江苏省2014年高考数学三轮专题复习素材:倒数第4天
最新(江苏)高考数学(文)三轮冲关专题训练:倒数第2天(含答案解析)
倒数第2天 附加题必做部分[保温特训]1.如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,∠BAC =30°,BC =1,A 1A =6,M 是CC 1的中点.(1)求证:A 1B ⊥AM ;(2)求二面角B -AM -C 的平面角的大小.(1)证明 以点C 为原点,CB 、CA 、CC 1所在直线为x ,y ,z 轴,建立空间直角坐标系C -xyz ,如图所示,则B (1,0,0),A (0,3,0),A 1(0,3,6),M ⎝⎛⎭⎪⎫0,0,62. 所以A 1B →=(1,-3,-6),AM →=⎝⎛⎭⎪⎫0,-3,62. 因为A 1B →·AM →=1×0+(-3)×(-3)+(-6)×⎝ ⎛⎭⎪⎫62=0,所以A 1B ⊥AM . (2)解 因为ABC -A 1B 1C 1是直三棱柱,所以CC 1⊥平面ABC ,又BC ⊂平面ABC ,所以CC 1⊥BC .因为∠ACB =90°,即BC ⊥AC ,又AC ∩CC 1=C ,所以BC ⊥平面ACC 1A 1,即BC ⊥平面AMC .所以CB→是平面AMC 的一个法向量,CB →=(1,0,0). 设n =(x ,y ,z )是平面BAM 的一个法向量,BA →=(-1,3,0),BM →=⎝⎛⎭⎪⎫-1,0,62.由⎩⎪⎨⎪⎧ n ·BA →=0,n ·BM →=0,得⎩⎨⎧ -x +3y =0,-x +62z =0,令z =2,得x =6,y = 2.所以n =(6,2,2)因为|CB→|=1,|n |=23, 所以cos 〈CB →,n 〉=C B →·n |CB→||n |=22, 因此二面角B -AM -C 的大小为45°.2.如图,在长方体ABCD -A 1B 1C 1D 1中,已知AB =4,AD =3,AA 1=2,E ,F 分别是棱AB ,BC 上的点,且EB =FB =1.(1)求异面直线EC 1与FD 1所成角的余弦值;(2)试在面A 1B 1C 1D 1上确定一点G ,使DG ⊥平面D 1EF .解 (1)以D 为原点,DA →,DC →,DD 1→分别为x 轴,y 轴,z 轴的正向建立空间直角坐标系,则有D (0,0,0),D 1(0,0,2),C 1(0,4,2),E (3,3,0),F (2,4,0),于是EC 1→=(-3,1,2),FD 1→=(-2,-4,2). 设EC 1与FD 1所成角为α,则cos α=EC 1→·FD 1→|EC 1→||FD 1→|=(-3)×(-2)+1×(-4)+2×2(-3)2+12+22(-2)2+(-4)2+22=2114.∴异面直线EC 1与FD 1所成角的余弦值为2114.(2)因点G 在平面A 1B 1C 1D 1上,故可设G (x ,y,2).DG →=(x ,y,2),FD 1→=(-2,-4,2),EF →=(-1,1,0).由⎩⎪⎨⎪⎧DG →·FD 1→=0,DG →·EF →=0得⎩⎨⎧ -2x -4y +4=0,-x +y =0,解得⎩⎪⎨⎪⎧ x =23,y =23.故当点G 在面A 1B 1C 1D 1上,且到A 1D 1,C 1D 1距离均为23时,DG ⊥D 1EF .3.某校高一、高二两个年级进行乒乓球对抗赛,每个年级选出3名学生组成代表队,比赛规则是:①按“单打、双打、单打”顺序进行三盘比赛;②代表队中每名队员至少参加一盘比赛,但不能参加两盘单打比赛.若每盘比赛中高一、高二获胜的概率分别为37,47.(1)按比赛规则,高一年级代表队可以派出多少种不同的出场阵容?(2)若单打获胜得2分,双打获胜得3分,求高一年级得分ξ的概率分布列和数学期望.解 (1)先安排参加单打的队员有A 23种方法,再安排参加双打的队员有C 12种方法,所以,高一年级代表队出场共有A 23C 12=12种不同的阵容.(2)ξ的取值可能是0,2,3,4,5,7.P (ξ=0)=64343,P (ξ=2)=96343,P (ξ=3)=48343,P (ξ=4)=36343,P (ξ=5)=72343,P (ξ=7)=27343.ξ的概率分布列为所以E (ξ)=0×64343+2×96343+3×48343+4×36343+5×72343+7×27343=3.4.设m ,n ∈N *,f (x )=(1+2x )m +(1+x )n .(1)当m =n =2 011时,记f (x )=a 0+a 1x +a 2x 2+…+a 2 011x 2 011,求a 0-a 1+a 2-…-a 2 011;(2)若f (x )展开式中x 的系数是20,则当m ,n 变化时,试求x 2系数的最小值. 解 (1)令x =-1,得a 0-a 1+a 2-…-a 2 011=(1-2)2 011+(1-1)2 011=-1.(2)因为2C 1m +C 1n =2m +n =20,所以n =20-2m ,则x 2的系数为22C 2m +C 2n =4×m (m -1)2+n (n -1)2=2m 2-2m +12(20-2m )(19-2m )=4m 2-41m +190. 所以当m =5,n =10时,f (x )展开式中x 2的系数最小,最小值为85.5.已知数列{a n }满足:a 1=12,a n +1=2a n a n +1(n ∈N *). (1)求a 2,a 3的值;(2)证明:不等式0<a n <a n +1对于任意n ∈N *都成立.(1)解 由题意,得a 2=23,a 3=45.(2)证明 ①当n =1时,由(1)知0<a 1<a 2,不等式成立.②设当n =k (k ∈N *)时,0<a k <a k +1成立,则当n =k +1时,由归纳假设,知a k +1>0.而a k +2-a k +1=2a k +1a k +1+1-2a k a k +1 =2a k +1(a k +1)-2a k (a k +1+1)(a k +1+1)(a k +1)=2(a k +1-a k )(a k +1+1)(a k +1)>0, 所以0<a k +1<a k +2,即当n =k +1时,不等式成立.由①②,得不等式0<a n <a n +1对于任意n ∈N *成立.[知识排查]1.求异面直线所成角一般可以通过在异面直线上选取两个非零向量,通过求这两个向量的夹角得出异面直线所成角,特别注意的异面直线所成角的范围,所以一定要注意最后计算的结果应该取正值.2.二面角的计算可以采用平面的法向量间的夹角来实现,进而转化为对平面法向量的求解.最后要注意法向量如果同向的话,其夹角就是二面角平面角的补角,异向的话就是二面角的平面角.3.用平面的法向量和直线的方向向量来证明空间几何问题,简单快捷.解题的关键是先定与问题相关的平面及其法向量.如果图中的法向量没有直接给出,那么必须先创设法向量.4.解决概率问题,关键要能分清楚概型,正确使用好排列、组合工具,列出随机变量ξ的所有取值并求出相应的概率P(ξ),列出分布列,尤其要揭示问题中的隐含条件,灵活运用“正难则反”的思考方法.5.求离散型随机变量的分布列首先要明确随机变量取哪些值,然后求取每一个值得概率,最后列成表格形式.6. 要注意区别“二项式系数”与二项式展开式中“某项的系数”7.在解决与系数有关的问题时,常用“赋值法”,这种方法是一种重要的数学思想方法.8.求二项式展开的某一项或者求满足某些条件、具备某些性质的项,其基本方法是利用二项式的通项公式分析讨论解之.9.有些数学问题,形式上极其类似二项式定理的展开式形式,因而我们要能扣住它的展开式各项特征,适当加以变化,进而构造出定理的相应结构,达到解决问题之目的.10.数学归纳法解题的基本步骤:(1)明确首取值n0并验证真假.(必不可少)(2)“假设n=k时命题正确”并写出命题形式.(3)分析“n=k+1时”命题是什么,并找出与“n=k”时命题形式的差别.弄清左端应增加的项.(4)明确等式左端变形目标,掌握恒等式变形常用的方法:乘法公式、因式分解、添拆项、配方等,并用上假设.11.数学归纳法解题时要注意,递推基础不可少,归纳假设要用到,结论写明莫忘掉.。
江苏省2014年高考数学二轮专题复习素材:阶段检测卷3
阶段检测卷(三)一、填空题(每小题5分,共70分)1.公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则a 5=________.解析 由a 3a 11=16,得a 27=16,故a 7=4=a 5×22⇒a 5=1.答案 12.若{a n }为等差数列,S n 是其前n 项的和,且S 11=223π,则tan a 6=________. 解析 S 11=11(a 1+a 11)2=11a 6=223π,∴a 6=2π3,∴tan a 6=- 3. 答案 - 33.设公比为q (q >0)的等比数列{a n }的前n 项和为S n ,若S 2=3a 2+2,S 4=3a 4+2,则q =________.解析 由已知得⎩⎨⎧a 1+a 1q =3a 1q +2, ①a 1+a 1q +a 1q 2+a 1q 3=3a 1q 3+2, ②②-①得a 1q 2+a 1q 3=3a 1q (q 2-1),即2q 2-q -3=0.解得q =32或q =-1(舍). 答案 324.等差数列{a n }前9项的和等于前4项的和.若a 1=1,a k +a 4=0,则k =________. 解 由题意S 9=S 4,得a 5+a 6+a 7+a 8+a 9=0,∴5a 7=0,即a 7=0,又a k +a 4=0=2a 7,a 10+a 4=2a 7,∴k =10. 答案 105.在等差数列{a n }中,a 8=12a 11+6,则数列{a n }前9项的和S 9等于________. 解析 设等差数列{a n }的公差为d ,则a 1+7d =12(a 1+10d )+6,即a 1+4d =a 5=12,∵S 9=9(a 1+a 9)2=9a 5=108.答案 1086.设{a n }是公差不为0的等差数列,a 1=2且a 1,a 3,a 6成等比数列,则{a n } 的前n 项和S n =________.解析 设等差数列{a n }的公差为d ,由已知得a 23=a 1a 6,即(2+2d )2=2(2+5d ),解得d =12,故S n =2n +n (n -1)2×12=n 24+7n 4. 答案 n 24+7n47.若-9,a ,-1成等差数列,-9,m ,b ,n ,-1成等比数列,则ab =________. 解析 由已知得a =-9-12=-5,b 2=(-9)×(-1)=9且b <0,∴b =-3,∴ab =(-5)×(-3)=15. 答案 158.已知实数a ,b ,c ,d 成等比数列,且函数y =ln(x +2)-x ,当x =b 时取到极大值c ,则ad 等于________.解析 由等比数列的性质,得ad =bc , 又⎩⎪⎨⎪⎧f ′(b )=1b +2-1=0,f (b )=ln (b +2)-b =c ,解得⎩⎨⎧b =-1,c =1,故ad =bc =-1.答案 -19.设y =f (x )是一次函数,f (0)=1,且f (1),f (4),f (13)成等比数列,则f (2)+f (4)+…+f (2n )=________.解析 设f (x )=kx +b (k ≠0),又f (0)=1,所以b =1,即f (x )=kx +1(k ≠0).由f (1),f (4),f (13)成等比数列,得f 2(4)=f (1)·f (13),即(4k +1)2=(k +1)(13k +1).因为k ≠0,所以k =2,所以f (x )=2x +1,所以f (2)+f (4)+…+f (2n )=5+9+…+4n +1=n (5+4n +1)2=n (2n +3). 答案 n (2n +3)10.S n 是等比数列{a n }的前n 项和,a 1=120,9S 3=S 6,设T n =a 1a 2a 3…a n ,则使T n 取最小值的n 值为________.解析 设等比数列的公比为q ,故由9S 3=S 6,得9×a 1(1-q 3)1-q =a 1(1-q 6)1-q ,解得q =2,故T n T n -1=a n =120×2n -1,易得当n ≤5时,T nT n -1<1,即T n <T n -1;当n ≥6时,T n >T n -1,据此数列单调性可得T 5为最小值. 答案 511.已知数列{a n }的通项公式是a n =-n 2+12n -32,其前n 项和是S n ,对任意的m ,n ∈N *且m <n ,则S n -S m 的最大值是________.解析 由于a n =-(n -4)(n -8),故当n <4时,a n <0,S n 随n 的增加而减小,S 3=S 4,当4<n <8时,a n >0,S n 随n 的增加而增大,S 7=S 8,当n >8时,a n <0,S n 随n 的增加而减小,故S n -S m ≤S 8-S 4=a 5+a 6+a 7+a 8=a 5+a 6+a 7=10. 答案 1012.(2013·南京师大附中模拟)已知数列{a n }是公差不为0的等差数列,{b n }是等比数列,其中a 1=3,b 1=1,a 2=b 2,3a 5=b 3,若存在常数u ,v 对任意正整数n 都有a n =3log u b n +v ,则u +v =________.解析 设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,则⎩⎨⎧3+d =q ,3(3+4d )=q 2,解得d =6,q =9,所以a n =6n -3,b n =9n -1,6n -3=3n log u 9+v -3log u 9对任意正整数n 恒成立,所以⎩⎨⎧log u 9=2,v -3log u 9=-3,解得u =v =3,故u +v =6. 答案 613.(2012·宿迁联考)第30届奥运会在伦敦举行.设数列a n =log n +1(n +2)(n ∈N *),定义使a 1·a 2·a 3…a k 为整数的实数k 为奥运吉祥数,则在区间[1,2 012]内的所有奥运吉祥数之和为________.解析 因为a 1·a 2·a 3…a k =log 23×log 34×…×log k +1(k +2)=log 2(k +2),当log 2(k +2)=m (m ∈Z )时,k =2m -2∈[1,2 012](m ∈Z ),m =2,3,4,…,10,所以在区间[1,2 012]内的所有奥运吉祥数之和为(22-2)+(23-2)+…+(210-2) =(22+23+…+210)-18=211-22=2 026. 答案 2 02614.(2013·盐城模拟)在等差数列{a n }中,a 2=5,a 6=21,记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,若S 2n +1-S n ≤m15对n ∈N *恒成立,则正整数m 的最小值为________. 解析 由题意可知a n =4n -3,且(S 2n +3-S n +1)-(S 2n +1-S n )=1a 2n +3+1a 2n +2-1a n +1=18n +9+18n +5-14n +1<0,所以{S 2n +1-S n }是递减数列,故(S 2n +1-S n )max=S 3-S 1=1a 2+1a 3=1445≤m 15,解得m ≥143,故正整数m 的最小值为5. 答案 5二、解答题(共90分)15.(本小题满分14分)已知数列{a n }和{b n }满足:a 1=λ,a n +1=23a n +n -4,b n=(-1)n (a n -3n +21),其中λ为实数,n 为正整数. (1)对任意实数λ,证明:数列{a n }不是等比数列; (2)试判断数列{b n }是否为等比数列,并证明你的结论.(1)证明 假设存在一个实数λ,使{a n }是等比数列,则有a 22=a 1a 3,即⎝ ⎛⎭⎪⎫23λ-32=λ⎝ ⎛⎭⎪⎫49λ-4⇔49λ2-4λ+9=49λ2-4λ⇔9=0,矛盾,所以{a n }不是等比数列. (2)解 因为b n +1=(-1)n +1[a n +1-3(n +1)+21]=(-1)n +1⎝ ⎛⎭⎪⎫23a n -2n +14=-23(-1)n ·(a n -3n +21)=-23b n .又b 1=-(λ+18),所以当λ=-18时, b n =0(n ∈N *),此时{b n }不是等比数列;当λ≠-18时,b 1=-(λ+18)≠0,由b n +1=-23b n . 可知b n ≠0,所以b n +1b n =-23(n ∈N *).故当λ≠-18时,数列{b n }是以-(λ+18)为首项,-23为公比的等比数列.16.(本小题满分14分)已知数列{a n }的前n 项和是S n ,且S n +12a n =1. (1)求数列{a n }的通项公式;(2)记b n =log 3a 2n4,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n ·b n +2的前n 项和为T n ,证明:T n <316. (1)解 当n =1时,a 1=S 1,由S 1+12a 1=1,解得a 1=23.当n ≥2时,∵S n =1-12a n ,S n -1=1-12a n -1,∴S n -S n -1=12(a n -1-a n ),即a n =12(a n -1-a n ).∴a n =13a n -1.∴{a n }是以23为首项,13为公比的等比数列,其通项公式为a n =23×⎝ ⎛⎭⎪⎫13n -1=2×3-n . (2)证明 ∵b n =log 3a 2n4=2 log 33-n =-2n . ∴1b n ·b n +2=1(-2n )×[-2(n +2)]=14n (n +2)=18⎝ ⎛⎭⎪⎫1n -1n +2. ∴T n =18×⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫1n -2-1n +⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2=181+12-1n +1-1n +2=18⎝ ⎛⎭⎪⎫32-1n +1-1n +2<316. 17.(本小题满分14分)已知等差数列{a n }满足:a 2=5,a 4+a 6=22,数列{b n }满足b 1+2b 2+…+2n -1b n =na n ,设数列{b n }的前n 项和为S n . (1)求数列{a n },{b n }的通项公式; (2)求满足13<S n <14的n 的集合.解 (1)设等差数列{a n }的公差为d ,则a 1+d =5,(a 1+3d )+(a 1+5d )=22. 解得a 1=3,d =2.∴a n =2n +1.在b 1+2b 2+…+2n -1b n =na n 中,令n =1,则b 1=a 1=3,又b 1+2b 2+…+2n b n+1=(n +1)a n +1,∴2n b n +1=(n +1)a n +1-na n .∴2n b n +1=(n +1)(2n +3)-n (2n +1)=4n +3. ∴b n +1=4n +32n .∴b n =4n -12n -1(n ≥2).经检验,b 1=3也符合上式,则数列{b n }的通项公式为b n =4n -12n -1.(2)S n =3+7·12+…+(4n -1)·⎝ ⎛⎭⎪⎫12n -1,12S n =3·12+7·⎝ ⎛⎭⎪⎫122+…+(4n -5)·⎝ ⎛⎭⎪⎫12n -1+(4n -1)⎝ ⎛⎭⎪⎫12n.两式相减得12S n =3+4⎣⎢⎡⎦⎥⎤12+⎝ ⎛⎭⎪⎫122+…+⎝ ⎛⎭⎪⎫12n -1-(4n -1)·⎝ ⎛⎭⎪⎫12n,∴12S n =3+4·12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12-(4n -1)⎝ ⎛⎭⎪⎫12n .∴S n =14-4n +72n -1.∴∀n ∈N *,S n <14. ∵数列{b n }的各项为正, ∴S n 单调递增.又计算得S 5=14-2716<13,S 6=14-3132>13, ∴满足13<S n <14的n 的集合为{n |n ≥6,n ∈N *}. 18.(本小题满分16分)已知函数f (x )=bx +cx +1的图象过原点,且关于点(-1,2)成中心对称.(1)求函数f (x )的解析式; (2)若数列{a n }满足a 1=2,a n +1=f (a n ),试证明数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n a n -1为等比数列,并求出数列{a n }的通项公式. (1)解 ∵f (0)=0,∴c =0. ∵f (x )=bx +cx +1的图象关于点(-1,2)成中心对称, ∴f (x )+f (-2-x )=4,解得b =2. ∴f (x )=2x x +1. (2)证明 ∵a n +1=f (a n )=2a na n +1,∴当n ≥2时,a na n -1a n -1a n -1-1=a n a n -1·a n -1-1a n -1=2a n -1a n -1+12a n -1a n -1+1-1·a n -1-1a n -1=2a n -1a n -1-1·a n -1-1a n -1=2. 又a 1a 1-1=2≠0,∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n a n -1是首项为2,公比为2的等比数列,∴a na n -1=2n,∴a n =2n 2n -1.19.(本小题满分16分)已知数列{a n }的前n 项和为S n ,且满足S n =n 2,数列{b n }满足b n =1a n a n +1,T n 为数列{b n }的前n 项和.(1)求数列{a n }的通项公式a n 和T n ;(2)若对任意的n ∈N *,不等式λT n <n +(-1)n 恒成立,求实数λ的取值范围. 解 (1)当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=2n -1,验证当n =1时,也成立;所以a n =2n -1.b n =1a n a n +1=1(2n -1)(2n +1)=12[ 12n -1-12n +1],所以T n =12⎣⎢⎡⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=n 2n +1].(2)由(1)得λ<(2n +1)[n +(-1)n ]n,当n 为奇数时,λ<(2n +1)(n -1)n =2n -1n -1恒成立, 因为当n 为奇数时,2n -1n -1单调递增, 所以当n =1时,2n -1n -1取得最小值为0, 此时,λ<0. 当n 为偶数时,λ<(2n +1)(n +1)n =2n +1n +3恒成立,因为当n 为偶数时,2n +1n +3单调递增,所以当n =2时,2n +1n +3取得最小值为152. 此时,λ<152.综上所述,对于任意的正整数n ,原不等式恒成立,λ的取值范围是(-∞,0).20.(本小题满分16分)已知数列{a n }满足a 1=a (a >0,a ∈N *),a 1+a 2+…+a n-pa n +1=0(p ≠0,p ≠-1,n ∈N *). (1)求数列{a n }的通项公式a n ;(2)若对每一个正整数k ,若将a k +1,a k +2,a k +3按从小到大的顺序排列后,此三项均能构成等差数列,且公差为d k .①求p 的值及对应的数列{d k }. ②记S k 为数列{d k }的前k 项和,问是否存在a ,使得S k <30对任意正整数k 恒成立?若存在,求出a 的最大值;若不存在,请说明理由.解 (1)因为a 1+a 2+…+a n -pa n +1=0,所以n ≥2时,a 1+a 2+…+a n -1-pa n =0,两式相减,得a n +1a n =p +1p (n ≥2),故数列{a n }从第二项起是公比为p +1p 的等比数列,又当n =1时,a 1-pa 2=0,解得a 2=ap , 从而a n =⎩⎪⎨⎪⎧a (n =1),a p ⎝ ⎛⎭⎪⎫p +1p n -2(n ≥2).(2)①由(1)得a k +1=a p ⎝⎛⎭⎪⎫p +1p k -1, a k +2=a p ⎝⎛⎭⎪⎫p +1p k ,a k +3=a p ⎝ ⎛⎭⎪⎫p +1p k +1, 若a k +1为等差中项,则2a k +1=a k +2+a k +3, 即p +1p =1或p +1p =-2,解得p =-13; 此时a k +1=-3a (-2)k -1,a k +2=-3a (-2)k , 所以d k =|a k +1-a k +2|=9a ·2k -1,若a k +2为等差中项,则2a k +2=a k +1+a k +3, 即p +1p =1,此时无解;若a k +3为等差中项,则2a k +3=a k +1+a k +2, 即p +1p =1或p +1p =-12,解得p =-23, 此时a k +1=-3a 2⎝ ⎛⎭⎪⎫-12k -1,a k +3=-3a 2⎝ ⎛⎭⎪⎫-12k +1,所以d k =|a k +1-a k +3|=9a 8·⎝ ⎛⎭⎪⎫12k -1, 综上所述,p =-13,d k =9a ·2k -1或p =-23, d k =9a 8·⎝ ⎛⎭⎪⎫12k -1. ②当p =-13时,S k =9a (2k -1). 则由S k <30,得a <103(2k -1),当k ≥3时,103(2k -1)<1,所以必定有a <1,所以不存在这样的最大正整数. 当p =-23时,S k =9a 4⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12k ,则由S k <30,得a <403⎣⎢⎡1-⎝ ⎛⎭⎪⎫12k],因为403⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12k >403,所以a =13满足S k <30恒成立;但当a =14时,存在k =5,使得a >403⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12k 即S k <30,所以此时满足题意的最大正整数a =13.。
江苏省2014届高考数学(文)三轮专题复习考前体系通关训练:倒数第1天
倒数第1天高考数学应试技巧经过紧张有序的高中数学总复习,高考即将来临,有人认为高考数学的成败已成定局,其实不然,因为高考数学成绩不仅仅取决于你现有的数学水平,还取决于你的高考临场发挥,所以我们要重视高考数学应试的策略和技巧,这样有利于我们能够“正常发挥”或者“超常发挥”.一、考前各种准备1.工具准备:签字笔、铅笔、橡皮、角尺、圆规、手表、身份证、准考证等.(注意:高考作图时要用铅笔作图,等确认之后也可以用签字笔描)2.知识准备:公式、图表强化记忆,查漏补缺3.生理准备:保持充足的睡眠、调整自己的生物钟、进行适度的文体活动4.心理准备:有自信心,有恰当合理的目标二、临场应试策略1.科学分配考试时间试卷发下来以后,首先按要求填涂好姓名、准考证号等栏目,完成以上工作以后,估计还未到考试时间,可先把试卷快速浏览一遍,对试题的内容、难易有一个大概的了解,做到心中有数,考试开始铃声一响,马上开始答题.2.合理安排答题顺序解题的顺序对考试成绩影响很大,试想考生如果先做最难的综合题,万一做不出,白白浪费了时间,还会对后面的考试产生不良的影响,考试时最好按照以下的顺序:(1)从前到后.高考数学试卷前易后难,前面填空题信息量少、运算量小,易于把握,不要轻易放过,解答题前三、四道也不太难,从前往后做,先把基本分拿到手,就能心里踏实,稳操胜券.(2)先易后难.先做简单题,再做综合题,遇到难题时,一时不会做,做一个记号,先跳过去,做完其它题再来解决它,但要注意认真对待每一道题,力求有效,不能走马观花,有难就退,影响情绪.(3)先熟后生.先做那些知识比较熟悉、题型结构比较熟悉、解题思路比较熟悉的题目,这样,在拿下熟题的同时,可以使思维流畅、达到拿下中高档题目的目的.3.争取一个良好开端良好的开端是成功的一半,从考试心理角度来说,这确实很有道理.拿到试题后,不要急于求成、立即下手解题,在通览一遍整套试题后,稳操一两个易题熟题,让自己产生“旗开得胜”的感觉,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高.4.控制好解题节奏考场上不能一味地图快,题意未清,条件未全,便急于解答,容易失误.应该有快有慢,审题要慢,解答要快.题目中的一些关键字可以用笔圈一下,以提醒自己注意.审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据.而思路一旦形成,则可尽量快速解答.5.确保运算准确,立足一次成功在规定的时间内要完成所有题,时间很紧张,不允许做大量细致的检验工作,所以要尽量准确运算,关键步骤,宁慢勿快,稳扎稳打,不为追求速度而丢掉准确度,力争一次成功.实现一次成功的一个有效措施是做完一道题后如果觉得没有把握随即检查一下(例如可逆代检验、估算检验、赋值检验、极端检验、多法检验).做完当即检查,思路还在,对题目的条件、要求等依然很熟悉,检查起来可以省时间.6.追求规范书写,力争既对又全卷面是考试评分的唯一依据,这就要求不但会而且要对、不但对而且要全,不但全而且要规范.会而不对,令人惋惜;对而不全,得分不高;表述不规范,处处扣分.要处理好“会做”与“得分”的关系.要用心揣摩阅卷时的得分点步骤,得分点步骤不能漏掉,一定要写好,写清楚.例如立体几何论证题,很多因条件不全被扣分.7.面对个别难题,争取部分得分高考成绩是录取的重要依据,相差一分就有可能失去录取资格.解答题多呈现为“一题多问”、难度递进式的“梯度题”,这种题入口宽,入手易,看似难做,实际上也有可得分之处,所以面对“难题”不要胆怯,不要简单放弃,应冷静思考,争取部分得分.那么面对不能全面完成的题目如何分段得分,下面有两种常用方法.①缺步解答.对难题,啃不动时,明智的解题策略是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,能解决到什么程度就解决到什么程度,能写几步就写几步,每写一步就可能得到一定分数.②跳步解答.解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途,如能得到预期结论,就再回头集中力量攻克这一过渡环节,若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;若题目有两问,第二问做不上,可将第一问作为“已知”,完成第二问,这样也可能得分.8.把握“最后10分钟”同学们一般都有这样的感觉,前面10分钟往往是得分的黄金时间,而最后的10分钟往往很难添分加彩,究其原因有两个,一是最后10分钟往往既要复查纠错,又想攻克难题,结果顾此失彼,两头落空;二是考试的最后时刻就象长跑的最后时刻,体力消耗大,思维有所迟钝.那么“最后10分钟”应该做什么呢?可以用来检查前面有疑问没把握的试题或者用来做前面未能解答的试题,但是一定要先解决把握性大一点、相对容易一点、得分可能性大的试题.总之,我们的应试策略是:(1)难易分明,决不耗时;(2)慎于审题,决不懊悔;(3)必求规范,决不失分;(4)细心运算,决不犯错;(5)提防陷阱,决不上当;(6)愿慢求对,决不出错;(7)思路遇阻,决不急躁;(8)奋力拼杀,决不落伍.。
江苏省2014年高考数学二轮专题复习素材:阶段检测卷2
阶段检测卷(二)一、填空题(每小题5分,共70分)1.已知α∈⎝ ⎛⎭⎪⎫π,3π2,cos α=-55,tan 2α等于________.解析 由于α∈⎝ ⎛⎭⎪⎫π,3π2,cos α=-55,则sin α=-1-cos 2α=-255,那么tan α=sin αcos α=2,则tan 2α=2tan α1-tan 2 α=-43. 答案 -432.已知向量a =(2,1),a ·b =10,|a +b |=52,则|b |等于________.解析 由于|a |=5,而|a +b |2=(a +b )2=a 2+2a ·b +b 2=5+2×10+b 2=(52)2,则有b 2=25,解得|b |=5. 答案 53.(2013·苏锡常镇调研)已知钝角α满足cos α=-35,则tan ⎝ ⎛⎭⎪⎫α2+π4的值为________.解析 因为α是钝角,所以α2是锐角, cos α=2cos 2α2-1=-35,所以cos α2=55,sin α2=255,tan α2=2, 所以tan ⎝ ⎛⎭⎪⎫α2+π4=2+11-2=-3.答案 -34.已知向量a ,b 满足|a |=2,|b |=1,且(a +b )⊥⎝ ⎛⎭⎪⎫a -52b ,则a 与b 的夹角为________.解析 因为(a +b )⊥⎝ ⎛⎭⎪⎫a -52b ,所以(a +b )·⎝ ⎛⎭⎪⎫a -52b =a 2-52b 2-32a·b =0.又因为|a |=2,|b |=1,所以4-52-32a·b =0.所以a·b =1.又a·b =|a ||b |cos 〈a ,b 〉=1,所以cos 〈a ,b 〉=12.又a 与b 的夹角的取值范围是[0,π],所以a 与b 的夹角为π3. 答案 π35.(2013·南京模拟)函数y =A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的图象如图所示,则f (0)=________.解析 由图知,A =2.函数的周期(用区间长度表示)为8π3-⎝ ⎛⎭⎪⎫-4π3=4π,∴2πω=4π,ω=12.又∵⎝ ⎛⎭⎪⎫-4π3,0在函数的图象上,∴2sin ⎣⎢⎡⎦⎥⎤12×⎝ ⎛⎭⎪⎫-4π3+φ=0, 得12×⎝ ⎛⎭⎪⎫-4π3+φ=0,即φ=2π3.∴函数的解析式为f (x )=2sin ⎝ ⎛⎭⎪⎫x 2+2π3,∴f (0)= 3. 答案36.若M 为△ABC 所在平面内一点,且满足(MB →-MC →)·(MB →+MC →-2MA →)=0,则△ABC 为________三角形.解析 由(MB →-MC →)·(MB →+MC →-2MA →)=0,可知CB →·(AB →+AC →)=0,设BC 的中点为D ,则AB →+AC →=2A D →,故CB →·AD →=0,所以CB →⊥AD →.又D 为BC 中点,故△ABC 为等腰三角形. 答案 等腰7.在△ABC 中,AB =2,AC =3,BC =4,则角A ,B ,C 中最大角的余弦值为________.解析 根据三角形的性质:大边对大角,由此可知角A 最大,由余弦定理得cos A =b 2+c 2-a 22bc =32+22-422×3×2=-14. 答案 -148.(2012·南京、盐城模拟)已知正△ABC 的边长为1,CP →=7CA →+3CB →,则CP →·AB →=________.解析 CP →·AB →=(7CA →+3CB →)·AB →=7CA →·AB →+3CB →·AB→=-72+32=-2. 答案 -29.(2013·盐城调研)△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,向量m =(2sin B,2-cos 2B ),n =⎝ ⎛⎭⎪⎫2sin 2⎝ ⎛⎭⎪⎫π4+B 2,-1,m ⊥n ,∠B =________.解析 由m ⊥n ,得m ·n =0,所以4sin B ·sin 2⎝ ⎛⎭⎪⎫π4+B 2+cos 2B -2=0,所以2sinB ⎣⎢⎡⎦⎥⎤1-cos ⎝ ⎛⎭⎪⎫π2+B +cos 2B -2=0, 即2sin B +2sin 2B +1-2sin 2B -2=0, 也即sin B =12,又因为0<B <π,所以B =π6或56π. 答案 π6或56π10.如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为________. 解析 设AB =c ,则AD =c ,BD =2c 3,BC =4c3, 在△ABD 中,由余弦定理得cos A =c 2+c 2-43c 22c2=13,sin A =223,在△ABC 中,由正弦定理得csin C =4c 3223,解得sin C=66. 答案 6611.在△ABC 所在的平面上有一点P 满足P A →+PB →+PC →=AB →,则△PBC 与△ABC 的面积之比是________.解析 因为P A →+PB →+PC →=AB →,所以P A →+PB →+PC →+BA →=0,即PC →=2AP →,所以点P 是CA 边上的靠近A 点的一个三等分点,故S △PBC S △ABC =PC AC =23. 答案 2312.在△ABC 中,若AB =1,AC =3|A B →+A C →|=|B C →|,则BA →·BC →|BC →|=______.解析 如图, AB→+AC →=AD →,依题意,得|AD →|=|BC →|,所以四边形ABDC 是矩形,∠BAC =90°. 因为AB =1,AC =3,所以BC =2.cos ∠ABC =AB BC =12,BA →·BC →|BC →|=|BA →|| BC →|cos ∠ABC| BC →|=|BA→|cos ∠ABC =12. 答案 1213.已知f (x )=sin x ,x ∈R ,g (x )的图象与f (x )的图象关于点⎝ ⎛⎭⎪⎫π4,0对称,则在区间[0,2π]上满足f (x )≤g (x )的x 的范围是________.解析 设(x ,y )为g (x )的图象上任意一点,则其关于点⎝ ⎛⎭⎪⎫π4,0对称的点为⎝ ⎛⎭⎪⎫π2-x ,-y ,由题意知该点在f (x )的图象上,所以-y =sin ⎝ ⎛⎭⎪⎫π2-x , 即g (x )=-sin ⎝ ⎛⎭⎪⎫π2-x =-cos x ,由sin x ≤-cos x ,得sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4≤0,又因为x ∈[0,2π],从而解得3π4≤x ≤7π4. 答案 ⎣⎢⎡⎦⎥⎤3π4,7π414.(2013·泰州模拟)如图,在直角三角形ABC 中,AC =3,BC =1,点M ,N 分别是AB ,BC 的中点,点P 是△ABC (包括边界)内任一点,则AN →·MP →的取值范围为________. 解析 以点C 为原点,CB 所在直线为x 轴,CA 所在直线为y 轴,建立如图所示直角坐标系,设P (x ,y ),则由题可知B (1,0),A (0,3),N ⎝ ⎛⎭⎪⎫12,0,M ⎝ ⎛⎭⎪⎫12,32,所以AN →=⎝ ⎛⎭⎪⎫12,-3,MP →=⎝ ⎛⎭⎪⎫x -12,y -32,所以AN →·MP→=x 2-14-3y +32=x 2-3y +54,直线AB 的方程为3x +y -3=0.由题可知⎩⎨⎧x ≥0,y ≥0,3x +y -3≤0,由线性规划知识可知,当直线x 2-3y +54-z =0过点A 时有最小值-74,过点B 时有最大值74. 答案 ⎣⎢⎡⎦⎥⎤-74,74二、解答题(共90分)15.(本小题满分14分)已知a =(sin α,1), b =(cos α,2),α∈⎝ ⎛⎭⎪⎫0,π4.(1)若a ∥b ,求tan α的值; (2)若a ·b =125,求sin ⎝ ⎛⎭⎪⎫2α+π4的值.解 (1)因为a ∥b ,所以2sin α=cos α,所以tan α=12. (2)因为a ·b =125,所以sin αcos α+2=125即sin 2α=45. 因为α∈⎝ ⎛⎭⎪⎫0,π4,所以2α∈⎝ ⎛⎭⎪⎫0,π2,所以cos 2α=1-sin 22α=35.所以sin ⎝ ⎛⎭⎪⎫2α+π4=sin 2αcos π4+cos 2αsin π4=45×22+35×22=7210.16.(本小题满分14分)已知函数f (x )=3sin 2x +sin x cos x ,x ∈⎣⎢⎡⎦⎥⎤π2,π.(1)求f (x ) 的零点;(2)求f (x )的最大值和最小值.解 (1)令f (x )=0得sin x ·(3sin x +cos x )=0, 所以sin x =0,或tan x =-33. 由sin x =0,x ∈⎣⎢⎡⎦⎥⎤π2,π,得x =π;由tan x =-33,x ∈⎣⎢⎡⎦⎥⎤π2,π,得x =5π6.综上,函数f (x )在⎣⎢⎡⎦⎥⎤π2,π上的零点为5π6或π.(2)f (x )=32(1-cos 2x )+12sin 2x =sin ⎝ ⎛⎭⎪⎫2x -π3+32.因为x ∈⎣⎢⎡⎦⎥⎤π2,π,所以2x -π3∈⎣⎢⎡⎦⎥⎤2π3,5π3.当2x -π3=2π3,即x =π2时,f (x )的最大值为3; 当2x -π3=3π2,即x =11π12时,f (x )的最小值为-1+32.17.(本小题满分14分)已知函数f (x )=M sin(ωx +φ)(M >0,ω>0,|φ|<π2)的部分图象如图所示.(1)求函数f (x )的解析式;(2)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若(2a -c )cos B =b cos C ,求f ⎝ ⎛⎭⎪⎫A 2的取值范围.解 (1)由图象知M =1,f (x )的最小正周期T =4×⎝ ⎛⎭⎪⎫5π12-π6=π,故ω=2πT =2.将点⎝ ⎛⎭⎪⎫π6,1代入f (x )的解析式得sin ⎝ ⎛⎭⎪⎫π3+φ=1,即π3+φ=2k π+π2,φ=2k π+π6,k ∈Z , 又|φ|<π2∴φ=π6.故函数f (x )的解析式为f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6.(2)由(2a -c )cos B =b cos C ,得 (2sin A -sin C )cos B =sin B cos C , ∴2sin A cos B =sin(B +C )=sin A . ∵sin A ≠0,∴cos B =12, ∴B =π3,∴A +C =2π3. ∵f ⎝ ⎛⎭⎪⎫A 2=sin ⎝ ⎛⎭⎪⎫A +π6, 又∵0<A <2π3,∴A +π6∈⎝ ⎛⎭⎪⎫π6,56π.∴sin ⎝ ⎛⎭⎪⎫A +π6∈⎝ ⎛⎦⎥⎤12,1,∴f ⎝ ⎛⎭⎪⎫A 2∈⎝ ⎛⎦⎥⎤12,1.18.(本小题满分16分)(2013·湖北卷)在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c .已知cos 2A -3cos(B +C )=1. (1)求角A 的大小;(2)若△ABC 的面积S =53,b =5,求sin B sin C 的值. 解 (1)由cos 2A -3cos(B +C )=1, 得2cos 2A +3cos A -2=0, 即(2cos A -1)(cos A +2)=0, 解得cos A =12或cos A =-2(舍去). 因为0<A <π,所以A =π3,(2)由S =12bc sin A =12bc ·32=34bc =53,得bc =20.又b =5,知c =4. 由余弦定理,得a 2=b 2+c 2-2bc cos A =25+16-20=21,故a =21. 又由正弦定理得sin B sin C =b a sin A ·ca sin A = bc a 2sin 2A =2021×34=57. 19.(本小题满分16分)(2013·江西卷)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知cos C +(cos A -3sin A )cos B =0. (1)求角B 的大小;(2)若a +c =1,求b 的取值范围.解 (1)由已知得-cos(A +B )+cos A cos B -3sin A cos B =0,即有sin A sin B -3sin A cos B =0,因为sin A ≠0,所以sin B -3cos B =0, 即3cos B =sin B . 所以tan B =3, 又因为0<B <π, 所以B =π3.(2)由余弦定理得b 2=a 2+c 2-2ac cos B , 因为a +c =1,cos B =12,所以b 2=(a +c )2-3ac ≥(a +c )2-3⎝⎛⎭⎪⎫a +c 22=14(a +c )2=14,∴b ≥12. 又a +c >b ,∴b <1,∴12≤b <1.20.(本小题满分16分)(2013·江苏卷)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运动的速度为130 m/min ,山路AC 长为1 260 m ,经测量cos A =1213,cos C =35. (1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?解 (1)在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513, sin C =45.从而sin B =sin[π-(A +C )]=sin(A +C )=sin A cos C +cos A sin C =513×35+1213×45=6365.由正弦定理AB sin C =AC sin B ,得AB =ACsin B ×sin C = 1 2606365×45=1 040(m). 所以索道AB 的长为1 040 m.(2)假设乙出发t 分钟后,甲、乙两游客距离为d ,此时,甲行走了(100+50t )m ,乙距离A 处130t m ,所以由余弦定理得d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50),因0≤t ≤1 040130,即0≤t ≤8,故当t =3537(min)时,甲、乙两游客距离最短.(3)由正弦定理BC sin A =AC sin B ,得BC =AC sin B ×sin A =1 2606365×513=500(m).乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710 m 才能到达C .设乙步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得1 25043≤v ≤62514,所以为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在⎣⎢⎡⎦⎥⎤1 25043,62514(单位:m/min)范围内.备课札记:。
2014年高三段考4(从中全样)
英语1
76 74 66 68 70 78 72 70 64 66 66 66 70 72 74 74 68 64 78 74 68 70 72 66 72 64 64 66 70 60 70 60 70 52 80 68 64 64 66 74 64 68 60 62 72 56 70 68 66 66 74 66 64 72
英语2
47.5 47 45.5 45.5 43 47.5 46.5 45.5 38.5 39 45.5 44 44.5 46.5 48 49 41 43.5 45 45 43.5 42 47.5 44.5 40.5 40 42.5 44 43 46 42 44.5 42 38.5 45 43 41.5 42 44 49 31.5 43.5 33 42 44 35 45 38 35.5 45 42 47.5 41 46.5
班级 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
中学代号 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001 0184001
2014年江苏高考数学试题及详细答案(含附加题)
2014年江苏高考数学试题数学Ⅰ试题参考公式:圆柱的侧面积公式:S 圆柱=cl , 其中c 是圆柱底面的周长,l 为母线长. 圆柱的体积公式:V 圆柱=Sh ,其中S 是圆柱的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.........1.已知集合{2134}A =--,,,,{123}B =-,,,则A B =.【答案】{13}-,2.已知复数2(52)z i =+(i 为虚数单位),则z 的实部为. 【答案】213.右图是一个算法流程图,则输出的n 的值是. 【答案】54.从1236,,,这4个数中一次随机地取2个数,则所取2个数的乘积为6的 概率是. 【答案】135.已知函数cos y x =与sin(2)(0)y x ϕϕ=+<π≤,它们的图象有一个横坐标为 3π的交点,则ϕ的值是. 【答案】6π6.为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm ),所得数据均在区间[80130],上,其频率分布直方图如图所示,则在抽测的60株树木中,有株 树木的底部周长小于100 cm . 【答案】247.在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+, 则6a 的值是. 【答案】48.设甲、乙两个圆柱的底面积分别为12S S ,,体积分别为12V V ,,若它们的侧面积相等,且1294S S =,则12V V 的值是. 【答案】329.在平面直角坐标系xOy 中,直线230x y +-=被圆22(2)(1)4x y -++=截得的弦长为. 【答案】255510.已知函数2()1f x x mx =+-,若对任意[1]x m m ∈+,,都有()0f x <成立,则实数m 的取值范围是. 【答案】202⎛⎫- ⎪⎝⎭,11.在平面直角坐标系xOy 中,若曲线2b y ax x =+(a b ,为常数)过点(25)P -,,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b +的值是. 【答案】3-12.如图,在平行四边形ABCD 中,已知,85AB AD ==,,32CP PD AP BP =⋅=,,则AB AD ⋅的 值是. 【答案】2213.已知()f x 是定义在R 上且周期为3的函数,当[03)x ∈,时,21()22f x x x =-+.若函数()y f x a =-在区间[34]-,上有10个零点(互不相同),则实数a 的取值范围是. 【答案】()102,14.若ABC ∆的内角满足sin 2sin 2sin A B C +=,则cos C 的最小值是.【答案】624- 二、解答题:本大题共6小题, 共计90 分. 请在答题卡指定区域内........作答, 解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14 分)已知()2απ∈π,,5sin 5α=. (1)求()sin 4απ+的值;(2)求()cos 26α5π-的值.【答案】本小题主要考查三角函数的基本关系式、两角和与差及二倍角的公式,考查运算求解能 力. 满分14分.(1)∵()5sin 25ααπ∈π=,,,∴225cos 1sin 5αα=--=-()210sin sin cos cos sin (cos sin )444210αααααπππ+=+=+=-;(2)∵2243sin 22sin cos cos 2cos sin 55αααααα==-=-=,∴()()3314334cos 2cos cos2sin sin 2666252510ααα5π5π5π+-=+=-⨯+⨯-=-.16.(本小题满分14 分)如图,在三棱锥P ABC -中,D E F ,,分别为棱PC AC AB ,,的中点.已知6PA AC PA ⊥=,,8BC =,5DF =.(1)求证:直线P A ∥平面DEF ; (2)平面BDE ⊥平面ABC .【答案】本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系, 考查空间想象能力和推理论证能力.满分14分. (1)∵D E ,为PC AC ,中点 ∴DE ∥P A ∵PA ⊄平面DEF ,DE ⊂平面DEF ∴P A ∥平面DEF (2)∵D E ,为PC AC ,中点 ∴132DE PA ==∵E F ,为AC AB ,中点 ∴142EF BC ==∴222DE EF DF +=∴90DEF ∠=°,∴DE ⊥EF ∵//DE PA PA AC ⊥,,∴DE AC ⊥ ∵ACEF E =∴DE ⊥平面ABC∵DE ⊂平面BDE , ∴平面BDE ⊥平面ABC .17.(本小题满分14 分)如图,在平面直角坐标系xOy 中,12F F ,分别是椭圆22221(0)y x a b a b +=>>的左、右焦点,顶点B 的坐标为(0)b ,,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结1FC . (1)若点C 的坐标为()4133,,且22BF =,求椭圆的方程;(2)若1FC AB ⊥,求椭圆离心率e 的值.【答案】本小题主要考查椭圆的标准方程与几何性质、直线与直线的位置关系等基础知识,考查运 算求解能力. 满分14分.(1)∵()4133C ,,∴22161999a b+=∵22222BF b c a =+=,∴22(2)2a ==,∴21b =∴椭圆方程为2212x y += (2)设焦点12(0)(0)()F c F c C x y -,,,,,∵A C ,关于x 轴对称,∴()A x y -,∵2B F A ,,三点共线,∴b y b c x +=--,即0bx cy bc --=① ∵1FC AB ⊥,∴1yb xc c ⋅=-+-,即20xc by c -+=② ①②联立方程组,解得2222222ca x b c bc y b c ⎧=⎪-⎨⎪=-⎩∴()2222222a c bc C b c b c --, ∵C 在椭圆上,∴()()222222222221a cbc b c b c a b --+=,化简得225c a =,∴55c a =, 故离心率为5518.(本小题满分16分)如图,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80m .经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),4tan 3BCO ∠=. (1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?解:本小题主要考查直线方程、直线与圆的位置关系和解三角形等基础知识,考查建立数学模型及运用数学知识解决实际问题的能力.满分16分. 解法一:(1) 如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系xOy .由条件知A (0, 60),C (170, 0), 直线BC 的斜率k BC =-tan ∠BCO =-43.又因为AB ⊥BC ,所以直线AB 的斜率k AB =34. 设点B 的坐标为(a ,b ),则k BC =04,1703b a -=--k AB =603,04b a -=- 解得a =80,b=120. 所以BC =22(17080)(0120)150-+-=. 因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m,OM =d m,(0≤d ≤60). 由条件知,直线BC 的方程为4(170)3y x =--,即436800x y +-= 由于圆M 与直线BC 相切,故点M (0,d )到直线BC 的距离是r , 即|3680|680355d dr --==. 因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大. 解法二:(1)如图,延长OA , CB 交于点F . 因为tan ∠BCO =43.所以sin ∠FCO =45,cos ∠FCO =35.因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803. CF =850cos 3OC FCO =∠,从而5003AF OF OA =-=. 因为OA ⊥OC ,所以cos ∠AFB =sin ∠FCO ==45, 又因为AB ⊥BC ,所以BF =AF cos ∠AFB ==4003,从而BC =CF -BF =150. 因此新桥BC 的长是150 m.(2)设保护区的边界圆M 与BC 的切点为D ,连接MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m(0≤d ≤60).因为OA ⊥OC ,所以sin ∠CFO =cos ∠FCO , 故由(1)知,sin ∠CFO =3,68053MD MD r MF OF OM d ===--所以68035d r -=. 因为O 和A 到圆M 上任意一点的距离均不少于80 m,所以80(60)80r d r d -⎧⎨--⎩≥≥即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥解得1035d ≤≤故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大.19.(本小题满分16分)已知函数()e e x x f x -=+其中e 是自然对数的底数. (1)证明:()f x 是R 上的偶函数;(2)若关于x 的不等式()e 1x mf x m -+-≤在(0)+∞,上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+成立.试比较1e a -与e 1a -的大小,并证明你的结论.【答案】本小题主要考查初等函数的基本性质、导数的应用等基础知识,考查综合运用数学思想 方法分析与解决问题的能力.满分16分.(1)x ∀∈R ,()e e ()x x f x f x --=+=,∴()f x 是R 上的偶函数 (2)由题意,(e e )e 1x x x m m --++-≤,即(e e 1)e 1x x x m --+--≤ ∵(0)x ∈+∞,,∴e e 10x x -+->,即e 1e e 1x x x m ---+-≤对(0)x ∈+∞,恒成立令e (1)x t t =>,则211t m t t --+≤对任意(1)t ∈+∞,恒成立∵2211111(1)(1)113111t t t t t t t t --=-=---+-+-+-++-≥,当且仅当2t =时等号成立 ∴13m -≤(3)'()e e x x f x -=-,当1x >时'()0f x >,∴()f x 在(1)+∞,上单调增 令3()(3)h x a x x =-+,'()3(1)h x ax x =--∵01a x >>,,∴'()0h x <,即()h x 在(1)x ∈+∞,上单调减∵存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+,∴1(1)e 2e f a =+<,即()11e 2ea >+ ∵e-1e 111ln ln ln e (e 1)ln 1ea a aa a a ---=-=--+设()(e 1)ln 1m a a a =--+,则()e 1e 111'()1e 2ea m a a a a ---=-=>+,当()11e e 12e a +<<-时,'()0m a >,()m a 单调增;当e 1a >-时,'()0m a <,()m a 单调减 因此()m a 至多有两个零点,而(1)(e)0m m == ∴当e a >时,()0m a <,e 11e a a --<; 当()11e e 2e a +<<时,()0m a <,e 11e a a -->; 当e a =时,()0m a =,e 11e a a --=.20.(本小题满分16分)设数列{}n a 的前n 项和为n S .若对任意的正整数n ,总存在正整数m ,使得n m S a =,则称{}n a 是“H 数列”.(1)若数列{}n a 的前n 项和2()n n S n *=∈N ,证明:{}n a 是“H 数列”;(2)设{}n a 是等差数列,其首项11a =,公差0d <.若{}n a 是“H 数列”,求d 的值;(3)证明:对任意的等差数列{}n a ,总存在两个“H 数列”{}n b 和{}n c ,使得()n n n a b c n *=+∈N 成立.【答案】本小题主要考查数列的概念、等差数列等基础知识,考查探究能力及推理论证能力, 满分16分.(1)当2n ≥时,111222n n n n n n a S S ---=-=-=当1n =时,112a S ==∴1n =时,11S a =,当2n ≥时,1n n S a += ∴{}n a 是“H 数列” (2)1(1)(1)22n n n n n S na d n d --=+=+ 对n *∀∈N ,m *∃∈N 使n m S a =,即(1)1(1)2n n n d m d -+=+- 取2n =得1(1)d m d +=-,12m d=+∵0d <,∴2m <,又m *∈N ,∴1m =,∴1d =-(3)设{}n a 的公差为d令111(1)(2)n b a n a n a =--=-,对n *∀∈N ,11n n b b a +-=- 1(1)()n c n a d =-+,对n *∀∈N ,11n n c c a d +-=+则1(1)n n n b c a n d a +=+-=,且{}{}n n b c ,为等差数列 {}n b 的前n 项和11(1)()2n n n T na a -=+-,令1(2)n T m a =-,则(3)22n n m -=+ 当1n =时1m =; 当2n =时1m =;当3n ≥时,由于n 与3n -奇偶性不同,即(3)n n -非负偶数,m *∈N 因此对n ∀,都可找到m *∈N ,使n m T b =成立,即{}n b 为“H 数列”. {}n c 的前n项和1(1)()2n n n R a d -=+,令1(1)()n m c m a d R =-+=,则(1)12n n m -=+ ∵对n *∀∈N ,(1)n n -是非负偶数,∴m *∈N即对n *∀∈N ,都可找到m *∈N ,使得n m R c =成立,即{}n c 为“H 数列” 因此命题得证.数学Ⅱ(附加题)21.【选做题】本题包括A, B,C,D 四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A.【选修4-1:几何证明选讲】(本小题满分10分)如图,AB 是圆O 的直径,C 、 D 是圆O 上位于AB 异侧的两点 证明:∠OCB =∠D .本小题主要考查圆的基本性质,考查推理论证能力.满分10分. 证明:因为B , C 是圆O 上的两点,所以OB =OC . 故∠OCB =∠B .又因为C , D 是圆O 上位于AB 异侧的两点, 故∠B ,∠D 为同弧所对的两个圆周角, 所以∠B =∠D . 因此∠OCB =∠D .B.【选修4-2:矩阵与变换】(本小题满分10分)已知矩阵121x -⎡⎤=⎢⎥⎣⎦A ,1121⎡⎤=⎢⎥-⎣⎦B ,向量2y ⎡⎤=⎢⎥⎣⎦α,x y ,为实数,若A α=B α,求x y ,的值. 【答案】本小题主要考查矩阵的乘法等基础知识,考查运算求解能力.满分10分. 222y xy -⎡⎤=⎢⎥+⎣⎦A α,24y y +⎡⎤=⎢⎥-⎣⎦B α,由A α=B α得22224y y xy y -=+⎧⎨+=-⎩,,解得142x y =-=, C.【选修4-4:坐标系与参数方程】(本小题满分10分) 在平面直角坐标系xOy 中,已知直线l 的参数方程为212222x t y t ⎧=-⎪⎨⎪=+⎩,(t 为参数),直线l 与抛物线24y x =交于A B ,两点,求线段AB 的长.【答案】本小题主要考查直线的参数方程、抛物线的标准方程等基础知识,考查运算求解能力.满分10分.直线l :3x y +=代入抛物线方程24y x =并整理得21090x x -+= ∴交点(12)A ,,(96)B -,,故||82AB = D.【选修4-5:不等式选讲】(本小题满分10分) 已知x >0, y >0,证明:(1+x +y 2)( 1+x 2+y )≥9xy.本小题主要考查算术一几何平均不等式.考查推理论证能力.满分10分. 证明:因为x >0, y >0, 所以1+x +y 2≥2330xy >,1+x 2+y ≥2330x y >,所以(1+x +y 2)( 1+x 2+y )≥223333xy x y ⋅=9xy.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同. (1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为123x x x ,,,随机变量X 表示123x x x ,,中的最大数,求X 的概率分布和数学期望()E X .22.【必做题】本小题主要考查排列与组合、离散型随机变量的均值等基础知识,考查运算求解能力.满分10分.(1)一次取2个球共有29C 36=种可能情况,2个球颜色相同共有222432C C C 10++=种可能情况∴取出的2个球颜色相同的概率1053618P ==(2)X 的所有可能取值为432,,,则4449C 1(4)C 126P X === 3131453639C C C C 13(3)C 63P X +=== 11(2)1(3)(4)14P X P X P X ==-=-==∴X 的概率分布列为X 2 3 4 P111413631126故X 的数学期望1113120()23414631269E X =⨯+⨯+⨯=23.(本小题满分10分)已知函数0sin ()(0)x f x x x=>,设()n f x 为1()n f x -的导数,n *∈N .(1)求()()122222f f πππ+的值;(2)证明:对任意的n *∈N ,等式()()124442n n nf f -πππ+=成立.23.【必做题】本题主要考查简单的复合函数的导数,考查探究能力及运用数学归纳法的推理论证能力.满分10分.(1)解:由已知,得102sin cos sin ()(),x x x f x f x x x x '⎛⎫'===- ⎪⎝⎭于是21223cos sin sin 2cos 2sin ()(),x x x x x f x f x x x x x x ''⎛⎫⎛⎫'==-=--+ ⎪ ⎪⎝⎭⎝⎭所以12234216(),(),22f f πππππ=-=-+ 故122()() 1.222f f πππ+=- (2)证明:由已知,得0()sin ,xf x x =等式两边分别对x 求导,得00()()cos f x xf x x '+=, 即01()()cos sin()2f x xf x x x π+==+,类似可得 122()()sin sin()f x xf x x x π+=-=+,2333()()cos sin()2f x xf x x x π+=-=+, 344()()sin sin(2)f x xf x x x π+==+. 下面用数学归纳法证明等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立. (i)当n =1时,由上可知等式成立.(ii)假设当n =k 时等式成立, 即1()()sin()2k k k kf x xf x x π-+=+. 因为111[()()]()()()(1)()(),k k k k k k k kf x xf x kf x f x xf x k f x f x --+'''+=++=++(1)[sin()]cos()()sin[]2222k k k k x x x x ππππ+''+=+⋅+=+, 所以1(1)()()k k k f x f x +++(1)sin[]2k x π+=+. 所以当n=k +1时,等式也成立.综合(i),(ii)可知等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立. 令4x π=,可得1()()sin()44442n n n nf f πππππ-+=+(n ∈*N ). 所以12()()4442n n nf f πππ-+=(n ∈*N ).。
(三轮考前体系通关)2014年高考数学二轮复习简易通 倒数第4天 理 新人教A版
倒数第4天 计数原理、概率与统计[保温特训] (时间:40分钟)1.用0、1、2、3组成个位数字不是1且没有重复数字的四位数共有( ).A .10个B .12个C .14个D .16个解析 分两类:一类是0放个位,有A 33=6个;另一类0放十位或百位,有A 12A 12A 22=8个,故共有6+8=14个. 答案 C2.二项式⎝⎛⎭⎪⎫x 2-1x n的展开式中各项系数的和为( ).A .32B .-32C .0D .1 解析 令x =1可得各项系数的和为0. 答案 C3.已知随机变量X 服从正态分布N (2,σ2),P (X ≤4)=0.84,则P (X <0)=( ).A .0.68B .0.32C .0.16D .0.84 解析 P (X <0)=P (X >4)=1-P (X ≤4)=0.16. 答案 C4.如图是根据某校10名高一学生的身高(单位:cm)数据画出的茎叶图,其中左边的数字从左到右分别表示学生身高的百位数字和十位数字,右边的数字表示学生身高的个位数字,则这10名学生身高数据的中位数是( ).A .161B .162C .163D .164 解析 中位数为161+1632=162.答案 B5.200辆汽车经过某一雷达地区,时速频率分布直方图如图所示,则时速超过60 km/h 的汽车数量为( ).A .65辆B .76辆C .88辆D .95辆解析 时速超过60 km/h 的汽车数量为200×(0.010+0.028)×10=76(辆). 答案 B6.某公司有普通职员150人,中级管理人员40人,高级管理人员10人,现采用分层抽样的方法从这200人中抽取40人进行问卷调查,若在已抽取的40人的答卷中随机抽取一张,则所抽取的恰好是一名高级管理人员的答卷的概率为( ).A.14B.15C.120D.1100解析 由分层抽样知,在普通职员中抽30人,中级管理人员中抽8人,高级管理人员中抽2人,由古典概型知,所抽取的恰好是一名高级管理人员的答卷的概率为120. 答案 C7.若在区间⎣⎢⎡⎦⎥⎤-π2,π2上随机取一个数x ,则cos x 的值介于0和12之间的概率为( ).A.13B.2πC.12D.23解析 当-π2≤x ≤π2时,由0≤cos x ≤12,得-π2≤x ≤-π3或π3≤x ≤π2,根据几何概型的概率P =π6+π6π=13.答案 A8.某班班会准备从含甲、乙的7人中选取4人发言,要求甲、乙两人至少有一人参加,且若甲、乙同时参加,则他们发言时顺序不能相邻,那么不同的发言顺序有( ).A .720种B .520种C .600种D .360种解析 分两类:第一类,甲、乙两人只有一人参加,则不同的发言顺序有C 12C 35A 44种;第二类:甲、乙同时参加,则不同的发言顺序有C 22C 25A 22A 23种.共有:C 12C 35A 44+C 22C 25A 22A 23=600(种). 答案 C9.⎝ ⎛⎭⎪⎫x +2x 2n 展开式中只有第六项的二项式系数最大,则展开式的常数项是( ).A .360B .180C .90D .45解析 二项式系数为C rn ,只有第六项最大,即C 5n 最大,则n =10,所以T r +1=C r 10(x )10-r⎝ ⎛⎭⎪⎫2x 2r =,由5-52r =0得r =2,故常数项为T 3=C 21022=180.答案 B10.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加一个兴趣小组的概率为( ).A.13B.12C.23D.34解析 甲、乙两位同学参加3个兴趣小组的种数有:3×3=9种,其中甲、乙两位同学同时参加一个兴趣小组的种数有:3种,由古典概型得所求概率为:P =39=13.答案 A11.记圆O :x 2+y 2=π2内的正弦曲线y =sin x 与x 轴围成的区域为D ,随机地往圆O 内投一个点A ,则点A 落在区域D 内的概率是( ).A.4π2 B.4π3 C.2π2 D.2π3 解析 结合图形可得,D 区域面积=2⎠⎛0π sin x d x =2()-cos x ⎪⎪⎪π0=4,由几何概型可得概率为4π·π2=4π3.答案 B12.某大型超市销售的乳类商品有四种:纯奶、酸奶、婴幼儿奶粉、成人奶粉,且纯奶、酸奶、婴幼儿奶粉、成人奶粉分别有30种、10种、35种、25种不同的品牌,现采用分层抽样的方法从中抽取一个容量为n 的样本进行三聚氰胺安全检测,若抽取的婴幼儿奶粉的品牌是7种,则n =________.解析 由题可知,四种商品的总数为30+10+35+25=100,而在35种婴幼儿奶粉的品牌中抽取了7种,所以抽取的概率为735=15,所以需要抽取的样本容量为100×15=20,故样本容量为20. 答案 2013.张、王两家夫妇各带1个小孩一起到动物园游玩,购票后排队依次入园,为安全起见,首尾一定要排两位爸爸,另外,两个小孩一定要排在一起,则这6人的入园顺序排法种数共有________种.解析 排法种数有:A 22A 22A 33=24. 答案 24 14.在⎝⎛⎭⎫3x -23x 11 的展开式中任取一项,设所取项为有理项的概率为α,则⎠⎛01 x α d x=________.解析 T r +1=C r11·(3x )11-r·⎝⎛⎭⎫-23x r =C r 11·311-r .(-2)r .,r =0,1, (11)其中只有第4项和第10项是有理项,故所求概率为212=16.答案 6715.辽宁某大学对参加全运会的志愿者实施“社会教育实践”学分考核,因该批志愿者表现良好,该大学决定考核只有合格和优秀两个等次,若某志愿者考核为合格,授予0.5个学分;考核为优秀,授予1个学分,假设该校志愿者甲、乙、丙考核为优秀的概率分别为45、23、23,他们考核所得的等次相互独立. (1)求在这次考核中,志愿者甲、乙、丙三人中至少有一名考核为优秀的概率; (2)记在这次考核中甲、乙、丙三名志愿者所得学分之和为随机变量X ,求随机变量X 的分布列.(3)求X 的数学期望.解 (1)记“甲考核为优秀”为事件A ,“乙考核为优秀”为事件B ,“丙考核为优秀”为事件C ,“甲、乙、丙至少有一名考核为优秀”为事件E.则P (E )=1-P (A B C )=1-P (A )P (B )P (C )=1-15×13×13=4445.(2)由题意,得X 的可能取值是32,2,52,3.因为P (X =32)=P (A B C )=145,P (X =2)=P (A B C )+P (A B C )+P (A B C )=845, P (X =52)=P (AB C )+P (A B C )+P (A B C )=2045=49, P (X =3)=P (ABC )=1645,所以X 的分布列为:(3)由(2)知E (X )=2×45+2×45+2×9+3×45=90=30.[知识排查]1.选用两个计数原理的关键是什么?(弄清分类与分步的区别)2.排列与组合的区别和联系你清楚吗?解决排列组合综合题可别忘了“合理分类、先选后排”啊!3.排列应用题的解决策略可有直接法和间接法;方法常用列表法、树状图法、优先排列法、捆绑法、插空法、隔板法;对附加条件的组合应用题,你对“含”与“不含”,“至多”与“至少”型题一定要注意分类或从反面入手啊!4.解排列组合问题的规律是:相邻问题捆绑法,不相邻问题插空法,多排问题单排法,定位问题优先法,定序问题倍缩法,多元问题分类法,选取问题先选后排法,至多至少问题间接法.5.求二项展开式特定项一般要用什么?(通项公式)求解二项展开式系数问题的常用方法是什么?6.二项式系数与项的系数的区别你清楚了吗?求系数问题可常用赋值法啊!求二项展开式中系数最大的项(或系数绝对值)最大的项你清楚方法了吗?可千万要注意解法技巧变形啊!7.二项式(a +b)n展开式的各项的二项式系数之和、奇数项的二项式系数之和、偶数项的二项式系数之和,奇次(偶次)项的二项式系数之和你能区别开吗?它们所有项的系数之和呢?8.四种概率公式你记熟了吗?是否注意到了每种概率公式应用的前提?9.概率应用题你有写“答语”习惯吗?你解答的步骤完整吗?10.数学期望和方差的计算公式记住了吗?二项分布的期望和方差公式又是什么?11.二项展开式的通项公式,n次独立重复试验中事件A发生k次的概率与二项分布的分布列三者易记混.通项公式:T r+1=C r n a n-r b r(它是第r+1项而不是第r项).事件A发生k次的概率:P n(k)=C k n p k(1-p)n-k.分布列:P(X=k)=C k n p k·q n-k=b,其中k=0,1,2,3,…,n,且0<p<1,p+q=1. 12.常用的抽样方法有哪些?它们分别适应什么特点的总体的抽样?13.绘制频率分布直方图的步骤记熟了吗?图中小长方形的高、宽、面积分别表示什么?。
(三轮考前体系通关)2014年高考数学二轮复习简易通 倒数第5天 理 新人教A版
倒数第5天 解析几何[保温特训] (时间:45分钟)1.抛物线y =8x 2的焦点坐标是( ).A .(2,0)B .(0,2) C.⎝ ⎛⎭⎪⎫0,132 D.⎝ ⎛⎭⎪⎫132,0 解析 抛物线y =8x 2的标准方程为:x 2=18y ,则2p =18,所以p 2=132,又抛物线的焦点在y 轴的正半轴上,所以焦点坐标为⎝⎛⎭⎪⎫0,132. 答案 C2.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( ).A .x 2+(y -2)2=1 B .x 2+(y +2)2=1 C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=1解析 把点(1,2)代入四个选项,排除B ,D ,又由于圆心在y 轴,排除C. 答案 A3.已知焦点在x 轴上的双曲线的渐近线方程是y =±4x ,则该双曲线的离心率是( ).A.17B.15C.174 D.154解析 依题意知b a =4,则e =ca=1+b 2a2=17.答案 A4.“a =b ”是“直线y =x +2与圆(x -a )2+(x -b )2=2相切”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 据已知直线与圆相切的充要条件为:|a -b +2|2=2⇒|a -b +2|=2⇒a =b 或a-b =-4,故a =b 是直线与圆相切的充分不必要条件. 答案 A5.椭圆x 24+y 2=1的两个焦点为F 1,F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则|PF 2|=( ).A.72B.32 C.3 D .4 解析 F 1(-3,0),|PF 1|=1--324=12, 又|PF 1|+|PF 2|=2a =4,∴|PF 2|=4-|PF 1|=72.答案 A6.设F 1,F 2是双曲线x 2-y 224=1的两个焦点,P 是双曲线上的一点,且|PF 1|-|PF 2|=2,3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( ).A .4 2B .8 3C .24D .48解析 由|PF 1|-|PF 2|=2,3|PF 1|=4|PF 2|,得|PF 1|=8,|PF 2|=6,又|F 1F 2|=2c =10,所以△PF 1F 2为直角三角形,∴S △PF 1F 2=12×6×8=24.答案 C7.若直线过点P ⎝⎛⎭⎪⎫-3,-32且被圆x 2+y 2=25截得的弦长是8,则该直线的方程为( ).A .3x +4y +15=0B .x =-3或y =-32C .x =-3D .x =-3或3x +4y +15=0解析 若直线的斜率不存在,则该直线的方程为x =-3,代入圆的方程解得y =±4,故该直线被圆截得的弦长为8,满足条件;若直线的斜率存在,不妨设直线的方程为y +32=k (x +3),即kx -y +3k -32=0,因为该直线被圆截得的弦长为8,故半弦长为4,又圆的半径为5,则圆心(0,0)到直线的距离为52-42=,解得k =-34,此时该直线的方程为3x +4y +15=0. 答案 D8.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点与抛物线y 2=4x 的焦点重合,且双曲线的离心率等于5,则该双曲线的方程为( ).A .5x 2-4y25=1B.x 25-y 24=1 C.y 25-x 24=1 D . 5x 2-5y24=1解析 ∵抛物线y 2=4x 的焦点为(1,0),∴c =1,又e =5,a =15,b 2=c 2-a 2=45,所以该双曲线方程为5x 2-5y24=1.答案 D9.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线与抛物线y =x 2+1相切,则该双曲线的离心率等于( ).A. 3 B .2 C. 5 D. 6解析 设切点P (x 0,y 0),则切线的斜率为y ′|x =x 0=2x 0,依题意有y 0x 0=2x 0,又y 0=x 20+1得x 20=1, 所以b a=2,e =1+⎝ ⎛⎭⎪⎫b a2= 5.答案 C10.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( ).A .(x -3)2+⎝ ⎛⎭⎪⎫y -732=1B .(x -2)2+()y -12=1C .(x -1)2+()y -32=1D.⎝ ⎛⎭⎪⎫x -322+(y -1)2=1 解析 依题意设圆心C (a ,1)(a >0),由圆C 与直线4x -3y =0相切,得|4a -3|5=1,解得a =2,则圆C 的标准方程是(x -2)2+(y -1)2=1. 答案 B11.已知抛物线y 2=4x 的准线与双曲线x 2a2-y 2=1(a >0)交于A ,B 两点,点F 为抛物线的焦点,若△FAB 为直角三角形,则双曲线的离心率是( ).A. 3B. 6 C .2 D .3解析 y 2=4x 的准线x =-1,焦点(1,0),A 点坐标⎝⎛⎭⎪⎫-1,1-a 2a ,△FAB 为直角三角形,∠AFB =90°,由对称性可知,△FAB 为等腰直角三角形,由几何关系得1-a2a=2,解得a 2=15,c 2=a 2+b 2=65,从而求得e = 6.答案 B12.已知抛物线C 的方程为x 2=12y ,过点A (0,-1)和点B (t ,3)的直线与抛物线C 没有公共点,则实数t 的取值范围是( ).A .(-∞,-1)∪(1,+∞) B.⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫22,+∞ C.()-∞,-22∪(22,+∞) D.()-∞,-2∪()2,+∞解析 直线AB 方程为y =4t x -1,与抛物线方程x 2=12y 联立得x 2-2t x +12=0,直线与抛物线没有公共点,故Δ=4t2-2<0,解得t >2或t <- 2.答案 D13.若直线l 1:ax +2y +6=0与直线l 2:x +(a -1)y +(a 2-1)=0平行,则实数a =________.解析 由a (a -1)-2×1=0得:a =-1,或a =2,验证,当a =2时两直线重合,当a =-1时两直线平行. 答案 -114.当直线l :y =k (x -1)+2被圆C :(x -2)2+(y -1)2=5截得的弦最短时,k 的值为________.解析 依题意知直线l 过定点P (1,2),圆心C (2,1),由圆的几何性质可知,当圆心C 与点P 的连线l 垂直时,直线l 被圆C 截得的弦最短,则k ·2-11-2=-1,得k =1.答案 115.若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公共弦的长为23,则a =________.解析 由⎩⎪⎨⎪⎧x 2+y 2+2ay -6=0,x 2+y 2=4,得2ay =2,即y =1a,则⎝ ⎛⎭⎪⎫1a 2+()32=22,解得a =1. 答案 116.椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别是F 1、F 2,过F 2作倾斜角为120°的直线与椭圆的一个交点为M ,若MF 1垂直于x 轴,则椭圆的离心率为________. 解析 不妨设|F 1F 2|=1.∵直线MF 2的倾斜角为120°,∴∠MF 2F 1=60°,∴|MF 2|=2,|MF 1|=3,2a =|MF 1|+|MF 2|=2+3,2c =|F 1F 2|=1,∴e =ca=2- 3. 答案 2- 3[知识排查]1.用直线的点斜式、斜截式设直线的方程时,易忽略斜率不存在的情况. 2.判断两直线的位置关系时,注意系数等于零时的讨论.3.直线的斜率公式,点到直线的距离公式,两平行线间的距离公式记住了吗?4.直线和圆的位置关系利用什么方法判定(圆心到直线的距离与圆的半径的比较)?两圆的位置关系如何判定?5.截距是距离吗?“截距相等”意味着什么?6.记得圆锥曲线方程中的a ,b ,c ,p ,c a的意义吗?弦长公式记熟了吗? 7.离心率的大小与曲线的形状有何关系?等轴双曲线的离心率是多少? 8.在椭圆中,注意焦点、中心、短轴端点,三点连线所组成的直角三角形. 9.通径是抛物线的所有焦点弦中最短的弦.10.在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?判别式Δ≥0的限制.(求交点、弦长、中点、斜率、对称,存在性问题都在Δ>0 下进行)。
高考数学三轮考前保温特训:倒数第5天.docx
倒数第5天 解析几何[保温特训]1.若直线l 1:ax +2y +6=0与直线l 2:x +(a -1)y +(a 2-1)=0平行,则实数a=________.解析 由a (a -1)-2×1=0得:a =-1,或a =2,验证,当a =2时两直线重合,当a =-1时两直线平行.答案 -12.当直线l :y =k (x -1)+2被圆C :(x -2)2+(y -1)2=5截得的弦最短时,k 的值为________.解析 依题意知直线l 过定点P (1,2),圆心C (2,1),由圆的几何性质可知,当圆心C 与点P 的连线l 垂直时,直线l 被圆C 截得的弦最短,则k ·2-11-2=-1,得k =1.答案 13.若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公共弦的长为23,则a =________.解析 由⎩⎨⎧x 2+y 2+2ay -6=0,x 2+y 2=4,得2ay =2,即y =1a ,则⎝ ⎛⎭⎪⎫1a 2+()32=22,解得a =1.答案 14.椭圆的中心在原点,焦距为4,一条准线为x =-4,则该椭圆的方程为________.解析 椭圆的焦距为4,所以2c =4,c =2因为准线为x =-4,所以椭圆的焦点在x 轴上,且-a 2c =-4,所以a 2=4c =8,b 2=a 2-c 2=8-4=4,所以椭圆的方程为x 28+y 24=1.答案 x 28+y 24=15.直线x -2y +2=0经过椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点和一个顶点,则该椭圆的离心率为________.解析 直线x -2y +2=0与坐标轴的交点为(-2,0),(0,1),依题意得,c =2,b =1⇒a =5⇒e =255.答案 255 6.椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别是F 1、F 2,过F 2作倾斜角为120°的直线与椭圆的一个交点为M ,若MF 1垂直于x 轴,则椭圆的离心率为________. 解析 不妨设|F 1F 2|=1.∵直线MF 2的倾斜角为120°,∴∠MF 2F 1=60°,∴|MF 2|=2,|MF 1|=3,2a =|MF 1|+|MF 2|=2+3,2c =|F 1F 2|=1,∴e =c a =2- 3.答案 2- 37.已知点P (a ,b )关于直线l 的对称点为P ′(b +1,a -1),则圆C :x 2+y 2-6x -2y =0关于直线l 对称的圆C ′的方程为________.解析 由圆C :x 2+y 2-6x -2y =0得,圆心坐标为(3,1),半径r =10,所以对称圆C ′的圆心为(1+1,3-1)即(2,2),所以(x -2)2+(y -2)2=10.答案 (x -2)2+(y -2)2=108.在△ABC 中,∠ACB =60°,sin A ∶sin B =8∶5,则以A ,B 为焦点且过点C的椭圆的离心率为________.解析 设BC =m ,AC =n ,则 m n =85,m +n =2a ,(2c )2=m 2+n 2-2mn cos 60°,先求得m =1613a ,n =1013a ,代入得4c 2=196169a 2,e =713.答案 7139.在平面直角坐标系xOy 中,已知△ABC 的顶点A (-4,0),C (4,0),顶点B 在椭圆x 225+y 29=1上,则sin A +sin C sin B等于________. 解析 由正弦定理得sin A +sin C sin B=a +c b =108=54. 答案 5410.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线将平面划分为“上、下、左、右”四个区域(不含边界),若点(1,2)在“上”区域内,则双曲线离心率e 的取值范围是________.解析 双曲线x 2a 2-y 2b 2=1的一条渐近线为y =b a x ,点(1,2)在该直线的上方,由线性规划知识,知:2>b a ,所以e 2=1+⎝ ⎛⎭⎪⎫b a 2<5,故e ∈(1,5). 答案 (1,5)11.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点、右焦点分别为A 、F ,它的左准线与x 轴的交点为B ,若A 是线段BF 的中点,则双曲线C 的离心率为________.解析 由题意知:B ⎝ ⎛⎭⎪⎫-a 2c ,0,A (a,0),F (c,0),则2a =c -a c , 即e 2-2e -1=0,解得e =2+1.答案 2+112.过直线l :y =2x 上一点P 作圆C :(x -8)2+(y -1)2=2的切线l 1,l 2,若l 1,l 2关于直线l 对称,则点P 到圆心C 的距离为________.解析 根据平面几何知识可知,因为直线l 1,l 2关于直线l 对称,所以直线l 1,l 2关于直线PC 对称并且直线PC 垂直于直线l ,于是点P 到点C 的距离即为圆心C 到直线l 的距离,d =|2×8-1|12+22=3 5.答案 3 513.已知椭圆的中心为坐标原点,短轴长为2,一条准线方程为l :x =2.(1)求椭圆的标准方程;(2)设O 为坐标原点,F 是椭圆的右焦点,点M 是直线l 上的动点,过点F 作OM 的垂线与以OM 为直径的圆交于点N ,求证:线段ON 的长为定值.解 (1)∵椭圆C 的短轴长为2,椭圆C 的一条准线为l :x =2,∴不妨设椭圆C 的方程为x 2a 2+y 2=1.∴a 2c =1+c 2c =2,即c =1.∴椭圆C 的方程为x 22+y 2=1.(2)F (1,0),右准线为l :x =2,设N (x 0,y 0),则直线FN 的斜率为k FN =y 0x 0-1,直线ON 的斜率为k ON =y 0x 0, ∵FN ⊥OM ,∴直线OM 的斜率为k OM =-x 0-1y 0, ∴直线OM 的方程为:y =-x 0-1y 0x ,点M 的坐标为M ⎝ ⎛⎭⎪⎫2,-2(x 0-1)y 0. ∴直线MN 的斜率为k MN =y 0+2(x 0-1)y 0x 0-2. ∵MN ⊥ON ,∴k MN ·k ON =-1,∴y 0+2(x 0-1)y 0x 0-2·y 0x 0=-1, ∴y 20+2(x 0-1)+x 0(x 0-2)=0,即x 20+y 20=2.∴ON =2为定值.[知识排查]1.用直线的点斜式、斜截式设直线的方程时,易忽略斜率不存在的情况.2.判断两直线的位置关系时,注意系数等于零时的讨论.3.直线的斜率公式,点到直线的距离公式,两平行线间的距离公式记住了吗?4.直线和圆的位置关系利用什么方法判定(圆心到直线的距离与圆的半径的比较)?两圆的位置关系如何判定?5.截距是距离吗?“截距相等”意味着什么?6.记得圆锥曲线方程中的a,b,c,p,ca的意义吗?弦长公式记熟了吗?7.离心率的大小与曲线的形状有何关系?等轴双曲线的离心率是多少?8.在椭圆中,注意焦点、中心、短轴端点,三点连线所组成的直角三角形.9.在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?判别式Δ≥0的限制.(求交点、弦长、中点、斜率、对称,存在性问题都在Δ>0 下进行)。
江苏省2019年高考数学三轮专题复习素材:倒数第4天(含答案)
倒数第4天 概率、统计、算法与复数[保温特训]1.复数z =1+i ,则2z+z 2=________.解析21+i+(1+i)2=-+-+(1+2i +i 2)=1-i +2i =1+i.答案 1+i 2.复数z =2+3i3-2i=________. 解析 法一 z =2+3i3-2i =++-+=13i 13=i.法二 z =2+3i3-2i =+-=+2+3i=i.答案 i3.i 是虚数单位,若复数z =(m 2-1)+(m -1)i 为纯虚数,则实数m 的值为________.解析 由题可得⎩⎪⎨⎪⎧m 2-1=0,m -1≠0,解得m =-1.答案 m =-14.设复数z 满足z(2-3i)=6+4i ,则z =________.解析 z(2-3i)=6+4i ,z =6+4i2-3i =++-+=26i13=2i. 答案 2i5.箱中有号码分别为1,2,3,4,5的五张卡片,从中一次随机抽取两张,则两张号码之和为3的倍数的概率是________.解析 从五张卡片中任取两张共有5×42=10种取法,其中号码之和为3的倍数有1,2;1,5;2,4;4,5,共4种取法,由此可得两张号码之和为3的倍数的概率P =410=25. 答案256.若实数m ,n ∈{-1,1,2,3},且m≠n,则方程x 2m +y2n=1表示的曲线是焦点在x 轴上的双曲线的概率为________.解析 根据焦点在x 轴上的双曲线的特征确定基本事件的个数,代入古典概型计算公式计算即可.因为m≠n,所以(m ,n)共有4×3=12种,其中焦点在x 轴上的双曲线即m >0,n <0,有(1,-1),(2,-1),(3,-1)共3种,故所求概率为P =312=14. 答案147.某公司生产三种型号A 、B 、C 的轿车,产量分别为1 200辆、6 000辆、2 000辆.为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,则型号A 的轿车应抽取________辆. 解析 根据分层抽样,型号A 的轿车应抽取46× 1 2001 200+6 000+2 000=6(辆).答案 68.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为________.解析 因为符合条件的有“甲第一局就赢”和“乙赢一局后甲再赢一局”由于两队获胜概率相同,即为12,则第一种的概率为12,第二种情况的概率为12×12=14,由加法原理得结果为34.答案349.如图,是某班一次竞赛成绩的频数分布直方图,利用组中值可估计其平均分为______.解析 平均分为:10×2+30×4+50×6+70×10+90×82+4+6+10+8=62.答案 6210.对某种电子元件使用寿命跟踪调查,所得样本频率分布直方图如图,若一批电子元件中寿命在100~300小时的电子元件的数量为400,则寿命在500~600小时的电子元件的数量为________.解析 寿命在100~300小时的电子元件的频率是⎝ ⎛⎭⎪⎫12 000+32 000×100=15,故样本容量是400÷15=2 000,从而寿命在500~600小时的电子元件的数量为2 000×⎝ ⎛⎭⎪⎫32 000×100=300.答案 30011.如图是一个程序框图,则输出结果为________.解析 由框图可知:S =0,k =1;S =0+2-1,k =2;S =(2-1)+(3-2)=3-1,k =3;S =(3-1)+(4-3)=4-1,k =4;…S =8-1,k =8;S =9-1,k =9;S =10-1,k =10;S =11-1,k =11,满足条件,终止循环,输出S =11-1. 答案 S =11-112.如图所示的程序框图运行的结果是________.解析 由程序框图的算法原理可得:A =0,i =1; A =11×2,i =2;A =11×2+12×3,i =3;… A =11×2+12×3+…+12 011×2 012,i =2 012; A =11×2+12×3+…+12 011×2 012+12 012×2 013,i =2 013, 不满足循环条件,终止循环,输出A =11×2+12×3+…+12 011×2 012+12 012×2 013=1-12 013=2 0122 013.答案2 0122 01313.执行如图所示的程序框图,则输出的a 的值为________.解析 由程序框图可得,第1次循环:i =1,a =3;第2次循环:i =2,a =5;第3次循环:i =3,a =73,此时退出循环,输出a =73.答案7314.运行如图所示的流程图,则输出的结果S 是________.解析 变量i 的值分别取1,2,3,4,…时,变量S 的值依次为12,-1,2,12,…,不难发现变量S 的值是以3为周期在变化,当i 的取值为2 010时,S =2,而后i 变为2 011退出循环. 答案 2[知识排查]1.利用古典概型公式求随机事件的概率时,如果基本事件的个数比较少,可用列举法将基本事件一一列出. 2.较为简单的问题可直接用古典概型公式计算,较为复杂的问题,可转化为几个互斥事件的和,利用互斥事件的加法公式求解;也可采用间接解法,先求事件A 的对立事件A 的概率,再用P(A)=1-P(A )求事件A 概率.3.几何概型的两个特征:(1)试验的结果有无限多;(2)每个结果的出现是等可能的.解决几何概型的概率问题,关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率.4.用样本的频率分布估计总体分布,可以分成两种情形讨论:(1)当总体的个体取不同数值很少时,其频率分布表由所取样本的不同数值及相应的频率来表示,其几何表示就是相应的条形图;(2)当总体的个体取不同值较多时,相应的直方图是用图形的面积的大小来表示在各个区间取值的频率.5.对于框图应注意以下几个问题:①不同的框图表示不同的作用,各框图的作用应注意区别,不可混淆;②流程线的方向指向不能漏掉;③判断框是根据不同的条件,选择一条且仅有一条路径执行下去,不要搞错;④解决一个问题的算法从开始到结束是完整的,其流程图的表示也要完整.6.解决复数问题,要注意复数问题实数化的方法,即利用复数相等的概念,把复数问题转化为实数问题,这是解决复数问题的最常用策略.7.要注意复数是虚数、复数是纯虚数的条件,注意共轭复数、复数模的几何意义的应用.。
2019届(江苏)高考数学(理)三轮冲关专题训练:倒数第2天(含答案)
倒数第2天 概率、统计、算法与复数[保温特训]1.复数z =1+i ,则2z+z 2=________.解析21+i+(1+i)2=-+-+(1+2i +i 2)=1-i +2i =1+i.答案 1+i 2.复数z =2+3i3-2i=________. 解析 法一 z =2+3i3-2i =++-+=13i 13=i.法二 z =2+3i3-2i =+-=+2+3i=i.答案 i3.i 是虚数单位,若复数z =(m 2-1)+(m -1)i 为纯虚数,则实数m 的值为________.解析 由题可得⎩⎪⎨⎪⎧m 2-1=0,m -1≠0,解得m =-1.答案 m =-14.设复数z 满足z(2-3i)=6+4i ,则z =________.解析 z(2-3i)=6+4i ,z =6+4i2-3i =++-+=26i13=2i. 答案 2i5.箱中有号码分别为1,2,3,4,5的五张卡片,从中一次随机抽取两张,则两张号码之和为3的倍数的概率是________.解析 从五张卡片中任取两张共有5×42=10种取法,其中号码之和为3的倍数有1,2;1,5;2,4;4,5,共4种取法,由此可得两张号码之和为3的倍数的概率P =410=25. 答案256.若实数m ,n ∈{-1,1,2,3},且m≠n,则方程x 2m +y2n=1表示的曲线是焦点在x 轴上的双曲线的概率为________.解析 根据焦点在x 轴上的双曲线的特征确定基本事件的个数,代入古典概型计算公式计算即可.因为m≠n,所以(m ,n)共有4×3=12种,其中焦点在x 轴上的双曲线即m >0,n <0,有(1,-1),(2,-1),(3,-1)共3种,故所求概率为P =312=14. 答案147.某公司生产三种型号A 、B 、C 的轿车,产量分别为1 200辆、6 000辆、2 000辆.为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,则型号A 的轿车应抽取________辆. 解析 根据分层抽样,型号A 的轿车应抽取46× 1 2001 200+6 000+2 000=6(辆).答案 68.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为________.解析 因为符合条件的有“甲第一局就赢”和“乙赢一局后甲再赢一局”由于两队获胜概率相同,即为12,则第一种的概率为12,第二种情况的概率为12×12=14,由加法原理得结果为34.答案349.如图,是某班一次竞赛成绩的频数分布直方图,利用组中值可估计其平均分为______.解析 平均分为:10×2+30×4+50×6+70×10+90×82+4+6+10+8=62.答案 6210.对某种电子元件使用寿命跟踪调查,所得样本频率分布直方图如图,若一批电子元件中寿命在100~300小时的电子元件的数量为400,则寿命在500~600小时的电子元件的数量为________.解析 寿命在100~300小时的电子元件的频率是⎝ ⎛⎭⎪⎫12 000+32 000×100=15,故样本容量是400÷15=2 000,从而寿命在500~600小时的电子元件的数量为2 000×⎝ ⎛⎭⎪⎫32 000×100=300.答案 30011.如图是一个程序框图,则输出结果为________.解析 由框图可知:S =0,k =1;S =0+2-1,k =2;S =(2-1)+(3-2)=3-1,k =3;S =(3-1)+(4-3)=4-1,k =4;…S =8-1,k =8;S =9-1,k =9;S =10-1,k =10;S =11-1,k =11,满足条件,终止循环,输出S =11-1. 答案 S =11-112.如图所示的程序框图运行的结果是________.解析 由程序框图的算法原理可得:A =0,i =1; A =11×2,i =2;A =11×2+12×3,i =3;… A =11×2+12×3+…+12 011×2 012,i =2 012; A =11×2+12×3+…+12 011×2 012+12 012×2 013,i =2 013, 不满足循环条件,终止循环,输出A =11×2+12×3+…+12 011×2 012+12 012×2 013=1-12 013=2 0122 013.答案2 0122 01313.执行如图所示的程序框图,则输出的a 的值为________.解析 由程序框图可得,第1次循环:i =1,a =3;第2次循环:i =2,a =5;第3次循环:i =3,a =73,此时退出循环,输出a =73.答案7314.运行如图所示的流程图,则输出的结果S 是________.解析 变量i 的值分别取1,2,3,4,…时,变量S 的值依次为12,-1,2,12,…,不难发现变量S 的值是以3为周期在变化,当i 的取值为2 010时,S =2,而后i 变为2 011退出循环. 答案 2[知识排查]1.利用古典概型公式求随机事件的概率时,如果基本事件的个数比较少,可用列举法将基本事件一一列出. 2.较为简单的问题可直接用古典概型公式计算,较为复杂的问题,可转化为几个互斥事件的和,利用互斥事件的加法公式求解;也可采用间接解法,先求事件A 的对立事件A 的概率,再用P(A)=1-P(A )求事件A 概率.3.几何概型的两个特征:(1)试验的结果有无限多;(2)每个结果的出现是等可能的.解决几何概型的概率问题,关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率.4.用样本的频率分布估计总体分布,可以分成两种情形讨论:(1)当总体的个体取不同数值很少时,其频率分布表由所取样本的不同数值及相应的频率来表示,其几何表示就是相应的条形图;(2)当总体的个体取不同值较多时,相应的直方图是用图形的面积的大小来表示在各个区间取值的频率.5.对于框图应注意以下几个问题:①不同的框图表示不同的作用,各框图的作用应注意区别,不可混淆;②流程线的方向指向不能漏掉;③判断框是根据不同的条件,选择一条且仅有一条路径执行下去,不要搞错;④解决一个问题的算法从开始到结束是完整的,其流程图的表示也要完整.6.解决复数问题,要注意复数问题实数化的方法,即利用复数相等的概念,把复数问题转化为实数问题,这是解决复数问题的最常用策略.7.要注意复数是虚数、复数是纯虚数的条件,注意共轭复数、复数模的几何意义的应用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
倒数第4天 概率、统计、算法与复数
[保温特训]
1.复数z =1+i ,则2
z +z 2=________. 解析
2
1+i +(1+i)2=2(1-i )(1+i )(1-i )
+(1+2i +i 2)=1-i +2i =1+i. 答案 1+i 2.复数z =
2+3i
3-2i
=________. 解析 法一 z =2+3i 3-2i =(2+3i )(3+2i )(3-2i )(3+2i )=13i
13
=i.
法二 z =2+3i 3-2i =(2+3i )i (3-2i )i =(2+3i )i
2+3i =i.
答案 i
3.i 是虚数单位,若复数z =(m 2-1)+(m -1)i 为纯虚数,则实数m 的值为________.
解析 由题可得⎩⎨⎧
m 2
-1=0,
m -1≠0,
解得m =-1.
答案 m =-1
4.设复数z 满足z (2-3i)=6+4i ,则z =________. 解析 z (2-3i)=6+4i ,z =6+4i 2-3i =(6+4i )(2+3i )(2-3i )(2+3i )=26i
13
=2i. 答案 2i
5.箱中有号码分别为1,2,3,4,5的五张卡片,从中一次随机抽取两张,则两张号码之和为3的倍数的概率是________.
解析 从五张卡片中任取两张共有5×4
2=10种取法,其中号码之和为3的倍数有1,2;1,5;2,4;4,5,共4种取法,由此可得两张号码之和为3的倍数的概率P =410=2
5. 答案 2
5
6.若实数m,n∈{-1,1,2,3},且m≠n,则方程x2
m+
y2
n=1表示的曲线是焦点在
x轴上的双曲线的概率为________.
解析根据焦点在x轴上的双曲线的特征确定基本事件的个数,代入古典概型计算公式计算即可.因为m≠n,所以(m,n)共有4×3=12种,其中焦点在x轴上的双曲线即m>0,n<0,有(1,-1),(2,-1),(3,-1)共3种,
故所求概率为P=3
12=
1
4.
答案1 4
7.某公司生产三种型号A、B、C的轿车,产量分别为1 200辆、6 000辆、2 000辆.为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,则型号A的轿车应抽取________辆.
解析根据分层抽样,型号A的轿车应抽取46×
1 200
1 200+6 000+
2 000
=6(辆).
答案 6
8.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为________.
解析因为符合条件的有“甲第一局就赢”和“乙赢一局后甲再赢一局”由
于两队获胜概率相同,即为1
2,则第一种的概率为
1
2,第二种情况的概率为
1
2×
1
2
=1
4,由加法原理得结果为
3
4.
答案3 4
9.如图,是某班一次竞赛成绩的频数分布直方图,利用组中值可估计其平均分为______.
解析 平均分为:
10×2+30×4+50×6+70×10+90×8
2+4+6+10+8=62.
答案 62
10.对某种电子元件使用寿命跟踪调查,所得样本频率分布直方图如图,若一批电子元件中寿命在100~300小时的电子元件的数量为400,则寿命在500~600小时的电子元件的数量为________.
解析 寿命在100~300小时的电子元件的频率是⎝ ⎛⎭⎪⎫1
2 000+32 000×100=15,
故样本容量是400÷1
5=2 000,从而寿命在500~600小时的电子元件的数量为
2 000×⎝ ⎛⎭⎪⎫
32 000×100=300.
答案 300
11.如图是一个程序框图,则输出结果为________.
解析 由框图可知:S =0,k =1;S =0+2-1,k =2;
S =(2-1)+(3-2)=3-1,k =3;S =(3-1)+(4-3)=4-1,k =4;…
S =8-1,k =8;S =9-1,k =9;S =10-1,k =10;S =11-1,k =11,满足条件,终止循环,输出S =11-1. 答案 S =11-1
12.如图所示的程序框图运行的结果是________.
解析 由程序框图的算法原理可得:A =0,i =1; A =11×2,i =2;A =11×2+12×3,i =3;… A =11×2+12×3+…+1
2 011×2 012
,i =2 012; A =
11×2+12×3+…+12 011×2 012+1
2 012×2 013
,i =2 013,
不满足循环条件,终止循环, 输出A =
11×2+12×3+…+12 011×2 012+12 012×2 013
=1-12 013=2 0122 013. 答案 2 012
2 013
13.执行如图所示的程序框图,则输出的a 的值为________.
解析 由程序框图可得,第1次循环:i =1,a =3;第2次循环:i =2,a =5;第3次循环:i =3,a =73,此时退出循环,输出a =7
3. 答案 7
3
14.运行如图所示的流程图,则输出的结果S 是________.
解析 变量i 的值分别取1,2,3,4,…时,变量S 的值依次为12,-1,2,1
2,…,不难发现变量S 的值是以3为周期在变化,当i 的取值为2 010时,S =2,而后i 变为2 011退出循环. 答案 2
[知识排查]
1.利用古典概型公式求随机事件的概率时,如果基本事件的个数比较少,可用列举法将基本事件一一列出.
2.较为简单的问题可直接用古典概型公式计算,较为复杂的问题,可转化为几个互斥事件的和,利用互斥事件的加法公式求解;也可采用间接解法,先求事件A的对立事件A的概率,再用P(A)=1-P(A)求事件A概率.
3.几何概型的两个特征:(1)试验的结果有无限多;(2)每个结果的出现是等可能的.解决几何概型的概率问题,关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率.
4.用样本的频率分布估计总体分布,可以分成两种情形讨论:(1)当总体的个体取不同数值很少时,其频率分布表由所取样本的不同数值及相应的频率来表示,其几何表示就是相应的条形图;(2)当总体的个体取不同值较多时,相应的直方图是用图形的面积的大小来表示在各个区间取值的频率.
5.对于框图应注意以下几个问题:①不同的框图表示不同的作用,各框图的作用应注意区别,不可混淆;②流程线的方向指向不能漏掉;③判断框是根据不同的条件,选择一条且仅有一条路径执行下去,不要搞错;④解决一个问题的算法从开始到结束是完整的,其流程图的表示也要完整.
6.解决复数问题,要注意复数问题实数化的方法,即利用复数相等的概念,把复数问题转化为实数问题,这是解决复数问题的最常用策略.
7.要注意复数是虚数、复数是纯虚数的条件,注意共轭复数、复数模的几何意义的应用.。