图形认识初步测试题B卷
图形认识初步练习题
图形认识初步练习题图形认识初步练习题在日常生活中,我们经常会遇到各种各样的图形,它们可以是平面上的,也可以是立体的。
图形认识是我们认识世界的一种基本能力,它不仅能够帮助我们更好地理解周围的事物,还能够培养我们的观察力和思维能力。
以下是一些图形认识的初步练习题,通过解答这些问题,我们能够更好地巩固和提升自己的图形认识能力。
练习题一:平面图形辨认1. 下面的图形中,哪个是正方形?A. △ABCB. □DEFGC. ○HIJKD. △LMN2. 以下哪个图形是矩形?A. △PQRB. □STUVC. ○WXYZD. △ABCD3. 在下面的图形中,哪个是圆形?A. △EFGB. □HIJKC. ○LMNO练习题二:立体图形辨认1. 下面的图形中,哪个是长方体?A. △ABCB. □DEFGC. ○HIJKD. △LMN2. 以下哪个图形是球体?A. △PQRB. □STUVC. ○WXYZD. △ABCD3. 在下面的图形中,哪个是圆柱体?A. △EFGB. □HIJKC. ○LMNOD. △PQRS练习题三:图形属性判断1. 以下哪个图形具有对称性?A. △ABCB. □DEFGC. ○HIJK2. 下面的图形中,哪个图形具有直角?A. △PQRB. □STUVC. ○WXYZD. △ABCD3. 在下面的图形中,哪个图形具有平行边?A. △EFGB. □HIJKC. ○LMNOD. △PQRS练习题四:图形组合与变换1. 请将下面的图形组合成一个正方形。
A. △ABCB. □DEFGC. ○HIJKD. △LMN2. 请将下面的图形组合成一个立方体。
A. △PQRB. □STUVC. ○WXYZD. △ABCD3. 请将下面的图形组合成一个圆球。
A. △EFGB. □HIJKC. ○LMNOD. △PQRS通过以上的练习题,我们可以加深对各种图形的认识和理解。
通过观察和思考,我们能够更好地辨认出不同的图形,并理解它们的特点和属性。
《图形认识初步》达标测试题
… ,
31
为
是
A ma so l sg o sw a h l v s ni nya o da h t e o e .
3 2
、 一一 一一 、 一 一 一
一
个 人 要 用他 所 爱 的 东 西来 衡 量 他 的 品格 。— — 索尔 ・ 洛 贝
《 图形认识袖步》 达标测试题
1 .2 4 (0分 ) 图 , 如 已知 AO B=9 。 / O 0, _B C=3 。O 平分 厶4 B, N 平分 OC 0,M O O . () / 1 求 _MO 的度 数 : N
A
பைடு நூலகம்
O
第 1 4题 图
() 2 如果 已知 中
O B=7 。 其他 条件 不变 , AMO 6, 求 N的度 数 :
,
,
I y u r l ma ey u d e r .e e d u o , e r r n . for mo a s k o r a y d p n p n i t y a ew o g th
/
,
,
一 如 果 你 的 品行 使 你 郁… 寡一 一 一 , … 品 行 无 疑 是 错 误 的 。— — R J斯 蒂 文森 … … … 一 … … 郁 欢 , 么 这 些 … … … … … … .. … … 一那 … 一 … J
( ) 果 已知 中 / O 3 如 _B C=5 。其 他条 件不 变 , /MO 的度数 ; 0, 求 - N
( ) ( )( )( ) 4 从 1 、2 、3 中你 发 现 了什 么 规律 ?写 出你 的结 论.
,
_
。 .譬 。 。 囊 ≯矗 譬 _
第4章图形的初步认识单元测试卷20212022学年华东师大版七年级上册数学.docx
2021-2022学年华东师大新版七年级上册数学《第4章图形的初步认识》单元测试卷一. 选择题1.有5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形折叠后能成为一个封闭的正方体盒子,你不能选择图中A, B, C,。
中的()位置接正方形.2.下列几何体中,是圆锥的为(4.如图所示的物体是一个几何体,从正面看到的图形是(B. C. D.5.如图是一个由4个相同的正方体组成的立体图形,则它的主视图为(A.天空划过一道流星B.汽车雨刷在挡风玻璃上刷出的痕迹C.抛出一块小石子,石子在空中飞行的路线D.旋转一扇门,门在空中运动的痕迹9.把14个棱长为1的正方体在地面上堆叠如图所示的立体,然后将露出的表面部分涂成红色,那么红色部分的面积为()A. 21B. 24C. 33D. 3710.如图所示是一个三棱柱,画出它的主视图和左视图均正确的是()主视图左视图二. 填空题11 •如果一个六棱柱的一条侧棱长为5cm,那么所有侧棱之和为12.已知圆柱按如图所示方式放置,其左视图的面积为48,则该圆柱的侧面积为主视方向13.请你写出一种几何体,使得它的主视图、左视图和俯视图都一样,它是.14.若一个棱柱有30条棱,那么该棱柱有个面.15.在①长方体、②球、③圆锥、④圆柱、⑤三棱柱这五种几何体中,其主视图、左视图、俯视图都完全相同的是(填上序号即可).16.墙角处有若干大小相同的小正方体堆成如图所示的立体图形,如果你打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后从正面、从上面、从右面用平行光线照射时,在墙面及地面上的影子不变,那么你最多可以搬走个小正方体.I上面7正面17.如图所示,在直角三角形中,以其中一条直角边所在的直线为轴旋转一周,得到几何体的体积为.(结果保留TT)18.长方体是一个立体图形,它有个面,条棱,个顶点.19.一个正〃棱柱共有15条棱,一条侧棱的长为5cm, 一条底面边长为3cm,则这个棱柱的侧面积为cnr.20.如图所示,是由若干相同大小的小立方体组成的立体图形的三视图,请在右边的立体图形中画出所缺少的小立方体.三. 解答题21.画出如图图形的三视图.23.将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现在有一个长为8cm.宽为4cm的长方形,绕它的一条边所在的直线旋转一周,求得到的圆柱体的体积是多少?24.已知一个直棱柱有8个面,它的底面边长都是5ce侧棱长都是4cm.(1)它是几棱柱?它有多少个顶点?多少条棱?(2)这个棱柱的所有侧面的面积之和是多少?25.由7个相同的小立方块搭成的几何体如图所示,(1)请画出它的三视图?(2)请计算它的表面积?(棱长为1)IF而26.如图,如图几何体是由若干棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),观察该图,探究其中的规律.图①图②(1) 第1个几何体中只有2个面涂色的小立方体共有 个.第3个几何体中只有2个面涂色的小立方体共有 个.(2) 求出第100个几何体中只有2个面涂色的小立方体的块数.(3) 求出前100个几何体中只有2个面涂色的小立方体的块数的和.27. 如图四个几何体分别是三棱柱,四棱柱,五棱柱和六棱柱,三棱柱有5个面,9条棱, 6个顶点,观察图形,填写下面的空. (1)四棱柱有——个面,_ ___ 条棱,_ __ 个顶点; (2)六棱柱有— —个面,_ ___ 条棱,— __ 个顶点;(3) 由此猜想”棱柱有 个面,条棱,个顶点.三棱柱四棱柱五棱柱六棱柱参考答案与试题解析一.选择题1.解:如图所示:根据立方体的展开图可知,不能选择图中A的位置接正方形.故选:A.2.解:观察可知,C选项图形是圆锥.故选:C.3.解:A、该几何体为四棱柱,不符合题意;3、该几何体为圆锥,不符合题意;C、该几何体为三棱柱,符合题意;D、该几何体为圆柱,不符合题意.故选:C.4.解:该几何体是一个圆台,从正面看到的图形是一个等腰梯形,故选C.5.解:根据题干分析可得,从正面看到的图形是| | ..故选:A.6.解:A、圆柱的主视图和左视图都是长方形,俯视图是圆,故此选项错误;3、长方体的三视图不相同,故此选项错误;。
第6章 图形的初步认识单元测试卷(解析卷)
第6章图形的初步认识单元测试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.下列现象,能说明“线动成面”的是()A.天空划过一道流星B.汽车雨刷在挡风玻璃上刷出的痕迹C.抛出一块小石子,石子在空中飞行的路线D.旋转一扇门,门在空中运动的痕迹解:A、天空划过一道流星是“点动成线”,故本选项不合题意;B、汽车雨刷在挡风玻璃上面画出的痕迹是“线动成面”,故本选项符合题意.C、扔一块小石子,石子在空中飞行的路线是“点动成线”,故本选项不合题意;D、旋转一扇门,门在空中运动的痕迹是“面动成体”,故本选项不合题意;故选:B.2.如图,有A,B,C三个地点,且AB⊥BC,从A地测得B地在A地的北偏东43°的方向上,那么从B地测得C地在B地的()A.南偏西43°B.南偏东43°C.北偏东47°D.北偏西47°解:∵AF∥DE,∴∠ABE=∠FAB=43°,∵AB⊥BC,∴∠ABC=90°,∴∠CBD=47°,∴C地在B地的北偏西47°的方向上.故选:D.3.已知AB=1.5,AC=4.5,且A,B,C三点不共线,若BC的长为整数,则BC的长为()A.3B.6C.3或6D.4或5解:当A,B,C三点在同一条直线上,点B在线段AC上,BC=AC﹣AB=3,点B在CA的延长线上,BC=AB+AC=6,∵BC边长为整数,A、B、C不共线,∴3<BC<6,∴BC=4或5.故选:D.4.将∠1、∠2的顶点和其中一边重合,另一边都落在重合边的同侧,且∠1>∠2,那么∠1的另一边落在∠2的()A.另一边上B.内部C.外部D.无法判断解:将∠1、∠2的顶点和其中一边重合,另一边都落在重合边的同侧,且∠1>∠2,那么∠1的另一边落在∠2的外部.故选:C.5.建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,拉一条直的参照线,然后沿着线砌墙,其运用到的数学原理是()A.两点确定一条直线B.过一点有无数条直线C.两点之间,线段最短D.连接两点之间的线段叫做两点之间的距离解:建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,拉一条直的参照线,然后沿着线砌墙,其运用到的数学原理是:两点确定一条直线.故选:A.6.嘉琪同学将一副三角板按如图所示位置摆放,其中∠α与∠B一定互补的是()A.B.C.D.解:A、∠α与∠β相等,不互补,故本选项错误;B、∠α与∠β不互补,故本选项错误;C、∠α与∠β互余,故本选项错误;D、∠α和∠β互补,故本选项正确;故选:D.7.点P为直线L外一点,点A、B、C为直线上三点,PA=6cm,PB=8cm,PC=4cm,则点P到直线l的距离为()A.4cm B.6cm C.小于4cm D.不大于4cm解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,∴点P到直线l的距离≤PC,即点P到直线l的距离不大于4.故选:D.8.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是()A.①④B.②③C.③D.④解:①用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故①正确;②把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”故②错误;③体育课上,老师测量某个同学的跳远成绩,利用了点到直线的距离,故③错误;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,利用了两点确定一条直线,故④正确;故选:A.9.已知∠AOB=70°,以O端点作射线OC,使∠AOC=28°,则∠BOC的度数为()A.42°B.98°C.42°或98°D.82°解:如图,当点C与点C1重合时,∠BOC=∠AOB﹣∠AOC=70°﹣28°=42°;当点C与点C2重合时,∠BOC=∠AOB+∠AOC=70°+28°=98°.故选:C.10.如图所示,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.AB之间D.BC之间解:①以点A为停靠点,则所有人的路程的和=15×300+10×900=13500(米),②以点B为停靠点,则所有人的路程的和=30×300+10×600=15000(米),③以点C为停靠点,则所有人的路程的和=30×900+15×600=36000(米),④当在AB之间停靠时,设停靠点到A的距离是m,则(0<m<100),则所有人的路程的和是:30m+15(300﹣m)+10(900﹣m)=13500+5m>13500,⑤当在BC之间停靠时,设停靠点到B的距离为n,则(0<n<200),则总路程为30(300+n)+15n+10(600﹣n)=15000+35n>13500.∴该停靠点的位置应设在点A;故选:A.二.填空题(共6小题,满分24分,每小题4分)11.如图,若∠3:∠2=2:5,且∠2﹣∠1=12°,∠3等于32°.解:∵∠3:∠2=2:5,设∠3=2x,∠2=5x,∵∠1+∠2+∠3=180°,∠2﹣∠1=12°,可得:5x﹣12°+5x+2x=180°,解得:x=16,所以∠3=2×16°=32°,故答案为:32°12.钟表显示10点30分时,时针与分针的夹角为135度.解:∵时针在钟面上每分钟转0.5°,分针每分钟转6°,∴钟表上10点30分,时针与分针的夹角可以看成4×30°+0.5°×30=135°.故答案为:135.13.如图,已知直线AB,CD,EF相交于点O,∠1=95°,∠2=53°,则∠BOE的度数为32°.解:∵∠BOE与∠AOF是对顶角,∴∠BOE=∠AOF,∵∠1=95°,∠2=53°,∠COD是平角,∴∠AOF=180°﹣∠1﹣∠2=180°﹣95°﹣53°=32°,即∠BOE=32°.故答案为:32°14.一副三角板按如图方式摆放,若∠α=21°37',则∠β的度数为68°23′.解:∵∠1=90°,∴∠α+∠β=180°﹣90°=90°,∵∠α=21°37',∴∠β=68°23′,故答案为:68°23′.15.由东营南到德州的某一次列车,运行途中停靠的车站依次是:东营南﹣﹣滨州﹣﹣阳信﹣﹣商河﹣﹣德州,那么要为这次列车制作的火车票有20种.解:如图,设东营南﹣﹣滨州﹣﹣阳信﹣﹣商河﹣﹣德州五站分别用A、B、C、D、E 表示,则共有线段:AB、AC、AD、AE、BC、BD、BE、CD、CE、DE共10条,所以,需要制作火车票10×2=20种.故答案为:20.16.长度12cm的线段AB的中点为M,C点将线段MB分成MC:CB=1:2,则线段AC的长度为8cm.解:∵线段AB的中点为M,∴AM=BM=6cm设MC=x,则CB=2x,∴x+2x=6,解得x=2即MC=2cm.∴AC=AM+MC=6+2=8cm.三.解答题(共8小题,满分66分)17.(6分)如图,直线AB、CD相交于点O,OE⊥CD,∠AOC=50°.求∠BOE的度数.解:∵∠BOD=∠AOC=50°,∵OE⊥CD,∴∠DOE=90°,∴∠BOE=90°﹣50°=40°,18.(6分)已知点C在线段AB上,线段AC=7cm,BC=5cm,点M、N分别是AC、BC的中点,求MN的长度.解:∵AC=7cm,BC=5cm,点M、N分别是AC、BC的中点,∴MC=AC=3.5cm,CN=BC=2.5cm,则MN=MC+CN=3.5+2.5=6(cm).19.(8分)如图,蒙古包可以近似地看作由圆锥和圆柱组成的,现想用毛毡搭建底面积为9πm3,高为6m,外围高为2m的蒙古包,求至少需要多少平方米的毛毡?(结果保留π)解:∵蒙古包底面积为9πm2,高为6m,外围(圆柱)高2m,∴底面半径=3米,圆锥高为:6﹣2=4(m),∴圆锥的母线长==5(m),∴圆锥的侧面积=π×3×5=15π(平方米);圆锥的周长为:2π×3=6π(m),圆柱的侧面积=6π×2=12π(平方米).∴故需要毛毡:(15π+12π)=27π(平方米).20.(8分)(1)如图,已知三点A,B,C,按要求画图:画直线AB;画射线AC;画线段BC(2)如图,用适当的语句表述点A,B,P 与直线l 的关系解:(1)如图,(2)点A、点B在直线l上,点P在直线l外.21.(8分)如图,是A、B、C三个村庄的平面图,已知B村在A村的南偏西50°方向,C村在A村的南偏东15°方向,C村在B村的北偏东85°方向,求从C村村观测A、B 两村的视角∠ACB的度数.解:由题意∠BAC=50°+15°=65°,∠ABC=85°﹣50°=35°在△ABC中,∠ACB=180°﹣∠BAC﹣∠ABC=180°﹣65°﹣35°=80°.22.(10分)把一副三角板按如图所示放置(直角顶点重合)(1)直接写出与∠DBC互余的角;(2)写出与∠DBC互补的角,并说明理由.解:(1)与∠DBC互余的角有:∠ABD,∠CBE.(2)与∠DBC互补的角是:∠ABE,理由:∠ABE+∠DBC=∠ABC+∠CBE+∠DBC,=∠ABC+∠DBE=90°+90°=180°,所以:∠ABE与∠DBC互补.23.(10分)已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.(1)如图①,当∠BOC=40°时,求∠DOE的度数;(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠DOE的大小是否发生变化,说明理由;(3)当射线OC在∠AOB外绕O点旋转且∠AOC为钝角时,画出图形,直接写出∠DOE 的度数(不必写过程).解:(1)如图,∠AOC=90°﹣∠BOC=50°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC=25°,∠COE=∠BOC=20°,∴∠DOE=∠COD+∠COE=45°;(2)∠DOE的大小不变,理由是:∠DOE=∠COD+∠COE=∠AOC+∠COB=(∠AOC+∠COB)=∠AOB=45°;(3)∠DOE的大小发生变化情况为,如图3,则∠DOE为45°;如图4,则∠DOE为135°,24.(10分)如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.解:(1)∵AC=9cm,点M是AC的中点,∴CM=0.5AC=4.5cm,∵BC=6cm,点N是BC的中点,∴CN=0.5BC=3cm,∴MN=CM+CN=7.5cm,∴线段MN的长度为7.5cm,(2)MN=a,当C为线段AB上一点,且M,N分别是AC,BC的中点,则存在MN=a,(3)当点C在线段AB的延长线时,如图:则AC>BC,∵M是AC的中点,∴CM=AC,∵点N是BC的中点,中小学教育资源及组卷应用平台∴CN=BC,∴MN=CM﹣CN=(AC﹣BC)=b.21世纪教育网。
《图形认识初步》能力测试题
1 下 列说法不 正确 的是 ( . A 直线 A . B与直 线
是 同一 条直线
C射线 A . B与射线 B 是 同一 条射线 A
D 延长线段 AB到 C与延长线段 B . A到 C意义不同
2 右 图是 某一几 何体 的三视 图 , . 则这个 几何体 是 (
) .
厂—]
厂]
厂—]
第 1 5题 图
S l n t i u u c a ewe l n r i et op r h s o r el o r e t p r h s at o b r t u c a ep we . vt o h, l y
不 要 出 卖 美 德 交 换 财 富 , 不 要 f卖 自南交 换 权 力 — — 本杰 明 ・ 兰 克 林 也 “ 富
3 5
左 视 图 第 4题 图
_ . .. _
。
府视 图
.
—
一
二 、 空题 ( 填 每小题 5分 , 3 共 O分 ) 5如图, . 射线 O4所 表示 的方 向是 /
—
; 射线 O B所表示 的方 向是
—
6 如 图 , C是线段 A . D, B上 的两个点 , A 则 D+D AB一 C=
1 . 个 角 的补角 等 于这个 角 的余 角的 3倍 , 2一 求这 个 角
第 1 1题 图
1 . 面 的正方 体展 开 图折叠 后 可黏 成 4, C中哪个正 方体 ? 3下 B,
●
第1 3题 图
A
B
C
1. 4 已知 线段 0 6 t>6 , ,( Z ) 画一条 线段 , 它等 于 3 —b 使 a
【
I
初级中学数学课堂学习检测-第4章-图形认识初步
第四章图形认识初步测试1 立体图形与平面图形学习要求观察认识生活中的简单立体图形和平面图形.通过学习立体图形的三视图和它的展开图,了解如何把立体图形转化为平面图形来研究和处理,体会立体图形与平面图形的关系.课堂学习检测一、填空题1.把下面几何体的标号写在相对应的括号里.长方体: { } 棱柱体: { }圆柱体: { } 球体: { }圆锥体: { }2.讲台上放着一本书,书上放着一个粉笔盒,请说明下面的三幅图分别是从哪个方向看到的?①②③3.用如图所示的平面图形可以折成的多面体是______.二、选择题4.人民英雄纪念碑的中间部分是一个长方体,它的形状类似于()(A)棱柱(B)圆柱(C)圆锥(D)球5.奥运会的标志是五环,这五环中的每一个环的形状与下列哪个形状类似()(A)三角形(B)正方形(C)圆(D)长方形6.下图中,不是左图所示物体视图的是()7.下列四张图中,能经过折叠围成一个棱柱的是().三、解答题8.下图中哪些图形是立体的,哪些是平面的?综合、运用、诊断一、填空题9.分别写出表面能展开成如图所示的五种平面图的几何体的名称.(1)_______(2)_______(3)_______(4)_______(5)_______10.如果将标号为A,B,C,D的正方形沿图中的虚线剪开拼接后得到标号为P,Q,M,N的四组图形,试按照“哪个正方形剪开后得到哪组图形”的对应关系填空.A与________对应,B与______对应,C与______对应,D与______对应.二、选择题11.如下图所示,电视台的摄像机①、②、③、④在不同位置拍摄了四幅画面,则A图像是______号摄像机所拍,B图像是______号摄像机所拍,C图像是______号摄像机所拍,D 图像是______号摄像机所拍.12.几何体( )展开后如左图.(A)棱柱(B)球(C)圆柱(D)圆锥13.不能折成左图的长方体的是().三、做一做14.如图,哪些图形经过折叠可以围成一个棱柱?先想一想,再折一折.15.如下图,这是从上面看到的由四个小正方体搭成的立体图形得到的平面图形,画出从正面看这四个小正方体搭成的立体图形的平面图形.16.如下图,这是一个多面体的展开图,每个面上都标注了字母.请根据要求回答问题:(1)如果A面在多面体的底部,那么哪一面会在上面?(2)如果E面在前面,从左面看是F面,那么哪一面会在上面?(3)从下面看是C面,D面在后面,那么哪一面会在上面?拓展、探究、思考17.把正方体的6个面分别涂上不同的颜色,并画上朵数不等的花,各面上的颜色与花朵数的情况列表如下:现将上述大小相同,颜色、花朵分布完全一样的四个正方体拼成一个在同一平面上放置的长方体 , 如下图所示 , 那么长方体的下底面共有______朵花 .18 . 如果图(1)~(10)均是正方体A 的展开图 , 正方体的每一面分别有1 , 2 , 3 , 4 , 5 , 6六个数 , 请你在图(2)~(10)的空格上填上相应的数 .(1) (2) (3) (4)(5) (6) (7) (8) (9) (10)19 . 有一个长方形的硬纸正好可以分成15个小正方形 , 如图 , 试把它剪成3份 , 每份有5个小正方形相连 , 折起来都可以成为一个无盖的正方体纸盒 , 应该怎样剪 ?测试2 点 、 线 、 面 、 体学习要求知道点是几何学中最基本的概念 . 点动成线 , 线动成面 , 面动成体 .课堂学习检测一 、 填空题1 . 面与面相交得到______线与线相交得到______圆锥的侧面和底面相交成______条线 , 这条线是______的(填“直”或“曲”) .2 . 如图所示的几何体是四棱锥 , 它是由______个三角形和一个形组成的 .3 . 三棱柱有______个顶点 , ______个面 , ______条棱 , ______条侧棱 , ______个侧面 , 侧面形状是______形 , 底面形状是______形 .4 . 笔尖在纸上划过就能写出汉字 , 这说明了______ ; 汽车的雨刮器摆动就能刮去挡风玻璃上的雨滴 , 这说明了______ ; 长方形纸片绕它的一边旋转形成了一个圆柱体 , 这说明了______ . 二 、 选择题5 . 按组成面的侧面“平”与“曲”划分 , 与圆柱为同一类的几何体是( ) .(A)圆锥 (B)长方体 (C)正方体 (D)棱柱 6 . 圆锥的侧面展开图不可能是( ) .(A)小半个圆 (B)半个圆 (C)大半圆 (D)圆7.将下面的直角梯形绕直线l旋转一周,可以得到如下图所示的立体图形的是().8.下列说法错误的是().(A)长方体、正方体都是棱柱(B)棱柱的侧棱长都相等(C)棱柱的侧面都是三角形(D)如果棱柱的底面各边长相等,那么它的各个侧面的面积一定相等综合、运用、诊断三、解答题9.如图,第一行的图形绕虚线旋转一周,便能形成第二行的某个几何体,用线连一连.10.如图,说出下列各几何体的名称,哪些可以由平面图形的旋转得到?11.观察图中的圆柱和棱柱:(1)棱柱、圆柱各由几个面组成?它们都是平的吗?(2)圆柱的侧面与底面相交成几条线,它们是直的吗?(3)棱柱有几个顶点?经过每个顶点有几条棱?12.图(1)、(2)是否是几何体的展开平面图,先想一想,再折一折,如果是,请说出折叠后的几何体名称、底面形状、侧面形状、棱数、侧棱数与顶点数.(1)(2)13.已知一个长方体,它的长比宽多2cm,高比宽多1cm,而且知道这个长方体所有棱长的和为48cm,则这个长方体的长、宽、高各是多少?拓展、探究、思考14.下面有编号Ⅰ~Ⅸ的九个多面体.(1)如果我们用V表示多面体的顶点数,E表示多面体的棱数,F表示多面体的面数.请分别数一下这些多面体的V,E,F各是多少?(2)想一想,V,E,F之间有什么关系?①面数F是否随顶点数V的增大而增大?答:____________________________________________________________;②棱的数目E是否随顶点的数目V的增大而增大?答:____________________________________________________________;③V+F与E之间有何关系?答:____________________________________________________________.测试3 直线、射线、线段学习要求理解两点确定一条直线的事实,并体会它们在解决实际问题中的作用;掌握直线、射线、线段的表示方法,建立初步的符号感;理解直线、射线、线段的联系和区别,进一步发展抽象概括的能力.课堂学习检测一、填空题1.要把木条固定在墙上至少要钉______个钉子,这是因为____________________.2.经过一点的直线有______条;经过两点的直线有______条;并且______一条;经过三点的直线______存在,如点C不在经过A、B两点的直线AB上,那么______经过A、B、C 三点的直线.3.把线段向一个方向延长,得到的是________;把线段向两个方向延长,得到的是______.4.线段有______个端点,射线有______个端点,直线有______个端点.5.如图,点O在线段AB______;点B在射线AB______;点A是线段AB的一个______.6.如图,图中有______条射线,______条线段,这些线段是__________.7.如图,AC,BD交于点O,图中共有______条线段,它们分别是______.8.如图,图中有______条线段,它们是______图中以A点为端点的射线有______条,它们是______图中有______条直线,它们是______.二、选择题9.根据“反向延长线段CD”这句话,下图表示正确的是().10.如图所示,有直线、射线和线段,根据图中的特征判断其中能相交的是()11.下列说法中正确的有()①钢笔可看作线段②探照灯光线可看作射线③笔直的高速公路可看作一条直线④电线杆可看作线段(A)1个(B)2个(C)3个(D)4个12.下列说法中正确的语句共有()①直线AB与直线BA是同一条直线②线段AB与线段BA表示同一条线段③射线AB与射线BA表示同一条射线④延长射线AB至C,使AC=BC⑤延长线段AB至C,使BC=AB⑥直线总比线段长(A)2个(B)3个(C)4个(D)5个三、读句画图13.(1)点P在直线AB上,点M在直线AB外.(2)直线AB、CD交于点O,点M在直线AB上,但不在CD上.(3)经过点O的三条直线a,b,c.14.按要求画图:(1)画直线BD.(2)画射线AC和AD.(3)延长线段AB.(4)反向延长线段AB.15.看图写话:(1)(2)综合、运用、诊断16.判断题.()(1)下图中,射线EO和射线ED是同一条射线.()(2)下图中,射线EO和射线OE是同一条射线.()(3)下图中,射线EO和射线OD是同一条射线.()(4)下图中,线段DE和线段ED是同一条线段.()(5)下图中,直线DO和直线ED是同一条直线.()(6)两条线段最多有一个公共点.()(7)反向延长射线AB.()(8)延长直线AB到C.()(9)射线是直线长度的一半.()(10)在一条直线上取n个点可以得到2n条射线.()(11)三点能确定三条直线.()(12)如果直线a和b有两个公共点,那么它们一定重合.()(13)延长线段AB就得到直线AB.()(14)若三条直线两两相交,则交点有3个.17.解答下列问题:(1)两条直线在同一平面内的位置关系有几种?(2)画图表示,两条直线可以把一个平面分成几个部分?三条直线呢?(3)平面上4条直线最多可以把平面分成多少个部分?拓展、探究、思考18.填表19.解答下列问题:(1)过三个已知点,一定可以画出直线吗?(2)经过平面上三个点中的每两点可以画多少条直线?(3)经过平面上四个点中的每两点可以画多少条直线?(4)若在平面上有n个点,过其中任意两点画直线,最多可以画几条?测试4 线段的比较学习要求理解线段的性质,线段的中点和两点间的距离,能对线段进行度量和比较.课堂学习检测一、填空题1 .(1)把一条线段二等分的______叫做这条线段的______ .(2)______叫做两点间的距离.(3)若A、B、C、D为直线l上顺次四点,则AB+BD=AC+______;AC+BD=AD+______.(4)若点C在线段AB的延长线上,则AC与AB的大小关系是______ ,并且AB+BC=______,AC-AB=______.(5)线段的基本性质是__________________________________________.(6)如图,A是直线BC外一点,请用不等号分别连接下列各式:AB+AC______BC;AB+BC______AC;AC+BC______AB:想一想:AB-AC________BC2.根据图形填空:(1)如图,若AB=BC=CD=DE,那么①AE=______AB,②AC=______AE;③AD=______AE,④CE=______AD.(2)如图,已知D、E分别是线段AB、BC的中点,①若AB=3cm,BC=5cm,则DE=______cm;②若AC=8cm,EC=3cm,则AD=______cm.二、选择题3.在所有连接两点的线中()(A)直线最短(B)线段最短(C)弧线最短(D)射线最短4 . 在下列说法中 , 正确的是( )(A)任何一条线段都有中点(B)射线AB 和射线BA 是同一射线 (C)延长线段AB 就得到直线AB (D)连接A , B 就得到AB 的距离5 . 如图 , 下列关系式中与右图不符合的是( )(A)AC +CD =AB -BD (B)AB -CB =AD -BC (C)AB -CD =AC +BD (D)AD -AC =CB -DB综合 、 运用 、 诊断一 、 选择题6 . 如下图 , 从A 地到B 地有多条道路 , 人们会走中间的直路 , 而不会走其他的曲折的路 , 这是因为( ) .(A)两点确定一条直线 (B)两点之间线段最短(C)两直线相交只有一个交点 (D)两点间的距离7 . 对于线段的中点 , 有以下几种说法 : ①因为AM =MB , 所以M 是AB 的中点 ; ②若AM=MB =21AB , 则M 是AB 的中点 ; ③若AM =21AB , 则M 是AB 的中点 ; ④若A , M , B 在一条直线上 , 且AM =MB , 则M 是AB 的中点 . 以上说法正确的是 ) .(A)①②③ (B)①③ (C)②④ (D)以上结论都不对8 . 已知A , B , C 为直线l 上的三点 , 线段AB =9cm , BC =1cm , 那A , C 两点间的距离是( ) . (A)8cm (B)9cm (C)10cm (D)8cm 或10cm 9 . 已知线段OA =5cm , OB =3cm , 则下列说法正确的是( )(A)AB =2cm (B)AB =8cm (C)AB =4cm (D)不能确定AB 的长度 . 10 . 已知线段AB =10cm , AP +BP =20cm . 下列说法正确的是( )(A)点P 不能在直线AB 上 (B)点P 只能在直线AB 上 (C)点P 只能在线段AB 的延长线上 (D)点P 不能在线段AB 上 11 . 能判定A , B , C 三点共线的是( )(A)AB =3 , BC =4 , AC =6 (B)AB =13 , BC =6 , AC =7 (C)AB =4 , BC =4 , AC =4 (D)AB =3 , BC =4 , AC =512 . 已知数轴上的三点A , B , C 所对应的数a , b , c 满足a <b <c , abc <0和a +b +c =0 , 那么线段AB 与BC 的大小关系是( ) . (A)AB >BC (B)AB =BC (C)AB <BC (D)不确定 二 、 解答题13 . 已知C 为线段AB 的中点 , AB =10cm , D 是AB 上一点 , 若CD =2cm , 求BD 的长 . 14 . 已知C , D 两点将线段AB 分为三部分 , 且AC ∶CD ∶DB =2∶3∶4 , 若AB 的中点为M ,BD 的中点为N , 且MN =5cm , 求AB 的长 . 15 . 如图 , 延长线段AB 到C , 使,21AB BCD 为AC 的中点 , DC =2 , 求AB 的长 .拓展 、 探究 、 思考16 . 已知 : 如图 , 点C 在线段AB 上 , 点M 、 N 分别是AC 、 BC 的中点 .(1)若线段AC =6 , BC =4 , 求线段MN 的长度 ; (2)若AB =a , 求线段MN 的长度 ; (3)若将(1)小题中“点C 在线段AB 上”改为“点C 在直线AB 上” , (1)小题的结果会有变化吗 ? 求出MN 的长度 .17 . 如图 , 这是一根铁丝围成的长方体 , 长 、 宽 、 高分别为6cm 、 5cm 、 4cm . 有一只蚂蚁从A 点出发沿棱爬行 , 每条棱不允许重复 , 则蚂蚁回到A 点时 , 最多爬行多少厘米 ? 把蚂蚁所走的路线用字母按顺序表示出来 .测试5 角的度量学习要求理解角的概念 , 掌握角的表示方法 , 能利用画图工具作一个角 , 会度量一个角的大小(在角度制下) , 能进行简单的计算 . 理解周角 、 平角的概念 .课堂学习检测一 、 填空题1 . (1)____________的图形叫做角 , ____________________叫做角的顶点 , _____________________叫做角的边 .(2)角也可以看作是由一条___________绕着它的___________而形成的图形 , 这条射线的起始位置叫做角的______ , 其终止位置叫做角的__________ .(3)一条射线绕其端点O 按逆时针方向旋转得到∠AOB , 当角的终边OB 旋转到与角的始边OA 成一条直线时 , 称∠AOB 为______ ; 若角的终边继续旋转 , 当角的终边OB 与角的始边OA 重合时 , 称∠AOB 为______ . (4)以度 、 分 、 秒为单位的角度制规定 , 把一个周角______ , 每一份叫做1度 , 记作______ ; 把1度的角______ , 每一份叫做1分 , 记作______ ; 把1分的角______ , 每一份叫做1秒 , 记作______ . 这样 , 1周角是______° , 1平角是______° , 1°=______' , 1′=______″ .2 . 用三个字母表示图中所注的∠1 、 ∠2 、 ∠3 :(1) (2) (3)∠1是______;∠1是______;∠1是______;∠2是______;∠2是______;∠2是______;∠3是______;∠3是______;∠3是______;∠4是______.3.图中以OC为边的角有______个,它们分别是______二、选择题4.下列说法中正确的是().(A)两条射线组成的图形叫做角(B)平角的两边构成一条直线(C)角的两边都可以延长(D)由射线OA、OB组成的角,可以记作∠OAB5.下列四个图形中,能用∠1,∠AOB,∠O三种方法表示同一个角的是)6.如图,图中共有()个角.(A)6(B)7(C)8(D)97.如图所示,点O在直线AB上,图中小于180°的角共有().(A)7个(B)8个(C)9个(D)10个8.下列说法正确的是()(A)一个周角就是一条射线(B)平角是一条直线(C)角的两边越长,角就越大(D)∠AOB也可以表示为∠BOA9.从早晨6点到上午8点,钟表的时针转过的角的度数为().(A)45°(B)60°(C)75°(D)90°10.若有一条公共边的两个三角形称为一对“共边三角形”,则下图中以BC为公共边的“共边三角形”有()(A)2对(B)3对(C)4对(D)6对练合、运用、诊断一、填空题11.如图,图中能用一个大写字母表示的角有几个?分别把它们表示出来._________________________ .12.图中共有______个小于平角的角,它们分别是__________________ ,其中以D为顶点的小于平角的角有______个.13.计算:(1)0.4°=______' ;(2)0.6′=______″;(3)24′=______°;(4)12″=______′;(5)57.32°=______°______′______″;(6)17°14′24″=______°;(7)17°40′÷3=______°______′______″;(8)25°36′18″×6=______°______′______″.(9)18.6°+42°34′(10)360°÷7(精确到1′)(11)32°16′25″×4-78°25′(12)180°-37°5′×4+93.1°÷5二、解答题14.时钟的时针1小时旋转多少度?时钟的分针1分钟旋转多少度?15.5点整时,时钟的时针与分针之间的夹角是多少度?16.时钟在8:30时,时针与分针的夹角为多少度?拓展、探究、思考17.已知:如图,AOB是直线,∠1∶∠2∶∠3=1∶3∶2,求∠DOB的度数.18.如图,PQ是一条线段,有一只蚂蚁从点C出发,按顺时针方向沿着图中实线爬行,最后又回到点C , 则蚂蚁共转了____________的角 .19 . 如图 , (1)中有______个角 , (2)中有______个角 ; (3)中有______个角 . 以此类推 , 若一个角内有n 条射线 , 则可有______个角 .测试6 角的比较与运算学习要求会比较两个角的大小 , 能进行角的运算(和 、 差 、 倍 、 分) . 理解角的平分线以及直角 、 锐角 、 钝角的概念 .课堂学习检测一 、 填空题1 . 要比较∠α 和∠β 的大小 , 可先让∠α 的顶点与∠β 的顶点______ , ∠α 的始边与∠β 的始边也______ , 并且∠α 的终边与∠β 的终边都在它们的始边的同一侧 . 若∠α 的终边落在∠β 的内部 , 则称∠α ______∠β ; 若∠α 的终边落在∠β 的外部 , 则称∠α ______∠β ;若∠α 的终边恰与∠β 的终边重合 , 则称∠α ______∠β .(如图所示 , ∠AOB =α ; ∠AOC =β )2 . 如图 , 若OC 是∠AOB 的平分线 , 则______=______ ; 或______=______21=______ ; 或______=2______=2______ .3 . 如图 , OM 是∠AOB 的平分线且∠AOM =30° , 则∠BOM =______ ; ∠AOB =______ .4 . 如图 , 在横线上填上适当的角 :(1)∠AOC =______+______ ; (2)∠AOD -∠BOD =______ ; (3)∠BOC =______-∠COD ;(4)∠BOC =∠AOC +______-______ . 5 . 按图填空 :(1)∠ABC 是∠ABD 与∠DBC 的______ ; (2)∠BDC 是∠ADC 与∠ADB 的_______ . 6 . 如图 , (1)若∠AOB =∠COD ,则∠AOC =∠______ . (2)若∠AOC =∠BOD , 则∠______=∠______ .二 、 选择题7 . 在小于平角的∠AOB 的内部取一点C , 并作射线OC , 则一定存在( ) .(A)∠AOC >∠BOC (B)∠AOC =∠BOC (C)∠AOB >∠AOC (D)∠BOC >∠AOC 8 . 如图 , ∠AOB =∠COD , 则( ) .(A)∠1>∠2 (B)∠1=∠2 (C)∠1<∠2(D)∠1与∠2的大小无法比较9 . 射线OC 在∠AOB 的内部 , 下列四个式子中不能判定OC 是∠AOB 的平分线的是( ) . (A)∠AOB =2∠AOC (B)∠BOC =∠AOC (C)∠AOC 21∠AOB (D)∠AOC +∠BOC =∠AOB10 . 不能用一副三角板拼出的角是( ) .(A)120° (B)105° (C)100° (D)75°11 . 如图 , OC 是∠AOB 的平分线 , OD 平分∠AOC , 且∠COD =25° , 则∠AOB =( ) .(A)100° (B)75° (C)50° (D)20°12 . 如果∠AOB =34° , ∠BOC =18° , 那么∠AOC 的度数是( ) .(A)52° (B)16° (C)52°或16° (D)52°或18° 13 . 如图 , 射线OD 是平角∠AOB 的平分线 , ∠COE =90° , 那么下列式子中错误的是( ) .(A)∠AOC =∠DOE(B)∠COD =∠BOE (C)∠AOD =∠BOD (D)∠BOE =∠AOC14 . 已知α 、 β 是两个钝角 , 计算)(61β+a 的值 , 四位同学算出了四种不同的答案 , 分别为24° , 48° , 76° , 86° , 其中只有一个答案是正确的 , 那么你认为正确的是( ) (A)24° (B)48° (C)76° (D)86° 三 、 解答题15 . 下面是小马虎解的一道题 .题目 : 在同一平面上 , 若∠BOA =70° , ∠BOC =15° , 求∠AOC 的度数 . 解 : 根据题意可画出下图 .∵∠AOC =∠BOA -∠BOC=70°-15° =55° ,∴∠AOC =55° . 若你是老师 , 会给小马虎满分吗 ? 若会 , 说明理由 . 若不会 , 请将小马虎的错误指出 , 并给出你认为正确的解法 .综合 、 运用 、 诊断16 . 如图 , OT 平分∠AOB , 也平分∠COD ,那么∠AOT =∠______ ,∠AOC =∠______ ,∠AOD =∠______17 . 如图 , OA ⊥OB , OC ⊥OD , ∠AOD =146° , 则∠BOC =______ .18 . 读语句画图并填空 :画平角∠AOC , 用量角器画∠AOC 的平分线OB , 因为OB 平分∠AOC , 所以∠AOB =∠=AOC 21_______ , 再用量角器画∠BOC 的平分线OD , 图中∠AOD =∠______+∠______=______° . 19 . 作图 .(1)用一副三角板可以画出多少个小于平角的角 ? 请用一副三角板画出15° , 75°角 .(2)作∠MPQ 的平分线PR , 则∠______=∠______21=∠______ .(3)利用圆规和直尺画一个角 .已知 : ∠AOB ,求作 : ∠A ′O ′B ′ , 使得∠A ′O ′B ′=∠AOB .20 . 如图 , OD 、 OE 分别是∠AOC 和∠BOC 的平分线 , ∠AOD =40° , ∠BOE =25° , 求∠AOB 的度数 .解 : ∵OD 平分∠AOC , OE 平分∠BOC ,∴∠AOC =2∠AOD , ∠BOC =2∠______ .∵∠AOD =40° , ∠BOE =25° , ∴∠BOC =______ , ∠AOC =______ . ∴∠AOB =____ .21 . 已知 : 如图 , ∠ABC =∠ADC , DE 是∠ADC 的平分线 , BF 是∠ABC 的平分线 .求证 : ∠2=∠3 .证明 : ∵DE 是∠ADC 的平分线 ,∴∠2=______ .∵BF 是∠ABC 的平分线 , ∴∠3=______ .又∵∠ABC =∠ADC , ∴∠2=∠3 .拓展 、 探究 、 思考22 . 已知 : ∠AOB =31.5° , ∠BOC =24.3° , 求∠AOC 的度数 .23 . 如图 , 从O 点引四条射线OA 、 OB 、 OC 、 OD , 若∠AOB , ∠BOC , ∠COD , ∠DOA 度数之比为1∶2∶3∶4 .(1)求∠BOC 的度数 .(2)若OE 平分∠BOC , OF 、 OG 三等分∠COD , 求∠EOG . 24 . 如图 , ∠AOB 的平分线为OM , ON 为∠MOA 内的一条射线 , OG 为∠AOB 外的一条射线 ,某同学经过认真的分析 , 得出一个关系式是∠MON =21(∠BON -∠AON ) , 你认为这个同学得出的关系式是正确的吗 ? 若正确 , 请把得出这个结论的过程写出来 .测试7 余角和补角学习要求理解一个角的余角和补角的概念 , 理解方向角的概念 , 并能解决有关角的计算问题 .课堂学习检测一 、 填空题1 . 如果两个角的______ , 那么称这两个角______余角 , 即其中一个角是____________ .2 . 如果两个角的______ , 那么称这两个角______补角 , 即其中一个角是____________ .3 . 若∠α =n ° , 则∠α 的余角是______ , ∠α 的补角是______ .4 . 若一个角的补角是150° , 则这个角的余角是____________ .5 . 若∠1与∠2分别是∠3的余角 , 则∠1______∠2 .6 . 若∠1是∠3的余角 , ∠2是∠4的余角 , 且∠3=∠4 , 则∠1____∠2 .7 . 如图 , ∠AOD 的余角是______ , 补角是______ .8.若∠β 与∠α 互补,∠γ 与∠α 互余,则∠β 与∠γ 的差为____________.9.如图,已知A,O,E三点在同一条直线上,OB平分∠AOC,OD平分∠COE,则∠BOC与∠COD的关系为____________.10.若轮船甲自A岛沿北偏东45°的方向行驶30海里到达B岛,轮船乙自A岛沿南偏西70°的方向行驶50海里到达C岛,则∠BAC=____________.二、选择题11.已知∠α =35°19′,则∠α 的余角等于().(A)144°41′(B)144°81′(C)54°41′(D)54°81′12.下列说法中正确的是().(A)大于直角的角叫钝角(B)小于平角的角叫钝角(C)不大于直角的角叫锐角(D)大于0°且小于直角的角叫锐角13.∠A的补角是∠C,∠C又是∠B的余角,则∠A一定是().(A)锐角(B)钝角(C)直角(D)无法确定14.已知:如图,∠AOB=∠COD=90°,则∠1与∠2的关系是).(A)互余(B)互补(C)相等(D)无法确定15.轮船航行到C处测得小岛A的方向为北偏西32°,那么从A观测此时的C处的方向为().(A)南偏东32°(B)东偏南32°(C)南偏东68°(D)东偏南68°16.下面说法中正确的是().(A)一个锐角的余角比这个角大(B)一个锐角的余角比这个角小(C)一个锐角的补角比这个角大(D)一个钝角的补角比这个角大17.下列说法中,正确的是().(A)一个角的余角一定是钝角(B)一个角的补角一定是钝角(C)锐角的余角一定是锐角(D)锐角的补角一定是锐角18.已知点C,O,B三点共线,∠COD=90°,∠COD绕点O由图(1)的位置旋转到图(2)的位置后,∠COB与∠AOD的关系是().(1) (2) (A)相等 (B)互补 (C)相等或互补 (D)不能确定三 、 解答题19 . 在图中画出表示下列方向的射线 :(1)南偏西30° (2)南偏东25°(3)北偏西20° (4)北偏东65° (5)东北方向 (6)西南方向20.(1)一个角的余角为54°求这个角的补角的度数 .(2)两个角的比是7∶3 , 它们的差是72° , 求这两个角的度数 . 21 . 如图 , 分别指出A , B , C , D 在O 的什么方向 ?综合 、 运用 、 诊断22 . 若一个角的余角比它的补角的92还多1° , 求这个角 . 23 . 用1∶10000的比例尺画图 , 并按要求填空(精确0.1cm) :(1)如下图 , 甲从O 点向北偏西60°走了200米 , 到达A 处 ; 乙从O 点向南偏西60°走了200米 , 到达B 处 , 用刻度尺量出AB =______cm , AB 的实际距离是______ . A 在B 的__________方向 .(2)如下图 , 某人从O 点向东北方向走了200米到达M 点 , 再从M 点向正西方向走了282米 , 到达N 点 , 用刻度尺量出ON =______cm , ON 实际距离是______ , 此时N 在O 的______方向 .(3)某人在O 点的北偏东60°方向上 , 距O 点300米 , 他向正南方向走了600米 , 到达A 处后 , 想去O 点 , 那么他要向______方向 , 走______米 .24 . 已知∠α 的余角是∠β 的补角的,31并且,23αβ∠=∠求∠α +∠β 的值 . 25 . 作图题 .(1)已知 : ∠α .求作 : ∠α 的补角 , 并画出∠α 的补角的平分线 .(2)已知 : ∠α .求作 : ∠α 的余角 , 并画出∠α 的余角的平分线 .26 . 填写下列空白和理由 :(1)如图所示 ,∵∠α 与∠β 互余 ,∴∠α +∠β =90° .(理由 : ______________)(2)如图所示 ,∵A , O , B 三点在同一直线上 ,∴∠________+∠________=180° .(理由 : __________________.)∴∠AOC 与∠BOC 互补 .(理由 : __________________.)(3)如图 ,∵∠AOB+∠BOC+∠COD+∠DOA=1周角,∴∠AOB+∠BOC+∠COD+∠DOA=360°.(理由_____________________.)∵∠AOB=∠COD=90°,∴∠AOD+∠BOC=180°.(理由:__________________)又∵∠BOC=42°,∴∠AOD=180°-∠BOC=180°-42°=__________.。
冀教版七年级上《第1章+图形的初步认识》2013年单元测试卷b
冀教版七年级上《第1章图形的初步认识》2013年单元测试卷B一、选择题(每小题3分,共30分)1.(3分)(2003•杭州)如图所示立方体中,过棱BB1和平面CD1垂直的平面有()2.(3分)将图的五角星沿虚线折叠,得到一个几何体,你认为下列物体中哪些与这个折叠后的几何体类似()3.(3分)下列图形中,不可能围成正方体的有()个.5.(3分)给出以下四种说法:(1)矩形绕着它的一条边旋转一周,形成圆柱;(2)梯形绕着它的下底旋转一周,形成圆柱;(3)直角三角形绕着它的一条直角边旋转一周,形成圆锥;(4)直角梯形绕着垂直于底边的腰旋转一周,形成圆锥.6.(3分)如图,太阳在房子的后方,那么房子所成的影子为().CD .7.(3分)(2012•菏泽)如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面图是由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( ).CD .8.(3分)(2005•丽水)如图,将图中的阴影部分剪下来,围成一个几何体的侧面,使AB ,DC 重合,则所围成的几何体图形是( ).CD .9.(3分)观察下图,请把左边的图形绕着给定的直线旋转一周后可能形成的几何体选出来( ).CD .二、填空题(每小题4分,共24分) 11.(4分)易拉罐类似于几何体中的 _________ 体,其中有 _________ 个平面,有 _________ 个曲面.12.(4分)如图是两个立方体的展开图,请你写出这两个立方体图形的名称_________.13.(4分)三棱柱底面边长都是3厘米,侧棱长为5厘米,则此三棱柱共有_________个侧面,侧面展开图的面积为_________平方厘米.14.(4分)若一个几何体的截面永远是圆,则该几何体必是_________.15.(4分)一个正方体盒子的展开图如图所示,如果要把它粘成一个正方体,那么与点A重合的点是_________.16.(4分)一个用小立方块搭成的几何体的从正面看和从左面看都是右图,这个小几何体中小立方块最少有_________块,最多有_________块.三、作图题(本题10分)17.(10分)如图,这是一个由小立方体搭成的几何体的从上面看到的图形,小正方形中的数字表示该位置的小立方体的个数,请你画出它的从正面看和左面看所得到的图形.四、解答题(每小题8分,共24分)18.(8分)如图所示,在正方体能见到的面上写上数1、2、3,而在展开的图中也已分别写上了两个和一个指定的数.请你在展开图的其它各面上写上适当的数,使得相对的面上两数的和等于7.19.(8分)如图是由若干块小正方体积木堆成的实体,在这个基础上要把它堆成一个立方体,至少需要多少块小正方体积木?20.(8分)如图是一个多面体的展开图,每个面内都标注了字母,请根据要求回答问题:(1)如果面A在多面体的底部,那么哪一面会在上面?(2)如果面F在前面,从左面看是面B,那么哪一面会在上面?(3)从右面看是面C,面D在后面,那么哪一面会在上面?五、应用题(本题12分)21.(12分)如图,一个房间长6米,宽8米,高4米,一只苍蝇A停在一面墙的中央,一只蜘蛛B停在对面墙的中央,当那只吓呆了的苍蝇停住不动时,蜘蛛为了吃到这只苍蝇,要迅速爬过来,你认为蜘蛛按哪条路爬行到苍蝇处才是最短的路线?(画出来),这条路有多长?冀教版七年级上《第1章图形的初步认识》2013年单元测试卷B参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2003•杭州)如图所示立方体中,过棱BB1和平面CD1垂直的平面有()2.(3分)将图的五角星沿虚线折叠,得到一个几何体,你认为下列物体中哪些与这个折叠后的几何体类似()3.(3分)下列图形中,不可能围成正方体的有()个.5.(3分)给出以下四种说法:(1)矩形绕着它的一条边旋转一周,形成圆柱;(2)梯形绕着它的下底旋转一周,形成圆柱;(3)直角三角形绕着它的一条直角边旋转一周,形成圆锥;(4)直角梯形绕着垂直于底边的腰旋转一周,形成圆锥.6.(3分)如图,太阳在房子的后方,那么房子所成的影子为().C D.7.(3分)(2012•菏泽)如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面图是由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是().C D.8.(3分)(2005•丽水)如图,将图中的阴影部分剪下来,围成一个几何体的侧面,使AB,DC重合,则所围成的几何体图形是().C D.9.(3分)观察下图,请把左边的图形绕着给定的直线旋转一周后可能形成的几何体选出来().C D.二、填空题(每小题4分,共24分)个曲面.11.(4分)易拉罐类似于几何体中的圆柱体,其中有2个平面,有112.(4分)如图是两个立方体的展开图,请你写出这两个立方体图形的名称正方体、圆锥.13.(4分)三棱柱底面边长都是3厘米,侧棱长为5厘米,则此三棱柱共有3个侧面,侧面展开图的面积为45平方厘米.14.(4分)若一个几何体的截面永远是圆,则该几何体必是球.15.(4分)一个正方体盒子的展开图如图所示,如果要把它粘成一个正方体,那么与点A重合的点是C、E.16.(4分)一个用小立方块搭成的几何体的从正面看和从左面看都是右图,这个小几何体中小立方块最少有3块,最多有9块.三、作图题(本题10分)17.(10分)如图,这是一个由小立方体搭成的几何体的从上面看到的图形,小正方形中的数字表示该位置的小立方体的个数,请你画出它的从正面看和左面看所得到的图形.四、解答题(每小题8分,共24分)18.(8分)如图所示,在正方体能见到的面上写上数1、2、3,而在展开的图中也已分别写上了两个和一个指定的数.请你在展开图的其它各面上写上适当的数,使得相对的面上两数的和等于7.19.(8分)如图是由若干块小正方体积木堆成的实体,在这个基础上要把它堆成一个立方体,至少需要多少块小正方体积木?20.(8分)如图是一个多面体的展开图,每个面内都标注了字母,请根据要求回答问题:(1)如果面A在多面体的底部,那么哪一面会在上面?(2)如果面F在前面,从左面看是面B,那么哪一面会在上面?(3)从右面看是面C,面D在后面,那么哪一面会在上面?五、应用题(本题12分)21.(12分)如图,一个房间长6米,宽8米,高4米,一只苍蝇A停在一面墙的中央,一只蜘蛛B停在对面墙的中央,当那只吓呆了的苍蝇停住不动时,蜘蛛为了吃到这只苍蝇,要迅速爬过来,你认为蜘蛛按哪条路爬行到苍蝇处才是最短的路线?(画出来),这条路有多长?。
第四章《图形认识初步》综合复习检测卷(四)及答案
第四章《图形认识初步》综合复习检测卷(四)一、选择题(每小题3分,共30分)1.下列关于棱柱的说法:①棱柱的所有面都是平面;②棱柱的所有棱长都相等;③棱柱的所以侧面都是长方形或正方形;④棱柱的侧面个数与底面边数相等;⑤棱柱的上、下底面形状、大小相等其中正确的有 ( ).(A )2个 (B )3个 (C )4个 (D )5个2.下列图形中是正方体的表面展开图的是 ( ).(A) (B) (C) (D)3.如图1,点C 是线段AB 的中点,点D 线段BC 的中点,下列等式不正确的是( ).(A )CD=AC-DB (B )CD=AD-BC (C )CD=21AB-BD (D )CD=31AB图14.一个物体的从正面、左面、上面三个方向看是下面三个图形,则该物体形状的名称为 ( )(A) 圆柱 (B) 棱柱(C) 圆锥 (D) 球 正面 左面 上面5.下列判断正确的是 ( ). 图2(A )平角是一条直线 (B )凡是直角都相等(C )两个锐角的和一定是锐角 (D )角的大小与两条边的长短有关6.如图3,∠AOB =∠COD =90°,那么∠AOC=∠BOD ,这是根据 ( ).(A)直角都相等 (B) 同角的余角相等(C)同角的补角相等 (D)互为余角的两个角相等图37. 点M 、O 、N 顺次在同一直线上,射线0C 、0D 在直线MN 同侧,且∠MOC=64°,∠DON=46°,北则∠MOC 的平分线与∠DON 的平分线夹角的度数是 ( ).(A )85° (B )105° (C )125° (D )145°8. 某测绘装置上一枚指针原来指向南偏西50°(如图4), 把这枚指针按逆时针方向旋转41周,则结果指针的指向 ( ). (A )南偏东50º (B )西偏北50º(C )南偏东40º (D )南偏东45° 图49.如图5,每个长方体的六个面上分别写着1~6这六个数,并且任意两个相对的面上所写的两个数之和所写的两个数之和都等于7,靠在一起的长方体中,相连接两个面的数字之和等于8,图中打“?”的面上所写的数字是 ( ).(A )3 (B )5 (C )2 (D )110.计算180°-48°39′40″-67°41′35″的值是 ( ). 图5(A )63°38′45″ (B )58°39′40″ (C )64°39′40″ (D )63°78′65″二、填空题(每小题2分,共20分)11.如图6所示的图形绕虚线旋转一周,所围成的几何体是_____.图6 图7 12.如图7是一个正方体纸盒的展开图,在其中的四个正方形内有数字1、2、3和-3,要在其余正方形内分别填上-1、-2,使得按虚线折成正方体后,相对面上的两个数互为相反数,则A 处应填_____.13.植树时,只要定出_______个树坑的位置,就能确定同一行树坑所在直线,根据是_______.14.如图8是三个几何体的展开图,请写出这三个立体图形_________ __________ ________图815.某工程队在修筑高速公路时,有时需要将弯曲的道路改直,以缩短路程,这样作的理论依据是________.16.如图9,点C是∠AOB的边OA上一点,D、E是OB上两点,则图中共有_____条线段,_____条射线,_____个小于平角的角.图9 图1017.如果一个角的补角是150°,那么这个角的余角是________.18.乘火车从A站出发,沿途经过3个车站可到达B站,那么在A、B两站之间共有____种不同的票价.19.如图10,将一副三角板叠放在一起,使直角的定顶点重合于点0,则∠AOC+∠DOB=_____.20.在直线l上取A、B、C三点,使得AB=4cm,BC=3cm,如果0是线段AC的中点,则线段OB的长度为_________.三、解答题(1-6每小题6分,7-8分每小题7分)21.观察图11中的几何体,画出从正面、左面、上面三个方向看,得到的平面图形。
【试题】怀化专版2020年中考数学总复习阶段测评四图形的初步认识与三角形四边形B试题
【关键字】试题阶段测评(四) 图形的初步认识与三角形、四边形(B)(时间:120分钟总分:120分)一、选择题(每题4分,共40分)1.(2016毕节中考)到三角形三个顶点的距离都相等的点是这个三角形的( D )A.三条高的交点B.三条角平分线的交点C.三条中线的交点D.三条边的笔直平分线的交点2.(2016娄底中考)下列命题中,错误的是( D )A.两组对边分别平行的四边形是平行四边形B.有一个角是直角的平行四边形是矩形C.有一组邻边相等的平行四边形是菱形D.内错角相等3.(2015徐州中考)如图,在菱形ABCD中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于( A )A.3.5 B.4 C.7 D.14,(第3题图)) ,(第4题图))4.(2015台州中考)如图,在菱形ABCD中,AB=8,点E、F分别在AB、AD上,且AE=AF,过点E作EG∥AD 交CD于点G,过点F作FH∥AB交BC于点H,EG与FH交于点O,当四边形AEOF与四边形CGOH的周长之差为12时,AE的值为( C )A.6.5 B.6 C.5.5 D.55.(2016宜宾中考)如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是( A )A.4.8 B.5 C.6 D.7.2,(第5题图)) ,(第6题图))6.(2015龙东中考)如图,正方形ABCD的边长为2,H在CD的延长线上,四边形CEFH也为正方形,则△DBF 的面积为( D )A.4 B. C.2 D.27.如图,在△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC交DE于点F,若BC=6,则DF的长是( B )A.2 B.3 C.4 D.5,(第7题图)) ,(第8题图))8.如图,在菱形ABCD中,DE⊥AB,∠A=60°,BE=2.则菱形ABCD的面积为( C )A.8 B.4 C.8 D.129.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为( C )A.14 B.15 C.16 D.17,(第9题图)) ,(第10题图))10.(2014德州中考)如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E、F分别在AD、BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,在以下四个结论中,正确的有( C )①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围是3≤BF≤4;④当点H与点A重合时,EF=2.A.1个 B.2个 C.3个 D.4个二、填空题(每题4分,共16分)11.(2016临沂中考)如图,在△ABC中,点D,E,F分别在AB,AC,BC上,DE∥BC,EF∥AB.若AB=8,BD =3,BF=4,则FC的长为____.,(第11题图)) ,(第12题图))12.(2016昆明中考)如图,AB∥CE,BF交CE于点D,DE=DF,∠F=20°,则∠B的度数为__40°__.13.(2016茂名中考)已知矩形的对角线AC与BD相交于点O,若AO=1,那么BD=__2__.14.(2014安徽中考)如图,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是__①②④__.(把所有正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.三、解答题(每题8分,共64分)15.(2015梅州中考)如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,求▱ABCD的周长.解:▱ABCD的周长为20.16.(2016泸州中考)如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D=∠E.证明:∵CD∥BE,∴∠ACD=∠CBE.∵C是AB的中点,∴AC=CB,∴在△ACD和△CBE中,∴△ACD≌△CBE,∴∠D=∠E.17.(2016泰州中考)如图,△ABC中,AB=AC,E在BA的延长线上,AD平分∠CAE.(1)求证:AD∥BC;(2)过点C作CG⊥AD于点F,交AE于点G,若AF=4,求BC的长.解:(1)∵AB=AC,∴∠B=∠3,∵AD平分∠CAE,∴∠1=∠2,而∠CAE=∠1+∠2=∠B+∠3,∴∠1=∠3,∴AD∥BC;(2)BC=8.18.(2014枣庄中考)如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若OD =12AC ,则四边形ABCD 是什么特殊四边形?请证明你的结论. 解:(1)略;(2)若OD =12AC ,则四边形ABCD 是矩形, 理由:∵△BOE≌△DOF,∴DO =OB ,OF =OE.又∵O 是AC 的中点,∴OA =OC ,∵OD =12AC ,∴OD =OA =OB =OC , ∴四边形ABCD 为矩形.19.(2015扬州中考)如图,在△ABC 中,AB =AC ,D 是BA 延长线上的一点.(1)实践与操作:根据要求尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法).①作∠DAC 的平分线AM ;②作线段AC 的垂直平分线,与AM 交于点F ,与BC 边交于点E ,连接AE 、CF.(2)猜想并证明:判断四边形AECF 的形状并加以证明.解:(1)如图;(2)四边形AECF 是菱形,∵EF 是AC 的垂直平分线,∴AG =GC ,AF =FC ,AE =EC ,且∠AGF=∠E GC =90°.∠DAC 是△ABC 的外角,∴∠DAC =∠ABC+∠ACB.∵AB=AC ,∴∠ABC =∠ACB,∴∠DAC =2∠ACB,∵AM 平分∠DAC,∴∠DAC =2∠FAC,∴∠ACB =∠FAC.在△AGF 和△CGE 中,⎩⎪⎨⎪⎧∠AGF=∠CGE,AG =CG ,∠FAG =∠ECG,∴△AGF ≌△CGE ,∴AF =EC ,∴AF =FC =EC =AE ,∴四边形AECF 为菱形.20.(2016北京中考)如图,在四边形ABCD 中,∠ABC =90°,AC =AD ,M ,N 分别为AC ,CD 的中点,连接BM ,MN ,BN.(1)求证:BM =MN ;(2)若∠BAD=60°,AC 平分∠BAD,AC =2,求BN 的长.解:(1)∵∠ABC=90°,M 为AC 的中点,∴BM =12AC. 又∵在△ACD 中,M 、N 分别为AC 、CD 的中点,∴MN ∥AD 并且MN =12AD. 又∵AC=AD ,∴BM =12AC =12AD =MN ,即BM =MN ; (2)BN = 2.21.(2016长沙中考)如图,AC 是▱ABCD 的对角线,∠BAC =∠DAC.(1)求证:AB =BC ;(2)若AB =2,AC =23,求▱ABCD 的面积.解:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠BCA =∠DAC,又∠BAC=∠DAC,∴∠BCA =∠BAC,∴AB =BC.(2)∵AB=BC ,∴▱ABCD 是菱形,连接BD 交AC 于点O ,则∠AOB=90°.∴AO =12AC =3,BO =22-(3)2=1, ∴BD =2,∴S ▱A BCD =12×23×2=2 3. 22.如图,两个全等的△ABC 和△DFE 重叠在一起,固定△ABC,将△DEF 进行如下变换:(1)如图1,△DEF 沿直线CB 向右平移(即点F 在线段CB 上移动),连接AF 、AD 、BD ,请直接写出S △ABC 与S 四边形AFBD 的关系;(2)如图2,当点F 平移到线段BC 的中点时,若四边形AFBD 为正方形,那么△ABC 应满足什么条件?请给出证明;(3)在(2)的条件下,将△DEF 沿DF 折叠,点E 落在FA 的延长线上的点G 处,连接CG ,请你画出图形,并求出sin ∠CGF 的值.解:(1)S △ABC =S 四边形AFBD ;(2)△ABC 为等腰直角三角形,即AB =AC ,∠BAC =90°.理由:∵F 为BC 的中点,∴CF =BF ,∵CF =AD ,∴AD =BF.又∵AD∥BF,∴四边形AFBD 为平行四边形,∵AB =AC ,F 为BC 的中点,∴AF ⊥BC ,∴▱AFBD 为矩形,∵∠BAC =90°,F 为BC 的中点,∴AF =12BC =BF , ∴四边形AFBD 为正方形;(3)如图所示,由(2)知,△ABC 为等腰直形三角形,AF ⊥BC ,设CF =k ,则GF =EF =CB =2k ,∴CG =5k ,∴sin ∠CGF =CF CG =k 5k =55.此文档是由网络收集并进行重新排版整理.word可编辑版本!。
第6章 图形的初步知识单元测试卷(标准难度 含答案)
浙教版初中数学七年级上册第六单元《图形的初步认识》单元测试卷考试范围:第六单元;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36.。
在每小题列出的选项中,选出符合题目的一项)1.将一个正方形纸片对折后对折再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是( )A. B. C. D.2.如图,在Rt△ABC中,AC=5cm,BC=12cm,∠ACB=90°,把Rt△ABC所在的直线旋转一周得到一个几何体,则这个几何体的侧面积为( )A. 60πcm2B. 65πcm2C. 120πcm2D. 130πcm23.下列说法中正确的个数为( )(1)4a一定是偶数;(2)单项式3xy27的系数是37,次数是3;(3)小数都是有理数;(4)多项式3x3−2xy2+25是五次三项式;(5)连接两点的线段叫做这两点的距离;(6)射线比直线小一半.A. 1个B. 2个C. 3个D. 4个4.下列说法中正确的是( )A. 射线EF和射线FE是同一条射线B. 延长线段EF和延长线段FE的含义是相同的C. 经过两点可以画一条直线,并且只能画一条直线D. 延长直线EF5.已知线段AB=10cm,有下列说法:①不存在到A,B两点的距离之和小于10cm的点;②线段AB上存在无数个到A,B两点的距离之和等于10cm的点;③线段AB外存在无数个到A,B两点的距离之和大于10cm的点.其中正确的是( )A. ①②B. ①③C. ②③D. ①②③6.已知线段AB,以下作图不可能的是( )A. 在AB上取一点C,使AC=BCB. 在AB的延长线上取一点C,使BC=ABC. 在BA的延长线上取一点C,使BC=ABD. 在BA的延长线上取一点C,使BC=2AB7.已知线段AB=10cm,点C为直线AB上一点,且AC=2cm,点D为线段BC的中点,则线段AD的长为( )A. 4cmB. 6cmC. 4cm或5cmD. 4cm或6cm8.如图,从4点钟开始,过了40分钟后,分针与时针所夹角的度数是( )A. 90°B. 100°C. 110°D. 120°9.(对标目标9)如图,在4×4的正方形网格中,记∠ABF=α,∠FCH=β,∠DGE=γ,则( )A.β<α<γB. β<γ<αC. α<γ<βD. α<β<γ10.将一张正方形纸片ABCD按如图所示的方式折叠,AE、AF为折痕,点B、D折叠后的对应点分别为B′、D′,若∠B′AD′=16°,则∠EAF的度数为( )A. 40°B. 45°C. 56°D. 37°11.(对应目标12)已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β−∠γ的度数为( )A. 45°B. 60°C. 90°D. 180°12.如图,EO⊥CD,垂足为O,OA平分∠EOD,则∠BOD的度数为( )A. 120°B. 130°C. 135°D. 140°第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.请你算一算如图所示(单位:米)“粮仓”的容积为______立方米.(V圆柱=πr2ℎ,V圆锥=13πr2ℎ)14.根据下图填空:(1)有个小于平角的角.(2)分别填出下列角的另一种表示方法:∠α即,∠ABC即,∠ACE即,∠1即,∠ACD即,∠3即.15.以∠AOB的顶点O为端点引射线OP,使∠AOP:∠BOP=3:2,若∠AOB=17∘,∠AOP的度数为.16.如图,直线CD,EF相交于点O,OA⊥OB,且OE平分∠AOC.若∠EOC=60∘,则∠BOF的度数是.三、解答题(本大题共9小题,共72分。
2019届中考数学专题复习图形认识初步专题训练(含答案)
图形认识初步一、选择题1.汽车的雨刷能把玻璃上的雨水刷干净,这说明()A. 点动成线B. 线动成面C. 面动成体D. 以上说法都不对2.已知∠α=35°19′,则∠α的余角等于( )A. 144°41′B. 144°81′C. 54°41′D. 54°81′3.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A. 中B. 考C. 顺D. 利4.如图,线段AD上有两点B,C,则图中共有线段()A. 三条B. 四条C. 五条D. 六条5.下面给出的图形中,绕虚线旋转一周能形成圆锥的是()A. B.C. D.6.射线BD在∠ABC内部,下列式子中不能说明BD是∠ABC的平分线的是()A. ∠ABC=2∠ABDB. ∠ABD+∠CBD=∠ABCC. ∠CBD= ∠∠ABCD. ∠ABD=∠CBD7.下列图形中,是正方体的表面展开图的是()A. B.C. D.8.如图所示,OC是∠BOD的平分线,OB是∠AOD的平分线,且∠COD=30°,则∠AOC等于()A. 60°B. 80°C. 90°D. 120°9.点C在线段AB上,下列条件中不能确定点C是线段AB中点的是()A. AC=BCB. AC+BC=ABC. AB=2ACD. BC= AB10.用度、分、秒表示91.34°为()A. 91°20′24″B. 91°34′C. 91°20′4″D. 91°3′4″11.将线段AB延长至C,再将线段AB反向延长至D,则图中线段一共有()A. 8条B. 7条C. 6条D. 5条12.用A,B,C分别表示学校、小明家、小红家,已知学校在小明家的南偏东25°,小红家在小明家正东,小红家在学校北偏东35°,则∠ACB等于()A. 35°B. 55°C. 60°D. 65°二、填空题13.已知,B是线段AD上一点,C是线段AD的中点,若AD=10,BC=3,则AB=________.14.两个邻补角的角平分线的位置关系是________.15.在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是________.16.若∠α=34°36',则∠α的补角为________.17.如图是一个时钟的钟面,8:00时的分针与时针所成的∠α的度数是________.18.一个角的余角等于这个角的补角的,则这个角为________.19.如图,将一副三角板叠放在一起,使直角的顶点重合于点O,则∠AOD+∠COB的度数为________度.20.如图,圆柱形玻璃杯,高为11cm,底面周长为16cm,在杯内离杯底3cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为________.(结果保留根号)21.如图②是圆柱被一个平面斜切后得到的几何体,请类比梯形面积公式的推导方法(如图①),推导图②几何体的体积为________ .(结果保留π)22.如图,点O是直线l上一点,作射线OA,过O点作OB⊥OA于点O,则图中∠1,∠2的数量关系为________.三、解答题23.如图所示,BD平分∠ABC,BE分∠ABC成2:5的两部分,∠DBE=27°,求∠ABC的度数.24.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13nmile 的A,B两个基地前去拦截,六分钟后同时到达C地将其拦截.已知甲巡逻艇每小时航行120nmile,乙巡逻艇每小时航行50nmile,航向为北偏西40°,求甲巡逻艇的航向.25.如图,已知DB∥FG∥EC ,∠ABD=84°,∠ACE=60°,AP是∠BAC的平分线.求∠PAG的度数.26.如图,图中能用一个大写字母表示的角有几个?分别把它们表示出来.27.如图,直线AB.CD相交于点O,OE⊥CD,OF平分∠BOD.(1)图中除直角外,请写出一对相等的角吗:________(写出符合的一对即可)(2)如果∠AOE=26°,求∠BOD和∠COF的度数.(所求的角均小于平角)28.如图是一个正方体盒子的表面展开图,该正方体六个面上分别标有不同的数字,且相对两个面上的数字互为相反数.(1)把﹣16,9,16,﹣5,﹣9,5分别填入图中的六个小正方形中;(2)若某相对两个面上的数字分别为和﹣5,求x的值.29.如图1,直线MN与直线AB.CD分别交于点E.F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.参考答案一、选择题1. B2. C3. C4.D5. D6.B7. B8.C9.B 10. A 11.C 12. B二、填空题13.2或8 14.垂直 15.两点之间线段最短16.145°24′17.120° 18.45° 19.180 20.15cm 21.63π 22.∠1+∠2=90°三、解答题23.解:设∠ABC=α,则∠ABD= ,∠ABE= α∵∠DBE=∠ABD﹣∠ABE∴﹣α=27°得α=126°答:∠ABC=126°.24.解:∵AC=120× =12(海里),BC=50× =5(海里),AB=13海里,∴AC2+BC2=AB2 ,∴△ABC是直角三角形.∵∠CBA=90°-40°=50°,∴∠CAB=40°,∴甲的航向为北偏东50°.25.解:∵DB∥FG∥EC,∴∠BAG=∠ABD=84°,∠GAC=∠ACE=60°;∴∠BAC=∠BAG+∠GAC=144°,∵AP是∠BAC的平分线,∴∠PAC= ∠BAC=72°,∴∠PAG=∠PAC-∠GAC=72°-60°=12°26.解:如图,图中能用一个大写字母表示的角有3个,分别为:∠A,∠B,∠C.27.(1)∠DOF=∠BOF(2)解:∵OE⊥CD,∴∠COE=90°,∴∠AOC=∠COE﹣∠AOE=90°﹣26°=64°,∵∠AOC=∠BOD,∴∠BOD=64°,又∵OF平分∠BOD,∴∠DOF= ∠BOD= ×64°=32°,∴∠COF=180°﹣∠DOF=180°﹣32°=148°28.(1)解:如图:(2)解:由某相对两个面上的数字分别为和﹣5,得+(﹣5)=0.解得x=2.29.(1)解:如图1∵∠1与∠2互补,∴∠1+∠2=180°.又∵∠1=∠AEF,∠2=∠CFE,∴∠AEF+∠CFE=180°,∴AB∥CD(2)解:如图2,由(1)知,AB∥CD,∴∠BEF+∠EFD=180°.又∵∠BEF与∠EFD的角平分线交于点P,∴∠FEP+∠EFP= (∠BEF+∠EFD)=90°,∴∠EPF=90°,即EG⊥PF.∵GH⊥EG,∴PF∥GH(3)解:∠HPQ的大小不发生变化,理由如下:如图3,∵∠1=∠2,∴∠3=2∠2.又∵GH⊥EG,∴∠4=90°-∠3=90°-2∠2.∴∠EPK=180°-∠4=90°+2∠2.∵PQ平分∠EPK,∴∠QPK= ∠EPK=45°+∠2.∴∠HPQ=∠QPK-∠2=45°,∴∠HPQ的大小不发生变化,一直是45°。
第二单元 认识图形(二)(B卷 能力提升练)-一年级数学下册(苏教版)-(含答案)
第二单元认识图形(二)(B卷能力提升练)2022-2023年一年级数学下册(苏教版)第二单元认识图形(二)(B卷能力提升练)(满分:100分,时间:60分钟。
)一、选择题。
(每题2分,共16分。
)1.□可以用()根同样的小棒围成。
A.4B.6C.102.如图,三角形有()个,长方形有()个。
A.7,4B.4,6C.2,73.下图是一副七巧板,下列选项中哪几块不能拼成正方形?()A.①和①B.①、①、①C.①、①、①4.小丽将一张正方形纸对折两次,猜猜她不能折出什么图形?()A.三角形B.长方形C.圆5.将一张正方形纸对折,不可能得到()。
A.长方形B.三角形C.正方形6.选()与左边的图形可以拼成正方形。
A.①B.①C.①D.①7.根据规律,被挡A.3B.4C.5 8.图中有几个三角形?()A.7B.5C.6二、填空题。
(共23分)9.数一数,填一填。
(1)(2)( )形的个数最少。
(3)( )和( )形的个数一样多。
10.数一数,填一填。
□有( )个,○有( )个,①有( )个,有( )个。
11.数一数。
( )个,( )个,( )个,( )个。
12.数一数,填一填。
( )形最多,比最少的图形多( )个。
13.数一数。
有( )个长方形 有( )个正方形三、判断题。
(每题2分,共8分。
)14.左图中有平行四边形。
( )15.是长方形。
( )16.左图是圆。
( )17.一个正方形可以剪成四个一样的三角形。
( )四、连线题。
(每题6分,共12分。
)18.下面一排的图形是照哪个积木画下来的?连一连。
19.用下面的物体可以画出哪些图形?连一连。
五、作图题。
(共5分)20.在正方形中画两条线,把正方形分成四个形状和大小都一样的图形。
六、解答题。
(共36分)21.看图整理。
(1)看上图,按形状分一分、涂一涂。
(2)填表。
(3)()和()的个数同样多,()的个数最少。
(4)三角形比圆多()个。
22.看图回答问题。
第3章 图形的初步认识 单元测试(含解析)数学华师大版(2024)七年级上册
数学华师大版(2024)七年级上册第3章图形的初步认识单元测试一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.下列现象中,属于中心投影的是()A.白天旗杆的影子B.阳光下广告牌的影子C.灯光下演员的影子D.中午小明跑步的影子2.对于如图所示的几何体,说法正确的是()A.几何体是三棱锥B.几何体有6条侧棱C.几何体的侧面是三角形D.几何体的底面是三角形3.如图是某几何体的三视图,则该几何体是()A. B. C. D.4.下列几何体中,从左面看到的图形是三角形的几何体共有()A.1B.2C.3D.45.如图,学校C 在蕾蕾家B 南偏东55︒的方向上,点A 表示超市所在的位置,90ABC ∠=︒,则超市A 在蕾蕾家B 的()A.北偏西25︒的方向上B.南偏西25︒的方向上C.北偏西35︒的方向上D.南偏西35︒的方向上6.如图,16cm AB =,10cm AD BC ==,则CD 等于()A.4cmB.6cmC.8cmD.10cm 7.下列平面图形中,经过折叠不能围成正方体的是()A. B. C. D.8.如图,点O 在直线AB 上,90COB EOD ∠=∠=°,那么下列说法错误的是()A.1∠与2∠相等B.AOE ∠与2∠互余C.AOD ∠与1∠互补D.AOE ∠与COD ∠互余9.已知线段12cm AB =,点C 是直线AB 上一点,4cm BC =,点M 是线段AB 的中点,点N 是线段BC 的中点,则线段MN 的长度是()A.4cmB.6cmC.4cm 或8cmD.6cm 或8cm10.如图,射线OC 平分AOB ∠,射线OD 平分BOC ∠,则下列等式中成立的有()①COD AOD BOC ∠=∠-∠;②COD AOD BOD ∠=∠-∠;③22COD AOD AOB ∠=∠-∠;④13COD AOB ∠=∠.A.①②B.①③C.②③D.②④二、填空题(每小题4分,共20分)11.在下列生活、生产现象中:可以用基本事实“两点确定一条直线”来解释的是________(填序号).①用两颗钉子就可以把木条固定在墙上;②把笔尖看成一个点,当这个点运动时便得到一条线;③把弯曲的公路改直,就能缩短路程;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上.12.如图,已知点O 在直线AB 上,16515∠=︒',27830∠=︒',则12∠+∠=_________,3∠=_________.13.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是______.14.如图,已知线段16cm AB =,点M 在AB 上:1:3AM BM =,P ,Q 分别为AM 、AB 的中点,则PQ 的长为____________.15.如图,126AOB ∠=︒,射线OC 在AOB ∠外,且2BOC AOC ∠=∠,若OM 平分BOC ∠,ON 平分AOC ∠,则MON ∠=_________.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)某几何体的三视图如图所示.(1)该几何体的名称是_______;(2)根据图中的数据,求该几何体的侧面积.(结果保留π)17.(8分)如图,是一个长方体纸盒的平面展开图,已知纸盒中相对的两个面上的数互为相反数.(1)分别写出a 、b 的值;(2)先化简,再求值:()22242325a b a b ab a b ab ⎡⎤---+⎣⎦18.(10分)如图,是由一些棱长都为1的小正方体组合成的简单几何体.(1)该几何体的表面积(含下底面)为______;(2)请画出这个几何体的三视图并用阴影表示出来;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么最多可以再添加______个小正方体.19.(10分)如图,点A ,O ,B 在同一条直线上,射线OD 和射线OE 分别平分AOC ∠和BOC ∠.(1)求DOE ∠的度数;(2)①图中BOE ∠的补角是______;②直接写出图中与COE ∠互余的角______.20.(12分)如图,点C 在线段AB 上,点M ,N 分别是AC ,BC 的中点.(1)若9cm AC =,6cm CB =,求线段MN 的长.(2)若C 为线段AB 上任一点,满足cm AC CB a +=,其他条件不变,你能猜想出MN 的长度吗?请说明理由.(3)若C 在线段AB 的延长线上,且满足cm AC BC b -=,点M ,N 分别为AC ,BC 的中点,你能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由.21.(12分)已知:AOB ∠,过点O 引两条射线OC ,OM ,且OM 平分AOC ∠.(1)如图,若120AOB ∠=︒,30BOC ∠=︒,且点C 在AOB ∠的内部.①请补全图形;②求出MOB ∠的度数;以下是求MOB ∠的度数的解题过程,请你补充完整.AOC AOB BOC ∠=∠-∠ ,120AOB ∠=︒,30BOC ∠=︒,答案以及解析1.答案:C解析:A.白天旗杆的影子为平行投影,所以A选项不合题意;B.阳光下广告牌的影子为平行投影,所以B选项不合题意;C.灯光下演员的影子为中心投影,所以C选项符合题意;D.中午小明跑步的影子为平行投影,所以D选项不合题意.故选:C.2.答案:D解析: 该几何体是三棱柱,∴底面是三角形,侧面是四边形,有3条侧棱,∴D说法正确,A、B、C说法错误,故选:D.3.答案:A解析: 该几何体的主视图与左视图都是矩形,俯视图是一个圆,∴该几何体是圆柱,故选:A.4.答案:B解析:第一个几何体从左面看到的图形是圆形;第二个几何体从左面看到的图形是三角形;第三个几何体从左面看到的图形是长方形;第四个几何体从左面看到的图形是正方形;第五个几何体从左面看到的图形是三角形;∴从左面看到的图形是三角形的几何体共有2个,故选:B.5.答案:D解析:如图所示:由题意可得:255∠=︒,90ABC ∠=︒,∴1905535∠=︒-︒=︒,∴超市A 在蕾蕾家B 的的南偏西35︒的方向上.故选:D.6.答案:A解析:因为16cm AB =,10cm AD BC ==,所以1010164(cm)CD AD BC AB =+-=+-=.7.答案:C解析:由展开图可知:A 、B 、D 能围成正方体,故不符合题意;C 、围成几何体时,有两个面重合,不能围成正方体,故符合题意:故选:C.8.答案:D解析:∵90COB EOD ∠=∠=︒,∴1290COD COD ∠+∠=∠+∠=︒,∴12∠=∠,故A 选项正确;∵190AOE ∠+∠=︒,∴290AOE ∠+∠=︒,即AOE ∠与2∠互余,故B 选项正确;∵2180AOD ∠+∠=︒,12∠=∠,∴1180AOD ∠+∠=︒,即AOD ∠与1∠互补,故C 选项正确;无法判断AOE ∠与COD ∠是否互余,例如当1230∠=∠=︒时,60COD AOE ∠∠==︒,120AOE COD ∠+∠=︒,不互余,故D 选项错误;故选:D.9.答案:C解析:当点C 在线段AB 上时,点M 是线段AB 的中点,点N 是线段BC 的中点,16cm 2AM BM AB ∴===,12cm 2CN BN BC ===,624cm MN BM BN ∴=-=-=,当点C 在线段AB 的延长线上时,点M 是线段AB 的中点,点N 是线段BC 的中点,16cm 2AM BM AB ∴===,12cm 2CN BN BC ===,628cm MN BM BN ∴=+=+=,综上所述,线段MN 的长度是4cm 或8cm ,故选C.10.答案:B解析:OC 平分AOB ∠,OD 平分BOC ∠,AOC BOC ∴∠=∠,COD BOD∠=∠COD AOD AOC ∠=∠-∠ ,AOC BOC∠=∠COD AOD BOC∴∠=∠-∠故①正确;BOD BOC∠≠∠ COD AOD BOD∴∠≠∠-∠故②错误;AOD AOC COD∠=∠+∠ ()222AOD AOC COD AOB COD∴∠=∠+∠=∠+∠222AOD AOB AOB COD AOB COD∴∠-∠=∠+∠-∠=∠22COD AOD AOB∴∠=∠-∠故③正确;12COD BOC ∠=∠ ,12BOC AOB ∠=∠111224COD AOB AOB ∴∠=⨯∠=∠故④错误;故选:B.11.答案:①④/④①解析:①用两颗钉子就可以把木条固定在墙上,可以用基本事实“两点确定一条直线”来解释;②把笔尖看成一个点,当这个点运动时便得到一条线,可以用基本事实“无数个点组成线”来解释;③把弯曲的公路改直,就能缩短路程,可以用基本事实“两点之间线段最短”来解释;④植树时,只要栽下两棵树,就可以把同一行树栽在同一条直线上,可以用基本事实“两点确定一条直线”来解释;综上可得:①④可以用“两点确定一条直线”来解释,故答案为:①④.12.答案:14345︒';3615︒'解析:因为16515∠=︒',27830∠=︒',所以126515783014345'''∠+=+=︒∠︒︒,所以3180(12)180143453615︒''∠=︒-∠+∠=︒-=︒.13.答案:左视图解析:如图,该几何体正视图是由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,故三种视图面积最小的是左视图.故答案为左视图14.答案:6cm解析:根据已知条件得到4cm AM =.12cm BM =,根据线段中点的定义得到2cm 12AP AM ==,8cm 12AQ AB ==,从而得到答案.解析:∵16cm AB =,:1:3AM BM =,∴4cm AM =.12cm BM =,∵P ,Q 分别为AM ,AB 的中点,∴2cm 12AP AM ==,8cm 12AQ AB ==,∴6cm PQ AQ AP =-=;故答案为:6cm .15.答案:117︒解析:因为360AOB BOC AOC ∠+∠+∠=︒,所以360BOC AOC AOB ∠+∠=︒-∠.因为OM 平分BOC ∠,ON 平分AOC ∠,所以12MOC BOC ∠=∠,12CON AOC ∠=∠,所以1122MON MOC CON BOC AOC ∠=∠+∠=∠+∠()111()360180222BOC AOC AOB AOB =∠+∠=︒-∠=︒-∠11801261172=︒-⨯︒=︒,故答案为117︒.16.答案:(1)圆锥(2)()2dm 解析:(1)由三视图可知,原几何体为圆锥.故答案为:圆锥.(2)根据图中数据知,圆锥的底面半径为4,高为6,∴=,∴圆锥的侧面积为()218πdm 2⨯⨯⨯=.17.答案:(1)3a =-,5b =(2)2a b ab -+,60-解析:(1)由长方体展开图的特点可知3a =-,()55b =--=;(2)()22242325a b a b ab a b ab ⎡⎤---+⎣⎦()22242635a b a b ab a b ab =--++()2245a b a b ab =--2245a b a b ab=-+2a b ab=-+当3a =-,5b =时,原式()()23535451560=--⨯+-⨯=--=-.18.答案:(1)28(2)见解析(3)2解析:(1)()()42624211⨯+⨯+⨯⨯⨯()81281=++⨯281=⨯28=所以该几何体的表面积(含下底面)为28,(2)如图所示:(3)由分析可知,最多可以再添加2个小正方体19.答案:(1)90DOE ∠=︒(2)COD ∠和AOD∠解析:(1) 点A ,O ,B 在同一条直线上,180AOC BOC ∴∠+∠=︒,射线OD 和射线OE 分别平分AOC ∠和BOC ∠,12COD AOC ∴∠=∠,12COE BOC ∠=∠,()11190222COD COE AOC BOC AOC BOC ∴∠+∠=∠+∠=∠+∠=︒,90DOE ∴∠=︒;(2)①图中BOE ∠的补角是AOE ∠;②直接写出图中与COE ∠互余的角COD ∠和AOD ∠,故答案为:COD ∠和AOD ∠.20.答案:(1)7.5cm(2)1cm 2a ,理由见解析(3)能,1cm 2MN b =,理由见解析解析:(1)因为9cm AC =,点M 是AC 的中点,所以1 4.5cm 2CM AC ==.因为6cm BC =,点N 是BC 的中点,所以13cm 2CN BC ==,所以7.5cm MN CM CN =+=,所以线段MN 的长度为7.5cm .(2)1cm 2MN a =.理由:因为C 为线段AB 上一点,且M ,N 分别是AC ,BC 的中点,所以11()cm 22MN MC CN AC BC a =+=+=.(3)能.当点C 在线段AB 的延长线上时,如图,1cm 2MN b =.理由:因为点M 是AC 的中点,所以12CM AC =.因为点N 是BC 的中点,所以12CN BC =,所以11()cm 22MN CM CN AC BC b =-=-=.②AOC AOB BOC ∠=∠-∠ ,90AOC ∴∠=︒.AOC BOC AOB ∴∠=∠+∠12AOM AOC ∴∠=∠=AOC BOC AOB ∴∠=∠-∠1β。
《图形认识初步》综合测试题(B)
D. 0
1 . 图所示 , 线段 B 5如 在 C上 取 点 A A A A AC 则 连 B, D, E, , F,
图 中共有 线 段 ( A. 8条 ) . B 1 . 0条 C 1 . 2条 D 1 . 5条
一
,
' -
. _
1
m ●●
1. 图, 如 3 有一 个 无盖 的 正方 体纸 盒 , 底 面标 有 字 坶“ ” 沿 【 粗线 下 , { l l
_ -
l 盖 尢
将 其 剪开 展成 平 面 图形 。 一想 . 个平 面 冈形 是 ( 想 这
i l T —_ r—广 —f一T ] — — — —
M
) .
f I f 【 厂 —广 r ] — 一一 — M
L 1 I J M
— —
一—— 【 I— —¨l j l—
C. D. 第 1 3题 图
A.
一
, ; -
B.
1. 4 下列 说法 正 确 的个数 是 (
) .
① 一 根拉 得很 紧 的细 线就 是 直线 ;
。
’
蹙 图形认识{步》 ’《 砸 综台测试题( ) 日
温馨 提示 :. 1 考试 时间 6 0分 2 本 套测试 题 共三道 大题 。 . 满分 1 0分. O
1 题 号
得
一
总
分
分
、
认真 填一填 ( 每小题 2分 , 2 共 O分 )
.
— ~ —
1 1与 2互余 , 2与 3 互 补 , 1 4 , . :3 。 则 3=
—
块 长方
体 的积木搭 成.
0一
第七单元 角的初步认识(B卷 能力提升练)-2022-2023年二年级下册(苏教版)
第七单元角的初步认识(B卷能力提升练)(满分:100分,时间:60分钟。
)一、选择题。
(每题2分,共16分。
)1. 下图中有()个角。
A. 3B. 5C. 62. 把一张正方形的纸剪去一个角,剩下的图形不可能有()个角。
A. 2B. 5C. 43. 一张不规则的纸,至少对折()次,一定能得到一个直角。
A. 1B. 2C. 34. 下列图中用两个完全相同的三角尺拼成的角是直角的是()。
A. B. C.5. 红领巾上有三个角,最大的那个角是()。
A. 直角B. 锐角C. 钝角6. 如图,角1和角2相比()。
A. 角1比角2大B. 角1比角2小C. 无法比较7. 如图中有()个直角。
A. 2B. 4C. 68. 钟面上3:05,时针和分针形成()。
A. 锐角B. 直角C. 钝角二、填空题。
(19分)9. 下图中有()个角,有()个锐角,()个钝角。
10. 下图是()边形,有()个角是直角,()个角是锐角,()个角是钝角。
11. 观察右面由七巧板拼成的图案,填一填。
(1)和∠5一样大的是()和()。
(2)()和()都是直角。
(3)∠3和∠5拼成的角是()角,∠1和∠4拼成的角是()角。
12. 小红4:25从学校出发,4:40回到家中,她路上一共用了()分钟。
分针所经过的部分形成一个()角。
13. 数一数图形中的角。
下图中共有()个角,其中有()个直角,()个锐角,()个钝角。
三、判断题。
(共8分)14. 钟面上9时整,时针和分针构成的角是直角。
()15. 左图中有4个直角。
()16. 直角有顶点,但钝角没有顶点.()17. 钟面上6:15的时候,分针与时针形成一个直角.()四、作图题。
(共18分)18. 根据要求在下面的图形中画一条线段。
增加三个直角19. 8月28日,第二十届省运会将正式鸣锣开赛,届时来自全省的体育健儿将齐聚泰州,点燃激情,拥抱梦想。
同学们,你能不能从下面的运动图标中按要求描出一个角,并用小弧线标注出来呢?20. 拼一拼。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- 1 - 图形的初步认识练习
班级______姓名_______
一、选择题
1.①平角是一条直线;②射线是直线的一半;③延长射线OA 到C ;④用一个扩大2倍的放大镜去看一个角,这个角会扩大2倍;⑤延长线段AB 到C;以上说法正确的有( )
A .0个 B.1个 C.2个 D.3个
2.下列说法正确的有( )个。
①过两点有且只有一条直线 ②连结两点的线段叫做两点间的距离
③两点之间,线段最短 ④若AB =BC ,则点B 是线段AC 的中点
A.1个
B.2个
C.3个
D.4个
3.甲看乙的方向为南偏西25°,那么乙看甲的方向是 ( )
A .北偏东75°
B .南偏东75°
C .北偏东25°
D .北偏西25°
4.若∠A 的余角是70°,则∠A 的补角是( )
A .70°
B .110°
C .20°
D .160°
5.已知∠AOB=30°,∠BOC=80°,∠AOC=50°,则下列说法正确的是( )
A.射线OB 在△AOC 内
B.射线OB 在△AOC 外
C.射线OB 与射线OA 重合
D.射线OB 与射线OC 重合
二、填空题
6.点与直线的位置关系有 。
7.乘火车从A 站出发,沿途经过3个车站可到达B 站,那么在A 、B 两站之间最多共有________种不同的票价
8.57.32°=_______°_______′_______″ 27°14′24″=___ __°.
9.计算:50°24′45″+98°12′25″=
10.若一个角的补角等于这个角的余角的3倍,则这个角的度数是______.
11.小明每天下午5:30回家,这时分针与时针所成的角的度数为___________。
12.如果31,9043,9021∠=∠=∠+∠︒=∠+∠且,则42∠∠与的关系是 , 理由是 ;
13.已知点A 、B 、C 三个点在同一条直线上,若线段AB=12,BC=5,则线段AC=_________
14.如图(1)是一块三角板,且︒=∠301,则____2=∠ 。
15.已知∠MON=30°,∠NOP=15°,则∠MOP=_________。
16.平面上有四个点,经过每两个点作一条直线,则最多可作 条直线.如果平面内 有n 个点,则最多可作 条直线.
17.如图5,已知∠COE=∠BOD=∠AOC=90°,则图中与∠BOC 相等的角为_______ ,与∠BOC 互补的角为_______ ,与∠BOC 互余的角为________ .
图(1)2
1C B A D C A B
(5)O
E
- 2 -
三、解答题
18. 如图,已知∠1,∠2,画出一个角∠AOB=∠1-∠2.
1 2
19.如图,直线AB 与CD 相交于点O ,OE 平分∠COD ,OF 平分∠AOB ,∠DOF=65°. 求:(1)∠BOE 的度数;(2)∠AOC 的度数.
20.已知线段AC 和线段BC 在同一直线上,若AC=8cm,BC=3cm ,点D 是线段AC 的中点,点E 是线段BC 中点,求DE 的长。