已知AB=DE ,∠A=∠D,,∠C=∠F,则 △ABC ≌△DEF的理由是: 角角边(AAS)
探索三角形全等的条件(二)
= 如图:已知 AE=AD 如图:已知AB=AC, = , A ∠B=∠C,△ABD与△ACE全 = , 与 全 E 等吗?为什么? 等吗?为什么?
B
D C
课堂小结: 课堂小结:
通过本节课的学习, 通过本节课的学习,你有 所收获? 所收获?
作业: 作业: P164页 页 习题5.8第 题 习题 第1题
探索三角形全等 二 的条件(二)
学习目标
1.三角形全等的条件 角边角 三角形全等的条件:角边角 三角形全等的条件 角边角, 角角边
做一做 1、角.边.角; 、 边角
若三角形的两个内角分别是 60°和80°它们所夹的边为 ° °它们所夹的边为2cm, 你能画出这个三角形吗? 你能画出这个三角形吗
2cm
60°
80°
两角和它们的夹边对应相等的 两角和它们的夹边对应相等的 两个三角形全等,简写成“ 两个三角形全等,简写成“角边 A D 角”或“ASA” 1、在△ABC中,AB=AC, 、 中 ∠B= ∠ F ,∠ A= ∠ D。 。 求证: = 求证:BC=EF
B CE F
2、角.角.边 、 角边 若三角形的两个内角分别是60° 若三角形的两个内角分别是 ° 和45°,其中 °角所对的边 ° 其中60 为3cm,你能画出这个三角形吗 ,你能画出这个三角形吗?
60°
40°
A 1、在△ABC中,AB=AC, 、 中 1、在△ABC中,AB=AC, 、 中 AD是边 上的角平分线 是边BC上的角平分线 是边 上的角平分线. AD是边 上的中线。 是边BC上的中线 是边 上的中线。 B (1)图中有全等的三角形吗 (1)图中有全等的三角形吗 (2) AD是∠BAC的中线吗 是 的中线吗 (2) AD是∠BAC的平分线吗 是 的平分线吗
探索全等三角形条件2
∵AB=DE,AC=DF,BC=EF
B D E F C
∴ΔABC≌ΔDEF(SSS)
三、展望未来: 问题1:如果已知一个三角形的两角及一边,那 么有几种可能的情况呢? 答:角边角(ASA) 角角边(AAS) 问题2: 做一做:按要求画出三角形,并与同 伴交流 。已知:∠A=600、∠B=450、AB=3cm
A
450
750 3cm
B
C
A
D
E C 方法2:∵∠B=∠E,BC=EF,∠C=∠F B ∴ΔABC≌DEF(ASA) 方法3:∵ ∠B=∠E ,∠C=∠F,AC=DF ∴∆ ABC≌DEF (AAS) D A
F
B
C
E
F
如图,O是 的中点 的中点, 例: 如图 是AB的中点,∠A= ∠B, , 全等吗?为什么 为什么? △AOC与△BOD全等吗 C 与 全等吗 为什么?
知识要点: 知识要点:
(1) 两角和它们的夹边对应相等的两个三角形全等 两角和它们的夹边对应相等的两个三角形全等. 简写成“角边角” 简写成“角边角”或“ASA”. (2) 两角和其中一角的对边对应相等的两个三角形全等 两角和其中一角的对边对应相等的两个三角形全等. 简写成“角角边” 简写成“角角边”或“AAS”. (3)探索三角形全等是证明线段相等(对应边相等), )探索三角形全等是证明线段相等(对应边相等), 角相等(对应角相等)等问题的基本途径。 角相等(对应角相等)等问题的基本途径。
数学思想:
要学会用分类的思想, 要学会用分类的思想, 转化的思想解决问题。
练一练:
1、如图∠ACB=∠DFE,BC=EF,根据ASA或AAS, ∠B=∠E或∠A=∠D 那么应补充一个直接条件 --------------------------, (写出一个即可),才能使△ABC≌△DEF
北师版初中七下数学4.3.2 探索三角形全等的条件(2)(课件)
导入新课
发现: 两个角 和 一条边 可以确定一个三角形。
导入新课
1.什么叫全等三角形? 能够完全重合的两个三角形叫 全等三角形.
2. 我们已经学过了哪几种判定两个三角形全等的方法? 边边边(SSS).
3.如果已知一个三角形的两角及一边,那么有几种可能的情况呢?
导入新课
如果已知一个三角形的两角及一边,那么有几种可能的情况呢?
当堂检测
1. 小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图 中标有1,2,3,4的四块),你认为将其中的哪块带去,就能 配一块与原来一样大小的三角形玻璃?应该带( B ) A.第1块 B.第2块 C.第3块 D.第4块
当堂检测
2. 如图,点B,F,C,E在一条直线上,AB∥ED,AC∥FD,那 么添加下列一个条件后,仍无法判定△ABC≌△DEF的是( C ) A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC
A
A
它们能判定
两个三角形
全等吗?
B
图一
C
“两角及夹边”
B
图二 C
“两角和其中一角的对边”
讲授新课
一 三角形全等的判定(“角边角”)
探究一:任意画出一个△ABC,再画一个△A′B′C′, 使A′B′=AB,∠A′=∠A,∠B′=∠B(即保证两角和它 们的夹边对应相等).把画好的△A′B′C′剪下,放到 △ABC上,它们全等吗?
∠B=∠E(已知 ), AB=AE(已知), ∠BAC=∠EAD (已证 ), ∴△BAC≌△EAD(ASA). ∴BC=ED.
讲授新课
找相等角的方法: 1.公共角、对顶角分别相等; 2.等角加(减)等角,其和(差)相等; 3.同角或等角的余(补)角相等; 4.角平分线得到相等角; 5.平行线的同位角、内错角相等; 6.直角都相等; 7.全等三角形对应角相等.
7 探索全等三角形的条件(2)-角边角(ASA)(基础检测)(解析版)
专题1.7 探索全等三角形的条件(2)-角边角(ASA)(基础检测)一、单选题1.如图,测量河两岸相对的两点A,B的距离时,先在AB的垂线BF上取两点C,D,使CD=BC,再过点D画出BF的垂线DE,当点A,C,E在同一直线上时,可证明△EDC≌△ABC,从而得到ED=AB,则测得ED的长就是两点A,B的距离.判定△EDC≌△ABC的依据是()A.“边边边”B.“角边角”C.“全等三角形定义”D.“边角边”【答案】B【分析】由“ASA”可证△EDC≌△ABC.【详解】解:由题意可得∠ABC=∠CDE=90°,在△EDC和△ABC中ACB DCE CD BCABC CDE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EDC≌△ABC(ASA),故选:B.【点睛】本题考查三角形全等的判定,掌握判定方法正确推理论证是解题关键.2.如图,AB∥FC,E是DF的中点,若AB=10,CF=6,则BD等于()A.6 B.4 C.3 D.2【答案】B【分析】根据平行的性质求得内错角相等,已知对顶角相等,又知E是DF的中点,所以根据ASA得出△ADE≌△CFE,从而得出AD=CF,已知AB,CF的长,那么BD的长就不难求出.【详解】∵AB∥FC,∴∠ADE=∠F,∵E是DF的中点,∴DE=EF,在△ADE和△CFE中,ADE FDE FEAED CEF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE≌△CFE(ASA),∴AD=CF=6,∴BD=AB﹣AD=10﹣6=4,故选:B.【点睛】此题主要考查了全等三角形的判定与性质,判定两个三角形全等是解题的关键.3.如图,乐乐书上的三角形墨迹污染了一部分,很快他就画出一个三角形与书上的三角形全等,这两个三角形全等的依据是()A.SSS B.ASA C.AAS D.SAS【答案】B【分析】结合图,根据全等三角形的判定定理ASA可得到答案【详解】解:根据题意,三角形的两角和他们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形故选:B【点睛】本题考查全等三角形的判定定理4.如图,一定全等的两个三角形是()A.①与②B.①与③C.②与③D.以上答案都不对【分析】根据ASA 进行判断即可.【详解】在三角形①和三角形③中∠B=∠D ,BC=DE ,∠C=∠E ,∴△ABC ≌△FDE (ASA ),故选:B .【点睛】本题考查了全等三角形的判定和性质,掌握知识点是解题关键.5.如图,在ΔABC 和ΔDEF 中,∠A=∠D ,∠B=∠DEF ,要使ABC DEF △≌△,需要添加下列条件中的( )A .AB=EFB .AC=DEC .BC=DFD .AB=DE【答案】D 【分析】添加条件为AB=DE ,根据ASA 推出两三角形全等即可.【详解】解:条件是AB=DE , 理由是:∵在ABC 和DEF 中A D AB DEB DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴ABC DEF △≌△(ASA ),故选D .【点睛】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .6.如图,小强画了一个与已知ABC 全等的DEF ,他画图的步骤是:(1)画DE =AB ;(2)在DE 的同旁画∠HDE =∠A ,∠GED =∠B ,DH ,EG 相交于点F ,小强画图的依据是( )A .ASAB .SASC .SSSD .AAS【分析】根据题意可知全等的条件是两角及夹边,即可得出答案.【详解】根据题意可知,在ABC 和DEF 中,A FDE AB DEB FED ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABC DEF ASA ∴≌故选:A .【点睛】本题主要考查全等三角形的判定,掌握全等三角形判定的条件是解题的关键.二、填空题7.如图,小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他的依据是__.【答案】ASA【分析】根据图形,未污染的部分两角与这两角的夹边可以测量,然后根据全等三角形的判定方法解答即可.【详解】解:小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形, 他根据的定理是:两角及其夹边分别相等的两个三角形全等(ASA ).故答案为:ASA .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .8.如图,12∠=∠,BC EC =,请补充一个条件:______,能使用“ASA ”方法判定ABC DEC ≌△△.【答案】∠B =∠E【分析】已知∠1=∠2,就是已知∠ACB =∠DCE ,则根据三角形的判定定理“ASA ”即可证得.【详解】可以添加∠B =∠E .理由是:∵∠1=∠2,∴∠1+∠BCE =∠2+∠BCE ,∴∠ACB =∠DCE ,∴在△ABC 和△DEC 中,ACB DCE BC ECB E ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△DEC (ASA ).故答案是:∠B =∠E【点睛】本题考查了三角形全等的判定,熟练掌握“两角及夹边对应相等的两个三角形全等”是解题关键. 9.如图,∠B =∠DEF ,AB =DE ,若要以“ASA ”证明△ABC ≌△DEF ,则还缺条件_____.【答案】∠A =∠D .【分析】利用全等三角形的判定方法结合ASA 得出即可.【详解】当添加∠A =∠D 时,可证明△ABC ≌△DEF ;理由:在△ABC 和△DEF 中A D AB DEB DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△DEF (ASA ).故答案为∠A =∠D .【点睛】此题主要考查全等三角形的判定,熟练掌握,即可解题.10.如图,要测量水池宽AB ,可从点A 出发在地面上画一条线段AC ,使AC AB ⊥,再从点C 观测,在BA 的延长线上测得一点D ,使ACD ACB ∠=∠,这时量得120m AD =,则水池宽AB 的长度是__m .【答案】120【分析】利用全等三角形的性质解决问题即可.【详解】AC BD ,90CAD CAB ∴∠=∠=︒,CA CA =,ACD ACB ∠=∠,()ACD ACB ASA ∴∆≅∆,120AB AD m ∴==,故答案为120.【点睛】本题考查全等三角形的应用,解题关键是理解题意,正确寻找全等三角形解决问题.11.如图所示,某三角形材料断裂成A 、B 、C 三块,现要配置与原材料一样的三角形材料,应该选用材料____,理由是____.【答案】C ASA【分析】显然C 中有完整的三个条件,用ASA 易证现要的三角形与原三角形全等.【详解】解:因为C 块中有完整的两个角以及它们的夹边,利用ASA 易证三角形全等,故应带C 块. 故答案为:C ,ASA .【点睛】本题考查了全等三角形的应用(有两个角对应相等,且夹边也对应相等的两三角形全等);学会把实际问题数学化石正确解答本题的关键.12.如图,ABC ∆的面积为22cm ,AP 与ABC ∠的平分线垂直,垂足是点P ,则PBC ∆的面积为______2cm .【答案】1【分析】延长AP 交BC 于点M ,则由条件可知ABP MBP S S ∆∆=, APC CPM S S ∆∆=,则阴影部分面积为△ABC的一半,可得出答案.【详解】如图,延长AP 交BC 于点M 。
11.3探索三角形全等的条件(2)
第11章图形的全等
课时分配
本课(章节)需5课时
本节课为第2课时
为本学期总第课时
11.3探索三角形全等的条件(2)
教学目标
1.经历探索三角形全等条件的过程,体会利用操作,归纳获得数学结论的过程。
2.掌握三角形全等的“角边角”,“角角边”条件。
3.在探索三角形全等条件及其运用的过程中,能够进行有条理的思考并进行简单的推理。
B组题:
如图,一艘轮船沿AC方向航行,已知轮船在A点测得航线两侧的灯塔与航线的夹角相等,当轮船到达B点时测得这两个灯塔与航线的夹角仍然相等,这时轮船与两个灯塔的距离是否相等,为什么?
由学生自己先做(或互相讨论),然后回答,若有答不全的,教师(或其他学生)补充.
学生板演
学生自主探索归纳
作业
第150页第6、7题
重点
掌握三角形全等的“角边角”,“角角边”条件。
难点
正确运用“角边角”,“角角边”条件判定三角形全等,解决实际问题。
教学方法
讲练结合、探索交流
课型
新授课
教具
投影仪
教师活动
学生活动
复习引入:
上节课我们学习了利用“边角边”条件来判定两个三角形全等。同时也了解了三个内角对应相等的两个三角形不一定全等。那么,如果已知两个三角形的两角及其一边分别对应相等,这两个三角形全等吗?这就是本节课我们重点研究的内容。
练习:第142页第1、2、3题
议一议:(略)
小结:
本节课我们又学习了判定两个三角形全等的两种方法“角边角”和“角角边”,这样连“边角边”我们一共学习了三种判定两个三角形全等的方法了。同学们在应用这些方法解决问题时,要具体问题具体分析,找出正确的途径。
第03讲 探索三角形全等的条件(7种题型)(解析版)
第03讲 探索三角形全等的条件(7种题型)1.理解和掌握全等三角形判定方法“边角边”、“角边角”、“角角边”、“边边边”“HL ”定理.2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.一、全等三角形判定1——“边角边”1. 全等三角形判定1——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).要点诠释:如图,如果AB = ,∠A =∠,AC = ,则△ABC ≌△. 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.二、全等三角形判定2——“角边角”全等三角形判定2——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).''A B 'A ''A C '''A B C要点诠释:如图,如果∠A =∠,AB =,∠B =∠,则△ABC ≌△.三、全等三角形判定3——“角角边”1.全等三角形判定3——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE ∥BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.四、全等三角形判定4——“边边边”全等三角形判定4——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”).要点诠释:如图,如果=AB ,=AC ,=BC ,则△ABC ≌△.五.直角三角形全等的判定——“HL ”1、斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL ”).2、直角三角形首先是三角形,所以一般三角形全等的判定方法都适合它,同时,直角三角形又是特殊的三角形,有它的特殊性,作为“HL ”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,'A ''A B 'B '''A B C ''A B ''A C ''B C '''A B C使用时应该抓住“直角”这个隐含的已知条件.六、判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表:已知条件可选择的判定方法一边一角对应相等SAS AAS ASA两角对应相等ASA AAS两边对应相等SAS SSS2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.七.全等三角形的判定与性质(1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.(2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.八.全等三角形的应用(1)全等三角形的性质与判定综合应用用全等寻找下一个全等三角形的条件,全等的性质和判定往往是综合在一起应用的,这需要认真分析题目的已知和求证,分清问题中已知的线段和角与所证明的线段或角之间的联系.(2)作辅助线构造全等三角形常见的辅助线做法:①把三角形一边的中线延长,把分散条件集中到同一个三角形中是解决中线问题的基本规律.②证明一条线段等于两条线段的和,可采用“截长法”或“补短法”,这些问题经常用到全等三角形来证明.(3)全等三角形在实际问题中的应用一般方法是把实际问题先转化为数学问题,再转化为三角形问题,其中,画出示意图,把已知条件转化为三角形中的边角关系是关键.题型一、全等三角形的判定1——“边角边”例1、已知:如图,AB =AD ,AC =AE ,∠1=∠2.求证:BC =DE .【思路点拨】由条件AB =AD ,AC =AE ,需要找夹角∠BAC 与∠DAE ,夹角可由等量代换证得相等.【答案与解析】证明: ∵∠1=∠2∴∠1+∠CAD =∠2+∠CAD ,即∠BAC =∠DAE在△ABC 和△ADE 中∴△ABC ≌△ADE (SAS )∴BC =DE (全等三角形对应边相等)【总结升华】证明角等的方法之一:利用等式的性质,等量加等量,还是等量.【变式】如图,将两个一大、一小的等腰直角三角尺拼接 (A 、B 、D 三点共线,AB =CB ,EB =DB ,∠ABC =∠EBD =90°),连接AE 、CD ,试确定AE 与CD 的位置与数量关系,并证明你的结论.【答案】AE =CD ,并且AE ⊥CD证明:延长AE 交CD 于F ,∵△ABC 和△DBE 是等腰直角三角形∴AB =BC ,BD =BE在△ABE 和△CBD中AB AD BAC DAEAC AE =ìïÐ=Ðíï=î∴△ABE ≌△CBD (SAS )∴AE =CD ,∠1=∠2又∵∠1+∠3=90°,∠3=∠4(对顶角相等)∴∠2+∠4=90°,即∠AFC =90°∴AE ⊥CD例2、如图,AD 是△ABC 的中线,求证:AB +AC >2AD .【思路点拨】延长AD 到点E ,使AD =DE ,连接CE .通过证全等将AB 转化到△CEA 中,同时也构造出了2AD .利用三角形两边之和大于第三边解决问题.【答案与解析】证明:如图,延长AD 到点E ,使AD =DE ,连接CE .在△ABD 和△ECD 中,∴△ABD ≌△ECD (SAS ).∴AB =CE .∵AC +CE >AE ,∴AC +AB >AE =2AD .即AC +AB >2AD .90AB BC ABE CBD BE BD =ìïÐ=Ð=°íï=îAD DE ADB EDCBD CD ìïÐÐíïî===.【总结升华】证明边的大小关系主要有两个思路:(1)两点之间线段最短;(2)三角形的两边之和大于第三边.要证明AB +AC >2AD ,如果归到一个三角形中,边的大小关系就是显然的,因此需要转移线段,构造全等三角形是转化线段的重要手段.可利用旋转变换,把△ABD 绕点D 逆时针旋转180°得到△CED ,也就把AB 转化到△CEA 中,同时也构造出了2AD .若题目中有中线,倍长中线,利用旋转变换构造全等三角形是一种重要方法.例3、已知,如图:在△ABC 中,∠B =2∠C ,AD ⊥BC ,求证:AB =CD -BD .【思路点拨】在DC 上取一点E ,使BD =DE ,则△ABD ≌△AED ,所以AB =AE ,只要再证出EC =AE 即可.【答案与解析】证明:在DC 上取一点E ,使BD =DE∵ AD ⊥BC ,∴∠ADB =∠ADE在△ABD 和△AED 中,∴△ABD ≌△AED (SAS ).∴AB =AE ,∠B =∠AED.BD DE ADB=ADEAD AD ìïíïî=∠∠=AE D CB又∵∠B=2∠C=∠AED=∠C+∠EAC.∴∠C=∠EAC.∴AE=EC.∴AB=AE=EC=CD—DE=CD—BD.【总结升华】此题采用截长或补短方法.上升到解题思想,就是利用翻折变换,构造的全等三角形,把条件集中在基本图形里面,从而使问题加以解决.如图,要证明AB=CD-BD,把CD-BD转化为一条线段,可利用翻折变换,把△ABD沿AD翻折,使线段BD运动到DC上,从而构造出CD-BD,并且也把∠B转化为∠AEB,从而拉近了与∠C的关系.【变式】已知,如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于E,并且AE=(AB+AD),求证:∠B+∠D=180°.【答案】证明:在线段AE上,截取EF=EB,连接FC,∵CE⊥AB,∴∠CEB=∠CEF=90°在△CBE和△CFE中,1 2∴△CBE 和△CFE (SAS )∴∠B =∠CFE∵AE =(AB +AD ),∴2AE = AB +AD ∴AD =2AE -AB∵AE =AF +EF ,∴AD =2(AF +EF )-AB =2AF +2EF -AB =AF +AF +EF +EB -AB =AF +AB -AB ,即AD =AF在△AFC 和△ADC 中∴△AFC ≌△ADC (SAS )∴∠AFC =∠D∵∠AFC +∠CFE =180°,∠B =∠CFE.∴∠AFC +∠B =180°,∠B +∠D =180°.题型二、全等三角形的判定2——“角边角”例4、已知:如图,E ,F 在AC 上,AD ∥CB 且AD =CB ,∠D=∠B.求证:AE =CF .【答案与解析】证明:∵AD ∥CB∴∠A =∠C在△ADF 与△CBE 中CEB CEFEC =EC EB EF =ìïÐ=Ðíïî12(AF AD FAC DAC AC AC =ìïÐ=Ðíï=î角平分线定义)∴△ADF ≌△CBE (ASA )∴AF =CE ,AF +EF =CE +EF故得:AE =CF【总结升华】利用全等三角形证明线段(角)相等的一般方法和步骤如下: (1)找到以待证角(线段)为内角(边)的两个三角形; (2)证明这两个三角形全等; (3)由全等三角形的性质得出所要证的角(线段)相等.【变式】(2022•长安区一模)已知:点B 、E 、C 、F 在一条直线上,AB ∥DE ,AC ∥DF ,BE =CF .求证:△ABC ≌△DEF .【分析】先利用平行线的性质得到∠B =∠DEF ,∠ACB =∠F ,再证明BC =EF ,然后根据“ASA ”可判断△ABC ≌△DEF .【解答】证明:∵AB ∥DE ,∴∠B =∠DEF ,∵AC ∥DF ,∴∠ACB =∠F ,∵BE =CF ,∴BE +EC =CF +EC ,即BC =EF ,在△ABC 和△DEF 中,,∴△ABC ≌△DEF (ASA ).【点评】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的关键.选用A C AD CBD B Ð=Ðìï=íïÐ=Ðî哪一种判定方法,取决于题目中的已知条件.例5、如图,G 是线段AB 上一点,AC 和DG 相交于点E.请先作出∠ABC 的平分线BF ,交AC 于点F ;然后证明:当AD∥BC,AD =BC ,∠ABC=2∠ADG 时,DE =BF.【思路点拨】通过已知条件证明∠DAC=∠C,∠CBF=∠ADG,则可证△DAE≌△BCF【答案与解析】证明: ∵AD∥BC,∴∠DAC=∠C∵BF 平分∠ABC∴∠ABC=2∠CBF∵∠ABC=2∠ADG∴∠CBF=∠ADG在△DAE 与△BCF 中∴△DAE≌△BCF(ASA )∴DE=BF【总结升华】利用全等三角形证明线段(角)相等的一般方法和步骤如下:(1)找到以待证角(线段)为内角(边)的两个三角形;(2)证明这两个三角形全等;(3)由全等三角形的性质得出所要证的角(线段)相等.【变式】已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ .求证:HN =PM.【答案】ïîïíìÐ=Ð=Ð=ÐC DAC BCAD CBFADG证明:∵MQ 和NR 是△MPN 的高,∴∠MQN =∠MRN =90°,又∵∠1+∠3=∠2+∠4=90°,∠3=∠4∴∠1=∠2在△MPQ 和△NHQ 中,∴△MPQ ≌△NHQ (ASA )∴PM =HN题型三、全等三角形的判定3——“角角边”例6.(2021秋•苏州期末)如图,在四边形ABCD 中,E 是对角线AC 上一点,AD ∥BC ,∠ADC =∠ACD ,∠CED +∠B =180°.求证:△ADE ≌△CAB .【分析】由等角对等边可得AC =AD ,再由平行线的性质可得∠DAE =∠ACB ,由∠CED +∠B =180°,∠CED +∠AED =180°,得∠AED =∠B ,从而利用AAS 可判定△ADE ≌△CAB .【解答】证明:∵∠ADC =∠ACD ,∴AD =AC ,∵AD ∥BC ,∴∠DAE =∠ACB ,∵∠CED +∠B =180°,∠CED +∠AED =180°,∴∠AED =∠B ,在△ADE 与△CAB 中,,∴△ADE ≌△CAB (AAS ).【点评】本题主要考查全等三角形的判定,解答的关键是由已知条件得出相应的角或边的关系.例7、已知:如图,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB .求证:AD =AC .12MQ NQMQP NQH Ð=Ðìï=íïÐ=Ðî【思路点拨】要证AC =AD ,就是证含有这两个线段的三角形△BAC ≌△EAD.【答案与解析】证明:∵AB ⊥AE ,AD ⊥AC ,∴∠CAD =∠BAE =90°∴∠CAD +∠DAB =∠BAE +∠DAB ,即∠BAC =∠EAD在△BAC 和△EAD 中∴△BAC ≌△EAD (AAS )∴AC =AD【总结升华】我们要善于把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.【变式】已知:如图,,,是经过点的一条直线,过点、B 分别作、,垂足为E 、F ,求证:.【答案与解析】证明:∵ ,∴∴∵∴∴BAC EAD B ECB=DE Ð=ÐìïÐ=Ðíïî90ACB Ð=°AC BC =CD C A AE CD ^BF CD ^CE BF=CD AE ^CD BF ^°=Ð=Ð90BFC AEC °=Ð+Ð90B BCF ,90°=ÐACB °=Ð+Ð90ACF BCF BACF Ð=Ð在和中∴≌()∴【总结升华】要证,只需证含有这两个线段的≌.同角的余角相等是找角等的好方法.题型四、全等三角形的判定4——“边边边”例8、已知:如图,△RPQ 中,RP =RQ ,M 为PQ 的中点.求证:RM 平分∠PRQ .【思路点拨】由中点的定义得PM =QM ,RM 为公共边,则可由SSS 定理证明全等.【答案与解析】证明:∵M 为PQ 的中点(已知),∴PM =QM在△RPM 和△RQM 中,∴△RPM ≌△RQM (SSS ).∴ ∠PRM =∠QRM (全等三角形对应角相等).即RM 平分∠PRQ.【总结升华】在寻找三角形全等的条件时有的可以从图中直接找到,如:公共边、公共角、对顶角等条件隐含在题目或图形之中. 把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的性质和判定.【变式】已知:如图,AD =BC ,AC =BD.试证明:∠CAD =∠DBC.BCF ∆CAE ∆ïîïíì=Ð=ÐÐ=ÐBC AC B ACE BFC AEC BCF ∆CAE ∆AAS BF CE =BF CE =BCF ∆CAE∆()(),,RP RQ PM QM RM RM ì=ï=íï=î已知公共边【答案】证明:连接DC ,在△ACD 与△BDC 中∴△ACD≌△BDC(SSS )∴∠CAD=∠DBC(全等三角形对应角相等)例9、如图,在△ABC 和△ADE 中,AB =AC ,AD =AE ,BD =CE ,求证:∠BAD =∠CAE.【答案与解析】证明:在△ABD 和△ACE 中,∴△ABD ≌△ACE (SSS )∴∠BAD =∠CAE (全等三角形对应角相等).【总结升华】把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的判定和性质. 要证∠BAD =∠CAE ,先找出这两个角所在的三角形分别是△BDA 和△CAE ,然后证这两个三角形全等.题型五.直角三角形全等的判定“HL ”例10.如图,AB ⊥BD ,CD ⊥BD ,AD =BC ,则能直接判断Rt △ABD ≌Rt △CDB 的理由是( )()AD BC AC BDCD DC ì=ï=íï=î公共边AB AC AD AEBD CE =ìï=íï=îA.HL B.ASA C.SAS D.SSS【分析】由“HL”可证Rt△ABD和Rt△CDB.【解答】解:∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(HL),故选:A.【点评】本题考查了直角三角形全等的判定,掌握直角三角形的判定方法是本题的关键.【变式1】.如图,在Rt△ABC和Rt△DEF中,∠C=∠F=90°,AC=DF,只需补充条件 ,就可以根据“HL”得到Rt△ABC≌Rt△DEF.【分析】根据直角三角形全等的判定方法解决此题.【解答】解:补充条件:AB=DE.在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL).故答案为:AB=DE.【点评】本题主要考查直角三角形全等的判定,熟练掌握直角三角形全等的判定方法是解决本题的关键.【变式2】如图,Rt△ABC和Rt△EDF中,BC∥DF,在不添加任何辅助线的情况下,请你添加一个条件 ,使Rt△ABC和Rt△EDF全等.【分析】根据全等三角形的判定解答即可.【解答】解:∵Rt△ABC和Rt△EDF中,∴∠BAC=∠DEF=90°,∵BC∥DF,∴∠DFE=∠BCA,∴添加AB=ED,在Rt△ABC和Rt△EDF中,∴Rt△ABC≌Rt△EDF(AAS),故答案为:AB=ED(答案不唯一).【点评】此题考查全等三角形的判定,关键是根据全等三角形的判定方法解答.题型六.全等三角形的判定与性质例11.(2022•南通模拟)如图,在△ABC中,AB=AC,AD⊥BD,AE⊥EC,垂足分别为D,E,BD,CE 相交于点O,且∠BAE=∠CAD.(1)求证:△ABD≌△ACE;(2)若∠BOC=140°,求∠OBC的度数.【分析】(1)由“AAS”可证△ABD≌△ACE;(2)由全等三角形的性质可得∠ABD=∠ACE,由等腰三角形的性质可得∠ABC=∠ACB,即可求解.【解答】(1)证明:∵∠BAE=∠CAD,∴∠BAD=∠CAE,∵AD⊥BD,AE⊥EC,∴∠ADB=∠AEC=90°,在△ABD和△ACE中,,∴△ABD≌△ACE(AAS);(2)解:∵△ABD≌△ACE,∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB,∴∠OBC=∠OCB,∵∠BOC=140°,∴∠OBC=∠OBC=20°.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,证明三角形全等是解题的关键.【变式1】.如图,已知AB=CB,AD=CD.求证:∠A=∠C.【分析】连接BD,利用边边边证明△ABD≌△CBD,由全等三角形的性质即可求解.【解答】证明:连接BD,在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),∴∠A=∠C.【点评】此题主要考查了全等三角形的性质与判定,此题主要利用边边边判定三角形全等.【变式2】如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAD=∠CAE.求证:∠ABD=∠ACE.【分析】由“SAS”可证△ABD≌△ACE,可得结论.【解答】证明:在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE.【点评】本题考查了全等三角形的判定和性质,证明三角形全等是解题的关键.题型7.全等三角形的应用例12.如图,要测量河两岸相对两点A、B间的距离,在河岸BM上截取BC=CD,作ED⊥BD交AC的延长线于点E,垂足为点D.(DE≠CD)(1)线段 的长度就是A、B两点间的距离(2)请说明(1)成立的理由.【分析】(1)根据题意确定DE=AB;(2)根据已知条件得到两个三角形全等,利用全等三角形的性质得到结论即可.【解答】解:(1)线段DE的长度就是A、B两点间的距离;故答案为:DE;(2)∵AB⊥BC,DE⊥BD∴∠ABC=∠EDC=90°又∵∠ACB=∠DCE,BC=CD∴△ABC≌△CDE(ASA)∴AB=DE.【点评】本题考查了全等三角形的应用,是基础题,熟练掌握全等三角形的判定方法并确定出全等三角形是解题的关键.【变式】为了解学生对所学知识的应用能力,某校老师在七年级数学兴趣小组活动中,设置了这样的问题:因为池塘两端A,B的距离无法直接测量,请同学们设计方案测量A,B的距离.甲、乙两位同学分别设计出了如下两种方案:甲:如图①,先在平地上取一个可以直接到达点A,B的点O,连接AO并延长到点C,连接BO并延长到点D,使CO=AO,DO=BO,连接DC,测出DC的长即可.乙:如图②,先确定直线AB,过点B作直线BE,在直线BE上找可以直接到达点A的一点D,连接DA,作DC=DA,交直线AB于点C,最后测量BC的长即可.(1)甲、乙两同学的方案哪个可行?(2)请说明方案可行的理由.【分析】(1)甲同学作出的是全等三角形,然后根据全等三角形对应边相等测量的,所以是可行的;(2)甲同学利用的是“边角边”,乙同学的方案只能知道两三角形的两边相等,不能判定△ABD与△CBD全等,故方案不可行.【解答】解:(1)甲同学的方案可行;(2)甲同学方案:在△ABO和△CDO中,,∴△ABO≌△CDO(SAS),∴AB=CD;乙同学方案:在△ABD和△CBD中,只能知道DC=DA,DB=DB,不能判定△ABD与△CBD全等,故方案不可行.【点评】本题主要考查了全等三角形的应用,熟练掌握全等三角形判定的“SAS”定理是解决问题的关键.一.选择题(共8小题)1.(2022秋•南京期末)已知:如图,AC=DF,BC=EF,下列条件中,不能证明△ABC≌DEF的是( )A.AC∥DF B.AD=BEC.∠CBA=∠FED=90°D.∠C=∠F【分析】根据三角形的判定定理,结合题目所给条件进行判定即可.【解答】解:A、由AC∥DF可得∠A=∠FDB,再加上条件AC=DF,BC=EF,不能证明△ABC≌DEF,故此选项正确;B、AD=BE可得AB=DE,再加上条件AC=DF,BC=EF,可利用SSS定理证明△ABC≌DEF,故此选项错误;C、∠CBA=∠FED=90°可利用HL定理证明△ABC≌DEF,故此选项错误;D、∠C=∠F可利用SAS定理证明△ABC≌DEF,故此选项错误;故选:A.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2.(2022秋•启东市校级月考)不能判定两个直角三角形全等的条件是( )A.两个锐角对应相等B.两条直角边对应相等C.斜边和一锐角对应相等D.斜边和一条直角边对应相等【分析】直角三角形全等的判定方法:HL,SAS,ASA,SSS,AAS,做题时要结合已知条件与全等的判定方法逐一验证.【解答】解:A、全等三角形的判定必须有边的参与,故本选项错误,符合题意;B、符合判定SAS,故本选项正确,不符合题意;C、符合判定AAS,故本选项正确,不符合题意;D、符合判定HL,故本选项正确,不符合题意.故选:A.【点评】本题考查直角三角形全等的判定方法,判定两个直角三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3.(2022秋•阜宁县期末)如图,已知∠ABC=∠BAD,再添加一个条件,仍不能判定△ABC≌△BAD的是( )A.AC=BD B.∠C=∠D C.AD=BC D.∠ABD=∠BAC【分析】根据已知可以得到∠ABC=∠BAD,AB=BA,然后再分别判断各个选项中的条件能否使得△ABC ≌△BAD即可.【解答】解:∵∠ABC=∠BAD,AB=BA,∴若添加条件AC=BD,无法判定△ABC≌△BAD,故选项A符合题意;若添加∠C=∠D,则△ABC≌△BAD(AAS),故选项B不符合题意;若添加AD=BC,则△ABC≌△BAD(SAS),故选项C不符合题意;若添加∠ABD=∠BAC,则△ABC≌△BAD(ASA),故选项D不符合题意;故选:A.【点评】本题考查全等三角形的判定,解答本题的关键是明确全等三角形的判定方法:SSS、SAS、ASA、AAS.4.(2022秋•江都区期末)如图,已知AB=AD.下列条件中,不能作为判定△ABC≌△ADC条件的是( )A.BC=DC B.∠BAC=∠DAC C.∠B=∠D=90°D.∠ACB=∠ACD【分析】利用全等三角形的判定定理:SSS、SAS、ASA、AAS、HL进行分析即可.【解答】解:A、AB=AD,BC=DC,再加上公共边AC=AC能判定△ABC≌△ADC,故此选项不符合题意;B、AB=AD,∠BAC=∠DAC再加上公共边AC=AC可利用SAS判定△ABC≌△ADC,故此选项不合题意;C、AB=AD,∠B=∠D=90°再加上公共边AC=AC能判定△ABC≌△ADC,故此选项不合题意;D、AB=AD,∠ACB=∠ACD再加上公共边AC=AC不能判定△ABC≌△ADC,故此选项合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.(2022秋•扬州期中)一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是( )A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、3或3、4去均可【分析】带1、4可以用“角边角”确定三角形;带3、4也可以用“角边角”确定三角形.【解答】解:带3、4可以用“角边角”确定三角形,带1、4可以用“角边角”确定三角形,故选:C.【点评】本题考查了全等三角形判定的应用;确定一个三角形的大小、形状,可以用全等三角形的几种判定方法.做题时要根据实际问题找条件.6.(2022秋•宿豫区期末)如图,小明和小丽用下面的方法测量位于池塘两端的A、B两点的距离;先取一个可以直接到达点A的点C,量得AC的长度,再沿AC方向走到点D处,使得CD=AC;然后从点D 处沿着由点B到点A的方向,到达点E处,使得点E、B、C在一条直线上,量得的DE的长度就是A、B 两点的距离.在解决这个问题中,关键是利用了△DCE≌△ACB,其数学依据是( )A.SAS B.ASA C.AAS D.ASA或AAS【分析】直接利用全等三角形的判定方法,进而分析得出答案.【解答】解:由题意可得:AC=DC,∠ACB=∠DCE,∠ABC=∠DEC,∠BAC=∠EDC,故由AC=DC,∠ACB=∠DCE,∠ABC=∠DEC或AC=DC,∠ACB=∠DCE,∠BAC=∠EDC都可以得出△DCE≌△ACB,故其数学依据是ASA或AAS.故选:D.【点评】此题主要考查了全等三角形的应用,正确掌握全等三角形的判定方法是解题关键.7.(2022秋•高邮市期末)如图,已知∠1=∠2,若用“AAS”证明△ACB≌△BDA,还需加上条件( )A.AD=BC B.BD=AC C.∠D=∠C D.∠DAB=∠CBA【分析】根据图形找出公共边AB=BA,再根据全等三角形的判定定理AAS得出即可.【解答】解:A.AD=BC,BA=AB,∠1=∠2不符合全等三角形的判定定理,不能推出△ACB≌△BDA,故本选项不符合题意;B.AB=BA,∠1=∠2,AC=BD,符合全等三角形的判定定理SAS,不符合AAS定理,故本选项不符合题意;C.∠D=∠C,∠1=∠2,AB=BA,符合全等三角形的判定定理AAS,能推出△ACB≌△BDA,故本选项符合题意;D.∠DAB=∠CBA,AB=BA,∠1=∠2,符合全等三角形的判定定理ASA,能推出△ACB≌△BDA,故本选项不符合题意;故选:C.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理是SAS,ASA,AAS,SSS,两直角三角形全等还有HL.8.(2022秋•邳州市期末)如图,AB=AC,点D、E分别在AB、AC上,补充一个条件后,仍不能判定△ABE≌△ACD的是( )A.∠B=∠C B.AD=AE C.BE=CD D.∠AEB=∠ADC【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A.∠A=∠A,AB=AC,∠B=∠C,符合全等三角形的判定定理ASA,能推出△ABE≌△ACD,故本选项不符合题意;B.AD=AE,∠A=∠A,AB=AC,符合全等三角形的判定定理SAS,能推出△ABE≌△ACD,故本选项不符合题意;C.AB=AC,BE=CD,∠A=∠A,不符合全等三角形的判定定理,不能推出△ABE≌△ACD,故本选项符合题意;D.∠A=∠A,∠AEB=∠ADC,AB=AC,符合全等三角形的判定定理AAS,能推出△ABE≌△ACD,故本选项不符合题意;故选:C.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.二.填空题(共4小题)9.(2022秋•泗洪县期中)如图,在Rt△ABC和Rt△DEF中,∠C=∠F=90°,AC=DF,只需补充条件 AB=DE ,就可以根据“HL”得到Rt△ABC≌Rt△DEF.【分析】根据直角三角形全等的判定方法解决此题.【解答】解:补充条件:AB=DE.在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL).故答案为:AB=DE.【点评】本题主要考查直角三角形全等的判定,熟练掌握直角三角形全等的判定方法是解决本题的关键.10.(2022秋•启东市校级月考)如图,在△ABC和△DEF中,∠A=∠D=90°,AC=DE,若要用“斜边直角边(H.L.)”直接证明Rt△ABC≌Rt△DEF,则还需补充条件: BC=EF .【分析】此题是一道开放型题目,根据直角三角形的全等判定解答即可.【解答】解:在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL),故答案为:BC=EF【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,HL,题目比较典型,难度适中.11.(2022秋•江宁区校级月考)如图,在Rt△ABC与Rt△DCB中,已知∠A=∠D=90°,请你添加一个条件(不添加字母和辅助线),使Rt△ABC≌Rt△DCB,你添加的条件是 AB=DC或AC=DB ,理由是 “HL” (填简称).【分析】根据直角三角形全等的判定方法,即可解答.【解答】解:∵∠A=∠D=90°,BC=BC,∴再添加:AB=DC,∴Rt△ABC≌Rt△DCB(HL),∵∠A=∠D=90°,BC=BC,∴再添加:AC=BD,∴Rt △ABC ≌Rt △DCB (HL ),故答案为:AB =DC 或AC =BD ,HL .【点评】本题考查了直角三角形全等的判定,熟练掌握直角三角形全等的判定方法是解题的关键.12.(2022秋•江阴市期中)如图,在△ABC 中,AB =3,AC =5,AD 是边BC 上的中线,AD =2,则△ACB 的面积是 6 .【分析】延长AD 到E ,使DE =AD ,连接BE ,证△ADC ≌△EDB (SAS ),得BE =AC =5,∠CAD =∠E ,再由勾股定理的逆定理证∠EAB =90°,即可解决问题.【解答】解:如图,延长AD 到E ,使DE =AD ,连接BE ,∵D 为BC 的中点,∴CD =BD ,在△ADC 与△EDB 中,,∴△ADC ≌△EDB (SAS ),∴BE =AC =5,∠CAD =∠E ,又∵AE =2AD =4,AB =3,∴BE 2=AE 2+AB 2,∴△ABE 是直角三角形,∠EAB =90°,则S △ACB =2S △ABD =2××2×3=6,故答案为:6.【点评】此题考查了全等三角形的判定与性质、勾股定理的逆定理以及三角形面积等知识,熟练掌握全等三角形的判定与性质是解题的关键.三.解答题(共5小题)13.(2022秋•泗阳县期中)王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B 分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.【分析】(1)根据题意可得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,进而得到∠ADC=∠CEB=90°,再根据等角的余角相等可得∠BCE=∠DAC,再证明△ADC≌△CEB即可;(2)利用全等三角形的性质进行解答.【解答】(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC在△ADC和△CEB中,∴△ADC≌△CEB(AAS);(2)解:由题意得:AD=2×3=6(cm),BE=7×2=14(cm),∵△ADC≌△CEB,∴EC=AD=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.【点评】此题主要考查了全等三角形的应用,关键是正确找出证明三角形全等的条件.14.(2022秋•鼓楼区期中)如图,点B、C、E、F在同一条直线上,AF、DE相交于点G,∠B=∠C=∠AGD=90°,BF=CD.求证:AF=DE.。
探索三角形全等的条件(第二课时)
探索三角形全等的条件(第二课时)源南学校李舰锋三、运用新知深化理解例11、如图,已知AB=DE,∠A =∠D, ,∠B=∠E,则△ABC ≌△DEF的理由是:。
2、如图,已知AB=DE ,∠A=∠D,,∠C=∠F,则△ABC ≌△DEF的理由是:。
例2如图,已知∠A=∠D,∠B=∠DEF ,请在横线上添加一个条件使△ABC≌△DEF,并说明理由。
()例3 如图,O是AB的中点,∠A=∠B ,△AOC与△BOD全等吗?为什么?引导:(1)O是AB的中点说明什么?(2)△AOC与△BOD满足哪三组对应相等条件?哪个全等条件?师:分析题意、启发学生找出满足所学的三角形全等的条件。
生:独立思考,并解答。
例题设计由浅到深,通过不同题型帮助学生巩固知识。
鼓励学生大胆发表自己的思考推理过程,体会不同的表示方式,引导学生学会选择适合自己的解决方法。
培养学生的运用能力,分析问题的能力,有条理的表达能力。
A BCD EFAB CDE F四、巩固练习强化新知1﹑如图:已知AB=AC,∠B=∠C,△ABD与△ACE全等吗?BE=CD吗?为什么?2﹑如图,已知,∠C=∠E,∠1=∠2,AB=AD,△ABC和△ADE全等吗?为什么?生:独立完成或与同桌交流守成师:巡视、启发、引导学生完成练习。
检查学生对本节的两个全等条件是否能够熟练运用。
同时使学生进一步巩固所学知识的同时又能发挥学生对所掌握知识的灵活。
五、联系生活解决问题如图,小明不慎将一块三角形模具打碎为两块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具吗?如果可以,带哪块去合适?学生互相讨论寻求解决办法让学生体会到数学知识来源于生活,又可以为生活服务。
AE DB CAB CDE12。
探索三角形全等的条件(第2课时)教学课件北师大版中学数学七年级(下)
A.一定不全等
B.一定全等
C.不一定全等
D.以上都不对
随堂训练
3.如图∠ACB=∠DFE,BC=EF,那么应补充一
个条件
,才能使△ABC≌△DEF
(写出一个即可).
AB=DE可以吗?×
B
A
AB∥DE
∠B=∠E (ASA)
C
F
或∠A=∠D (AAS)
D
E
随堂训练
4. 已知△ABC中,BE AD于E,CF AD于F ,
形全等. (简写成“角角边”或“AAS”)
C
几何语言:
在△和△中,
∠ = ∠,
ቐ∠ = ∠ ,
= ,
∴ △ ≌△ (AAS).
A
B
F
D
E
知识讲授
例4 已知:如图, AB⊥BC,AD⊥DC,∠1=∠2.
A
求证:AB=AD.
12
证明: ∵ AB⊥BC,AD⊥DC,
D
被撕坏了,如图,你能制作一张与本来
同样大小的新教具吗?
能
你能说明其中的理由吗?
C
E
B
新课导入
想一想:
探究三角形全等的条件:有三个条件对应相等时
三个角对应相等; 不能
三条边对应相等; SSS
两个角和一条边对应相等
?
知识讲授
探究:
两个角和一条边对应相等时,两三角形是否全等?
思考:已知一个三角形的两个角和一条边,那么这两个角与这条边的位
∴ AB=CD , BC=AD,(全等三角形对应边相等)
2
4
3
∴ ∠1=∠2 ,
C
1
A
B
1.2怎样判定三角形全等(2)
1.2怎样判定三角形全等(2)-CAL-FENGHAI.-(YICAI)-Company One1怎样判断三角形全等(2)导学案科目:八年级数学上主备人:李宝军课型:新授学习目标1、经历探索三角形全等的条件(SAS)的过程,体会分析问题的方法。
2、会运用SAS解决问题。
重点、难点会运用SAS解决问题。
学习过程:一、创设情境:1、“角边角”以及“角角边”都是通过两个三角形的三对元素对应相等来判定三角形全等的.除此之外,在两个三角形中,三对元素对应相等的情况还有哪几种二、实验与探究:1、探究一(1)已知线段a=4cm,b=6cm,∠α=300,在硬纸板上画出△ABC,使BC =a,AC=b,∠C=300.(2)剪下你画的三角形,与其他同学进行比较,这些三角形能重合吗(4)通过上面的实验,你能得出什么结论与同学交流。
判定方法3:如果一个三角形的与另一个三角形的,那么这两个三角形全等。
2、例2 如图,为了测量池塘边上A ,B两点之间的距离,小亮设计了这样一个方案:先在平地上取一个能够直接到达A和B的点C,然后在射线AC上去2一点D,使CD=CA,再射线BC上取一点E,使CE=CB,连接DE,那么线段DE的长就等于A,B两点之间的距离,你认为他的方案对吗为什么D AB CE3、探究二(1)如图已知线段a,b,∠α,在硬纸板上画出△ABC。
使AB=b,AC=a,∠B=∠α。
ab(2)剪下画出的三角形,与其他同学剪得的三角形比较,这些三角形是否一定能重合通过比较得出它们不全等,因此,在这种情况下,不能判断这两个三角形全等。
比较所作三角形,得出结论,SSA不能用来判定三角形全等,因为作出的三角形不一定全等。
三、达标测试:1如图,已知BC=BD,∠ABC=∠ABD,△ABC和△ABD全等吗为什么2、如图2如图,已知AB=CD,AC=AE,△ABD和△ADC全等吗为什么教学反思:3。
三角形全等的条件2教案
三角形全等的条件(2)教学目标:1.掌握三角形全等的“边角边”的条件,2.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,3.能运用“SAS”证明简单的三角形全等问题.教学重点、难点:寻求三角形全等的条件教学过程:【温故知新】Array(1)怎样的两个三角形是全等三角形?(2)全等三角形有哪些性质?(3)三角形全等的判定1的内容是什么?【探索新知】活动一探索三角形全等的条件1.如图,AC、BD相交于O,△ABO和△CDO是否能完全重合呢?说出你的想法。
不难看出,这两个三角形有三对元素是相等的:AO=CO,∠AOB=∠COD,BO=DO.如果把△OAB绕着O点顺时针方向旋转180°,因为OA=OC,所以可以使OA与OC重合;又因为∠AOB =∠COD,OB=OD,所以点B与点D重合.则△ABO与△CDO就完全重合.2.如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等吗?由此,我们得到启发:判定两个三角形全等,不需要三条边对应相等和三个角对应相等.所以猜想:如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等.3.上述猜想是否正确呢?不妨按下列条件画图验证:读句画图:①画∠DAE=60°,②在AD、AE上分别取B、C,使AB=4m,AC=5cm.③连结BC,得△ABC.④按上述画法再画一个△A'B'C'.把△A'B'C'剪下来放到△ABC上,观察△A'B'C'与△ABC是否能够完全重合?4.从以上实验可得到一般结论:有两边和它们的夹角对应相等的两个三角形全等(简称__________或__________ )符号表示:活动二1.2.(1)如图,已知AD∥BC,AD=CB,要证明△ABC≌△CDA,需要三个条件,这三个条件中,已具有两个条件,一是AD=CB(已知),二是__________;还需要一个条件_________(为什么?)(2)如图,已知AB=AE,AD=AC,∠1=∠2,要证明△ABD≌ACE,需要满足的三个条件中,已具有两个条件:__________ 和__________ ,还需要一个条件_____________(为什么?)(3)例1 已知:AD∥BC,AD=CB,AE=CF,求证:△ADF≌△CBE.思考:两边及其中一边的对角对应相等的两个三角形全等吗?小结:1.根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件.2.找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理.【检测反馈】1.已知:如图,AB=AC,F、E分别是AB、AC的中点.求证:△ABE≌△ACF.2.已知:如图AC=BD,∠CAB=∠DBA。
探索三角形全等的条件(第一课时) 课例(二)
第 二组 学生 率 先要求 展 示研究 成 果.
学 生代 表 5 我 们 通 过 研 究 , 现 只 有 一条 边 或 : 发 个角对 应 相 等 的两个 三角 形是 不 一定 全 等 的 ; 两 有
等. 但吴 师傅却 提 出 了质 疑 : 分别 检 查 三条 边 、 个 角 三
这 6个 数据 固然 可 以 , 为 了提 高 效 率 , 不 是 可 以 但 是 找 到一 个 更 好 的方 法 , 量 一 个 数 据 可 以 吗 ? 两个 只
的氛 围. 学具 : 剪刀 、 片 、 尺. 纸 直
条边 对应 相等 , 只有有 一个 角对 应 相 等 … …还有 没 有
其他 情 况 呢?
一
4 教学过程
4 1 创 设 问题 情境 , 发 求知欲 . 入新课 . 激 导
分钟后 , 生 4举 手要 求发 言. 学
学 生 4 我 觉得 学 生 3还漏 掉 了有一 边 与一角 , : 有
实 际应 用 : 大桥 的钢 梁 、 重机 的支架 等 ) 们 的生 如 起 你
AABC O O ̄ (S ) S S.
B C=AD l —
一
活 中有 这样 的应用 吗 ?
I
D
生 1: 2 自行 车 的三角 架.
D
A
师 : 三 角 形 的稳 定 性 不 同的是 , 边形 具 有 不 与 四 稳 定性 , 种 不 稳 定 性 在 生 活 中 也 有 许 多 广 泛 的 这
习, 已初 步具 有对数 学 问题进 行 自主探 究 、 动手 实 践 、 合 作 交流 的意识 与能 力.
1 授课 内容
苏科 版 七年级 ( ) 十一章 第 3节 “ 索 全等 三 下 第 探 角形 条 件 ( ) . 一 ”
江苏省靖江市新港城初级中学八年级数学上册 探索全等三角形的条件教案(2) (新版)
探索全等三角形的条件教案(2)教学目标:1.会利用基本事实:“边角边”判别两个三角形是否全等.2.在基本事实“边角边”运用的过程中能够进行有条理的思考和简单的推理.3.经历观察、探索、合作、交流等活动,营造和谐、平等的学习氛围.教学重点:三角形全等的“边角边”条件的应用.教学难点:三角形全等的“边角边”条件的应用.教学过程:一、问题情境“三月三,放风筝.”如图是小东同学自己动手制作的风筝,他根据AB=CB,∠ABD=∠CBD,不用度量,就知道AD=CD.请你用所学的知识给予说明.二、合作探究例1、如图,已知:点D、E在BC上,且BD=CE,AD=AE,∠1=∠2,由此你能得出哪两个三角形全等?请给出证明.分析:(1)观察猜想哪两个三角形全等?(2)要证明两个三角形全等,已具备了哪些条件?还缺什么条件?(3)所缺的这个条件如何获得?例2、已知:如图,AB、CD相交于点E,且E是AB、CD的中点.求证:①△AEC≌⊿BED.②AC∥DB.分析:(1)要证明△AEC ≌△BED,已具备了哪些条件?还缺什么条件?A(2)要证明AC ∥DB ,需什么条件?这个条件如何获得? (3)本例包含哪一种图形变换?例3、已知:如图,点E 、F 在CD 上,且CE =DF ,AE =BF ,AE ∥BF .①求证:△AEC ≌△BFD . ②你还能证得其他新的结论吗?③本例图中的△AEC 可以通过_________变换得到例2所示图形.三、课堂练习1.课本P16~17页第1、2、3题.2.如图,AB =AC ,还需补充条件___________,就可根据“SAS ”证明△ABE ≌△ACD .拓展延伸:①如果AB =AC ,BD =CE ,那么△ABE 与△ACD 全等吗? ②如果AD =AE ,BD =CE ,那么△ABE 与△ACD 全等吗?③如果OD =OE ,那么还要具备什么条件就能使△BOD 与△COE 全等?四、体会小结通过本节课的学习,你有什么体会?说出来告诉大家.课后作业CBADEFCBADE EBDA1.填空:(1)如图,已知AO=DO,∠AOB与∠DOC是对顶角,还需补充条件_______=________,就可根据“SAS”说明△AOB≌△DOC;(2)如图,已知∠AOB与∠DOC是对顶角,还需补充条件_______=_______,_______=________,就可说明△AOB≌△DOC.2.如图,AD是△ABC的中线,E、F分别是AD和AD延长线上的点,且DE=DF,连结BF、CE. 下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE. 其中正确的有______ __.(填写正确的序号)3.已知:如图,AB=AC,F、E分别是AB、AC的中点.求证:△ABE≌△ACF.4.如图,已知B、E、F、D在同一直线上BF=DE,AE=CF且AE∥C F,求证:AB∥CD5.已知:如图,点A,B,C,D在同一条直线上, AB=CD,∠D=∠ECA,EC=FD请问:AE和BF有什么关系?为什么? 6.如图,∠BAD=∠CAE,AB=AD,AC=AE,则△ABC≌△ADEE7.如图,在△AOB 中,OA=OB ,∠AOB=90°,在△COD 中,OC=OD ,∠COD=90°,先把△AOB 与△COD 的直角顶点O 重合,当将△COD 绕点O 顺时旋转时,另两顶点的连线AC 与BD 之间的大小关系如何?请猜想并说明你的结论. 8.如图11,已知AC 平分∠DAB ,E 为AC 上一点,AD=AB ,那么△CDE ≌△CBE ,为什么?9.两个大小不同的等边三角形如图9(1)所示位置摆放(使点B 、O 、D 在同一条直线上),连结AD 、BC 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章三角形
3探索三角形全等的条件(第2课时)
一﹑学生起点分析
学生的知识技能基础:七年级的学生观察、操作、猜想能力已经得到了很大的发展,演绎推理、归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺。
学生通过第一课时的学习已经对三角形全等的条件的探索过程有所了解,作为本章节第二节课,紧紧抓住学习内容与生活的联系,从学生熟悉的、感兴趣的故事情节切入课题来研究三角形的全等条件,对三角形全等的探索有一个感性的认识,知识容量、思维难度不是很大,本节课以学生感兴趣的教学活动为主线,从而促进了知识和思维的发展。
学生的活动技能基础:在相关知识的学习过程中,学生已经经历了一些简单探索活动,并进行了一些简单的逻辑推理过程,解决了一些简单的现实问题,获得了一些数学活动经验的基础,同时在以前的数学学习中学生已经经历全等三角形判别条件的探索活动,具有了一定的问题分析能力及归纳演绎的能力,具备了一定的合作与交流的能力。
二、教学任务分析
教科书通过以问题的形式,创设一个有利于学生动手操作和反思的情境,进一步发展学生的探索、交流能力,以及动手、动脑、手脑和谐一致的习惯,达到进一步探索三角形全等条件的目的,能够运用三角形全等的条件解决简单的问题,进一步发展学生的合情推理能力和初步的逻辑推理意识,由此体验数学概念由具体现象抽象出来的过程,体验数学术语表达的精练、简洁。
为此,本节课的教学目标是:
(一)知识与技能
1.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;
2.掌握三角形的“角边角”“角角边”条件,了解三角形的稳定性。
(二)过程与方法
学生经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,由此带动知识发生、发展的全过程。
(三)情感、态度、价值观
1.学生善于观察生活发生的事情,并愿意解决提出的难题,在实践反思中敢于发表自己的观点,树立实事求是的科学态度。
2.学生积极参与三角形全等条件的探究过程,从中体味全作与成功的快乐,建立学习好数学的自信心,体会三角形全等条件在现实生活中的应用价值。
三、教学过程设计
本节课设计了五个教学环节:情境引入,实践探索、巩固提高、课堂小结,布置作业、生活连接。
第一环节情境导入
活动内容:
1.我们已学过识别两个三角形全等的简便方法是什么?识别三角形全等是不是还有其它方法呢?
设计目的:既复习了全等三角形的“SSS”的识别方法,又唤起学生对新知识探索学习的渴望,引发学生兴趣,从而提高学生学习的热情。
2.实物显示
有一块三角形纸片撕去了一个角,要去剪一块
新的,如果你手头没有测量的仪器,你能保证新
剪的纸片形状、大小和原来的一样吗?
这个问题让学生议论后回答,他们的答案或许只是一
种感觉,于是教师引导学生,抓住问题的本质:三角形的三个元素---两个角一条边.
活动目的:这样设计的目的是既交代了本节课要研究和学习的主要问题,又能较好地激发学生求知与探索的欲望,让学生通过观察思考,对三角形全等条件的探索有一个感性认识。
实际教学效果:明确活动要求,设置开放的课堂情境。
学生亲身实践,汇报出不同的实践结果,促使学生学习主动化。
从而引出本课的研究内容:探索三角形全等的条件,在实践中产生感性认识。
学生在一个开放的环境下想出很多的方法,
从中获取了大量的信息,亲身经历了感受全等的过程,而且气氛热烈。
事实上,同学们通过观察都能说出一些解决问题的办法,这就为下一环节探索三角形全等的条件打好基础。
在同学们互相探讨问题的过程中培养了学生良好的情感、态度、价值观。
通过精心设计的问题串和活动系列,不断地制造思维兴奋点,再加上学生在学习过程中的动手操作活动,让学生脑、嘴、手动起来,充分调动了学生的学习积极性,达到事半功倍的教学效果。
第二环节实践探索
一、“两角及其夹边”
活动内容:让学生拿出提前准备好的60°角80°角和2厘米的线段,以小组为单位,进行操作拼接成三角形,再进行对比,看一看组成的三角形是否全等。
活动目的:通过实践操作,使学生对三角形全等条件有了一个更清楚的理解——两角和它们的夹边对应相等的两个三角形全等让他们尝到成功的喜悦。
让学生懂得数学就来自于我们的生活,体会到数学与我们生活的联系。
让学生逐步深入,符合学生的认知规律。
培养学生的创新精神,增强学生的合作意识。
实际教学效果:活动中教师可以让学生动手操作。
以分组讨论的形式得出三角形全等的条件。
这样我们便巩固了知识,并培养学生的动手能力,在讨论活动中让学生得到友情的陶冶培养学生的动手操作能力,收到了良好的效果先有学生代表回答,最后老师总结三角形全等的另外一种简便的识别方法:
活动内容:
让学生拿出提前准备好的60°角45°角和3厘米的线段,以小组为单位,进行操作拼接成三角形。
(1)如果60°角所对的边是3厘米。
所组成上的三角形是否全等。
(2)如果45°角所对的边是3厘米。
所组成上的三角形是否全等。
组员之间,小组之间进行对比。
活动目的:通过学生实践,让学生在合作学习中共同解决问题,使学生主动探究三角形全等的条件,培养学生分析、探究问题的能力,提高他们归纳知识的能力和组织语言能力、表达能力。
实际教学效果:先由学生代表回答,最后老师总结三角形全等的另外一种简便的识别方法:
如果两个三角形有两个角及其一个角的对边分别对应相等, 那么这两个三角形全等.简写成“角角边”或简记为“A.A.S.”
⎪⎪⎪⎩
⎪⎪⎪⎨⎧
∴△ABC ≌△DCB (AAS )
提出问题:通过这题的练习,你能得出什么结论呢?
(小组讨论,派代表回答)
例3.如图3-28所示,AB 与CD 相交与点O ,O 是AB 的
中点,∠A=∠B,△AOC 与△BOD 全等吗?为什么?
补充练习
1﹑请在下列空格中填上适当的条件,使△ABC ≌△DEF 。
在△ABC 和△DEF 中
{
活动目的:使学生对三角形全等条件有了一个更清楚的理解——两角和它们的夹边对应相等的两个三角形全等。
在学生作体的过程中,学生还能体会到严谨的数学思想。
实际教学效果:可以在适当的机会展示学生的才能,以此激发学生进一步探究兴趣,这里设计了与本课刚开始就前后呼应的小明的故事,然学生们进行解答,体现了人人学有价值的数学的思想,培养学生的创新精神,增强学生的合作意识。
调动学生学习的积极主动性,起到激励的作用。
第四环节课堂小结
活动内容:
1.通过这堂课的学习你有什么收获?知道了哪些新知识?学会了做什么?
活动目的:学会归纳总结.通过独立思考,自我评价学习效果,发现问题、解决问题养成良好的学习习惯。
这样有利于强化学生对知识的理解和记忆,提高小结能力。
2.实际生活举例:
活动目的:培养应用数学知识解决实际问题的能力,感受数学来源于实践,又服务于生活。
第五环节布置作业
知识技能2,3。
问题解决。
活动目的:分层次作业:可达到因材施教,各有所获,同时可以夯实基础;
第六环节生活连接
活动内容:课间,小明和小聪在操场上突然争论起来。
他们都说自己比对方长得高,这时数学老师走过来,笑着对他们说:“你们不用争了,其实你们一样高,瞧瞧地上,你俩的影子一样长!”,你知道数学老师为什么能从他们的影长相等就断定它们的身高相同?你能运用全等三角形的有关知识说明一下其中的道理吗?(假定太阳光线是平行的)
太阳光线
活动目的:对三角形全等条件的理解更加深刻,激发学习兴趣,并为以后的学习打好基础。
实际教学效果:进一步增强应用意识与运用数学知识解决实际问题的能力,体会数学与实际生活的密切联系.
四、教学设计反思
本节课采用探究操作教学法进行教学,充分发挥学生的主体作用。
在课堂上,鼓励学生经历观察、操作、推理、想象等活动,培养学生有条理的思考、表达和交流的能力,尽量让学生多动手操作,在操作的过程中,让学生进行小组合作学习,在合作操作的过程中潜移默化地渗透分类讨论的数学思想方法,遵循“教是为了不教”的原则,让学生自得知识、自寻方法、自觅规律、自悟原理。
同时,通过范例和练习培养提高学生解答几何问题的书写格式和应用能力。
本节课的另一特色是充分发挥媒体的作用,利用课件设计,调动学生的学习积极性,再一次使课堂气氛推向高潮。
还可以让学生大胆想象、探索,使更多的同学有更多的锻炼机会。
新课程要求培养学生的应用数学的意识,数学来源于生活,又服务于生活。
在整个过程中还要注意发挥评价的作用,不论是探究活动、创作活动都采取自评、互评的方式让学生成为评价的主人。
通过这节课的教学实践,使教师认识到;教学必须紧密联系学生装的生活和实际,使学生对所学的内容兴味盎然,乐于探究。
教师最精彩的表现应该是高明的引导者、组织者、合作者,而不是舞台的主人——演员。
全面的培养学生的创新意识与实践能力。