概率论与数理统计常用的统计分布

合集下载

概率论与数理统计公式整理

概率论与数理统计公式整理

概率论与数理统计公式整理在现代数学中,概率论与数理统计是两个重要的分支。

其中概率论是研究随机事件发生的可能性或概率的科学。

而数理统计则是利用概率论的方法,对已经发生的随机事件进行统计分析和推断。

本文将整理概率论与数理统计中常用的公式。

一、基本概率公式1.概率:$P(A)=\frac{n(A)}{n(S)}$其中,$P(A)$表示事件$A$发生的概率,$n(A)$表示事件$A$所包含的基本事件的个数,$n(S)$表示所有基本事件的个数。

2.加法原理:$P(A\cup B)=P(A)+P(B)-P(A\cap B)$其中,$A$和$B$是两个事件,$A\cup B$表示事件$A$和事件$B$中至少有一个发生的概率,$A\cap B$表示两个事件同时发生的概率。

3.条件概率:$P(B|A)=\frac{P(A\cap B)}{P(A)}$其中,$P(B|A)$表示在事件$A$发生的条件下,事件$B$发生的概率。

4.乘法定理:$P(A\cap B)=P(A)P(B|A)$其中,$P(A\cap B)$表示两个事件同时发生的概率,$P(B|A)$表示在事件$A$发生的条件下,事件$B$发生的概率。

二、概率分布1.离散随机变量的概率分布律:$\sum\limits_{i=1}^{+\infty}{p(x_i)}=1$其中,$p(x_i)$表示离散随机变量取值为$x_i$的概率。

2.连续随机变量的概率密度函数:$\int_{-\infty}^{+\infty}{f(x)}\mathrm{d}x=1$其中,$f(x)$表示连续随机变量在$x$处的概率密度。

3.数学期望:$E(x)=\sum\limits_{i=1}^{+\infty}{x_ip(x_i)}$或$E(x)=\int_{-\infty}^{+\infty}{xf(x)}\mathrm{d}x$其中,$E(x)$表示随机变量$x$的数学期望,$p(x_i)$表示$x_i$这一离散随机变量取到的带权概率。

《概率论与数理统计》统计量及其分布

《概率论与数理统计》统计量及其分布
律性的数学学科.
但数理统计以概率论为基础,更着重于根据试验得
到的数据来对研究对象的客观规律作出种种合理的估
计和判断.
4
第5章
统计量及其分布

描述统计学

对随机现象进行观测、试验, 以取得有代表

性的观测值.


推断统计学

对已取得的观测值进行整理、分析, 作出推

断、决策,从而找出所研究的对象的规律性.
O
5
n 10
10
15
20
x
32
01
抽样分布
2. t 分布
2
X
~
N
(0,1)

Y
~
x
(n),且X与Y 独立,则
设随机变量
X
T
Y /n
服从自由度为n的t分布,记为t(n).
性质 密度f(t)是偶函数,且t分布的极限分布是标准正
态分布.
33
01
抽样分布
t分布的密度函数
n 1
n 1


那么如何来利用样本呢?
列表?
画图?
统计量!
样本来自于总体,含有总体性质的信息,但较为分
散. 为了进行统计推断,需要把分散的信息进行整理,
针对不同的研究目的,构造不同的样本函数,这种函
数在统计学中称为统计量.
18
本讲内容
01
总体与个体
02
样本
03
统计量
03
统计量
3.统计量
统计量——不含有未知参数的样本函数


f ( x)
n1
n2
x

三大抽样分布(1)概率论与数理统计习题 概率论与数理统计)

三大抽样分布(1)概率论与数理统计习题 概率论与数理统计)


x2 x2

~ F (1,1)
4. 正态总体的样本均值与样本方差的分布
正态总体 N ( , 2 ) 的样本均值和样本方差
有以下两个重要定理.
定理一
设 X1, X 2, , X n 是来自正态总体N (, 2 )
的样本, X 是样本均值, 则有
(1) X ~ N (, 2 / n).即 X ~ N (0,1)
样本, X , S 2 分别是样本均值和样本方差, 则有
X ~ t(n 1).
S/ n
证明
因为 X ~ N (0,1), / n
(n 1)S 2
2
~ 2(n 1),
且两者独立, 由 t 分布的定义知
X (n 1)S 2 ~ t(n 1). / n 2(n 1)
n
2
πn

1
n 2


1

t2 n


n1 2


,
t
t 分布的概率密度曲线如图
显然图形是关于
t 0对称的.
当 n 充分大时, 其
图形类似于标准正
态变量概率密度的
图形. 因为lim h(t)
1
t2
e 2,
n

所以当 n 足够大时 t 分布近似于 N (0,1) 分布,
1,
因为 1 F
~ F (n2 , n1 ),
所以
P
1 F

F1
(n2
,
n1
)

1


,
比较后得
F1
(n2 ,

概率论及数理统计概率分布

概率论及数理统计概率分布
等于其概率密度函数 在f ( x) 到x上的积分,记
作 。F(x)
2024/4/9
9
F( x) P( X x) 1
( t )2
x
e
2 2
dt
2 π
称F(x)为正态分布 N (, 2 ) 的概率密度函 数。其值表示变量落在区间 ( ,x)的概率, 对应于从-∞到x概率密度曲线下的阴影的面 积(常
制定观察指标参考值范围的一般步骤:
依据观察指标的特点、背景和已知的影响因素, 确定抽样的入选标准和排除标准;
根据指标特点决定单侧或双侧; 确定范围:一般为95%; 按资料特点选取不同方法计算正常值范围的上下
限。
2024/4/9
29
双侧临界值:标准正 态分布双侧尾部面积 之和等于α时所对应 的正侧变量值称为双 侧 临 界 值 , 记 作 Za/2 或 Ua/2。
率,e为自然对数的底,仅x为变量。
当x确定后, f(x)为X相应的纵坐标高度,则X服 从参数为μ和σ2的正态分布(normal distribution),记 作X~N( , 2)。
2024/4/9
8
一般地,若连续型随机变量,设其概率密度函
数为 f (x),则X取值落在区间( ,x)内的累积
概率为概率密度曲线下位于( ,x)的图形面积,
X 1.64S 4.2 1.64 0.7 3.05L
即该地健康成年男子第一秒肺通气量的95%参 考值范围为不低于3.05(L)。
2024/4/9
39
4.2 估计频数分布
2024/4/9
40
4.3 进行质量控制
为了控制实验中的检测误差,常以 X 2s 作为上下警戒值,以 X 3s作为上下控
0.8359 0.0531

数学分布类型

数学分布类型

数学分布类型
1. 均匀分布
在概率论和统计学中,均匀分布也叫矩形分布,它是对称概率分布,在相同长度间隔的分布概率是等可能的。

均匀分布由两个参数a和b定义,它们是数轴上的最小值和最大值,通常缩写为U(a,b)。

2. 正态分布
正态分布(Normal distribution),也称“常态分布”,又名高斯分布(Gaussian distribution)。

若随机变量X服从一个数学期望为μ、方差为σ2的正态分布,记为N(μ,σ2)。

其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。

当μ = 0,σ = 1时的正态分布是标准正态分布。

3. t分布
在概率论和统计学中,t-分布(t-distribution)用于根据小样本来估计呈正态分布且方差未知的总体的均值。

如果总体方差已知(例如在样本数量足够多时),则应该用正态分布来估计总体均值。

t分布曲线形态与n(确切地说与自由度df)大小有关。

与标准正态分布曲线相比,自由度df越小,t分布曲线愈平坦,曲线中间愈低,曲线双侧尾部翘得愈高;自由度df愈大,t分布曲线愈接近正态分布曲线,当自由度df=∞时,t分布曲线为标准正态分布曲线。

概率论与数理统计各种分布总结

概率论与数理统计各种分布总结

概率论与数理统计各种分布总结概率论与数理统计中有许多不同的概率分布,每个分布都具有不同的特征和应用。

下面是一些常见的概率分布的总结:1. 均匀分布(Uniform Distribution):在一个区间内的所有取值都具有相等的概率。

它可以是离散的(离散均匀分布)或连续的(连续均匀分布)。

2. 二项分布(Binomial Distribution):描述了在一系列独立的伯努利试验中成功次数的概率分布。

每个试验只有两个可能结果(成功和失败),并且成功的概率保持不变。

3. 泊松分布(Poisson Distribution):用于描述在给定时间或空间单位内发生某事件的次数的概率分布。

它通常用于模拟稀有事件的发生情况。

4. 正态分布(Normal Distribution):也称为高斯分布,是最常见的连续概率分布之一。

它具有钟形曲线的形状,对称且具有明确的均值和标准差。

许多自然现象和测量数据都可以近似地用正态分布来描述。

5. 指数分布(Exponential Distribution):描述了连续随机事件之间的时间间隔的概率分布。

它通常用于模拟无记忆性事件的发生情况,如设备故障、到达时间等。

6. 卡方分布(Chi-Square Distribution):由正态分布的平方和构成的概率分布。

它在统计推断中广泛应用,特别是在假设检验和信赖区间的计算中。

7. t分布(Student's t-Distribution):用于小样本量情况下参数估计和假设检验。

与正态分布相比,t分布具有更宽的尾部,因此更适用于小样本数据。

8. F分布(F-Distribution):用于比较两个或多个样本方差是否显著不同的概率分布。

它经常用于方差分析和回归分析中。

这只是一些常见的概率分布的总结,还有其他许多分布,每个都在不同的领域和应用中起着重要的作用。

概率论与数理统计 7.2 数理统计中的三大分布

概率论与数理统计 7.2 数理统计中的三大分布
数理统计
7.2 数理统计中的三大抽样分布
在数理统计中,以标准正态变量为基石而构 造的三个著名统计量有着广泛的应用,这是因为 这三个统计量不仅有明确背景,而且其抽样分布 的密度函数有明显的数学表达式,它们被称为统 计中的“ 三大抽样分布 ” 。
1. 2 分布
数理统计
2分布是由正态分布派生出来的一种分布.
t1 (n) t (n)
o t (n)
x
t分布的上分位点t (n)可查表
求得,例t0.025(15) 2.1315.
当n 45时,对于常用的的值,可用正态近似 t (n) z
例3:X ~ t(15)
(1)求 0.01的上侧分位数; (2) P( X ) 0.05,求 ; (3)P( X ) 0.95 ,求 .
记为 t ~ t(n). t分布概率密度函数为:
f (t)
[(n 1)
2]
(1
t
2
)
n1 2
,
t
(n 2) n n
t 分布的图像
y N (0,1) 数理统计
t(n)
t分布的性质: 1. 设t ~ t(n),则E(t) 0, D(t) n (n 2) (n 2)
2. t分布的密度函数关于t 0对称.当n充分大时, 其图形近似于标准正态分布概率密度的图形,
F分布的上分位点的性质:
F1 (n1, n2 )
1 F (n2 , n1 )
F分布的上分位点可查表求得.例,
F0.95 (12,9)
1 F0.05 (9,12)
1 2.80
0.357
例4. F ~ F (24,15),求 1,2 使 P(F 2 ) 0.025 P(F 1) 0.025

概率论与数理统计总结之第三章

概率论与数理统计总结之第三章

第三章 多维随机变量及其分布第一节二维随机变量的概念1.二维随机变量定义:设(X,Y)是二维随机变量,记为:(,){()()}=≤⋂≤F x y P X x Y y (,)=≤≤P X x Y y (,)-∞<<∞-∞<<∞x y称(,)F x y 为X 与Y 的分布函数,或称X 与Y 的联合分布函数}}(){{(,lim (,)→+∞=≤=≤≤+∞=X y F x P X x P X x Y F x y}}(){{,lim (,)→+∞=≤=≤+∞≤=Y x F y P Y y P X Y y F x y分布函数(,)F x y 性质:1)(,)F x y 是变量x 和变量y 的不减函数,(分别关于x 和y 有单调不减性) 2)0(,)1≤≤F x y ,任意一边趋于-∞=0.F(∞,∞)=1(用来确定未知参数).3)(,)(0,)(0,0)=+=++F x y F x y F x y ,即(,)F x y 分别关于x 右连续,关于y 也右连续,4)对于任意11221212(,),(,),,,<<x y x y x x y y 下述不等式成立(可用于判定二元函数(,)F x y 是不是某二维随机变量的分布函数):22211112(,)(,)(,)(,)0-+-≥F x y F x y F x y F x y 2.二维离散型随机变量:定义:如果二维随机变量(X,Y)只取有限对或可列无穷多对,则称(X,Y)是二维离散型随机变量其概率{,},,1,2,====i i ij P X x Y y p i j …为二维离散型随机变量(X,Y)的分布律,或随机变量X 和Y 是联合分布律 性质:1.0,(i,j 1.2.....)≥=ij P2.1≤≤=∑∑i i ijx x y yp满足以上两条,即为二维离散型随机变量的分布律. 注;步骤:定取值,求概率,验证1.离散型随机变量X 和Y 的联合分布函数为(,)≤≤=∑∑i i ijx x y yF x y p,其中和式是对一切满足,≤≤i i x x y y 的i,j 来求和的边缘分布定义:对于离散型随机变量(X,Y),分量X 和Y 的分布律(), 1.2...(), 1.2..的边缘分布律:的边缘分布律:••========∑∑i i ij jJ i ij iX p P X x p i Y p P Y y p i ,0,0(, 1.2....)1•••≥≥===∑∑i j jiip p i j pi p联合确定边缘,但一般情况,边缘不能确定的联合,除非相互独立. 比如;有放回的摸球,就是X ,Y 相互独立. 不放回地摸球,是条件分布.3.二维连续型随机变量的概率密度和边缘概率密度. 对比一维的: 概率密度:()()1∞-∞==⎰f x f x dx ,分布律:{}(),≤≤=⎰b aP a x b f x dx 分布函数:()()-∞=⎰xF x f t dt二维:定义:设二维随机变量(X,Y)的分布函数为(,)F x y ,若存在非负可积函数(,)f x y ,使得对于任意实数x,y 有(,)(,)-∞-∞=⎰⎰xyF x y f u v dudv ,则称(X,Y)为二维连续型随机变量,(,)f x y 称为(X,Y)的概率密度,或联合概率密度.概率密度的性质: 1.(,)F x y ≥0 2.(,)1∞∞-∞-∞=⎰⎰f x y dxdy只要具有以下两条性质,必可作为某二维随机变量的概率密度.3.已知(X,Y)的概率密度(,)f x y ,则(X,Y)在平面区域D 内取值的概率为:{(,)}(,)∈=⎰⎰DP X Y D f x y dxdy (作二重积分)(随机点(X,Y)落在平面区域D 上的概率等于以平面区域D 为底,以曲面(,)=z f x y 顶的典顶的体积) 4.若(,)F x y 在点(x,y)连续,则有2(,)(,)∂=∂∂F x y f x y x y(连续就能根据分布律求概率密度)1) 当求()=P X Y 时,它只是一条线,所以:()0==P X Y2) 一个方程有无实根:20++=ax bx c ,即求:22240,40,40,一个实根无实根两个实根+=+<+>b ac b ac b ac均匀分布:定义:设D 为平面上的有界区域,其面积为S ,且0>S ,如果二维随机变量(X,Y)的概率密度为1,(x,y)(,)0,其它⎧∈⎪=⎨⎪⎩Df x y S,则称(X,Y)服从区域D 上的均匀分布(或叫(X,Y)在D 上服从均匀分布,记作(X,Y )D U . 两种特殊情形:1) D 为矩形,,c )≤≤≤≤a x b y d 时,1,()()(,),c )0,其它⎧⎪--=≤≤≤≤⎨⎪⎩b a dc f x y a x b y d2) D 为圆形,如(X,Y)在以原点为圆心,R 为半径的圆域上服从均匀分布,则(X,Y)的概率密度为:22221,(,))0,其它π⎧⎪=+≤⎨⎪⎩f x y x y R R定义:对连续型随机变量(X,Y),分量X,Y 的概率密度称为(X,Y)关于X 或Y 的边缘概率密度,记作(),X f x ().Y f y X 的分布函数:()(,)(,)∞-∞-∞⎡⎤=∞=⎢⎥⎣⎦⎰⎰xX F x F x f u v dv du (让Y趋于正无穷) Y 的分布函数:()(,)(,)∞-∞-∞⎡⎤=∞=⎢⎥⎣⎦⎰⎰yY F y F y f u v du dv (让X趋于正无穷) X 的概率密度:()(,),()∞-∞=-∞<<∞⎰X f x f x y dy xY 的概率密度:()(,),()∞-∞=-∞<<∞⎰Y f y f x y dx y(二维的边缘概率密度是直接以联合概率密度在负无穷到正无穷对对应元素积分,其间需要对划分区间的作分别积分)(X,Y)的概率密度:(,)(,)[(,)]-∞-∞-∞-∞==⎰⎰⎰⎰x yx yf x y f u v dudv f u v dv du二维正态分布: 二维正态221212(,)(,,,,)σσρX Y N u u 分布函数的性质:1.211()(,)σX N u ,222()(,)σY N u 边缘服从一维正态分布2.0,ρ=⇔xy X Y 独立(相关系数为O,则两个随机变量独立)3.212()()σ++k X k Y N u (线性组合按一维正态处理)4. 1212(),±±k X k Y c X c Y 服从二维正态(如:(,)+-X Y X Y ) 条件分布:设(X,Y)是二维离散型随机变量,对于固定的j ,若{}0=>j P Y y ,则称{=i P X x |{,}},1,2,{}⋅=======i j ij j j jP X x Y y p Y y i P Y y p …为在=j Y y 条件下随机变量X 的条件分布律同样地,若{}0,=>i P X x 则称{=j P Y y |{,}},1,2,{}⋅=======i j ij i i i P X x Y y p X x j P X x p …为=i X x 条件下随机变量Y 的条件分布律 变形,即得求联合分布律的方法.设二维随机变量(X,Y)的概率密度为f(x,y),(X,Y)关于Y 的边缘概率密度为()Y f y .若对于固定的y,()0,>Y f y 则称(,)()Y f x y f y 为在Y=y 的条件下X 的条件概率密度称|(,)(|)()-∞-∞=⎰⎰xxX Y Y f x y f x y dx dx f y 为在Y=y 的条件下,X 的条件分布函数,记为P{X ≤x|Y=y}或|(|)X Y F x y ,即|(,)(|){|}()-∞=≤==⎰x X Y Y f x y F x y P X x Y y dx f y 设F(x,y)及(),()X Y F x F y 分别是二维随机变量(X,Y)的分布函数及边缘分布函数,若对于所有x,y 有P{X ≤x,Y ≤y}=P{X ≤x}P{Y ≤y},即(,)()()=X Y F x y F x F y ,则称随机变量X 和Y 是相互独立的设(X,Y)是连续型随机变量,(,),(),()X Y f x y f x f y 分别为(X,Y)的概率密度和边缘概率密度,则X 和Y 相互独立的条件等价于(,)()()=X Y f x y f x f y 在平面上几乎处处成立(除去面积为0的集合以外,处处成立)第二节随机变量的独立性1. 两个随机变量的独立性 定义:设(,),().()X Y F x y F x F y 分别是二维随机变量(X,Y)的分布函数和两个边缘分布函数,若对任意实数,x y 有(,)().()=X Y F x y F x F y ,则称X 与Y 相互独立.可用于判断独立性(随机变量独立,对任意实数x,y,事件X ,Y ≤≤x y 相互独立) 以上公式等价于:(X ,Y )(X ).()≤≤=≤≤X Y P x y P x P Y y 可类推至多个函数的情况.1)如果X,Y 随机变量独立,().()连续f x g y ,(通过函数作用)则().()f x g y 也独立.(可类推至多个随机变量的情况)例:X,Y 独立,则22,x y 独立.2)如果1212,...,...,YYYm m X X X 相互独立,12m 121()()...()()()....()和,f x f x f x g y g y g y 也相互独立。

概率论与数理统计中的三种重要分布

概率论与数理统计中的三种重要分布

概率论与数理统计中的三种重要分布摘要:在概率论与数理统计课程中,我们研究了随机变量的分布,具体地研究了离散型随机变量的分布和连续型随机变量的分布,并简单的介绍了常见的离散型分布和连续型分布,其中二项分布、Poisson 分布、正态分布是概率论中三大重要的分布。

因此,在这篇文章中重点介绍二项分布、Poisson 分布和正态分布以及它们的性质、数学期望与方差,以此来进行一次比较完整的概率论分布的学习。

关键词:二项分布;Poisson 分布;正态分布;定义;性质一、二项分布二项分布是重要的离散型分布之一,它在理论上和应用上都占有很重要的地位,产生这种分布的重要现实源泉是所谓的伯努利试验。

(一)泊努利分布[Bernoulli distribution ] (两点分布、0-1分布)1.泊努利试验在许多实际问题中,我们感兴趣的是某事件A 是否发生。

例如在产品抽样检验中,关心的是抽到正品还是废品;掷硬币时,关心的是出现正面还是反面,等。

在这一类随机试验中,只有两个基本事件A 与A ,这种只有两种可能结果的随机试验称为伯努利试验。

为方便起见,在一次试验中,把出现A 称为“成功”,出现A 称为“失败” 通常记(),p A P = ()q p A P =-=1。

2.泊努利分布定义:在一次试验中,设p A P =)(,p q A P -==1)(,若以ξ记事件A 发生的次数,则⎪⎪⎭⎫⎝⎛ξp q 10~,称ξ服从参数为)10(<<p p 的Bernoulli 分布或两点分布,记为:),1(~p B ξ。

(二)二项分布[Binomial distribution]把一重Bernoulli 试验E 独立地重复地进行n 次得到n 重Bernoulli 试验。

定义:在n 重Bernoulli 试验中,设(),()1P A p P A q p ===-若以ξ记事件A 发生的次数,则ξ为一随机变量,且其可能取值为n ,,2,1,0 ,其对应的概率由二项分布给出:{}k n kk n p p C k P --==)1(ξ,n k ,,3,2,1,0 =,则称ξ服从参数为)10(,<<p p n 的二项分布,记为),(~p n B ξ。

概率论与数理统计期末复习重要知识点

概率论与数理统计期末复习重要知识点

概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。

2.常用离散型分布:(1)两点分布(0-1分布):若一个随机变量X 只有两个可能取值,且其分布为12{},{}1(01)P X x p P X x pp ====-<<,则称X 服从12,x x 处参数为p 的两点分布。

两点分布的概率分布:12{},{}1(01)P X x p P X x pp ====-<<两点分布的期望:()E X p =;两点分布的方差:()(1)D X p p =-(2)二项分布:若一个随机变量X 的概率分布由式{}(1),0,1,...,.k kn k n P x k C p p k n -==-=给出,则称X 服从参数为n,p 的二项分布。

记为X~b(n,p)(或B(n,p)). 两点分布的概率分布:{}(1),0,1,...,.k kn k n P x k C p p k n -==-=二项分布的期望:()E X np =;二项分布的方差:()(1)D X np p =-(3)泊松分布:若一个随机变量X 的概率分布为{},0,0,1,2,...!kP X k ek k λλλ-==>=,则称X 服从参数为λ的泊松分布,记为X~P (λ)泊松分布的概率分布:{},0,0,1,2,...!kP X k ek k λλλ-==>=泊松分布的期望:()E X λ=;泊松分布的方差:()D X λ=4.连续型随机变量:如果对随机变量X 的分布函数F(x),存在非负可积函数()f x ,使得对于任意实数x ,有(){}()xF x P X x f t dt-∞=≤=⎰,则称X 为连续型随机变量,称()f x 为X 的概率密度函数,简称为概率密度函数。

5.常用的连续型分布:(1)均匀分布:若连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<-=其它,0,1)(bx a a b x f ,则称X 在区间(a,b )上服从均匀分布,记为X~U(a,b)均匀分布的概率密度:⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a a b x f 均匀分布的期望:()2a bE X +=;均匀分布的方差:2()()12b a D X -= (2)指数分布:若连续型随机变量X 的概率密度为00()0xe xf x λλλ-⎧>>=⎨⎩,则称X 服从参数为λ的指数分布,记为X~e (λ)指数分布的概率密度:00()0xe xf x λλλ-⎧>>=⎨⎩指数分布的期望:1()E X λ=;指数分布的方差:21()D X λ=(3)正态分布:若连续型随机变量X的概率密度为22()2()x f x x μσ--=-∞<<+∞则称X 服从参数为μ和2σ的正态分布,记为X~N(μ,2σ)正态分布的概率密度:22()2()x f x x μσ--=-∞<<+∞正态分布的期望:()E X μ=;正态分布的方差:2()D X σ=(4)标准正态分布:20,1μσ==,2222()()x t xx x e dtϕφ---∞=⎰标准正态分布表的使用: (1)()1()x x x φφ<=--(2)~(0,1){}{}{}{}()()X N P a x b P a x b P a x b P a x b b a φφ<≤=≤≤=≤<=<<=-(3)2~(,),~(0,1),X X N Y N μμσσ-=故(){}{}()X x x F x P X x P μμμφσσσ---=≤=≤={}{}()()a b b a P a X b P Y μμμμφφσσσσ----<≤=≤≤=-定理1: 设X~N(μ,2σ),则~(0,1)X Y N μσ-=6.随机变量的分布函数: 设X 是一个随机变量,称(){}F x P X x =≤为X 的分布函数。

概率论与数理统计第四章_几种重要的分布

概率论与数理统计第四章_几种重要的分布
用贝努公式计算ξ的分布律下
ξ
0
1
2
3
4
p 0.0016 0.0256 0.1536 0.4096 0.4096
4.2超几何分布(了解)
主要内容: (一)了解超几何分布的概念 (二)了解超几何分布的期望和方差
4.2超几何分布
例1 某班有学生20名,其中有5名女同学,今从 班上任选4名学生去参观展览,被选到的女同学数ξ
k1 (k 1)!(n k)!
n
(k 11)n! pk (1 p)nk
k1 (k 1)!(n k)!
n
(k 1)n!
n
pk (1 p)nk
n!
pk (1 p)nk
k1 (k 1)!(n k)!
k1 (k 1)!(n k)!
n
n!
n
pk (1 p)nk
n!
pk (1 p)nk
k2 (k 2)!(n k)!
解 可以取0,1,2,3这4个值。
P(
=k)=
C3k
C4k 17
C420
(k=0,1,2,3,)
列成概率分布如下
ξ
0
1
2
3
p 0.4912 0.4211 0.0842 0.0035
定义42 设N个元素分为两类,有N1个属于第一类, N2个属于第二类(N1+N2=N)。从中按不重复抽 样取n个,令ξ表示这n个中第一(或二)类元素的个数,
k1 (k 1)!(n k)!
n2
n1
n(n 1)Cnl 2 pl2 (1 p)n2l nCnj1 p j1(1 p)n1 j
l0
j0
n2
n(n 1)Cnl 2 pl2 (1 p)n2l l0

概率论与数理统计:常用统计分布

概率论与数理统计:常用统计分布

0,
x 0, 其它.
F-分布的性质 由F分布定义可得:
F
~
F(n1, n2 )
1 F
~
F(n2, n1)
五、F-分布与t分布的关系
定理3 若X~t(n),则Y=X2~F(1,n)。
证明:X~t(n),X的分布密度p(x)= n 1 2 nπ n 2
1
x2 n
n 1 2
Y=X2的分布函数F(y) =P{Y<y}=P{X<y}。当y≤0时,FY(y)=0,
② X 与 S2相互独立。
二、χ2-分布(卡方分布)
定义 设X1,X2,…,Xn是来自标准正态总体 N(0,1)的样本,称统计量
2
X
2 1
X
2 2
X
2 n
服从自由度为n的 χ2-分布 ,记为 2 ~ 2( n ).
2 (n)-分布的概率密度为
f
(
y
)
2n /
1
2 (
n
/
2
)
y
n 1
2e
服从正态分布,且
i 1
i 1
一、正态分布
定理2 若( X1, X 2 ,, X n )是来自总体X ~ N(,2) 的一个
样本,X 为样本均值,则 (1) X ~ N (, 2 ) ,(由上述结论可知:X 的期望与 X 的期望相同,而 X
n
的方差却比 X 的方差小的多,即 X 的取值将更向 集中.)
p(y)=0;当y>0时,FY(y) =P{-

y
y
n
n 2 1 n
Y=X的分布密度p(y)= 2,•
1 n
2 2
<X<

16几个常用的抽样分布与抽样分布定理

16几个常用的抽样分布与抽样分布定理
0
(s
0),
(s 1)
s (s) ,(12)
3
3.性质:
1)期望与方差
提示: 2
X
2 1
X
2 n
若 2 ~ 2(n),则 E( 2)= n,D( 2)=2n
证明: 因为Xi~N(0, 1)
所以
E
(
X
2 i
)
D( Xi
) [E( Xi
)]2
1 0 1
D(
X
2 i
)
E
(
X
4 i
)
[
2 1
/
2 2
~
F (n1
1, n2
1)
29
定理2结论(3)
假定
2 1
2 2
2,
就有
t T ( X Y ) (1 2 ) ~ S 1 n1 1 n2
(n1 n2 2)
其中
S2
(n11)S12 (n2 1)S22 n1 n 2 2

( X Y ) (1 2 )
13
T 的概率密度为
(s) xs1e x d x (s 0),
0
f (t)
( n 1) 2
(1
t2
)
n1
2,
(12)
t
n ( n) n
2
14
2.基本性质:
(1) f ( t ) 关于 t = 0(纵轴)对称。
(2) f ( t ) 的极限为 N(0, 1) 的密度函数,即
lim f (t) (t)
标准化
定理1:设总体 X ~ N ( , 2 ) ,X1, X2,…, Xn 是
来自总体 X 的样本,

概率论与数理统计6-8

概率论与数理统计6-8

无关的样本的连续函数,则称g(X1,X2,…,Xn)为
统计量。 统计量是样本的函数,它是一个随机变量, 如果x1, x2, …, xn是样本观察值, 则g(x1, x2, …, xn)是统计量g(X1, X2, …, Xn)的一个观察值.X i ; n i 1 2 n 1 2 2. 样本方差 S (X i X ) ; n - 1 i 1 1 n k 3. 样本k阶原点矩 A k X i , k 1, 2, ; n i 1 1 n 4. 样本k阶中心矩 Bk (X i X ) k , k 2, 3, . n i 1
§7.1 点估计 一. 问题的提法:
设总体X的分布函数F ( x; θ )的形式为已知 ,
是待估参数, 1 , X 2 , , X n 是X的一个样本, X
x1, x2 , , xn 是相应的一个样本值。
点估计问题就是要构造 一个适当的统计量 ˆ ( X , X , X ),用它的观察值 ˆ( x , x , , x )
2
分布具有可加性,定义 X 1 ,X 2 , ,X n 独立 中 n 1 同服从N (0,1),所以 = X ~ ( , ) 2 2 i 1
2 2 i n
β α α-1 -x x e , x 0, 分布的概率密度为 f ( x) Γ (α ) : 0 , 其它. n 1 2 2 比较 (n)的密度可知: (n) 分布就是 , 2 2 2 的分布, 即 (n) (n / 2, 1/2).
N (0, 2 ) ,X1,X2,X3 为取自总体的一个样本, 2.设总体 X~
试求:(1)3X1-2X2+X3 的分布;(2)
2 X1 X 22 X 32
的分布。

概率论与数理统计几种重要的分布

概率论与数理统计几种重要的分布

二、二项分布
例1、一批产品的合格率为0.9,重复抽取三次, 每次一件, 连续3次,求3次中取到的合格品件数 X的分布.
如果在一次试验中,事件A成功的概率为 p(0 p 1), 则在n重贝努里试验中事件 A成功的次数 X的分布为 :
P(X
k)
C
k n
pkqnk .
1、定义 X ~ B(n, p)
P(X
k)
C
k 3
C 4 17
k
C
4 20
(k 0,1,2,3)
1、定义 X ~ H (n, M , N )
设N个元素分为两类,
其中N
1个属于第一类,
N
个属于
2
第二类, 从中不放回抽取n个, 令X表示这n个中第一类
元素的个数,则称X的分布为超几何分布 :
P(X
m)
C C m nm N1 N N1
若X的分布为P( X
k)
C
k n
pkqnk , k
0,1,, n
其中0 p 1, q 1 p,则称X ~ B(n, p)。
2、数字特征
EX
n
kC
k n
k 0
pkqnk
n
k
k0
n! k!(n k)!
pk q nk
n
n (n 1)!
p p q k 1 (n1)(k 1)
k1 (k 1)! (n 1) (k 1) !
kkekxpk01只有两个互逆结果的n次独立重复试验n1pmin10nmllkccckxpnnknnmkm10211kppkxpk无穷次伯努利试验中a首次发生的试验次数对含有两类元素的有限总体进行不放回抽样时某类元素个数的概率分布在一定时间内出现在给定区域的随机质点的个数一均匀分布1定义

概率论与数理统计 --- 第六章{样本及抽样分布} 第四节:抽样分布

概率论与数理统计 --- 第六章{样本及抽样分布} 第四节:抽样分布

P T 1.059
0.15.
例2:
从正态总体N ( , 0.5 )中抽取样本X 1 , , X 10 .
2
数理统计
10 2 (1)已知 0,求概率P X i 4 ; i 1 10 2 (2)未知,求概率P ( X i X ) 2.85 . i 1
S1 和S2 分别是这两个样本的样本方差, 则有:
2 2
(1)
S1
2 2
S2
~ F ( n1 1, n2 1);
2 2
若两方差 1 2,则
S1 1
2 2
2 2
S2 2
~ F ( n1 1, n2 1);
(2)
X Y ( 1 2 ) ( n1 1) S1 ( n2 1) S2
n取不同值时
( n 1) S
2

2
的分布
定理3 (样本均值的分布) 数理统计 设X1, X2, …, Xn是取自正态总体 N(μ, σ2)的样本, 2 X和S 分别为样本均值和样本方差, 则有:
X S n ~ t ( n 1)
证:由定理1、和t分布的定义可得: 2
X ~ N (0,1), ( n 1) S
2) F分布的分位点:
对于给定的, 1, 称满足条件: 0
P F F ( n1 , n2 )


( y )dy
F ( n1 , n2 )
的点F ( n1 , n2 )为F ( n1 , n2 )分布的上 分位点.
F分布的上分位点的性质:
F1 ( n1 , n2 ) 1 F ( n2 , n1 )

概率论与数理统计第五章

概率论与数理统计第五章

第 ×× 次课 2学时本次课教学重点:常用的统计量 本次课教学难点:总体,简单随机样本,统计量的概念。

本次课教学内容:第五章 数理统计的基础知识 第一节 数理统计的基本概念 教学组织: 一、引言在前五章中我们学习了概率论的基本内容,因为随机变量及其所伴随的概率分布全面描述了随机现象的统计规律性,所以在概率论的许多问题中,概率分布通常都是已知的,或者假设是已知的,而一切计算与推理都是在此基础上得出来的。

然而,实际情况往往并非如此。

一个随机现象所服从的分布概型可能完全不知道,或者只知道其概型而不知其分布函数中所含的参数。

例如,某工厂生产的灯泡的寿命服从什么分布是不知道的。

再如,某厂生产的一件产品是合格品还是不合格品,我们知道它服从两点分布,但其参数p 却不知道。

那么怎样才能知道一个随机现象的分布或其参数呢?这就是数理统计所要解决的一个首要问题。

为了获得灯泡的寿命分布,我们从所有的灯泡中抽出一部分进行观察与测试以取得相关信息,从而做出推断。

由于观察和测试是随机现象,依据有限个观察与测试对整体所做出的推断不可能绝对准确,这个不确定性我们用概率来表达。

数理统计学的基本问题就是依据观测或试验所取得的有限信息对整体做出推断,每个推断必须伴有一定的概率来表明其可靠程度。

这种伴有一定概率的推断称为统计推断。

二、总体与随机样本 1、总体在数理统计中,我们往往研究有关对象的某一数量指标(如灯泡的寿命这一数量指标)。

为此,考虑与这一数量指标相联系的随机试验,对这一数量指标进行试验或观察。

我们把研究对象的全体所构成的一个集合称为总体,总体中的每个对象称为个体。

总体中所包含的个体的个数称为总体的容量。

容量有限的总体称为有限总体,容量无限的总体称为无限总体。

例如,考察某批灯泡的质量,如这一批灯泡共有5000只,每个灯泡的寿命是一个可能的观察值,是一个个体。

所有5000只灯泡的寿命是一个有限总体。

概率论与数理统计2.2.4 泊松分布

概率论与数理统计2.2.4 泊松分布

0.2642411
二、二项分布的泊松近似 (泊松定理)
当试验次数n很大时,计算二项分布很麻烦,必须寻求近似方法
离散型随机变量X b(n, p). 又设np ( 0), 则有
lim
n
Cnk
pk (1
p )nk

k e
k!
即当n 很大且p 很小时,可用泊松分布近似计算二项分布.
解 : 记 X表示200人中患此病的人数.
显然, X b(200, 0.01)
np 200 0.01 2
P ( X 4 ) 1 P( X 3)
3
1
C
k 200
(0.01)k
(0.99)2004
k
k0
1 3 2k e2 k0 k !
=1-0.8571=0.1429 (查泊松分布表: P247)
e4

4 1!
e4

42 2!
e4
43 e4 0.5665. 3!
例2 计算机硬件公司制造某种特殊型号的微型芯片,次品率 次品率达0.1%, 各芯片成为次品相互独立. 求在1000只产品中 至少有2只次品的概率. 以X记产品中的次品数,
X~b(1000,0.001) ,X=0,1,2,...1000.
例:a.某天医院看急诊的人数; b. 某路口一天的交通事故数 c.某本书中的印刷错误数; d. 放射性物质放射的粒子数
例1 一电话总机每分钟收到呼唤的次数服从参数为4
的泊松分布,求
(1) 某一分钟恰有8次呼唤的概率;
(2) 某一分钟的呼唤次数大于3的概率.
解 由X ~ (),P{X k} k e , k 0,1,2, ,

概率论与数理统计常用的统计分布

概率论与数理统计常用的统计分布

概率论与数理统计
2 X ~ N ( , ) , X1 , X 2 ,... X n 是 定理 2 设总体
取自 X 的一个样本, X 与 S 为该样本的样 本均值与样本方差,则有
2 2 S 2 2 ( X i X )2 ~ 2 (n 1) (1) i 1
概率论与数理统计
设总体 X 的均值和方差 2 E( X ) , D( X ) 都存在. X1 , X 2 , , Xn 是来自总体 X 的样本,则 2 E ( X ) , D( X ) n , E ( S 2 ) 2
n n 1 1 E( X ) E( n X i ) n E( X i ) i 1 n i 1 n
n
X (2) T S / n ~ t (n 1)
概率论与数理统计
设 X1 , X 2 , , Xn 是总体 X ~ N ( , 2 ) 的样本, X , S 2分别为样本均值和样本方差,则有 X ~ t (n 1) S/ n 由定理一、定理二有 2 ( n 1) S X 2 Y ~ N ( 0 , 1) , 2 ~ (n 1) 2 / n 2 且 Y 与 独立,由 t 分布的定义有 X X / n Y ~ t (n 1) S/ n (n 1) S 2 / 2 S 2/n n 1


3 0.1 P3 |X | 99.7%. P | X | X | 0.03} 99.7%. P{| n 100

概率论与数理统计
例3 在设计导弹发射装置时, 重要事情之 一是研究弹着点偏离目标中心的距离的方 差.对于一类导弹发射装置, 弹着点偏离目标 中心的距离服从正态分布N(μ,100), 现在进 行了25次发射试验, 用S2记这25次试验中弹 着点偏离目标中心的距离的样本方差. 试求 S2超过50的概率.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

/ n
2
且 Y 与 2 独立,由 t 分布的定义有
X
X
S/ n
/ n (n 1)S 2 / 2
Y S2/n
~ t(n 1)
n 1
概率论与数理统计
❖ 例1 设 X ~ N (21,22 ), X1, X 2, , X 25 为X的一个样本,求: (1) 样本均值的数学期望与方差; (2) P{| X 21| 0.24}.
t
设 X ~ N(0,1), Y ~ 2 (n) ,且 X ,Y 相互独立,令
t X Y /n
称 t 服从自由度为 n 的 t 分布,记为 t ~ t (n). t(n) 的上侧分位点记为 t (n)
t(n) 的双侧分位点记为t / 2 (n)
t / 2 (n)
O
t / 2 (n)
概率论与数理统计
概率论与数理统计
定理 1 设总体 X ~ N (, 2 ) , X1, X2,...Xn 是取自 X 的一个样本, X 为该样本的样本均值,则有 (1) X ~ N(, 2 / n) (2)U X ~ N (0,1)
/ n
概率论与数理统计
本,则
设 X1, X2 ,, Xn 是来自总体 X ~ N(, 2 ) 的样
Review 2
设 X1, X2,, Xn 是来自总体 X ~ N( 0 ,1) 的样本,令
2
X12
X
2 2
Xn2
称 2 服从自由度为 n 的 2分布,记为 2 ~ 2(n).
2
E(2) n
D( 2 ) 2n
2 (n)的上侧分位点记为2 (n)
概率论与数理统计
O
2 (n)
Review
n(
)2
X
)2
概率论与数理统计i 1
抽样分布定理 最重要的总体: X ~ N (, 2 )
如何由样本 X1, X2,...X n 推断 , 2 ?
分析:
对 , 2 的推断是通过构造统计量实现的
(1)如何构造“好”的统计量 (X1, X2,...Xn ) (2) g(X1, X2,...Xn ) 服从什么分布?
1
2
n
(Xi )2
i 1
~ 2 (n)
(2)T
X S/
n
~
t(n
1)
概率论与数理统计
设 X1, X2 ,, Xn 是总体 X ~ N(, 2 ) 的样本,
X , S 2分别为样本均值和样本方差,则有
X ~ t(n 1)
S/ n
由定理一、定理二有
Y X ~ N ( 0 ,1) , 2 (n 1)S 2 ~ 2 (n 1)
计推断为小样本推断; (2) 让小样本容量趋于无穷,并求出抽样
分布的极限分布。然后,在样本容量 充分大时,再利用该极限分布作为抽 样分布的近似分布,进而对未知参数 进行统计推断,称与此相应的统计推 断为大样本推断。
概率论与数理统计
设总体 X 的均值和方差
E( X ) , D( X ) 2
都存在. X1, X2,, Xn是来自总体 X的样本,则
解 (1)由X : N (, 2 ),得
n
E( X ) 21, D( X ) 2 / n 22 / 25 0.42
(2)Q X E( X ) : N (0,1) D(X )
概率论与数理统计
❖ 例1 设 X ~ N (21,22 ), X1, X 2, , X 25 为X的一个样本,求:
Review
F
设 U ~ 2 (n1), V ~ 2 (n2 ) ,且 U ,V 相互独立,令
F
U /n1 V /n2
称 F 服从自由度为 (n1, n2) 的 F 分布,记为 F ~ F (n1, n2).
F(n1, n2 )的上侧分位点记为F (n1, n2 )
O
F (n1 , n2)
抽样分布的途径: (1) 精确地求出抽样分布,并称相应的统
X ~ NP|X, 2 /|n3. 0再.1从正P{态| X分布 的| 03.09性} 质99知.7%,
10
P|
X
|P 3|1X000.1|P{3|nX 9|9.07.%03.}
99.7%.
概率论与数理统计
❖例3 在设计导弹发射装置时, 重要事情之
一是研究弹着点偏离目标中心的距离的方
差.对于一类导弹发射装置, 弹着点偏离目标
本均值与样本方差,则有
(1) 2
n 1
2
S
2
1
2
n(Xi X )2 Nhomakorabeai 1~ 2 (n 1)
(2) X 与 S 2 相互独立
概率论与数理统计
定理 3 设总体 X ~ N (, , 2 ) X1, X2,...Xn 是取自 X 的一个样本, X 与 S 2 为该样本的样本均值与 样本方差,则有
(1) 2
(1) 样本均值的数学期望与方差;
(2) P{| X 21| 0.24}.
P{| X 21| 0.24} P{21 0.24 X 21 0.24}
P{19.76 21 X 21 21.24 21}
0.4
0.4
0.4
( 21.24 21) (19.76 21) 2(0.6) 1
0.4
0.4
概率论与数理统计
例 2 假设某物体的实际重量为 , 但它是未知
的. 现在用一架天平去称它, 共称了 n 次,得到
X1, X2, , Xn . 假设每次称量过程彼此独立且没有 系统误差, 则可以认为这些测量值都服从正态分布
N(, 2) , 方差 2 反映了天平及测量过程的总精
度, 通常我们用样本均值 X 去估计 , 根据定理 1,
E(X ) ,
D( X
)
2
n
,
E(S2) 2
E(X )
E
(
1
n
n
i 1
X
i
)
1
n
n
E(Xi )
i 1
D(X )
D(
1
n
n
i 1
Xi )
1
n2
n
D(Xi )
i 1
2
n
Q
(n
1)S 2
n
( Xi
X )2
n
[( Xi
)
(
X
)]2
i 1
i 1
(n E(S
1)E(S
2 )
22iinnn)11((( XXXiinniii11E(2X)))222inn22n2(n()XX(2X(nnE))(i12)nX)12(X2ni()X2)
X
~
N (,
2
n
)
Q X1, X2,, Xn 独立同分布 N (, 2 )
由正态分布的性质知,线性组合
X
1
n
(
X1
X2
Xn )
仍服从正态分布
E(X ) ,
D(
X
)
2
n
X
~
N(,
2
n
)
概率论与数理统计
定理 2 设总体 X ~ N (, 2 ) , X1, X 2 ,...X n 是 取自 X 的一个样本,X 与 S 2 为该样本的样
相关文档
最新文档