2012年高三理科数学第一轮复习圆锥曲线(7)曲线与方程
2012届高三数学一轮复习课件:圆锥曲线综合问题(理)
解析:设 A(x1,y1),B(x2,y2),由题意知 y1<0,y2>0. (1)直线 l 的方程为 y= 3(x-c),其中 c= a2-b2. y= 3(x-c) 2 联立x y2 a2+b2=1 得(3a2+b2)y2+2 3b2cy-3b4=0.
- 3b2(c+2a) - 3b2(c-2a) 解得 y1= ,y2= . 3a2+b2 3a2+b2 → → 因为AF=2FB,所以-y1=2y2. 3b2(c+2a) - 3b2(c-2a) 即 =2· . 2 2 2 2 3a +b 3a +b c 2 得离心率 e= = . a 3
(2)因为|AB|=
1 2 4 3ab2 15 1+ |y2-y1|,所以 · 2 . 2= 3 4 3 3a +b
c 2 5 15 5 由 = 得 b= a.所以 a= ,得 a=3,b= 5. a 3 3 4 4 x2 y2 椭圆 C 的方程为 + =1. 1. 9 5
• 已知椭圆的焦点为F1(-3,0)、F2(3,0), 且与直线x-y+9=0有公共点,则其中 长轴最短的椭圆方程为________.
解法 2:设直线与椭圆公共点为 P,则|PF1|+|PF2|= 2a,由长轴最短知,问题可转化为在直线 x-y+9=0 上 求一点 P,使 P 到两定点 F1、F2 距离之和为最小. 点 F1(-3,0)关于直线 x-y+9=0 的对称点为 Q(-9, 6),则 F2Q 与直线 x-y+9=0 的交点即为 P 点,且 2a= |PF1|+|PF2|=|PQ|+|PF2|=|QF2|=6 5,∴a=3 5. x2 y2 又 c=3,∴b2=a2-c2=36,∴椭圆方程为 + = 45 36 1.
• 重点难点 • 重点:直线与圆锥曲线位置关系的判定, 弦长与距离的求法 • 难点:直线与圆锥曲线位置关系的判定、 弦长与中点弦问题
2012高考数学冲刺圆锥曲线
圆锥曲线方程知识点总结精华考试内容:椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程. 双曲线及其标准方程.双曲线的简单几何性质. 抛物线及其标准方程.抛物线的简单几何性质. 考试要求:(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程. (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质. (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质. (4)了解圆锥曲线的初步应用. 圆锥曲线方程 知识要点 一、椭圆方程.1. 椭圆方程的第一定义:为端点的线段以无轨迹方程为椭圆21212121212121,2,2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+⑴①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12222 b a by ax =+. ii. 中心在原点,焦点在y 轴上:)0(12222 b a bx ay =+.②一般方程:)0,0(122 B A By Ax =+.③椭圆的标准参数方程:12222=+by ax 的参数方程为⎩⎨⎧==θθsin cos b y a x (一象限θ应是属于20πθ ). ⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±.②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2.③焦点:)0,)(0,(c c -或),0)(,0(c c -.④焦距:2221,2b a c c F F -==.⑤准线:c a x 2±=或ca y 2±=.⑥离心率:)10( e ace =.⑦焦点半径: i. 设),(00y x P 为椭圆)0(12222 b a by ax =+上的一点,21,F F 为左、右焦点,则由椭圆方程的第二定义可以推出. ii.设),(00y x P 为椭圆)0(12222 b a ay bx =+上的一点,21,F F 为上、下焦点,则 由椭圆方程的第二定义可以推出.由椭圆第二定义可知:)0()(),0()(0002200201 x a ex x ca e pF x ex a ca x e pF -=-=+=+=归结起来为“左加右减”.注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:),(2222a b c a b d -=和),(2ab c⇒-=+=0201,ex a PF ex a PF ⇒-=+=0201,ey a PF ey a PF⑶共离心率的椭圆系的方程:椭圆)0(12222 b a b y a x =+的离心率是)(22b a c ace -==,方程t t b y a x (2222=+是大于0的参数,)0 b a 的离心率也是ace =我们称此方程为共离心率的椭圆系方程. ⑸若P 是椭圆:12222=+b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ∆的面积为2tan 2θb (用余弦定理与a PF PF 221=+可得). 若是双曲线,则面积为2cot 2θ⋅b .二、双曲线方程.1. 双曲线的第一定义:的一个端点的一条射线以无轨迹方程为双曲线21212121212121,222F F F F a PF PF F F a PF PF F F a PF PF ==-=-=-⑴①双曲线标准方程:)0,(1),0,(122222222 b a bx ay b a by ax =-=-. 一般方程:)0(122 AC Cy Ax =+.⑵①i. 焦点在x 轴上:顶点:)0,(),0,(a a - 焦点:)0,(),0,(c c - 准线方程c a x 2±= 渐近线方程:0=±bya x 或02222=-by axii. 焦点在y 轴上:顶点:),0(),,0(a a -. 焦点:),0(),,0(c c -. 准线方程:ca y 2±=. 渐近线方程:0=±b xa y 或02222=-b x a y ,参数方程:⎩⎨⎧==θθtan sec b y a x 或⎩⎨⎧==θθsec tan a y b x .②轴y x ,为对称轴,实轴长为2a , 虚轴长为2b ,焦距2c. ③离心率a ce =. ④准线距c a 22(两准线的距离);通径a b 22. ⑤参数关系ace b a c =+=,222. ⑥焦点半径公式:对于双曲线方程12222=-b y a x (21,F F 分别为双曲线的左、右焦点或分别为双曲线的上下焦点)“长加短减”原则: aex MF a ex MF -=+=0201 构成满足a MF MF 221=-aex F M a ex F M +-='--='0201(与椭圆焦半径不同,椭圆焦半径asin α,)bsin α)N 的轨迹是椭圆aey F M a ey F M aey MF a ey MF -'-='+'-='+=-=02010201 ⑶等轴双曲线:双曲线222a y x ±=-称为等轴双曲线,其渐近线方程为x y ±=,离心率2=e . ⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.λ=-2222b y a x 与λ-=-2222b y a x 互为共轭双曲线,它们具有共同的渐近线:02222=-by a x .⑸共渐近线的双曲线系方程:)0(2222≠=-λλby ax 的渐近线方程为02222=-y ax 如果双曲线的渐近线为0=±b ya x 时,它的双曲线方程可设为)0(2222≠=-λλby a x .例如:若双曲线一条渐近线为x y 21=且过)21,3(-p 解:令双曲线的方程为:)0(422≠=-λλy x,代入)21,3(-得12822=-y x ⑹直线与双曲线的位置关系:区域①:无切线,2条与渐近线平行的直线,合计2条;区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计3条; 区域③:2条切线,2条与渐近线平行的直线,合计4条;区域④:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计2条; 区域⑤:即过原点,无切线,无与渐近线平行的直线.小结:过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条. (2)若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入”“∆法与渐近线求交和两根之和与两根之积同号. ⑺若P 在双曲线12222=-b y a x ,则常用结论1:P 到焦点的距离为m = n ,则P 到两准线的距离比为m ︰n.简证:ePF e PF d d 2121= = n m . 常用结论2:从双曲线一个焦点到另一条渐近线的距离等于b.三、抛物线方程.3. 设0 p ,抛物线的标准方程、类型及其几何性质:注:①x c by ay =++2顶点)244(2aba b ac --.②)0(22≠=p px y 则焦点半径2P x PF +=;)0(22≠=p py x 则焦点半径为2P y PF +=.③通径为2p ,这是过焦点的所有弦中最短的.④px y 22=(或py x 22=)的参数方程为⎩⎨⎧==pt y pt x 222(或⎩⎨⎧==222pt y ptx )(t 为参数). 四、圆锥曲线的统一定义..4. 圆锥曲线的统一定义:平面内到定点F 和定直线l 的距离之比为常数e 的点的轨迹. 当10 e 时,轨迹为椭圆; 当1=e 时,轨迹为抛物线; 当1 e 时,轨迹为双曲线; 当0=e 时,轨迹为圆(ace =,当b a c ==,0时). 5. 圆锥曲线方程具有对称性. 例如:椭圆的标准方程对原点的一条直线与双曲线的交点是关于原点对称的.因为具有对称性,所以欲证AB=CD, 即证AD 与BC 的中点重合即可.注:椭圆、双曲线、抛物线的标准方程与几何性质2.等轴双曲线3.共轭双曲线5. 方程y 2=ax 与x 2=ay 的焦点坐标及准线方程. 6.共渐近线的双曲线系方程.试题精粹江苏省2011年高考数学联考试题 5.(江苏省2010届苏北四市第一次联考)若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为▲ .1162522=+y x 或1251622=+y x9.(江苏省2010届苏北四市第一次联考)已知圆O :221x y += 与x 轴交于点A 和B ,在线段AB 上取一点(,0)D x ,作DC AB ⊥与圆O 的一个交点为C ,若线段AD 、BD 、CD 可作为一个锐角三角形的三边长,则x 的取值范围为 ▲.(2,2)12.(姜堰二中学情调查(三))已知椭圆的中心在坐标原点,焦点在x 轴上,以其两个焦点和短轴的两个端点为顶点的四边形是一个面积为4的正方形,设P 为该椭圆上的动点,C 、D的坐标分别是())0,0,则⋅的最大值为 .68.(江苏省南通市2011届高三第一次调研测试)双曲线221412x y -=上一点M 到它的右焦点的距离是3,则点M 的横坐标是 ▲ .523、(南通市六所省重点高中联考试卷)方程 x 2m + y 24-m= 1 的曲线是焦点在y 轴上的双曲线,则m 的取值范围是 ▲ 0<m9、(南通市六所省重点高中联考试卷)已知椭圆22221(0)y x a b a b+=>>的中心为O ,右焦点为F 、右顶点为A ,右准线与x 轴的交点为H ,则||||FA OH 的最大值为 ▲ 12、(宿迁市高三12月联考)椭圆()222210x y a a b+=>b >的左焦点为F ,其左准线与x 轴的交点为A ,若在椭圆上存在点P 满足线段AP 的垂直平分线过点F,则椭圆离心率的取值范围是 ;[12,1) 1. (无锡市1月期末调研)设双曲线的渐近线方程为230x y ±=,则双曲线的离心率为▲.2或310.(徐州市12月高三调研)已知,,A B F 分别是椭圆22221(0)x y a b a b+=>>的上、下顶点和右焦点,直线AF 与椭圆的右准线交于点M ,若直线MB ∥x 轴,则该椭圆的离心率e =▲.212.(盐城市第一次调研)在ABC ∆中,60ACB ∠=,sin :sin 8:5A B =,则以,A B 为焦点且过点C 的椭圆的离心率为 ▲ .71310. (苏北四市2011届高三第二次调研)双曲线22221(0,0)x y a b a b-=>>的两条渐近线将平面划分为“上、下、左、右”四个区域(不含边界),若点(1,2)在“上”区域内,则双曲线离心率e 的取值范围是 ▲.(18.(江苏天一中学、海门中学、盐城中学2011届高三调研考试)(本小题满分16分)如图,已知椭圆12:22=+y x C 的左、右焦点分别为21,F F ,下顶点为A ,点P 是椭圆上任一点,圆M 是以2PF 为直径的圆.⑴当圆M 的面积为8π,求PA 所在的直线方程; ⑵当圆M 与直线1AF 相切时,求圆M 的方程; ⑶求证:圆M 总与某个定圆相切.解 ⑴易得()0,11-F ,()0,12F ,()1,02-A ,设()11,y x P ,则()()()2121212121222212111-=-+-=+-=x x x y x PF ,∴()22222112≤≤--=x x PF , (2)又圆M 的面积为8π,∴()21288-=x ππ,解得11=x , ∴⎪⎪⎭⎫ ⎝⎛22,1P 或⎪⎪⎭⎫ ⎝⎛-22,1, ∴PA 所在的直线方程为1221-⎪⎪⎭⎫ ⎝⎛+=x y 或1221-⎪⎪⎭⎫ ⎝⎛-=x y ;…………………………4 ⑵∵直线1AF 的方程为01=++y x ,且⎪⎭⎫⎝⎛+2,2111y x M 到直线1AF 的距离为111422221221x y x -=+++, 化简得1211--=x y ,…………………………6 联立方程组⎪⎩⎪⎨⎧=+--=1212212111y x x y ,解得01=x 或981-=x . …………………………8 当01=x 时,可得⎪⎭⎫⎝⎛-21,21M , ∴ 圆M 的方程为21212122=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-y x ;………9 当981-=x 时,可得⎪⎭⎫⎝⎛187,181M , ∴ 圆M 的方程为16216918718122=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-y x ; (10)⑶圆M 始终与以原点为圆心,半径21=r (长半轴)的圆(记作圆O )相切.证明:∵()()121212121422284141441x x x y x OM +=-++=++=, ……………14 又圆M 的半径1224222x MF r -==,∴21r r OM -=, ∴圆M 总与圆O 内切. …………………………………………16 24.(江苏天一中学、海门中学、盐城中学2011届高三调研考试) 已知抛物线L 的方程为()022>=p py x ,直线x y =截抛物线L 所得弦24=AB .⑴求p 的值;⑵抛物线L 上是否存在异于点A 、B 的点C ,使得经过A 、B 、C 三点的圆和抛物线L 在点C 处有相同的切线.若存在,求出点C 的坐标;若不存在,请说明理由. 答案: 解:⑴由⎩⎨⎧==pyx x y 22解得)2,2(),0,0(p p B A∴p p p AB 22442422=+==,∴2=p ………………………………………4 ⑵由⑴得)4,4(),0,0(,42B A y x =假设抛物线L 上存在异于点A 、B 的点C )4,0()4,(2≠≠t t t t ,使得经过A 、B 、C 三点的圆和抛物线L 在点C 处有相同的切线令圆的圆心为),(b a N ,则由⎩⎨⎧==NC NA NB NA 得⎪⎩⎪⎨⎧-+-=+-+-=+222222222)4()()4()4(t b t a b a b a b a 得⎪⎪⎩⎪⎪⎨⎧++=+-=⇒⎪⎩⎪⎨⎧+=+=+83248481244222t t b tt a t t tb a b a (6)∵抛物线L 在点C 处的切线斜率)0(2|≠='==t ty k t x 又该切线与NC 垂直, ∴0412212432=--+⇒-=⋅--t t bt a t t a t b ∴08204128324)84(223322=--⇒=--++⋅++-⋅t t t t t t t t t t (8)∵4,0≠≠t t ,∴2-=t故存在点C 且坐标为(-2,1) (10)17.(江苏省2010届苏北四市第一次联考)(本小题满分14分)已知椭圆2214x y +=的左、右两个顶点分别为A ,B ,直线(22)x t t =-<<与椭圆相交于M ,N 两点,经过三点A ,M ,N 的圆与经过三点B ,M ,N 的圆分别记为圆C 1与圆C 2.(1)求证:无论t 如何变化,圆C 1与圆C 2的圆心距是定值; (2)当t 变化时,求圆C 1与圆C 2的面积的和S 的最小值.17、解:(1)易得A 的坐标)0,2(-,B 的坐标)0,2(,M 的坐标24,(2t t -,N 的坐标)24,(2t t --,线段AM 的中点P 44,22(2t t --,直线AM 的斜率tt t t k +-=+-=222122421 ………………………………………3分 又AM PC ⊥1, ∴直线1PC 的斜率ttk -+-=2222 ∴直线1PC 的方程4422(2222t t x t t y -+---+-=,∴1C 的坐标为)0,863(-t 同理2C 的坐标为)0,863(+t …………………………………………………… 7分 ∴2321=C C ,即无论t 如何变化,为圆C 1与圆C 2的圆心距是定值.…………… 9分(2)圆1C的半径为1AC 8103+=t ,圆2C 的半径为83102tBC -=, 则)1009(3222221+=+=t BC AC S πππ (2-<t <2)显然t 0=时,S 最小,825minπ=S . …………… 14分 18. (常州市2011届高三数学调研)(15) 已知直线l 的方程为2x =-,且直线l 与x 轴交于点M ,圆22:1O x y +=与x 轴交于,A B 两点(如图).(1)过M 点的直线1l 交圆于P Q 、两点,且圆孤PQ 恰为圆周的14,求直线1l 的方程; (2)求以l 为准线,中心在原点,且与圆O 恰有两个公共点的椭圆方程;(3)过M 点的圆的切线2l 交(II )中的一个椭圆于C D 、两点,其中C D 、两点在x 轴上方,求线段CD 的长.18、解:(1I )PQ 为圆周的1,.42POQ π∴∠= O ∴设1l 的方程为21(2),.7y k x k =+=∴= 1l ∴的方程为2).7y x =±+ (2)设椭圆方程为22221(0)x y a b a b +=>>,半焦距为c,则22.a c=椭圆与圆O 恰有两个不同的公共点,则1a =或 1.b = 当1a =时,22213,,24c b a c ==-=∴所求椭圆方程为22413y x +=;当1b =时,222222,1, 2.b c c c a b c +=∴=∴=+= ∴所求椭圆方程为22 1.2x y +=(3)设切点为N ,则由题意得,椭圆方程为221,2x y +=在Rt MON ∆中,2,1MO ON ==,则30NMO ∠=,2l ∴的方程为2)y x +,代入椭圆2212x y +=中,整理得25820.x x ++=设1122(,),(,)C x y D x y ,则121282,.55x x x x +=-=CD ∴==18.(姜堰二中学情调查(三))(本小题共16分)已知椭圆()222210x y a b a b+=>>和圆O :222x y b +=,过椭圆上一点P 引圆O 的两条切线,切点分别为,A B .(1)①若圆O 过椭圆的两个焦点,求椭圆的离心率e ; ②若椭圆上存在点P ,使得90APB ∠=,求椭圆离心 率e 的取值范围;(2)设直线AB 与x 轴、y 轴分别交于点M ,N ,求证:2222a b ONOM+为定值.18.解:(Ⅰ)(ⅰ)∵ 圆O 过椭圆的焦点,圆O :222x y b +=,∴ b c =,∴ 2222b ac c =-=, ∴ 222a c =,∴e =……… 5分 (ⅱ)由90APB ∠=及圆的性质,可得OP =, ∴2222,OP b a =≤∴222a c ≤∴212e ≥,12e ≤<. ……… 10分 (Ⅱ)设()()()001122,,,,,P x y A x y B x y ,则011011y y xx x y -=--整理得220011x x y y x y +=+22211x y b += ∴PA 方程为:211x x y y b +=,PB 方程为:222x x y y b +=.∴11x x y y +=22x x y y +,∴021210x y y x x y -=--,直线AB 方程为 ()0110x y y x x y -=--,即 200x x y y b +=. 令0x =,得20b ON y y ==,令0y =,得2b OM x x ==,∴2222222220022442a y b x a b a b a b b bON OM ++===,∴2222a b ON OM+为定值,定值是22a b ……… 16分 19.(姜堰二中学情调查(三))(本小题共16分)已知M (p, q )为直线x+y-m=0与曲线y=-1x 的交点,且p<q ,若f (x )=2x-mx 2+1 ,λ、μ为正实数。
2012年高考理科数学圆锥曲线考前知识再回顾及练习
2012年高考理科数学考前知识再回顾及配套练习姓名 伟人之所以伟大,是因为他与别人共处逆境时,别人失去了信心,他却下决心实现自己的目标。
1.圆锥曲线的定义:(1)椭圆中,与两个定点12,F F 的距离的和等于常数2a ,且此常数2a _____21F F ,当常数等于21F F 时,轨迹是___________,当常数_____21F F 时,无轨迹;双曲线中,与两定点12,F F 的距离的差的绝对值等于常数2a ,且此常数2a _____21F F ,定义中的“绝对值”与122a F F <不可忽视。
若122a F F =,则轨迹是_____________________,若122a F F >,则轨迹不存在, 若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
如①已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 ( ) A.421=+PF PF B.621=+PF PF C .1021=+PF PF D .122221=+PF PF8=表示的曲线是____________。
2.圆锥曲线的标准方程:能熟练的写出椭圆、双曲线、抛物线的标准方程。
如①方程22Ax By C +=表示椭圆的充要条件是__________, ②已知方程12322=-++ky k x 表示椭圆,则k 的取值范围为_______。
③若R y x ∈,,且62322=+y x ,则y x +的最大值是____,22y x +的最小值是______。
④方程22Ax By C +=表示双曲线的充要条件是________________。
⑤双曲线的离心率等于25,且与椭圆224936x y +=有公共焦点,则该双曲线的方程___________。
⑥设中心在坐标原点O ,焦点12,F F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为___________。
2012届高考数学(理科)一轮复习课件(人教版)第14单元第78讲 圆锥曲线性质的探讨与几何证明的简单应用
评析:定理中的三个结论的证明思路如出 一辙,证明时应考虑到他们各自的特征, 比如此例中只能作出一个Dandelin球, 而证明结论3(截线为双曲线)的双球一个在 圆锥面顶点的上面,另一个在顶点的下面.
1.要善于把圆的有关性质类比推广到球的一些性质. 2.定理中的两个角、的确切含义要弄清楚. 3.当 从0到90变化时,平面 与圆锥面S 交出的 曲线形状分析:当 0时,截面过轴线,此时的 截线为两条母线(可视为退化的双曲线); 当 从0到 变化时,截面与圆锥面的两部分均有 cos 截线,截线为双曲线,其离心率e 越来越小, cos 并趋近于1;
7 5 2 2 解析: 所以EF1 ,EF2 O2 E O2 F2 7, 3 3 7 5 故2c 7 2 7,所以c 7. 3 3 又因为BF1 BF2 BC BD CD,
2 所以椭圆的长轴长2a CD O1O2 O2 D O1C 2
证明: 连接点P与圆锥的顶点,与S 相交于点Q1, 连接BQ1,则BPQ1 ,APB . 在Rt APB中,PB PA cos . PQ1 cos 在Rt PBQ1中,PB PQ1 cos ,所以 . PA cos PF1 又因为PQ1 PF1, , 1, PA 即PF1 PA,动点P到定点F1的距离等于它到 直线m的距离, 故当 时,平面与圆锥的交线为抛物线.
1.了解平行投影的含义,通过圆柱与平 面的位置关系,体会平行投影;会证明 平面与圆柱截线是椭圆(特殊情形是圆).
2.通过观察平面截圆锥的情境,体会下面定理: 在空间中,取直线l为轴,直线l 与l相交于O点, 其夹角为,l 围绕l旋转得到以O为顶点,l 为 母线的圆锥面,任取平面 ,若它与轴l交角为 (当 与l平行时,记 0), 则 1 a,平面 与圆锥的交线为椭圆;
2012年高三数学第一轮复习教案(新人教A)圆锥曲线的应用
8.6 圆锥曲线的应用巩固·夯实基础一、自主梳理解析几何在日常生活中应用广泛,如何把实际问题转化为数学问题是解决应用题的关键,而建立数学模型是实现应用问题向数学问题转化的常用方法.本节主要通过圆锥曲线在实际问题中的应用,说明数学建模的方法,理解函数与方程、等价转化、分类讨论等数学思想.二、点击双基1.一抛物线形拱桥,当水面离桥顶2 m 时,水面宽4 m ,若水面下降1 m 时,则水面宽为( ) A.6 m B.26 m C.4.5 m D.9 m解析:建立适当的直角坐标系,设抛物线方程为x 2=-2py(p>0),由题意知,抛物线过点(2,-2),∴4=2p ×2.∴p=1.∴x 2=-2y.当y 0=-3时,得x 02=6.∴水面宽为2|x 0|=26.答案:B2.某抛物线形拱桥的跨度是20 m ,拱高是4 m ,在建桥时每隔4 m 需用一柱支撑,其中最长的支柱是( )A.4 mB.3.84 mC.1.48 mD.2.92 m解析:建立适当坐标系,设抛物线方程为x 2=-2py(p>0),由题意知其过定点(10,-4),代入x 2=-2py,得p=225. ∴x 2=-25y.当x 0=2时,y 0=254-, ∴最长支柱长为4-|y 0|=4-254=3.84(m). 答案:B3.天安门广场,旗杆比华表高,在地面上,观察它们顶端的仰角都相等的各点所在的曲线是( )A.椭圆B.圆C.双曲线的一支D.抛物线解析:设旗杆高为m,华表高为n,m >n.旗杆与华表的距离为2a,以旗杆与地面的交点和华表与地面的交点的连线段所在直线为x 轴、垂直平分线为y 轴建立直角坐标系.设曲线上任一点M(x,y),由题意2222)()(y a x y a x +-++=nm ,即(m 2-n 2)x 2+(m 2-n 2)y 2-2a(m 2-n 2)x+(m 2-n 2)a 2=0. 答案:B4.探照灯反射镜的纵断面是抛物线的一部分,光源在抛物线的焦点,已知灯口直径是60 cm,灯深40 cm,则光源到反射镜顶点的距离是________________ cm.解析:设抛物线方程为y 2=2px(p>0),点(40,30)在抛物线y 2=2px 上,∴900=2p ×40.∴p=445.∴2p =845.因此,光源到反射镜顶点的距离为845 cm. 答案:845 5.在相距1 400 m 的A 、B 两哨所,听到炮弹爆炸声音的时间相差3 s ,已知声速340 m/s.炮弹爆炸点所在曲线的方程为______________________________________________________. 解析:设M (x,y )为曲线上任一点,则|MA|-|MB|=340×3=1 020<1 400.∴M 点轨迹为双曲线,且a=21020=510,c=21400=700. ∴b 2=c 2-a 2=(c+a)(c-a)=1 210×190.∴M 点轨迹方程为22510x -19012102⨯y =1. 答案:22510x -19012102⨯y =1 诱思·实例点拨【例1】 设有一颗彗星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道的焦点处,当此彗星离地球相距m 万千米和34m 万千米时,经过地球和彗星的直线与椭圆的长轴夹角分别为2π和3π,求该彗星与地球的最近距离. 剖析:本题的实际意义是求椭圆上一点到焦点的距离,一般的思路:由直线与椭圆的关系,列方程组解之;或利用定义法抓住椭圆的第二定义求解.同时,还要注意结合椭圆的几何意义进行思考.仔细分析题意,由椭圆的几何意义可知:只有当该彗星运行到椭圆的较近顶点处时,彗星与地球的距离才达到最小值即为a-c ,这样把问题就转化为求a 、c 或a-c.解:建立如下图所示直角坐标系,设地球位于焦点F (-c,0)处,椭圆的方程为22a x +22by =1,当过地球和彗星的直线与椭圆的长轴夹角为π3时,由椭圆的几何意义可知,彗星A 只能满足∠xFA=3π(或∠xFA ′=3π). 作AB ⊥Ox 于B ,则|FB |=21|FA |=32m, 故由椭圆的第二定义可得⎪⎪⎩⎪⎪⎨⎧+-=-=)2().32(34)1(),(22m c c a a c m c c a a c m 两式相减得31m=a c ·32m,∴a=2c. 代入①,得m=21(4c-c)=23c, ∴c=32m. ∴a-c=c=32m. 答:彗星与地球的最近距离为32m 万千米. 讲评:(1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个端点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是a-c,另一个是a+c.(2)以上给出的解答是建立在椭圆的概念和几何意义之上的,以数学概念为根基充分体现了数形结合的思想.另外,数学应用问题的解决在数学化的过程中也要时刻不忘审题,善于挖掘隐含条件,有意识地训练数学思维品质.【例2】 某工程要挖一个横断面为半圆的柱形的坑,挖出的土只能沿道路AP 、BP 运到P 处(如图所示).已知PA=100 m ,PB=150 m,∠APB=60°,试说明怎样运土最省工.剖析:首先抽象为数学问题,半圆中的点可分为三类:(1)沿AP 到P 较近;(2)沿BP 到P 较近;(3)沿AP 、BP 到P 同样远.显然,第三类点是第一、二类的分界点,设M 是分界线上的任意一点.则有|MA |+|PA |=|MB |+|PB |.于是|MA |-|MB |=|PB |-|PA |=150-100=50.从而发现第三类点M 满足性质:点M 到点A 与点B 的距离之差等于常数50,由双曲线定义知,点M 在以A 、B 为焦点的双曲线的右支上,故问题转化为求此双曲线的方程.解:以AB 所在直线为x 轴,线段AB 的中点为原点建立直角坐标系xOy,设M(x,y)是沿AP 、BP 运土同样远的点,则|MA |+|PA |=|MB |+|PB |,∴|MA |-|MB |=|PB |-|PA |=50.在△PAB 中,由余弦定理得|AB |2=|PA |2+|PB |2-2|PA ||PB |cos60°=17 500, 且50<|AB |.由双曲线定义知M 点在以A 、B 为焦点的双曲线右支上,设此双曲线方程为22a x -22b y =1(a >0,b >0).∵⎪⎩⎪⎨⎧+===,,175004,5022222b a c c a解之得⎪⎩⎪⎨⎧==.3750,62522b a ∴M 点轨迹是6252x -37502y =1(x ≥25)在半圆内的一段双曲线弧.于是运土时将双曲线左侧的土沿AP 运到P 处,右侧的土沿BP 运到P 处最省工. 讲评:(1)本题是不等量与等量关系问题,涉及到分类思想,通过建立直角坐标系,利用点的集合性质,构造圆锥曲线模型(即分界线)从而确定出最优化区域. (2)应用分类思想解题的一般步骤:①确定分类的对象;②进行合理的分类;③逐类逐级讨论;④归纳各类结果.【例3】 根据我国汽车制造的现实情况,一般卡车高3 m ,宽1.6 m.现要设计横断面为抛物线形的双向二车道的公路隧道,为保障双向行驶安全,交通管理规定汽车进入隧道后必须保持距中线0.4 m 的距离行驶.已知拱口AB 宽恰好是拱高OC 的4倍,若拱宽为a m ,求能使卡车安全通过的a 的最小整数值.剖析:根据问题的实际意义,卡车通过隧道时应以卡车沿着距隧道中线0.4 m 到2 m 间的道路行驶为最佳路线,因此,卡车能否安全通过,取决于距隧道中线2 m (即在横断面上距拱口中点2 m )处隧道的高度是否够3 m ,据此可通过建立坐标系,确定出抛物线的方程后求得. 解:如图,以拱口AB 所在直线为x 轴,以拱高OC 所在直线为y 轴建立直角坐标系,由题意可得抛物线的方程为x 2=-2p(y-4a ),∵点A (-2a ,0)在抛物线上, ∴(-2a )2=-2p(0-4a ),得p=2a . ∴抛物线方程为x 2=-a(y-4a ). 取x=1.6+0.4=2,代入抛物线方程,得22=-a(y-4a ),y=a a 4162-. 由题意,令y >3,得aa 4162->3, ∵a >0,∴a 2-12a-16>0.∴a>6+213.又∵a∈Z,∴a应取14,15,16,….答:满足本题条件使卡车安全通过的a的最小正整数为14 m.讲评:本题的解题过程可归纳为两步:一是根据实际问题的意义,确定解题途径,得到距拱口中点2 m处y的值;二是由y>3通过解不等式,结合问题的实际意义和要求得到a的值,值得注意的是这种思路在与最佳方案有关的应用题中是常用的.。
高三数学一轮复习必备圆锥曲线方程及性质
第33讲 圆锥曲线方程及性质备注:【高三数学一轮复习必备精品共42讲 全部免费 欢迎下载】一.【课标要求】1.了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用;2.经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质;3.了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质二.【命题走向】本讲内容是圆锥曲线的基础内容,也是高考重点考查的内容,在每年的高考试卷中一般有2~3道客观题,难度上易、中、难三档题都有,主要考查的内容是圆锥曲线的概念和性质,从近十年高考试题看主要考察圆锥曲线的概念和性质。
圆锥曲线在高考试题中占有稳定的较大的比例,且选择题、填空题和解答题都涉及到,客观题主要考察圆锥曲线的基本概念、标准方程及几何性质等基础知识和处理有关问题的基本技能、基本方法对于本讲内容来讲,预测2010年:(1)1至2道考察圆锥曲线概念和性质客观题,主要是求值问题;(2)可能会考察圆锥曲线在实际问题里面的应用,结合三种形式的圆锥曲线的定义。
三.【要点精讲】1.椭圆(1)椭圆概念平面内与两个定点1F 、2F 的距离的和等于常数(大于21||F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫椭圆的焦距。
若M 为椭圆上任意一点,则有21||||2MF MFa += 椭圆的标准方程为:22221x y ab +=(0a b >>)(焦点在x 轴上)或12222=+bx a y (0a b >>)(焦点在y 轴上)。
注:①以上方程中,a b 的大小0a b >>,其中222c a b =-; ②在22221x y a b +=和22221y x a b+=两个方程中都有0a b >>的条件,要分清焦点的位置,只要看2x 和2y 的分母的大小。
例如椭圆221x y m n+=(0m >,0n >,m n ≠)当m n >时表示焦点在x 轴上的椭圆;当m n <时表示焦点在y 轴上的椭圆(2)椭圆的性质①范围:由标准方程22221x y a b+=知||x a ≤,||y b ≤,说明椭圆位于直线x a =±,y b=±所围成的矩形里;②对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称。
高三数学一轮复习圆锥曲线(1-4讲)学生用
第1讲:椭圆1. 椭圆的概念在平面内与两定点F 1、F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.集合P ={M ||MF 1|+|MF 2|=2a },|F 1F 2|=2c ,其中a >0,c >0,且a ,c 为常数: (1)若a >c ,则集合P 为椭圆; (2)若a =c ,则集合P 为线段; (3)若a <c ,则集合P 为空集. 2. 椭圆的标准方程和几何性质标准方程x 2a 2+y 2b 2=1 (a >b >0) y 2a 2+x 2b 2=1(a >b >0) 图形性 质范围 -a ≤x ≤a -b ≤y ≤b-b ≤x ≤b -a ≤y ≤a对称性 对称轴:坐标轴 对称中心:原点顶点 A 1(-a,0),A 2(a,0) B 1(0,-b ),B 2(0,b )A 1(0,-a ),A 2(0,a )B 1(-b,0),B 2(b,0)轴 长轴A 1A 2的长为2a ;短轴B 1B 2的长为2b焦距 |F 1F 2|=2c离心率e =ca ∈(0,1) a ,b ,c 的关系c 2=a 2-b 2题型一 求椭圆的标准方程例1 (1)若椭圆短轴的一个端点与两焦点组成一个正三角形;且焦点到同侧顶点的距离为3,则椭圆的标准方程为____________;(2)(2011·课标全国)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么椭圆C 的方程为__________.已知F 1,F 2是椭圆x 2a 2+y 2b2=1 (a >b >0)的左,右焦点,A ,B 分别是此椭圆的右顶点和上顶点,P 是椭圆上一点,OP ∥AB ,PF 1⊥x 轴,|F 1A |=10+5,则此椭圆的方程是____________.题型二 椭圆的几何性质例2 已知F 1、F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°.(1)求椭圆离心率的范围;(2)求证:△F 1PF 2的面积只与椭圆的短轴长有关.(2012·安徽)如图,F 1、F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,A 是椭圆C 的顶点,B 是直线AF 2与椭圆C 的另一个交点,∠F 1AF 2=60°. (1)求椭圆C 的离心率;(2)已知△AF 1B 的面积为403,求a ,b 的值.题型三 直线与椭圆的位置关系例3 (2011·北京)已知椭圆G :x 24+y 2=1.过点(m,0)作圆x 2+y 2=1的切线l 交椭圆G 于A ,B 两点.(1)求椭圆G 的焦点坐标和离心率;(2)将|AB |表示为m 的函数,并求|AB |的最大值.设F 1、F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过F 1的直线l 与E 相交于A 、B 两点,且|AF 2|,|AB |,|BF 2|成等差数列. (1)求|AB |;(2)若直线l 的斜率为1,求b 的值.第2讲:双曲线1. 双曲线的概念把平面内到两定点F 1,F 2的距离之差的绝对值等于常数(大于零且小于|F 1F 2|)的点的集合叫作双曲线.这两个定点叫作双曲线的焦点,两焦点间的距离叫作焦距.集合P ={M |||MF 1|-|MF 2||=2a },|F 1F 2|=2c ,其中a 、c 为常数且a >0,c >0: (1)当a <c 时,P 点的轨迹是双曲线; (2)当a =c 时,P 点的轨迹是两条射线; (3)当a >c 时,P 点不存在. 2. 双曲线的标准方程和几何性质标准方程x 2a 2-y 2b 2=1 (a >0,b >0) y 2a 2-x 2b 2=1(a >0,b >0) 图形性质范围 x ≥a 或x ≤-a ,y ∈Rx ∈R ,y ≤-a 或y ≥a对称性 对称轴:坐标轴 对称中心:原点 顶点 A 1(-a,0),A 2(a,0)A 1(0,-a ),A 2(0,a )渐近线 y =±b axy =±a bx离心率e =ca ,e ∈(1,+∞),其中c =a 2+b 2 实虚轴 线段A 1A 2叫作双曲线的实轴,它的长|A 1A 2|=2a ;线段B 1B 2叫作双曲线的虚轴,它的长|B 1B 2|=2b ;a 叫作双曲线的实半轴长,b 叫作双曲线的虚半轴长a 、b 、c 的关系c 2=a 2+b 2 (c >a >0,c >b >0)题型一 双曲线的定义及标准方程例1 (1)已知双曲线x 2a 2-y 2b 2=1 (a >0,b >0)和椭圆x 216+y 29=1有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为________.(2)与双曲线x 2-2y 2=2有公共渐近线,且过点M (2,-2)的双曲线方程为__________.(3)已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为________.(1)(2012·湖南)已知双曲线C :x 2a 2-y 2b2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为( )A.x 220-y 25=1 B.x 25-y 220=1 C.x 280-y 220=1D.x 220-y 280=1(2)设椭圆C 1的离心率为513,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( )A.x 242-y 232=1 B.x 2132-y 252=1 C.x 232-y 242=1D.x 2132-y 2122=1题型二 双曲线的几何性质例2 (1)(2013·浙江)如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若 四边形AF 1BF 2为矩形,则C 2的离心率是( )A. 2B. 3C.32D.62(2)若点O 和点F (-2,0)分别为双曲线x 2a 2-y 2=1(a >0)的中心和左焦点,点P 为双曲线右支上的任意一点,则OP →·FP →的取值范围为( )A .[3-23,+∞)B .[3+23,+∞)C .[-74,+∞)D .[74,+∞)(1)(2013·课标全国Ⅰ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( )A .y =±14xB .y =±13xC .y =±12xD .y =±x(2)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点F 作一条渐近线的垂线,垂足为点A ,与另一条渐近线交于点B ,若FB→=2FA →,则此双曲线的离心率为( )A. 2B. 3C .2 D. 5题型三 直线与双曲线的位置关系例3 已知双曲线C :x 2-y 2=1及直线l :y =kx -1.(1)若l 与C 有两个不同的交点,求实数k 的取值范围;(2)若l 与C 交于A ,B 两点,O 是坐标原点,且△AOB 的面积为2,求实数k 的值.已知中心在原点的双曲线C的右焦点为(2,0),实轴长为2 3.(1)求双曲线C的方程;(2)若直线l:y=kx+2与双曲线C左支交于A、B两点,求k的取值范围;(3)在(2)的条件下,线段AB的垂直平分线l0与y轴交于M(0,m),求m的取值范围.第3讲:抛物线1. 抛物线的概念平面内与一个定点F 和一条定直线l (F ∉l )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.2. 抛物线的标准方程与几何性质标准 方程y 2=2px (p >0) y 2=-2px (p >0) x 2=2py (p >0) x 2=-2py (p>0)p 的几何意义:焦点F 到准线l 的距离图形顶点 O (0,0)对称轴 y =0x =0焦点 F ⎝⎛⎭⎪⎫p 2,0F ⎝ ⎛⎭⎪⎫-p 2,0 F ⎝⎛⎭⎪⎫0,p 2 F ⎝ ⎛⎭⎪⎫0,-p 2离心率 e =1准线方程 x =-p2x =p 2y =-p 2y =p 2范围 x ≥0,y ∈Rx ≤0,y ∈Ry ≥0,x ∈Ry ≤0,x ∈R开口方向向右向左向上向下题型一 抛物线的定义及应用例1 已知抛物线y 2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A (3,2),求|PA |+|PF |的最小值,并求出取最小值时点P 的坐标.(2011·辽宁)已知F 是抛物线y 2=x 的焦点,A 、B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB的中点到y 轴的距离为( )A.34B .1C.54D.74题型二 抛物线的标准方程和几何性质例2 抛物线的顶点在原点,对称轴为y 轴,它与圆x 2+y 2=9相交,公共弦MN 的长为25,求该抛物线的方程,并写出它的焦点坐标与准线方程.如图,已知抛物线y 2=2px (p >0)有一个内接直角三角形,直角顶点在原点,两直角边OA 与OB 的长分别为1和8,求抛物线的方程.题型三 直线与抛物线的位置关系例3 (2011·江西)已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9. (1)求该抛物线的方程.(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.设抛物线C :y 2=4x ,F 为C 的焦点,过F 的直线l 与C 相交于A 、B 两点.(1)设l 的斜率为1,求|AB |的大小; (2)求证:OA →·OB →是一个定值.第4讲:曲线与方程1. 曲线与方程一般地,在平面直角坐标系中,如果某曲线C (看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f (x ,y )=0的实数解建立了如下关系:(1)曲线上点的坐标都是这个方程的解.(2)以这个方程的解为坐标的点都在曲线上.那么这个方程叫作曲线的方程,这条曲线叫作方程的曲线.2. 求动点的轨迹方程的一般步骤(1)建系——建立适当的坐标系.(2)设点——设轨迹上的任一点P (x ,y ).(3)列式——列出动点P 所满足的关系式.(4)代换——依条件式的特点,选用距离公式、斜率公式等将其转化为x ,y 的方程式,并化简.(5)证明——证明所求方程即为符合条件的动点轨迹方程.3. 两曲线的交点(1)由曲线方程的定义可知,两条曲线交点的坐标应该是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解;反过来,方程组有几组解,两条曲线就有几个交点;方程组无解,两条曲线就没有交点. (2)两条曲线有交点的充要条件是它们的方程所组成的方程组有实数解.可见,求曲线的交点问题,就是求由它们的方程所组成的方程组的实数解问题.题型一 定义法求轨迹方程例1 已知两个定圆O 1和O 2,它们的半径分别是1和2,且|O 1O 2|=4.动圆M 与圆O 1内切,又与圆O 2外切,建立适当的坐标系,求动圆圆心M 的轨迹方程,并说明轨迹是何种曲线.已知点F ⎝⎛⎭⎫14,0,直线l :x =-14,点B 是l 上的动点.若过B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( )A .双曲线B .椭圆C .圆D .抛物线题型二 相关点法求轨迹方程例2 设直线x -y =4a 与抛物线y 2=4ax 交于两点A ,B (a 为定值),C 为抛物线上任意一点,求△ABC 的重心的轨迹方程.设F (1,0),M 点在x 轴上,P 点在y 轴上,且MN →=2MP →,PM →⊥PF →,当点P 在y 轴上运动时,求点N的轨迹方程.题型三 直接法求轨迹方程例3 (2013·陕西)已知动圆过定点A (4,0),且在y 轴上截得弦MN 的长为8.(1)求动圆圆心的轨迹C 的方程;(2)已知点B (-1,0),设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是∠PBQ 的角平分线,证明:直线l 过定点.如图所示,过点P (2,4)作互相垂直的直线l 1,l 2,若l 1交x 轴于A ,l 2交y 轴于B ,求线段AB 中点M的轨迹方程.。
高三理科数学复习教案:圆锥曲线与方程总复习教案
高三理科数学复习教案:圆锥曲线与方程总复习教案【】欢迎来到查字典数学网高三数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习适应和能力。
因此小编在此为您编辑了此文:高三理科数学复习教案:圆锥曲线与方程总复习教案期望能为您的提供到关心。
本文题目:高三理科数学复习教案:圆锥曲线与方程总复习教案高考导航考试要求重难点击命题展望1.了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用;2.把握椭圆、抛物线的定义、几何图形、标准方程及简单性质;3.了解双曲线的定义、几何图形和标准方程,明白它的简单几何性质;4.了解圆锥曲线的简单应用;5.明白得数形结合的思想;6.了解方程的曲线与曲线的方程的对应关系. 本章重点:1.椭圆、双曲线、抛物线的定义、几何图形、标准方程及简单性质;2.直线与圆锥曲线的位置关系问题;3.求曲线的方程或曲线的轨迹;4.数形结合的思想,方程的思想,函数的思想,坐标法.本章难点:1.对圆锥曲线的定义及性质的明白得和应用;2.直线与圆锥曲线的位置关系问题;3.曲线与方程的对应关系. 圆锥曲线与函数、方程、不等式、三角形、平面向量等知识结合是高考常考题型.极有可能以一小一大的形式显现,小题要紧考查圆锥曲线的标准方程及几何性质等基础知识、差不多技能和差不多方法运用;解答题常作为数学高考的把关题或压轴题,综合考查学生在数形结合、等价转换、分类讨论、逻辑推理等方面的能力.知识网络9.1 椭圆典例精析题型一求椭圆的标准方程【例1】已知点P在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为453和253,过P作长轴的垂线恰好过椭圆的一个焦点,求椭圆的方程.【解析】由椭圆的定义知,2a=453+253=25,故a=5,由勾股定理得,(453)2-(253)2=4c2,因此c2=53,b2=a2-c2=103,故所求方程为x25+3y210=1或3x210+y25=1.【点拨】(1)在求椭圆的标准方程时,常用待定系数法,然而当焦点所在坐标轴不确定时,需要考虑两种情形,有时也可设椭圆的统一方程形式:mx2+ny2=1(m0,n0且m(2)在求椭圆中的a、b、c时,经常用到椭圆的定义及解三角形的知识.【变式训练1】已知椭圆C1的中心在原点、焦点在x轴上,抛物线C 2的顶点在原点、焦点在x轴上.小明从曲线C1,C2上各取若干个点(每条曲线上至少取两个点),并记录其坐标(x,y).由于记录失误,使得其中恰有一个点既不在椭圆C1上,也不在抛物线C2上.小明的记录如下:据此,可推断椭圆C1的方程为.【解析】方法一:先将题目中的点描出来,如图,A(-2,2),B(-2,0),C(0,6),D(2,-22),E(22,2),F(3,-23).通过观看可明白点F,O,D可能是抛物线上的点.而A,C,E是椭圆上的点,这时正好点B既不在椭圆上,也不在抛物线上.明显半焦距b=6,则不妨设椭圆的方程是x2m+y26=1,则将点A(-2,2)代入可得m=12,故该椭圆的方程是x212+y26=1.方法二:欲求椭圆的解析式,我们应先求出抛物线的解析式,因为抛物线的解析式形式比椭圆简单一些.不妨设有两点y21=2px1,①y22=2px2,②y21y22=x1x2,则可知B(-2,0),C(0,6)不是抛物线上的点.而D(2,-22),F(3,-23)正好符合.又因为椭圆的交点在x轴上,故B(-2,0),C(0,6)不可能同时显现.故选用A(-2,2),E(22,2)这两个点代入,可得椭圆的方程是x212+y26=1.题型二椭圆的几何性质的运用【例2】已知F1、F2是椭圆的两个焦点,P为椭圆上一点,F1PF2=60.(1)求椭圆离心率的范畴;(2)求证:△F1PF2的面积只与椭圆的短轴长有关.【解析】(1)设椭圆的方程为x2a2+y2b2=1(a0),|PF1|=m,|PF2|=n,在△F1PF2中,由余弦定理可知4c2=m2+n2-2mncos 60,因为m+n=2a,因此m2+n2=(m+n)2-2mn=4a2-2mn,因此4c2=4a2-3mn,即3mn=4a2-4c2.又mn(m+n2)2=a2(当且仅当m=n时取等号),因此4a2-4c23a2,因此c2a214,即e12,因此e的取值范畴是[12,1).(2)由(1)知mn=43b2,因此=12mnsin 60=33b2,即△F1PF2的面积只与椭圆的短轴长有关.【点拨】椭圆中△F1PF2往往称为焦点三角形,求解有关问题时,要注意正、余弦定理,面积公式的使用;求范畴时,要专门注意椭圆定义(或性质)与不等式的联合使用,如|PF1||PF2|(|PF1|+|PF2|2)2,|PF1|a-c.【变式训练2】已知P是椭圆x225+y29=1上的一点,Q,R分别是圆(x +4)2+y2=14和圆(x-4)2+y2=14上的点,则|PQ|+|PR|的最小值是.【解析】设F1,F2为椭圆左、右焦点,则F1,F2分别为两已知圆的圆心,则|PQ|+|PR|(|PF1|-12)+(|PF2|-12)=|PF1|+|PF2|-1=9.因此|PQ|+|PR|的最小值为9.题型三有关椭圆的综合问题【例3】(2021全国新课标)设F1,F2分别是椭圆E:x2a2+y2b2=1(a0)的左、右焦点,过F1斜率为1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.(1)求E的离心率;(2)设点P(0,-1)满足|PA|=|PB|,求E的方程.【解析】(1)由椭圆定义知|AF2|+|BF2|+|AB|=4a,又2|AB|=|AF2|+|BF2|,得|AB|=43a.l的方程为y=x+c,其中c=a2-b2.设A(x1,y1),B(x2,y2),则A,B两点坐标满足方程组化简得(a2+b2)x2+2a2cx+a2(c2-b2)=0,则x1+x2=-2a2ca2+b2,x1x2=a2(c2-b2)a2+b2.因为直线AB斜率为1,因此|AB|=2|x2-x1|=2[(x1+x2)2-4x1x2],即43a=4ab2a2+b2,故a2=2b2,因此E的离心率e=ca=a2-b2a=22.(2 )设AB的中点为N(x0,y0),由(1)知x0=x1+x22=-a2ca2+b2=-23c,y 0=x0+c=c3.由|PA|=|PB|kPN=-1,即y0+1x0=-1c=3.从而a=32,b=3,故E的方程为x218+y29=1.【变式训练3】已知椭圆x2a2+y2b2=1(a0)的离心率为e,两焦点为F1,F2,抛物线以F1为顶点,F2为焦点,P为两曲线的一个交点,若|PF1||PF2 |=e,则e的值是()A.32B.33C.22D.63【解析】设F1(-c,0),F2(c,0),P(x0,y0),则椭圆左准线x=-a2c,抛物线准线为x=-3c,x0-(-a2c)=x0-(-3c)c2a2=13e=33.故选B.总结提高1.椭圆的标准方程有两种形式,其结构简单,形式对称且系数的几何意义明确,在解题时要防止遗漏.确定椭圆需要三个条件,要确定焦点在哪条坐标轴上(即定位),还要确定a、b的值(即定量),若定位条件不足应分类讨论,或设方程为mx2+ny2=1(m0,n0,mn)求解.2.充分利用定义解题,一方面,会依照定义判定动点的轨迹是椭圆,另一方面,会利用椭圆上的点到两焦点的距离和为常数进行运算推理.3.焦点三角形包含着专门多关系,解题时要多从椭圆定义和三角形的几何条件入手,且不可顾此失彼,另外一定要注意椭圆离心率的范畴.9.2 双曲线典例精析题型一双曲线的定义与标准方程【例1】已知动圆E与圆A:(x+4)2+y2=2外切,与圆B:( x-4)2+y2= 2内切,求动圆圆心E的轨迹方程.【解析】设动圆E的半径为r,则由已知|AE|=r+2,|BE|=r-2,因此|AE|-|BE|=22,又A(-4,0),B(4,0),因此|AB|=8,22|AB|.依照双曲线定义知,点E的轨迹是以A、B为焦点的双曲线的右支.因为a=2,c=4,因此b2=c2-a2=14,故点E的轨迹方程是x22-y214=1(x2).【点拨】利用两圆内、外切圆心距与两圆半径的关系找出E点满足的几何条件,结合双曲线定义求解,要专门注意轨迹是否为双曲线的两支.【变式训练1】P为双曲线x29-y216=1的右支上一点,M,N分别是圆(x+5)2+y2=4和(x-5)2+y2=1上的点,则|PM|-|PN|的最大值为()A.6B.7C.8D.9【解析】选D.题型二双曲线几何性质的运用【例2】双曲线C:x2a2-y2b2=1(a0,b0)的右顶点为A,x轴上有一点Q(2a,0),若C上存在一点P,使=0,求此双曲线离心率的取值范畴.【解析】设P(x,y),则由=0,得APPQ,则P在以AQ为直径的圆上,即(x-3a2)2+y2=(a2)2,①又P在双曲线上,得x2a2-y2b2=1,②由①②消去y,得(a2+b2)x2-3a3x+2a4-a2b2=0,即[(a2+b2)x-(2a3-ab2)](x-a)=0,当x=a时,P与A重合,不符合题意,舍去;当x=2a3-ab2a2+b2时,满足题意的点P存在,需x=2a3-ab2a2+b2a,化简得a22b2,即3a22c2,ca62,因此离心率的取值范畴是(1,62).【点拨】依照双曲线上的点的范畴或者焦半径的最小值建立不等式,是求离心率的取值范畴的常用方法.【变式训练2】设离心率为e的双曲线C:x2a2-y2b2=1(a0,b0)的右焦点为F,直线l过焦点F,且斜率为k,则直线l与双曲线C的左、右两支都相交的充要条件是()A.k2-e21B.k2-e21C.e2-k21D.e2-k21【解析】由双曲线的图象和渐近线的几何意义,可知直线的斜率k只需满足-ba题型三有关双曲线的综合问题【例3】(2021广东)已知双曲线x22-y2=1的左、右顶点分别为A1、A 2,点P(x1,y1),Q(x1,-y1)是双曲线上不同的两个动点.(1)求直线A1P与A2Q交点的轨迹E的方程;(2)若过点H(0,h)(h1)的两条直线l1和l2与轨迹E都只有一个交点,且l1l2,求h的值.【解析】(1)由题意知|x1|2,A1(-2,0),A2(2,0),则有直线A1P的方程为y=y1x1+2(x+2),①直线A2Q的方程为y=-y1x1-2(x-2).②方法一:联立①②解得交点坐标为x=2x1,y=2y1x1,即x1=2x,y1=2 yx,③则x0,|x|2.而点P(x1,y1)在双曲线x22-y2=1上,因此x212-y21=1.将③代入上式,整理得所求轨迹E的方程为x22+y2=1,x0且x2.方法二:设点M(x,y)是A1P与A2Q的交点,①②得y2=-y21x21-2(x 2-2).③又点P(x1,y1)在双曲线上,因此x212-y21=1,即y21=x212-1.代入③式整理得x22+y2=1.因为点P,Q是双曲线上的不同两点,因此它们与点A1,A2均不重合.故点A1和A2均不在轨迹E上.过点(0,1)及A2(2,0)的直线l的方程为x+2 y-2=0.解方程组得x=2,y=0.因此直线l与双曲线只有唯独交点A2.故轨迹E只是点(0,1).同理轨迹E也只是点(0,-1).综上分析,轨迹E的方程为x22+y2=1,x0且x2.(2)设过点H(0,h)的直线为y=kx+h(h1),联立x22+y2=1得(1+2k2)x2+4khx+2h2-2=0.令=16k2h2-4(1+2k2)(2h2-2)=0,得h2-1-2k2=0,解得k1=h2-12,k2=-h2-12.由于l1l2,则k1k2=-h2-12=-1,故h=3.过点A1,A2分别引直线l1,l2通过y轴上的点H(0,h),且使l1l2,因此A1HA2H,由h2(-h2)=-1,得h=2.现在,l1,l2的方程分别为y=x+2与y=-x+2,它们与轨迹E分别仅有一个交点(-23,223)与(23,223).因此,符合条件的h的值为3或2.【变式训练3】双曲线x2a2-y2b2=1(a0,b0)的左、右焦点分别为F1,F 2,离心率为e,过F2的直线与双曲线的右支交于A,B两点,若△F1AB 是以A为直角顶点的等腰直角三角形,则e2等于()A.1+22B.3+22C.4-22D.5-22【解析】本题考查双曲线定义的应用及差不多量的求解.据题意设|AF1|=x,则|AB|=x,|BF1|=2x.由双曲线定义有|AF1|-|AF2|=2a,|BF1|-|BF2|=2a(|AF1|+|BF1|)-(|AF2|+|BF2|)=(2+1)x-x=4a,即x=22a=|AF1|.故在Rt△AF1F2中可求得|AF2|=|F1F2|2-|AF1|2=4c2-8a2.又由定义可得|AF2|=|AF1|-2a=22a-2a,即4c2-8a2=22-2a,两边平方整理得c2=a2(5-22)c2a2=e2=5-22,故选D.总结提高1.要与椭圆类比来明白得、把握双曲线的定义、标准方程和几何性质,但应专门注意不同点,如a,b,c的关系、渐近线等.2.要深刻明白得双曲线的定义,注意其中的隐含条件.当||PF1|-|PF2||=2a| F1F2|时,P的轨迹是双曲线;当||PF1|-|PF2||=2a=|F1F2|时,P的轨迹是以F1或F2为端点的射线;当||PF1|-|PF2||=2a|F1F2|时,P无轨迹.3.双曲线是具有渐近线的曲线,画双曲线草图时,一样先画出渐近线,要把握以下两个问题:(1)已知双曲线方程,求它的渐近线;(2)求已知渐近线的双曲线的方程.如已知双曲线渐近线y=bax,可将双曲线方程设为x2a2-y2b2=(0),再利用其他条件确定的值,求法的实质是待定系数法.9.3 抛物线典例精析题型一抛物线定义的运用【例1】依照下列条件,求抛物线的标准方程.(1)抛物线过点P(2,-4);(2)抛物线焦点F在x轴上,直线y=-3与抛物线交于点A,|AF|=5.【解析】(1)设方程为y2=mx或x2=ny.将点P坐标代入得y2=8x或x2=-y.(2)设A(m,-3),所求焦点在x轴上的抛物线为y2=2px(p0),由定义得5=|AF|=|m+p2|,又(-3)2=2pm,因此p=1或9,所求方程为y2=2x或y2=18x.【变式训练1】已知P是抛物线y2=2x上的一点,另一点A(a,0) (a0)满足|P A|=d,试求d的最小值.【解析】设P(x0,y0) (x00),则y20=2x0,因此d=|PA|=(x0-a)2+y20=(x0-a)2+2x0=[x0+(1-a)]2+2a-1.因为a0,x00,因此当0当a1时,现在有x0=a-1,dmin=2a-1.题型二直线与抛物线位置讨论【例2】(2021湖北)已知一条曲线C在y轴右侧,C上每一点到点F(1,0)的距离减去它到y轴距离的差差不多上1.(1)求曲线C的方程;(2)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B 的任一直线,都有0?若存在,求出m的取值范畴;若不存在,请说明理由.【解析】(1)设P(x,y)是曲线C上任意一点,那么点P(x,y)满足:(x-1)2+y2-x=1(x0).化简得y2=4x(x0).(2)设过点M(m,0)(m0)的直线l与曲线C的交点为A(x1,y1),B(x2,y 2).设l的方程为x=ty+m,由得y2-4ty-4m=0,=16(t2+m)0,因此①又=(x1-1,y1),=(x2-1,y2).(x1-1)(x2-1)+y1y2=x1x2-(x1+x2)+1+y1y20.②又x=y24,因此不等式②等价于y214y224+y1y2-(y214+y224)+10(y1y2)216+y1y2-14[(y1+y2)2-2y1y2]+10.③由①式,不等式③等价于m2-6m+14t2.④对任意实数t,4t2的最小值为0,因此不等式④关于一切t成立等价于m 2-6m+10,即3-22由此可知,存在正数m,关于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有0,且m的取值范畴是(3-22,3+22).【变式训练2】已知抛物线y2=4x的一条弦AB,A(x1,y1),B(x2,y 2),AB所在直线与y轴的交点坐标为(0,2),则1y1+1y2= .【解析】y2-4my+8m=0,因此1y1+1y2=y1+y2y1y2=12.题型三有关抛物线的综合问题【例3】已知抛物线C:y =2x2,直线y=kx+2交C于A,B两点,M 是线段AB的中点,过M作x轴的垂线交C于点N.(1)求证:抛物线C在点N处的切线与AB平行;(2)是否存在实数k使=0?若存在,求k的值;若不存在,说明理由.【解析】(1)证明:如图,设A(x1,2x21),B(x2,2x22),把y=kx+2代入y=2x2,得2x2-kx-2=0,由韦达定理得x1+x2=k2,x1x2=-1,因此xN=xM=x1+x22=k4,因此点N的坐标为(k4,k28).设抛物线在点N处的切线l的方程为y-k28=m(x-k4),将y=2x2代入上式,得2x2-mx+mk4 -k28=0,因为直线l与抛物线C相切,因此=m2-8(mk4-k28)=m2-2mk+k2=(m-k)2=0,因此m=k,即l∥AB.(2)假设存在实数k,使=0,则NANB,又因为M是AB的中点,因此|MN|= |AB|.由(1)知yM=12(y1+y2)=12(kx1+2+kx2+2)=12[k(x1+x2)+4]=12(k22+4)=k 24+2.因为MNx轴,因此|MN|=|yM-yN|=k24+2-k28=k2+168.又|AB|=1+k2|x1-x2|=1+k2(x1+x2)2-4x1x2=1+k2(k2)2-4(-1)=12k2+1k2+16.因此k2+168=14k2+1k2+16,解得k=2.即存在k=2,使=0.【点拨】直线与抛物线的位置关系,一样要用到根与系数的关系;有关抛物线的弦长问题,要注意弦是否过焦点,若过抛物线的焦点,可直截了当使用公式|AB|=x1+x2+p,若只是焦点,则必须使用一样弦长公式.【变式训练3】已知P是抛物线y2=2x上的一个动点,过点P作圆(x-3)2+y2=1的切线,切点分别为M、N,则|MN|的最小值是.【解析】455.总结提高1.在抛物线定义中,焦点F不在准线l上,这是一个重要的隐含条件,若F在l上,则抛物线退化为一条直线.2.把握抛物线本身固有的一些性质:(1)顶点、焦点在对称轴上;(2)准线垂直于对称轴;(3)焦点到准线的距离为p;(4)过焦点垂直于对称轴的弦(通径)长为2p.3.抛物线的标准方程有四种形式,要把握抛物线的方程与图形的对应关系.求抛物线方程时,若由已知条件可知曲线的类型,可采纳待定系数法.4.抛物线的几何性质,只要与椭圆、双曲线加以对比,专门容易把握.但由于抛物线的离心率为1,因此抛物线的焦点有专门多重要性质,而且应用广泛,例如:已知过抛物线y2=2px(p0)的焦点的直线交抛物线于A、B 两点,设A(x1,y1),B(x2,y2),则有下列性质:|AB|=x1+x2+p或|AB|=2p sin2(为AB的倾斜角),y1y2=-p2,x1x2=p24等.9.4 直线与圆锥曲线的位置关系典例精析题型一直线与圆锥曲线交点问题【例1】若曲线y2=ax与直线y=(a+1)x-1恰有一个公共点,求实数a 的值.【解析】联立方程组(1)当a=0时,方程组恰有一组解为(2)当a0时,消去x得a+1ay2-y-1=0,①若a+1a=0,即a=-1,方程变为一元一次方程-y-1=0,方程组恰有一组解②若a+1a0,即a-1,令=0,即1+4(a+1)a=0,解得a= -45,这时直线与曲线相切,只有一个公共点.综上所述,a=0或a=-1或a=-45.【点拨】本题设计了一个思维陷阱,即审题中误认为a0,解答过程中的失误确实是不讨论二次项系数=0,即a=-1的可能性,从而漏掉两解.本题用代数方法解完后,应从几何上验证一下:①当a=0时,曲线y2=ax,即直线y=0,现在与已知直线y=x-1 恰有交点(1,0);②当a=-1时,直线y=-1与抛物线的对称轴平行,恰有一个交点(代数特点是消元后得到的一元二次方程中二次项系数为零);③当a=-45时直线与抛物线相切.【变式训练1】若直线y=kx-1与双曲线x2-y2=4有且只有一个公共点,则实数k的取值范畴为()A.{1,-1,52,-52}B.(-,-52][52,+)C.(-,-1][1,+)D.(-,-1)[52,+)【解析】由(1-k2)x2-2kx-5=0,k=52,结合直线过定点(0,-1),且渐近线斜率为1,可知答案为A.题型二直线与圆锥曲线的相交弦问题【例2】(2021辽宁)设椭圆C:x2a2+y2b2=1(a0)的右焦点为F,过F的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60,=2 .(1)求椭圆C的离心率;(2)假如|AB|=154,求椭圆C的方程.【解析】设A(x1,y1),B(x2,y2),由题意知y10,y20.(1)直线l的方程为y=3(x-c),其中c=a2-b2.联立得(3a2+b2)y2+23b2cy-3b4=0.解得y1=-3b2(c+2a)3a2+b2,y2=-3b2(c-2a)3a2+b2.因为=2 ,因此-y1=2y2,即3b2(c+2a)3a2+b2=2-3b2(c-2a)3a2+b2.解得离心率e=ca=23.(2)因为|AB|=1+13|y2-y1|,因此2343ab23a2+b2=154.由ca=23得b=53a,因此54a=154,即a=3,b=5.因此椭圆的方程为x29+y25=1.【点拨】本题考查直线与圆锥曲线相交及相交弦的弦长问题,以及用待定系数法求椭圆方程.【变式训练2】椭圆ax2+ by2=1与直线y=1-x交于A,B两点,过原点与线段AB中点的直线的斜率为32,则ab的值为.【解析】设直线与椭圆交于A、B两点的坐标分别为(x1,y1),(x2,y 2),弦中点坐标为(x0,y0),代入椭圆方程两式相减得a(x1-x2)(x1+x2)+b(y 1-y2)(y1+y2)=02ax0+2by0y1-y2x1-x2=0ax0-by0=0.故ab=y0x0=32.题型三对称问题【例3】在抛物线y2=4x上存在两个不同的点关于直线l:y=kx+3对称,求k的取值范畴.【解析】设A(x1,y1)、B(x2、y2)是抛物线上关于直线l对称的两点,由题意知k0.设直线AB的方程为y=-1kx+b,联立消去x,得14ky2+y-b=0,由题意有=12+414k0,即bk+10.(*)且y1+y2=-4k.又y1+y22=-1kx1+x22+b.因此x1+x22=k(2k+b).故AB的中点为E(k(2k+b),-2k).因为l过E,因此-2k=k2(2k+b)+3,即b=-2k-3k2-2k.代入(*)式,得-2k-3k3-2+1k3+2k+3k30k(k+1)(k2-k+3)-1【点拨】(1)本题的关键是对称条件的转化.A(x1,y1)、B(x2,y2)关于直线l对称,则满足直线l与AB垂直,且线段AB的中点坐标满足l的方程;(2)关于圆锥曲线上存在两点关于某一直线对称,求有关参数的范畴问题,利用对称条件求出过这两点的直线方程,利用判别式大于零建立不等式求解;或者用参数表示弦中点的坐标,利用中点在曲线内部的条件建立不等式求参数的取值范畴.【变式训练3】已知抛物线y=-x2+3上存在关于x+y=0对称的两点A,B,则|AB|等于()A.3B.4C.32D.42【解析】设AB方程:y=x+b,代入y=-x2+3,得x2+x+b-3=0,因此xA+xB=-1,故AB中点为(-12,-12+b).它又在x+y=0上,因此b=1,因此|AB|=32,故选C.总结提高1.本节内容的重点是研究直线与圆锥曲线位置关系的判别式方法及弦中点问题的处理方法.2.直线与圆锥曲线的位置关系的研究能够转化为相应方程组的解的讨论,即联立方程组通过消去y(也能够消去x)得到x的方程ax2+bx+c=0进行讨论.这时要注意考虑a=0和a0两种情形,对双曲线和抛物线而言,一个公共点的情形除a0,=0外,直线与双曲线的渐近线平行或直线与抛物线的对称轴平行时,都只有一个交点(现在直线与双曲线、抛物线属相交情形).由此可见,直线与圆锥曲线只有一个公共点,并不是直线与圆锥曲线相切的充要条件.3.弦中点问题的处理既能够用判别式法,也能够用点差法;使用点差法时,要专门注意验证相交的情形.9.5 圆锥曲线综合问题典例精析题型一求轨迹方程【例1】已知抛物线的方程为x2=2y,F是抛物线的焦点,过点F的直线l与抛物线交于A、B两点,分别过点A、B作抛物线的两条切线l1和l 2,记l1和l2交于点M.(1)求证:l1(2)求点M的轨迹方程.【解析】(1)依题意,直线l的斜率存在,设直线l的方程为y=kx+12.联立消去y整理得x2-2kx-1=0.设A的坐标为(x1,y1),B的坐标为(x 2,y2),则有x1x2=-1,将抛物线方程改写为y=12x2,求导得y=x.因此过点A的切线l1的斜率是k1=x1,过点B的切线l2的斜率是k2= x2.因为k1k2 =x1x2=-1,因此l1l2.(2)直线l1的方程为y-y1=k1(x-x1),即y-x212=x1(x-x1).同理直线l2的方程为y-x222=x2(x-x2).联立这两个方程消去y得x212-x222=x2(x-x2)-x1(x-x1),整理得(x1-x2)(x-x1+x22)=0,注意到x1x2,因此x=x1+x22.现在y=x212+x1(x-x1)=x212+x1(x1+x22-x1)=x1x22=-12.由(1)知x1+x2=2k,因此x=x1+x22=kR.因此点M的轨迹方程是y=-12.【点拨】直截了当法是求轨迹方程最重要的方法之一,本题用的确实是直截了当法.要注意求轨迹方程和求轨迹是两个不同概念,求轨迹除了第一要求我们求出方程,还要说明方程轨迹的形状,这就需要我们对各种差不多曲线方程和它的形状的对应关系了如指掌.【变式训练1】已知△ABC的顶点为A(-5,0),B(5,0),△ABC的内切圆圆心在直线x=3上,则顶点C的轨迹方程是()A.x29-y216=1B.x216-y29=1C.x29-y216=1(x3)D.x216-y29=1(x4)【解析】如图,|AD|=|AE|=8,|BF|=|BE|=2,|CD|=|CF|,因此|CA|-|CB|=8-2=6,依照双曲线定义,所求轨迹是以A、B为焦点,实轴长为6的双曲线的右支,方程为x29-y216=1(x3),故选C.题型二圆锥曲线的有关最值【例2】已知菱形ABCD的顶点A、C在椭圆x2+3y2=4上,对角线B D所在直线的斜率为1.当ABC=60时,求菱形ABCD面积的最大值.【解析】因为四边形ABCD为菱形,因此ACBD.因此可设直线AC的方程为y=-x+n.由得4x2-6nx+3n2-4=0.因为A,C在椭圆上,因此=-12n2+640,解得-433设A,C两点坐标分别为(x1,y1),(x2,y2),则x1+x2=3n2,x1x2=3 n2-44,y1=-x1+n,y2=-x2+n. 因此y1+y2=n2.因为四边形ABCD为菱形,且ABC=60,因此|AB|=|BC|=|CA|.因此菱形ABCD的面积S=32|AC|2.又|AC|2=(x1-x2)2+(y1-y2)2=-3n2+162,因此S=34(-3n2+16) (-433因此当n=0时,菱形ABCD的面积取得最大值43.【点拨】建立目标函数,借助代数方法求最值,要专门注意自变量的取值范畴.在考试中专门多考生没有利用判别式求出n的取值范畴,尽管也能得出答案,然而得分缺失许多.【变式训练2】已知抛物线y=x2-1上有一定点B(-1,0)和两个动点P、Q,若BPPQ,则点Q横坐标的取值范畴是.【解析】如图,B(-1,0),设P(xP,x2P-1),Q(xQ,x2Q-1),由kBPkPQ=-1,得x2P-1xP+1x2Q-x2PxQ-xP=-1.因此xQ=-xP-1xP-1=-(xP-1)-1xP-1-1.因为|xP-1+1xP-1|2,因此xQ1或xQ-3.题型三求参数的取值范畴及最值的综合题【例3】(2021浙江)已知m1,直线l:x-my-m22=0,椭圆C:x2m2+y 2=1,F1,F2分别为椭圆C的左、右焦点.(1)当直线l过右焦点F2时,求直线l的方程;(2)设直线l与椭圆C交于A,B两点,△AF1F2,△BF1F2的重心分别为G,H.若原点O在以线段GH为直径的圆内,求实数m的取值范畴.【解析】(1)因为直线l:x-my-m22=0通过F2(m2-1,0),因此m2-1=m22,解得m2=2,又因为m1,因此m=2.故直线l的方程为x-2y-1=0.(2)A(x1,y1),B(x2,y2),由消去x得2y2+my+m24-1=0,则由=m2-8(m24-1)=-m2+80知m28,且有y1+y2=-m2,y1y2=m28-12.由于F1(-c,0),F2(c,0),故O为F1F2的中点,由=2 ,=2 ,得G(x13,y13),H(x23,y23),|GH|2=(x1-x2)29+(y1-y2)29.设M是GH的中点,则M(x1+x26,y1+y26),由题意可知,2|MO||GH|,即4[(x1+x26)2+(y1+y26)2](x1-x2)29+(y1-y2) 29,即x1x2+y1y20.而x1x2+y1y2=(my1+m22)(my2+m22)+y1y2=(m2+1)(m28-12).因此m28-120,即m24.又因为m1且0,因此1因此m的取值范畴是(1,2).【点拨】本题要紧考查椭圆的几何性质,直线与椭圆、点与圆的位置关系等基础知识,同时考查解析几何的差不多思想方法和综合解题能力.【变式训练3】若双曲线x2-ay2=1的右支上存在三点A、B、C使△A BC为正三角形,其中一个顶点A与双曲线右顶点重合,则a的取值范畴为.【解析】设B(m,m2-1a),则C(m,-m2-1a)(m1),又A(1,0),由AB=BC得(m-1)2+m2-1a=(2m2-1a)2,因此a=3m+1m-1=3(1+2m-1)3,即a的取值范畴为(3,+).总结提高事实上,任何一门学科都离不开死记硬背,关键是经历有技巧,“死记”之后会“活用”。
2012届高考数学第一轮基础知识点曲线与方程复习教案
2012届高考数学第一轮基础知识点曲线与方程复习教案§7.4曲线与方程班级姓名学号例1:平面内有两定点B(-1,1),C(1,-1),动点A满足tan∠ACB=2tan∠ABC,求点A的轨迹方程。
例2:从圆外一点P(a,b)向圆x2+y2=r2引割线交该圆于A、B两点,求弦AB的中点M的轨迹方程。
例3:已知两直线L1:2x-3y+2=0,L2:3x-2y+3=0,有一动圆(圆心和半径都变动)与L1、L2都相交,并且L1,L2被圆截得两条线段的长度分别为定值26,24。
求圆心M的轨迹方程。
例4:已知圆M:x2+y2-2mx-2ny+m2-1=0与圆N:x2+y2+2x+2y-2=0交于A、B两点,且这两点平分圆N的圆周,求圆M的圆心轨迹方程,并求其中半径最小时圆M的方程。
【备用题】已知定圆C1和两定点M、N,圆心C1不在MN的中垂线上,过MN 作圆C2与圆C1交于P、Q两点,求证:PQ必过一定点。
【基础训练】1、若命题“曲线C上的点坐标满足方程f(x,y)=0”是正确的,则下列命题中正确的是:()A、f(x,y)=0所表示的曲线是CB、满足f(x,y)=0的点均在曲线上C、曲线C是f(x,y)=0的轨迹D、f(x,y)=0所表示的曲线不一定是C2、一动点到两坐标轴的距离之和的两倍等于这个动点到原点距离的平方,则动点的轨迹方程为:A、x2+y2=2x+2yB、x2+y2=2x-2yC、x2+y2=-2x+2yD、x2+y2=2|x|+2|y|3、方程的曲线是()4、曲线y=x2-x+2和y=x+b有两个不同的交点,则:A、b∈kB、b∈(-∞,1)C、b=1D、b∈(1,+∞)5、命题A:两曲线F(x,y)=0和G(x,y)=0相交于点P(x0,y0),命题B:曲线F(x,y)+λG(x,y)=0(λ为常数)过点P(x0,y0),则A是B的。
6、曲线C:F(x,y)=0关于点(a,b)的对称曲线方程是。
2012年高考数学专题复习系列 圆锥曲线与方程导学案
圆锥曲线与方程1.掌握椭圆的定义、标准方程、简单的几何性质、了解椭圆的参数方程. 2.掌握双曲线的定义、标准方程、简单的几何性质. 3.掌握抛物线的定义、标准方程、简单的几何性质. 4.了解圆锥曲线的初步应用.圆锥曲线是高中数学的一个重要内容,它的基本特点是数形兼备,兼容并包,可与代数、三角、几何知识相沟通,历来是高考的重点内容。
纵观近几年高考试题中对圆锥曲线的考查,基本上是两个客观题,一个主观题,分值21分~24分,占15%左右,并且主要体现出以下几个特点:1.圆锥曲线的基本问题,主要考查以下内容:①圆锥曲线的两种定义、标准方程及a 、b 、c 、e 、p 五个参数的求解. ②圆锥曲线的几何性质的应用.2、求动点轨迹方程或轨迹图形在高考中出现的频率较高,此类问题的解决需掌握四种基本方法:直译法、定义法、相关点法、参数法.3.有关直线与圆锥曲线位置关系问题,是高考的重热点问题,这类问题常涉及圆锥曲线的性质和直线的基本知识以及线段中点、弦长等,分析这类问题时,往往要利用数形结合思想和“设而不求”的方法、对称的方法及韦达定理,多以解答题的形式出现.4.求与圆锥曲线有关的参数或参数范围问题,是高考命题的一大热点,这类问题综合性较大,运算技巧要求较高;尤其是与平面向量、平面几何、函数、不等式的综合,特别近年出现的解析几何与平面向量结合的问题,是常考常新的试题,将是今后高考命题的一个趋势.第1课时 椭圆1.椭圆的两种定义(1) 平面内与两定点F 1,F 2的距离的和等于常数(大于21F F )的点的轨迹叫椭圆,这两个定点叫做椭圆的 , 之间的距离叫做焦距.注:①当2a =|F 1F 2|时,P 点的轨迹是 . ②当2a <|F 1F 2|时,P 点的轨迹不存在.(2) 椭圆的第二定义:到 的距离与到 的距离之比是常数e ,且∈e 的点的轨迹叫椭圆.定点F 是椭圆的 ,定直线l是 ,常数e 是 .2.椭圆的标准方程(1) 焦点在x 轴上,中心在原点的椭圆标准方程是:12222=+by ax ,其中( > >0,且=2a )(2) 焦点在y 轴上,中心在原点的椭圆标准方程是12222=+b x a y ,其中a ,b 满足: .(3)焦点在哪个轴上如何判断? 3.椭圆的几何性质(对12222=+by ax ,a > b >0进行讨论)(1) 范围: ≤ x ≤ , ≤ y ≤(2) 对称性:对称轴方程为 ;对称中心为 .(3) 顶点坐标: ,焦点坐标: ,长半轴长: ,短半轴长: ;准线方程: .(4) 离心率:=e ( 与 的比),∈e ,e 越接近1,椭圆越 ;e 越接近0,椭圆越接近于 .(5) 焦半径公式:设21,F F 分别为椭圆的左、右焦点,),(00y x P 是椭圆上一点,则=1PF ,22PF =4.焦点三角形应注意以下关系(老师补充画出图形): (1) 定义:r 1+r 2=2a(2) 余弦定理:21r +22r -2r 1r 2cos θ=(2c )2(3) 面积:21F PF S ∆=21r 1r 2 sin θ=21·2c | y 0 |(其中P(00,y x )为椭圆上一点,|PF 1|=r 1,|PF 2|=r 2,∠F 1PF 2=θ)变式训练2:已知P (x 0,y 0)是椭圆12222=+by a x (a >b >0)上的任意一点,F 1、F 2是焦点,求证:以PF 2为直径的圆必和以椭圆长轴为直径的圆相内切.证明 设以PF 2为直径的圆心为A ,半径为r .∵F 1、F 2为焦点,所以由椭圆定义知|PF 1|+|PF 2|=2a ,|PF 2|=2r ∴|PF 1|+2r =2a ,即|PF 1|=2(a -r )连结OA ,由三角形中位线定理,知 |OA |=.)(221||211r a r a PF -=-⨯= 故以PF 2为直径的圆必和以长轴为直径的圆相内切.评注 运用椭圆的定义结合三角形中位线定理,使题目得证。
高三数学一轮复习必备曲线方程及圆锥曲线的综合问题备注高三数学一轮复习必备共讲全
第35讲曲线方程及圆锥曲线的综合问题备注:【高三数学一轮复习必备精品共42讲全部免费欢迎下载】一.【课标要求】1.由方程研究曲线,特别是圆锥曲线的几何性质问题常化为等式解决,要加强等价转化思想的训练;2.通过圆锥曲线与方程的学习,进一步体会数形结合的思想;3.了解圆锥曲线的简单应用二.【命题走向】近年来圆锥曲线在高考中比较稳定,解答题往往以中档题或以押轴题形式出现,主要考察学生逻辑推理能力、运算能力,考察学生综合运用数学知识解决问题的能力。
但圆锥曲线在新课标中化归到选学内容,要求有所降低,估计2007年高考对本讲的考察,仍将以以下三类题型为主1.求曲线(或轨迹)的方程,对于这类问题,高考常常不给出图形或不给出坐标系,以考察学生理解解析几何问题的基本思想方法和能力;2.与圆锥曲线有关的最值问题、参数范围问题,这类问题的综合型较大,解题中需要根据具体问题、灵活运用解析几何、平面几何、函数、不等式、三角知识,正确的构造不等式或方程,体现了解析几何与其他数学知识的联系。
预测2010年高考:1.出现1道复合其它知识的圆锥曲线综合题;2.可能出现1道考查求轨迹的选择题或填空题,也可能出现在解答题中间的小问三.【要点精讲】1.曲线方程(1)求曲线(图形)方程的方法及其具体步骤如下:步骤含义说明(2)求曲线方程的常见方法:直接法:也叫“五步法”,即按照求曲线方程的五个步骤来求解。
这是求曲线方程的基本方法。
转移代入法:这个方法又叫相关点法或坐标代换法。
即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解。
几何法:就是根据图形的几何性质而得到轨迹方程的方法参数法:根据题中给定的轨迹条件,用一个参数来分别动点的坐标,间接地把坐标x,y联系起来,得到用参数表示的方程。
如果消去参数,就可以得到轨迹的普通方程。
2.圆锥曲线综合问题(1)圆锥曲线中的最值问题、范围问题通常有两类:一类是有关长度和面积的最值问题;一类是圆锥曲线中有关的几何元素的最值问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年高三理科数学第一轮复习直圆锥曲线(7)曲线与方程考纲要求了解方程的曲线与曲线的方程的对应关系 命题规律求曲线的轨迹方程是解析几何的基本问题之一,是高考中的热点,一般与平面向量结合,多出现在解答题中,综合性强。
考点解读求轨迹方程的常用方法:(1)直接法:如果动点满足的几何条件本身就是一些几何量的等量关系或这些几何条件简单明了易于表达,我们只需把这种关系“翻译”成含x 、y 的等式,就得到曲线的轨迹方程; (2)定义法:其动点的轨迹符合某一基本轨迹的定义,则可根据定义直接求出动点的轨迹方程;(3)相关点法(代入法、转化法):有些问题中,其动点满足的条件不便用等式列出,但动点是随着另一个动点(称之为相关点)而运动的,如果相关点所满足的条件是明显的或是可分析的,这时我们就可以用动点的坐标表示相关点的坐标,根据相关点的坐标所满足的方程,即可求得动点的轨迹方程;(4)参数法:有时动点应满足的几何条件不易得出,也无明显相关点,但却较易发现(或经分析可发现)这个动点的运动常常受到另一个变量(角度、斜率、比值、截距等)的制约,或动点坐标),(y x 中的x y 分别随另一个变量的变化而变化,我们可称这个变量为参数,建立轨迹的参数方程,这种方法叫做参数法,如果需要得到轨迹的普通方程,只需消去参数即可。
在选择参数时,选用的参数变量应具有某种物理或几何的性质,如距离、角度、直线的斜率、点的横、纵坐标等,运用参数时还要特别注意它的取值范围对动点的坐标的取值范围的影响;(5)交轨法:求动点轨迹时,有时会出现要求两动点曲线交点的轨迹问题,这类问题常常通过方程组得出交点(含参数)的坐标,再消去参数求出所求轨迹的方程,该法常与参数法并用。
考点突破例1:已知点)0,1(F ,直线l :1-=x ,P 为平面上的动点,过P 作直线l 的垂线,垂足为点Q ,且FQ FP QF QP ⋅=⋅。
(1)求动点P 的轨迹C 的方程;(2)过点F 的直线交轨迹C 于A 、B 两点,交直线l 于点M ,已知AF MA 1λ=,BF MB 2λ=,求21λλ+的值。
思路点拨:题目条件中有明显的等量关系,直接将这种关系“翻译”成含x 、y 的等式。
例题精讲:(1)设点),(y x P ,则),1(y Q -, 由FQ FP QF QP ⋅=⋅得2)1(2)(0)1(2y x y x +--=-⋅++,化简得C :x y 42=;(2)设直线AB 的方程为:)0(1≠+=m my x,设),(11y xA ,),(22y xB ,又)2,1(mM --。
联立方程组⎩⎨⎧+==142my x xy ,消去x 得0442=--my y ,016)4(2>+-=∆m ,⎩⎨⎧-==+442121y y m y y , 由AF MA 1λ=,BF MB 2λ=得:1112y my λ-=+,2222y my λ-=+,整理得1121my --=λ,2221my--=λ,0442222)11(2221212121=-⋅--=+⋅--=+--=+∴m my y y y my y mλλ。
解题反思:直接法求轨迹方程的步骤是:①建立平面直角坐标系,设轨迹上任一点的坐标为),(y x ;②寻找动点与已知点满足的关系式;③将动点与已知点的坐标代入;④化简整理方程;⑤证明所得方程为所求曲线的轨迹方程。
其中②和⑤常省略,但是一定要检验曲线与方程的等价性。
综合突破 例1:已知点)0,2(-M,)0,2(N ,动点P 满足条件22=-PN PM ,记动点P 的轨迹为W。
(1)求W 的方程;(2)若A 、B 是W 上的不同两点,O 是坐标原点,求OB OA ⋅的最小值。
思路点拨:题目条件明显能够确定动点的轨迹与“双曲线”有关。
例题精讲:(1)由22=-PN PM 知动点P 的轨迹是以M 、N 为焦点的双曲线的右支,实半轴长2=a,又焦半径2=c,故虚半轴长222=-=ac b ,所以W 的方程为)2(12222≥=-x yx;(2)设A 、B 的坐标分别为),(11y x 、),(22y x,当xAB⊥轴时,21x x=,21y y-=,从而221212121=-=-=⋅y x y y x x OB OA 。
当AB 与x 轴不垂直时,设直线AB 的方程为mkx y+=,与W 的方程联立,消去y 得:022)1(222=----mkmx x k ,故22112kkm x x -=+,122221-+=km x x ,所以22121221212121)()1())((m x x km x x k m kx m kx x x y y x x OB OA ++++=+++=+=⋅142122121)2)(1(2222222222-+=-+=+-+-++=kkk mkm k kmk ,又021>x x,所以012>-k,从而2>⋅OB OA 。
综上,当xAB ⊥轴时,OB OA ⋅有最小值2。
解题反思: “定义法”关键是紧扣解析几何中有关曲线的定义,并能灵活运用定义。
*例2:过抛物线)0(22>=p px y 的顶点O 作两条相互垂直的弦OA 、OB ,再以OA 、OB 为邻边作矩形AOBM ,如图,求点M 的轨迹方程。
思路点拨:利用OB OA ⊥,选择用斜率k 和k1-来描述多个动点的坐标,进一步把轨迹动点的x 、y 用参数来表示,最后消去参数即可得到轨迹方程。
例题精讲:设),(y x M、),(11y xA 、),(22y xB ,OA的斜率为(k 显然)0≠k,则OB 的斜率为k1-,OA所在直线的方程为:kxy =代入px y 22=,得⎪⎩⎪⎨⎧==k p y k p x 22121,即)2,2(2k p k p A ,)2,2(2k pkp OA =∴, OB所在直线的方程为:x k y 1-=代入px y 22=,得⎩⎨⎧-==pky pk x 22222,即)2,2(2pk pk A -,)2,2(2pk pk OB -=∴,)22,22(22pk k p pk k p OB OA OM -+=+= ,⎪⎩⎪⎨⎧-=+-=∴)1(24)1(22k k p y p k k p x , 解得p py p x 4)2(22+=,)0)(4(22>-=∴p p x p y ,即为M 点的轨迹方程。
解题反思:涉及多个动点的轨迹问题,选择适当参数是解题的关键。
快乐训练1、若点P 到直线1-=x的距离比它到点)0,2(的距离小1,则点P 的轨迹为( )A 、圆B 、椭圆C 、双曲线D 、抛物线 2、设椭圆1C 的离心率为135,焦点在x 轴上且长轴长为26。
若曲线2C 上的点到椭圆1C 的两个焦点的差的绝对值等于8,则曲线2C 的标准方程为( )A 、1342222=-y xB 、15132222=-y x C 、1432222=-y xD 、112132222=-y x3、给出下列四个命题:①到两个定点的距离的和等于常数的动点的轨迹是椭圆;②到两个定点的距离的差的绝对值等于常数的动点的轨迹是双曲线;③到定直线cax 2-=和定点)0,(c F -的距离之比为)0(>>a c c a 的点的轨迹是双曲线;④到定点)0,(c F 和定直线cax2=的距离之比为)0(>>c a ac 的点的轨迹是椭圆。
请将以上正确命题的序号填在横线上。
4、与定点)0,5(A 及定直线l :516=x 的距离之比是4:5的点的轨迹方程是 。
5、从圆2522=+y x 上任意一点P 向x 轴做垂线段/PP ,且/PP 上一点M 满足关系式3:5://=MPPP,则点M 的轨迹方程是 。
6、在正方体1111D C B A ABCD -中,P 是侧面C C BB 11内一动点,若P 到直线BC 与直线11D C 的距离相等,则动点P 的轨迹所在的曲线是 。
7、两条直线ax +y +1=0和x -ay -1=0(a ≠±1)的交点的轨迹方程是________。
8、直线k x y +=与曲线21yx -=恰有一个公共点,则k 的取值范围是 。
提高训练 1、已知)0,3(-M、)0,3(N ,6=-PN PM ,则动点P 的轨迹是( )A 、双曲线B 、双曲线的左支C 、一条射线D 、双曲线的右支 2、一条曲线在x 轴上方,曲线上的每一个点到x 轴的距离比到点)2,0(A 的距离小2,则该曲线的方程为( )A 、)0(82>=y x yB 、)0(82≠=x y xC 、)0(82>-=y x yD 、)0(82≠-=x y x 3、AB 是平面α的斜线段,A 为斜足。
若点P 是平面α内运动,使得△ABP 的面积为定值,则动点P 的轨迹是( )A 、圆B 、椭圆C 、一条直线D 、两条平行直线 4、平面直角坐标系中,O 为原点,已知)1,3(A 、)3,1(-B ,点C 满足),(R OB OA OC ∈+=βαβα,且1=+βα,则点C 的轨迹方程是 。
5、过点)0,2(-M作直线l 交双曲线122=-y x 于A 、B 两点,O 是原点,以OA 、OB 为邻边作平行四边形OAPB ,则P 点的轨迹方程是 。
6、抛物线)0(22>-=p px y 的通径为AB ,点C 在这条抛物线上运动,则△ABC 的重心G 的轨迹方程是 。
7、与圆x 2+y 2-4x =0外切,又与y 轴相切的圆的圆心的轨迹方程是 。
8、已知圆C :(x -3)2+y 2=4,过原点的直线与圆C 相交于A 、B 两点,则A 、B 两点中点M 的轨迹方程是________。
超越训练1、在直角坐标系xOy 中,点P 到两点)3,0(-、)3,0(的距离之和等于4,设点P 的轨迹为C ,直线1+=kx y 与C 交于A 、B 两点。
(1)求出C 的方程;(2)若OB OA ⊥,求k 的值;(3)若点A 在第一象限,证明:当0>k 时,恒有OB OA >。
2、如图,垂直于x 轴的直线交双曲线12222=-by ax 于M 、N 两点,1A 、2A 为双曲线的顶点,求直线MA1与NA2的交点P 的轨迹方程,并且指出轨迹的形状。
3、在平面直角坐标系xOy 中,点B 与点)1,1(-A 关于原点对称,P 是动点,且直线AP 与BP 的斜率之积是31-。
(1)求动点P 的轨迹方程;(2)设直线AP 和BP 分别与直线3=x 相交于点M 、N ,问:是否存在点P 使得△PAB 与△PMN 的面积相等?若存在,求出点P 的坐标,若不存在,说明理由。
4、已知一条曲线C 在y 轴右边,C 上每一点到点)0,1(F的距离减去它到y 轴距离的差是1。