常见曲线的参数方程
曲线与曲面的参数方程
曲线与曲面的参数方程曲线与曲面是数学中的基本概念,它们在几何学、物理学和工程学等领域中有着重要的应用。
本文将介绍曲线与曲面的参数方程,以及它们在实际问题中的应用。
一、曲线的参数方程曲线是平面或空间中的一条连续的线段,它可以用参数方程来表示。
参数方程是指将曲线上的点的坐标用参数表示,而不是直接用坐标表示。
对于二维平面曲线,参数方程通常形式为:x = f(t)y = g(t)其中,t为参数,f(t)和g(t)是与参数t有关的函数。
通过不同的参数t取值,可以得到曲线上的各个点,从而描述整个曲线。
举个例子,考虑单位圆的参数方程。
圆的方程为x² + y² = 1,而参数方程为:x = cos(t)y = sin(t)其中,参数t的取值范围为0到2π。
当t取0时,x = cos(0) = 1,y= sin(0) = 0,即得到圆的右端点;当t取π/2时,x = cos(π/2) = 0,y =sin(π/2) = 1,即得到圆的上端点;依此类推,当t取2π时,又得到圆的右端点,从而完成了整个圆的参数方程描述。
二、曲面的参数方程曲面是空间中的一片连续的平面区域,它可以用参数方程来表示。
参数方程是指将曲面上的点的坐标用参数表示,而不是直接用坐标表示。
对于三维空间中的曲面,参数方程通常形式为:x = f(u, v)y = g(u, v)z = h(u, v)其中,u和v为参数,f(u, v)、g(u, v)和h(u, v)是与参数u和v有关的函数。
通过不同的参数u和v的取值,可以得到曲面上的各个点,从而描述整个曲面。
举个例子,考虑球面的参数方程。
球面的方程为x² + y² + z² = r²,而参数方程为:x = r sinθ cosφy = r sinθ sinφz = r c osθ其中,r为球的半径,θ为极角,范围是0到π,φ为方位角,范围是0到2π。
常见曲线的参数方程
2.2 常见曲线的参数方程 第一节 圆锥曲线的参数方程一椭圆的参数方程1、中心在坐标原点,焦点在x 轴上,标准方程是22221(0)x y a b a b+=>>的椭圆的参数方程为cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数)同样,中心在坐标原点,焦点在y 轴上,标准方程是22221(0)y x a b a b+=>>的椭圆的参数方程为cos (sin x b y a ϕϕϕ=⎧⎨=⎩为参数)2、椭圆参数方程的推导如图,以原点O 为圆心,,()a b a b o >>为半径分别作两个同心圆,设A 为大圆上的任一点,连接OA ,与小圆交于点B ,过点,A B 分别作x 轴,y 轴的垂线,两垂线交于点M 。
设以Ox 为始边,OA 为终边的角为ϕ,点M 的坐标是(,)x y 。
那么点A 的横坐标为x ,点B 的纵坐标为y 。
由于点,A B 都在角ϕ的终边上,由三角函数的定义有cos cos ,sin sin x OA a y OB b ϕϕϕϕ==== 3当半径OA 绕点O 旋转一周时,就得到了点M 的轨迹,它的参数方程是cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数)这是中心在原点O ,焦点在x 轴上的椭圆的参数方程。
3、椭圆的参数方程中参数ϕ的意义 圆的参数方程cos (sin x r y r θθθ=⎧⎨=⎩为参数)中的参数θ是动点(,)M x y 的旋转角,但在椭圆的参数方程cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数)中的参数ϕ不是动点(,)M x y 的旋转角,它是动点(,)M x y 所对应的圆的半径OA (或OB )的旋转角,称为点M 的离心角,不是OM 的旋转角,通常规定[)0,2ϕπ∈ 4、椭圆参数方程与普通方程的互化可以借助同角三角函数的平方关系将普通方程和参数方程互化。
①由椭圆的参数方程cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数,0)a b >>,易得cos ,sin x ya b ϕϕ==,可以利用平方关系将参数方程中的参数ϕ化去得到普通方程22221(0)x y a b a b+=>>②在椭圆的普通方程22221(0)x y a b a b +=>>中,令cos ,sin x ya bϕϕ==,从而将普通方程化为参数方程cos (sin x a y b ϕϕϕ=⎧⎨=⎩为参数,0)a b >>注:①椭圆中参数的取值范围:由普通方程可知椭圆的范围是:,a x a b y b -≤≤-≤≤,结合三角函数的有界性可知参数[)0,2ϕπ∈②对于不同的参数,椭圆的参数方程也有不同的呈现形式。
参数方程及其图形(很全面的)
1.碟形弹簧圓柱坐标方程:r = 5theta = t*3600z =(sin(3.5*theta-90))+24*t2.葉形线.笛卡儿坐標标方程:a=10x=3*a*t/(1+(t^3))y=3*a*(t^2)/(1+(t^3))3.螺旋线(Helical curve) 圆柱坐标(cylindrical)方程:r=ttheta=10+t*(20*360)z=t*34.蝴蝶曲线球坐标方程:rho = 8 * ttheta = 360 * t * 4phi = -360 * t * 85.渐开线采用笛卡尔坐标系方程:r=1ang=360*ts=2*pi*r*tx0=s*cos(ang)y0=s*sin(ang)x=x0+s*sin(ang)y=y0-s*cos(ang)z=06.螺旋线.笛卡儿坐标方程:x = 4 * cos ( t *(5*360)) y = 4 * sin ( t *(5*360))z = 10*t7.对数曲线笛卡尔坐标系方程:z=0x = 10*ty = log(10*t+0.0001)8.球面螺旋线采用球坐标系方程:rho=4theta=t*180phi=t*360*209.双弧外摆线卡迪尔坐标方程:l=2.5b=2.5x=3*b*cos(t*360)+l*cos(3*t*360) Y=3*b*sin(t*360)+l*sin(3*t*360)10.星行线卡迪尔坐标方程:a=5x=a*(cos(t*360))^3y=a*(sin(t*360))^311.心脏线圓柱坐标方程:a=10r=a*(1+cos(theta))theta=t*36012.圆内螺旋线采用柱座标系方程:theta=t*360r=10+10*sin(6*theta)z=2*sin(6*theta)13.正弦曲线笛卡尔坐标系方程:x=50*ty=10*sin(t*360)z=014.太阳线(这本来是做别的曲线的,结果做错了,就变成这样了)15.费马曲线(有点像螺纹线)数学方程:r*r = a*a*theta圓柱坐标方程1: theta=360*t*5a=4r=a*sqrt(theta*180/pi)方程2: theta=360*t*5a=4r=-a*sqrt(theta*180/pi)由于Pro/e只能做连续的曲线,所以只能分两次做16.Talbot 曲线卡笛尔坐标方程:theta=t*360a=1.1b=0.666c=sin(theta)f=1x = (a*a+f*f*c*c)*cos(theta)/ay = (a*a-2*f+f*f*c*c)*sin(theta)/b17.4叶线(一个方程做的,没有复制)18.Rhodonea 曲线采用笛卡尔坐标系方程:theta=t*360*4x=25+(10-6)*cos(theta)+10*cos((10/6-1)*theta) y=25+(10-6)*sin(theta)-6*sin((10/6-1)*theta)19. 抛物线笛卡儿坐标方程:x =(4 * t)y =(3 * t) + (5 * t ^2)z =020.螺旋线圓柱坐标方程:r = 5theta = t*1800z =(cos(theta-90))+24*t21.三叶线圆柱坐标方程:a=1theta=t*380b=sin(theta)r=a*cos(theta)*(4*b*b-1)22.外摆线迪卡尔坐标方程:theta=t*720*5b=8a=5x=(a+b)*cos(theta)-b*cos((a/b+1)*theta) y=(a+b)*sin(theta)-b*sin((a/b+1)*theta) z=023. Lissajous 曲线theta=t*360a=1b=1c=100n=3x=a*sin(n*theta+c)y=b*sin(theta)24.长短幅圆内旋轮线卡笛尔坐标方程:a=5b=7c=2.2theta=360*t*10x=(a-b)*cos(theta)+c*cos((a/b-1)*theta) y=(a-b)*sin(theta)-c*sin((a/b-1)*theta)25.长短幅圆外旋轮线卡笛尔坐标方程:theta=t*360*10a=5b=3c=5x=(a+b)*cos(theta)-c*cos((a/b+1)*theta)y=(a+b)*sin(theta)-c*sin((a/b+1)*theta)26. 三尖瓣线a=10x = a*(2*cos(t*360)+cos(2*t*360))y = a*(2*sin(t*360)-sin(2*t*360))27.概率曲线!方程:笛卡儿坐标x = t*10-5y = exp(0-x^2)28.箕舌线笛卡儿坐标系a = 1x = -5 + t*10y = 8*a^3/(x^2+4*a^2)29.阿基米德螺线柱坐标a=100theta = t*400r = a*theta30.对数螺线柱坐标theta = t*360*2.2a = 0.005r = exp(a*theta)31.蔓叶线笛卡儿坐标系a=10y=t*100-50solvex^3 = y^2*(2*a-x)for x32.tan曲线笛卡儿坐标系x = t*8.5 -4.25y = tan(x*20)33.双曲余弦x = 6*t-3y = (exp(x)+exp(0-x))/234.双曲正弦x = 6*t-3y = (exp(x)-exp(0-x))/235.双曲正切x = 6*t-3y = (exp(x)-exp(0-x))/(exp(x)+exp(0-x))。
参数方程
(1)|AB|=|t1-t2|; (2)|MA|·|MB|=|t1·t2|.
参数方程
1.曲线的参数方程
一般地,在平面直角坐标系中,如果曲线上任意一点的坐标 x,y 都是某个变数 t 的
x=ft,
函数
并且对于 t 的每一个允许值,由这个方程组所确定的点 M(x,y)都在这条
y=gt
曲线上,那么这个方程组就叫做这条曲线的参数方程,联系变数 x,y 的变数 t 叫做参变
数,简称参数.
49
y=2-2t
(1)写出曲线 C 的参数方程,直线 l 的普通方程;
(2)过曲线 C 上任意一点 P 作与 l 夹角为 30°的直线,交 l 于点 A,求|PA|的最大值与最小
值.
[规律方法] 1.解决直线与圆的参数方程的应用问题时,一般是先化为普通方程,再根
据直线与圆的位置关系来解决问题.
x=x0+at, 2.对于形如
通方程中 x 及 y 的取值范围的影响,要保持同解变形.
x=t,
[变式训练 1] 在平面直角坐标系 xOy 中,若直线 l:
(t 为参数)过椭圆 C:
y=t-a
x=3cos φ, (φ为参数)的右顶点,求常数 a 的值.
y=2sin φ
参数方程的应用
已知曲线 C:x2+y2=1,直线 l: x=2+t, (t 为参数).
2.参数方程与普通方程的互化
通过消去参数从参数方程得到普通方程,如果知道变数 x,y 中的一个与参数 t 的关系,
x=ft,
例如 x=f(t),把它代入普通方程,求出另一个变数与参数的关系 y=g(t),那么
就
y=gt
曲线与曲面的参数方程
曲线与曲面的参数方程曲线和曲面是数学领域中的基本概念,它们的研究对于许多学科都有着重要的意义。
在数学中,我们经常会使用参数方程来描述曲线和曲面的性质和特征。
本文将探讨曲线与曲面的参数方程的概念、性质以及应用。
一、曲线的参数方程曲线可以用参数方程来描述,参数方程是将曲线上的点与参数之间的关系表示出来。
假设曲线上的每个点都由参数 t 决定,那么曲线的参数方程可以写作:x = f(t)y = g(t)z = h(t)其中,x、y、z 分别表示曲线上的点的坐标,f(t)、g(t)、h(t) 是参数t 的函数。
通过改变参数t 的取值范围,我们可以得到曲线上的所有点。
例如,我们考虑一个简单的曲线,圆的参数方程可以写作:x = r*cos(t)y = r*sin(t)其中,r 表示圆的半径,t 的取值范围为 0 到2π。
通过改变 t 的值,我们可以获取圆上的任意一点的坐标。
二、曲面的参数方程类似于曲线,曲面也可以用参数方程来描述。
曲面的参数方程是将曲面上的点与两个参数之间的关系表示出来。
假设曲面上的每个点都由参数 u 和 v 决定,那么曲面的参数方程可以写作:x = f(u, v)y = g(u, v)z = h(u, v)其中,x、y、z 表示曲面上的点的坐标,f(u, v)、g(u, v)、h(u, v) 是参数 u 和 v 的函数。
例如,我们考虑一个简单的曲面,球面的参数方程可以写作:x = R*sin(u)*cos(v)y = R*sin(u)*sin(v)z = R*cos(u)其中,R 表示球的半径,参数 u 的取值范围为 0 到π,参数 v 的取值范围为 0 到2π。
通过改变 u 和 v 的值,我们可以获取球面上的任意一点的坐标。
三、曲线与曲面参数方程的应用曲线与曲面的参数方程在数学和物理等学科中都有广泛的应用。
例如,在计算机图形学中,参数方程可以用于生成曲线和曲面的图像。
通过控制参数的取值范围和函数的形式,我们可以绘制出各种各样的曲线和曲面。
各种曲线PROE的参数方程
45.梅花线(圆角五星)
方程:theta = t*360 r=10+(3*sin(theta*2.5))^2
9.双弧外摆线 方程: l=2.5
b=2.5 x=3*b*cos(t*360)+l*cos(3*t*360) Y=3*b*sin(t*360)+l*sin(3*t*360)
10.星形线 方程:a=5
x=a*(cos(t*360))^3 y=a*(sin(t*360))^3 11.心脏线
方程:a=10 r=a*(1+cos(theta))
theta=t*360 12.圆内螺旋线 方程:theta=t*360
r=10+10*sin(6*theta) z=2*sin(6*theta)
13.正弦线 方程:x=50*t y=10*sin(t*360) z=0
14.太阳线 (发光的太阳,见 73) 15.费马曲线(有点像螺纹线) 数学方程:r*r = a*a*theta
方程:a = 10 b = 20
theta = t*360*3 x = a*cos(theta) y = b*sin(theta)
z=t*12 49.空间螺旋梅花线 方程:theta = t*360*4 r=10+(3*sin(theta*2.5))^2
z = t*16 50 鼓形线 方程:r=5+3.3*sin(t*180)+t theta=t*360*10
方程:r = 5 theta = t*1800 z =(cos(theta-90))+24*t 21.三叶线 方程:a=1
数学参数方程归纳总结
数学参数方程归纳总结数学中的参数方程是一种描述曲线和曲面的方式,它将曲线或曲面上的点的坐标表示为一个或多个参数的函数形式。
通过归纳总结不同类型的参数方程,可以更好地理解和应用数学知识。
本文将就常见的数学参数方程进行归纳总结,并对其应用进行探讨。
一、平面曲线的参数方程1. 直线的参数方程在平面直角坐标系中,直线的参数方程可以表示为:x = x1 + aty = y1 + bt其中,x1、y1为直线上一点的坐标,a、b为直线的方向向量。
2. 圆的参数方程在平面直角坐标系中,圆的参数方程可以表示为:x = a + rcosθy = b + rsinθ其中,(a, b)为圆心的坐标,r为半径,θ为角度。
3. 椭圆的参数方程在平面直角坐标系中,椭圆的参数方程可以表示为:x = a + acosθy = b + bsinθ其中,(a, b)为椭圆的中心坐标,a、b为椭圆在x轴和y轴上的半径,θ为角度。
4. 抛物线的参数方程在平面直角坐标系中,抛物线的参数方程可以表示为:x = at^2y = 2at其中,a为抛物线的参数,t为自变量。
5. 双曲线的参数方程在平面直角坐标系中,双曲线的参数方程可以表示为:x = asecθy = btanθ其中,a、b为双曲线的参数,θ为角度。
二、空间曲面的参数方程1. 平面的参数方程在空间直角坐标系中,平面的参数方程可以表示为:x = a + su + tvy = b + mu + nvz = c + pu + qv其中,(a, b, c)为平面上一点的坐标,(s, t)、(m, n)、(p, q)为平面的方向向量。
2. 球面的参数方程在空间直角坐标系中,球面的参数方程可以表示为:x = a + rsinθcosφy = b + rsinθsinφz = c + rcosθ其中,(a, b, c)为球心的坐标,r为球的半径,θ为极角,φ为方位角。
3. 圆柱面的参数方程在空间直角坐标系中,圆柱面的参数方程可以表示为:x = a + rcosθy = b + rsinθz = cu其中,(a, b, c)为圆柱面上一点的坐标,r为圆柱面的半径,θ为角度,u为高度。
参数方程题型大全
参数方程题型大全1.直线、圆、椭圆、双曲线和抛物线都可以用参数方程表示。
对于过点M(x,y),倾斜角为α的直线l,其参数方程为:x = x + tcosαy = y + tsinα其中t为参数。
对于圆心在点M(x,y),半径为r的圆,其参数方程为:x = x + rcosθy = y + rsinθ其中θ为参数。
对于椭圆x^2/a^2 + y^2/b^2 = 1(a>b>0),其参数方程为:x = a cosφy = b sinφ其中φ为参数。
对于双曲线x^2/a^2 - y^2/b^2 = 1(a>0,b>0),其参数方程为:x = a secθy = b tanθ其中θ为参数。
对于抛物线y = 2px,其参数方程为:x = 2pt^2y = 2pt其中t为参数。
2.给定曲线的参数方程,求其普通方程。
对于曲线C的参数方程,设其参数为t,则其普通方程为:y = f(x)其中x和y是曲线上的点,f是关于t的函数。
将参数方程中的t用x或y表示,代入另一个方程中消去t,得到关于x 和y的方程即为普通方程。
3.给定曲线的参数方程,求其与直线或另一曲线的交点。
对于曲线C的参数方程,设其参数为t,则曲线上的点可以表示为(x(t)。
y(t))。
如果要求曲线C与直线l的交点,则将直线l的方程代入曲线C的参数方程中,解出参数t,再代入参数方程中求出交点的坐标。
如果要求曲线C与另一曲线D的交点,则将曲线D的参数方程代入曲线C的参数方程中,解出参数t,再代入参数方程中求出交点的坐标。
4.求椭圆上两点间的最短距离。
设椭圆的参数方程为:x = a cosφy = b sinφ其中φ为参数。
设椭圆上两点分别为A(x1.y1)和B(x2.y2),则两点间的距离为:A B = √[(x2 - x1)^2 + (y2 - y1)^2]将x和y用φ表示,代入上式,得到AB的函数,求导后令其为0,解出φ的值,再代入AB的函数中求得最小值即为最短距离。
常见曲线的参数方程总结
B
答案是:当这曲线是一条翻转的旋轮线。
生活中见过这条曲线吗?
A
B
A
B
A
B
滑板的轨道就是这条曲线
.
y
4. 心形线(圆外旋轮线)
一圆沿另一圆外缘无滑
动地滚动,动圆圆周上
任一点所画出的曲线。
o
a a
x
y
.
o
a
a
x
来看动点的慢动作
y
o
a
a
x 2a
.
来看动点的慢动作
参数方程 r = a (1+cosθ)
y OC OM cos t a(1 cos t )
这就是旋轮线的参数方程。
2. 旋轮线也叫摆线(单摆)
将旋轮线的一拱一分为二,并倒置成挡板
.
两个旋轮线形状的挡板, 使摆动周期与摆幅完全无关。
在17世纪,旋轮线即以此性质出名,所以旋轮线又称摆线。
3. 旋轮线是最速降线
最速降线问题: 质点在重力作用下沿曲线从固定点A滑到固定点B, 当曲线是什么形状时所需要的时间最短?
ቤተ መጻሕፍቲ ባይዱ
y
0
x
曲线关于 y= x 对称
曲线有渐近线 x+y+a=0
.
8.双纽线
FF 2a , 到F与F 距离之积为a2的点的轨迹 ( a 2 )
2 r 2 a 2 2ra cos 2 r 2 a 2 2ra cos
( ) 2 (r 2 a 2 ) 2 4r 2 a 2 cos2 a 4
当 t 由 ,
动点由 (0,0) (0,0) 依逆时针方向画出叶形 线.
高中数学曲线公式大全
高中数学曲线公式大全圆锥曲线公式:椭圆1、中心在原点,焦点在x轴上的椭圆标准方程:其中x²/a²+y²/b²=1,其中a>b>0,c²=a²-b²2、中心在原点,焦点在y轴上的椭圆标准方程:y²/a²+x²/b²=1,其中a>b>0,c²=a²-b²参数方程:x=acosθ;y=bsinθ(θ为参数,0≤θ≤2π)圆锥曲线公式:双曲线1、中心在原点,焦点在x轴上的双曲线标准方程:x²/a-y²/b²=1,其中a>0,b>0,c²=a²+b².2、中心在原点,焦点在y轴上的双曲线标准方程:y²/a²-x²/b²=1,其中a>0,b>0,c²=a²+b².参数方程:x=asecθ;y=btanθ(θ为参数)圆锥曲线公式:抛物线参数方程:x=2pt²;y=2pt(t为参数)t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t可等于0直角坐标:y=ax²+bx+c(开口方向为y轴,a≠0)x=ay²+by+c(开口方向为x轴,a≠0)离心率椭圆,双曲线,抛物线这些圆锥曲线有统一的定义:平面上,到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。
且当01时为双曲线。
圆锥曲线公式知识点总结圆锥曲线椭圆双曲线抛物线标准方程x²/a²+y²/b²=1(a>b>0) x²/a²-y²/b²=1(a>0,b>0) y²=2px(p>0)范围x∈[-a,a] x∈(-∞,-a]∪[a,+∞) x∈[0,+∞)y∈[-b,b] y∈R y∈R对称性关于x轴,y轴,原点对称关于x轴,y轴,原点对称关于x轴对称顶点 (a,0),(-a,0),(0,b),(0,-b) (a,0),(-a,0) (0,0)焦点 (c,0),(-c,0) (c,0),(-c,0) (p/2,0)【其中c²=a²-b²】【其中c²=a²+b²】准线x=±a²/c x=±a²/c x=-p/2渐近线——————y=±(b/a)x —————离心率e=c/a,e∈(0,1) e=c/a,e∈(1,+∞) e=1焦半径∣PF₁∣=a+ex ∣PF₁∣=∣ex+a∣∣PF∣=x+p/2∣PF₂∣=a-ex ∣PF₂∣=∣ex-a∣焦准距p=b²/c p=b²/c p通径2b²/a 2b²/a 2p参数方程x=a·cosθ x=a·secθ x=2pt²y=b·sinθ,θ为参数y=b·tanθ,θ为参数 y=2pt,t为参数过圆锥曲线上一点x0·x/a²+y0·y/b²=1 x0x/a²-y0·y/b²=1 y0·y=p(x+x0)(x0,y0)的切线方程斜率为k的切线方程y=kx±√(a²·k²+b²) y=kx±√(a²·k²-b²) y=kx+p/2k。
参数方程
17 参数方程知识梳理1.曲线的参数方程在平面直角坐标系xOy 中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数⎩⎪⎨⎪⎧x =f (t ),y =g (t ).并且对于t 的每一个允许值,由上述方程组所确定的点M (x ,y )都在这条曲线上,则该方程叫做这条曲线的参数方程,其中变数t 称为参数.2.一些常见曲线的参数方程(1)过点P 0(x 0,y 0),且倾斜角为α的直线的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数).(2)圆的方程(x -a )2+(y -b )2=r 2的参数方程为⎩⎪⎨⎪⎧x =a +r cos θy =b +r sin θ(θ为参数). (3)椭圆方程x 2a 2+y 2b2=1(a >b >0)的参数方程为⎩⎪⎨⎪⎧x =a cos θy =b sin θ(θ为参数). (4)抛物线方程y 2=2px (p >0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2y =2pt(t 为参数). 要点整合1.极坐标方程与参数方程互化时,以普通方程(直角坐标方程)为联系达到相互转化. 2.在利用参数方程求解具体问题时,注意参数的几何意义和范围. 3.数形结合思想是求有关参数方程的最值问题的高效方法.题型一.参数方程化为普通方程(或极坐标方程)例1.已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).[解] (1)将⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0.将⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ,代入x 2+y 2-8x -10y +16=0,得ρ2-8ρcos θ-10ρsin θ+16=0. 所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的普通方程为x 2+y 2-2y =0.由⎩⎪⎨⎪⎧x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0, 解得⎩⎪⎨⎪⎧x =1,y =1或⎩⎪⎨⎪⎧x =0,y =2. 所以C 1与C 2交点的极坐标分别为⎝⎛⎭⎫2,π4,⎝⎛⎭⎫2,π2.消去参数的三种方法(1)利用解方程的技巧求出参数的表达式,然后代入消去参数; (2)利用三角恒等式消去参数;(3)根据参数方程本身的结构特征,选用一些灵活的方法从整体上消去参数.变式:在直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos φ,y =sin φ(φ为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求圆C 的极坐标方程;(2)直线l 的极坐标方程是2ρsin ⎝⎛⎭⎫θ+π3=33,射线OM :θ=π3与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长.解:(1)圆C 的普通方程为(x -1)2+y 2=1, 又x =ρcos θ,y =ρsin θ,所以圆C 的极坐标方程为ρ=2cos θ.(2)设P (ρ1,θ1),则由⎩⎪⎨⎪⎧ρ1=2cos θ1,θ1=π3,得ρ1=1,θ1=π3,设Q (ρ2,θ2),则由⎩⎨⎧2ρ2sin ⎝⎛⎭⎫θ2+π3=33,θ2=π3,得ρ2=3,θ2=π3,由于θ1=θ2,所以|PQ |=|ρ1-ρ2|=2.题型二.直线的参数方程中参数几何意义的应用例2.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C :ρsin 2θ=2a cos θ(a >0),过点P (-2,-4)的直线l :⎩⎨⎧x =-2+22t y =-4+22t(t 为参数)与曲线C 相交于M ,N 两点.(1)求曲线C 的直角坐标方程和直线l 的普通方程; (2)若|PM |,|MN |,|PN |成等比数列,求实数a 的值.[解] (1)把⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ代入ρsin 2θ=2a cos θ,得y 2=2ax (a >0),由⎩⎨⎧x =-2+22ty =-4+22t (t 为参数),消去t 得x -y -2=0,∴曲线C 的直角坐标方程和直线l的普通方程分别是y 2=2ax (a >0),x -y -2=0.(2)将⎩⎨⎧x =-2+22t y =-4+22t(t 为参数)代入y 2=2ax ,整理得t 2-22(4+a )t +8(4+a )=0. 设t 1,t 2是该方程的两根,则t 1+t 2=22(4+a ),t 1·t 2=8(4+a ), ∵|MN |2=|PM |·|PN |,∴(t 1-t 2)2=(t 1+t 2)2-4t 1·t 2=t 1·t 2, ∴8(4+a )2-4×8(4+a )=8(4+a ), ∴a =1.根据直线的参数方程的标准式中t 的几何意义,有如下常用结论:过定点M 0的直线与圆锥曲线相交,交点为M 1,M 2,所对应的参数分别为t 1,t 2. ①弦长|M 1M 2|=|t 1-t 2|=(t 1+t 2)2-4t 1t 2; ②弦M 1M 2的中点⇔t 1+t 2=0; ③|M 0M 1||M 0M 2|=|t 1t 2|; ④1|M 0M 1|+1|M 0M 2|=|t 1|+|t 2||t 1t 2|. 其中:|t 1|+|t 2|=(|t 1|+|t 2|)2 =(t 1+t 2)2-2t 1t 2+2|t 1t 2|.变式:已知直线l :⎩⎨⎧x =5+32t ,y =3+12t (t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos θ.(1)将曲线C 的极坐标方程化为直角坐标方程;(2)设点M 的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B ,求|MA |·|MB |的值与|AB |.解:(1)ρ=2cos θ等价于ρ2=2ρcos θ.①将ρ2=x 2+y 2,ρcos θ=x 代入①即得曲线C 的直角坐标方程为x 2+y 2-2x =0.②(2)将⎩⎨⎧x =5+32t ,y =3+12t代入②,得t 2+53t +18=0,设这个方程的两个实根分别为t 1,t 2,则t 1+t 2=-53,t 1t 2=18.所以|MA |·|MB |=|t 1t 2|=18, |AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2 =(-53)2-4×18=3, 所以|MA |·|MB |=18,|AB |= 3.题型三.极坐标方程与参数方程的综合应用例3.(2016·高考全国卷丙)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos αy =sin α(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin ⎝⎛⎭⎫θ+π4=2 2.(1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时点P 的直角坐标. [解] (1)C 1的普通方程为x 23+y 2=1,C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的直角坐标为()3cos α,sin α.因为C 2是直线,所以|PQ |的最小值即为P 到C 2的距离d (α)的最小值,d (α)=||3cos α+sin α-42=2⎪⎪⎪⎪sin ⎝⎛⎭⎫α+π3-2.当且仅当α=2k π+π6(k ∈Z )时,d (α)取得最小值,最小值为2,此时点P 的直角坐标为⎝⎛⎭⎫32,12.求参数方程中最值问题的三个策略(1)曲线方程上的点用参数方程表示;直线用普通方程表示;利用相关距离公式将目标转化为求以参数为变量的函数的最值;(2)当曲线是圆时,数形结合更快捷方便;(3)利用直线参数方程中参数的几何意义时,需特别注意方向性.变式: 以直角坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.点M 的极坐标为(5,θ),且tan θ=12,θ∈⎝⎛⎭⎫0,π2,椭圆C :x 216+y 24=1.(1)求点M 的直角坐标与曲线C 的参数方程;(2)过点M 的直线l 与椭圆C 交于A 、B 两点,且M 为线段AB 的中点,P 是C 上的一个动点,求△P AB 面积的最大值.解:(1)由tan θ=12,θ∈⎝⎛⎭⎫0,π2得cos θ=255,sin θ=55,又ρ=5,∴x =ρcos θ=2,y =ρsin θ=1,∴点M 的直角坐标为(2,1).将a =4,b =2代入⎩⎪⎨⎪⎧x =a cos βy =b sin β可得椭圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos βy =2sin β(β为参数). (2)设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 2116+y 214=1x 2216+y 224=1,相减得(x 1+x 2)(x 1-x 2)16+(y 1+y 2)(y 1-y 2)4=0.∵M (2,1)为AB 中点,∴x 1+x 2=4,y 1+y 2=2,代入上式可得y 1-y 2x 1-x 2=-12,即直线l 的斜率k =-12.∴直线l 的普通方程为y =-12x +2.由⎩⎨⎧y =-12x +2x 216+y 24=1,解得A (0,2),B (4,0),∴|AB |=25, 过椭圆C 上的动点P 作直线l 1∥l ,则当l 1与椭圆C 相切时可求点P 到直线l 的最大值. 设l 1的方程为:y =-12x +m ,代入x 216+y 24=1整理得2x 2-4mx +4m 2-16=0,由Δ=16m 2-8(4m 2-16)=0,解得m =±2 2.显然当m =-22,P (-22,-2)时,点P 到直线l 距离最大为d =4(2+1)5,从而(S △P AB )最大=12|AB |·d =12×25×4(2+1)5=4(2+1).【真题演练】1.在直角坐标系x O y 中,曲线C 的参数方程为⎩⎨⎧==θθsin cos 3y x (θ为参数),直线l 的参数方程为⎩⎨⎧-=+=ty ta x 14(t 为参数). (1)若a =-1,求C 与l 的交点坐标; (2)若C 上的点到l 距离的最大值为17,求a .解:(1)曲线C 的参数方程为⎩⎨⎧==θθsin cos 3y x (θ为参数),化为标准方程是:1922=+y x ; a =-1时,直线l 的参数方程化为一般方程是:x +4y -3=0;联立方程⎪⎩⎪⎨⎧=-+=+0341922y x y x , 解得⎩⎨⎧==03y x 或⎪⎪⎩⎪⎪⎨⎧=-=25242521y x ,所以椭圆C 和直线l 的交点为(3,0)和)2524,2521(-.(2)l 的参数方程⎩⎨⎧-=+=ty ta x 14(t 为参数)化为一般方程是:x +4y -a -4=0,椭圆C 上的任一点P 可以表示成P (3cos θ,sin θ),θ∈[0,2π), 所以点P 到直线l 的距离d 为: d =17=17,φ满足tan φ=43, 又d 的最大值d max =17,所以|5sin (θ+φ)-a -4|的最大值为17, 得:5-a -4=17或-5-a -4=-17, 即a =-16或a =8.2.在直角坐标系x O y 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足|OM|•|OP|=16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为),(32π,点B 在曲线C 2上,求△OAB 面积的最大值答案:解:(1)曲线C 1的直角坐标方程为:x =4, 设P (x ,y ),M (4,y 0),则x 4=y y 0,∴y 0=4yx ,∵|OM||OP|=16,∴ x 2+y 2 02=16, 即(x 2+y 2)(1+y 2x )=16,∴x 4+2x 2y 2+y 4=16x 2,即(x 2+y 2)2=16x 2,两边开方得:x 2+y 2=4x ,整理得:(x -2)2+y 2=4(x ≠0),∴点P 的轨迹C 2的直角坐标方程:(x -2)2+y 2=4(x ≠0).(2)点A 的直角坐标为A (1, ,显然点A 在曲线C 2上,|OA|=2, ∴曲线C 2的圆心(2,0)到弦OA 的距离d = 4−1= 3, ∴△AOB 的最大面积S=12|OA|•(2+ 3)=2+ 3.3.在直角坐标系x O y 中,直线l 1的参数方程为⎩⎨⎧=+=kty tx 2,(t 为参数),直线l 2的参数方程为⎪⎩⎪⎨⎧=+-=k m y m x 2,(m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:02)sin (cos =-+θθρ,M 为l 3与C 的交点,求M 的极径.答案:解:(1)∵直线l 1的参数方程为 y =kt x =2+t,(t 为参数), ∴消掉参数t 得:直线l 1的普通方程为:y =k (x -2)①; 又直线l 2的参数方程为 y =m kx =−2+m,(m 为参数),同理可得,直线l 2的普通方程为:x =-2+ky ②;联立①②,消去k 得:x 2-y 2=4,即C 的普通方程为x 2-y 2=4; (2)∵l 3的极坐标方程为ρ(cos θ+sin θ)- 2=0, ∴其普通方程为:x +y - ,联立 x 2−y 2=4x +y = 2得: y =− 22x =3 2,∴ρ2=x 2+y 2=184+24=5.∴l 3与C 的交点M 的极径为ρ= 5.。
曲线的参数方程与切线
曲线的参数方程与切线在数学中,曲线的参数方程是描述曲线上每个点坐标与参数之间的关系的一种表示方法。
通过参数方程可以更直观地描绘曲线的形态与特征,同时也可以方便地进行计算和分析。
一、参数方程的概念与作用参数方程是由参数组成的函数,用参数的取值来确定曲线上各个点的坐标。
常见的参数方程形式为x=f(t),y=g(t),其中x和y分别表示点的横纵坐标,t为参数。
通过给定参数t的取值范围,就能够确定曲线上的点。
通过参数方程可以描述多种曲线形状,如圆、椭圆、抛物线、双曲线等。
此外,参数方程还可以方便地计算曲线上的点的坐标、切线、法线以及曲率等重要概念,为进一步分析曲线的性质提供了基础。
二、曲线的参数方程的确定方法确定曲线的参数方程需要结合具体的曲线形状和条件进行。
下面以几种常见曲线为例进行说明:1. 圆的参数方程:以圆心坐标为中心,给定半径r,可以得到圆的参数方程为:x = r * cos(t)y = r * sin(t)其中t的取值范围为0≤t≤2π。
2. 抛物线的参数方程:对于一个开口朝上(或朝下)的抛物线,给定焦点F、准线l的直线方程、离心率e等条件,可以通过计算得到抛物线的参数方程。
3. 椭圆的参数方程:椭圆的参数方程可以表示为:x = a * cos(t)y = b * sin(t)其中a和b分别表示椭圆的半长轴和半短轴,t的取值范围为0≤t≤2π。
三、曲线的切线与参数方程的关系切线是曲线在某一点处与曲线相切的直线,切线的斜率等于曲线在该点处的导数值。
对于参数方程表示的曲线,求取曲线在某一点处的切线可以通过以下步骤实现:1. 计算参数方程的导数,即dx/dt和dy/dt。
2. 根据导数值得到曲线在该点处的切线斜率。
3. 使用点斜式或一般式方程得到切线的方程。
通过参数方程求取曲线切线的过程与使用一般方程求取切线的方法类似,只是计算切线斜率时需要借助参数方程的导数。
四、参数方程与曲线研究的应用参数方程不仅仅可以描述和分析各种曲线形状,还可以应用于其他领域。
高等数学特殊参数曲线
高等数学特殊参数曲线1、特殊参数曲线的定义特殊参数曲线是指由参数方程表示的曲线,其中参数的取值范围或取值特点与曲线的性质密切相关。
特殊参数曲线常见的类型有直线、抛物线、椭圆、双曲线等。
2、直线的参数方程直线的参数方程一般表示为:x = a + mty = b + nt其中a、b为直线上的一点坐标,m、n为方向向量,t为参数。
通过给定的参数方程,可以确定直线上的所有点。
3、抛物线的参数方程抛物线的参数方程一般表示为:x = a + bty = c + dt + et^2其中a、b、c、d、e为常数,t为参数。
抛物线的参数方程可以描述抛物线的形状、开口方向等特征。
4、椭圆的参数方程椭圆的参数方程一般表示为:x = a + rcos(t)y = b + rsin(t)其中a、b为椭圆中心的坐标,r为椭圆的半长轴、半短轴的比值,t为参数。
通过给定的参数方程,可以确定椭圆上的所有点。
5、双曲线的参数方程双曲线的参数方程一般表示为:x = a + rsec(t)y = b + rtan(t)其中a、b为双曲线中心的坐标,r为双曲线的半长轴、半短轴的比值,t为参数。
双曲线的参数方程可以描述双曲线的形状、开口方向等特征。
特殊参数曲线是描述曲线形状的一种方式。
通过给定的参数方程,可以准确地确定曲线上的各个点。
不同类型的曲线有不同的参数方程,每个参数曲线都有其独特的性质。
掌握特殊参数曲线的参数方程是研究曲线性质和解题的重要基础。
在数学学习中,我们需要通过参数方程的形式,深入理解曲线的性质,运用相关知识解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
t
的能表示距离吗?
直线参数方程的标准形式 直线参数方程的标准形式的特点
问题5.
( 1 ) 写 出 直 线 x y 1 0 的 一 个 参 数 方 程 _ _ _ _ _ _
( 2) 直 线 x y 3 tcotss2in 0020( 0 t为 参 数 ) 的 倾 斜 角 是 (B )
A.200 B.700 C.1100 D.1600
问题 4.已知抛物线 x2=4y 上的点 P(非原点)处切线与 x、 y 轴分别交于 Q、R 点,F 为抛物线的焦点。 (Ⅰ) 若PQ PR , 求的值;
(Ⅱ)若抛物线上的点 A满足PF FA .求△APR 面积的
最小值,并写出此时过 P 点的切线方程。
y
.F
P
A。
Q x
R
直线的参数方程
问题:已知一条直线经过点 M0(x0 , y0 ) ,
倾斜角 ,求这条直线的方程.
直 线 的 普 通 方 程 为 y y 0 t a n ( x x 0 )
问:怎样建立直线的参数方程呢?
y
M(x,y)
M0(x0,y0)
e
(cos,sin)
O
所以,x该直线的参数方程为
x y
x0 y0
t cos(t为参数) tsin
思考:
由 M 0 M te ,你 能 得 到 直 线 l的 参 数 方 程 中 参 数 t的 几 何 意 义 吗 ?
(5):已知直线
L
的参数方程是
x 1 3t y 2 4t
(
t为参数),求
直线与直线 2x-y+1=0 的交点 P 和点(-1,2)的距离.
A,B中点坐标呢?
y
A M0(-1,2)
B
O
x
( 1 ) M 1M 2t1t2
(2)t t1 t2 2
问题7.如图,已知AB、CD是中心为点O的椭圆 的两条相交弦,交点为P,弦AB、CD与椭圆长 轴的夹角分别为∠1、∠2,且∠1=∠2,求证:
直线的参数方程中参数t的几何意义是: t 表示参数t对应的点M到定点M0的距离. 当M0M与e同向时,t取正数; 当M0M与e异向时,t取负数;
当点M与M0重合时,t 0.
因 为 0 时 , s i n 0 , 所 以 方 向 向 量 e 总 是 向 上 .
问题
x y
1 2
3t 中 4t
常见曲线的参数方程
椭圆的参数方程
问题1.如图,在椭圆x2+8y2=8上求一点P,使P到直线
l:x-y+4=0的距离最小.
y
O
x
P
问题2.已知A,B两点是椭圆 4x2 9y2 36 与坐标轴正半轴的两个交点,在第一象限的椭 圆弧上求一点P,使四边形OAPB的面积最大.
抛物线的参数方程
抛物线 y2 2px 的参数方程为
求证:|PA|·|PB|=|PC|·|PD|
(3)直线{x2 2t(t为参数)上与点P(2,3) y3 2t
距离等于2的点的坐标是( C )
A(-4,5)
B(-3,4)
C(-3,4)或(-1,2) D(-4,5)或(0,1)
(4)直 线 {x2tcos300(t为 参 数 )的 倾 斜 角
y3tsin600
等 于 (D )
A . 3 0 0 B . 6 0 0 C . 4 5 0 D . 1 3 5 0