[Reliability Sharing]The Normal Distribution

合集下载

心理学名词——精选推荐

心理学名词——精选推荐

心理学名词1.从众(conformity)2.单纯曝光效果(mere exposure effect)3.模仿(modeling)4.跛足策略(self-handicapping)5.过度辩证效应(over justification effect)6.恋爱基模(love schema)7.习得无助(learned helplessness)关系8.睡眠效果(sleeper effect)9.破窗效(Broken Window Effect)10.联结与强化(linking vs. reinforcement)11.惩罚之前(before punishment)12.旁观者效应(bystander effect)13.消弱突现(extinction burst)14.自我实现预言(self-fulfilling prophecy)决定15.正义世界假说(a just world)16.自我评价维护理论(self-evaluation maintenance theory, SEM)17.自我中心偏误(egocentric bias)18.基本归因谬误(fundamental attribution error)19.印象的初始信息(primacy effect)20.虚假的一致(false consensus)21.服从(obedience)22.认知失调理论(cognitive dissonance theory)23.团体迷思(group thinking)心理学十大著名效应1.蝴蝶效应非线性,俗称“蝴蝶效应”。

什么是蝴蝶效应?先从美国麻省理工学院气象学家洛伦兹(Lorenz)的发现谈起。

为了预报天气,他用计算机求解仿真地球大气的13个方程式。

为了更细致地考察结果,他把一个中间解取出,提高精度再送回。

而当他喝了杯咖啡以后回来再看时竟大吃一惊:本来很小的差异,结果却偏离了十万八千里!计算机没有毛病,于是,洛伦兹(Lorenz)认定,他发现了新的现象:“对初始值的极端不稳定性”,即:“混沌”,又称“蝴蝶效应”,亚洲蝴蝶拍拍翅膀,将使美洲几个月后出现比狂风还厉害的龙卷风!蝴蝶效应是气象学家洛伦兹1963年提出来的。

统计学术语中英文对照

统计学术语中英文对照

population 母体sample 样本census 普查sampling 抽样quantitative 量的qualitative/categorical质的discrete 离散的continuous 连续的population parameters 母体参数sample statistics 样本统计量descriptive statistics 叙述统计学inferential/inductive statistics 推论 ...抽样调查(sampliing survey单纯随机抽样(simple random sampling 系统抽样(systematic sampling分层抽样(stratified sampling整群抽样(cluster sampling多级抽样(multistage sampling常态分配(Parametric Statistics)无母数统计学(Nonparametric Statistics) 实验设计(Design of Experiment)参数(Parameter)Data analysis 资料分析Statistical table 统计表Statistical chart 统计图Pie chart 圆饼图Stem-and-leaf display 茎叶图Box plot 盒须图Histogram 直方图Bar Chart 长条图Polygon 次数多边图Ogive 肩形图Descriptive statistics 叙述统计学Expectation 期望值Mode 众数Mean 平均数Variance 变异数Standard deviation 标准差Standard error 标准误Covariance matrix 共变异数矩阵Inferential statistics 推论统计学Point estimation 点估计Interval estimation 区间估计Confidence interval 信赖区间Confidence coefficient 信赖系数Testing statistical hypothesis 统计假设检定Regression analysis 回归分析Analysis of variance 变异数分析Correlation coefficient 相关系数Sampling survey 抽样调查Census 普查Sampling 抽样Reliability 信度Validity 效度Sampling error 抽样误差Non-sampling error 非抽样误差Random sampling 随机抽样Simple random sampling 简单随机抽样法Stratified sampling 分层抽样法Cluster sampling 群集抽样法Systematic sampling 系统抽样法Two-stage random sampling 两段随机抽样法Convenience sampling 便利抽样Quota sampling 配额抽样Snowball sampling 雪球抽样Nonparametric statistics 无母数统计The sign test 等级检定Wilcoxon signed rank tests 魏克森讯号等级检定Wilcoxon rank sum tests 魏克森等级和检定Run test 连检定法Discrete uniform densities 离散的均匀密度Binomial densities 二项密度Hypergeometric densities 超几何密度Poisson densities 卜松密度Geometric densities 几何密度Negative binomial densities 负二项密度Continuous uniform densities 连续均匀密度Normal densities 常态密度Exponential densities 指数密度Gamma densities 伽玛密度Beta densities 贝他密度Multivariate analysis 多变量分析Principal components 主因子分析Discrimination analysis 区别分析Cluster analysis 群集分析Factor analysis 因素分析Survival analysis 存活分析Time series analysis 时间序列分析Linear models 线性模式Quality engineering 品质工程Probability theory 机率论Statistical computing 统计计算Statistical inference 统计推论Stochastic processes 随机过程Decision theory 决策理论Discrete analysis 离散分析Mathematical statistics 数理统计统计学: Statistics母体: Population样本: Sample资料分析: Data analysis统计表: Statistical table统计图: Statistical chart圆饼图: Pie chart茎叶图: Stem-and-leaf display盒须图: Box plot直方图: Histogram长条图: Bar Chart次数多边图: Polygon肩形图: Ogive叙述统计学: Descriptive statistics 期望值: Expectation众数: Mode平均数: Mean变异数: Variance标准差: Standard deviation标准误: Standard error共变异数矩阵: Covariance matrix推论统计学: Inferential statistics点估计: Point estimation区间估计: Interval estimation信赖区间: Confidence interval信赖系数: Confidence coefficient统计假设检定: Testing statisticalhypothesis回归分析: Regression analysis变异数分析: Analysis of variance相关系数: Correlation coefficient抽样调查: Sampling survey普查: Census抽样: Sampling信度: Reliability效度: Validity抽样误差: Sampling error非抽样误差: Non-sampling error随机抽样: Random sampling简单随机抽样法: Simple randomsampling分层抽样法: Stratified sampling群集抽样法: Cluster sampling系统抽样法: Systematic sampling两段随机抽样法: Two-stage randomsampling便利抽样: Convenience sampling配额抽样: Quota sampling雪球抽样: Snowball sampling无母数统计: Nonparametric statistics等级检定: The sign test魏克森讯号等级检定: Wilcoxon signedrank tests魏克森等级和检定: Wilcoxon rank sumtests连检定法: Run test离散的均匀密度: Discrete uniformdensities二项密度: Binomial densities超几何密度: Hypergeometric densities卜松密度: Poisson densities几何密度: Geometric densities负二项密度: Negative binomial densities连续均匀密度: Continuous uniformdensities常态密度: Normal densities指数密度: Exponential densities伽玛密度: Gamma densities贝他密度: Beta densities多变量分析: Multivariate analysis主因子分析: Principal components区别分析: Discrimination analysis群集分析: Cluster analysis因素分析: Factor analysis存活分析: Survival analysis时间序列分析: Time series analysis线性模式: Linear models品质工程: Quality engineering机率论: Probability theory统计计算: Statistical computing统计推论: Statistical inference随机过程: Stochastic processes决策理论: Decision theory离散分析: Discrete analysis数理统计: Mathematical statistics统计名词市调辞典众数(Mode) 普查(census)指数(Index) 问卷(Questionnaire)中位数(Median) 信度(Reliability)百分比(Percentage) 母群体(Population)信赖水准(Confidence level) 观察法(Observational Survey)假设检定(Hypothesis Testing) 综合法(Integrated Survey)卡方检定(Chi-square Test) 雪球抽样(Snowball Sampling)差距量表(Interval Scale) 序列偏差(Series Bias)类别量表(Nominal Scale) 次级资料(Secondary Data)顺序量表(Ordinal Scale) 抽样架构(Sampling frame)比率量表(Ratio Scale) 集群抽样(Cluster Sampling)连检定法(Run Test) 便利抽样(Convenience Sampling)符号检定(Sign Test) 抽样调查(SamplingSur)算术平均数(Arithmetic Mean) 非抽样误差(non-sampling error)展示会法(Display Survey)调查名词准确效度(Criterion-RelatedValidity)元素(Element) 邮寄问卷法(Mail Interview)样本(Sample) 信抽样误差(Sampling error)效度(Validity) 封闭式问题(Close Question)精确度(Precision) 电话访问法(TelephoneInterview)准确度(Validity) 随机抽样法(RandomSampling)实验法(Experiment Survey)抽样单位(Sampling unit) 资讯名词市场调查(Marketing Research) 决策树(Decision Trees)容忍误差(Tolerated erro) 资料采矿(DataMining)初级资料(Primary Data) 时间序列(Time-Series Forecasting)目标母体(Target Population) 回归分析(Regression)抽样偏差(Sampling Bias) 趋势分析(TrendAnalysis)抽样误差(sampling error) 罗吉斯回归(Logistic Regression)架构效度(Construct Validity) 类神经网络(Neural Network)配额抽样(Quota Sampling) 无母数统计检定方法(Non-Parametric Test)人员访问法(Interview) 判别分析法(Discriminant Analysis)集群分析法(cluster analysis) 规则归纳法(Rules Induction)内容效度(Content Validity) 判断抽样(Judgment Sampling)开放式问题(Open Question) OLAP(OnlineAnalytical Process)分层随机抽样(Stratified Randomsampling) 资料仓储(Data Warehouse)非随机抽样法(Nonrandom Sampling) 知识发现(Knowledge DiscoveryAbsolute deviation, 绝对离差Absolute number, 绝对数Absolute residuals, 绝对残差Acceleration array, 加速度立体阵Acceleration in an arbitrary direction, 任意方向上的加速度Acceleration normal, 法向加速度Acceleration space dimension, 加速度空间的维数Acceleration tangential, 切向加速度Acceleration vector, 加速度向量Acceptable hypothesis, 可接受假设Accumulation, 累积Accuracy, 准确度Actual frequency, 实际频数Adaptive estimator, 自适应估计量Addition, 相加Addition theorem, 加法定理Additive Noise, 加性噪声Additivity, 可加性Adjusted rate, 调整率Adjusted value, 校正值Admissible error, 容许误差Aggregation, 聚集性Alpha factoring,α因子法Alternative hypothesis, 备择假设Among groups, 组间Amounts, 总量Analysis of correlation, 相关分析Analysis of covariance, 协方差分析Analysis Of Effects, 效应分析Analysis Of Variance, 方差分析Analysis of regression, 回归分析Analysis of time series, 时间序列分析Analysis of variance, 方差分析Angular transformation, 角转换ANOVA (analysis of variance), 方差分析ANOVA Models, 方差分析模型ANOVA table and eta, 分组计算方差分析Arcing, 弧/弧旋Arcsine transformation, 反正弦变换Area 区域图Area under the curve, 曲线面积AREG , 评估从一个时间点到下一个时间点回归相关时的误差ARIMA, 季节和非季节性单变量模型的极大似然估计Arithmetic grid paper, 算术格纸Arithmetic mean, 算术平均数Arrhenius relation, 艾恩尼斯关系Assessing fit, 拟合的评估Associative laws, 结合律Asymmetric distribution, 非对称分布Asymptotic bias, 渐近偏倚Asymptotic efficiency, 渐近效率Asymptotic variance, 渐近方差Attributable risk, 归因危险度Attribute data, 属性资料Attribution, 属性Autocorrelation, 自相关Autocorrelation of residuals, 残差的自相关Average, 平均数Average confidence interval length, 平均置信区间长度Average growth rate, 平均增长率Bar chart, 条形图Bar graph, 条形图Base period, 基期Bayes' theorem , Bayes定理Bell-shaped curve, 钟形曲线Bernoulli distribution, 伯努力分布Best-trim estimator, 最好切尾估计量Bias, 偏性Binary logistic regression, 二元逻辑斯蒂回归Binomial distribution, 二项分布Bisquare, 双平方Bivariate Correlate, 二变量相关Bivariate normal distribution, 双变量正态分布Bivariate normal population, 双变量正态总体Biweight interval, 双权区间Biweight M-estimator, 双权M估计量Block, 区组/配伍组BMDP(Biomedical computer programs),BMDP统计软件包Boxplots, 箱线图/箱尾图Breakdown bound, 崩溃界/崩溃点Canonical correlation, 典型相关Caption, 纵标目Case-control study, 病例对照研究Categorical variable, 分类变量Catenary, 悬链线Cauchy distribution, 柯西分布Cause-and-effect relationship, 因果关系Cell, 单元Censoring, 终检Center of symmetry, 对称中心Centering and scaling, 中心化和定标Central tendency, 集中趋势Central value, 中心值CHAID -χ2 Automatic Interaction Detector,卡方自动交互检测Chance, 机遇Chance error, 随机误差Chance variable, 随机变量Characteristic equation, 特征方程Characteristic root, 特征根Characteristic vector, 特征向量Chebshev criterion of fit, 拟合的切比雪夫准则Chernoff faces, 切尔诺夫脸谱图Chi-square test, 卡方检验/χ2检验Choleskey decomposition, 乔洛斯基分解Circle chart, 圆图Class interval, 组距Class mid-value, 组中值Class upper limit, 组上限Classified variable, 分类变量Cluster analysis, 聚类分析Cluster sampling, 整群抽样Code, 代码Coded data, 编码数据Coding, 编码Coefficient of contingency, 列联系数Coefficient of determination, 决定系数Coefficient of multiple correlation, 多重相关系数Coefficient of partial correlation, 偏相关系数Coefficient of production-moment correlation, 积差相关系数Coefficient of rank correlation, 等级相关系数Coefficient of regression, 回归系数Coefficient of skewness, 偏度系数Coefficient of variation, 变异系数Cohort study, 队列研究Collinearity, 共线性Column, 列Column effect, 列效应Column factor, 列因素Combination pool, 合并Combinative table, 组合表Common factor, 共性因子Common regression coefficient, 公共回归系数Common value, 共同值Common variance, 公共方差Common variation, 公共变异Communality variance, 共性方差Comparability, 可比性Comparison of bathes, 批比较Comparison value, 比较值Compartment model, 分部模型Compassion, 伸缩Complement of an event, 补事件Complete association, 完全正相关Complete dissociation, 完全不相关Complete statistics, 完备统计量Completely randomized design, 完全随机化设计Composite event, 联合事件Composite events, 复合事件Concavity, 凹性Conditional expectation, 条件期望Conditional likelihood, 条件似然Conditional probability, 条件概率Conditionally linear, 依条件线性Confidence interval, 置信区间Confidence limit, 置信限Confidence lower limit, 置信下限Confidence upper limit, 置信上限Confirmatory Factor Analysis , 验证性因子分析Confirmatory research, 证实性实验研究Confounding factor, 混杂因素Conjoint, 联合分析Consistency, 相合性Consistency check, 一致性检验Consistent asymptotically normal estimate,相合渐近正态估计Consistent estimate, 相合估计Constrained nonlinear regression, 受约束非线性回归Constraint, 约束Contaminated distribution, 污染分布Contaminated Gausssian, 污染高斯分布Contaminated normal distribution, 污染正态分布Contamination, 污染Contamination model, 污染模型Contingency table, 列联表Contour, 边界线Contribution rate, 贡献率Control, 对照, 质量控制图Controlled experiments, 对照实验Conventional depth, 常规深度Convolution, 卷积Corrected factor, 校正因子Corrected mean, 校正均值Correction coefficient, 校正系数Correctness, 正确性Correlation coefficient, 相关系数Correlation, 相关性Correlation index, 相关指数Correspondence, 对应Counting, 计数Counts, 计数/频数Covariance, 协方差Covariant, 共变Cox Regression, Cox回归Criteria for fitting, 拟合准则Criteria of least squares, 最小二乘准则Critical ratio, 临界比Critical region, 拒绝域Critical value, 临界值Cross-over design, 交叉设计Cross-section analysis, 横断面分析Cross-section survey, 横断面调查Crosstabs , 交叉表Crosstabs 列联表分析Cross-tabulation table, 复合表Cube root, 立方根Cumulative distribution function, 分布函数Cumulative probability, 累计概率Curvature, 曲率/弯曲Curvature, 曲率Curve Estimation, 曲线拟合Curve fit , 曲线拟和Curve fitting, 曲线拟合Curvilinear regression, 曲线回归Curvilinear relation, 曲线关系Cut-and-try method, 尝试法Cycle, 周期Cyclist, 周期性D test, D检验Data acquisition, 资料收集Data bank, 数据库Data capacity, 数据容量Data deficiencies, 数据缺乏Data handling, 数据处理Data manipulation, 数据处理Data processing, 数据处理Data reduction, 数据缩减Data set, 数据集Data sources, 数据来源Data transformation, 数据变换Data validity, 数据有效性Data-in, 数据输入Data-out, 数据输出Dead time, 停滞期Degree of freedom, 自由度Degree of precision, 精密度Degree of reliability, 可靠性程度Degression, 递减Density function, 密度函数Density of data points, 数据点的密度Dependent variable, 应变量/依变量/因变量Dependent variable, 因变量Depth, 深度Derivative matrix, 导数矩阵Derivative-free methods, 无导数方法Design, 设计Determinacy, 确定性Determinant, 行列式Determinant, 决定因素Deviation, 离差Deviation from average, 离均差Diagnostic plot, 诊断图Dichotomous variable, 二分变量Differential equation, 微分方程Direct standardization, 直接标准化法Direct Oblimin, 斜交旋转Discrete variable, 离散型变量DISCRIMINANT, 判断Discriminant analysis, 判别分析Discriminant coefficient, 判别系数Discriminant function, 判别值Dispersion, 散布/分散度Disproportional, 不成比例的Disproportionate sub-class numbers, 不成比例次级组含量Distribution free, 分布无关性/免分布Distribution shape, 分布形状Distribution-free method, 任意分布法Distributive laws, 分配律Disturbance, 随机扰动项Dose response curve, 剂量反应曲线Double blind method, 双盲法Double blind trial, 双盲试验Double exponential distribution, 双指数分布Double logarithmic, 双对数Downward rank, 降秩Dual-space plot, 对偶空间图DUD, 无导数方法Duncan's new multiple range method, 新复极差法/Duncan新法Error Bar, 均值相关区间图Effect, 实验效应Eigenvalue, 特征值Eigenvector, 特征向量Ellipse, 椭圆Empirical distribution, 经验分布Empirical probability, 经验概率单位Enumeration data, 计数资料Equal sun-class number, 相等次级组含量Equally likely, 等可能Equivariance, 同变性Error, 误差/错误Error of estimate, 估计误差Error type I, 第一类错误Error type II, 第二类错误Estimand, 被估量Estimated error mean squares, 估计误差均方Estimated error sum of squares, 估计误差平方和Euclidean distance, 欧式距离Event, 事件Event, 事件Exceptional data point, 异常数据点Expectation plane, 期望平面Expectation surface, 期望曲面Expected values, 期望值Experiment, 实验Experimental sampling, 试验抽样Experimental unit, 试验单位Explained variance (已说明方差)Explanatory variable, 说明变量Exploratory data analysis, 探索性数据分析Explore Summarize, 探索-摘要Exponential curve, 指数曲线Exponential growth, 指数式增长EXSMOOTH, 指数平滑方法Extended fit, 扩充拟合Extra parameter, 附加参数Extrapolation, 外推法Extreme observation, 末端观测值Extremes, 极端值/极值F distribution, F分布F test, F检验Factor, 因素/因子Factor analysis, 因子分析Factor Analysis, 因子分析Factor score, 因子得分Factorial, 阶乘Factorial design, 析因试验设计False negative, 假阴性False negative error, 假阴性错误Family of distributions, 分布族Family of estimators, 估计量族Fanning, 扇面Fatality rate, 病死率Field investigation, 现场调查Field survey, 现场调查Finite population, 有限总体Finite-sample, 有限样本First derivative, 一阶导数First principal component, 第一主成分First quartile, 第一四分位数Fisher information, 费雪信息量Fitted value, 拟合值Fitting a curve, 曲线拟合Fixed base, 定基Fluctuation, 随机起伏Forecast, 预测Four fold table, 四格表Fourth, 四分点Fraction blow, 左侧比率Fractional error, 相对误差Frequency, 频率Frequency polygon, 频数多边图Frontier point, 界限点Function relationship, 泛函关系Gamma distribution, 伽玛分布Gauss increment, 高斯增量Gaussian distribution, 高斯分布/正态分布Gauss-Newton increment, 高斯-牛顿增量General census, 全面普查Generalized least squares, 综合最小平方法GENLOG (Generalized liner models), 广义线性模型Geometric mean, 几何平均数Gini's mean difference, 基尼均差GLM (General liner models), 通用线性模型Goodness of fit, 拟和优度/配合度Gradient of determinant, 行列式的梯度Graeco-Latin square, 希腊拉丁方Grand mean, 总均值Gross errors, 重大错误Gross-error sensitivity, 大错敏感度Group averages, 分组平均Grouped data, 分组资料Guessed mean, 假定平均数Half-life, 半衰期Hampel M-estimators, 汉佩尔M估计量Happenstance, 偶然事件Harmonic mean, 调和均数Hazard function, 风险均数Hazard rate, 风险率Heading, 标目Heavy-tailed distribution, 重尾分布Hessian array, 海森立体阵Heterogeneity, 不同质Heterogeneity of variance, 方差不齐Hierarchical classification, 组内分组Hierarchical clustering method, 系统聚类法High-leverage point, 高杠杆率点High-Low, 低区域图Higher Order Interaction Effects,高阶交互作用HILOGLINEAR, 多维列联表的层次对数线性模型Hinge, 折叶点Histogram, 直方图Historical cohort study, 历史性队列研究Holes, 空洞HOMALS, 多重响应分析Homogeneity of variance, 方差齐性Homogeneity test, 齐性检验Huber M-estimators, 休伯M估计量Hyperbola, 双曲线Hypothesis testing, 假设检验Hypothetical universe, 假设总体Image factoring,, 多元回归法Impossible event, 不可能事件Independence, 独立性Independent variable, 自变量Index, 指标/指数Indirect standardization, 间接标准化法Individual, 个体Inference band, 推断带Infinite population, 无限总体Infinitely great, 无穷大Infinitely small, 无穷小Influence curve, 影响曲线Information capacity, 信息容量Initial condition, 初始条件Initial estimate, 初始估计值Initial level, 最初水平Interaction, 交互作用Interaction terms, 交互作用项Intercept, 截距Interpolation, 内插法Interquartile range, 四分位距Interval estimation, 区间估计Intervals of equal probability, 等概率区间Intrinsic curvature, 固有曲率Invariance, 不变性Inverse matrix, 逆矩阵Inverse probability, 逆概率Inverse sine transformation, 反正弦变换Iteration, 迭代Jacobian determinant, 雅可比行列式Joint distribution function, 分布函数Joint probability, 联合概率Joint probability distribution, 联合概率分布K-Means Cluster逐步聚类分析K means method, 逐步聚类法Kaplan-Meier, 评估事件的时间长度Kaplan-Merier chart, Kaplan-Merier图Kendall's rank correlation, Kendall等级相关Kinetic, 动力学Kolmogorov-Smirnove test, 柯尔莫哥洛夫-斯米尔诺夫检验Kruskal and Wallis test, Kruskal及Wallis检验/多样本的秩和检验/H检验Kurtosis, 峰度Lack of fit, 失拟Ladder of powers, 幂阶梯Lag, 滞后Large sample, 大样本Large sample test, 大样本检验Latin square, 拉丁方Latin square design, 拉丁方设计Leakage, 泄漏Least favorable configuration, 最不利构形Least favorable distribution, 最不利分布Least significant difference, 最小显著差法Least square method, 最小二乘法Least Squared Criterion,最小二乘方准则Least-absolute-residuals estimates, 最小绝对残差估计Least-absolute-residuals fit, 最小绝对残差拟合Least-absolute-residuals line, 最小绝对残差线Legend, 图例L-estimator, L估计量L-estimator of location, 位置L估计量L-estimator of scale, 尺度L估计量Level, 水平Leveage Correction,杠杆率校正Life expectance, 预期期望寿命Life table, 寿命表Life table method, 生命表法Light-tailed distribution, 轻尾分布Likelihood function, 似然函数Likelihood ratio, 似然比line graph, 线图Linear correlation, 直线相关Linear equation, 线性方程Linear programming, 线性规划Linear regression, 直线回归Linear Regression, 线性回归Linear trend, 线性趋势Loading, 载荷Location and scale equivariance, 位置尺度同变性Location equivariance, 位置同变性Location invariance, 位置不变性Location scale family, 位置尺度族Log rank test, 时序检验Logarithmic curve, 对数曲线Logarithmic normal distribution, 对数正态分布Logarithmic scale, 对数尺度Logarithmic transformation, 对数变换Logic check, 逻辑检查Logistic distribution, 逻辑斯特分布Logit transformation, Logi t转换LOGLINEAR, 多维列联表通用模型Lognormal distribution, 对数正态分布Lost function, 损失函数Low correlation, 低度相关Lower limit, 下限Lowest-attained variance, 最小可达方差LSD, 最小显著差法的简称Lurking variable, 潜在变量Main effect, 主效应Major heading, 主辞标目Marginal density function, 边缘密度函数Marginal probability, 边缘概率Marginal probability distribution, 边缘概率分布Matched data, 配对资料Matched distribution, 匹配过分布Matching of distribution, 分布的匹配Matching of transformation, 变换的匹配Mathematical expectation, 数学期望Mathematical model, 数学模型Maximum L-estimator, 极大极小L 估计量Maximum likelihood method, 最大似然法Mean, 均数Mean squares between groups, 组间均方Mean squares within group, 组内均方Means (Compare means), 均值-均值比较Median, 中位数Median effective dose, 半数效量Median lethal dose, 半数致死量Median polish, 中位数平滑Median test, 中位数检验Minimal sufficient statistic, 最小充分统计量Minimum distance estimation, 最小距离估计Minimum effective dose, 最小有效量Minimum lethal dose, 最小致死量Minimum variance estimator, 最小方差估计量MINITAB, 统计软件包Minor heading, 宾词标目Missing data, 缺失值Model specification, 模型的确定Modeling Statistics , 模型统计Models for outliers, 离群值模型Modifying the model, 模型的修正Modulus of continuity, 连续性模Morbidity, 发病率Most favorable configuration, 最有利构形MSC(多元散射校正)Multidimensional Scaling (ASCAL), 多维尺度/多维标度Multinomial Logistic Regression , 多项逻辑斯蒂回归Multiple comparison, 多重比较Multiple correlation , 复相关Multiple covariance, 多元协方差Multiple linear regression, 多元线性回归Multiple response , 多重选项Multiple solutions, 多解Multiplication theorem, 乘法定理Multiresponse, 多元响应Multi-stage sampling, 多阶段抽样Multivariate T distribution, 多元T分布Mutual exclusive, 互不相容Mutual independence, 互相独立Natural boundary, 自然边界Natural dead, 自然死亡Natural zero, 自然零Negative correlation, 负相关Negative linear correlation, 负线性相关Negatively skewed, 负偏Newman-Keuls method, q检验NK method, q检验No statistical significance, 无统计意义Nominal variable, 名义变量Nonconstancy of variability, 变异的非定常性Nonlinear regression, 非线性相关Nonparametric statistics, 非参数统计Nonparametric test, 非参数检验Nonparametric tests, 非参数检验Normal deviate, 正态离差Normal distribution, 正态分布Normal equation, 正规方程组Normal P-P, 正态概率分布图Normal Q-Q, 正态概率单位分布图Normal ranges, 正常范围Normal value, 正常值Normalization 归一化Nuisance parameter, 多余参数/讨厌参数Null hypothesis, 无效假设Numerical variable, 数值变量Objective function, 目标函数Observation unit, 观察单位Observed value, 观察值One sided test, 单侧检验One-way analysis of variance, 单因素方差分析Oneway ANOVA , 单因素方差分析Open sequential trial, 开放型序贯设计Optrim, 优切尾Optrim efficiency, 优切尾效率Order statistics, 顺序统计量Ordered categories, 有序分类Ordinal logistic regression , 序数逻辑斯蒂回归Ordinal variable, 有序变量Orthogonal basis, 正交基Orthogonal design, 正交试验设计Orthogonality conditions, 正交条件ORTHOPLAN, 正交设计Outlier cutoffs, 离群值截断点Outliers, 极端值OVERALS , 多组变量的非线性正规相关Overshoot, 迭代过度Paired design, 配对设计Paired sample, 配对样本Pairwise slopes, 成对斜率Parabola, 抛物线Parallel tests, 平行试验Parameter, 参数Parametric statistics, 参数统计Parametric test, 参数检验Pareto, 直条构成线图(又称佩尔托图)Partial correlation, 偏相关Partial regression, 偏回归Partial sorting, 偏排序Partials residuals, 偏残差Pattern, 模式PCA(主成分分析)Pearson curves, 皮尔逊曲线Peeling, 退层Percent bar graph, 百分条形图Percentage, 百分比Percentile, 百分位数Percentile curves, 百分位曲线Periodicity, 周期性Permutation, 排列P-estimator, P估计量Pie graph, 构成图,饼图Pitman estimator, 皮特曼估计量Pivot, 枢轴量Planar, 平坦Planar assumption, 平面的假设PLANCARDS, 生成试验的计划卡PLS(偏最小二乘法)Point estimation, 点估计Poisson distribution, 泊松分布Polishing, 平滑Polled standard deviation, 合并标准差Polled variance, 合并方差Polygon, 多边图Polynomial, 多项式Polynomial curve, 多项式曲线Population, 总体Population attributable risk, 人群归因危险度Positive correlation, 正相关Positively skewed, 正偏Posterior distribution, 后验分布Power of a test, 检验效能Precision, 精密度Predicted value, 预测值Preliminary analysis, 预备性分析Principal axis factoring,主轴因子法Principal component analysis, 主成分分析Prior distribution, 先验分布Prior probability, 先验概率Probabilistic model, 概率模型probability, 概率Probability density, 概率密度Product moment, 乘积矩/协方差Profile trace, 截面迹图Proportion, 比/构成比Proportion allocation in stratified randomsampling, 按比例分层随机抽样Proportionate, 成比例Proportionate sub-class numbers, 成比例次级组含量Prospective study, 前瞻性调查Proximities, 亲近性Pseudo F test, 近似F检验Pseudo model, 近似模型Pseudosigma, 伪标准差Purposive sampling, 有目的抽样QR decomposition, QR分解Quadratic approximation, 二次近似Qualitative classification, 属性分类Qualitative method, 定性方法Quantile-quantile plot, 分位数-分位数图/Q-Q 图Quantitative analysis, 定量分析Quartile, 四分位数Quick Cluster, 快速聚类Radix sort, 基数排序Random allocation, 随机化分组Random blocks design, 随机区组设计Random event, 随机事件Randomization, 随机化Range, 极差/全距Rank correlation, 等级相关Rank sum test, 秩和检验Rank test, 秩检验Ranked data, 等级资料Rate, 比率Ratio, 比例Raw data, 原始资料Raw residual, 原始残差Rayleigh's test, 雷氏检验Rayleigh's Z, 雷氏Z值Reciprocal, 倒数Reciprocal transformation, 倒数变换Recording, 记录Redescending estimators, 回降估计量Reducing dimensions, 降维Re-expression, 重新表达Reference set, 标准组Region of acceptance, 接受域Regression coefficient, 回归系数Regression sum of square, 回归平方和Rejection point, 拒绝点Relative dispersion, 相对离散度Relative number, 相对数Reliability, 可靠性Reparametrization, 重新设置参数Replication, 重复Report Summaries, 报告摘要Residual sum of square, 剩余平方和residual variance (剩余方差)Resistance, 耐抗性Resistant line, 耐抗线Resistant technique, 耐抗技术R-estimator of location, 位置R估计量R-estimator of scale, 尺度R估计量Retrospective study, 回顾性调查Ridge trace, 岭迹Ridit analysis, Ridit分析Rotation, 旋转Rounding, 舍入Row, 行Row effects, 行效应Row factor, 行因素RXC table, RXC表Sample, 样本Sample regression coefficient, 样本回归系数Sample size, 样本量Sample standard deviation, 样本标准差Sampling error, 抽样误差SAS(Statistical analysis system ), SAS统计软件包Scale, 尺度/量表Scatter diagram, 散点图Schematic plot, 示意图/简图Score test, 计分检验Screening, 筛检SEASON, 季节分析Second derivative, 二阶导数Second principal component, 第二主成分SEM (Structural equation modeling), 结构化方程模型Semi-logarithmic graph, 半对数图Semi-logarithmic paper, 半对数格纸Sensitivity curve, 敏感度曲线Sequential analysis, 贯序分析Sequence, 普通序列图Sequential data set, 顺序数据集Sequential design, 贯序设计Sequential method, 贯序法Sequential test, 贯序检验法Serial tests, 系列试验Short-cut method, 简捷法Sigmoid curve, S形曲线Sign function, 正负号函数Sign test, 符号检验Signed rank, 符号秩Significant Level, 显著水平Significance test, 显著性检验Significant figure, 有效数字Simple cluster sampling, 简单整群抽样Simple correlation, 简单相关Simple random sampling, 简单随机抽样Simple regression, 简单回归simple table, 简单表Sine estimator, 正弦估计量Single-valued estimate, 单值估计Singular matrix, 奇异矩阵Skewed distribution, 偏斜分布Skewness, 偏度Slash distribution, 斜线分布Slope, 斜率Smirnov test, 斯米尔诺夫检验Source of variation, 变异来源Spearman rank correlation, 斯皮尔曼等级相关Specific factor, 特殊因子Specific factor variance, 特殊因子方差Spectra , 频谱Spherical distribution, 球型正态分布Spread, 展布SPSS(Statistical package for the social science), SPSS统计软件包Spurious correlation, 假性相关Square root transformation, 平方根变换Stabilizing variance, 稳定方差Standard deviation, 标准差Standard error, 标准误Standard error of difference, 差别的标准误Standard error of estimate, 标准估计误差Standard error of rate, 率的标准误Standard normal distribution, 标准正态分布Standardization, 标准化Starting value, 起始值Statistic, 统计量Statistical control, 统计控制Statistical graph, 统计图Statistical inference, 统计推断Statistical table, 统计表Steepest descent, 最速下降法Stem and leaf display, 茎叶图Step factor, 步长因子Stepwise regression, 逐步回归Storage, 存Strata, 层(复数)Stratified sampling, 分层抽样Stratified sampling, 分层抽样Strength, 强度Stringency, 严密性Structural relationship, 结构关系Studentized residual, 学生化残差/t化残差Sub-class numbers, 次级组含量Subdividing, 分割Sufficient statistic, 充分统计量Sum of products, 积和Sum of squares, 离差平方和Sum of squares about regression, 回归平方和Sum of squares between groups, 组间平方和Sum of squares of partial regression, 偏回归平方和Sure event, 必然事件Survey, 调查Survival, 生存分析Survival rate, 生存率Suspended root gram, 悬吊根图Symmetry, 对称Systematic error, 系统误差Systematic sampling, 系统抽样Tags, 标签Tail area, 尾部面积Tail length, 尾长Tail weight, 尾重Tangent line, 切线Target distribution, 目标分布Taylor series, 泰勒级数Test(检验)Test of linearity, 线性检验Tendency of dispersion, 离散趋势Testing of hypotheses, 假设检验Theoretical frequency, 理论频数Time series, 时间序列Tolerance interval, 容忍区间Tolerance lower limit, 容忍下限Tolerance upper limit, 容忍上限Torsion, 扰率Total sum of square, 总平方和Total variation, 总变异Transformation, 转换Treatment, 处理Trend, 趋势Trend of percentage, 百分比趋势Trial, 试验Trial and error method, 试错法Tuning constant, 细调常数。

放下手机就可积分换奖励等2则外刊阅读与练习-高三英语二轮复习

放下手机就可积分换奖励等2则外刊阅读与练习-高三英语二轮复习

放下手机就可积分换奖励导读:你是不是总是低着头看手机?你是不是已经不知不觉地变成了“smo mbie 手机僵尸”?智能手机给现代人的生活带来了巨大的便利,但同时也成为了一个严重转移人们注意力的事物。

一个三人程序开发小组称他们编写了一个能让现代人“放下手机”的程序。

跟随本集《外刊精读》,来了解这个只要你放下手机,就可以让你积分换奖励的手机程序。

一、语篇泛读Vocabulary: attention and distraction 词汇:注意力和分散注意力的东西We’re all probably guilty of using our phones a little too often. With the rise of the mobile phone, and later the smartphone, access to communication and information has never been so convenient or tempting Of course, there are those who only pay it any attention when it goes off or sends them an alert. But there are many who find that their phone is a constant distraction.There's been an abundance of articles recently relating to mobile phone addiction or diversion. In the UK, looking at a mobile phone rather than focussing on the road has been made illegal.Having your attention diverted from driving by a phone carries a stiff penalty. It’s also no coincidence that the word ‘smombie’ has been coined. The word is made up of two: smartphone zombie, and it describes those p eople who walk around totally captivated by their phone completely unaware of their surroundings.Smartphone disruption is an issue in schools too. A study by the University of Texas has suggested that just having a smartphone within eyeshot can reduce pro ductivity, slow down response speed and reduce grades, as the eyes of the students keep being drawn away from their work. A second, related study by the London School of Economics has found that students who did not use their smartphones on school grounds saw an increase of 6.4% in test scores.This issue of productivity and the degree to which smartphones engross young people caused three students from Copenhagen Business school to develop an app to attempt to help combat smartphone fascination.The app, called ‘Hold’, rewards students for time they spend not using the device. For every 20 minutes that a phone is not used between the hours of seven in the morning and 11 at night, its user will accumulate 10 points.These points can be exchanged for a numbe r of goods and services on the app’s marketplace, with brands such as Caffè Nero, Vue cinemas and Amazon signing up. For example, to earn two free coffees, students will need 300 points. This is the equivalent of 10 hours on the app.The app has already be come the centre of attention in Scandinavia, with more than 120,000 users across Norway, Denmark and Sweden. And soon it will be launched in 170 universities in the UK too.Could the era of people zoning out on reality and only tuning in to their phones be over? As more and more pay heed, it’s certainly possible. And how else are you likely to be rewarded for not paying attention?二、词汇表三、测试与练习阅读课文并回答问题。

风险厌恶系数[1]

风险厌恶系数[1]

PPT文档演模板
风险厌恶系数[1]
阿罗-普拉特度量
阿罗-普拉特度量 是对一个决策者的风险厌恶程 度的度量。它由肯尼思·阿罗和约翰·普拉特的名 字命名。
设是一个可微分的效用函数, 那么一个绝对风险 厌恶的阿罗-普拉特度量被定义为:
PPT文档演模板
风险厌恶系数[1]
l ARA为正,表明具有此效用函数的投资者或者 消费者是风险厌恶者;
为风险中性,只有极少部分的个体为风险爱好,并且高度风
险爱好的个体基本不存在,同时也可以发现个体的风险偏好 具有较强的异质性。
PPT文档演模板
风险厌恶系数[1]
• 从表3可以看出, 采用 MPL 和 OLS 设计所测度出的个体风险 厌恶中值并没有明显差异, 但是要显著低于 iMPL 设计所测 度出的个体风险厌恶中值, 这表明实验中所测度的个体的风 险态度可能会受到测度方法的影响。
• 个体普遍是风险厌恶的这一结论是不受影响并且是稳健的。 Carlsson 等(2009) 同样采用Holt和Laury (2002) 的设 计对中国贵州农村个体的风险厌恶进行了测度,但实验中的收 益是本文中的 10 倍,作者研究发现 这主要是激励的差异所 造成的, 该结论表明了使用学生作为被试的实验数据同样具 有代表性。
风险厌恶系数[1]
基于以上分析,财富概念应为包含房产、人力资本后的财 富净值,由金融财富净值、房产和人力资本等构成。为了 检验三类财富对风险庆恶系数分别产生的影响,分析模型III 的拟合结果如表8 所示。
PPT文档演模板
风险厌恶系数[1]
2.3 考量居民主观风险偏好对于风险厌恶系数大小的影响 为了方便模型数据的拟合,本文需要首先量化每一心理测试 题的各个选项,如对于第一题中的A 、B 、C 和D 四个选项 分别赋予1 、3 ,5 和9 分;随后累加四道心理测试题受访者 所勾选项对应的分值,并将该总分值赋予变量X , 即居民 的风险偏好态度为X。

α-公平效用函数

α-公平效用函数

α-公平效用函数全文共四篇示例,供读者参考第一篇示例:α-公平效用函数是一种经济学术语,用来描述社会的福利分配情况。

在经济学中,人们通常会评估不同分配方案对社会公平的影响,其中α-公平效用函数则是其中的一种计量方式。

让我们来了解一下什么是效用函数。

效用函数是一种用来描述人们对不同商品或资源组合的偏好程度的数学模型。

在经济学中,人们通常会将效用看作是满足需求或带来满足感的度量,而效用函数则是用来量化这种满足感的函数。

在α-公平效用函数中,α代表了一个参数,它用来调节不同个体之间的效用分配。

当α=0时,α-公平效用函数退化为常规的utilitarian效用函数,即个体的效用是社会效用的总和。

而当α趋近于1时,α-公平效用函数变得越来越考虑到边际效用的均等分配,即越迎合于平等主义的理念。

α-公平效用函数的核心思想在于平衡效用的最大化和公平的原则。

在现实生活中,社会资源是有限的,不同人的需求和贡献程度也各不相同。

通过引入α这一参数,我们可以更好地理解和评估不同效用分配方案的公平性和合理性。

在实际应用中,α-公平效用函数可以用来分析不同社会政策对于不同群体的影响。

比如在税收政策上,政府可以根据α-公平效用函数的原理来设计个税制度,以实现社会资源的有效分配和公平分配。

在福利政策上,政府也可以运用α-公平效用函数来评估不同福利项目对不同社会群体的效用影响,从而优化福利资源的配置。

α-公平效用函数还可以用来研究不同市场结构下的效用分配情况。

在竞争市场下,效用分配通常会更倾向于utilitarian效用函数,即追求整体效用的最大化;而在垄断市场下,效用分配可能更趋向于平等分配,即追求α-公平效用函数。

α-公平效用函数是一种有益的工具,可以帮助我们更好地理解和评估社会资源的分配情况。

通过引入α这一参数,我们可以更好地平衡效用的最大化和公平的原则,实现社会资源的合理分配和公平分配。

希望在未来的研究和实践中,我们能够更好地运用α-公平效用函数,为建设更加公平和和谐的社会做出贡献。

GTDL模型文档说明书

GTDL模型文档说明书

Package‘GTDL’October12,2022Type PackageTitle The Generalized Time-Dependent Logistic FamilyVersion1.0.0Date2022-03-25Author Jalmar Carrasco[aut,cre],Luciano Santana[aut],Lizandra Fabio[aut]Maintainer Jalmar Carrasco<************************>Description Computes the probability density,survival function,the hazard rate functions and generates random samples from theGTDL distribution given by Mackenzie,G.(1996)<doi:10.2307/2348408>.The likelihood estimates,the randomized quantile(Louzada,F.,et al.(2020)<doi:10.1109/ACCESS.2020.3040525>)residuals and the normally transformed randomized survivalprobability(Li,L.,et al.(2021)<doi:10.1002/sim.8852>)residuals are obtained for the GTDL model.License GPL(>=3)Encoding UTF-8LazyData TRUERoxygenNote7.1.1Imports survival,Suggests stats,Depends R(>=2.10)NeedsCompilation noRepository CRANDate/Publication2022-03-2807:50:12UTCR topics documented:artset1987 (2)12artset1987fGTDL (3)mle1.GTDL (4)mle2.GTDL (5)nrsp.GTDL (7)random.quantile.GTDL (8)tumor (10)Index11 artset1987Artset1987dataDescriptionTimes to failure of50devices put on life test at time0.Usagedata(artset1987)FormatThis data frame contains the following columns:•t:Times to failureReferences•Aarset,M.V.(1987).How to Identify a Bathtub Hazard Rate.IEEE Transactions on Reliabil-ity,36,106–108.Examplesdata(artset1987)head(artset1987)fGTDL3 fGTDL The GTDL distributionDescriptionDensity function,survival function,failure function and random generation for the GTDL distribu-tion.UsagedGTDL(t,param,log=FALSE)hGTDL(t,param)sGTDL(t,param)rGTDL(n,param)Argumentst vector of integer positive quantile.param parameters(alpha and gamma are scalars,lambda non-negative).log logical;if TRUE,probabilities p are given as log(p).n number of observations.Details•Density functionf(t|θ)=λexp{αt+X β}1+exp{αt+X β}×1+exp{αt+X β}1+exp{X β}−λ/α•Survival functionS(t|θ)=1+exp{αt+X β}1+exp{X β}−λ/α•Failure functionh(t|θ)=λexp{αt+X β}1+exp{αt+X β}ValuedGTDL gives the density function,hGTDL gives the failure function,sGTDL gives the survival function and rGTDL generates random samples.Invalid arguments will return an error message.Source[d-p-q-r]GTDL are calculated directly from the definitions.References•Mackenzie,G.(1996).Regression Models for Survival Data:The Generalized Time-Dependent Logistic Family.Journal of the Royal Statistical Society.Series D(The Statistician).45.21-34.Exampleslibrary(GTDL)t<-seq(0,20,by=0.1)lambda<-1.00alpha<--0.05gamma<--1.00param<-c(lambda,alpha,gamma)y1<-hGTDL(t,param)y2<-sGTDL(t,param)y3<-dGTDL(t,param,log=FALSE)tt<-as.matrix(cbind(t,t,t))yy<-as.matrix(cbind(y1,y2,y3))matplot(tt,yy,type="l",xlab="time",ylab="",lty=1:3,col=1:3,lwd=2)y1<-hGTDL(t,c(1,0.5,-1.0))y2<-hGTDL(t,c(1,0.25,-1.0))y3<-hGTDL(t,c(1,-0.25,1.0))y4<-hGTDL(t,c(1,-0.50,1.0))y5<-hGTDL(t,c(1,-0.06,-1.6))tt<-as.matrix(cbind(t,t,t,t,t))yy<-as.matrix(cbind(y1,y2,y3,y4,y5))matplot(tt,yy,type="l",xlab="time",ylab="Hazard function",lty=1:3,col=1:3,lwd=2)mle1.GTDL Maximum likelihood estimationDescriptionEstimate of the parameters.Usagemle1.GTDL(start,t,method="BFGS")Argumentsstart Initial values for the parameters to be optimized over.t non-negative random variable representing the failure time and leave the snap-shot failure rate,or danger.method The method to be used.ValueReturns a list of summary statistics of thefitted GTDL distribution.References•Aarset,M.V.(1987).How to Identify a Bathtub Hazard Rate.IEEE Transactions on Reliabil-ity,36,106–108.•Mackenzie,G.(1996)Regression Models for Survival Data:The Generalized Time-Dependent Logistic Family.Journal of the Royal Statistical Society.Series D(The Statistician).45.21-34.See AlsooptimExamples#times data(from Aarset,1987))data(artset1987)mod<-mle1.GTDL(c(1,-0.05,-1),t=artset1987)mle2.GTDL Maximum likelihood estimates of the GTDL modelDescriptionMaximum likelihood estimates of the GTDL modelUsagemle2.GTDL(t,start,formula,censur,method="BFGS")Argumentst non-negative random variable representing the failure time and leave the snap-shot failure rate,or danger.start Initial values for the parameters to be optimized over.formula The structure matrix of covariates of dimension n x p.censur censoring status0=censored,a=fail.method The method to be used.ValueReturns a list of summary statistics of thefitted GTDL model.References•Mackenzie,G.(1996)Regression Models for Survival Data:The Generalized Time-Dependent Logistic Family.Journal of the Royal Statistical Society.Series D(The Statistician).(45).21-34.See AlsooptimExamples###Example1require(survival)data(lung)lung<-lung[-14,]lung$sex<-ifelse(lung$sex==2,1,0)lung$ph.ecog[lung$ph.ecog==3]<-2t1<-lung$timestart1<-c(0.03,0.05,-1,0.7,2,-0.1)formula1<-~lung$sex+factor(lung$ph.ecog)+lung$agecensur1<-ifelse(lung$status==1,0,1)fit.model1<-mle2.GTDL(t=t1,start=start1,formula=formula1,censur=censur1)fit.model1###Example2data(tumor)t2<-tumor$timestart2<-c(1,-0.05,1.7)formula2<-~tumor$groupcensur2<-tumor$censuredfit.model2<-mle2.GTDL(t=t2,start=start2,nrsp.GTDL7formula=formula2,censur=censur2)fit.model2nrsp.GTDL Normally-transformed randomized survival probability residuals forthe GTDL modelDescriptionNormally-transformed randomized survival probability residuals for the GTDL modelUsagenrsp.GTDL(t,formula,pHat,censur)Argumentst non-negative random variable representing the failure time and leave the snap-shot failure rate,or danger.formula The structure matrix of covariates of dimension n x p.pHat Estimate of the parameters from the GTDL model.censur Censoring status0=censored,a=fail.ValueNormally-transformed randomized survival probability residualsReferences•Li,L.,Wu,T.,e Cindy,F.(2021).Model diagnostics for censored regression via randomized survival probabilities.Statistics in Medicine,40,1482–1497.•de Oliveira,L.E.F.,dos Santos L.S.,da Silva,P.H.F.,Fabio,L.C.,Carrasco,J.M.F.(2022).Análise de resíduos para o modelo logístico generalizado dependente do tempo(GTDL).Sub-mitted.Examples###Example1require(survival)data(lung)lung<-lung[-14,]lung$sex<-ifelse(lung$sex==2,1,0)lung$ph.ecog[lung$ph.ecog==3]<-2t1<-lung$timeformula1<-~lung$sex+factor(lung$ph.ecog)+lung$agecensur1<-ifelse(lung$status==1,0,1)start1<-c(0.03,0.05,-1,0.7,2,-0.1)fit.model1<-mle2.GTDL(t=t1,start=start1,formula=formula1,censur=censur1)r1<-nrsp.GTDL(t=t1,formula=formula1,pHat=fit.model1$Coefficients[,1],censur=censur1)r1###Example2data(tumor)t2<-tumor$timeformula2<-~tumor$groupcensur2<-tumor$censuredstart2<-c(1,-0.05,1.7)fit.model2<-mle2.GTDL(t=t2,start=start2,formula=formula2,censur=censur2)r2<-nrsp.GTDL(t=t2,formula=formula2,pHat=fit.model2$Coefficients[,1],censur=censur2)r2random.quantile.GTDL Randomized quantile residuals for the GTDL modelDescriptionRandomized quantile residuals for the GTDL modelUsagerandom.quantile.GTDL(t,formula,pHat,censur)Argumentst non-negative random variable representing the failure time and leave the snap-shot failure rate,or danger.formula The structure matrix of covariates of dimension n x p.pHat Estimate of the parameters from the GTDL model.censur censoring status0=censored,a=fail.DetailsThe randomized quantile residual(Dunn and Smyth,1996),which follow a standard normal distri-bution is used to assess departures from the GTDL model.ValueRandomized quantile residualsReferences•Dunn,P.K.e Smyth,G.K.(1996).Randomized quantile residuals.Journal of Computational and Graphical Statistics,5,236–244.•Louzada,F.,Cuminato,J.A.,Rodriguez,O.M.H.,Tomazella,V.L.D.,Milani,E.A.,Fer-reira,P.H.,Ramos,P.L.,Bochio,G.,Perissini,I.C.,Junior,O.A.G.,Mota,A.L.,Alegr´ıa, L.F.A.,Colombo,D.,Oliveira,P.G.O.,Santos,H.F.L.,e Magalh~aes,M.V.C.(2020).Incorporation of frailties into a non-proportional hazard regression model and its diagnostics for reliability modeling of downhole safety valves.IEEE Access,8,219757–219774.•de Oliveira,L.E.F.,dos Santos L.S.,da Silva,P.H.F.,Fabio,L.C.,Carrasco,J.M.F.(2022).Análise de resíduos para o modelo logístico generalizado dependente do tempo(GTDL).Sub-mitted.Examples###Example1require(survival)data(lung)lung<-lung[-14,]lung$sex<-ifelse(lung$sex==2,1,0)lung$ph.ecog[lung$ph.ecog==3]<-2t1<-lung$timeformula1<-~lung$sex+factor(lung$ph.ecog)+lung$agecensur1<-ifelse(lung$status==1,0,1)start1<-c(0.03,0.05,-1,0.7,2,-0.1)fit.model1<-mle2.GTDL(t=t1,start=start1,formula=formula1,censur=censur1)r1<-random.quantile.GTDL(t=t1,formula=formula1,pHat=fit.model1$Coefficients[,1], censur=censur1)r1###Example2data(tumor)t2<-tumor$timeformula2<-~tumor$groupcensur2<-tumor$censuredstart2<-c(1,-0.05,1.7)fit.model2<-mle2.GTDL(t=t2,start=start2,formula=formula2,censur=censur2)r2<-random.quantile.GTDL(t=t2,formula=formula2,pHat=fit.model2$Coefficients[,1], censur=censur2)r210tumor tumor Tumor dataDescriptionTimes(in days)of patients in ovarian cancer studyUsagedata(tumor)FormatThis data frame contains the following columns:•time:survival time in days•censured:censored=0,dead=1•group:large tumor=0,small tumor=1References•Colosimo,E.A and Giolo,S.R.Análise de Sobrevivência Aplicada.Edgard Blucher:São Paulo.2006.Examplesdata(tumor)head(tumor)Indexartset1987,2dGTDL(fGTDL),3fGTDL,3fires(fGTDL),3hGTDL(fGTDL),3mle1.GTDL,4mle2.GTDL,5nrsp.GTDL,7optim,5,6random.quantile.GTDL,8rGTDL(fGTDL),3sGTDL(fGTDL),3tumor,1011。

卡梅伦液压数据手册(第 20 版)说明书

卡梅伦液压数据手册(第 20 版)说明书
11
iv

CONTENTS OF SECTION 1
☰ Hydraulics
⌂ Cameron Hydraulic Data ☰
Introduction. . . . . . . . . . . . . ................................................................ 1-3 Liquids. . . . . . . . . . . . . . . . . . . ...................................... .......................... 1-3
4
Viscosity etc.
Steam data....................................................................................................................................................................................... 6
1 Liquid Flow.............................................................................. 1-4
Viscosity. . . . . . . . . . . . . . . . . ...................................... .......................... 1-5 Pumping. . . . . . . . . . . . . . . . . ...................................... .......................... 1-6 Volume-System Head Calculations-Suction Head. ........................... 1-6, 1-7 Suction Lift-Total Discharge Head-Velocity Head............................. 1-7, 1-8 Total Sys. Head-Pump Head-Pressure-Spec. Gravity. ...................... 1-9, 1-10 Net Positive Suction Head. .......................................................... 1-11 NPSH-Suction Head-Life; Examples:....................... ............... 1-11 to 1-16 NPSH-Hydrocarbon Corrections.................................................... 1-16 NPSH-Reciprocating Pumps. ....................................................... 1-17 Acceleration Head-Reciprocating Pumps. ........................................ 1-18 Entrance Losses-Specific Speed. .................................................. 1-19 Specific Speed-Impeller. .................................... ........................ 1-19 Specific Speed-Suction...................................... ................. 1-20, 1-21 Submergence.. . . . . . . . . ....................................... ................. 1-21, 1-22 Intake Design-Vertical Wet Pit Pumps....................................... 1-22, 1-27 Work Performed in Pumping. ............................... ........................ 1-27 Temperature Rise. . . . . . . ...................................... ........................ 1-28 Characteristic Curves. . ...................................... ........................ 1-29 Affinity Laws-Stepping Curves. ..................................................... 1-30 System Curves.. . . . . . . . ....................................... ........................ 1-31 Parallel and Series Operation. .............................. ................. 1-32, 1-33 Water Hammer. . . . . . . . . . ...................................... ........................ 1-34 Reciprocating Pumps-Performance. ............................................... 1-35 Recip. Pumps-Pulsation Analysis & System Piping...................... 1-36 to 1-45 Pump Drivers-Speed Torque Curves. ....................................... 1-45, 1-46 Engine Drivers-Impeller Profiles. ................................................... 1-47 Hydraulic Institute Charts.................................... ............... 1-48 to 1-52 Bibliography.. . . . . . . . . . . . ...................................... ........................ 1-53

Persistence in Intertrade Durations

Persistence in Intertrade Durations

York University, e-mail: jasiakj@yorku.ca y Research supported by the Natural Sciences and Engineering Research Council of Canada The author thanks Christian Gourieroux for helpful comments
1
Baillie (1996) provides an updated survey of literature on long memory processes.
THIS VERSION: March 14, 1999
2
important input for strategic trading. The research on predictable patterns in duration dynamics is quite recent. Early evidence on periodicities and duration clustering entailed by a short range temporal dependence is discussed in Engle and Russell (1996). The persistence range for various duration transforms is covered in Gourieroux, Jasiak (1998). The paper by Gourieroux, Jasiak and Lefol (1996) emphasizes the role of time to trade as a major market liquidity factor. This issue is essentially related to the tradeo between fast trading, which implies a price change, and a slow sequential execution of the order to minimize the price impact of a transaction. Such problems often arise in block trading. The time also matters to a great extent in the limit order executions or allocations on markets characterized by di erent speeds of activity (trade intensity). In this context, despite a relatively long expected time to trade, some markets may be preferred for their lower variability of waiting times to trade, or otherwise less risk regarding the time of trade. Empirically, the evidence for long range of time dependence in intertrade durations is revealed by a highly persistent pattern of the autocorrelations displaying a slow, hyperbolic rate of decay. As argued before, this feature needs to be accommodated in estimation and forecasting of market activity. The aforementioned recent work of Engle and Russell (1996) introduced a class of ARMAtype models called Autoregressive Conditional Duration (ACD) models for duration data. These models account for short serial dependence in expected durations and thus impose an exponential decline pattern on the autocorrelation function. In empirical applications of ACD models to high frequency intertrade durations the estimated coe cients on lagged variables sum up nearly to one. Such evidence indicates a potential misspeci cation that arises when an exponential decay pattern is tted to a process showing an hyperbolic rate of decay. This would suggest that a more exible structure allowing for longer term dependencies might improve the t. This also is the motivation of the present paper for introducing a class of fractionally integrated ACD models (FIACD) to capture the long-term dependencies in the duration series. The paper is organized as follows. In section 2 we introduce the FIACD model and discuss its properties. In section 3 the long memory fractional model is applied to the Alcatel and IBM data 2 . Further insights into the nature of long memory in the trade intensity are described in section 4 where durations are examined separately in di erent market regimes. Three basic market states of positive, null and negative returns are distinguished and series of durations are transformed into times between consecutive returns to these states. Besides the persistence in the return-tostate times, the average amount of time spent in each state arises as a complementary measure of persistence. Consequently, we study the visiting times spent by the trading process in the states of positive, null and negative returns. In particular we compare their intraday dynamics, and discuss information revealed by their varying means and variances. Section 5 concludes the paper.

r语言计算人群归因危险度的代码

r语言计算人群归因危险度的代码

r语言计算人群归因危险度的代码【最新版】目录1.R 语言简介2.人群归因危险度的概念3.R 语言计算人群归因危险度的方法4.实例演示5.总结正文1.R 语言简介R 语言是一种开源的编程语言,主要用于数据处理和统计分析。

它拥有丰富的库和函数,能够满足各种数据处理和分析需求。

在生物统计学、医学统计学等领域,R 语言具有广泛的应用。

2.人群归因危险度的概念人群归因危险度(Population Attributable Risk, PAR)是指人群中某种疾病发生的危险度,它可以衡量某种疾病在人群中的危害程度。

通常,PAR 的计算需要知道人群中某种疾病的发病率、危险度和暴露率等数据。

3.R 语言计算人群归因危险度的方法在 R 语言中,可以通过“par”函数计算人群归因危险度。

该函数需要以下参数:发病率(incidence)、危险度(relative risk)和暴露率(exposure)。

具体使用方法如下:```Rpar(incidence, relative_risk, exposure)```其中,发病率、危险度和暴露率需要用向量表示,向量的长度应相同。

计算结果将返回一个数值,表示该疾病的 PAR。

4.实例演示下面,我们通过一个实例来说明如何使用 R 语言计算人群归因危险度。

假设某地区某种疾病的发病率为 0.01,危险度为 2,暴露率为 0.5。

我们希望通过 R 语言计算该疾病的 PAR。

代码如下:```Rincidence <- c(0.01)relative_risk <- c(2)exposure <- c(0.5)par_value <- par(incidence, relative_risk, exposure)print(par_value)```运行以上代码,可以得到该疾病的 PAR 值为 0.005。

5.总结通过 R 语言计算人群归因危险度,可以更加方便地评估某种疾病在人群中的危害程度。

【新提醒】Minitab中英文词汇对照:常用统计词汇

【新提醒】Minitab中英文词汇对照:常用统计词汇

【新提醒】Minitab中英文词汇对照:常用统计词汇Minitab 中英文词汇对照,希望可以帮助大家掌握常用统计词汇...Absolute deviation, 绝对离差Absolute number, 绝对数Absolute residuals, 绝对残差Acceleration array, 加速度立体阵Acceleration in an arbitrary direction, 任意方向上的加速度Acceleration normal, 法向加速度Acceleration space dimension, 加速度空间的维数Acceleration tangential, 切向加速度Acceleration vector, 加速度向量Acceptable hypothesis, 可接受假设Accumulation, 累积Accuracy, 准确度Actual frequency, 实际频数Adaptive estimator, 自适应估计量Addition, 相加Addition theorem, 加法定理Additivity, 可加性Adjusted rate, 调整率Adjusted value, 校正值Admissible error, 容许误差Aggregation, 聚集性Alternative hypothesis, 备择假设Among groups, 组间Amounts, 总量Analysis of correlation, 相关分析Analysis of covariance, 协方差分析Analysis of regression, 回归分析Analysis of time series, 时间序列分析Analysis of variance, 方差分析Angular transformation, 角转换ANOVA (analysis of variance), 方差分析ANOVA Models, 方差分析模型Arcing, 弧/弧旋Arcsine transformation, 反正弦变换Area under the curve, 曲线面积AREG , 评估从一个时间点到下一个时间点回归相关时的误差ARIMA, 季节和非季节性单变量模型的极大似然估计Arithmetic grid paper, 算术格纸Arithmetic mean, 算术平均数Arrhenius relation, 艾恩尼斯关系Assessing fit, 拟合的评估Associative laws, 结合律Asymmetric distribution, 非对称分布Asymptotic bias, 渐近偏倚Asymptotic efficiency, 渐近效率Asymptotic variance, 渐近方差Attributable risk, 归因危险度Attribute data, 属性资料Attribution, 属性Autocorrelation, 自相关Autocorrelation of residuals, 残差的自相关Average, 平均数Average confidence interval length, 平均置信区间长度Average growth rate, 平均增长率Bar chart, 条形图Bar Graph, 条形图Base period, 基期Bayes'' theorem , Bayes定理Bell-shaped curve, 钟形曲线Bernoulli distribution, 伯努力分布Best-trim estimator, 最好切尾估计量Bias, 偏性Binary logistic regression, 二元逻辑斯蒂回归Binomial distribution, 二项分布Bisquare, 双平方Bivariate Correlate, 二变量相关Bivariate normal distribution, 双变量正态分布Bivariate normal population, 双变量正态总体Biweight interval, 双权区间Biweight M-estimator, 双权M估计量Block, 区组/配伍组BMDP(Biomedical computer programs), BMDP统计软件包Boxplots, 箱线图/箱尾图Breakdown bound, 崩溃界/崩溃点Canonical correlation, 典型相关Caption, 纵标目Case-control study, 病例对照研究Categorical variable, 分类变量Catenary, 悬链线Cauchy distribution, 柯西分布Cause-and-effect relationship, 因果关系Cell, 单元Censoring, 终检Center of symmetry, 对称中心Centering and scaling, 中心化和定标Central tendency, 集中趋势Central value, 中心值CHAID -χ2 Automatic Interaction Detector, 卡方自动交互检测Chance, 机遇Chance error, 随机误差Chance variable, 随机变量Characteristic equation, 特征方程Characteristic root, 特征根Characteristic vector, 特征向量Chebshev criterion of fit, 拟合的切比雪夫准则Chernoff faces, 切尔诺夫脸谱图Chi-square test, 卡方检验/χ2检验CHOleskey decomposition, 乔洛斯基分解Circle chart, 圆图Class interval, 组距Class mid-value, 组中值Class upper limit, 组上限Classified variable, 分类变量Cluster analysis, 聚类分析Cluster sampling, 整群抽样Code, 代码Coded data, 编码数据Coding, 编码Coefficient of contingency, 列联系数Coefficient of determination, 决定系数Coefficient of multiple correlation, 多重相关系数Coefficient of partial correlation, 偏相关系数Coefficient of production-moment correlation, 积差相关系数Coefficient of rank correlation, 等级相关系数Coefficient of regression, 回归系数Coefficient of skewness, 偏度系数Coefficient of variation, 变异系数Cohort study, 队列研究Column, 列Column effect, 列效应Column factor, 列因素Combination pool, 合并Combinative table, 组合表Common factor, 共性因子Common regression coefficient, 公共回归系数Common value, 共同值Common variance, 公共方差Common variation, 公共变异Communality variance, 共性方差Comparability, 可比性Comparison of bathes, 批比较Comparison value, 比较值Compartment model, 分部模型Compassion, 伸缩Complement of an event, 补事件Complete association, 完全正相关Complete dissociation, 完全不相关Complete Statistics, 完备统计量Completely randomized design, 完全随机化设计Composite event, 联合事件Composite events, 复合事件Concavity, 凹性Conditional expectation, 条件期望Conditional likelihood, 条件似然Conditional probability, 条件概率Conditionally linear, 依条件线性Confidence interval, 置信区间Confidence limit, 置信限Confidence lower limit, 置信下限Confidence upper limit, 置信上限Confirmatory Factor Analysis , 验证性因子分析Confirmatory research, 证实性实验研究Confounding factor, 混杂因素Conjoint, 联合分析Consistency, 相合性Consistency check, 一致性检验Consistent asymptotically normal estimate, 相合渐近正态估计Consistent estimate, 相合估计Constrained nonlinear regression, 受约束非线性回归Constraint, 约束Contaminated distribution, 污染分布Contaminated Gausssian, 污染高斯分布Contaminated normal distribution, 污染正态分布Contamination, 污染Contamination model, 污染模型Contingency table, 列联表Contour, 边界线Contribution rate, 贡献率Control, 对照Controlled experiments, 对照实验Conventional depth, 常规深度Convolution, 卷积Corrected factor, 校正因子Corrected mean, 校正均值Correction coefficient, 校正系数Correctness, 正确性Correlation coefficient, 相关系数Correlation index, 相关指数Correspondence, 对应Counting, 计数Counts, 计数/频数Covariance, 协方差Covariant, 共变Cox Regression, Cox回归Criteria for fitting, 拟合准则Criteria of least squares, 最小二乘准则Critical ratio, 临界比Critical region, 拒绝域Critical value, 临界值Cross-over design, 交叉设计Cross-section analysis, 横断面分析Cross-section survey, 横断面调查Crosstabs , 交叉表Cross-tabulation table, 复合表Cube root, 立方根Cumulative distribution function, 分布函数Cumulative probability, 累计概率Curvature, 曲率/弯曲Curvature, 曲率Curve fit , 曲线拟和Curve fitting, 曲线拟合Curvilinear regression, 曲线回归Curvilinear relation, 曲线关系Cut-and-try method, 尝试法Cycle, 周期Cyclist, 周期性D test, D检验Data acquisition, 资料收集Data bank, 数据库Data capacity, 数据容量Data deficiencies, 数据缺乏Data handling, 数据处理Data manipulation, 数据处理Data processing, 数据处理Data reduction, 数据缩减Data set, 数据集Data sources, 数据来源Data transformation, 数据变换Data validity, 数据有效性Data-in, 数据输入Data-out, 数据输出Dead time, 停滞期Degree of freedom, 自由度Degree of precision, 精密度Degree of reliability, 可靠性程度Degression, 递减Density function, 密度函数Density of data points, 数据点的密度Dependent variable, 应变量/依变量/因变量Dependent variable, 因变量Depth, 深度Derivative matrix, 导数矩阵Derivative-free methods, 无导数方法Design, 设计Determinacy, 确定性Determinant, 行列式Determinant, 决定因素Deviation, 离差Deviation from average, 离均差Diagnostic plot, 诊断图Dichotomous variable, 二分变量Differential equation, 微分方程Direct standardization, 直接标准化法Discrete variable, 离散型变量DISCRIMINANT, 判断Discriminant analysis, 判别分析Discriminant coefficient, 判别系数Discriminant function, 判别值Dispersion, 散布/分散度Disproportional, 不成比例的Disproportionate sub-class numbers, 不成比例次级组含量Distribution free, 分布无关性/免分布Distribution shape, 分布形状Distribution-free method, 任意分布法Distributive laws, 分配律Disturbance, 随机扰动项Dose response curve, 剂量反应曲线Double blind method, 双盲法Double blind trial, 双盲试验Double exponential distribution, 双指数分布Double logarithmic, 双对数Downward rank, 降秩Dual-space plot, 对偶空间图DUD, 无导数方法Duncan''s new multiple range method, 新复极差法/Duncan新法E-LEffect, 实验效应Eigenvalue, 特征值Eigenvector, 特征向量Ellipse, 椭圆Empirical distribution, 经验分布Empirical probability, 经验概率单位Enumeration data, 计数资料Equal sun-class number, 相等次级组含量Equally likely, 等可能Equivariance, 同变性Error, 误差/错误Error of estimate, 估计误差Error type I, 第一类错误Error type II, 第二类错误Estimand, 被估量Estimated error mean squares, 估计误差均方Estimated error sum of squares, 估计误差平方和Euclidean distance, 欧式距离Event, 事件Event, 事件Exceptional data point, 异常数据点Expectation plane, 期望平面Expectation surface, 期望曲面Expected values, 期望值Experiment, 实验Experimental sampling, 试验抽样Experimental unit, 试验单位Explanatory variable, 说明变量Exploratory data analysis, 探索性数据分析Explore Summarize, 探索-摘要Exponential curve, 指数曲线Exponential growth, 指数式增长EXSMOOTH, 指数平滑方法Extended fit, 扩充拟合Extra parameter, 附加参数Extrapolation, 外推法Extreme observation, 末端观测值Extremes, 极端值/极值F distribution, F分布F test, F检验Factor, 因素/因子Factor analysis, 因子分析Factor Analysis, 因子分析Factor score, 因子得分Factorial, 阶乘Factorial design, 析因试验设计False negative, 假阴性False negative error, 假阴性错误Family of distributions, 分布族Family of estimators, 估计量族Fanning, 扇面Fatality rate, 病死率Field investigation, 现场调查Field survey, 现场调查Finite population, 有限总体Finite-sample, 有限样本First derivative, 一阶导数First principal component, 第一主成分First quartile, 第一四分位数Fisher information, 费雪信息量Fitted value, 拟合值Fitting a curve, 曲线拟合Fixed base, 定基Fluctuation, 随机起伏Forecast, 预测Four fold table, 四格表Fourth, 四分点Fraction blow, 左侧比率Fractional error, 相对误差Frequency, 频率Frequency polygon, 频数多边图Frontier point, 界限点Function relationship, 泛函关系Gamma distribution, 伽玛分布Gauss increment, 高斯增量Gaussian distribution, 高斯分布/正态分布Gauss-Newton increment, 高斯-牛顿增量General census, 全面普查GENLOG (Generalized liner models), 广义线性模型Geometric mean, 几何平均数Gini''s mean difference, 基尼均差GLM (General liner models), 通用线性模型Goodness of fit, 拟和优度/配合度Gradient of determinant, 行列式的梯度Graeco-Latin square, 希腊拉丁方Grand mean, 总均值Gross errors, 重大错误Gross-error sensitivity, 大错敏感度Group averages, 分组平均Grouped data, 分组资料Guessed mean, 假定平均数Half-life, 半衰期Hampel M-estimators, 汉佩尔M估计量Happenstance, 偶然事件Harmonic mean, 调和均数Hazard function, 风险均数Hazard rate, 风险率Heading, 标目Heavy-tailed distribution, 重尾分布Hessian array, 海森立体阵Heterogeneity, 不同质Heterogeneity of variance, 方差不齐Hierarchical classification, 组内分组Hierarchical clustering method, 系统聚类法High-leverage point, 高杠杆率点HILOGLINEAR, 多维列联表的层次对数线性模型Hinge, 折叶点Histogram, 直方图Historical cohort study, 历史性队列研究Holes, 空洞HOMALS, 多重响应分析Homogeneity of variance, 方差齐性Homogeneity test, 齐性检验Huber M-estimators, 休伯M估计量Hyperbola, 双曲线Hypothesis testing, 假设检验Hypothetical universe, 假设总体Impossible event, 不可能事件Independence, 独立性Independent variable, 自变量Index, 指标/指数Indirect standardization, 间接标准化法Individual, 个体Inference band, 推断带Infinite population, 无限总体Infinitely great, 无穷大Infinitely small, 无穷小Influence curve, 影响曲线Information capacity, 信息容量Initial condition, 初始条件Initial estimate, 初始估计值Initial level, 最初水平Interaction, 交互作用Interaction terms, 交互作用项Intercept, 截距Interpolation, 内插法Interquartile range, 四分位距Interval estimation, 区间估计Intervals of equal probability, 等概率区间Intrinsic curvature, 固有曲率Invariance, 不变性Inverse matrix, 逆矩阵Inverse probability, 逆概率Inverse sine transformation, 反正弦变换Iteration, 迭代Jacobian determinant, 雅可比行列式Joint distribution function, 分布函数Joint probability, 联合概率Joint probability distribution, 联合概率分布K means method, 逐步聚类法Kaplan-Meier, 评估事件的时间长度Kaplan-Merier chart, Kaplan-Merier图Kendall''s rank correlation, Kendall等级相关Kinetic, 动力学Kolmogorov-Smirnove test, 柯尔莫哥洛夫-斯米尔诺夫检验Kruskal and Wallis test, Kruskal及Wallis检验/多样本的秩和检验/H检验Kurtosis, 峰度Lack of fit, 失拟Ladder of powers, 幂阶梯Lag, 滞后Large sample, 大样本Large sample test, 大样本检验Latin square, 拉丁方Latin square design, 拉丁方设计Leakage, 泄漏Least favorable configuration, 最不利构形Least favorable distribution, 最不利分布Least significant difference, 最小显著差法Least square method, 最小二乘法Least-absolute-residuals estimates, 最小绝对残差估计Least-absolute-residuals fit, 最小绝对残差拟合Least-absolute-residuals line, 最小绝对残差线Legend, 图例L-estimator, L估计量L-estimator of location, 位置L估计量L-estimator of scale, 尺度L估计量Level, 水平Life expectance, 预期期望寿命Life table, 寿命表Life table method, 生命表法Light-tailed distribution, 轻尾分布Likelihood function, 似然函数Likelihood ratio, 似然比line graph, 线图Linear correlation, 直线相关Linear equation, 线性方程Linear programming, 线性规划Linear regression, 直线回归Linear Regression, 线性回归Linear trend, 线性趋势Loading, 载荷Location and scale equivariance, 位置尺度同变性Location equivariance, 位置同变性Location invariance, 位置不变性Location scale family, 位置尺度族Log rank test, 时序检验Logarithmic curve, 对数曲线Logarithmic normal distribution, 对数正态分布Logarithmic scale, 对数尺度Logarithmic transformation, 对数变换Logic check, 逻辑检查Logistic distribution, 逻辑斯特分布Logit transformation, Logit转换LOGLINEAR, 多维列联表通用模型Lognormal distribution, 对数正态分布Lost function, 损失函数Low correlation, 低度相关Lower limit, 下限Lowest-attained variance, 最小可达方差LSD, 最小显著差法的简称Lurking variable, 潜在变量M-RMain effect, 主效应Major heading, 主辞标目Marginal density function, 边缘密度函数Marginal probability, 边缘概率Marginal probability distribution, 边缘概率分布Matched data, 配对资料Matched distribution, 匹配过分布Matching of distribution, 分布的匹配Matching of transformation, 变换的匹配Mathematical expectation, 数学期望Mathematical model, 数学模型Maximum L-estimator, 极大极小L 估计量Maximum likelihood method, 最大似然法Mean, 均数Mean squares between groups, 组间均方Mean squares within group, 组内均方Means (Compare means), 均值-均值比较Median, 中位数Median effective dose, 半数效量Median lethal dose, 半数致死量Median polish, 中位数平滑Median test, 中位数检验Minimal sufficient statistic, 最小充分统计量Minimum distance estimation, 最小距离估计Minimum effective dose, 最小有效量Minimum lethal dose, 最小致死量Minimum variance estimator, 最小方差估计量MINITAB, 统计软件包Minor heading, 宾词标目Missing data, 缺失值Model specification, 模型的确定Modeling Statistics , 模型统计Models for outliers, 离群值模型Modifying the model, 模型的修正Modulus of continuity, 连续性模Morbidity, 发病率Most favorable configuration, 最有利构形Multidimensional Scaling (ASCAL), 多维尺度/多维标度Multinomial Logistic Regression , 多项逻辑斯蒂回归Multiple comparison, 多重比较Multiple correlation , 复相关Multiple covariance, 多元协方差Multiple linear regression, 多元线性回归Multiple response , 多重选项Multiple solutions, 多解Multiplication theorem, 乘法定理Multiresponse, 多元响应Multi-stage sampling, 多阶段抽样Multivariate T distribution, 多元T分布Mutual exclusive, 互不相容Mutual independence, 互相独立Natural boundary, 自然边界Natural dead, 自然死亡Natural zero, 自然零Negative correlation, 负相关Negative linear correlation, 负线性相关Negatively skewed, 负偏Newman-Keuls method, q检验NK method, q检验No statistical significance, 无统计意义Nominal variable, 名义变量Nonconstancy of variability, 变异的非定常性Nonlinear regression, 非线性相关Nonparametric statistics, 非参数统计Nonparametric test, 非参数检验Nonparametric tests, 非参数检验Normal deviate, 正态离差Normal distribution, 正态分布Normal equation, 正规方程组Normal ranges, 正常范围Normal value, 正常值Nuisance parameter, 多余参数/讨厌参数Null hypothesis, 无效假设Numerical variable, 数值变量Objective function, 目标函数Observation unit, 观察单位Observed value, 观察值One sided test, 单侧检验One-way analysis of variance, 单因素方差分析Oneway ANOVA , 单因素方差分析Open sequential trial, 开放型序贯设计Optrim, 优切尾Optrim efficiency, 优切尾效率Order statistics, 顺序统计量Ordered categories, 有序分类Ordinal logistic regression , 序数逻辑斯蒂回归Ordinal variable, 有序变量Orthogonal basis, 正交基Orthogonal design, 正交试验设计Orthogonality conditions, 正交条件ORTHOPLAN, 正交设计Outlier cutoffs, 离群值截断点Outliers, 极端值OVERALS , 多组变量的非线性正规相关Overshoot, 迭代过度Paired design, 配对设计Paired sample, 配对样本Pairwise slopes, 成对斜率Parabola, 抛物线Parallel tests, 平行试验Parameter, 参数Parametric statistics, 参数统计Parametric test, 参数检验Partial correlation, 偏相关Partial regression, 偏回归Partial sorting, 偏排序Partials residuals, 偏残差Pattern, 模式Pearson curves, 皮尔逊曲线Peeling, 退层Percent bar graph, 百分条形图Percentage, 百分比Percentile, 百分位数Percentile curves, 百分位曲线Periodicity, 周期性Permutation, 排列P-estimator, P估计量Pie graph, 饼图Pitman estimator, 皮特曼估计量Pivot, 枢轴量Planar, 平坦Planar assumption, 平面的假设PLANCARDS, 生成试验的计划卡Point estimation, 点估计Poisson distribution, 泊松分布Polishing, 平滑Polled standard deviation, 合并标准差Polled variance, 合并方差Polygon, 多边图Polynomial, 多项式Polynomial curve, 多项式曲线Population, 总体Population attributable risk, 人群归因危险度Positive correlation, 正相关Positively skewed, 正偏Posterior distribution, 后验分布Power of a test, 检验效能Precision, 精密度Predicted value, 预测值Preliminary analysis, 预备性分析Principal component analysis, 主成分分析Prior distribution, 先验分布Prior probability, 先验概率Probabilistic model, 概率模型probability, 概率Probability density, 概率密度Product moment, 乘积矩/协方差Profile trace, 截面迹图Proportion, 比/构成比Proportion allocation in stratified random sampling, 按比例分层随机抽样Proportionate, 成比例Proportionate sub-class numbers, 成比例次级组含量Prospective study, 前瞻性调查Proximities, 亲近性Pseudo F test, 近似F检验Pseudo model, 近似模型Pseudo Sigma, 伪标准差Purposive sampling, 有目的抽样QR decomposition, QR分解Quadratic approximation, 二次近似Qualitative classification, 属性分类Qualitative method, 定性方法Quantile-quantile plot, 分位数-分位数图/Q-Q图Quantitative analysis, 定量分析Quartile, 四分位数Quick Cluster, 快速聚类Radix sort, 基数排序Random allocation, 随机化分组Random blocks design, 随机区组设计Random event, 随机事件Randomization, 随机化Range, 极差/全距Rank correlation, 等级相关Rank sum test, 秩和检验Rank test, 秩检验Ranked data, 等级资料Rate, 比率Ratio, 比例Raw data, 原始资料Raw residual, 原始残差Rayleigh''s test, 雷氏检验Rayleigh''s Z, 雷氏Z值Reciprocal, 倒数Reciprocal transformation, 倒数变换Recording, 记录Redescending estimators, 回降估计量Reducing dimensions, 降维Re-expression, 重新表达Reference set, 标准组Region of acceptance, 接受域Regression coefficient, 回归系数Regression sum of square, 回归平方和Rejection point, 拒绝点Relative dispersion, 相对离散度Relative number, 相对数Reliability, 可靠性Reparametrization, 重新设置参数Replication, 重复Report Summaries, 报告摘要Residual sum of square, 剩余平方和Resistance, 耐抗性Resistant line, 耐抗线Resistant technique, 耐抗技术R-estimator of location, 位置R估计量R-estimator of scale, 尺度R估计量Retrospective study, 回顾性调查Ridge trace, 岭迹Ridit analysis, Ridit分析Rotation, 旋转Rounding, 舍入Row, 行Row effects, 行效应Row factor, 行因素RXC table, RXC表S-ZSample, 样本Sample regression coefficient, 样本回归系数Sample size, 样本量Sample standard deviation, 样本标准差Sampling error, 抽样误差SAS(Statistical analysis system ), SAS统计软件包Scale, 尺度/量表Scatter diagram, 散点图Schematic plot, 示意图/简图Score test, 计分检验Screening, 筛检SEASON, 季节分析Second derivative, 二阶导数Second principal component, 第二主成分SEM (Structural equation modeling), 结构化方程模型Semi-logarithmic graph, 半对数图Semi-logarithmic paper, 半对数格纸Sensitivity curve, 敏感度曲线Sequential analysis, 贯序分析Sequential data set, 顺序数据集Sequential design, 贯序设计Sequential method, 贯序法Sequential test, 贯序检验法Serial tests, 系列试验Short-cut method, 简捷法Sigmoid curve, S形曲线Sign function, 正负号函数Sign test, 符号检验Signed rank, 符号秩Significance test, 显著性检验Significant figure, 有效数字Simple cluster sampling, 简单整群抽样Simple correlation, 简单相关Simple random sampling, 简单随机抽样Simple regression, 简单回归simple table, 简单表Sine estimator, 正弦估计量Single-valued estimate, 单值估计Singular matrix, 奇异矩阵Skewed distribution, 偏斜分布Skewness, 偏度Slash distribution, 斜线分布Slope, 斜率Smirnov test, 斯米尔诺夫检验Source of variation, 变异来源Spearman rank correlation, 斯皮尔曼等级相关Specific factor, 特殊因子Specific factor variance, 特殊因子方差Spectra , 频谱Spherical distribution, 球型正态分布Spread, 展布SPSS(Statistical package for the social science), SPSS统计软件包Spurious correlation, 假性相关Square root transformation, 平方根变换Stabilizing variance, 稳定方差Standard deviation, 标准差Standard error, 标准误Standard error of difference, 差别的标准误Standard error of estimate, 标准估计误差Standard error of rate, 率的标准误Standard normal distribution, 标准正态分布Standardization, 标准化Starting value, 起始值Statistic, 统计量Statistical control, 统计控制Statistical graph, 统计图Statistical inference, 统计推断Statistical table, 统计表Steepest descent, 最速下降法Stem and leaf display, 茎叶图Step factor, 步长因子Stepwise regression, 逐步回归Storage, 存Strata, 层(复数)Stratified sampling, 分层抽样Stratified sampling, 分层抽样Strength, 强度Stringency, 严密性Structural relationship, 结构关系Studentized residual, 学生化残差/t化残差Sub-class numbers, 次级组含量Subdividing, 分割Sufficient statistic, 充分统计量Sum of products, 积和Sum of squares, 离差平方和Sum of squares about regression, 回归平方和Sum of squares between groups, 组间平方和Sum of squares of partial regression, 偏回归平方和Sure event, 必然事件Survey, 调查Survival, 生存分析Survival rate, 生存率Suspended root gram, 悬吊根图Symmetry, 对称Systematic error, 系统误差Systematic sampling, 系统抽样Tags, 标签Tail area, 尾部面积Tail length, 尾长Tail weight, 尾重Tangent line, 切线Target distribution, 目标分布Taylor series, 泰勒级数Tendency of dispersion, 离散趋势Testing of hypotheses, 假设检验Theoretical frequency, 理论频数Time series, 时间序列Tolerance interval, 容忍区间Tolerance lower limit, 容忍下限Tolerance upper limit, 容忍上限Torsion, 扰率Total sum of square, 总平方和Total variation, 总变异Transformation, 转换Treatment, 处理Trend, 趋势Trend of percentage, 百分比趋势Trial, 试验Trial and error method, 试错法Tuning constant, 细调常数Two sided test, 双向检验Two-stage least squares, 二阶最小平方Two-stage sampling, 二阶段抽样Two-tailed test, 双侧检验Two-way analysis of variance, 双因素方差分析Two-way table, 双向表Type I error, 一类错误/α错误Type II error, 二类错误/β错误UMVU, 方差一致最小无偏估计简称Unbiased estimate, 无偏估计Unconstrained nonlinear regression , 无约束非线性回归Unequal subclass number, 不等次级组含量Ungrouped data, 不分组资料Uniform coordinate, 均匀坐标Uniform distribution, 均匀分布Uniformly minimum variance unbiased estimate, 方差一致最小无偏估计Unit, 单元Unordered categories, 无序分类Upper limit, 上限Upward rank, 升秩Vague concept, 模糊概念Validity, 有效性VARCOMP (Variance component estimation), 方差元素估计Variability, 变异性Variable, 变量Variance, 方差Variation, 变异Varimax orthogonal rotation, 方差最大正交旋转Volume of distribution, 容积W test, W检验Weibull distribution, 威布尔分布Weight, 权数Weighted Chi-square test, 加权卡方检验/Cochran检验Weighted linear regression method, 加权直线回归Weighted mean, 加权平均数Weighted mean square, 加权平均方差Weighted sum of square, 加权平方和Weighting coefficient, 权重系数Weighting method, 加权法W-estimation, W估计量W-estimation of location, 位置W估计量Width, 宽度Wilcoxon paired test, 威斯康星配对法/配对符号秩和检验Wild point, 野点/狂点Wild value, 野值/狂值Winsorized mean, 缩尾均值Withdraw, 失访Youden''s index, 尤登指数Z test, Z检验Zero correlation, 零相关Z-transformation, Z变换。

心理测量的理论基础 2测量的信度

心理测量的理论基础 2测量的信度
心理测量的理论基础 测量的信度
程 诚Βιβλιοθήκη 二 测量的信度信度(reliability) 信度(reliability): 测量结果的稳定性程度。信度这一概念是 测量结果的稳定性程度。信度这一概念是 计算各个分数的测量误差的基础,据此我 们能够预测各个分数受到无关因素或未知 因素的偶然因素的影响而可能发生的波动 范围。 信度与真分数理论的联系: 真分数是不变的,变化的是误差分数,能 够较好的控制误差,就能保证测量观测分 数的稳定性,就能获得较高的信度。
同质性信度( reliability) 同质性信度(homogeneity reliability) 也叫做内部一致性系数,是指测验内部所有 题目间的一致性程度。 题目间的一致性含有两层意思: ①指所有题目都测的是同一种心理特质, ②指所有题目得分之间都具有较高的正相关。 同质性信度就是一个测验所测内容或特质的 同质性信度就是一个测验所测内容或特质的 相同程度。 相同程度。 测量单一特性是同质性高的必要条件,而非 充分条件。同质性高才是测验测得单一特质 的充分条件。
重测信度的误差来源: 测验本身:测验所得的特性的本身就不稳 测验本身:测验所得的特性的本身就不稳 定。 受测者:成熟、知识的发展、练习因素、 受测者:成熟、知识的发展、练习因素、 记忆效果。重测的信度会随着时间的增长 而逐渐减小。重测间隔时间不应该超过6 而逐渐减小。重测间隔时间不应该超过6个 月。 偶发因素:记忆错误、情绪波动、健康状 偶发因素:记忆错误、情绪波动、健康状 况、动机等。
影响信度系数的因素 分数分布范围的影响 测验长度的影响 测验难度的影响 提高信度的方法 1.适当增加测验的题目数量。 1.适当增加测验的题目数量。 2.使测验中所有的试题的难度都接近正态分布,并 2.使测验中所有的试题的难度都接近正态分布,并 控制在中等水平。 3.努力提高测验试题的区分度。 3.努力提高测验试题的区分度。 4.选取适当的受测群体,提高此次测验在各同质性 4.选取适当的受测群体,提高此次测验在各同质性 较强的亚群体上的信度。 5.主测者严格执行实测规程,评分者严格按标准给 5.主测者严格执行实测规程,评分者严格按标准给 分,实测场地按测验手册的要求进行布置,较少无 关因素的干扰。

自然语言处理中常见的语义相似度计算评估指标(八)

自然语言处理中常见的语义相似度计算评估指标(八)

自然语言处理中常见的语义相似度计算评估指标自然语言处理(NLP)是一门涉及人类语言与计算机交互的领域,其中语义相似度计算是其中一个核心问题。

语义相似度计算是指在NLP中用来度量两个文本之间语义上的相似程度的任务。

在实际的自然语言处理任务中,比如问答系统、信息检索、机器翻译等,语义相似度计算的准确度直接影响到系统的性能和效果。

因此,对于语义相似度计算的评估指标的研究和应用,是当前自然语言处理领域的一个热点问题。

在语义相似度计算的评估过程中,常用的指标包括:Pearson相关系数、Spearman相关系数、均方根误差(Root Mean Square Error, RMSE)、平均绝对误差(Mean Absolute Error, MAE)、Kendall’s Tau等。

下面将逐一介绍这些指标及其在语义相似度计算中的应用。

Pearson相关系数是一种用来度量两个变量之间线性相关程度的统计指标。

在语义相似度计算中,Pearson相关系数被广泛用来评估两个语义相似度计算方法之间的相关性。

通常情况下,我们会将两个方法计算出的语义相似度值作为变量,然后计算它们之间的Pearson相关系数。

如果两个方法计算出的语义相似度值具有高度的线性相关性,那么它们之间的一致性就会很好。

Spearman相关系数与Pearson相关系数类似,也是一种用来度量两个变量之间相关程度的统计指标,但它不要求两个变量之间的关系是线性的。

在语义相似度计算中,Spearman相关系数通常被用来评估两个语义相似度计算方法之间的等级相关性。

与Pearson相关系数相比,Spearman相关系数更适合于评估两个语义相似度计算方法之间的非线性相关性。

均方根误差(RMSE)和平均绝对误差(MAE)是用来度量模型预测误差的指标。

在语义相似度计算中,我们可以将两个语义相似度计算方法的预测值作为模型的预测值,将人工标注的真实值作为数据的真实值,然后计算这两个方法的RMSE和MAE。

reliability信度英语定义

reliability信度英语定义

信度是指测量工具的可靠性和稳定性,能够确定测试结果的一致性和准确性。

在英语中,reliability是指一个测试或测量仪器得出相似结果的能力,无论何时何地进行测试都能给出一致的结果。

1. 信度的概念信度是心理测量学、教育测量学和社会科学研究中一个极为重要的概念。

它是指测量工具的可靠性和稳定性,能够确定测试结果的一致性和准确性。

2. 信度的种类信度可以分为内部一致性信度和重测信度两种。

内部一致性信度指的是同一测量工具对同一受试者进行测试时得出的结果是一致的。

而重测信度则是指同一测量工具对同一受试者进行重复测试时得出的结果是一致的。

3. 信度的评价方法评价信度的方法有很多种,常见的有Cronbach's Alpha系数、切比雪夫系数和斯皮尔曼-布朗公式等。

这些方法能够帮助研究者判断他们所用的测量工具是否具有足够的可靠性。

4. 信度的重要性信度是一个测量工具质量的重要标准,它直接影响到研究结果的可信度和准确性。

如果一个测量工具缺乏信度,那么得出的研究结果就难以被他人接受和信任。

5. 提高信度的方法提高信度的方法有很多种,包括增加测量工具的项目数量、增加测试的时间间隔、改善测试的环境条件等。

只有通过这些方法,才能够保证测量工具的信度达到足够的水平。

总结:信度是指测量工具的可靠性和稳定性,能够确定测试结果的一致性和准确性。

它能够直接影响到研究结果的可信度和准确性,因此在进行科学研究和数据收集时,研究者需要非常重视信度的评估和提高,以确保得出的研究结果具有较高的可信度。

为了保证研究结果的可信度和准确性,高信度的测量工具是至关重要的。

然而,要提高测量工具的信度并不是一件简单的事情,需要研究者在设计和实施测量工具时进行仔细考量和持续优化。

以下是一些常见的提高信度的方法和注意事项。

1. 增加测量项目数量增加测量项目数量是提高信度的一种重要方法。

通过增加项目数量,可以增加测量工具对受试者的覆盖范围,从而减少因某一个项目的偶然结果而对整体结果产生影响的可能性,提高测量工具的信度。

名词解释信度的英语

名词解释信度的英语

名词解释信度的英语在学术界和研究领域中,信度是一个非常重要的概念,它用于评估数据或测量工具的可靠性和稳定性。

而在英语中,名词解释信度的表达有很多方式。

首先,我们可以使用"reliability"这个词来表达信度。

Reliability这个名词源自动词rely,意为可靠,可信赖。

它指的是一个测量工具在多次使用或重复测试中的一致性和稳定性。

在科学研究中,我们经常要使用可靠的测量工具来确保数据准确且可重复。

因此,信度的英语表达中,reliability是常用的一个词汇。

除此之外,我们还可以用"dependability"这个词来表达信度。

Dependability是由dependable这个形容词衍生而来,表示可信赖的、可依赖的。

类似于reliability,dependability也指代测试或测量工具的稳定性和一致性。

在研究中,我们需要确保所使用的方法和工具是可信赖的,以便得到可靠和准确的结果。

因此,dependability也是表达信度的一个常见词汇。

此外,在英语中,我们还可以使用"consistency"这个词来解释信度。

Consistency是由consistent这个形容词衍生而来,表示一致性和连贯性。

在数据收集和分析中,我们要确保所使用的测量工具在不同时间和情境下产生的结果是一致的。

只有在结果一致的情况下,我们才能获得可靠的数据并做出准确的推断。

因此,consistency也成为了表达信度的一个合适词汇。

除了以上提到的词汇,我们还可以使用其他一些表达来解释信度。

例如,我们可以使用"validity"来表达精确性和准确性。

Validity是由valid这个形容词衍生而来,表示有效的、正确的。

在研究中,我们需要确保所使用的测量工具能够准确地度量我们所关注的概念或变量。

只有在测量工具具有有效性的情况下,我们才能对研究结果产生信任并做出正确的结论。

高中英语-新外研版-选择性必修2-Unit-4-Section-A 优质教学课件

高中英语-新外研版-选择性必修2-Unit-4-Section-A 优质教学课件

Para.6 F.Two boys survived.
Para.7 G.The staff.
答案 Para.1—D Para.2 —E Para.3—G
Para.4 —A Para.5—F Para.6 —C Para.7 —B
B.篇章结构
duty part inspiring
C.根据课文内容,选择正确答案 1.Why did so many doctors get together in Liberia? A.Because there was an important international conference in Liberia. B.Because they wanted to take chances to work in Liberia. C.Because there happened to be a terrible disease in Liberia. D.Because there are no borders for doctors,or for patients. 答案 C
The crops all died for lack of water. 庄稼因缺水都死了。
He is good at his job but he seems to be lacking in confidence. 他擅长工作,但似乎缺乏信心。
lack虽可用作及物动词,但不用于被动语态;lack用作不及物动词时,常与介 词for或in连用;lack用作名词时,常与介词of连用。
Para.2 B.Call for a global community.
Para.3 C.Powerful bonds.
Para.4 D.Health care workers raise virtual glasses.

汉密尔顿抑郁及焦虑量表与正性负性情绪量表的相关性研究

汉密尔顿抑郁及焦虑量表与正性负性情绪量表的相关性研究

汉密尔顿抑郁及焦虑量表与正性负性情绪量表的相关性研究一、本文概述随着心理健康领域的日益发展,对于各种心理评估工具的研究和应用也日渐深入。

其中,汉密尔顿抑郁及焦虑量表(HAMA)和正性负性情绪量表(PANAS)是两种广泛使用的心理测量工具。

本文旨在探讨汉密尔顿抑郁及焦虑量表与正性负性情绪量表之间的相关性,以期为提高心理健康评估的准确性和有效性提供理论依据。

汉密尔顿抑郁及焦虑量表是评估抑郁和焦虑症状的经典工具,具有良好的信度和效度。

而正性负性情绪量表则用于测量个体的积极和消极情绪体验,为评估个体的情感状态提供了重要参考。

通过对这两种量表的相关性进行研究,我们可以更深入地理解抑郁、焦虑情绪与正性负性情绪之间的关系,为心理健康的评估和干预提供更为全面的视角。

本文首先对汉密尔顿抑郁及焦虑量表和正性负性情绪量表的理论基础进行介绍,阐述其在心理健康评估中的应用价值。

接着,通过收集相关文献资料,对两种量表的相关性研究进行梳理和评价。

在此基础上,本文将采用实证研究方法,通过收集临床样本数据,分析汉密尔顿抑郁及焦虑量表与正性负性情绪量表之间的相关性。

结合研究结果,对两种量表在心理健康评估中的联合应用提出建议和展望。

通过本文的研究,我们期望能够为心理健康领域提供更加准确、有效的评估工具和方法,为临床实践和学术研究提供有力支持。

也希望能够引起更多学者对心理健康评估工具的关注和研究,共同推动心理健康领域的发展。

二、文献综述在过去的几十年里,心理健康领域的研究者们对抑郁和焦虑等情绪障碍进行了广泛而深入的研究。

其中,汉密尔顿抑郁量表(HAMD)和汉密尔顿焦虑量表(HAMA)作为评估抑郁和焦虑症状的经典工具,已被广泛应用于临床实践和研究中。

正性负性情绪量表(PANAS)作为一种评估个体情绪状态的量表,也受到了研究者们的广泛关注。

汉密尔顿抑郁量表(HAMD)是由汉密尔顿于1960年编制,用于评估抑郁症状的严重程度。

该量表包括多个条目,涵盖了抑郁症状的不同方面,如情绪低落、自责、自杀意念等。

公平评估函数

公平评估函数

公平评估函数"公平评估函数"这个术语没有一个统一的定义,因为它可能因上下文和特定应用的不同而有所变化。

然而,在一般意义上,我们可以将其理解为用于量化或评估某个系统、算法或过程在多大程度上实现了公平性的函数或指标。

在许多领域中,如机器学习、资源分配、法律和政策制定等,公平性是一个重要的考量因素。

公平评估函数可能包括多个方面,如:1. 均等性(Equality):衡量不同组别之间结果的相似性。

例如,在机器学习的上下文中,均等性可能意味着不同人口统计群体之间的错误率应该相似。

2. 无偏性(Unbiasedness):衡量系统是否对不同的输入或用户群体表现出偏见。

无偏性可以通过比较不同组别的平均结果来评估。

3. 机会均等(Equality of Opportunity):在某些特定条件下,衡量不同组别获得有利结果的概率是否相等。

例如,在招聘算法中,机会均等可能意味着具有相同资格的不同候选人被选中的概率应该相同。

4. 公平性差距(Fairness Gap):衡量不同组别之间结果差异的量度。

公平性差距越小,系统的公平性就越高。

设计一个公平评估函数时,需要明确以下几点:1.定义公平性:首先,你需要明确在你的应用中公平性的具体含义是什么。

这通常涉及到识别相关的用户群体和潜在的偏见来源。

2.选择指标:根据你的公平性定义,选择一个或多个能够量化公平性的指标。

3.权衡:公平性通常与其他目标(如准确性、效率等)存在权衡关系。

设计一个公平评估函数时,需要明确这些权衡,并决定如何在它们之间进行折中。

4.验证和调整:在应用公平评估函数时,需要验证其有效性,并根据反馈进行调整。

这可能涉及到收集和分析数据,以及与受影响的利益相关者进行沟通。

arrow-block-hurwicz定理

arrow-block-hurwicz定理

arrow-block-hurwicz定理Arrow-Block-Hurwicz 定理是指,给定一组理性偏好(即偏好满足可比性、连续性、非饱和性、传递性),只要满足某几个条件,就能够推断出整个偏好的特征。

具体来说,Arrow-Block-Hurwicz 定理在综合各种最优性条件的基础上,将社会福利函数分解成为两个独立的组成部分,即:转移部分和最终配置部分。

转移部分指的是决策者从一个状态到达另一个状态的过程,它反映了决策者对未来的期望和考虑。

最终配置部分则指的是偏好的直接表达,即决策者对不同状态下的资源配置的喜好程度。

根据Arrow-Block-Hurwicz 定理,社会福利函数的转移部分应该满足四个条件:弱度偏爱(weak Pareto),无剥夺(non-imposition),一致性(unanimity)和电影式(independence of irrelevant alternatives)。

弱度偏爱意味着如果所有人都认为一种资源配置优于另一种,那么社会福利函数也应该支持这种结果。

无剥夺指的是社会福利函数应该避免采用一种强制性的安排,使得某些个体无法获得任何利益。

一致性要求当且仅当所有人的偏好相同时,社会福利函数应该得出相同的结论。

最后,电影式则要求当一个人的资源配置发生变化时,社会福利函数应该只受到这个人的变化的影响,而不受其他个体资源配置变化的影响。

在最终配置部分,社会福利函数必须满足独立性(independence)和对称性(symmetry)两个条件。

独立性是指当决策者在两种不同状态下做出相同的选择时,社会福利函数应该评价这种选择的方式应该相同。

对称性要求当两种资源配置互相交换时,社会福利函数应该给出相同的评估结果。

总的来说,Arrow-Block-Hurwicz 定理提供了一种全面理解社会福利函数的方法,不仅解释了一些社会福利函数的矛盾或是不可行的特征,同时也为社会决策提供了一定的指导。

风险爱好型投资者的风险与收益率的无差异曲线

风险爱好型投资者的风险与收益率的无差异曲线

从几何意义上讲,由于商品 的边际替代率就是无差异曲 线的斜率的绝对值,所以, 边际替代率递减规律决定了 无差异曲线的斜率的绝对值 是递减的,即无差异曲线是 凸向原点的,图3-7中的无差 异曲线表明了这一点。
A
B
C
D
E
O 1 2 3 4 5
图3-7 商品的边际替代率递减规律
X
风险偏好型投资者的无差异曲线
收益率
因为U=f (x ,y)=A*x +B*y(A>0,B>0)
在这里我们可以将风险视为商品X, 收益率视为商品Y,可以得到风险X 相对于收益率Y的边际替代率同样 也是:
Y dY MRS lim XY X 0 X dX
因此,我们得到的风险爱好 者的风险与收益率的效用无 差异曲线是如左图所示,凸 向原点的。
风险爱好者的风险与收益率的 效用无差异曲线
——金融学学习

投资者的风险态度
风险爱好者(risk lover):当面对一个合理的风险时, 这种投资者会承担风险。因此,与较细小的风险相比, 风险偏好型的投资者更偏好较大的风险,因为他们从获 胜中得到的效用(满足)远大于从失败中得到的负效用 (不满足)。风险偏好型的投资者一般将从事投机,愿 意参加公平游戏与赌博。 风险中性(risk neutral):与风险厌恶投资者相比,风险 中性的投资者只是按预期收益率来判断风险投资。风险的高低 与风险中性投资者无关,这意味着不存在风险妨碍。对这样的 投资者来说,资产组合的确定等价报酬率就是预期收益率。 风险厌恶( risk averse ):对承担的风险要求补偿,即 只有当一个资产组合的确定等价收益大于无风险投资收益时, 这个投资才值得。
风险偏好型投资者的无差异曲线
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

The Normal DistributionThe normal distribution, also known as the Gaussian distribution, is the most widely-used general purpose distribution. It is for this reason that it is included among the lifetime distributions commonly used for reliability and life data analysis. There are some who argue that the normal distribution is inappropriate for modeling lifetime data because the left-hand limit of the distribution extends to negative infinity. This could conceivably result in modeling negative times-to-failure. However, provided that the distribution in question has a relatively high mean and a relatively small standard deviation, the issue of negative failure times should not present itself as a problem. Nevertheless, the normal distribution has been shown to be useful for modeling the lifetimes of consumable items, such as printer toner cartridges.Normal Probability Density FunctionThe pdf of the normal distribution is given by:where:= mean of the normal times-to-faiure, also noted as ,= standard deviation of the times-to-failureIt is a 2-parameter distribution with parameters (or ) and (i.e., the mean and the standard deviation, respectively).Normal Statistical PropertiesThe Normal Mean, Median and ModeThe normal mean or MTTF is actually one of the parameters of the distribution, usually denoted as Because the normal distribution is symmetrical, the median and the mode are always equal to the mean:The Normal Standard DeviationAs with the mean, the standard deviation for the normal distribution is actually one of the parameters, usually denoted as .The Normal Reliability FunctionThe reliability for a mission of time for the normal distribution is determined by:There is no closed-form solution for the normal reliability function. Solutions can be obtained via the use of standard normal tables. Since the application automatically solves for the reliability, we will not discuss manual solution methods. For interested readers, full explanations can be found in the references.The Normal Conditional Reliability FunctionThe normal conditional reliability function is given by:Once again, the use of standard normal tables for the calculation of the normal conditional reliability is necessary, as there is no closed form solution.The Normal Reliable LifeSince there is no closed-form solution for the normal reliability function, there will also be no closed-form solution for the normal reliable life. To determine the normal reliable life, one must solve:for .The Normal Failure Rate FunctionThe instantaneous normal failure rate is given by:Characteristics of the Normal DistributionSome of the specific characteristics of the normal distribution are the following:•The normal pdf has a mean, , which is equal to the median, , and also equal to the mode, , or. This is because the normal distribution is symmetrical about its mean.•The mean, , or the mean life or the , is also the location parameter of the normal pdf, as it locatesthe pdf along the abscissa. It can assume values of .•The normal pdf has no shape parameter. This means that the normal pdf has only one shape, the bell shape, and this shape does not change.•The standard deviation, , is the scale parameter of the normal pdf.•As decreases, the pdf gets pushed toward the mean, or it becomes narrower and taller.•As increases, the pdf spreads out away from the mean, or it becomes broader and shallower.•The standard deviation can assume values of .•The greater the variability, the larger the value of , and vice versa.•The standard deviation is also the distance between the mean and the point of inflection of the pdf, on each side of the mean. The point of inflection is that point of the pdf where the slope changes its value from a decreasing to an increasing one, or where the second derivative of the pdf has a value of zero.•The normal pdf starts at with an . As increases, also increases, goes through its point of inflection and reaches its maximum value at . Thereafter, decreases, goes through itspoint of inflection, and assumes a value of at .Weibull++ Notes on Negative Time ValuesOne of the disadvantages of using the normal distribution for reliability calculations is the fact that the normal distribution starts at negative infinity. This can result in negative values for some of the results. Negative values for time are not accepted in most of the components of Weibull++, nor are they implemented. Certain components of the application reserve negative values for suspensions, or will not return negative results. For example, the Quick Calculation Pad will return a null value (zero) if the result is negative. Only the Free-Form (Probit) data sheet can accept negative values for the random variable (x-axis values).Estimation of the ParametersProbability PlottingAs described before, probability plotting involves plotting the failure times and associated unreliability estimates on specially constructed probability plotting paper. The form of this paper is based on a linearization of the cdf of the specific distribution. For the normal distribution, the cumulative density function can be written as:or:where:Now, let:and:which results in the linear equation of:The normal probability paper resulting from this linearized cdf function is shown next.Since the normal distribution is symmetrical, the area under the pdf curve from to is , as is the area fromto . Consequently, the value of is said to be the point where . This means that the estimate of can be read from the point where the plotted line crosses the 50% unreliability line.To determine the value of from the probability plot, it is first necessary to understand that the area under the pdf curve that lies between one standard deviation in either direction from the mean (or two standard deviations total) represents 68.3% of the area under the curve. This is represented graphically in the following figure.Consequently, the interval between and represents two standard deviations, since this is an interval of 68.3% ( ), and is centered on the mean at 50%. As a result, the standard deviation can be estimated from:That is: the value of is obtained by subtracting the time value where the plotted line crosses the 84.15% unreliability line from the time value where the plotted line crosses the 15.85% unreliability line and dividing the result by two. This process is illustrated in the following example.Normal Distribution Probability Plotting Example7 units are put on a life test and run until failure. The failure times are 85, 90, 95, 100, 105, 110, and 115 hours. Assuming a normal distribution, estimate the parameters using probability plotting.In order to plot the points for the probability plot, the appropriate estimates for the unreliability values must be obtained. These values will be estimated through the use of median ranks, which can be obtained from statistical tables or from the Quick Statistical Reference (QSR) tool in Weibull++. The following table shows the times-to-failure and the appropriate median rank values for this example:These points can now be plotted on a normal probability plotting paper as shown in the next figure.Draw the best possible line through the plot points. The time values where the line intersects the 15.85%, 50%, and 84.15% unreliability values should be projected down to the abscissa, as shown in the following plot.The estimate of is determined from the time value at the 50% unreliability level, which in this case is 100 hours. The value of the estimator of is determined as follows:Alternately, could be determined by measuring the distance from to , orRank Regression on YPerforming rank regression on Y requires that a straight line be fitted to a set of data points such that the sum of the squares of the vertical deviations from the points to the line is minimized.The least squares parameter estimation method (regression analysis) was discussed in Parameter Estimation, and thefollowing equations for regression on Y were derived:and:In the case of the normal distribution, the equations for and are:and:where the values for are estimated from the median ranks. Once and are obtained, and can easily be obtained from above equations.The Correlation CoefficientThe estimator of the sample correlation coefficient, , is given by:RRY ExampleNormal Distribution RRY Example14 units were reliability tested and the following life test data were obtained. Assuming the data follow a normaldistribution, estimate the parameters and determine the correlation coefficient, , using rank regression on Y.The test dataData point index Time-to-failure15210315420525630735840950106011701280139014100SolutionConstruct a table like the one shown next.•The median rank values ( ) can be found in rank tables, available in many statistical texts, or they can be estimated by using the Quick Statistical Reference in Weibull++.•The values were obtained from standardized normal distribution's area tables by entering for and getting the corresponding value ( ). As with the median rank values, these standard normal values can be obtained with the Quick Statistical Reference.Given the values in the table above, calculate and using:and:or:Therefore:and:or hoursThe correlation coefficient can be estimated using:The preceding example can be repeated using Weibull++ .•Create a new folio for Times-to-Failure data, and enter the data given in this example.•Choose Normal from the Distributions list.•Go to the Analysis page and select Rank Regression on Y (RRY).•Click the Calculate icon located on the Main page.The probability plot is shown next.Rank Regression on XAs was mentioned previously, performing a rank regression on X requires that a straight line be fitted to a set of data points such that the sum of the squares of the horizontal deviations from the points to the fitted line is minimized. Again, the first task is to bring our function, the probability of failure function for normal distribution, into a linear form. This step is exactly the same as in regression on Y analysis. All other equations apply in this case as they did for the regression on Y. The deviation from the previous analysis begins on the least squares fit step where: in thiscase, we treat as the dependent variable and as the independent variable. The best-fitting straight line for the data, for regression on X, is the straight line:The corresponding equations for and are:and:where:and:and the values are estimated from the median ranks. Once and are obtained, solve the above linear equation for the unknown value of which corresponds to:Solving for the parameters, we get:and:The correlation coefficient is evaluated as before.RRX ExampleNormal Distribution RRX ExampleUsing the same data set from the RRY example given above, and assuming a normal distribution, estimate the parameters and determine the correlation coefficient, , using rank regression on X.SolutionThe table constructed for the RRY analysis applies to this example also. Using the values on this table, we get:and:or:Therefore:and:The correlation coefficient is obtained as:Note that the results for regression on X are not necessarily the same as the results for regression on Y. The only time when the two regressions are the same (i.e., will yield the same equation for a line) is when the data lie perfectly on a straight line.The plot of the Weibull++ solution for this example is shown next.Maximum Likelihood EstimationAs it was outlined in Parameter Estimation, maximum likelihood estimation works by developing a likelihood function based on the available data and finding the values of the parameter estimates that maximize the likelihood function. This can be achieved by using iterative methods to determine the parameter estimate values that maximize the likelihood function. This can be rather difficult and time-consuming, particularly when dealing with the three-parameter distribution. Another method of finding the parameter estimates involves taking the partial derivatives of the likelihood function with respect to the parameters, setting the resulting equations equal to zero, and solving simultaneously to determine the values of the parameter estimates. The log-likelihood functions and associated partial derivatives used to determine maximum likelihood estimates for the normal distribution are covered in the Appendix.Special Note About BiasEstimators (i.e., parameter estimates) have properties such as unbiasedness, minimum variance, sufficiency, consistency, squared error constancy, efficiency and completeness, as discussed in Dudewicz and Mishra [7] and in Dietrich [5]. Numerous books and papers deal with these properties and this coverage is beyond the scope of this reference.However, we would like to briefly address one of these properties, unbiasedness. An estimator is said to be unbiasedif the estimator satisfies the condition for allNote that denotes the expected value of X and is defined (for continuous distributions) by:It can be shown in Dudewicz and Mishra [7] and in Dietrich [5] that the MLE estimator for the mean of the normal(and lognormal) distribution does satisfy the unbiasedness criteria, or The same is not true for the estimate of the variance . The maximum likelihood estimate for the variance for the normal distribution is given by:with a standard deviation of:These estimates, however, have been shown to be biased. It can be shown in Dudewicz and Mishra [7] and in Dietrich [5] that the unbiased estimate of the variance and standard deviation for complete data is given by:Note that for larger values of , tends to 1.The Use Unbiased Std on Normal Data option on the Calculations page of the User Setup allows biasing to be considered when estimating the parameters.When this option is selected, Weibull++ returns the unbiased standard deviation as defined. This is only true for complete data sets. For all other data types, Weibull++ by default returns the biased standard deviation as defined above regardless of the selection status of this option. The next figure shows this setting in Weibull++.MLE ExampleNormal Distribution MLE ExampleUsing the same data set from the RRY and RRX examples given above and assuming a normal distribution, estimate the parameters using the MLE method.SolutionIn this example we have non-grouped data without suspensions and without interval data. The partial derivatives of the normal log-likelihood function, are given by:(The derivations of these equations are presented in the appendix.) Substituting the values of and solving theabove system simultaneously, we get hours hoursThe Fisher matrix is:The plot of the Weibull++ solution for this example is shown next.Confidence BoundsThe method used by the application in estimating the different types of confidence bounds for normally distributed data is presented in this section. The complete derivations were presented in detail (for a general function) in Confidence Bounds.Exact Confidence BoundsThere are closed-form solutions for exact confidence bounds for both the normal and lognormal distributions. However these closed-forms solutions only apply to complete data. To achieve consistent application across all possible data types, Weibull++ always uses the Fisher matrix method or likelihood ratio method in computing confidence intervals.Fisher Matrix Confidence BoundsBounds on the ParametersThe lower and upper bounds on the mean, , are estimated from:Since the standard deviation, , must be positive, is treated as normally distributed, and the bounds areestimated from:where is defined by:If is the confidence level, then for the two-sided bounds and for the one-sided bounds. The variances and covariances of and are estimated from the Fisher matrix, as follows:is the log-likelihood function of the normal distribution, described in Parameter Estimation and Appendix D.Bounds on ReliabilityThe reliability of the normal distribution is:Let , the above equation then becomes:The bounds on are estimated from:where:or:The upper and lower bounds on reliability are:Bounds on TimeThe bounds around time for a given normal percentile (unreliability) are estimated by first solving the reliability equation with respect to time, as follows:where:and:The next step is to calculate the variance of or:The upper and lower bounds are then found by:Likelihood Ratio Confidence BoundsBounds on ParametersAs covered in Confidence Bounds, the likelihood confidence bounds are calculated by finding values for and that satisfy:This equation can be rewritten as:For complete data, the likelihood formula for the normal distribution is given by:where the values represent the original time to failure data. For a given value of , values for and can be found which represent the maximum and minimum values that satisfy the above likelihood ratio equation. Theserepresent the confidence bounds for the parameters at a confidence level , where for two-sided bounds andfor one-sided.Example: LR Bounds on ParametersFive units are put on a reliability test and experience failures at 12, 24, 28, 34, and 46 hours. Assuming a normal distribution, the MLE parameter estimates are calculated to be and Calculate the two-sided 80% confidence bounds on these parameters using the likelihood ratio method.SolutionThe first step is to calculate the likelihood function for the parameter estimates:where are the original time-to-failure data points. We can now rearrange the likelihood ratio equation to the form:Since our specified confidence level, , is 80%, we can calculate the value of the chi-squared statistic,We can now substitute this information into the equation:It now remains to find the values of and which satisfy this equation. This is an iterative process that requires setting the value of and finding the appropriate values of , and vice versa.The following table gives the values of based on given values of .This data set is represented graphically in the following contour plot:(Note that this plot is generated with degrees of freedom , as we are only determining bounds on one parameter. The contour plots generated in Weibull++ are done with degrees of freedom , for use in comparing both parameters simultaneously.) As can be determined from the table, the lowest calculated value for is 7.849, while the highest is 17.909. These represent the two-sided 80% confidence limits on this parameter. Since solutions for the equation do not exist for values of below 22 or above 35.5, these can be considered the two-sided 80% confidence limits for this parameter. In order to obtain more accurate values for the confidence limits on , we can perform the same procedure as before, but finding the two values of that correspond with a given value of Using this method, we find that the two-sided 80% confidence limits on are 21.807 and 35.793, which are close to the initial estimates of 22 and 35.5.Bounds on Time and ReliabilityIn order to calculate the bounds on a time estimate for a given reliability, or on a reliability estimate for a given time, the likelihood function needs to be rewritten in terms of one parameter and time/reliability, so that the maximum and minimum values of the time can be observed as the parameter is varied. This can be accomplished by substituting a form of the normal reliability equation into the likelihood function. The normal reliability equation can be written as:This can be rearranged to the form:where is the inverse standard normal. This equation can now be substituted into the likelihood ratio equation toproduce an equation in terms of and :The unknown parameter depends on what type of bounds are being determined. If one is trying to determine the bounds on time for a given reliability, then is a known constant and is the unknown parameter. Conversely, if one is trying to determine the bounds on reliability for a given time, then is a known constant and is the unknown parameter. The likelihood ratio equation can be used to solve the values of interest.Example: LR Bounds on TimeFor the same data set given above in the parameter bounds example, determine the two-sided 80% confidencebounds on the time estimate for a reliability of 40%. The ML estimate for the time at is 31.637. SolutionIn this example, we are trying to determine the two-sided 80% confidence bounds on the time estimate of 31.637.This is accomplished by substituting and into the likelihood ratio equation for the normal distribution, and varying until the maximum and minimum values of are found. The following table gives the values of based on given values of .This data set is represented graphically in the following contour plot:As can be determined from the table, the lowest calculated value for is 25.046, while the highest is 39.250. These represent the 80% confidence limits on the time at which reliability is equal to 40%.Example: LR Bounds on ReliabilityFor the same data set given above in the parameter bounds and time bounds examples, determine the two-sided 80% confidence bounds on the reliability estimate for . The ML estimate for the reliability at is 45.739%. SolutionIn this example, we are trying to determine the two-sided 80% confidence bounds on the reliability estimate of 45.739%. This is accomplished by substituting and into the likelihood ratio equation for normal distribution, and varying until the maximum and minimum values of are found. The following table gives the values of based on given values of .This data set is represented graphically in the following contour plot:As can be determined from the table, the lowest calculated value for is 24.776%, while the highest is 68.000%. These represent the 80% two-sided confidence limits on the reliability at .Bayesian Confidence BoundsBounds on ParametersFrom Confidence Bounds, we know that the marginal posterior distribution of can be written as:where:= is the non-informative prior of .is a uniform distribution from - to + , the non-informative prior ofUsing the above prior distributions, can be rewritten as:The one-sided upper bound of is:The one-sided lower bound of is:The two-sided bounds of are:The same method can be used to obtained the bounds of .Bounds on Time (Type 1)The reliable life for the normal distribution is:The one-sided upper bound on time is:The above equation can be rewritten in terms of as:From the posterior distribution of :The same method can be applied for one-sided lower bounds and two-sided bounds on time.Bounds on Reliability (Type 2)The one-sided upper bound on reliability is:From the posterior distribution of :The same method can be used to calculate the one-sided lower bounds and the two-sided bounds on reliability.Normal Distribution ExamplesThe following examples illustrate the different types of life data that can be analyzed in Weibull++ using the normal distribution. For more information on the different types of life data, see Life Data Classification.Complete Data Example6 units are tested to failure. The following failure times data are obtained: 12125, 11260, 12080, 12825, 13550 and 14670 hours. Assuming that the data are normally distributed, do the following:Objectives1. Find the parameters for the data set, using the Rank Regression on X (RRX) parameter estimation method2. Obtain the probability plot for the data with 90%, two-sided Type 1 confidence bounds.3. Obtain the pdf plot for the data.4. Using the Quick Calculation Pad (QCP), determine the reliability for a mission of 11,000 hours, as well asthe upper and lower two-sided 90% confidence limit on this reliability.5. Using the QCP, determine the MTTF, as well as the upper and lower two-sided 90% confidence limit onthis MTTF.6. Obtain tabulated values for the failure rate for 10 different mission end times. The mission end times are1,000 to 10,000 hours, using increments of 1,000 hours.SolutionThe following figure shows the data as entered in Weibull++, as well as the calculated parameters.The following figures show the probability plot with the 90% two-sided confidence bounds and the pdf plot.Both the reliability and MTTF can be easily obtained from the QCP. The QCP, with results, for both cases is shown in the next two figures.To obtain tabulated values for the failure rate, use the Analysis Workbook or General Spreadsheet features that are included in Weibull++. (For more information on these features, please refer to the Weibull++ User's Guide. For a step-by-step example on creating Weibull++ reports, please see the Quick Start Guide [1]). The following worksheet shows the mission times and the corresponding failure rates.Suspension Data Example19 units are being reliability tested and the following is a table of their times-to-failure and suspensions.Non-Grouped Data Times-to-Failure Data with SuspensionsData point index Last Inspected State End Time1F22S33F54S75F116S137S178S199F2310F2911S3112F3713S4114F4315S4716S5317F5918S6119S67Using the normal distribution and the maximum likelihood (MLE) parameter estimation method, the computed parameters are:If we analyze the data set with the rank regression on x (RRX) method, the computed parameters are:For the rank regression on y (RRY) method, the parameters are:Interval Censored Data Example8 units are being reliability tested, and the following is a table of their failure times:Non-Grouped Interval DataData point index Last Inspected State End Time1303223235335374374054242645457505085555This is a sequence of interval times-to-failure data. Using the normal distribution and the maximum likelihood (MLE) parameter estimation method, the computed parameters are:For rank regression on x:If we analyze the data set with the rank regression on y (RRY) parameter estimation method, the computed parameters are:The following plot shows the results if the data were analyzed using the rank regression on X (RRX) method.Mixed Data Types ExampleSuppose our data set includes left and right censored, interval censored and complete data, as shown in the following table.Grouped Data Times-to-Failure with Suspensions and Intervals (Interval, Left and Right Censored)Data point index Number in State Last Inspection State (S or F)State End Time1110F102120S20320F304240F405150F506160S607170F708220F809110F85101100F100Using the normal distribution and the maximum likelihood (MLE) parameter estimation method, the computed parameters are:If we analyze the data set with the rank regression on x (RRX) method, the computed parameters are:For the rank regression on y (RRY) method, the parameters are:Comparison of Analysis Methods8 units are being reliability tested, and the following is a table of their failure times:Non-Grouped Times-to-Failure DataData point index State F or S State End Time1F22F53F114F235F296F377F438F59Using the normal distribution and the maximum likelihood (MLE) parameter estimation method, the computed parameters are:If we analyze the data set with the rank regression on x (RRX) method, the computed parameters are:For the rank regression on y (RRY) method, the parameters are:References[1]/weibull/startguide/weibull_qsg_2.html。

相关文档
最新文档