Three dimensional modeling and finite element simulation of a generic end mill
三维有限元在桩核冠修复中的应用
三维有限元在桩核冠修复中的应用三维有限元法(Three-dimensional finite element method)是一种与计算机技术相结合的数值分析法。
其基本思路是将目标整体离散成有限个单元的集合体,通过对每个单元的力学分析,获得目标整体的力学性质。
它具有其他应力分析法所无可比拟的优点,作为一种理论分析方法在口腔生物力学领域得到了广泛应用。
利用三维有限元法进行力学分析,可以对较复杂的物体建模,较真实地反映口腔情况,模拟整体和局部的应力,位移值及其分布规律,并可根据需要改变受载负荷和边界条件等力学参数,在维持原几何模型不变的前提下,进行对比分析。
本文就近年来三维有限元法在牙体缺损后牙齿的桩核冠修复中的运用状况综述如下。
1 牙体缺损程度根管治疗后大面积牙体缺损的患牙通常都需要进行桩核修复,杜莉等[1]通过磨片法建立上颌第一磨牙桩核冠有限元模型,比较上颌第一磨牙4种不同程度牙体缺损桩核冠修复后的牙本质应力分布情况。
当水平向牙体剩余量大于1/2时,剩余牙体组织所受应力较大,上颌第一磨牙的腭根根分叉处是根折的危险区域。
我们在平时临床修复中尤其注意缺损量大于1/2时的牙齿。
针对于缺损较大的牙齿修复,吴张等通过UG构建出4组不同程度缺损至牙龈与牙槽骨内的残根且采用龈下桩核冠修复的模型,导入Ansys有限元分析软件中构建有限元模型,并对模型中龈下桩与牙龈和骨接触面的受力及位移进行分析。
4个实验组模型的龈下桩骨接触表面的最大位移均聚乙烯纤维树脂桩>玻璃纤维树脂桩>铸造金合金桩>铸造钛合金桩>铸造Ni-cr合金桩,但应力值相差很小。
6种不同桩修复后桩-牙本质界面应力大小的顺序为:铸造Ni-cr合金桩>铸造钛合金桩>铸造金合金桩>玻璃纤维树脂桩>聚乙烯纤维树脂桩>石英纤维桩,且应力值相差较大[7]。
Heydecke等[8]采用Meta分析回顾了1995~2000年的1773篇报道,发现铸造和预成金属桩的牙折大多位于牙根中部或根尖1/3,而与牙本质弹性模量相近的纤维桩多为牙根颈1/3处的可修复牙折。
流体力学中英文术语
流体力学中英文术语Index 翻译(Fluid Mechanics)Absolute pressure,绝对压力(压强)Absolute temperature scales, 绝对温标Absolute viscosity, 绝对粘度Acceleration加速度centripetal, 向心的convective, 对流的Coriolis, 科氏的field of a fluid, 流场force and,作用力与……local, 局部的Uniform linear, 均一线性的Acceleration field加速度场Ackeret theory, 阿克莱特定理Active flow control, 主动流动控制Actuator disk, 促动盘Added mass, 附加质量Adiabatic flow绝热流with friction,考虑摩擦的isentropic,等熵的air, 气体with area changes, 伴有空间转换Bemoullii’s equation and, 伯努利方程Mach number relations,马赫数关系式,pressure and density relations, 压力-速度关系式sonic point,critical values, 音速点,临界值,stagnation enthalpy, 滞止焓Adiabatic processes, 绝热过程Adiabatic relations, 绝热关系Adverse pressure gradient, 逆压力梯度Aerodynamic forces, on road vehicles, 交通工具,空气动力Aerodynamics, 空气动力学Aeronautics, new trends in, 航空学,新趋势Air空气testing/modeling in, 对……实验/建模useful numbers for, 关于……的有用数字Airbus Industrie, 空中客车产业Aircraft航行器airfoils机翼new designs, 新型设计Airfoils, 翼型aspect ratio (AR), 展弦比cambered, 弧形的drag coefficient of , 阻力系数early, 早期的Kline-Fogleman, 克莱恩-佛莱曼lift coefficient, 升力系数NACA,(美国) 国家航空咨询委员会separation bubble, 分离泡stalls and, 失速stall speed, 失速速度starting vortex, 起动涡stopping vortex, 终止涡Airfoil theory, 翼型理论flat-plate vortex sheet theory, 平板面涡理论Kutta condition, 库塔条件Kutta-Joukowski theorem, 库塔-儒科夫斯基定理1thick cambered airfoils, 厚弧面翼型thin-airfoils, 薄翼型wings of finite span, 有限展宽的翼型A-380 jumbo jet, 大型喷气式客机Alternate states, 交替状态American multiblade farm HA WT, 美式农庄多叶水平轴风机Angle of attack, 攻角Angle valve, 角阀Angular momentum角动量differential equation of , 关于…的微分方程relation/theorem, 联系/理论Annular strips, 环形带Applied forces, linear momentum, 外加力,线性冲力Apron,of a dam, 大坝的护坦Arbitrarily moving/deformable control volume, 任意运动/可变形控制体Arbitrary fixed control volume, 任意固定控制体Arbitrary viscous motion, 随机粘性运动Archimedes, 阿基米德Area changes, isentropic flow. 域变换,等熵流Aspect ratio (AR), 展弦比Automobiles, aerodynamic forces on, 汽车,气动力A verage velocity, 平均速度Axial-flow pumps. 轴流泵Axisymmetric flow, stream function 轴对称流,流函数Axisymmetric Potential flow, 轴对称有势流hydrodynamic mass, 水力学质量Point doublet, 点偶极子point source or sink, 点源与点汇spherical Polar coordinates and, 球极坐标uniform stream in the x direction, x方向的均匀流uniform stream plus a point doublet, 均匀流附加点偶极子uniform stream plus a point source, 均匀流附加点源BBackward-curved impeller blades, 后向曲叶轮片,Backwater curves, 回水曲线Basic equations, non dimensional, 基本方程,无量纲的Bernoulli obstruction theory, 伯努利障碍理论Bernoulli's equation, 伯努利方程with adiabatic and isentropic steady flow, as绝热、等熵稳态流frictionless flow, 无摩擦流assumptions/restrictions for, 假想/约束HGLs and EGLs, 水力坡度线和能量梯度线steady flow energy and, 定常流动能量in rotating coordinates. 在旋转坐标下,Best efficiency point (BEP), pumps, 最佳效率点,Betz number, 贝兹数Bingham plastic idealization, 宾汉塑性理想化,Biological drag reduction, 生物学阻力衰减Blade angle effects, on pump head, 叶片安装角效率,泵头处Blasius equation, 布拉修斯方程Body drag, at high Mach numbers, 机体阻力,在高马赫数下Body forces, 体力Boeing Corp., 波音公司Boundaries, of systems, 边界,系统Boundary conditions. 边界条件,differential relations for fluid flow, 流体的微分关系nondimensionalizalion and, 无量纲化Boundary element method (BEM), 边界元方法2Boundary layer (BL) analysis, 边界层分析boundary layer flows, 边界层流动boundary layer separation on a half body, 边界层半体分离displacement thickness, 位移厚度drag force and, 阻力equations, 方程flat-plate. 平板,Karman's analysis, 卡门分析momentum integral estimates, 动量积分估计momentum integral relation. 动量积分关系momentum integral theory, 动量积分理论pressure gradient 压力梯度separation on a half body, 半模分离skin friction coefficient, 表面摩擦系数two-dimensional flow derivation, 二维流推导Boundary layers with Pressure gradient, 边界层压力梯度adverse gradient, 反梯度favorable gradient, 正梯度laminar integral theory, 层流积分理论,nozzle-diffuser example,喷口扩散算例Bourdon tube, 波登管Bow shock wave, 弓形激波Brake horsepower,制动马力Broad-crested weirs, 宽顶堰Buckingham Pi Theorem, 白金汉定理Bulb Protrusion, 球形突出物(船头)Bulk modulus. 体积模量Buoyancy, 浮力Buoyant particles, local velocity and, 悬浮颗粒,局部速度Buoyant rising light spheres, 浮力作用下自由上升的球体Butterfly valve, 蝶形阀CCambered airfoils, 弓型翼Cauchy-Riemann equations, 柯西-黎曼方程Cavitation/Cavitation number, 气穴/气蚀数Celsius temperature scales, 摄氏温标Center of buoyancy, 浮心Center of Pressure (CP),压力中心,压强中心Centrifugal pumps, 离心泵backward-curved impeller blades, 后曲叶轮片blade angle effects on pump head, 泵头处叶片安装角效率brake horsepower, 制动马力circulation losses, 环量损失closed blades, 闭叶片efficiency of, 效率的elementary pump theory. 基泵理论Euler turbomachine equations, 欧拉涡轮机方程eye of the casing, 泵体通风口friction losses, 摩擦损失hydraulic efficiency, 水力[液压]效率mechanical efficiency.机械效率open blades, 开放式叶片output parameters, 输出参数power, delivered, 功率,传递pump surge, 泵涌,scroll section of casing, 卷形截面,泵体,shock losses, 激波损失vaneless, 无叶片的3volumetric efficiency, 容积效率[系数]water horsepower, 水马力Centripetal acceleration, 向心加速度Channel control Point, 传送控制点Characteristic area. external flows, 特征区域,外流Chezy coefficient, 薛齐系数Chezy formula, 薛齐公式Chezy coefficient,薛齐系数flow in a Partly full circular pipe, 流体非充满的圆管流Manning roughness correlation. 曼宁粗糙度关系,normal depth estimates, 法向深度估计Choking, 壅塞;堵塞of compressors, 压缩机的due to friction, compressible duct and, 由于摩擦,可压缩管的isentropic flow with area changes, 变横截面积等熵流simple heating and, 单纯加热Circular cylinder, flow with circulation. 圆柱体,Circulation环量and flow past circular cylinder, 流体经过圆柱体losses, in centrifugal pumps, 损失,离心泵potential flow and, 有势流Circumferential pumps, 环型泵Classical venturi, 标准文氏管Closed blades, centrifugal pumps. 闭叶片,离心泵Closed-body shapes, 闭体外形,circular cylinder, with circulation, 圆柱体,环量Kelvin oval, 开尔文椭圆,Kutta-Joukowski lift theorem,库塔-儒科夫斯基升力定理,Potential flow analogs, 有势流模拟Rankine oval, 兰金椭圆rotating cylinders. lift and drag, 旋转柱体,升力与阻力Coanda effect, 柯恩达效应( 沿物体表面的高速气流在Cobra P-530 supersonic interceptor, 眼镜蛇超音速拦截机Coefficient matrix. 系数矩阵Coefficient of surface tension, 表面张力系数Coefficient of viscosity, 粘滞系数Commercial CFD codes, viscous flow, 商业的计算流体力学代码,粘流Commercial ducts, roughness values for, 商业管道Composite-flow, open channels, 合成流,开槽道Compressibility, non dimensional. 压缩性,无量纲Compressibility effects, 压缩效果Compressible duct flow with friction, 伴有摩擦的可压缩管流adiabatic, 绝热的, 隔热的choking and, 壅塞;堵塞isothermal flow in long pipelines, 管线中的等温流动,long pipelines, isothermal flow in, 管线,等温流动,mass flow for a given pressure drop, 给定压降下质量流动minor losses in, 最小损失subsonic inlet, choking due to friction, 亚音速进口,摩擦引发阻塞,supersonic inlet, choking due to friction, 超音速进口,摩擦引发阻塞,Compressible flow, 可压缩流flow with friction摩擦流choking and, 壅塞;堵塞converging-diverging nozzles, 拉瓦尔喷管converging nozzles, 收缩喷嘴Fanno flow, 法诺流动,gas flow correction factor, 气流校正参数hypersonic flow, 高超音速气流4incompressible flow, 不可压缩流isentropic.等熵的isentropic Process, 等熵过程,Mach number, 马赫数normal shock wave. 正激波the perfect gas, 理想气体Prandtl-Meyer waves. 普朗特-麦耶膨胀波shock waves. 激波specific-heat ratio, 比热比speed of sound and,声速subsonic, 亚音速的supersonic,超音速的transonic, 跨音速的two-dimensional supersonic, 二维超音速的Compressible gas flow correction factor, 可压缩气流校正因数Compressors, 压缩机Computational fluid dynamics (CFD), 计算流体力学pump simulations, 泵模拟viscous flow. 粘流Concentric annulus, viscous flows in, 同心环Cone flows, 锥体绕流Conformal mapping, 保角映射[变换] Conservation of energy, 能量守恒定律Conservation of mass. 质量守恒定律Consistent units, 相容单元Constants, 常量dimensional, 空间的pure, 纯粹的Constant velocity, fluid flow at, 常速度, 等速度Constructs, 结构Contact angle, 交会角Continuity, 连续性,equation of ,方程nondimensionalization and, 无量纲的Continuum, fluid as, 连续流体Contraction flow, 收缩流动Control Point, channel, 控制点,管道Control volume analysis,控制体分析angular momentum theorem. 角动量定理,arbitrarily moving/deformable CV,任意运动/可变形控制体arbitrarily fixed control volume, 任意固定控制体conservation of mass, 质量守恒定律control volume moving at constant velocity, 控制体以等速运动control volume of constant shape but variable velocity作变速运动的刚性控制体energy equation. 能量方程introductory definitions, 介绍性定义linear momentum equation. 线性动量方程,one-dimensional fixed control volume, 一维固定控制体,one-dimensional flux term approximations, 一维通量项近似Physical laws. 物理定律。
圆柱斜齿轮的锻造模具设计
圆柱斜齿轮的锻造模具设计摘要圆柱斜齿轮作为传递运动和动力的最基本零件之一,在工业领域有着非常重要的作用。
随着我国汽车、航空航天及造船等产业的快速发展,对齿轮的需求量越来越大,对斜齿轮的品种、规格、精度、强度、成本等也提出了更高的要求。
传统斜齿轮的生产是采用切削加工工艺。
该工艺是采用棒料毛坯,经车端面、车内外圆、钻孔、滚齿、剃齿及热处理等多道工序成形。
但是该方法具有生产周期长,生产效率低,浪费原材料及加工时齿形部分的金属纤维易被切断等缺点,因此迫切需要一种齿轮生产的新工艺。
根据齿轮切削加工工艺的缺点,提出了模锻成形工艺的方案,并利用热模锻压力机锻造成形。
该成形工艺是以净成形和近净成形为目标的工业技术,即制造接近零件形状的工件毛坯,较传统成形技术减少了后续的切削量,减少了材料、能源的消耗。
该工艺还有助于齿轮内部形成致密、均匀的材料组织,从而大大提高齿轮的耐磨性、抗腐蚀能力及表面强度,明显改善齿轮的疲劳性能。
设计中针对由于斜齿轮螺旋角的影响造成齿轮在锻造过程中出现的充填不完全及脱模困难等难点,提出了闭式模锻的成型工艺,以有利于齿轮的充填;合理设计了轴承式凹模结构,使锻件顺利脱模;并利用三维造型软件UG和有限元分析软件DEFORM,对齿轮成形过程进行数值模拟,将模具设计与计算机仿真技术紧密结合起来。
通过在计算机模拟齿轮成形的整个过程,可以有效的提高模具设计效率,降低生产和材料成本,缩短产品的研究开发周期。
关键字:圆柱斜齿轮;模锻;工艺方案;DEFORMForging die design of cylindrical helical gearAbstractThe cylindrical helical gear ,as one of the most basic parts to pass movement and power,has a very important role in the industrial field.With the rapid development of our country's automotive, aerospace and shipbuilding industry,the demand for gear is increasing,and put forward higher requirements for varieties, specifications, precision, strength, cost of helical gear.Traditional production process of cylindrical helical gear is the use of cutting technology.The process is the use of bar stock blank which is completed for forming processes such as endface,external,drilling,hobbing,shaving, treatment.However.the method has shortcomings such as long production cycle, low productivity, waste of raw materials and processing part of the metal fiber profile easily cut.There is an urgent need for a new process for gear production.According to the shortcomings of gear cutting process,Proposed program of the forging process,and the use of hot forging press forging.The forming process is based on the net and near net shape forming the objective of industrial technology, manufacturing close to the part that is rough shape of the workpiece, forming a more conventional cutting technology to reduce the amount of follow-up, reducing material and energy consumption.The process also helps the internal gear form a dense, homogeneous material structure, thus greatly improving the gear wear resistance, corrosion resistance and surface strength, significantly improved the fatigue performance of gears.Design for the helix angle of helical gear forging process causing the filling appears incomplete and difficult ejection difficulties,proposed a closed die forging forming process in order to facilitate the filling gear; rational design of a die bearing type structure, so that forging a smooth ejection.UG using three-dimensional modeling software and finite element analysis software DEFORM, the gear to simulate the forming process, the mold design and computer simulation technology closely integrated.Formed by computer simulation of gear the whole process of mold design can effectively improve efficiency, reduce production and material costs, reduce research and development cycle.Keywords: cylindrical helical gear;forging;technological process;DEFORM目录引言 (1)第1章概述 (2)1.1锻造简介及其分类 (2)1.2国内外齿轮近净成形方法 (3)1.3齿轮精密成形技术的发展现状 (4)1.4齿轮精密成形数值模拟研究概况 (5)1.5温成形工艺的发展现状 (6)1.6 本章小节 (7)第2章UG和有限元技术介绍 (8)2.1 UG简介及特点 (8)2.2有限元仿真技术分析方法 (9)2.3 刚粘塑性有限元法 (10)2.4 DEFORM_3D软件的介绍 (11)2.5 本章小结 (12)第三章工艺计算与分析 (13)3.1工艺方案的确定 (13)3.2工作零件的设计 (17)3.3其他零件的设计 (19)3.4模具装配图 (23)3.5 本章小结 (23)第四章圆柱斜齿轮的数值模拟分析 (24)4.1 概述 (24)4.2 有限元模型的建立 (24)4.3 速度场分布分析 (25)4.4 应力分析 (28)4.5 应变分析 (30)4.6 齿轮X、Y、Z轴上的等效应力、应变分析 (32)4.7 缺陷分析 (36)4.8 本章小结 (38)第五章齿轮工艺参数分析 (39)5.1 概述 (39)5.2 坯料温度影响 (39)5.3 本章小结 (42)总结 (43)致谢 (44)参考文献 (45)附录A 参考文献摘要 (46)附录B 外文文献翻译 (47)插图清单图3- 1圆柱斜齿轮的零件图 (13)图3- 2 轴承式凹模结构三维造型 (14)图3- 3 套桶三维造型图 (15)图3- 4 锤上模锻开式模锻锻件图 (16)图3- 5 热模锻压力机闭式模锻锻件图 (16)图3- 6 凸模结构图 (17)图3- 7 凹模装配图 (18)图3- 8 凹模结构三维造型图 (19)图3- 9 圆柱滚子图 (19)图3- 10 垫块 (20)图3- 11凸模固定板 (20)图3- 12 套桶结构图 (21)图3- 13顶杆 (21)图3- 14 垫板 (22)图3- 15模磨具装配图 (23)图4- 1 初始毛坯图 (25)图4- 2最终锻件图 (25)图4- 3 速度场分布图 (27)图4- 4 等效应力分布图 (29)图4- 5等效应变分布图 (32)图4- 6 X、Y、Z轴上的等效应力分布图 (34)图4- 7 X、Y、Z轴上的等效应变分布图 (36)图4- 8 未填充满的锻造件 (37)图4- 9带有飞边毛刺的锻件 (38)图5- 1 不同温度下的应力 (40)图5- 2 不同温度下的应变 (42)表格清单表3- 1 45号钢具体性能如下表所示: (13)表3- 2 圆柱斜齿轮的原始数据 (13)表3- 3 圆柱斜齿轮齿轮相关参数 (15)表3- 4 NUP型圆柱滚子轴承技术参数 (18)表4- 1 数值模拟圆柱斜齿轮的相关技术参数 (24)表4- 2 闭式模锻工艺参数 (24)引言本次毕业设计的课题是圆柱斜齿轮的锻造模具设计,该课题符合自己所学的模具专业。
平衡重式电动叉车设计
要
平衡重式电动叉车由于其操作控制简便、灵活,其操作人员的操作强度要求 相对内燃叉车而言轻很多,广泛使用在国民经济的各个部门,其电动转向系统、 加速控制系统、 液压控制系统以及刹车系统都由电信号控制大大降低了操作人员 的劳动强度, 这样一来对于提高其工作效率以及工作的准确性有非常大的帮助且 相较于内燃叉车电动车辆的低噪音、无尾气排放的优势也得到许多用户的许可。 如何更好的发挥其优势来取代内燃叉车,对环保有重大意义。本课题研究运用计 算机仿真技术对电动叉车进行虚拟设计, 在产品制造之前将运用 AutoCAD 完成平 衡重式电动叉车变速器、货叉及整车装配的二维绘制,为之后的 Pro/E 软件的三 维图绘制做铺垫, 然后将用 Pro/E 软件对平衡重式电动叉车的各个零件进行三维 绘制并进行整车装配,为之后的 ANSYS 分析建立三维模型,最后将运用 ANSYS 软 件进行仿真研究,就可以发现并更正设计缺陷,完善设计方案,缩短开发周期, 提高设计质量和改善,为生产实际提供理论支持。 关键词:电动叉车;变速器;货叉;三维建模;有限元分析
AБайду номын сангаасSTRACT
Counterbalanced electric forklift operation control because of its simple, flexible, and its operator's operations in terms of strength requirements are relatively much lighter internal combustion forklifts, widely used in various sectors of national economy, the electric power steering system, the speed control system, hydraulic control system and control the brake system greatly reduces the signal by the operator's labor intensity, so that its work for improving the efficiency and accuracy of the work has a very big help, and internal combustion forklift electric vehicles compared to the low noise, no exhaust emissions advantage by many users permission. How to better play to their strengths instead of internal combustion forklifts, of great importance to environmental protection. This study is the use of computer simulation technology for electric forklifts for virtual design, manufacturing completed before the use of AutoCAD transmission counterbalanced electric forklift, fork and two-dimensional vehicle assembly drawing for the following Pro/E, three-dimensional map pave the way to draw, and then use the Pro / E software counterbalanced electric forklift parts for all three-dimensional drawing and make the vehicle assembly, after the ANSYS analysis for the establishment of three-dimensional model, and finally the use of ANSYS simulation software, can be found and correct design flaws and improve the design, shorten the development cycle, improve design quality and improvement, provide theoretical support for the actual production.
减速器相关英文例句
实例检索策略及其在减速器零件CAPP中的应用收藏指正
23.The double crank four ring-plate-type cycloidal pinwheel reducer is a new type reducer based on a new drive principle.
T·JK3-A(50)型车辆减速器研究与应用
21.That realizes the quick index of the similar case of the deceleration machine conceptual product.
实现减速器概念产品的相似实例的快速检索。收藏指正
1.reduction gear
减速器
2.speed reducer
减速器
3.Design of Disc Electrorheological Fluid Speed Reducer
盘式电流变减速器的设计
4.Probe into the K_A value of a ball mill reducer
基于CBR的减速器快速设计系统研究
13.Research on Natural Frequency and Dynamic Model of RV Reducer
RV减速器的动力学模型与固有频率研究
14.Method and Suggestion of Rising Control Accuracy for Hump Clasp Retarder
(完整版)本田赛车车架的节能设计
摘要本田节能赛车车架对于赛车来说,是及其重要的组成部分,因为车架承受着赛车全部的零部件还有总成。
赛车在汽车跑道行驶时,在赛道的会受到各式各样的载荷,这些作用力会传递并作用在车架上,所以对于车架的优化设计,必须考虑其承受的强度、刚度。
利用 autocad 软件平台对赛车车架进行三维建模,结合有限元原理,在计算机上运用 ANSYS软件进行管状单元的车架分析,得到相应的应力;运用有限元分析软件对车架结构进行满载工况下进行下进行受力分析(静态,匀加速,匀速)分析,得到车架结构,并验证其有限元模型的受力是在车架最大承受范围内;利用有限元分析所得到的结果,改进车架的结构设计,在确保车架符合强度、刚度的条件时,尽量减少车架材料的使用,减少车架的质量,使其实现;最后,运用再有限元分析软件对改进后的的车架进行结构分析,使结果显示改进后的车架设计满足合理、安全、轻量化的设计要求。
关键词:车架;轻量化;优化;仿真AbstractHonda energy—saving car frame for racing, and an important part, because frame under a car all the parts and assembly。
The car in car running on track, the track will be subject to a variety of load, these forces will transfer and the role of a vehicle frame, so for the optimization design of the frame must consider the bearing strength, stiffness。
Using AutoCAD software platform for three—dimensional (3D) modeling of the car frame, combined with the finite element theory, on the computer using ANSYS software of tubular unit frame analysis, obtained the corresponding stress; of the frame structure with the finite element analysis software Under the condition of full load of stress analysis (static, uniform acceleration, uniform) analysis, frame structure, and to verify the finite element model of the force is in the frame to withstand the maximum range; using finite element analysis of the obtained results, improving the structure design of the frame, to ensure that the frame with strength, stiffness conditions to minimize frame materials, reduce the frame of quality, make its implementation; finally, the use of and finite element analysis software of the improved frame structure analysis, the results show that the improved frame design to meet the reasonable, safe, lightweight design requirements。
基于rhino的有限元网格离散技术研究_毕业论文[管理资料]
上海工程技术大学毕业设计论文题目:基于Rhino的有限元网格离散技术研究学院:电子电气工程学院专业:自动化目录摘要 (1)ABSTRACT (2)0 引言 (4)1 有限元法 (5)有限元法的基本原理 (5)有限元法基本思想 (5)有限元法几个基本概念 (5)有限元求解的基本步骤 (6)区域离散 (6)插值函数的选择 (8)方程组公式的建立 (8)方程组的求解 (11)有限元法的应用 (12)2 Rhino建模技术及网格剖分 (14)Rhino软件简介 (14)Rhino实体建模技术 (15) (16)实体工具 (18)网格剖分 (21)有限元网格剖分的基本原则 (21)有限元网格生成的方法 (23)网格质量的度量准则 (27)模型及四面体网格剖分实例 (32)矩形腔体 (32)圆柱腔体 (35)阶梯模型 (36)3 有限元计算 (39)矩形腔体计算 (39)圆柱腔体计算 (40)4 结束语 (41)5 参考文献 (42)6 译文 (44)7 原文说明 (55)摘要本文首先对有限元法的基本原理进行简要的叙述,指出了四面体网格在有限元分析中的使用及四面体网格剖分的难点和现状,使用了Rhino 软件建立三维几何模型并对模型进行四面体网格自动剖分,提取网格数据,再转换成有限元计算所需数据,并进行有限元计算。
本文的主要内容有以下几个方面:(1)对有限元法基本原理的学习,其中重点偏向三维有限元分析。
以及有限元网格剖分的研究,其中重点是对四面体网格自动剖分进行了研究和叙述,并提出了现今四面体网格单元质量的度量准则和几种常用的算法。
(2)在Rhino建模功能的基础上,建立简单矩形腔体模型和其他复杂模型,本利用Rhino的网格工具对其进行四面体网格自动剖分,并提取网格数据。
在Fortran语言环境下将提取网格数据转换成有限元计算所需的网格数据。
(3)最后就是在运用前面所提到有限元分析的基本求解步骤和网格剖分的基础理论条件下,利用我们提取转换的有限元计算所需的网格数据对矩形腔体模型进行相关的有限元计算。
机械毕业设计1512新型蝴蝶式压电悬臂梁的发电性能研究
本科生毕业设计毕业设计题目新型蝴蝶式压电悬臂梁的发电性能研究学生姓名专业机械设计制造及其自动化班级指导教师完成日期2014年5月30日中文摘要振动是一种很常见的物理现象,通过对振动能的收集,将振动能转换成电能,有利于缓解社会能源紧缺问题。
目前主要用来收集振动能的压电发电装置可以在各种存在振动的环境中工作,具有很好的应用情境。
而压电发电与无线网络传感器的结合,也使得其拥有更广阔的实用价值,且吸引了很多科研学者对其进行研究。
悬臂梁压电发电装置是现在最常见的振动能量采集装置,而这种装置的特点是结构简单,加工方便,可得到相对低的共振频率和较大的形变等。
本文基于前人的结构设计,运用Solid-works进行三维建模,并通过ANSYS有限元软件对蝴蝶式悬臂梁发电装置进行了静力分析以及模态分析,求解其谐振频率,并将计算结果与试验数据进行了对比,以验证有限元计算的正确性。
最后研究悬臂梁长度、宽度、厚度、形状等因素以及位移载荷对谐振频率的影响,最终确定最优化的结构设计参数。
关键词:振动,压电发电,有限元分析,结构优化AbstractVibration is a very common physical phenomenon, by collecting the vibration energy of the vibration energy into electrical energy will help alleviate the social problems of energy shortage. At present is mainly used to collect the vibration energy of piezoelectric power generation device can exist in a variety of vibration environment work, has the very good application situation. While the piezoelectric power generation combined with the wireless sensor networks also make it have more practical value, and attracted a lot of research scholars to study it.Cantilever piezoelectric power generation device is now the most common vibration energy collection device,and the characteristic of the device is simple in structure, convenient processing, can be relatively low resonance frequency and larger deformation etc.In this paper, based on previous structural design,Using Solid-works make three-dimensional modeling and the butterfly type cantilever beam generating device for static analysis and modal analysis by ANSYS finite element software to solve the problem of the resonant frequency, and the calculated results were compared with experimental data, to verify the correctness of the finite element calculation .Finally, study of cantilever factors such as length, width, thickness, shape and displacement loading effect on the resonance frequency,and ultimately determine the optimal design parameters.Key words:Vibration,Piezoelectric Power Generation Technology,FEA,Structural Optimization目录中文摘要 (I)Abstract (II)第一章绪论 (1)1.1课题研究背景 (1)1.2压电发电技术的发展历史与现状 (1)1.2.1压电发电技术的发展历史 (1)1.2.2压电发电技术的发展现状 (2)1.3课题的研究意义 (3)1.4本章小结 (4)第二章新型蝴蝶式压电悬臂梁的模型构建 (5)2.1基本原理 (5)2.2经典单层压电发电悬臂梁 (6)2.3 Solid-works简介 (6)2.4 蝴蝶式悬臂梁压电发电装置 (7)2.5 本章小结 (8)第三章蝴蝶式悬臂梁压电发电装置的实验研究 (9)3.1 蝴蝶式悬臂梁压电发电装置实物的加工制作 (9)3.1.1单层压电振子的加工制作 (9)3.1.2蝴蝶式悬臂梁压电发电装置的加工制作 (10)3.2蝴蝶式悬臂梁压电发电装置的试验测试 (11)3.2.1压电发电结构的模态测试 (11)3.2.2压电发电装置的发电性能测试 (13)3.3本章小结 (15)第四章蝴蝶式悬臂梁压电发电装置的有限元分析 (16)4.1 有限元方法简介 (16)4.1.1 ANSYS Workbench概述 (16)4.1.2 Workbench的提供的分析类型如下: (17)4.2 蝴蝶式悬臂梁压电发电装置的有限元模型 (18)4.3 静力分析 (18)4.3.1概念 (18)4.3.2问题描述 (19)4.3.3求解步骤 (19)4.3.4静力分析结果 (23)4.4 模态分析 (25)4.4.1概念 (25)4.4.2问题描述 (25)4.4.3求解过程 (25)4.4.4模态分析结果 (26)4.4.5结果与实验数据对比 (27)4.5 蝴蝶式压电悬臂梁压电发电装置的性能研究 (27)4.5.1 梁长度对蝴蝶式压电悬臂梁装置发电性能的影响 (28)4.5.2梁宽度对蝴蝶式压电悬臂梁装置发电性能的影响 (28)4.5.3梁厚度对蝴蝶式压电悬臂梁装置发电性能的影响 (29)4.5.4梁形状对蝴蝶式压电悬臂梁装置发电性能的影响 (30)4.5.5位移载荷对蝴蝶式压电悬臂梁装置应力的影响 (31)4.6本章小结 (31)第五章总结与展望 (32)5.1 总结 (32)5.2 展望 (32)致谢 (34)参考文献 (35)第一章绪论1.1 课题研究背景近现代以来,产品的发展趋于小型化、微型化与集成化,而能源供应问题已成为制约产品微型化技术发展的瓶颈,其微型化问题受到普遍的关注。
电机径向通风的空气—空气冷却器传热计算
根据上述计算模型编制了冷却器设计软件,软件输入界面有冷却器结构尺寸及风扇尺寸 的输入窗口,在设计时,可以考虑风扇和冷却器的匹配问题。通过菜单项可选择卧式或立式电 机、外风扇的叶片形式,如径向叶片(直叶片)或后倾叶片、管子材料等,如图 2、图 3。
第2期
张海凤, 等: 电机径向通风的空气—空气冷却器传热计算
从表 1 的数据发现,计算数据与实验数据相比,外风的温升总体偏大一些,内风则 Tr5、 Tr4 的偏差比较大。通过对模型进行修正,再次计算的结果以及与实验数据的比较见表 2,两 者的数据明显更接近, 表明该计算模型是合理的, 可适用于径向通风的电机空—空冷却器的传 热设计计算。
表 2 实验数据和修正模型计算数据的比较 Table 2 Comparison of the experimental data with the calculation results using the modified model 内风温度 电机型号 YKK900-10 YKK560-10 YRKK900-8 YKK630-10 YKK800-8 YKK450-4 试验值 /℃ 37/69/37 52/74/55 34/68/40 34/58/40 30/58/34.5 43/70/50 计算值 /℃ 33/68/36 51/72/56 36/65/40 30/54/33 30/59/35 46/69/49 外风温度 试验值 /℃ 12/36 40/54 22/38.5 15/28 16.5/32 22/38 计算值/ ℃ 12/35 40/52 22/37.2 15/29 16.5/33 22/36 外风/内风流量 试验值 计算值 /(m3s-1) /(m3s-1) 130 42 235 41 110 100 157 45 237 33 119 108 换热量 /kW 150 42 170 50 125 38.5
大学生方程式赛车设计(制动与行走系统设计)
毕业设计(论文)题目大学生方程式赛车设计(制动与行走系统设计)2013年5月30日大学生方程式赛车制动与行走系统设计摘要Formula SAE自1978年在美国第一次举办以来,现已成为一项顶尖的国际赛事。
按比赛规定,赛车必须在加速,制动和操控性能方面表现出色。
其中,为保障车辆和驾驶人员的安全,赛车的制动与行走系统设计显得尤为重要。
本文主要阐述了Formula SAE赛车的制动与行走系统设计过程。
本次设计参照上代及其他参赛团体的赛车,进行了整体优化。
本文在分析大赛规则及往届成型赛车的基础上,通过计算分析设计出制动与行走系统的总体方案。
其中,制动系统以制动器为核心,设计出制动操纵机构(踏板装置)及制动操纵驱动机构(II型液压双回路)。
行走系统以轮胎为核心,依次进行轮辋、轮毂、立柱的设计。
本次设计在分析研究国外经典赛车基础上,参照实物及经典模型,利用UG对各零件进行三维建模和装配,利用CAD、CAXA等软件建立模型进行运动干涉分析,保证设计的合理性及优良性。
最后,本次设计运用UG等软件,对制动系统中的连接件、紧固件、制动盘、制动踏板、制动油路等和行走系统中的立柱、轮毂、轮辋进行了仿真及有限元分析,并制造出样件,对样件装车试验,取得良好效果。
最终本设计的结果,确保了本赛车具有出色的制动性和在极限工况下的安全性。
关键词:赛车,制动及行走系统,优化,仿真,有限元分析COLLEGE STUDENTS'FORMULA RACINGBRAKE AND WALKING SYSTEM DESIGNABSTRACTFormula SAE held in the United States for the first time since 1978, has now become a top international event. The car's design must be in acceleration, braking and handling performance. Among them, in order to guarantee the safety of the vehicle and driver, braking and walking system design is especially important.This article mainly elaborated the Formula SAE racing car brake and walking system design process. Design with reference to the parent group and other participants of the car, on the whole optimization. Based on the analysis of the competition rules and past molding car, on the basis of analysis by calculation braking and walking system overall scheme are given. Among them, the braking system to brake as the core, designed the brake operating mechanism and brake control driving mechanism. Walking system to tire as the core, in turn to carry on the rim, hub, pillar design. Refer to physical objects and the classic case in design process, the parts to make use of UG three-dimensional modeling and assembly, optimize the braking control drive mechanism, using CAD, CAXA, such as motion interference analysis, to ensure the rationality of the design and the optimal benign.Using software such as UG, the design of the braking system of the fittings, fasteners, brake pedal, brake disc and walking system such as columns, in the hub, rim has carried on the simulation and finite element analysis, to ensure that this car has good brake and safety under limit conditions.KEY WORDS:car, brake and walking system, optimization, simulation, finite element analysis符号说明d轮缸活塞直径,mmwD主缸活塞直径,mmmF地面制动力,NBF制动踏板力,NpF车轮与地面的附着力,NϕG汽车前轴静负荷,N1G汽车后轴静负荷,N2h质心高度,mmgL轴距,mmL汽车质心离前轴的水平距离,mm1L汽车质心离后轴的水平距离,mm2m汽车总质量,kgaR车轮有效半径,mmer车轮滚动半径,mmeT制动器对车轮的制动力矩,N·mfp管路液压,MPaV主缸工作容积,mm3mV单个轮缸工作容积,mm3wv汽车行驶速度m/sx制动踏板行程,mmpZ地面对前轴的法向反力,N1Z地面对后轴的法向反力,N2β制动力分配系数ϕ同步附着系数δ制动轮缸的活塞行程,mmη踏板机构及制动主缸的机械效率目录第一章概述 (1)§1.1 大学生方程式赛车简介 (1)§1.2 制动系统的重要性 (1)§1.3 行走系统的功用 (1)第二章制动系设计 (3)§2.1 制动系应满足的主要要求 (3)§2.2 制动器的结构型式及选择 (3)§2.2.1 鼓式制动器 (4)§2.2.2 盘式制动器 (5)§2.3 制动系的主要参数及其选择 (7)§2.3.1 制动力与制动力分配系数 (7)§2.3.2 同步附着系数 (10)§2.3.3 制动器最大制动力矩 (10)§2.3.4 制动器因数 (11)§2.3.5 制动器的机构参数与摩擦系数 (11)第三章制动器的设计计算 (13)§3.1 摩擦衬块磨损特性的计算 (13)§3.2 制动器的热容量和温升的核算 (14)§3.3 盘式制动器制动力矩的计算 (16)§3.4 驻车制动计算 (17)第四章制动器主要零件的结构设计 (19)§4.1 制动盘 (19)§4.2 制动钳 (19)§4.3 制动块 (20)§4.4 摩擦材料 (21)§4.5 制动轮缸 (21)§4.6 制动器间隙的调整方法及相应机构 (21)第五章制动驱动机构的结构型式选择及设计计算 (23)§5.1 制动驱动机构的结构型式选择 (23)§5.2 制动管路的分路系统 (25)§5.3 液压制动驱动机构的设计计算 (26)§5.3.1 制动轮缸直径与工作容积 (26)§5.3.2 制动主缸直径与工作容积 (27)§5.3.3 制动踏板力与踏板行程 (28)§5.3.4 制动主缸的形式 (29)第六章行走系统的设计 (30)§6.1 汽车行驶系统概述 (30)§6.1.1 轮胎 (31)§6.1.2 轮辋 (31)§6.1.3 轮毂 (32)§6.1.4 立柱 (33)§6.2 强度校核 (34)§6.2.1 制动盘紧固螺栓的校核 (34)§6.2.2 轮毂螺栓的校核 (35)第七章结论 (37)参考文献 (38)致谢 (40)附录 (41)第一章概述§1.1 大学生方程式赛车简介目前,中国汽车工业已处于大国地位,但还不是强国。
乘用车驱动桥壳有限元分析
乘用车驱动桥壳有限元分析作者:朱文艳来源:《价值工程》2018年第03期摘要:本文以某汽车的驱动桥桥壳为模型,在Pro/E三维建模软件中对驱动桥桥壳基于实际尺寸进行建模,并将其导入到ANSYS Workbench有限元法分析软件中。
在ANSYS Workbench中对桥壳进行四种工况的静力学分析和自由状态下的模态分析,得到对应的变形、应力云图和前六阶振型及频率。
根据各工况的应力分布位置、变形量和各阶振动频率的分析结果,对驱动桥桥壳提出相应的优化改进建议。
Abstract: In this paper, a driving axle housing of a car is taken as a model, and the driving axle housing is modeled based on the actual size in the Pro/E 3D modeling software and imported into the ANSYS Workbench finite element analysis software. In the ANSYS Workbench, the static analysis of the axle housing in four conditions and the modal analysis in the free state are carried out, and the corresponding deformation, stress cloud and the first six modes and frequencies are obtained. According to the analysis of the stress distribution position, deformation and vibration frequency of each condition, the appropriate suggestions for improving and optimizing the drive axle housing are put forward.关键词:驱动桥桥壳;三维建模;有限元法;ANSYS WorkbenchKey words: axle housing;three-dimensional modeling;finite element method;ANSYS Workbench中图分类号:U463 文献标识码:A 文章编号:1006-4311(2018)03-0136-040 引言汽车中重要承载部件之一的驱动桥,在支撑保护主减速器、差速器和半轴的同时,还承受着来自路面和悬架之间的力和力矩,驱动桥壳应具有足够的强度、刚度且尽可能质量小[1]。
重度脊柱侧弯三维有限元模型模拟脊柱后路矫形术生物力学特点
Establishment of Three-dimensional Finite Element Model for Severe Rigid Scoliosis and Biomechanical Analysis of PVCR
[摘要] 目的 建立严重僵硬性脊柱侧弯的三维有限元模型,在该模型上模拟经后路全椎体切除术 (posterior vertebral column resection,PCVR) 并分析其生物力学特点。方法 以 1 例严重僵硬性脊柱侧弯患者 CT 为基础, 使用 Mimics10.01,Geomagic studio12,UG8.0 等软件建立,优化俯卧位严重脊柱侧弯的三维有限元模型。验证模 型与患者原始资料的几何相似性以及力学有效性。利用模型模拟 PVCR 术。结果 成功建立严重僵硬性脊柱侧弯 的三维有限元模型,并验证该模型有效。利用模型完成 PVCR 术模拟。椎体切除后,断端在轴位、冠状位及矢状 位均有移位趋势;术后矫形棒应力值区间为:0.0050214e7~0.045217e7 Mpa,应力值最大区域为截骨区及上下 2 个 椎体,其应力值为 0.045217e7 Mpa,应力最小为端椎区域,为:0.0050214e7~0.025121e7 Mpa。螺钉应力值区间: 3.1108e7~2.7961e8 Mpa,其中切除椎体的上位椎体凸侧第 1 枚螺钉应力最大,为 2.4577e8 Mpa。术后端椎区域 T2/3 及 T7/8、T8/9、T9/10 椎间盘上的应力较大,椎间盘受力最大区域均位于纤维环。结论 PVCR 椎体切除区 域,断端呈三维位移趋势,增加医源性脊髓损伤的风险;该区域内植物负荷最大,是术后发生内植物损耗的易发 区域;术后交界区椎间盘承载较大应力且较集中,易出现交界区病变。
二级圆锥圆柱齿轮减速器设计
优秀设计毕业设计(论文)任务书题目二级圆锥圆柱齿轮减速器专业机械设计制造及其自动化学号姓名传动简图的拟定:1.技术参数输送链的牵引力:F=2.2KN输送链的速度:V=1m/s滚筒直径:D=400mm2.工作条件单向运转,载荷平稳,工作年限为十年,两班制工作,输送带速度允许误差为±5% 3.拟定传动方案传动装置由电动机,减速器,工作机等组成。
方案简图如下:方案图选题背景:随着现代工业的不断发展和扩大,对工业机械的需求量也再迅速的增加,同时对机械设备的可靠性,维修性,安全性,经济性和燃油性也提出而来更高的要求。
齿轮机构是在各种机构中应用最广泛的一种传动机构。
它可以用来传递空间任意两轴件的运动和动力,并具有功率范围大,传动效率高,传动比准确,使用寿命长,工作安全可靠等特点。
齿轮传动机构中很重要的应用就是减速器。
减速器是原动机和工作机之间独立的闭式机械传动装置用来降低原动机转速或增大转矩,以满足工作机需要。
而齿轮减速器作为一种重要的动力传递装置,在机械化生产中起着不可替代的作用,圆锥齿轮减速器是最常用的机械传动机构之一。
圆锥圆柱齿轮减速机承载能力强,体积小,噪声低,适用于入轴、出轴成直角布置的机械传动中。
主要内容:设计出符合要求的二级圆锥圆柱齿轮减速器,并用虚拟软件,进行二级圆锥圆柱齿轮机构的三维建模,对圆锥圆柱减速器的机构的组成,内部传动部件,进行装配干涉分析、应力应变分析、运动仿真,最终生成二维工程图。
主要参考文献:[1] 李秀珍主编.机械设计基础[M].北京:机械工业出版社,2005.[2] 邱宣怀主编.机械设计(第四版) 高等教育出版社.2009.5[3] 宋宝玉主编.机械设计课程设计指导书[M].北京:高等教育出版社,2006.[4] 任家隆主编.机械制造基础[M].北京:高等教育出版社,2003.[5] 刘静华,唐科,杨民主编.计算机工程图学实训教程(Inventor 2008版)[M].北京:北京航空航天大学出版社,2002.[6] 杨慧英,王玉坤主编.机械制图[M].北京:清华大学出版社,2002.[7] 江洪等编著. SolidWorks机械设计实例解析[M].北京:机械工业出版社.2007.[8] 《机械设计手册》编委会.机械设计手册.齿轮传动[M].北京:机械工业出版社,2007.[9] 孙桓陈作模葛文杰主编机械原理.高等教育出版社.2008.4完成期限:20XX年5月20日指导教师签名:专业负责人签名:年月日目录摘要 (1)Abstract (2)1引言 (3)1.1概述 (3)2电机的选择计算 (6)2.1选择电动机的类型 (6)2.2选择电动机的容量 (6)2.3确定电动机转速 (6)2.4计算传动装置的总传动比i∑并分配传动比 (7)2.4.1分配原则 (7)2.5计算传动装置各轴的运动和动力参数 (7)2.5.1各轴的转速 (7)2.5.2各轴的输入功率 (8)2.5.3各轴的输入转矩 (8)3传动零件的设计计算 (9)3.1闭式直齿轮圆锥齿轮传动的设计计算 (9)3.2闭式直齿圆柱齿轮传动的设计计算 (12)3.3轴的设计计算 (15)3.3.1减速器高速轴Ⅰ的设计 (15)3.3.2减速器的低速轴Ⅱ的设计 (19)3.3.3减速器低速轴Ⅲ的设计计算 (20)4滚动轴承的选择与寿命计算 (24)4.1减速器高速I轴滚动轴承的选择与寿命计算 (24)4.2减速器低速III轴滚动轴承的选择与寿命计算 (25)5键联接的选择 (26)5.1 高速轴的键连接 (26)5.2 低速轴的键连接 (26)6减速器机体的结构设计 (26)6.1 机体要具有足够的刚度 (27)6.2 机体的结构要便于机体内零件的润滑,密封及散热 (28)6.3 机体结构要具有很好的工艺性 (28)6.4 确定机盖大小齿轮一段的外轮廓半径 (29)7润滑和密封设计 (29)7.1 润滑 (29)7.2 密封 (30)8箱体设计的主要尺寸及数据 (30)9三维建模 (31)9.1 三维建模技术 (31)9.2 草图概念设计 (33)9.2.1零件的三维参数化设计建摸 (33)9.2.2虚拟装配 (37)9.2.3干涉分析 (41)9.2.4应力分析 (44)10结论 (46)谢辞 (47)参考文献 (48)二级圆锥圆柱齿轮减速器摘要本课题主要研究的内容是根据减速器设计的原始资料,研究减速器够组成部件(包括齿轮、轴、轴承、上箱体和下箱体)的设计及校核方法。
动车组转向架三维仿真设计—毕业设计
毕业设计(论文)版权使用授权书
本毕业设计(论文)作者完全了解 兰州交通大学 有关保留、使用毕业设计(论文) 的规定。特授权 兰州交通大学 可以将毕业设计(论文)的全部或部分内容编入有关数 据库进行检索,并采用影印、缩印或扫描等复制手段保存、汇编以供查阅和借阅。同意 学校向国家有关部门或机构送交设计(论文)的复印件和电子文档。 (保密的毕业设计(论文)在解密后适用本授权说明)
(4)根据各边界条件和初始条件,于 ANSYS 软件中模拟出 CRH2 型高速动车组 紧急制动状况下轴盘制动盘的温度场分布及热应力数值计算。结果表明在制动过程中列 车制动盘在开始制动瞬间表面温度迅速上升,当 t=20s 时达到峰值Tmax = 254.5 C 后缓慢 下降,直到制动停车。制动开始后盘体热应力瞬间急剧上升,在 t=9.6s 时达到最大值 σ max =238MPa ,远远小于盘体材料常温下最大许用应力σ b = 785MPa ,符合 CRH2 型动 车组轴盘材料及结构工况下使用条件和闸片的摩擦副要求及制动系统技术规定。热应力 大小曲线和温度场分布曲线峰值前后存在步差,出现在不同时刻,基本走向大致相同, 即首先急剧上升到一个最大值,然后缓慢下降。
本文以 CRH2 型高速动车组 T 转向架为例,利用 CATIA V5 R20 软件对其各个组成 部件及重要零件进行三维实体建模与转向架整体虚拟装配仿真设计,并以此为基础采用 ANSYS 有限元分析软件研究了列车轴盘制动过程中的温度场分布及对热应力的数值模 拟分析。本论文主要工作包括:
(1)介绍了 CATIA 软件由上而下设计 CRH2 型高速动车 T 转向架的新方法与新思 路。分别创建了轮对、轴箱装置、基础制动装置、构架、夹钳系统、排障装置(头车)、 踏面清扫器、空气弹簧装置及中央牵引装置等的三维实体模型。
车辆工程毕业设计35基于UG与ANSYS的大学生节能车(HLJIT-3A型)结构优化设计
摘要汽车工业随着国民经济发展和交通运输体系的全面建立得到了飞速发展。
汽车车架作为汽车总成的一部分,承受着来自道路和装载的各种复杂载荷作用,并且汽车上许多重要总成件都是以车架为载体,因而车架的强度和刚度在汽车总体设计中起到非常重要的作用,节能车架的轻量化设计有助于对节能车节能提高性能。
本设计利用UG软件三维建模,有限元分析软件ANSYS对节能车车架进行绘制建模和分析研究。
分别讨论该车架静态时在纯弯曲工况和扭转工况下的静强度分析,进行静态时的刚度分析;分析车架在弯曲工况、扭转工况、搓板路工况和紧急转弯情况下的静态动强度分析。
预期分析,该车架的应力值小于材料的强度极限,是否满足设计的要求,是否强度偏大,比较经济性。
本文还进行了车架的动态分析,主要是模态分析,它是结构动态设计的核心,克服了静态方法的局限性,强调从结构的整体考虑问题。
通过对车架进行模态分析,设计中提出几种方案对车架进行了轻量化设计,优化的结果使得车架自身重量减少,节约原材料,降低生产的成本,提高汽车的燃油经济性,并且有利于环保。
关键词:节能车车架;有限元;静力学分析;模态分析;轻量化设计AbstractWith the national economy and automobile transportation system has been the rapid development of fully established. Automobile frame assembly as part of a vehicle to withstand the load from the road and the various complex loads, and the cars are based on many important pieces of the frame assembly as the carrier, which frame the overall strength and stiffness in the car Design to a very important role to play, saving lightweight frame design helps improve performance of energy saving vehicles.The three-dimensional modeling software designed by UG, ANSYS finite element analysis software to draw on the energy-saving vehicle frame modeling and analysis. Discussion of the frame, respectively, in pure bending static conditions and to reverse the condition of the static strength analysis of the static stiffness analysis; analysis of frame conditions in bending, torsion condition, washboard road conditions and emergency situations turn static dynamic strength analysis. The results show that the stress of the frame is less than the ultimate strength of the material to meet the design requirements, but the intensity is too large, so the relatively poor economy. This frame also carried out a dynamic analysis, modal analysis are mainly, it is the core of the structure dynamic design overcomes the limitations of static methods, emphasizing the whole to consider the issue from the structure. By modal analysis frame, the design of several options put forward were a lightweight frame design and optimization of the result that the weight reduction of the frame itself, saving raw materials, lower production costs and improve vehicle fuel economy, and conducive to environmental protection.Keywords:Energy saving vehicles;Finite element;Static analysis;Mmodal analysis;Lightweight design目录摘要 (I)Abstract (II)第1章绪论 (1)1.1选题的背景、研究目的及意义 (1)1.2节能车国内外研究现状 (1)1.2.1节能车发展历程 (1)1.2.2节能车国内外研究状况及结果 (2)1.3研究内容及研究方法 (5)1.3.1研究内容 (5)1.3.2研究方法 (5)第2章节能车车架整体结构方案选定 (7)2.1节能车的工作原理与设计理念 (7)2.1.1节能减排 (7)2.1.3人人参与 (7)2.2节能车的主要结构方案确定 (8)2.2.1节能车车架设计要求 (9)2.2.2 节能车的整体结构形式及基本组成 (11)2.2.3 节能车的各零部件之间的连接关系 (13)2.2.4节能车架制作工艺分析 (17)2.3节能车车架的结构尺寸 (19)2.3.1 节能车整体结构 (19)2.3.2 节能车车架各部位的定位 (20)2.4本章小结 (21)第3章节能车车架建模设计 (22)3.1基于UG软件三维建模 (22)3.1.1 UG软件简介 (22)3.1.2 节能车架三维建模 (23)3.1.3 零配件三维建模 (26)3.1.4 轻量化分析 (27)3.2车架装配 (28)3.3干涉检查 (29)3.4整体车架轻量化分析 (29)3.5本章小结 (32)第4章节能车车架参数分析 (32)4.1节能车重量计算 (33)4.2节能车车架建模 (33)4.2.1 节能车车架力学建模与分析 (33)4.2.2 节能车车架参数化建模与分析 (34)4.3节能车车架结构加强措施 (37)4.4本章小结 (39)第5章节能车车架轻量化分析 (40)5.1ANSYS有限元分析软件介绍 (40)5.2ANSYS与UG接口的建立 (42)5.3节能车架静力学分析 (43)5.4节能车架模态分析 (46)5.5本章小结 (50)结论 (51)参考文献 (52)致谢 (54)附录A ..................................................................................................... 错误!未定义书签。
基于Solidworks的平衡车轮架仿真分析及优化
基于Solidworks的平衡车轮架仿真分析及优化孙颖;潘江如;端木凡峰【摘要】In order to achieve the optimization goal of balance wheel frame, reduce the mass of balance wheel frame, three dimensional modeling and finite element analysis of the balance wheel frame are established in this paper based on Solidworks software. Strength as constraint conditions, some parameters chosen as the design variables, including wall thickness, width of stiffener and the connection hole diameter, the balance wheel frame is optimized, the result indicate the mass of balance frame optimized is 10.3% lighter than that of origin balance frame when the stiffness, strength and security are meted and the optimization goal of balance frame is achieved. The result has certain reference significance for the balance wheel frame structure optimization and improvement.% 为实现平衡车架的优化目标,减轻平衡车轮架的质量,采用solidworks软件对平衡车轮架进行了三维建模和有限元分析。
基于CATIA的液压阀块设计与有限元分析
基于CATIA的液压阀块设计与有限元分析发布时间:2022-11-11T02:52:35.201Z 来源:《科学与技术》2022年14期7月作者:章艳[导读] 以某液压设备系统的阀块设计为例,阐述了液压阀块的设计流程章艳芜湖航翼集成设备有限公司安徽芜湖 241000摘要:以某液压设备系统的阀块设计为例,阐述了液压阀块的设计流程。
并利用CATIA三维特征模块建立了阀块的三维模型,利用CATIA有限元分析模块对阀块的应力和变形进行了有限元分析。
结果表明:通过CATIA三维特征模块能提高液压阀块建模的效率和准确性。
液压阀块在30 MPa液压力下的强度和刚度均满足设计要求,阀块的性能良好。
关键词:液压阀块;CATIA;三维建模;有限元分析Design and Finite Element Analysis of Hydraulic Valve Block Based on CATIAZhang YanWuhu Hangyi Integrated equipment Co., Ltd, Anhui Wuhu 241000Abstract A valve block design of hydraulic system was taken as an example, and the design process was illustrated. The three-dimensional (3D) model of the valve block was established through 3D feature module of the CATIA software, and finite element analysis (FEA) of the stress and deformation of the valve block was conducted by employing the FEA module of the CATIA software. The results show that efficiency and accuracy of the valve block modeling could be significantly improved by means of the CATIA 3D feature module. Both strength and stiffness of the valve block imposed by 30 MPa hydraulic pressure meet the design requirements, and the performance of the valve block is good.Key words Hydraulic valve block; CATIA; Three-dimensional modeling; Finite element analysis[]1 引言随着液压工业的快速发展,液压系统越来越复杂化和集成化。
正畸力内收前牙对牙槽骨吸收程度不同后牙的影响
正畸力内收前牙对牙槽骨吸收程度不同后牙的影响孙志涛;汪钰程;崔玉美;孙阳【摘要】目的通过有限元法模拟不同程度的后牙牙槽骨吸收状态,分析骨吸收情况下的牙周应力分布和总位移趋势,以便为临床施加合适的矫治力提供指导.方法在建立正常牙槽骨高度(1号模型)的基础上,通过删减单元格获得后牙牙槽骨高度水平均衡降低2、4、6 mm的2、3、4号模型;在各模型上进行模拟加载,加载力1.47 N,分析在施加矫治力的情况下,各模型后牙组牙的牙周膜初应力及牙齿初始总位移的分布情况.结果随着牙槽骨高度的降低,后牙组牙总位移增加,牙周膜Von Mises应力逐渐增大,当牙槽骨吸收达4 mm时,应力值和牙齿初始总位移值明显增加.结论对于伴有牙槽骨丧失的患者,应当避免受力或显著减小受力,避免造成牙周组织不可逆的损伤和牙根、牙槽骨的持续吸收.【期刊名称】《华西口腔医学杂志》【年(卷),期】2019(037)003【总页数】5页(P265-269)【关键词】正畸力;内收前牙;牙槽骨;有限元【作者】孙志涛;汪钰程;崔玉美;孙阳【作者单位】日照市中心医院口腔科,日照 276800;临沂市中心医院口腔矫形科,临沂 276000;青岛市口腔医院修复科,青岛 266000;日照市妇幼保健院口腔科,日照276800【正文语种】中文【中图分类】R783.5牙周病是由多因素所致的慢性进展性疾病,是口腔科常见的疾病之一。
牙周病可引起继发性错畸形及功能紊乱,而错畸形反过来又会因为牙齿拥挤、咬合功能紊乱及早接触等原因,损害牙周组织或加重牙周病的发展。
随着社会审美意识和健康意识的提高,人们对美学的要求越来越高,正畸矫治的成人患者也越来越多。
成人患者大多伴有牙周组织健康问题,因此对成人牙周病患者正畸诊断和治疗原则的研究也迅速发展。
针对以上情况进行生物力学研究很有临床意义。
牙周支持组织高度的降低,可造成牙齿冠根比失调,通过正畸力内收前牙时,所施加的矫治力大小和组成与牙周支持组织健康的患者必然有很大区别,而有限元恰好可通过逆向工程和动态仿真来模拟这种力学研究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Corresponding author. Tel.: +91 761 2632924; fax: +91 761 2632524. E-mail addresses: ptandon@iiitdm.in (P. Tandon), mdrajik@iiitdm.in (Md. Rajik Khan). 0010-4485/$ – see front matter © 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.cad.2009.01.005
The geometry of cutting flutes and the surfaces of end mills is one of the crucial parameters affecting the quality of the machining in the case of end milling. These are usually represented by two-dimensional models. This paper describes in detail the methodology to model the geometry of a flat end mill in terms of three-dimensional parameters. The geometric definition of the end mill is developed in terms of surface patches; flutes as helicoidal surfaces, the shank as a surface of revolution and the blending surfaces as bicubic Bezier and biparametric sweep surfaces. The proposed model defines the end mill in terms of three-dimensional rotational angles rather than the conventional two dimensional angles. To validate the methodology, the flat end milling cutter is directly rendered in OpenGL environment in terms of three-dimensional parameters. Further, an interface is developed that directly pulls the proposed three-dimensional model defined with the help of parametric equations into a commercial CAD modeling environment. This facilitates a wide range of downstream technological applications. The modeled tool is used for finite element simulations to study the cutting flutes under static and transient dynamic load conditions. The results of stress distribution (von mises stress), translational displacement and deformation are presented for static and transient dynamic analysis for the end mill cutter flute and its body. The method described in this paper offers a simple and intuitive way of generating high-quality end mill models for use in machining process simulations. It can be easily extended to generate other tools without relying on analytical or numerical formulations. © 2009 Elsevier Ltd. All rights reserved.
Puneet Tandon ∗ , Md. Rajik Khan
PDPM Indian Institute of Information Technology, Design & Manufacturing Jabalpur, 482011, India
article
info
a b s t r a c t
Computer-Aided Design 41 (2009) 10vailable at ScienceDirect
Computer-Aided Design
journal homepage: /locate/cad
Three dimensional modeling and finite element simulation of a generic end mill
∗
(3D) surface based definitions of the cutting tools. The surface model of a cutting tool can be converted into a solid model and may further be used for the Finite Element based engineering analysis, stress analysis and simulation of the cutting process; besides the precise grinding / sharpening of cutting tool surfaces. A wide range of cutters used in practice are fluted in geometry. Among fluted cutters considerable work has been done in the area of geometric modeling of slab mill, helical end mill, and twist drills for their design, analysis and grinding. However, surface-based parametric modeling and developing the interface between modeling and analysis for fluted cutters has not received much attention. End mills are cylindrical cutters with teeth on the circumferential surface and one of the ends for chip removal [3–5]. Whatever work is done on modeling end mills, is not in the direction of development of unified representation schemes that can provide direct 3D models for downstream technological applications. Tandon et al. have proposed unified modeling schemes for single-point cutting tools [6], end mills [7], slab mills, and fluted cutters [8]. The work in the direction of development of geometry design of a form milling cutter for precisely obtaining the complex freeform surfaces is done by Wang et al. [9]. Recently, Vijayaraghavan and Dornfield [10] have shown finite element simulation and modeling of a two-flute conical twist drill. S. P. Radzevich has worked for the surface generation in the design of plunge shaving cutters for the finishing of precision involute gears [11].
Article history: Received 16 September 2008 Accepted 9 January 2009 Keywords: Surface modeling Surface patches Mapping End mill Finite element analysis
1. Introduction Modeling and simulation of machining processes is a critical step in the realization of high quality machined parts. To precisely simulate the machining operations, accurate models of cutting tools used in the machining processes are required. In metal cutting industry, an end mill cutter plays an important role for obtaining the desired shape and size of a component. A variety of helical end mill cutters are used in the industry. Helical cylindrical, helical ball, taper helical ball, bull-nosed and special purpose end mills are widely used in aerospace, automotive and die machining industries. The analysis of the geometry of the tool surfaces and cutting flutes along with the cutting forces acting on the end mill plays an important part in the design of the end mill and the quality of the manufacturing process. Traditionally, the geometry of cutting tools has been defined using the principles of projective geometry. The advancements in the domain of Computer Aided Design (CAD) allow a designer to specify the cutting tool surfaces in terms of biparametric surface patches [1,2]. Using such an approach, one may develop the comprehensive three-dimensional