高频变压器的设计

合集下载

高频变压器设计的五个步骤

高频变压器设计的五个步骤

变压器的设计过程包括五个步骤:①确定原副边匝数比;为了提高高频变压器的利用率,减小开关管的电流,降低输出整流二极管的反向电压,减小损耗和降低成本,高频变压器的原副边变比应尽量大一些.为了在任意输入电压时能够得到所要求的电压,变压器的变比应按最低输入电压选择.选择副边的最大占空比为 ,则可计算出副边电压最小值为: ,式中, 为输出电压最大值, 为输出整流二极管的通态压降, 为滤波电感上的直流压降.原副边的变比为:②确定原边和副边的匝数;首先选择磁芯.为了减小铁损,根据开关频率 ,参考磁芯材料手册,可确定最高工作磁密、磁芯的有效导磁截面积、窗口面积 .则变压器副边匝数为: .根据副边匝数和变比,可计算原边匝数为③确定绕组的导线线径;在选用导线线径时,要考虑导线的集肤效应.所谓集肤效应,是指当导线中流过交流电流时,导线横截面上的电流分布不均匀,中间部分电流密度小,边缘部分电流密度大,使导线的有效导电面积减小,电阻增加.在工频条件下,集肤效应影响较小,而在高频时影响较大.导线有效导电面积的减小一般采用穿透深度来表示.所谓穿透深度,是指电流密度下降到导线表面电流密度的0.368(即: )时的径向深度. ,式中, , 为导线的磁导率,铜的相对磁导率为 ,即:铜的磁导率为真空中的磁导率 , 为导线的电导率,铜的电导率为 .为了有效地利用导线,减小集肤效应的影响,一般要求导线的线径小于两倍的穿透深度,即 .如果要求绕组的线径大于由穿透深度所决定的最大线径时,可采用小线径的导线多股并绕或采用扁而宽的铜皮来绕制,铜皮的厚度要小于两倍的穿透深度(4)确定绕组的导线股数绕组的导线股数决定于绕组中流过的最大有效值电流和导线线径.在考虑集肤效应确定导线的线径后,我们来计算绕组中流过的最大有效值电流.原边绕组的导线股数:变压器原边电流有效值最大值 ,那么原边绕组的导线股数 (式中,J 为导线的电流密度,一般取J=3~5 , 为每根导线的导电面积.).副边绕组的导电股数:①全桥方式:变压器只有一个副边绕组,根据变压器原副边电流关系,副边的电流有效值最大值为: ;②半波方式:变压器有两个副边绕组,每个负载绕组分别提供半个周期的负载电流,因此其有效值为 ( 为输出电流最大值).因此副边绕组的导线股数为(5)核算窗口面积在计算出变压器的原副边匝数、导线线径及股数后,必须核算磁芯的窗口面积是否能够绕得下或是否窗口过大.如果窗口面积太小,说明磁芯太小,要选择大一点的磁芯;如果窗口面积过大,说明磁芯太大,可选择小一些的磁芯.重新选择磁芯后,再重新计算,直到所选磁芯基本合适为止。

高频变压器设计规范

高频变压器设计规范

高频变压器设计规范目录1.目的 (2)2.适用范围 (2)3.引用/参考标准或资料 (2)4.术语及其定义 (2)5.规范要求 (2)6.附录 (12)1.目的为了实现高频变压器设计的标准化,为我司工程师在设计变压器过程中提供参考,特制订此规范。

2.适用范围本规范适用于公司所有正激变压器及反激变压器的设计。

3.引用/参考标准或资料无。

4.术语及其定义正激变压器:因其初级线圈被直流电压激励时,次级线圈正好有功率输出而得名。

反激变压器:又称单端反激式变压器或Buck-Boost转换器。

因其输出端在原边绕组断开电源时获得能量故而得名。

5.规范要求5.1高频变压器磁芯材料与几何机构在大多数开关电源的高频变压器中,常用的软磁材料有铁氧体,铁粉芯,恒导合金,非晶态合金及硅钢片。

主要应用软磁材料四个特性:磁导率高、矫顽力小及磁滞回线狭窄、电阻率高、具有较高饱和磁感应强度。

现我司高频变压器通常采用锰锌铁氧体材料。

磁芯厂家都生产了一系列不同材质的磁芯,各厂家有自己的命名规范。

以常用的PC40(TDK命名规范)材质为例,东磁表示为DMR40,天通则表示为TP4,实际性能差异几乎可忽略不计。

通常我们关注的磁芯参数主要有初始磁导率,饱和磁通密度Bs,剩磁Br,矫顽力Hc,功耗Pv,居里温度Tc,在高频变压器的设计以及日后应用过程中,这些参数往往起到非常重要的作用。

图1所示各种磁芯的几何形状有EE型、ETD型、PQ型等多种。

EE型、ETD型、PQ型也是我司高频变压器设计时通常采用的磁芯结构。

每种规格磁芯对应多种尺寸可供选择。

一般每种类型及尺寸的磁芯,其对应的骨架是一定的,变动一般在于pin数和pin针间距的不同,设计者可根据实际应用需求选择,也可以联系骨架厂商进行开模定制。

图5.1 各种几何结构的变压器磁芯图1 磁芯的几何形状5.2高频变压器常用材料介绍上节主要介绍了高频变压器的磁芯特性及结构,除此以外,要构成一个完整的高频变压器,主要材料还有:导线材料,压敏胶带,骨架材料。

高频变压器的设计公式

高频变压器的设计公式

电源高频变压器的设计方法简介设计高频变压器是电源设计过程中的难点,下面以反馈式电流不连续电源高频变压器为例,向大家介绍一种电源高频变压器的设计方法。

设计目标:电源输入交流电压在180V~260V之间,频率为50Hz,输出电压为直流5V、14A,功率为70W,电源工作频率为30KHz。

设计步骤:1、计算高频变压器初级峰值电流Ipp由于是电流不连续性电源,当功率管导通时,电流会达到峰值,此值等于功率管的峰值电流。

由电感的电流和电压关系V=L*di/dt可知:输入电压:Vin(min)=Lp*Ipp/Tc取1/Tc=f/Dmax,则上式为:Vin(min)=Lp*Ipp*f/D max其中:V in:直流输入电压,VLp:高频变压器初级电感值,mHIpp:变压器初级峰值电流,ADmax:最大工作周期系数f:电源工作频率,kHz在电流不连续电源中,输出功率等于在工作频率下的每个周期内储存的能量,其为:Pout=1/2*Lp*Ip p2*f将其与电感电压相除可得:Pout/Vin(min)=Lp*Ipp2*f*Dmax/(2 *Lp*Ipp*f)由此可得:Ipp=Ic=2*Pout/(Vin(min) *Dmax)其中:Vin(min)=1.4*Vacin(min)-20V(直流涟波及二极管压降)=232V,取最大工作周期系数Dmax=0.45。

则:Ipp=Ic=2*Pout/(Vin(min)*Dmax) =2*70/(232*0.45)=1.34A当功率管导通时,集极要能承受此电流。

2、求最小工作周期系数Dmin在反馈式电流不连续电源中,工作周期系数的大小由输入电压决定。

Dmin=Dmax/[(1-Dmax) *k+Dmax]其中:k=Vin(max)/Vin(min)Vin(max)=260V*1.4-0V(直流涟波)=364V,若允许10%误差,Vin(max)=400V。

Vin(min)=232V,若允许7%误差,Vin(min)=21 6V。

高频变压器设计与参数设计

高频变压器设计与参数设计

高频变压器设计与参数设计高频变压器设计与参数设计是一项重要的技术,它能够帮助电子设备充分发挥性能。

高频变压器是指使用高频信号来改变交流电压的变压器,它通常用在微波炉、通信设备、打印机和医疗设备等领域,并且也用于高频功率转换、无线电、太阳能应用等等。

高频变压器的设计涉及到许多因素,包括电气特性,例如变压器的电压比、额定电流、变压器的绝缘耐压、损耗和过载能力。

同时,还必须考虑到变压器尺寸大小、重量、成本和可靠性等机械特性。

这些特性都会影响变压器的性能,从而影响其最终的性能表现。

在设计高频变压器时,首先应考虑变压器的工作频率。

一般来说,高频变压器的工作频率范围在1kHz~100MHz 之间,而且高频变压器的工作频率越高,其尺寸越小,耗散越低,性能也越好。

随后,应该考虑高频变压器的结构设计,采用的线圈数目,线圈的绕组方式,芯股的结构,冷却方式和绝缘材料等。

其中,线圈绕制方式和线圈的绕组方式是影响高频变压器的主要要素,它们会影响变压器的额定输出功率、输出纹波、温升和其他电气特性。

此外,还必须考虑到变压器的电压比以及母线电压。

电压比是指输出电压与输入电压之间的比率,它影响变压器的输出功率。

母线电压是指用于变压器的输入电压,它会影响变压器的最大输出功率,而且也会影响变压器的可靠性。

另外,在设计高频变压器时还应考虑变压器的外壳结构,这不仅影响变压器的重量和体积,还会影响变压器的热效应。

外壳结构应考虑到变压器的散热性能,以及变压器内部温度的分布情况等。

最后,需要重点考虑变压器的绝缘系统。

绝缘系统是高频变压器的核心部件,它具有高的绝缘强度和耐温性能,可以有效防止电路受到外界环境的干扰,也可以提高变压器的可靠性和安全性。

总之,高频变压器的设计与参数设计是一项复杂的工作,从上述内容可以看出,在设计高频变压器时,需要考虑变压器的电气特性、机械特性、工作频率、结构设计、电压比和母线电压、外壳结构以及绝缘系统等多个方面。

最终,变压器的设计与参数设计都是为了满足应用需求,并且有效地提高变压器的性能,以及提高变压器的可靠性和安全性。

专业高频变压器设计计算公式大全

专业高频变压器设计计算公式大全

专业高频变压器设计计算公式大全在设计变压器时,需要考虑多个因素,包括输入和输出电压、电流、功率、频率、磁通密度、磁路结构等。

下面是一些常用的变压器设计计算公式:1.需求计算公式:(1)计算输入和输出功率:P=V*I其中,P是功率,V是电压,I是电流。

(2)计算变压器变比:N=V1/V2其中,N是变比,V1是输入电压,V2是输出电压。

(3)计算输入和输出电流:I1=P/V1,I2=P/V2其中,I1是输入电流,I2是输出电流。

2.磁路计算公式:(1)计算磁路截面积:A=B/(f*μ*H)其中,A是磁路截面积,B是磁感应强度,f是频率,μ是磁导率,H 是磁场强度。

(2)计算磁通量:Φ=B*A其中,Φ是磁通量。

(3)计算铁心横截面积:S=Φ/B其中,S是铁心横截面积。

3.匝数计算公式:(1)计算初级匝数:N1=(V1*10^8)/(B*f*A)其中,N1是初级匝数。

(2)计算次级匝数:N2=(V2*10^8)/(B*f*A)其中,N2是次级匝数。

4.器件尺寸计算公式:(1)计算铁芯尺寸:U=1.8*(Lc/μ)*B*H/Bm其中,U是铁芯尺寸,Lc是直径或长度,B是磁感应强度,H是磁场强度,Bm是饱和磁感应强度。

(2)计算绕线长度:Lw=π*D*(N1+N2)其中,Lw是绕线长度,D是变压器内径。

(3)计算线径:d=(I*K)/(0.4*J*D)其中,d是线径,I是电流,K是充填系数,J是电流密度,D是变压器内径。

这些公式提供了一些变压器设计的基本计算方法。

在实际设计中,还需要考虑到其它因素,如损耗、效率、温升等,以确保设计的变压器满足要求。

高频变压器设计

高频变压器设计

高频变压器设计单端反激式开关电源中,高频变压器的设计是设计的核心。

高频变压器的磁芯一般用锰锌铁氧体,EE 型和EI 型,近年来,我国引进仿制了汤姆逊和TDK 公司技术开发出PC30,PC40高磁导率,高密度几个品种。

一、 计算公式单端反激式开关电源是以电感储能方式工作,反激式公式推导: 首先要计算出整流后的输入电压的最大值和最小值,如交流输入电压AC V (160~242V ),窄限范围;AC V (85~265V ),宽限范围。

整流后直流电压DC V =1.4*AC V (224~338V )窄限范围;DC V =1.4AC V (119~371V ),宽限范围。

整流后直流纹波电压和整流桥压降一般取20V ,和滤波电容有关。

(1)初级峰值电流p I集电极电压上升率p in p cI V L t = (c t 电流从0上升到集电极电流峰值作用时间)取max1c ft D =min max**p p in L I f V D =公式中,min in V : 是最低直流输入电压,V ; p L :变压器初级电感量,H ;f :开关频率,Hz ;输出功率等于存储在每个周期内的能量乘以工作频率。

21***2out p p P L I f =经进一步简化,就可以得到变压器初级电流峰值为min max2**outp c in P I I V D ==(2)初级电感量p L因为电感量*V S H I =(max D S f= ;1V*1S1mH=1A ) min max p L *in p V D I f=(3)关于最小占空比min D 和最大占空比max D最小占空比和最大占空比的设计可根据输入电压变化范围和负载情况合理决定,在输入电压比较高的情况下,如400VDC ,max D 可选0.25以下;在输入电压比较低的情况下,如110VDC , max D 可选0.45以下;max minin in V K V =;maxmin max max (1)*D D D K D =-+(4)磁芯的选择磁芯输出功率和磁芯截面积的经验关系式为(0.1~e A ≈对于磁芯EI16~EI40,系数一般按0.1~0.15计算。

高频变压器的安规设计基本要求

高频变压器的安规设计基本要求
东莞市铭普实业有限公司 地址:中国广东省东莞市石排镇庙边王沙迳村中九路 523330
第二章 设计定义
2.1.1 一次回路和二次回路之间的电气间隙对照表A(min)
东莞市铭普实业有限公司 地址:中国广东省东莞市石排镇庙边王沙迳村中九路 523330
2.1.2 二次回路中的电气间隙对照表B(min)
东莞市铭普实业有限公司 地址:中国广东省东莞市石排镇庙边王沙迳村中九路 523330
东莞市铭普实业有限公司
高频变压器的安规设计基本要求
25-Feb-2011 A/0
目录
1 名词解释 2 设计定义 3 具体要求 4 安规申请注意事项 5 其他信息 6 问题提问
东莞市铭普实业有限公司 地址:中国广东省东莞市石排镇庙边王沙迳村中九路 523330
第一章 名词解释 1.1 电气间隙(Clearance):指两导电部件之间的最
第三章 具体要求
3.1.3 最小绝缘距离 对于工作电压小于50V(有效值,或71V直流值),功能和加强绝缘必须要保证0.4MM以上的绝缘距离. 对于灌封装的变压器,附加绝缘和加强绝缘也没有要求任何的绝缘距离. 对附加绝缘,至少使用两层材料,其中的每一层都能通过对附加绝缘的抗
电强度试验;或者至少使用三层材料,其中的每两层组合都能通过对附加绝缘的抗 电强度试验.
对加强绝缘,至少使用两层材料,其中的每一层都能通过对加强绝缘的 抗电强度试验;或者至少使用三层材料,其中的每两层组合都能通过对加强绝缘的 抗电强度试验.
东莞市铭普实业有限公司 地址:中国广东省东莞市石排镇庙边王沙迳村中九路 523330
短距离.
备注:如果两部件都有绝缘保护,还是被视为导电体,例如:变压器两绕组之间的电气间隙就 是两个绕组之间靠的最近的铜线的距离

高频变压器的设计方法

高频变压器的设计方法

高频变压器设计方法高频变压器的设计包括:线圈参数的设计,磁芯材料的选择,磁芯结构的选择,磁芯参数的设计,组装结构的选择等内容。

下面对高频变压器线圈参数的计算与选择、磁芯材料的选择、磁芯结构的选择、磁芯参数的设计和组装结构的选择进行详细介绍。

(1) 高频变压器线圈参数的计算与选择高频变压器的线圈参数包括:匝数、导线截面(直径)、导线形式、绕组排列和绝缘安排。

原绕组匝数根据外加激磁电压或者原绕组激磁电感(储存能量)来决定,匝数不能过多也不能过少。

如果匝数过多,会增加漏感和绕线工时;如果匝数过少,在外加激磁电压比较高时,有可能使匝间电压降和层间电压降增大,而必须加强绝缘[5]。

副绕组匝数由输出电压决定。

导线截面(直径)决定于绕组的电流密度。

还要注意的是导线截面(直径)的大小还与漏感有关。

高频变压器的绕组排列形式有:①如果原绕组电压高,副绕组电压低,可以采用副绕组靠近磁芯,接着绕反馈绕组,原绕组在最外层的绕组排列形式,这样有利于原绕组对磁芯的绝缘安排;②如果要增加原和副绕组之间耦合,可以采用一半原绕组靠近磁芯,接着绕反馈绕组和副绕组,最外层再绕一半原绕组的绕组排列形式,这样有利于减少漏感。

另外,当原绕组为高压绕组时,匝数不能太少,否则,匝间或者层间电压相差大,会引起局部短路。

对于绝缘安排,首先要注意使用的电磁线和绝缘件的绝缘材料等级要与磁芯和绕组允许的工作温度相匹配。

等级低,满足不了耐热要求,等级过高,会增加不必要的材料成本。

其次,对在圆柱形磁路上绕线的线圈,最好采用线圈骨架,既可以保证绝缘,又可以简化绕线工艺。

另外,线圈最外层和最里层,高压和低压绕组之间都要加强绝缘。

如果一般绝缘只垫一层绝缘薄膜,加强绝缘应垫2~3层绝缘薄膜。

(2) 高频变压器磁芯材料的选择高频变压器磁芯一般使用软磁材料。

软磁材料有较高磁导率,低的矫顽力,高的电阻率。

磁导率高,在一定线圈匝数时,通过不大的激磁电流就能有较高的磁感应强度,线圈就能承受较高的外加电压,因此在输出功率一定的情况下,可减轻磁芯体积。

如何设计高频变压器

如何设计高频变压器

如何设计高频变压器随着现代电子技术的不断发展和应用,高频变压器在电子设备中扮演着重要的角色。

它是一种将交流电能从一种电压转换为另一种电压的装置。

本文将介绍如何设计高频变压器,包括选材、线圈设计等方面。

1. 选材在设计高频变压器时,选材是十分重要的一环。

首先,需要选择合适的铁芯材料。

铁芯材料的选择应考虑其磁导率、饱和磁感应强度和磁滞损耗等因素。

常见的铁芯材料有硅钢片、铁氧体等。

硅钢片具有低磁滞和低损耗的特点,适用于高频变压器。

其次,选用合适的绝缘材料,以确保电流不会产生泄露。

2. 线圈设计线圈是高频变压器中十分重要且复杂的组成部分。

在线圈设计时,需要考虑以下几个方面。

2.1 匝数计算高频变压器的输出电压与输入电压之间的比值取决于线圈匝数的比值。

因此,首先需要计算出所需的匝数比例。

匝数的选择也要考虑线圈的尺寸和结构。

2.2 线径选择线径的选择对线圈的电流承载能力和电阻有着重要影响。

通常情况下,高频变压器要求线圈电阻较小,因此选择较细的线径有利于减小电阻。

2.3 绝缘设计由于高频变压器在工作时会产生较高的电压,因此对线圈的绝缘设计尤为重要。

合适的绝缘材料和合理的绝缘结构可以确保线圈工作安全可靠。

3. 磁路设计磁路设计是高频变压器设计过程中的关键环节。

合理的磁路设计可以提高能量传输效率和减少能量损耗。

3.1 磁路长度磁路长度的选择对变压器磁感应强度和损耗有着重要影响。

通常情况下,较短的磁路长度有利于提高磁通密度和减小损耗。

3.2 磁路饱和磁路的饱和状态会导致能量损耗和变压器效率的降低。

因此,在设计过程中应合理选择铁芯的截面积和材料以避免饱和。

4. 温度控制高频变压器在工作过程中会产生一定的热量,因此需要进行有效的温度控制。

合适的散热设计和温度监测可以确保变压器的稳定工作。

综上所述,设计高频变压器需要考虑各种因素,包括选材、线圈设计、磁路设计和温度控制等。

只有综合考虑这些因素,并根据具体应用需求加以调整,才能得到高性能和高效率的高频变压器。

高频变压器设计方法

高频变压器设计方法

8、效率η; 9、温升∝。

二、计算步骤:1、计算视在功率PT ;视在功率PT 因工作电路不同而别,如下图:7、选用磁芯型式;高频变压器的设计方法之一一、设计条件: 1、工作电路; 2、原边电压Vp ; 3、输出电压Vo; 4、输出电流Io ; 5、开关工作频率fs ; 6、工作磁通密度Bw ; AP=Aw · Ae视在功率与线路结构关系线路(b ) PT=Po ( + 1 )线路(a ) PT=Po (1+ )线路(b) PT=Po ( +√ )AP 值是磁芯窗口面积Aw 与磁芯有效截面积Ae 的乘积,即各种磁芯的AP 示意图如下:1η1η1η2EI 叠片铁芯GC 型铁芯环形铁芯R( b )R( a )AP=()Ae Aw Le Wt Ml 其中:V01=KvAP 0.75 Wt=KwAP 0.75As=KsAP 0.5根据选取的磁芯,查出(计算)出如下参数:Le ——磁芯有效磁路长度(cm ); Wt ——磁芯重量(KG ); Ml ——绕组平均匝长(cm )。

式中:AP ——为Aw 和Ae 两面积乘积(cm 4); PT ——变压器视在功率(w ); Bw ——工作磁通密度(T ); Fs ——开关工作频率(Hz ); Ko ——窗口使用系数,一般取0.4;Kf ——波形系数,方波Kf =4.0,正弦波Kf =4.44; Kj ——电流密度比例系数; X ——与磁芯有关常数。

J= KjAP X带绕铁芯罐形铁芯KoKf FsBwKjPT ×10411 + XNp=(匝)Ip=(A)(A/cm 2)(cm )(cm 2)(Ω)(W )3、计算原边绕组匝数Np :平均匝长计算如下图:4、计算原边电流I p :5、计算电流密度J :J=Kj (Aw · Ae )X6、计算原边绕组裸线直径dP 和截面积Axp :Ppcu = I p 2Rp 8、计算副边绕组匝数:dP=1.13※式中,在有中心抽头电路时,Ip 需乘0.707的修正因素,根据计算的dP 值选取初级导线,并查出带漆皮的线径、截面积和每cm 电阻(Ω/cm )值。

高频变压器设计

高频变压器设计

高频变压器设计
设计高频变压器需要考虑以下几个方面:
1. 选择合适的磁性材料:高频变压器需要使用高效的磁性材料,如铁氧体材料或软磁合金材料。

这些材料能够有效地吸收和传导高频电磁场。

2. 选择合适的线圈和绕组设计:高频变压器的线圈和绕组需要采用低电阻、低损耗的材料,并且绕组需要紧密结合,以减小电流的涡流损耗。

3. 根据设计要求确定变压器的参数:根据设计要求,确定变压器的输入电压、输出电压、功率等参数,以及变压器的工作频率,从而确定变压器的结构和尺寸。

4. 进行磁路设计:根据变压器的磁路特性,设计合适的磁路结构,包括铁芯的形状和尺寸,以及绕组的位置和布局。

5. 进行磁路和电路的仿真和优化:使用电磁仿真软件,对变压器的磁路和电路进行仿真和优化,以改善变压器的性能。

6. 进行变压器的制造和组装:根据设计要求,制造和组装变压器,包括绕线、绝缘、封装等步骤。

同时,对制造过程进行严格的控制和测试,以保证变压器的质量和性能。

7. 进行变压器的测试和调试:对制造好的变压器进行测试和调试,包括输出电压和功率的测试,以及变压器的效率和稳定性等性能的评估。

总之,设计高频变压器需要综合考虑磁性材料、线圈和绕组、磁路结构、电路仿真和优化等多个因素,以满足设计要求并提高变压器的性能。

高频变压器磁芯的设计原理

高频变压器磁芯的设计原理

高频变压器磁芯的设计原理
1.磁性材料的选择:高频变压器通常使用铁氧体作为磁芯材料。

铁氧体具有高磁导率、低磁导率傅立叶频谱、低铁损耗和低饱和磁感应强度等优点,非常适合高频变压器的使用。

在选择铁氧体材料时,需要考虑其磁导率和损耗特性,以保证变压器的高效工作。

2.磁芯形状和尺寸设计:磁芯的形状和尺寸直接影响变压器的工作性能。

常见的磁芯形状包括E型、I型、U型和EE型等。

选择合适的磁芯形状可以提高磁传导效率和减小漏磁等问题。

此外,磁芯的尺寸也需要根据具体应用的功率和电流大小来确定,以确保变压器的工作稳定性和效率。

3.匝数和绕组设计:磁芯的设计还需要考虑变压器的匝数和绕组。

匝数决定了变压器的变比,而绕组则是将电能从一个线圈传递到另一个线圈的关键部分。

在设计过程中,需要合理选择匝数和绕组的结构,以达到所需的电压转换效果。

4.漏磁和磁交流损耗的抑制:高频变压器在工作过程中会产生漏磁和磁交流损耗,影响变压器的转换效率和稳定性。

为了抑制漏磁和磁损耗,可采取一些措施,如合理布置绕组、增加绕组间隙、使用隔离层等。

5.独立开关电源的设计:高频变压器通常由独立开关电源供电,因此在设计过程中需要考虑电源的功率和稳定性等因素,以确保变压器的正常运行。

总之,高频变压器磁芯的设计原理涉及到磁性材料的选择、磁芯形状和尺寸的设计、匝数和绕组设计、漏磁和磁交流损耗的抑制以及独立开关电源的设计等方面。

通过合理的设计,可以提高变压器的转换效率和稳定性,满足各种应用的需求。

高频变压器设计 (2)

高频变压器设计 (2)

高频变压器设计引言高频变压器是在高频电路中广泛使用的一种电子元件,它能够将电能从一个电路传递到另一个电路,同时改变电压的大小。

高频变压器在电力转换、通信设备、医疗设备等领域具有重要的应用价值。

本文将介绍高频变压器的基本概念、工作原理和设计要点。

基本概念变压器的定义变压器是一种互感器,它是由两个或多个线圈(即初级线圈和次级线圈)共享同一个磁场而构成。

通过改变初级线圈与次级线圈的匝数比,可以实现输入电压和输出电压之间的变换。

高频变压器的特点高频变压器与低频变压器相比,具有以下特点: 1. 工作频率高:高频变压器的工作频率通常在几十kHz至上百MHz之间,远高于50Hz的低频变压器。

2. 体积小:由于高频变压器的工作频率高,变压器的尺寸可以大大缩小,适用于紧凑型电子设备的应用。

3. 能量损耗大:由于高频变压器的工作频率高,导致变压器在传递电能过程中会发生更多的损耗,需要合理设计以降低能量损失。

4. 绝缘要求高:高频变压器中由于电磁感应作用,会产生高峰值的电压,对变压器的绝缘要求较高。

工作原理高频变压器的工作原理与低频变压器类似,都是基于电磁感应原理。

当交流电流通过初级线圈时,会在铁芯内产生一个交变磁场。

这个交变磁场通过铁芯传递到次级线圈中,从而诱导出次级线圈中的交流电流。

设计要点1. 确定变压器的需求在设计高频变压器之前,首先需要确定变压器的输入电压、输出电压和功率等需求。

根据这些需求来选择合适的铁芯材料和线圈匝数比。

2. 选择合适的铁芯材料铁芯材料在高频变压器设计中起着至关重要的作用。

常见的铁芯材料有铁氧体、磁性不良合金等。

选择合适的铁芯材料可以降低能量损耗,提高变压器的效率。

3. 计算线圈匝数比线圈匝数比的确定对于高频变压器的设计也是非常重要的。

通过合理的线圈匝数比,可以实现输入电压和输出电压之间的变换。

4. 考虑绝缘问题由于高频变压器中存在较高峰值的电压,对于绝缘性能的要求也较高。

合理的绝缘设计可以确保变压器的安全性和稳定性。

高频变压器超实用经验分享——民熔专家的血泪经验

高频变压器超实用经验分享——民熔专家的血泪经验

高频变压器设计经验分享高频变压器的设计包括:线圈参数设计、磁性材料选择、铁芯结构选择、铁芯参数设计、变压器结构选型等。

以下简要介绍高频变压器线圈参数设计、磁性材料选择、磁芯结构选择、磁芯参数设计和变压器结构选择。

1、线圈参数设计高频变压器的线圈参数包括线圈数、线径、线型、绕组布置和安全绝缘设计。

一次绕组匝数由施加的励磁电压或一次绕组的励磁电感决定。

转弯次数不宜过多或过少。

匝数过多,漏感增大,绕组工时增加;匝数过小,在外激励电压较高时,匝间电压降和层间电压降可能增大,必须加强安全绝缘。

二次绕组的数量由输出电压决定。

线径取决于绕组的电流密度。

此外,盘条直径也与强漏感有关。

2、绕组布置如果是降压变压器,二次绕组可以靠近磁芯,然后再绕上反馈绕组。

一次绕组在最外层的布置有利于一次绕组对磁芯的安全绝缘设计。

如果要增加一次绕组和二次绕组之间的耦合,一次绕组的一半靠近磁芯,然后将反馈绕组和二次绕组绕在一起,最外层绕上一次绕组的一半,这有利于降低漏感。

降压变压器的一次绕组数量不宜过小,否则匝间或层间电压差过大,容易造成局部短路。

对于安全绝缘的布置,首先,线材、骨架和绝缘材料的等级应与磁芯和绕组的允许工作温度相匹配。

如果温度太低,就不能满足耐热要求。

如果温度过高,会增加不必要的材料成本。

其次,圆柱形磁路上的线圈绕组应采用骨架结构,以保证安全绝缘,简化缠绕工艺。

此外,应加强线圈外层和最内层以及高低压绕组之间的安全绝缘。

如果一般绝缘可以用一层绝缘胶带覆盖,加强绝缘应覆盖2-3层绝缘胶带。

3、磁性材料的选择高频变压器的磁芯一般采用软磁材料。

软磁材料具有磁导率高、矫顽力低、电阻率高的特点。

当磁导率较高且线圈数一定时,通过较小的励磁电流,可以提高磁感应强度,并能承受较高的外加电压。

因此,在输出功率不变的情况下,可以减小磁芯的体积。

若矫顽力较低,磁芯磁滞回线面积较小,则铁损较小。

电阻率越高,涡流越小,铁损也越小。

铁氧体材料是一种软磁材料。

高频变压器设计

高频变压器设计

1.磁芯材质的选取:高频变压器磁芯多是低磁场下使用的软磁材料,有着较高磁导率、低的矫磁顽力和高的电阻率。

一般来说,磁芯材料磁导率高,在一定的线圈匝数时,通过不大的励磁电流就能有较高的磁感应强度,线圈就能承受较高的外加电压,因此输出一定功率要求下,可减小磁芯体积。

磁芯矫磁顽力低,磁滞回环面积小,则铁损也小。

高的电阻率则使得涡流小,铁损小。

(/manage/shownews.asp?ArticleID=1109)目前,高频开关电源变压器所用的磁芯材料一般有铁氧体、坡莫合金材料、非晶合金和超微晶材料。

根据使用情况铁氧体不适合高温工作,暂时选用非晶态合金的磁芯。

●通过下面表格可以发现硅钢的饱和磁感应强度最大,可以达到2T,但由于最大导磁率太小且矫顽力太大不能满足要求一般都不选用它做高频变压器。

●通过下面表格可以发现铁基非晶铁芯饱和磁感应强度也很大,可以达到1.5T以上。

但由于我们选用的开关频率为20KHZ,现在一般铁基非晶铁芯无法达到这个工作频率,故不采用。

●通过下面表格可以发现铁基纳米晶和坡莫合金饱和磁感应强度也较大,可以达到1.2T以上。

但由于坡莫合金磁芯矫磁顽力高,故一般厂家选用铁基纳米晶作为高频变压器磁芯。

本设计中同样采用铁基纳米晶作为高频变压器磁芯。

以下是安泰公司用于做磁芯的纳米基铁芯的具体参数:2.变压器设计:高频变压器的设计通常采用两种方法:第一种是先求出磁芯窗口面积A m与磁芯有效截面积Ac 的乘积AP(AP=Ac×Am,称磁芯面积乘积),根据AP值,查表找出所需磁性材料之编号;第二种是先求出几何参数,查表找出磁芯编号,再进行设计。

注意:1)设计中,在最大输出功率时,磁芯中的磁感应强度不应达到饱和,以免在大信号时产生失真。

2)在瞬变过程中,高频链漏感和分布电容会引起浪涌电流和尖峰电压及脉冲顶部振荡,使损耗增加,严重时会造成开关管损坏。

同时,输出绕组匝数多,层数多时,应考虑分布电容的影响,降低分布电容有利于抑制高频信号对负载的干扰。

AP法设计高频变压器

AP法设计高频变压器

AP法设计高频变压器高频变压器是一种用于电能传递和变换的重要电力元件。

它可以将交流电能从一个电路转移到另一个电路,同时改变电压和电流的比例。

高频变压器在电子设备和电力系统中广泛应用,具有体积小、效率高和响应时间快等优点。

本文将以AP法(Air-Gap Power Transformer)为例,详细介绍高频变压器的设计。

一、高频变压器的结构和工作原理高频变压器的基本结构由两个或多个绕组、铁芯和外部绝缘层组成。

其中铁芯通过提供磁耦合效应来支撑变压器的工作,绕组则对电流进行传输和调节。

高频变压器按照铁芯结构可以分为显性铁芯和暗性铁芯。

常见的显性铁芯包括EI型铁芯、环形铁芯和矩形铁芯等,暗性铁芯则采用微波磁芯或铁氟龙材料。

高频变压器的工作原理可以总结为两个方面:基频交流信号的传输和变压,以及高频信号的耦合和变换。

二、高频变压器设计的基本步骤1.确定设计要求:根据实际应用需求,确定变压器的输入电压、输出电压、功率和工作频率等参数。

2.计算绕组参数:根据输入输出参数计算绕组元件的电压、电流和匝数。

根据电流和匝数计算线圈长度和截面积,并进行冷却和散热分析。

3.计算铁芯参数:根据绕组参数和工作频率计算铁芯的磁导率、磁链密度和截面积等参数,确定铁芯的材料和尺寸。

4.优化设计:根据计算结果对各个参数进行优化,以提高变压器的效率和响应速度。

5.确定绝缘和外壳形式:根据设计需求选择合适的绝缘材料和外壳形式,确保变压器的电气安全性和机械强度。

三、高频变压器设计中的关键技术1.绕组设计:合理的绕组设计可以减少电流损耗和漏磁现象,提高变压器的效率。

设计时可以采用多层绕组、薄绝缘线和高填充因子。

2.铁芯设计:合适的铁芯材料和结构可以提供足够的磁导率和饱和磁场,从而减小磁耦合误差和磁滞损耗。

3.冷却设计:高频变压器由于工作在高频范围内,容易产生大量的热量。

合理的冷却设计可以增加变压器的功率容量和寿命。

4.电磁屏蔽设计:在高频环境中,电磁干扰是一个非常重要的问题。

高频变压器设计

高频变压器设计

高频变压器参数计算方法一.电磁学计算公式推导:1.磁通量与磁通密度相关公式:Ф = B * S⑴Ф ----- 磁通(韦伯)B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=10^4高斯S ----- 磁路的截面积(平方米)B = H * μ⑵μ ----- 磁导率(无单位也叫无量纲)H ----- 磁场强度(伏特每米)H = I*N / l⑶I ----- 电流强度(安培)N ----- 线圈匝数(圈T)l ----- 磁路长路(米)2.电感中反感应电动势与电流以及磁通之间相关关系式:EL =⊿Ф / ⊿t * N⑷EL = ⊿i / ⊿t * L⑸⊿Ф ----- 磁通变化量(韦伯)⊿i ----- 电流变化量(安培)⊿t ----- 时间变化量(秒)N ----- 线圈匝数(圈T)L ------- 电感的电感量(亨)由上面两个公式可以推出下面的公式:⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得:N = ⊿i * L/⊿Ф再由Ф = B * S 可得下式:N = ⊿i * L / ( B * S )⑹且由⑸式直接变形可得:⊿i = EL * ⊿t / L⑺联合⑴⑵⑶⑷同时可以推出如下算式:L =(μ* S )/ l * N^2⑻这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素)3.电感中能量与电流的关系:QL = 1/2 * I^2 * L⑼QL -------- 电感中储存的能量(焦耳)I -------- 电感中的电流(安培)L ------- 电感的电感量(亨)4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数比与占空比的关系式:N1/N2 = (E1*D)/(E2*(1-D))⑽N1 -------- 初级线圈的匝数(圈) E1 -------- 初级输入电压(伏特)N2 -------- 次级线圈的匝数(圈) E2 -------- 次级输出电压(伏特)二.根据上面公式计算变压器参数:1.高频变压器输入输出要求:输入直流电压: 200--- 340 V输出直流电压: 23.5V输出电流: 2.5A * 2输出总功率: 117.5W2.确定初次级匝数比:次级整流管选用VRRM =100V正向电流(10A)的肖特基二极管两个,若初次级匝数比大则功率管所承受的反压高;匝数比小则功率管反低,这样就有下式:N1/N2 = VIN(max) / (VRRM * k / 2)⑾N1 ----- 初级匝数 VIN(max) ------ 最大输入电压 k ----- 安全系数N2 ----- 次级匝数 Vrrm ------ 整流管最大反向耐压这里安全系数取0.9由此可得匝数比N1/N2 = 340/(100*0.9/2) ≌ 7.63.计算功率场效应管的最高反峰电压:Vmax = Vin(max) + (Vo+Vd)/ N2/ N1⑿Vin(max) ----- 输入电压最大值 Vo ----- 输出电压Vd ----- 整流管正向电压Vmax = 340+(23.5+0.89)/(1/7.6)由此可计算功率管承受的最大电压: Vmax ≌ 525.36(V)4.计算PWM占空比:由⑽式变形可得:D = (N1/N2)*E2/(E1+(N1 /N2*E2)D=(N1/N2)*(Vo+Vd)/Vin(min)+N1/N2*(Vo+Vd)⒀D=7.6*(23.5+0.89)/200+7.6*(23.5+0.89)由些可计算得到占空比 D≌ 0.4815.算变压器初级电感量:为计算方便假定变压器初级电流为锯齿波,也就是电流变化量等于电流的峰值,也就是理想的认为输出管在导通期间储存的能量在截止期间全部消耗完。

高频变压器的设计

高频变压器的设计

高频变压器的设计高频变压器制作脉冲变压器也可称作开关变压器,或简单地称作高频变压器。

在传统的高频变压器设计中,由于磁芯材料的限制,其工作频率较低,一般在20kHz左右。

随着电源技术的不断发展,电源系统的小型化、高频化和大功率化已成为一个永恒的研究方向和发展趋势。

因此,研究使用频率更高的电源变压器是降低电源系统体积、提高电源输出功率比的关键因素。

随着应用技术领域的不断扩展,开关电源的应用愈来愈广泛,但制作开关电源的主要技术和耗费主要精力就是制作开关变压器的部件。

开关变压器与普通变压器的区别大致有以下几点: (1)电源电压不是正弦波,而是交流方波,初级绕组中电流都是非正弦波。

(2)变压器的工作频率比较高,通常都在几十赫兹,甚至高达几十万赫兹。

在确定铁芯材料及损耗时必须考虑能满足高频工作的需要及铁芯中有高次谐波的影响。

(3)绕组线路比较复杂,多半都有中心抽头。

这不仅增大了初级绕组的尺寸,增大了变压器的体积和重量,而且使绕组在铁芯窗口中的分布关系发生变化。

图1 开关电源原理图本文介绍了一款如图1所示的DC―DC变换器,输入电压为直流24V,输出电压分别为5V及12V的多路直流输出。

要求各路输出电流都在lA以上,核心器件是美国Unitrode公司生产的一种高性能单端输出式电流控制型脉宽调制器芯片UC3842,最高工作频率可达200kHz。

根据锌锰铁氧体合金的优异电磁性能,通过具体示例介绍工作频率为100kHz的高频开关电源变压器的设计及注意事项。

2变压器磁芯的选择与工作点的确定 2.1 磁芯材料的选择从变压器的性能指标要求可知,传统的薄带硅钢已很难满足变压器在频率、使用环境方面的设计要求。

磁芯的材料只有从坡莫合金、铁氧体材料、钴基非晶态合金和超微晶合金几种材料中来考虑。

坡莫合金、钴基非晶态价格高,约为铁氧体材料的数倍,而饱和磁感应强度Bs也不是很高,且加工工艺复杂。

考虑到我们所要求的电源输出功率并不高,大约为30W,因此,综合几种材料的性能比较,我们还是选择了饱和磁感应强度Bs较高,温度稳定性好,价格低廉,加工方便的性价比较低的锌锰铁氧体材料,并选以此材料作为框架的EI28来绕制本例中的脉冲变压器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图1 开关电源原理图
本文介绍了一款如图1所示的DC—DC变换器,输入电压为直流24V,输出电压分别为5V及12V的多路直流输出。

要求各路输出电流都在lA以上,核心器件是美国Unitrode公司生产的一种高性能单端输出式电流控制型脉宽调制器芯片UC3842,最高工作频率可达200k Hz。

根据锌锰铁氧体合金的优异电磁性能,通过具体示例介绍工作频率为100kHz的高频开关电源变压器的设计及注意事项。

2变压器磁芯的选择与工作点的确定
2.1 磁芯材料的选择
从变压器的性能指标要求可知,传统的薄带硅钢已很难满足变压器在频率、使用环境方面的设计要求。

磁芯的材料只有从坡莫合金、
铁氧体材料、钴基非晶态合金和超微晶合金几种材料中来考虑。

坡莫合金、钴基非晶态价格高,约为铁氧体材料的数倍,而饱和磁感应强度
B s也不是很高,且加工工艺复杂。

考虑到我们所要求的电源输出功率并不高,大约为30W,因此,综合几种材料的性能比较,我们还是选择了饱和磁感应强度B s较高,温度稳定性好,价格低廉,加工方便的性价比较低的锌锰铁氧体材料,并选以此材料作为框架的E I28来绕制本例中的脉冲变压器。

2.2工作点的确定
根据相关资料,EC35输出功率为50W,饱和磁感应强度大约在2 000Gs左右。

买来的磁芯,由于厂家提供的磁感应强度月,值并不准确,可用图2所提供的方式粗略测试一下。

将调压器接至原线圈,用示波器观察副线圈输出电压波形。

将原线圈的输入电压由小到大慢慢升高,直到示波器显示的波形发生奇变。

此时,磁芯已饱和,根据公式:
U=4.44f N1Φm可推知在工频时的Φm值。

要求不高时,可根据测算出的Φm,粗略估算出原线圈的匝数,。

图2 工作点测试示意图
3 变压器主要参数的计算
本例中的变换器采用单端反激式工作方式,单端反激变换器在小
功率开关电源设计中应用非常广泛,且多路输出较方便。

单端反激电源的工作模式有两种:电流连续模式和电流断续模式。

前者适用于较小功率,副边二极管存在没有反向恢复的问题,但MOS管的峰值电流相对较大;后者MOS管的峰值电流相对较小,但存在副边二极管的反向恢复问题,需要给二极管加吸收电路。

这两种工作模式可根据实际需求来选择,本文采用了后者。

设计变压器时大多需要考虑下面问题:变换器频率f(H2);初级电压U1(V),次级电压U2(V);次级电流i2(A);绕组线路参数n1、,n
(℃);绕组相对电压降u;环境温度τHJ(℃);绝缘材料密2;温升τ
度γz(g/cm3)
1)根据变压器的输出功率选取铁芯,所选取的铁芯的户,值应等于或大于给定值。

2)绕组每伏匝数
(1)
S T是铁芯的截面积;k T是窗口的填充系数;
3)初级绕组电势
E1=U1(1-) (2)
4)初级绕组匝数
W1=W0E l (3)
5)次级绕组电势
E2i=U2i (1+) (4)
6)次级绕组匝数
W2i=W0E2i (5)
7)初级绕组电流
(6)
8)次级绕组电流
(7)
其中,n1、n2:分别是初级绕组和次级绕组的每层匝数。

9)初级绕组线径
(8)
10)次级绕组线径
(9)
其中,j是电流密度。

详细的变压器设计方法与计算相当复杂,本文参照经验公式,依据下面的步骤设计了本例转换器中的高频变压器。

3.1 确定变压器的变比
根据输出电压U0的关系式
(10)
得变比为
(11)
式中U D为整流器输出的直流电压。

本例中U D=24V,f为100kHz,t ON取0.5;n=2。

3.2 计算初级线圈中的电流
已知输出直流电压U0=±12V、5V,负载电流均为I0=lA,则输出功率
P0=P1+P2+P3=29W
开关电源的效率η一般在60~90%之间,本例取η=0.65,则输入功率为。

相关文档
最新文档