三相异步电动机正反转控制实验
三相异步电动机正反转控制实验报告
三相异步电动机正反转控制实验报告一、实验目的(1)了解三相异步电动机接触器联锁正反转控制的接线和操作方法。
(2)理解联锁和自锁的概念。
(3)掌握三相异步电动机接触器的正反转控制的基本原理与实物连接的要求。
二、实验器材三相异步电动机(M3~)、万能表、联动空气开关(Q51)、单向空气开关(QS2)、交流接触器(KM1,KM2)、组合按钮(SB1,SB2,SB3)、端子排7副、导线若干、螺丝刀等。
三、实验原理三相异步电动机的旋转方向是取决于磁场的旋转方向,而磁场的旋转方向又取决于电源的相序,所以电源的相序决定了电动机的旋转方向。
任意改变电源的相序时,电动机的旋转方向也会随之改变。
四、实验操作步骤连接三相异步电动机原理图如图所示,其中线路中的正转用接触器KM1和反转用的接触器KM2,分别由按钮5B2和反转按钮SB2控制。
控制电路有两条,一条由按钮SB1和KM1线圈等组成的正转控制电路;另一条由按钮SB2和KM2线圈等组成的反转控制电路。
当按下正转启动按钮SB1后,电源相通过空气开关QS,Q52和停止按钮SB3的动断接点、正转启动按钮SB1的动合接点、接触器KM 和其他的器件形成自锁,使得电动机开始正转,当按下SB3时,电动机停止转,在按下SB2时,接触器KM和其他的器件形成自锁反转。
安装接线1、在连接控制验线路前,应先熟悉各按钮开关、交流接触器、空气开关的结构形式、动作原理及接线方式和方法。
2、在不通电的情况下,用万用表检查各触点的分、合情况是否良好。
检查接触器时,特别需要检查接触器线圈电压与电源电压是否相符。
3、将电器元件摆放均匀、整齐、紧凑、合理,并用螺丝进行安装,紧固各元件时应用力均匀,紧固程度适当。
4、控制电路采用红色,按钮线采用红色,接地线绿黄双色线。
布线时要符合电气原理图,先将主电路的导线配完后,再配控制回路的导线;布线时还应符合平直、整齐、紧贴敷设面、走线合理及接点不得松动。
同一平面的导线应高低一致或前后一致,不能交叉。
(完整word版)实验一--三相异步电动机的正反转控制线路
实验一三相异步电动机的正反转控制线路
一、实验目的
1.掌握三相异步电动机正反转的原理和方法。
2.掌握手动控制正反转控制、接触器联锁正反转、按钮联锁正反转控制线路的不同接法。
二、实验设备
三相鼠笼异步电动机、继电接触控制挂箱等
三、实验方法
1.接触器联锁正反转控制线路
(1) 按下“关”按钮切断交流电源, 按下图接线。
经指导老师检查无误后, 按下“开”按钮通电操作。
(2) 合上电源开关Q1, 接通220V三相交流电源。
(3) 按下SB1, 观察并记录电动机M的转向、接触器自锁和联锁触点的吸断情况。
(4) 按下SB3, 观察并记录M运转状态、接触器各触点的吸断情况。
(5) 再按下SB2, 观察并记录M的转向、接触器自锁和联锁触点的吸断情况。
220V
图1 接触器联锁正反转控制线路
3.按钮联锁正反转控制线路
(1)按下“关”按钮切断交流电源。
按图2接线。
经检查无误后, 按下“开”按钮通电操作。
(2) 合上电源开关Q1, 接通220V 三相交流电源。
(3) 按下SB1, 观察并记录电动机M 的转向、各触点的吸断情况。
(4) 按下SB3, 观察并记录电动机M 的转向、各触点的吸断情况。
(5) 按下SB2, 观察并记录电动机M 的转向、各触点的吸断情况。
四、分析题
1.接触器和按钮的联锁触点在继电接触控制中起到什么作用?
Q 1
220V。
实验八三相异步电动机的接触器正反转控制实验
实验八 三相异步电动机的正反转控制实验
指导老师:谢祥、谢启林
一、实验导读:
在实际生产加工中,往往要求控制线路能对 电动机进行正反转控制。例如:机床工作台的前进 与后退,或起重机起吊重物的上升与下放,以及 电梯的升降等。实现电动机的正反转有多种控制 形式,如用倒顺开关正反转的控制电路、接触器 联锁正反转控制电路、按钮联锁正反转控制电路、 按钮和接触器双重联锁正反转控制电路等形式, 每种控制方式都有自己的应用场合,在本实验中 我们将验证接触器联锁实现正反转的控制电路和 倒顺开关实现正反转的控制电路。
型号 DQ01 DQ03-1 DQ19 DQ11 DQ12 DQ31 DQ39 DQ26 DQ27 连接线
名
称
交流、直流可调实验电源箱
测速发电机、数字转速表、底板支架
校正直流测功机(负载)
三相线绕式异步电动机(Y/220V)
线绕式异步电动机启动电阻调速箱
波形测试及开关板
继电接触控制挂箱
三相可调电阻器(用1.5A保险管)
二、实验目的
1、通过对三相异步电动机正反转控制线路 的接线,掌握由电路原理图接成实际操作电路的 方法;
2、掌握三相异步电动机正反转的原理和操作 方法;
3、掌握倒顺开关正反转控制、接触器联锁正 反转控制线路的不同接法,并熟悉在操作过程中 有哪些不同之处。
三、实验设备
序号 1 2 3 4 5 6 7 8 9 10
(6)实验完毕后,按下控制屏上的“关”按 钮以切断三相交流电源。
五、实验内容:
1、 倒顺开关正反转控制线路 2、接触器联锁正反转控制线路
1、倒顺开关正反转控制线路
图8-1
操作步骤:
1、按图8-1接线。图中QS(用以模拟倒顺 开关)选用DQ31挂件;FU1 、FU2、FU3选用 DQ26挂件,电机选用DQ11(Y/220V)。
三相异步电动机的正反转控制实验
三相异步电动机的正反转控制实验1、实验步骤1.1正反转电路安装接线(截图配文字说明)。
图 1 接线图1. 将QS 与熔断器FU1 串联2. 将熔断器FU1 与KM1 主触点连接3. 将KM1 主触点与热继电器FR 连接4. 将KM1 主触点与KM2 主触点并联5. 将KM1 线圈与KM2 辅助触点串联6. 将SB3 与KM1 辅助触点并联7. 将KM2 线圈与KM1 辅助触点串联8. 将SB2 与KM2 辅助触点并联9. 将SB3 与SB2 串联10. 将SB3 与SB1 串联11. 将SB1 与热继电器FR 串联12. 将热继电器FR 与熔断器FU2 串联1.2 正反转PLC程序及仿真结果(截图配文字说明)。
图 2 正反转PLC程序I0.0-SB2 正转起动按钮I0.1-SB1 停机按钮I0.2-FR 热继电器I0.3-SB3 反转按钮Q0.0-KM1 电机正转Q0.1-KM2 电机反转将上述程序导出,并进行以下仿真。
可直观看到,在按下I0.0时,电动机长动正转;当按下I0.3时,电动机长动反转;当按下I0.1时,电动机停转,符合设计要求。
图3未工作图图4正转图图 5 反转图1、试分析图1、图2正反转控制电路工作原理、各有什么特点?图一中,采用了复合按钮联锁连接,按动SB1,正向支路SB1接通,反向支路SB1断开;正向支路KM1辅助触点接通,反向支路KM1辅助触点断开,电机长动正转。
当按动SB1时,KM1失电,电机停转。
按动SB2,正向支路SB2断开,反向支路SB2截图;正向支路KM2辅助触点断开,反向支路KM2辅助触点接通,电机长动反转。
当按动SB1时,KM2失电,电机停转。
其在改变旋向时,必须先停机才能够反向旋转。
图二中,采用了接触器联锁正反转控制,按动SB1,正向支路KM1辅助触点接通,反向支路KM1辅助触点断开,电机长动正转。
当按动SB1时,KM1失电,电机停转。
按动SB2,正向支路KM2辅助触点断开,反向支路KM2辅助触点接通,电机长动反转。
三相异步电动机正反转控制
三相异步电动机自动循环控制中文摘要生产机械的电气控制线路都是根据生产工艺过程的控制要求设计的,而生产工艺过程必须伴随着一些物理量的变化,如行程,时间,速度,电流等。
这就需要某些电器能准确的测量和反映这些物理量的变化,并根据这些量的变化对电动机实现自动控制。
电动机控制的一般原则有行程控制原则,时间控制原则,速度控制原则和电流控制原则。
自动过程的进行需要有条件来触发,根据触发条件的不同,自动控制电路常用的有按时间控制和按行程控制两种形式,本实验了解时间控制原则,利用时间继电器来实现电动机的自动循环控制。
简述自动循环电路的设计原理,使用的实验器材以及如何安全规范的操作。
关键词:时间继电器;实验器材;原理设计图;安全操作腹有诗书气自华腹有诗书气自华目录目录 (3)前言 (1)第1章实验目的 (2)1.1 实验目的 (2)第2章实验环境及设备 (2)2.1 实验环境 (2)2.2 实验设备 (2)第3章正反转控制线路的设计 (2)3.1方案选择 (2)3.2 原理讲解 (3)3.2.1 控制电路 (3)3.2.2 主电路 (3)3.2.3线路动作过程 (4)第4章实际操作的特点及注意 (4)4.1 注意事项 (4)4.2 应用场合 (5)第5章实验设计总结 (5)参考文献 (6)腹有诗书气自华前言本实验要求设计一套控制线路,能够实现对三相异步电动机的正反转控制,要求有足够的保护,能够在正反之间直接切换。
根据电动机型号及电气原理图选用电器元件及部分电工器材;按电气原理图装接控制线路,并通电空运转效验成功。
三相异步电动机的正反转启动控制常用于升降控制,进给控制等。
本项目实施需要了解三相异步电动机的控制电路的接触器互锁等常用知识,了解三相电动机正反控制线路的设计方法和实际安装接线方法,从而进一步训练学生对电动机控制电路的安装、接线、与调试等技能。
腹有诗书气自华第1章实验目的1.1 实验目的1. 了解并掌握维修电工课程所学的基础知识。
实验八 接触器联锁的三相异步电动机正反转控制线路
实验八接触器联锁的三相异步电动机正反转控制线路1.实验元件代号名称型号规格数量备注QS 低压断路器DZ47 5A/3P 1FU1 螺旋式熔断器RL1-15 配熔体3A 3FU2 瓷插式熔断器RC1-5A 配熔体3A 2KM1,KM2 交流接触器CJX2-9/380 AC380V 2SB1,SB2SB3 实验按钮LAY3-11一常开一常闭自动复位3SB1红SB2绿SB3绿FR 热继电器JR-36 整定电流0.63A 1M 三相鼠笼式异步电动机380V0.45A120W12.实验电路图3. 实验过程控制线路的动作过程是:(1)正转控制:合上电源开关QS ,按正转起动按钮SB2,正转控制回路接通:FR 2L1SB1SB2KM2常闭触头KM1线圈KM1常开触头闭合自锁1KM1常闭触头断开对KM2联锁接触器KM1的线圈通电动作,主触头闭合,主电路U1、V1、W1相序接通,电动机正转。
(2)反转控制:要使电动机改变转向(即由正转变为反转)时,应先按下停止按钮SB1,使正转控制电路断开,电动机停转,然后才能使电动机反转。
为什么要这样操作呢?因为反转控制回路中串联了正转接触器KM1的常闭触头。
当KM1通电工作时,它是断开的,若这时直接按反转按钮SB3,反转接触器KM2是无法通电的,电动机也就得不到电源,帮电动机仍然处在正转状态,不会反转,当先按下停止按钮SB1,使电动停转以后,再按下反转按钮SB3,电动机才会反转。
这时,反转线控制线路为:反转接触器KM2通电动作,主触头闭合,主电路接W1、V1、U1相序接通,电动机电源相序改变了,故电动机作反向旋转。
4.检测与调试仔细检查确认接线无误后,接通交流电源,按下SB2,电机应正转(电机右侧的轴伸端为顺时针转,若不符合转向要求,可停机,换接电机定子绕组任意两个接线即可)。
按下SB3,电机仍应正转。
如要电机反转,应先按SB1,使电机停转,然后再按SB3,则电机反转。
若不能正常工作,则应分析并排除故障,使线路正常工作。
三相异步电动机的正反转控制
U ---L3 V ---L2 W---L1
KM2 KM1
KM1 KM2
三、按钮、接触器双重联锁正反转控制线路
QS FU1
L1 L2 L3
合上电源 开关QS
KM1
FU2 FR
SB3
KM2
KM1
KM2
SB1
SB2
FR
UV W
M 3~
KM2 KM1
KM1 KM2
三、按钮、接触器双重联锁正反转控制线路
KM2联锁动断触
UV W
点闭合,解除对
M
KM1联锁
3~
SB3
KM2
SB1
KM1
KM2 SB2
KM2
KM1
KM1
KM2
二、接触器联锁正反转控制线路
反转停止
QS FU1
FU2
L1
L2
FR
L3
松开SB3、电 KM1 机停转
SB3 KM2
SB1 KM1 SB2 KM2
FR
UV W M 3~
KM2
KM1
KM1
三相异步电动机的 正反转控制线路
若改变电动机转动方向,将接至交流电动机 的三相交流电源进线中任意两相对调,电动机就 可以反转。
一、 倒顺开关正反转控制线路
倒顺开关,又叫可 逆转换开关,利用 改变电源相序来实 现电动机手动正反 转控制。
一、倒顺开关正反转控制线路
L1 L2 L3
熔断器 倒顺开关
电动机
正转起动
QS FU1
FU2
L1
L2
FR
L3
合上电源开关 KM1 QS
SB3 KM2
SB1 KM1 SB2 KM2
三项异步电动机的正反转控制
三项异步电动机的正反转控制原理电机要实现正反转控制,将其电源的相序中任意两相对调即可(我们称为换相),通常是V 相不变,将U相与W相对调,为了保证两个接触器动作时能够可靠调换电动机的相序,接线时应使接触器的上口接线保持一致,在接触器的下口调相。
由于将两相相序对调,故须确保二个KM线圈不能同时得电,否则会发生严重的相间短路故障,因此必须采取联锁。
为安全起见,常采用按钮联锁(机械)与接触器联锁(电气)的双重联锁正反转控制线路(如下图所示);使用了按钮联锁,即使同时按下正反转按钮,调相用的两接触器也不可能同时得电,机械上避免了相间短路。
另外,由于应用的接触器联锁,所以只要其中一个接触器得电,其长闭触点就不会闭合,这样在机械、电气双重联锁的应用下,电机的供电系统不可能相间短路,有效地保护了电机,同时也避免在调相时相间短路造成事故,烧坏接触器。
实验步骤实验过程图中主回路采用两个接触器,即正转接触器KM1和反转接触器KM2。
当接触器KM1的三对主触头接通时,三相电源的相序按U―V―W接入电动机。
当接触器KM1的三对主触头断开,接触器KM2的三对主触头接通时,三相电源的相序按W―V―U接入电动机,电动机就向相反方向转动。
电路要求接触器KM1和接触器KM2不能同时接通电源,否则它们的主触头将同时闭合,造成U、W两相电源短路。
为此在KM1和KM2线圈各自支路中相互串联对方的一对辅助常闭触头,以保证接触器KM1和KM2不会同时接通电源,KM1和KM2的这两对辅助常闭触头在线路中所起的作用称为联锁或互锁作用,这两正向启动过程对辅助常闭触头就叫联锁或互锁触头。
正向启动过程按下起动按钮SB2,接触器KM1线圈通电,与SB2并联的KM1的辅助常开触点闭合,以保证KMl线圈持续通电,串联在电动机回路中的KM1的主触点持续闭合,电动机连续正向运转。
停止过程按下停止按钮SB1,接触器KMl线圈断电,与SB2并联的KM1的辅助触点断开,以保证KMl线圈持续失电,串联在电动机回路中的KMl的主触点持续断开,切断电动机定子电源,电动机停转。
三相异步电动机的正反转控制实验报告[学习]
三相异步电动机的正反转控制实验报告[学习]一、实验目的1. 掌握三相异步电动机正反转控制电路的设计方法;2. 熟悉三相异步电动机的正反转控制原理;3. 学会使用PLC控制三相异步电动机实现正反转控制。
二、实验设备1. PLC编程器;2. 三相异步电动机;3. 三相交流电源;4. 电流表和电压表。
三、实验原理三相异步电动机是一种常见的交流电动机,具有结构简单、可靠性高、功率大等优点,在工业控制领域得到广泛应用。
在实际应用中,常常需要对三相异步电动机进行正反转控制。
三相异步电动机的正反转与交流电源成相,不同的是正反转时交流电源的相序不同。
在正转时,交流电源的ABC三相线分别连接电动机的U、V、W三相线对应的绕组。
在反转时,交流电源的ABC三相线分别连接电动机的W、V、U三相线对应的绕组。
实现三相异步电动机的正反转控制可以通过PLC编程实现。
通常情况下,PLC输出端口不直接用于控制电机本身,而是用于控制交流接触器的继电器。
通过PLC输出信号控制继电器通断,实现电机的正反转控制。
四、实验步骤1. 按照电路图连接三相异步电动机正反转控制电路,其中CJX2交流接触器用于控制电机的正反转,ZJWN4-4P4C继电器用于控制交流接触器;2. 利用PLC编程器编写程序,根据控制要求确定PLC输出端口状态。
程序应包含以下功能模块:(1)控制交流接触器的正反转;3. 连接三相交流电源,打开电源开关,检查电路是否正常连接。
4. 测试正转功能:按下正转按钮,观察三相异步电动机是否能够正常启动,并旋转在预定方向上。
五、实验结果通过本次实验,成功地实现了三相异步电动机的正反转控制,并且能够正常控制电机正反转和停止。
实验结果表明,PLC控制三相异步电动机的正反转控制具有可靠性高、控制精度高等优点,适用于工矿企业中对电机正反转的复杂控制要求。
(完整版)三相异步电动机的正反转控制实验报告
实验目的⑴了解三相异步电动机接触器联锁正反转控制的接线和操作方法。
⑵理解联锁和自锁的概念。
⑶掌握三相异步电动机接触器的正反转控制的基本原理与实物连接的要求。
实验器材三相异步电动机(M 3~)、万能表、联动空气开关(QS1)、单向空气开关(QS2)、交流接触器(KM1,KM2)、组合按钮(SB1,SB2,SB3)、端子排7副、导线若干、螺丝刀等。
实验原理三相异步电动机的旋转方向是取决于磁场的旋转方向,而磁场的旋转方向又取决于电源的相序,所以电源的相序决定了电动机的旋转方向。
任意改变电源的相序时,电动机的旋转方向也会随之改变。
实验操作步骤连接三相异步电动机原理图如图所示,其中线路中的正转用接触器KM1和反转用的接触器KM2,分别由按钮SB2和反转按钮SB2控制。
控制电路有两条,一条由按钮SB1和KM1线圈等组成的正转控制电路;另一条由按钮SB2和KM2线圈等组成的反转控制电路。
当按下正转启动按钮SB1后,电源相通过空气开关QS1,QS2和停止按钮SB3的动断接点、正转启动按钮SB1的动合接点、接触器KM和其他的器件形成自锁,使得电动机开始正转,当按下SB3时,电动机停止转动,在按下SB2时,接触器KM和其他的器件形成自锁反转。
安装接线1在连接控制实验线路前,应先熟悉各按钮开关、交流接触器、空气开关的结构形式、动作原理及接线方式和方法。
2 在不通电的情况下,用万用表检查各触点的分、合情况是否良好。
检查接触器时,特别需要检查接触器线圈电压与电源电压是否相符。
3将电器元件摆放均匀、整齐、紧凑、合理,并用螺丝进行安装,紧固各元件时应用力均匀,紧固程度适当。
走线合理及接点不得松动。
同一平面的导线应高低一致或前后一致,不能交叉。
.布线应横平竖直,变换走向应垂直。
导线与接线端子或线桩连接时,应不压绝缘层、不反圈及不露铜过长。
e一个电器元件接线端子上的连接导线不得超过两根,每节接线端子板上的连接导线一般只允许连接一根。
三相异步电动机正反转控制电路实验报告
三相异步电动机正反转控制电路实验报告示例文章篇一:《三相异步电动机正反转控制电路实验报告》嗨,大家好!今天我要和大家分享一下我们做的三相异步电动机正反转控制电路实验,这可太有趣啦!一、实验目的我们为啥要做这个实验呢?那就是要搞清楚三相异步电动机正反转是怎么控制的呀。
就像我们想要知道一辆汽车怎么向前开又怎么向后倒一样,电动机的正反转在好多地方都特别重要呢。
比如说,工厂里的一些机器,有时候需要正转来加工东西,有时候又得反转来调整或者做其他操作。
要是不搞明白这个控制电路,就像你想让玩具车跑起来,却不知道怎么控制方向一样,那可不行!二、实验器材做这个实验,我们得有好多东西才行。
首先就是三相异步电动机啦,这可是主角呢!它就像一个大力士,只要电路一通,就能呼呼地转起来。
然后还有接触器,这东西可神奇啦,就像是电动机的指挥官。
还有按钮,这就是我们给电动机下命令的小工具,按一下,就像跟电动机说“嘿,你该正转啦”或者“你快反转吧”。
还有熔断器呢,这就像是电动机的小保镖,如果电流太大,它就会“挺身而出”,把电路切断,保护电动机不被烧坏。
这就好比你出门的时候,有个保镖在你身边,要是有危险,保镖就会保护你一样。
三、实验步骤1. 连接电路刚开始连接电路的时候,我可紧张啦。
我和我的小伙伴们小心翼翼的,就像在给一个超级精密的机器人组装零件一样。
我们先把电动机的三根线按照电路图接好,这时候我就在想,要是接错了会不会电动机就“发脾气”不转了呢?然后再把接触器也接上去,那些线就像小辫子一样,得一根一根地梳理好,接到正确的地方。
我们一边接,一边互相提醒,“这个线是不是应该接这儿呀?”“你看,这个接头是不是没拧紧呀?”就像一群小蚂蚁在齐心协力地建造自己的小窝一样。
2. 检查电路接好电路后,可不能马上就通电呀,就像你出门前要检查一下自己的东西有没有带齐一样。
我们得仔仔细细地检查电路,看看有没有线接错了,有没有接头没接好。
这时候我的心跳得可快啦,就怕有什么问题。
异步电动机的正反转控制实验报告
竭诚为您提供优质文档/双击可除异步电动机的正反转控制实验报告篇一:电机正反转实训报告文档电气设备与拆装实训报告实训课题:1.三相异步电动机行程开关控制的正反转电路2.三相异步电动机星形/三角形换接减压起动控制专业:电气工程与自动化班级:101班学号:20XX00307029指导教师:李忠富20XX年7月4日实训一、三相异步电动机行程开关控制的正反转电路一、实训目的1.熟悉和了解交流接触器、热继电器、行程开关等常用低压电器设备的结构,工作原理及使用方法,接线方法及线号标记。
2.掌握三相异步电动机行程开关控制的正反转电路工作原理,电气原理图、元件布置图和接线图的绘制,接线方法及接线工艺。
3.了解失压、过载、零位保护的控制作用。
4.熟悉上述电路的故障分析及排除方法。
二、实训线路三、实训设备及电气元件1、三相异步电动机A02-6432一台2、交流接触器cJ10-10两只3、按钮LA18-22一只4、热继电器JR16b-20/32.4A一台5、熔断器RL1-15/5A三只6、行程开关Lx111两只7、三相刀开关hK2—315A一只8、电工工具及导线四、实训步骤1、检查各电器元件的质量情况,了解其使用方法。
2、根据电器原理图绘制元件布置图和接线图。
3、正确连接线路,先接主电路,再接控制电路。
4、同组同学检查接线无误,并经指导老师坚持认可后合闸通电试验。
5、操作启动和停止按钮,并观察电动机单方向起停情况。
6、操作启动按钮‘带点击正常运转后直接按下反方向启动按钮,并使电动机反方向运转。
7、电动机正常运转后,模拟机床运行用行程开关控制电机的正反转。
8、实验中出现不正常现象时,应断开电源,分析故障。
五、实验报告①实验原理图②故障分析1、接完线检查的时候,发现行程开关的一个接口本应该有进线有出线的,但检查的时候只发现了进线,所以只能重新按步骤的检查线路,着重检查与行程开关有联系的器件,最终发现原来是和接触器的常闭触电接线漏了。
三相异步电动机的正反转控制实验报告2页2页
三相异步电动机的正反转控制实验报告2页2页实验报告实验目的:了解三相异步电动机的正反转控制原理,掌握正反转控制电路的设计方法和程序控制方法。
实验器材:三相异步电动机、交流电源、直流电源、电容、功率电阻、三相电机接线板、万用表、逻辑电路板、光耦隔离器、继电器等。
实验原理:三相异步电动机的正反转控制原理是利用三相电机的相序控制实现正反转。
相序反转时电机的运转方向也会反转。
相序控制可以通过电容、功率电阻、交换相线和三相全波可控硅等方式实现。
实验内容和步骤:1. 实验设备连接。
将三相电机连接在三相电机接线板上,将功率电阻和电容连接在交流电源的输出端。
将逻辑电路板和光耦隔离器连接在直流电源上。
2. 正转控制电路设计。
将逻辑电路板和光耦隔离器连接在一起,按照电路图连接电源和继电器线圈。
连接光电耦合器输入端和逻辑电路输出端。
3. 反转控制电路设计。
将逻辑电路板和光耦隔离器连接在一起,按照电路图连接电源和继电器线圈。
连接光电耦合器输入端和逻辑电路输出端。
4. 程序控制电路设计。
使用逻辑电路板和光耦隔离器进行控制,将正转和反转控制电路分别连接在输出端口上。
使用开关控制正转和反转。
5. 实验操作和结果。
根据线路连接图进行电路连接,正确接线后,按下控制开关进行正、反转控制,电机能够正常启动和停止,并且能够正、反转。
实验结论:通过本次实验,我们了解了三相异步电机的正反转控制原理和方法,掌握了正反转控制电路的设计方法和程序控制方法。
我们成功地实现了三相异步电机的正反转操作,并且能够通过控制开关进行控制。
实验中还需注意安全问题,例如使用交流电源时,要注意接线的正确性和电路的绝缘性能,避免发生电击事故。
三相异步电动机正反转控制电路实习报告
三相异步电动机正反转控制电路实习报告下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、引言在现代工业生产中,电动机的正反转控制是一项非常重要的技术。
《三相异步电动机点动控制和自锁控制及联锁正反转控制实验报告》
《三相异步电动机点动控制和自锁控制及联锁正反转控制实验报告》实验目的:1. 掌握三相异步电动机的基本特性。
2. 掌握三相异步电动机的点动控制和自锁控制。
3. 掌握联锁正反转控制的原理和方法。
实验设备:1. 三相异步电动机。
2. 电动机控制器。
3. 转动表。
4. 交流电源。
5. 电阻箱。
6. 电流表、电压表。
7. 开关。
实验原理:1. 三相异步电动机的基本特性三相异步电动机是一种常用的电动机,它通过三相交流电源供电,产生旋转磁场,驱动转子旋转。
三相异步电动机的基本特性是:(1) 启动电流大。
(2) 转速变化范围小。
(3) 转矩较小。
(4) 负载能力强。
2. 三相异步电动机的点动控制和自锁控制(1) 点动控制点动控制是一种控制方法,通过按下控制按钮使电动机运行一定时间后自动停止,可用于定位、检测、调整等工作。
点动控制可用电路实现。
(2) 自锁控制自锁控制也是一种控制方法,通过按下控制按钮使电动机运行一次后停止,并锁定在停止状态。
自锁控制可用电路实现。
3. 联锁正反转控制联锁正反转控制是指,在电动机正转和反转时,按下另一个按钮将被联锁,使电动机停止后再按下原来的按钮才能启动电动机反向运转。
联锁控制可用电路实现。
实验步骤:1. 连接电动机和控制器(1) 将电动机的三条电缆分别连接至控制器的三条电缆;(2) 按照指示将控制器连接至电源上。
2. 点动控制(1) 打开交流电源,并启动控制器。
(2) 按下点动按钮,控制器工作,电动机转动;(3) 松开按钮,电动机停止。
3. 自锁控制(1) 按下自锁按钮,控制器工作,电动机转动;(2) 松开按钮,电动机停止,并锁定在停止状态。
4. 联锁正反转控制(1) 按下正转按钮,电动机正向旋转;(2) 按下关锁按钮,电动机停止;(3) 按下反转按钮,电动机反向旋转。
实验结果:通过实验,我们成功掌握了三相异步电动机的基本特性和点动控制、自锁控制、联锁正反转控制的原理和方法,并且通过实验获得了相关数据和图表,验证了实验结果的正确性。
三相异步电动机的正反转控制实验报告
三相异步电动机的正反转控制实验报告实验名称:三相异步电动机的正反转控制实验摘要:本实验主要针对三相异步电动机的正反转控制进行了实验研究。
通过控制电动机的相序和频率,实现了电动机的正、反转运动。
实验结果表明,该控制方法可实现电动机的准确正反转运行,具有较高的控制精度和可靠性。
关键词:三相异步电动机、正反转控制、相序、频率1.引言2.实验原理三相异步电动机的正反转控制是通过改变电动机的相序和频率来实现的。
当交流电的相序和频率满足一定条件时,电动机会正常运行;当相序和频率发生变化时,电动机则会发生反转。
因此,通过控制交流电源的相序和频率,可以实现电动机的正反转控制。
3.实验设备本实验所使用的设备包括三相异步电动机、交流电源、电压表、电流表等。
4.实验步骤(1)连接电路:将三相异步电动机与交流电源连接,同时连接电压表和电流表以测量电压和电流参数。
(2)调整相序:通过调整交流电源的相序,使得电动机可以正常运行。
(3)测量参数:记录电动机正转时的电压和电流参数,并进行数据分析。
(4)反转控制:通过改变交流电源的相序和频率,实现电动机的反转控制。
(5)测量参数:记录电动机反转时的电压和电流参数,并进行数据分析。
5.实验结果和分析通过实验控制交流电源的相序和频率,实现了电动机的正反转控制。
实验数据表明,在正转时,电压和电流的波形均为正弦波,幅值稳定;在反转时,电压和电流的波形发生了改变,幅值也发生了变化。
通过比对正转和反转时的电压和电流数据,可以判断电动机的正反转状态。
6.结论通过本实验,成功实现了三相异步电动机的正反转控制。
通过改变交流电源的相序和频率,可以准确控制电动机的正反转运动。
实验结果表明,在正转和反转过程中,电压和电流的变化规律发生了明显的变化,从而证明了该控制方法的有效性。
三相异步电动机点动控制和自锁控制及联锁正反转控制实验报告
三相异步电动机点动控制和自锁控制及联锁正反转控制实验报告一、实验目的1.熟悉三相异步电动机的点动控制原理和实现方法;2.掌握三相异步电动机的自锁控制方法;3.理解三相异步电动机的联锁正反转控制的原理和实现方法。
二、实验器材1.三相异步电动机;2.开关、按钮、断路器等电气元件;3.电源和电动机控制板。
三、实验原理1.三相异步电动机的点动控制原理:2.三相异步电动机的自锁控制原理:3.三相异步电动机的联锁正反转控制原理:四、实验步骤1.点动控制实验:(1)将电动机接入电源,并连接好控制电路;(2)按下正转按钮,电动机开始正转;(3)按下停止按钮,电动机停止;(4)按下反转按钮,电动机开始反转;(5)按下停止按钮,电动机停止。
2.自锁控制实验:(1)将电动机接入电源,并连接好控制电路;(2)按下启动按钮,电动机开始启动;(3)等待一段时间,热继电器加热后断开起动电路;(4)启动线圈断开后,接触器的锁闭线圈闭合,实现电动机的自锁控制。
3.联锁正反转控制实验:(1)将电动机接入电源,并连接好控制电路;(2)按下正转按钮,电动机开始正转;(3)正转线圈闭合后,中间继电器锁闭,反转按钮无效;(4)按下停止按钮,电动机停止;(5)按下反转按钮,电动机开始反转;(6)反转线圈闭合后,中间继电器锁闭,正转按钮无效;(7)按下停止按钮,电动机停止。
五、实验结果与分析在实验中,我们成功实现了三相异步电动机的点动控制、自锁控制和联锁正反转控制。
点动控制通过控制电动机的启动电路,实现了电动机的正转、反转和停止操作。
自锁控制通过接触器和热继电器的控制,实现了电动机的自锁功能。
联锁正反转控制通过中间继电器的互斥关系,实现了正转和反转按钮的互斥控制。
六、实验总结本次实验通过对三相异步电动机的点动控制、自锁控制和联锁正反转控制进行了实验,加深了我们对三相异步电动机控制原理和方法的理解。
通过实验,我们掌握了电动机控制电路的接线方法和控制逻辑,提高了电动机控制的实践能力。
三相异步电动机的正反转控制实验报告
三相异步电动机的正反转控制实验报告实验报告:三相异步电动机的正反转控制
一、实验目的
1.学习三相异步电动机的正反转控制原理;
2.了解三相异步电动机的工作特性及控制要点;
3.掌握三相异步电动机正反转控制的实验方法和步骤。
二、实验原理
实验设备包括三相异步电动机、三相变压器、电动机控制面板和电源等。
三、实验步骤
1.将三相异步电动机连接到电源上,调整电压为额定电压;
2.将三相变压器连接到电源上,并调整相序开关为正序;
3.打开电源,观察电动机的运行方向,确认为正转;
4.关闭电源,并将相序开关调整为反序;
5.再次打开电源,观察电动机的运行方向,确认为反转;
6.关闭电源,将相序开关调整为正序;
7.打开电源,观察电动机的运行方向,确认为正转。
四、实验结果与分析
在实验过程中,我们通过改变电源的相序来控制三相异步电动机的正反转。
当相序为正序时,电动机按照正向旋转;当相序为反序时,电动机按照反向旋转。
五、实验总结
通过本次实验,我们学习了三相异步电动机的正反转控制原理,并掌握了改变电源相序来实现电动机正反转的实验方法。
三相异步电动机的正反转控制在现实生活中具有广泛应用,包括机械传动、工业生产等领域。
掌握了正反转控制的方法,可以实现对电动机运行方向的灵活控制,提高机械系统的工作效率和生产效益。
1.《电机与拖动》,潘晓军著,清华大学出版社;
2.《电气传动与控制技术》,方仕贤主编,机械工业出版社。
中级电工实验报告
一、实验题目:三相异步电动机的正反转控制实验二、实验目的:1. 理解三相异步电动机的工作原理及运行特性;2. 掌握三相异步电动机的正反转控制方法;3. 培养实际操作能力,提高电工技术水平。
三、实验器材:1. 三相异步电动机;2. 交流电源;3. 三相异步电动机控制器;4. 开关;5. 电流表;6. 电压表;7. 导线;8. 焊锡;9. 焊锡丝;10. 实验平台。
四、实验原理:三相异步电动机是现代工业生产中常用的动力设备,其基本工作原理是:当三相交流电源接在三相异步电动机定子上时,在定子上产生一个旋转磁场,该旋转磁场与转子上的导体相互作用,产生电磁转矩,从而使转子旋转。
三相异步电动机的正反转控制是通过改变三相交流电源的相序来实现的。
五、实验步骤:1. 搭建实验电路,连接三相异步电动机、控制器、开关、电流表、电压表等;2. 启动三相异步电动机,观察电动机的旋转方向,记录电流、电压数据;3. 断开三相异步电动机电源,将三相电源相序调换,重新启动电动机,观察电动机的旋转方向,记录电流、电压数据;4. 对比两次实验结果,分析三相异步电动机正反转控制的效果;5. 拆卸实验电路,清理实验现场。
六、实验数据记录与分析:1. 实验一(原相序):- 电流:I1 = 5A,I2 = 5A,I3 = 5A;- 电压:U1 = 220V,U2 = 220V,U3 = 220V;- 电动机旋转方向:顺时针。
2. 实验二(调换相序):- 电流:I1 = 5A,I2 = 5A,I3 = 5A;- 电压:U1 = 220V,U2 = 220V,U3 = 220V;- 电动机旋转方向:逆时针。
通过对比两次实验结果,可以发现,通过改变三相电源的相序,可以实现三相异步电动机的正反转控制。
实验过程中,电流、电压数据基本保持一致,说明正反转控制对电动机运行状态影响不大。
七、实验结论:1. 三相异步电动机的正反转控制方法是通过改变三相电源的相序来实现的;2. 在实验过程中,电流、电压数据基本保持一致,说明正反转控制对电动机运行状态影响不大;3. 本实验验证了三相异步电动机正反转控制的有效性,提高了电工技术水平。
三相异步电动机正反转实验报告
三相异步电动机正反转实验报告实验目的:1.了解三相异步电动机工作原理;2.掌握三相异步电动机正反转的方法;3.学习测量三相异步电动机的转速。
实验设备:1.三相异步电动机;2.频率变换器;3.电压表;4.频率表;5.示波器。
实验原理:实验步骤:1.将三相异步电动机的三个线圈分别连接到频率变换器的三个对应通道上,并将频率变换器连接到电源上;2.打开电源,调节频率变换器的输出频率和电压,使电动机能够正常运转;3.使用电压表和频率表测量电动机的电压和频率;4.使用示波器测量电动机的转速。
实验结果:在实验中,我们进行了三相异步电动机正反转实验,并测量了其电压、频率和转速。
实验结果显示,通过调节电源的相位和频率,我们成功地实现了三相异步电动机的正反转。
在正转时,电动机的电压为XXV,频率为XXHz,转速为XXrpm;在反转时,电动机的电压为XXV,频率为XXHz,转速为XXrpm。
实验分析:通过实验可知,三相异步电动机的正反转是通过调节电源的相位和频率来改变电磁场的旋转方向实现的。
在正转时,相位和频率的设置使得电磁场的旋转方向与转子的磁场方向一致,使电动机正转;在反转时,相位和频率的设置使得电磁场的旋转方向与转子的磁场方向相反,使电动机反转。
结论:通过三相异步电动机正反转实验,我们掌握了三相异步电动机的工作原理和正反转的方法,学习了测量电动机转速的技巧。
通过调节电源的相位和频率,我们成功实现了三相异步电动机的正反转,并测量了其相应的电压、频率和转速。
实验结果表明,我们的实验步骤和测量数据是准确可靠的。
实验中可能存在的误差和改进方法:1.实验过程中,可能存在电压表、频率表和示波器的测量误差。
可以使用多个不同型号和精度的仪器进行测量,取平均值来提高测量精度;2.实验中的转速测量可能受到转子磁场的不均匀性和机械阻力的影响,可以采用更精确的转速测量方法,如使用光电编码器等。
实验的意义和应用:总结:本次实验通过三相异步电动机正反转实验,我们了解了三相异步电动机的工作原理,掌握了正反转的方法,并学习了测量电动机转速的技巧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三相异步电动机正反转控制实验
一、实验目的:
1.学习与掌握PLC的实际操作与使用方法;
2.学习与掌握利用PLC控制三相异步电动机正反转的方法。
二、实验内容及步骤 :
本实验采用PLC对三相异步电动机进行正反转控制 ,其主电路与控制电路接线图分别为图2-1与图2-2 。
图中:正向按钮接PLC的输入口X0,反向按钮接PLC的输入口X1,停止按钮接PLC的输入口X2,KM5为正向接触器,KM6反向接触器。
继电器KA5、KA6分别接于PLC的输出口Y33、Y34。
其基本工作原理为:合上QF1、QF5, PLC运行。
当按下正向按钮,控制程序使Y33有效,继电器KA5线圈得电,其常开触点闭合,接触器KM5的线圈得电,主触头闭合,电动机正转;当按下反向按钮,控制程序使Y34有效,继电器KA6线圈得电,其常开触点闭合,接触器KM6的线圈得电,主触头闭合,电动机反转。
实验步骤 :
1.在断电的情况下,学生按图2-1与图2-2接线(为安全起见,控制电路的PLC外围继电器
KA5、KA6以及接触器KM5、KM6输出线路已接好) ;
2.在老师检查合格后,接通断路器QF1、QF5 ;
3.运行PC机上的工具软件FX-WIN,输入PLC梯形图 ;
4.对梯形图进行编辑﹑指令代码转换等操作并将程序传至PLC;
5. 运行PLC,操作控制面板上的相应开关及按钮,实现电动机的正反转控制。
在PC机上
对运行状况进行监控,同时观察继电器KA5、KA6与接触器KM5 、KM6的动作及变化情况,调试并修改程序直至正确 ;
6。
记录运行结果。
图2-1 主控电路
图2-2 控制电路接线图
三.实验说明及注意事项
1.本实验中,继电器KA5、KA6的线圈控制电压为24V DC,其触点5A 220V AC(或5A 30V DC);接触器KM5、KM6的线圈控制电压为220V AC,其主触点25A 380V AC。
2.三相异步电动机的正、反转控制就是通过正、反向接触器KM5、KM6改变定子绕组的相序来实现的。
其中一个很重要的问题就就是必须保证任何时候、任何条件下正反向接触器KM5、KM6都不能同时接通,否则会造成电源相间瞬时短路。
为此,在梯形图中应采用正反转互锁,以保证系统工作安全可靠。
3.本实验中,主控电路的电压为380V DC,请注意安全!
四.实验用仪器工具
PC 机 1台
PLC 1台
编程电缆线1根
三相异步电动机 1台
断路器(QF1、QF5) 2个
接触器(KM5、KM6) 2个
继电器(KA5、KA6) 2个
按钮 3个
实验导线若干
五.实验前的准备
1.预习实验报告,复习教材的相关章节;
2.根据图2-1、图2-2画出梯形图,并写出指令代码。
六.实验报告要求
画出梯形图,写出指令代码,分析实验结果。
七.思考题
1.试比较继电器与接触器的结构及工作原理的异同点;
2.请说明本实验中继电器的线圈工作电压与接触器的线圈工作电压分别就是多少?
3.试比较可编程控制器的三种输出接口:晶体管输出方式、晶闸管输出方式、继电器输出方式的工作原理异同点;
4.能否将接触器KM5,KM6的线圈直接接至PLC的输出端Y33、Y34(注:本实验所用的PLC 为FX2N-64MT,其输出接口为晶体管型)?。