LOCAL VECTOR TOMOGRAPHY BY USE OF WAVELETS
电子信息工程专业英语专业术语速查表5.0
AA/D abbr. Analog-to-Digital 模数转换16, 17AC abbr. alternating current 交流电5AC analysis 交流分析5 accumulator [ə'kjuːmjʊleɪtə] n.累加器17 accuracy [ˈækjʊrəsi] n.精度6 acquisition time 采集时间16 activate [ˈæktɪveɪt] vt. 激活3active [ˈæktɪv] adj.有源的4, 18 actuator [ˈæktjʊeɪtə] n.激励器4ADC abbr. analog-to-digital converter 模数转换器6, 18 addition [əˈdɪʃən] n. 加法3 address generator 地址产生器17 address latch 地址锁存器3 address pointer 地址指针2 addressing mode 寻址模式26 ADSL abbr. Asymmetrical Digital Subscriber Loop 非对称数字用户线21AFG abbr. Arbitrary Function Generator 任意函数发生器28 algorithm ['ælgərɪðəm] n. 算法27 aliasing ['eɪlɪəsiŋ] n.混叠16ALU abbr. Arithmetic Logic Unit 算术逻辑单元3 amplifier [ˈæmplɪˌfaɪə] n. 放大器4 analog interfacing模拟接口(技术)6 angular [ˈæŋɡjələ] adj.角度的5 angular frequency 角频率5 annotation [ænə'teɪʃən] n.标注15 antenna [ænˈtenə] n.天线10anti-aliasing filter 抗混叠滤波器6, 16 array [ə'reɪ] n.数组26ASIC abbr. Application-Specific Integrated Circuit 专用集成电路13, 14, 15, 16, 25专用集成电路assembler [əˈsemblə] n. 汇编器3 assembly language 汇编语言3 ASSP abbr. Application-Specific Standard Part 专用标准部件14, 25 asynchronous [ə'sɪŋkrənəs] adj.异步的13 attenuator [ə'tenjʊeɪtə] n. 衰减器29 audio [ˈɔːdiəʊ] adj.音频的6 automatic variable 自动变量26AWG abbr. Arbitrary Waveform Generator 任意波形发生器28axis [ˈæksɪs] n. 坐标轴5Bbackplane [ˈbækˌpleɪn] n. 背板;底板9 backward compatible 向下兼容21 bandwidth ['bændˌwɪdθ] n.带宽6第 1 页共15 页bar graph 柱图22base band 基带6base station 基站10, 21battery [ˈbætəri] n. 电池7, 12baud [bɔːd] n.波特21Bessel filter 贝塞耳滤波器19biased [ˈbaɪəst] adj.加偏压的7bill of materials 材料单25binary number 二进制数3BIOS [ˈbaɪɒs] abbr. Basic Input Output System 基本输入输出系统3bipolar [baɪˈpəʊlə] adj.双极性的2bit pattern 位模式3bit vector 位向量26block diagram 方框图6block diagram 框图19BNC abbr. bayonet Neill–Concelman BNC连接器9Bode plot 伯德图5bond [bɒnd] n.接头9boot sector 引导扇区3branch instruction 分支指令26缓存器;;缓存区3, 10 buffer [ˈbʌfə] n. 缓存器bunching ['bʌntʃiŋ] n.聚束19bus interface 总线接口16Ccable ['keɪbl] n.电缆12cache [kæʃ] n.高速缓存2CAD abbr. Computer Aided Design 计算机辅助设计13, 18calculation-intensive algorithm 运算密集型算法17CAM [kæm] abbr. Content Addressable Memory 内容寻址存储器2capacitance [kəˈpæsɪtəns] n. 电容(值)5capacitive [kəˈpæsɪtɪv] adj. 容性的9capacitor [kəˈpæsɪtə] n.电容器2, 5capacity [kə'pæsɪtɪ ] n.容量10capture ['kæptʃə] vt. 输入,记录13carrier wave 载波24carry bit 进位位3cascade [kæsˈkeɪd] n.级联5cathode ['kæθəʊd] n. 阴极29CB abbr. Citizen's Band 民用波段10CCD abbr. Charge Coupled Device 电荷耦合器件18, 23CD abbr. Compact Disc 光盘12, 13cellular [ˈseljʊlə] n.使用蜂窝技术的6channel [ˈtʃænəl] n.信道6第 2 页共15 页characteristic frequency 特征频率5 charge pump 电荷泵8 Chebyshev Type 1 filter 契比雪夫I型滤波器18 chip [tʃɪp] n. 芯片1 chip rate 码片速率21 chrominance [ˈkrəʊmɪnəns] n.色度24 circuit [ˈsɜːkɪt] n. 电路1 circuit board 电路板1 circuitry [ˈsɜːkɪtri] n. 电路2, 4, 6 circular [ˈsɜːkjʊlə] adj. 圆形的5 circular buffer 循环缓冲区17 class [klɑːs] n.类26 clock cycle 时钟周期3 clock generator 时钟发生器8 clock rate 时钟速率9 CMOS abbr. complementary metal-oxide-semiconductor 互补金属氧化物半导体2, 9, 12, 23 coding theory 编码理论11 comparator [kəmˈpærətə] n.比较器2, 6 compatibility [kəmˌpætɪ'bɪlɪtɪ] n. 兼容性16 compiler [kəmˈpaɪlə] n.编译器3, 26 complex plane 复平面5 component [kəmˈpəʊnənt] n. 元器件;组件;部件1 concurrent [kən'kʌrənt] adj.并发的15 concurrent process 并发进程26 conductivity [kɒndʌkˈtɪvɪti] n.导电性7 conjugate [ˈkɒndʒʊɡeɪt] adj.共轭的5 converter [kənˈvɜːtə] n. 整流器7 converter resolution 转换器分辨率6 coordinate [kəʊˈɔːdɪnət] n. 坐标5 cordless phone 无绳电话10 counter [ˈkaʊntə] n. 计数器3 coupling [ˈkʌplɪŋ] n.耦合9 CPU abbr. central processing unit中央处理器1, 12程序))25, 27交叉编译器((程序cross-compiler 交叉编译器crosstalk [ˈkrɒsˌtɔːk] n.串扰9 crowbar [ˈkrəʊˌbɑː] n. 短路器7 CRT abbr. Cathode Ray Tube 阴极射线管29 cryptography [krɪp'tɒgrəfɪ] n. 密码学14 crystal [ˈkrɪstəl] n.晶体8, 18 CT abbr. Computed Tomography 计算机层析成像22 current source 电流源4 cutoff [ˈkʌtɒf] n.截止7 cutoff frequency 截止频率18第 3 页共15 页DD/A abbr. Digital-to-Analog 数模转换16, 17 DAC abbr. Digital-to-Analog Converter 数模转换器18 damping [ˈdæmpɪŋ] n.幅度衰减5 data acquisition 数据采集30 data compression 数据压缩18 data converter 数据转换器6 data processing 数据处理14 data rate 数据率19 data sheet 数据手册4, 6 dB abbr. decibel [ˈdesɪˌbel] 分贝5 DC abbr. direct current 直流电5 DCT abbr. Discrete Cosine Transform 离散余弦变换22 debug [diː'bʌg] vt.调试28 debugger [diː'bʌgə] n. 调试程序27 decimation [desɪ'meɪʃən] n.抽取6 declaration [deklə'reɪʃən] n.声明15 decoder [diːˈkəʊdə] n. 译码器3 delta modulation 增量调制(∆调制)11 denominator [dɪˈnɒmɪˌneɪtə] n.分母5 density [ˈdensəti] n. 密度2 design flow 设计流程13 design specification 设计规格28 desired signal 期望信号28 detector [dɪˈtektə] n.检波器8 deviation [ˌdiːviˈeɪʃən] n. 偏差8 device driver 设备驱动程序27 DG abbr. Data Generator 数据发生器28 dial tone 拨号音10 differentiation [ˌdɪfərenʃiˈeɪʃən] n. 微分4 digital [ˈdɪdʒɪtəl] adj.数字的1 digital cellular phone 数字蜂窝电话6 digital circuit 数字电路2 digital filtering 数字滤波6 digitization [ˌdɪdʒɪtɪ'zeʃən] n. 数字化16 diode [ˈdaɪəʊd] n. 二极管7 discrete [dɪ'skriːt] adj.离散的,分立的1, 13 discrete component 分立元件3 disk drive head 磁盘驱动器磁头18 dissipate [ˈdɪsɪˌpeɪt] vi.耗散7 distortion [dɪ'stɔːʃən] n.畸变28 division [dɪˈvɪʒən] n. 除法3 DMM abbr. digital multimeter 数字多用表28第 4 页共15 页Dolby Stereo 杜比立体声19 don't care 无关项15 downstream ['daʊn'striːm] n.下行比特流11 DRAM abbr. Dynamic Random Access Memory 动态随机存取存储器2 drive [draɪv] n.驱动器2, 12 DSP abbr. Digital Signal Processing 数字信号处理14, 18 DSP abbr. Digital Signal Processor 数字信号处理器16, 17 DSSS abbr. Direct Sequence Spread Spectrum 直序扩频21 duty cycle 占空比7, 8 DVD abbr. Digital Video Disk 数字视盘12 DVI abbr. Digital Video Interactive 交互式数字视频系统12 dynamic range 动态范围16 E合逻辑2, 9 ECL abbr. emitter coupled logic 射极耦射极耦合逻辑EDA abbr. Electronic Design Automation 电子设计自动化13, 15 edge detection 边缘检测22 EEPROM [ˈi:prɒm] abbr. Electrically Erasable Programmable ROM 电可擦除可编程只读存储器2 electrical power 电能7 electricity [ˌilekˈtrɪsəti] n. 电1 electron beam 电子束29 electronics [ˌilekˈtrɒnɪks] n. 电子学, 电子电路1, 7 embedded system 嵌入式系统13 emulation [ˌemjʊ'leɪʃən] n. 仿真16 encoding [ɪn'kəʊdɪŋ] n.编码19 end office 端局10 end product 最终产品16 erasable [ɪˈreɪzəbl] adj.可擦除的2 ethernet[ˈiːθənet] n. 以太网9, 12 even field 偶数场24 execute [ˈeksɪˌkjuːt] vt. 执行3 execution time 执行时间27 exponent [ɪk'spəʊnənt] n.指数17 exponential [ˌekspəˈnenʃəl] adj. 指数的5 expression [ɪk'spreʃən] n. 表达式26 external compensation 外部补偿4 FFCC abbr. Federal Communications Commission 联邦通信委员会10 FDM abbr. Frequency-division multiplexing 频分复用11 feature size 特征尺寸19 feedback [ˈfiːdbæk] n.反馈4 feedback component 反馈元件4 ferroelectric [ˌferəʊɪˈlektrɪk] adj.铁电的2 FFT abbr. Fast Fourier Transform 快速傅里叶变换6, 18第 5 页共15 页field [fiːld] n. 字段26 field operation 现场运行4 filter ['fɪltə] n.滤波器6 filtering [ˈfɪltərɪŋ] n.滤波9, 18 flash memory 闪存23 flip flop 触发器2 floating point processor 浮点处理器3 flux [flʌks] n.通量7 flyback [ˈflaɪbæk] n.回扫7 foundry ['faʊndri] n. 晶圆代工厂16 FPGA abbr. Field Programmable Gate Array 现场可编程门阵列13, 15, 16 frame grabber 帧采集器24 frequency conflict 频率冲突11 frequency masking 频率掩蔽20 frequency response 频率响应9 frequency reuse 频率复用10 frequency synthesizer 频率合成器8full range 满量程28 full scale 满幅度;满量程6full scale range 满量程范围16 functional accelerator 性能加速器16 fundamental frequency 基频29Ggain drift 增益漂移4 GBW abbr. Gain × Bandwidth 增益带宽积4 global data 全局数据26 GPP abbr. General Purpose Processor 通用处理器16 gray scale level 灰度级22 GSM abbr. Global System for Mobile communications 全球移动通信系统6 guided missile 导弹28 gyro ['dʒaɪrəʊ] n.陀螺仪28 handoff [hændɒf] n. 越区切换21 handset ['hænset] n. 手持设备10 Harvard architecture 哈佛结构17 HDL abbr. Hardware Description Language 硬件描述语言13, 15 HDMI abbr. High-Definition Multimedia Interface 高清晰度多媒体接口12 headroom [ˈhedˌruːm] n.净空,活动空间7 heatsink [ˈhiːt ˈsɪŋk] n.散热片7, 12 high impedance 高阻15 high-powered [ˌhaɪ ˈpaʊəd] adj. 大功率的10 histogram ['hɪstəgræm] n.直方图22 histogram equalization 直方图均衡22 Huffman encoding 哈夫曼编码22第 6 页共15 页IIC abbr. integrated circuit 集成电路1, 4 IDE [aɪd] abbr. Integrated Drive Electronics 集成驱动器电路12 IEEE abbr. Institute of Electrical and Electronic Engineers 电气与电子工程师学会15 image contrast 图像对比度22 image sensor 图像传感器23 imaginary part 虚部5 impedance [ɪmˈpiːdəns] n. 阻抗5, 15, 30 inbound ['ɪnbaʊnd] adj.输入的10 inductance [ɪnˈdʌktəns] n. 电感(值)5 inductive [ɪnˈdʌktɪv] adj.感性的9 inductor [ɪnˈdʌktə] n. 电感器5, 7 infinity [ɪnˈfɪnəti] n.无穷大5in-phase 同相28 input offset voltage 输入偏置电压4 instruction [ɪnˈstrʌkʃən] n. 指令3 instruction decoder 地址译码器3 instrumentation [ˌɪnstrʊmen'teɪʃən] n.仪器28 insulate [ˈɪnsjuleɪt] vt.绝缘1 integrated development tool 集成开发工具27集成;;积分4, 7 integration [ˌɪntəˈɡreɪʃən] n. 集成integrator [ˈɪntɪgreɪtə] n. 积分器5 interconnect [ˌɪntəkəˈnekt] n. 互连9 interface [ˈɪntəˌfeɪs] n. 接口电路2, 4 interference [ɪntə'fɪərəns] n. 干扰10 interpolation [ɪntɜːpəʊ'leɪʃən] n.插值6 interrupt latency 中断等待时间27 interval [ˈɪntəvəl] n. 间歇2IP abbr. Intellectual Property 知识产权25 IP abbr. Internet Protocol 互联网协议21 IP packet IP分组21 ISO abbr. International Organization for Standardization 国际标准化组织26 ISP abbr. in-system programmable 在系统可编程14 ISR abbr. Interrupt Service Routine 中断服务程序27Jjack [dʒæk] n.音频插口12 jitter ['dʒɪtə] n.抖动28 jitters [ˈdʒɪtəz] n. 时钟抖动8 JPEG abbr. Joint Photographic Experts Group 联合图象专家组23 JTAG abbr. Joint Test Action Group 联合测试行动组25Kkernel ['kɜːnəl] n.内核程序27 lagging [ˈlæɡɪŋ] adj.滞后的8第7 页共15 页laptop ['læptɒp] n.膝上型轻便电脑12 laser ['leɪzə] abbr. light amplification by stimulated emission of radiation 激光19 latency ['leɪtənsɪ] n. 反应时间27 LLCD abbr. Liquid Crystal Display 液晶显示器23 lead [liːd] n.引线9 leading [ˈliːdɪŋ] adj.超前的8 leakage [ˈli:kɪdʒ] n.泄露2 learning curve 学习曲线15 licensing agreement 专利使用权转让协定17 linear ramp 线性斜坡5 linear regulator 线性稳压器7 linearity [ˌlɪnɪˈærɪtɪ] n. 线性28 lithographic [ˌlɪθəˈɡræfɪk] adj. 平版印刷的2 load [ləʊd] n. 负载7 load current 负载电流7 loading ['ləʊdɪŋ] n.负载30 log [lɒɡ] abbr. logarithm [ˈlɒɡərɪðəm] 对数4 logic [ˈlɒdʒɪk] n. 逻辑1 logic analyzer 逻辑分析仪28 logical channel 逻辑通道21 look-up table 查找表2, 19 loop filter 环路滤波器8 looping scheme 循环机制17 loss [lɒs] n. 损耗7 LP abbr. Long Playing 密纹唱片13 LSI abbr. large-scale integration 大规模集成1 luminance ['luːmɪnəns] n.亮度24 MMAC abbr. Multiplication and Accumulation 乘法累加运算18 machine instruction 机器指令3 magnetic [mæɡˈnetɪk] adj.有磁性的2, 7 magnitude spectrum 幅度谱22 mantissa [mæn'tɪsə ] n.尾数17 m-commerce 移动商务21 memory [ˈmeməri] n.存储器2 memory location 存储器位置3 metallization [ˌmetəlaɪ'zeɪʃən] n.金属化13 microcell [ˈmaɪkrəʊˌsel] n.微蜂窝10 microcontroller [maɪkrəkən'trəʊlə] n.微控器2 micron [ˈmaɪkrɒn] n. 微米;10-6米3 microphone ['maɪkrəfəʊn] n.扩音器18 microprocessor [maɪkrəʊ'prəʊsesə] n. 微处理器1, 3第8 页共15 页miniaturization [ˈmɪnɪətʃəˌraɪˈzeɪʃən] n. 缩微化1 MIPS [mɪps] abbr. Million Instructions Per Second 每秒百万条指令数3, 18 MMX abbr. Multi-Media Extension多媒体增强指令集17 mnemonics [nɪ'mɒnɪks] n. 助记符30 modem ['məʊdem] n.调制解调器12 monotonicity [mɒnətəˈnɪsɪtɪ] n. 单调性28µP abbr. microprocessor 微处理器14 MPEG abbr. Motion Picture Experts Group 运动图象专家组20 MRI abbr. Magnetic Resonance Imaging 核磁共振成像22 MSC abbr. Mobile Switching Center 移动电话交换中心10 MSPS abbr. million samples per second 每秒百万样本数6 MTSO abbr. Mobile Telephone Switching Office 移动电话交换局10 multiframe n.复帧11 multiplexer ['mʌltɪˌpleksə] n.多路复用器28 multiplication [ˌmʌltəplɪˈkeɪʃən] n. 乘法3 multiplier [ˈmʌltɪˌplaɪə] n.乘法器3, 17 Nnetwork operator 网络运营商21 network router 网络路由器2 next state 次态13 noise shaping 噪声整形6 nominal [ˈnɒmɪnəl] adj.标称的8 NRE abbr. nonrecurring engineering 一次性工程14 NTSC abbr. National Television Systems Committee 国家电视系统委员会24 Nyquist theorem 奈奎斯特定理16 Oobject recognition 目标识别22 odd field 奇数场24 one's complement 二进制反码11 op amp abbr. operational amplifier 运算放大器4, 18 opcode [ˈɒpkəʊd] abbr. operation code 操作码3 open loop gain 开环增益4 operand ['ɒpərænd] n.操作数26 operating system 操作系统3 optical [ˈɒptɪkəl] adj.光学的2 order of magnitude 数量级10 OS abbr. Operating System 操作系统12 oscillation [ˌɒsɪˈleɪʃən] n. 振荡4 oscillator [ˈɒsɪˌleɪtə] n.振荡器8 oscilloscope [əˈsɪləˌskəʊp] n.示波器20, 28 OTP abbr. one-time programmable 一次性编程14 outbound ['aʊtbaʊnd] adj.输出的10 outlet ['aʊtlet] n.电源插座12第9 页共15 页overload [ˌəʊvəˈləʊd] n.过载10 overvoltage [ˈəʊvəˈvəʊltɪdʒ] n.过压7Ppackage ['pækɪdʒ] n.封装形式; 程序包4, 15 packet ['pækɪt] n.信息分组21 packet switching 分组交换10 pad [pæd] n.焊盘9 PAL [pæl] abbr. Phase Alternation by Line 逐行倒相24 parallel [ˈpærəlel] adj.并联的8 parallel architecture 并行结构17 parallel resonant 并联谐振8 parallelism ['pærəlelɪzəm] n. 并行度14 passband ['pæsbænd] n.通带5, 18 passive [ˈpæsɪv] adj.无源的4, 7, 18 payload [ˈpeɪˌləʊd] n.有效载荷11 PCB abbr. printed circuit board 印制电路板9, 18 PCM abbr. Pulse Code Modulation 脉冲编码调制11 PCS abbr. Personal Communication Service 个人通信业务11 perceptual coding 知觉编码20 performance specification 性能指标6 peripheral [pə'rɪfərəl] n.外设12 PGA abbr. Programmable Gain Amplifier 可编程增益放大器18 phase spectrum 相位谱22 phone service 电话业务4 piezoelectric [ɪˈlektrɪk] adj.压电的piezoelectric [paɪzəʊɪˈlektrɪk] adj.压电的8, 18 piezoelectric crystal 压电晶体18 pipelining [ˈpaɪpˌlaɪnɪŋ] n. 流水线技术3 pixel ['pɪksəl] n.像素22 PLA abbr. Programmable Logic Array 可编程逻辑阵列13 playback ['pleɪbæk] n.重放19 PLCC abbr. plastic leadless chip carrier 塑料无引线芯片承载封装9 PLD abbr. Programmable Logic Device 可编程逻辑器件13, 14, 15 PLL abbr. phase locked loop 锁相环8 pointer ['pɒɪntə] n.指针26 pole [pəʊl] n. 极点5 pole [pəʊl] n.极点18 POST [pəʊst] abbr. power-on self-test 开机自检12 power [ˈpaʊə] n. 功率1 power consumption 功耗1, 6 power dissipation 功耗16 power loss 功率损耗9 power supply voltage 电源电压4第10 页共15 页power supply 电源12 ppm abbr. parts per million 百万分之一8 predictive encoding 预测编码11 present state 现态13 price/performance ratio 性价比16 probe [prəʊb] n.探头30 processing gain 处理增益6 program call 程序调用26 program counter 程序计数器3, 26 programmable [ˈprəʊɡræməbl] adj.可编程的2 propagate [ˈprɒpəɡeɪt] vi.传播8 propagation delay 传输延迟8, 30 prototype ['prəʊtətaɪp] n. 样机14 PSTN abbr. Public Switched Telephone Network 公共交换电话网10 psychoacoustics [ˌsaɪkəʊə'kuːstɪks] n.心理声学20 PTT abbr. Post Telephone and Telegraph Administration 邮政电话电报管理局10 pulse [pʌls] n.脉冲3 pulse width 脉冲宽度30 QoS abbr. quality-of-service 服务质量21 quality factor 品质因数5 quantization error (noise) 量化误差(噪声)6 quantization level 量化电平16 quartz [kwɒts] n. 石英8 RRAM [ræm] abbr. random-access memory 随机存取存储器3, 12 random noise 随机噪声11 raster ['ræstə] n.光栅29 RC abbr. Reconfigurable Computing 可重配计算14 RC abbr. resistor capacitor 电阻电容5 RCA abbr. Radio Corporation of America 美国无线电公司12 real part 实部5 real time 实时16 rectifier [ˈrektɪfaɪə]n.整流器7 redundancy [rɪ'dʌndənsɪ] n.冗余20 Reed-Solomon coding 里德-索罗蒙编码(RS编码)19 reference voltage 参考电压6 refresh [rɪˈfreʃ] vt.刷新2 register [ˈredʒɪstə] n.寄存器2 regulator [ˈreɡjʊˌleɪtə] n.稳压器7 resistor [rɪˈzɪstə] n. 电阻器6 resolution [rezə'luːʃən] n.分辨率6, 23 resolution function 判决函数26 resonant [ˈrezənənt] adj. 谐振的8第11 页共15 页resonating frequency 谐振频率8 ribbon cable 带状电缆;扁平柔性电缆9 ringing [ˈrɪŋɪŋ] n. 振铃振荡5 ripple ['rɪpl] n.波纹18 RISC abbr. Reduced Instruction-Set Computer 精简指令集计算机25 roll off 滚降18 ROM [rɒm] abbr. read-only memory 只读存储器3 router [ˈruːtə] n. 路由器2 rpm abbr. revolutions per minute 每分钟转数19 RTL abbr. Register Transfer Level 寄存器传输级13 RTOS abbr. Real-Time Operating System 实时操作系统26, 27 run-length encoding 行程编码22Ssample and hold circuit 采样保持电路16 sampling interval 采样间隔16 sampling rate 采样率6 SATA abbr.. Serial Advanced Technology Attachment 串行高级技术附件12 scanning velocity 扫描速度19 scheduler ['ʃedjuːələ] n. 调度程序27 schematic [skiːˈmætɪk] n.原理图7, 13 scientific notation 科学记数法17 SCR abbr. silicon controlled rectifier 可控硅整流器7 SDR abbr. Software-defined Radio 软件无线电14 SECAM ['siːkæm] abbr. SEquential Couleur Avec Memoire 顺序与存储彩色电视系统24 selective [sɪˈlektɪv] adj. 选择性的5 semiconductor [ˌsemɪkənˈdʌktə] n. 半导体1, 7 sequence[ˈsiːkwəns] n. 序列3 sequential [sɪ'kwenʃəl] adj.时序的13 series [ˈsɪəriːz] n. 串联7, 8 series resonant 串联谐振8 shade [ʃeɪd] n.明暗度22 shielding [ˈʃiːldɪŋ] n.屏蔽9 shifter ['ʃɪftə] n. 移位器17 signal conditioning 信号调理4 signal conditioning circuit 信号调理电路18 signal integrity 信号完整性9 signal-to-noise ratio 信噪比16, 20 silicon [ˈsɪlɪkən] n.硅1 simplex ['sɪmpleks] n.单工,单向通信11 simulation [ˌsɪmjʊˈleɪʃən] n.模拟9, 13, 16 sinc correction 抽样函数校正19 sine wave 正弦波6 single-shot 单脉冲29第12 页共15 页skew[skjuː] n.相位偏移8 slew [sluː] n. 摆率8 slope [sləʊp] n. 斜率5 smallest resolvable difference 最小可分辨值17 smoothing ['smu:ðiŋ] n. 平滑(滤波)16 SMS abbr. Short Message Service 短信业务21 SNR abbr. signal to noise ratio 信噪比6 SoC abbr. System-on-Chip 片上系统14 socket [ˈsɒkɪt] n.插座9 soldering [ˈsɒldərɪŋ] n.焊接9 solid state 固态1 sound card 声卡20 source [sɔːs] n. 信号源2 source and load impedances 源阻抗和负载阻抗9 source code 源代码27 spec [spek] abbr. specification 性能指标; 规格8, 12 specification [ˌspesɪfɪˈkeɪʃən] n. 性能指标; 规格4 spectral inversion 频谱反转16 spectral resolution 频率分辨率20 spectrum ['spektrəm] n.频谱6, 16 spread spectrum communication 扩频通信11 SPS abbr. Sample Per Second 每秒样本数18 SRAM abbr. Static Random Access Memory 静态随机存取存储器2 stability [stə'bɪlɪti] n. 稳定性4 stack [stæk] n.堆栈26 startup cost 启动成本27 state machine 状态机14 statement ['steɪtmənt] n.语句15 steady state 稳态8 step function 阶跃函数5 stimuli ['stɪmjʊlaɪ] n.激励源15 stimulus signal 激励信号28 stopband ['stɒpbænd] n.阻带18 strain gage 应力计18 string [strɪŋ] n. 字符串26 structure ['strʌktʃə] n. 结构体26 subassembly [ˌsʌbəˈsembli] n.部件9 subsystem ['sʌbsɪstəm] n.子系统28 subtraction [səbˈtrækʃən] n. 减法3 SUT abbr. System Under Test 被测系统30 switch [swɪtʃ] n. 开关1 switched-capacitor filter 开关电容滤波器5 switching [ˈswɪtʃɪŋ] n.交换,切换7第13 页共15 页synchronization [ˌsɪŋkrənaɪ'zeɪʃən] n.同步11, 21 synchronous ['sɪŋkrənəs] adj.同步的13 synthesis ['sɪnθɪsɪs] n. 综合13 synthesizer [ˈsɪnθəsaɪzə] n.合成器8 system call 系统调用27 TTCXO abbr. temperature compensated crystal oscillator 温度补偿晶体振荡器8 TDM abbr. Time Division Multiplexing 时分复用11 telepresence [ˈtelɪˌprezəns] n. 远程在位21 template ['templeɪt] n. 模板26 temporal masking 暂时掩蔽20 termination [ˌtɜːmɪˈneɪʃən] n.端接9 termination characteristics 端接特性9 test bench 测试台15 test register 测试寄存器3 thermocouple [θɜːməʊˈkʌpəl] n.热电偶18 third party developer 第三方开发商17 thread [θred] n.线程26 TIFF abbr. Tagged Image File Format 标签图像文件格式23 time base 时基30 time constant 时间常数5 time slot 时隙21 time to market 上市时间16 timing [ˈtaɪmɪŋ] n.时序9, 15 timing diagram 时序图30 top-down approach “自顶而下”设计法15 transducer [trænzˈdjuːsə] n. 传感器4, 29 transfer function 传递函数4, 5 transient ['trænzɪənt] n.暂态过程28 transient response 暂态响应5 transistor [trænˈsɪstə] n. 晶体管1 transmission bandwidth 传输带宽20 transmission power 发射功率11 trench capacitor 沟道式电容器2 trigger ['trɪgə] vt.触发13 truth table 真值表26 TTL abbr. transisitor-transisitor logic晶体管晶体管逻辑9 tuning ['tjuːnɪŋ] n.调谐8 type conversion 类型转换15 Uupstream ['ʌpstriːm] n.上行比特流11 USB abbr. Universal Serial Bus 通用串行总线12 UUT abbr. Unit Under Test 被测单元28第14 页共15 页UV abbr. ultraviolet 紫外线2 Vvacuum tube 真空管4 VCO abbr. voltage controlled oscillator 压控振荡器8 vector [ˈvektə] n. 向量5 vertical resolution 垂直分辨率28 VGA abbr. Video Graphics Array 视频图形阵列12 VHS abbr. Video Home System 家用录像系统21 video conference 视频会议21 viewfinder ['vjuːfaɪndə] n. 取景器23 virtual memory 虚拟内存3 VLSI abbr. very large-scale integration 超大规模集成1 vocoder ['vəʊˌkəʊdə ] n.声码器11 volt[vəʊlt] n. 伏特8 voltage [ˈvəʊltɪdʒ] n. 电压;伏特数7 voltage reference 参考电压18 voltage swing 电压摆幅8 volume [ˈvɒljuːm] n. 音量4 Von Neumann architecture 冯·诺依曼结构17 VSWR abbr. voltage standing wave ratio 电压驻波比9 Wwatt [wɒt] n.瓦特10 waveform [ˈweɪvˌfɔːm] n.信号波形7 waveform coding 波形编码20 webcam ['webkæm] n.网络摄像头12 wideband ['waɪd'bænd] adj.宽频带的21 wild card 通配符15 wireless infrastructure 无线基础设施16 XYZzero order hold 零阶保持器16第15 页共15 页。
数字图像处理冈萨雷斯英文ChapterEng数字图像基础
10 10 16 28 13952536212425165539865576295081244057368976549650053326765972859436447663972399679278
Visual Perception: Human Eye
(Picture from Microsoft Encarta 2000)
第3页/共56页
Cross Section of the Human Eye
第4页/共56页
(Images from Rafael C. Gonzalez and Richard E. Wood, Digital Image Processing, 2nd Edition.
Visual Perception: Human Eye (cont.)
I = {(x,a(x)): x X, a(x) F} where X and F are a point set and value set, respectively. w An element of the image, (x,a(x)) is called a pixel where
- x is called the pixel location and - a(x) is the pixel value at the location x
x
Origin
y
Image “After snow storm” f(x,y)
w An image: a multidimensional function of spatial coordinates. w Spatial coordinate: (x,y) for 2D case such as photograph,
Surface wave higher-mode phase velocity measurements using a roller- coaster-type algorithm
Geophys.J.Int.(2003)155,289–307Surface wave higher-mode phase velocity measurements usinga roller-coaster-type algorithm´Eric Beucler,∗´El´e onore Stutzmann and Jean-Paul MontagnerLaboratoire de sismologie globale,IPGP,4place Jussieu,75252Paris Cedex05,France.E-mail:beucler@ipgp.jussieu.frAccepted2003May20.Received2003January6;in original form2002March14S U M M A R YIn order to solve a highly non-linear problem by introducing the smallest a priori information,we present a new inverse technique called the‘roller coaster’technique and apply it to measuresurface wave mode-branch phase velocities.The fundamental mode and thefirst six overtoneparameter vectors,defined over their own significant frequency ranges,are smoothed averagephase velocity perturbations along the great circle epicentre–station path.These measurementsexplain well both Rayleigh and Love waveforms,within a maximum period range includedbetween40and500s.The main idea of this technique is tofirst determine all possibleconfigurations of the parameter vector,imposing large-scale correlations over the model space,and secondly to explore each of them locally in order to match the short-wavelength variations.Thefinal solution which achieves the minimum misfit of all local optimizations,in the least-squares sense,is then hardly influenced by the reference model.Each mode-branch a posteriorireliability estimate turns out to be a very powerful instrument in assessing the phase velocitymeasurements.Our Rayleigh results for the Vanuatu–California path seem to agree correctlywith previous ones.Key words:inverse problem,seismic tomography,surface waves,waveform analysis.1I N T R O D U C T I O NOver the last two decades,the resolution of global tomographic models has been greatly improved,because of the increase in the amount and the quality of data,and due to more and more sophisticated data processing and inversion schemes(Woodhouse&Dziewonski1984, 1986;Montagner1986;Nataf et al.1986;Giardini et al.1987;Montagner&Tanimoto1990;Tanimoto1990;Zhang&Tanimoto1991; Su et al.1994;Li&Romanowicz1995;Romanowicz1995;Trampert&Woodhouse1995;Laske&Masters1996;Ekstr¨o m et al.1997; Grand et al.1997;van der Hilst et al.1997;Liu&Dziewonski1998;Ekstr¨o m&Dziewonski1998;Laske&Masters1998;M´e gnin& Romanowicz2000;Ritsema&van Heijst2000,among others).These models are derived from surface wave phase velocities and/or body wave traveltimes(or waveforms)and/or free-oscillation splitting measurements.Body wave studies provide high-resolution models but suffer from the inhomogeneous distribution of earthquakes and recording stations,even when considering reflected or diffracted phases.On the other hand,the surface wave fundamental mode is mainly sensitive to the physical properties of the upper mantle.So,the investigation of the transition zone on a global scale,which plays a key role in mantle convection,can only be achieved by using higher-mode surface waves.Afirst attempt at providing a global tomographic model using these waves has been proposed by Stutzmann&Montagner(1994),but with a limited amount of data.More recently,van Heijst&Woodhouse(1999)computed degree-12phase velocity maps of the fundamental mode and the fourfirst overtones for both Love and Rayleigh waves.These data have been combined with body wave traveltimes measurements and free-oscillation splitting measurements,to provide a global tomographic model with a high and uniform resolution over the whole mantle (Ritsema et al.1999;van Heijst et al.1999).The most recent S H model for the whole mantle was proposed by M´e gnin&Romanowicz (2000).This degree-24model results from waveform inversion of body and surface Love waves,including fundamental and higher modes and introducing cross-branch coupling.Extracting information from higher-mode surface waves is a difficult task.The simultaneous arrivals(Fig.3in Section3)and the interference between the different mode-branches make the problem very underdetermined and non-linear.To remove the non-linearity,Cara &L´e vˆe que(1987)and L´e vˆe que et al.(1991)compute the cross-correlogram between the data and monomode synthetic seismograms and ∗Now at:´Ecole Normale Sup´e rieure,24rue Lhomond,75231Paris Cedex05,France.C 2003RAS289290´E.Beucler,´E.Stutzmann and J.-P.Montagnerinvert the amplitude and the phase of thefiltered cross-correlogram.On the other hand,Nolet et al.(1986)and Nolet(1990)use an iterative inverse algorithm tofit the waveform in the time domain and increase the model complexity within the iterations.These two methods provide directly a1-D model corresponding to an average epicentre–station path.They werefirst used‘manually’,which limited the amount of data that could be processed.The exponential increase in the amount of good-quality broad-band data has made necessary the automation of most parts of the data processing and an automatic version of these methods has been proposed by Debayle(1999)for the waveform inversion technique of Cara&L´e vˆe que(1987)and by Lebedev(2000)and Lebedev&Nolet(2003)for the partition waveform inversion.Stutzmann&Montagner(1993)split the inversion into two steps;at each iteration,a least-squares optimization to measure phase velocities is followed by an inversion to determine the1-D S-wave velocity model,in order to gain insight into the factors that control the depth resolution.They retrieve the phase velocity for a set of several seismograms recorded at a single station and originating from earthquakes located in the same area in order to improve the resolution.Another approach has been followed by van Heijst&Woodhouse(1997)who proposed a mode-branch stripping technique based on monomode cross-correlation functions.Phase velocity and amplitude perturbations are determined for the most energetic mode-branch,the waveform of which is then subtracted from the seismogram in order to determine the second most energetic mode-branch phase velocity and amplitude perturbations,and so on.More recently,Y oshizawa&Kennett(2002)used the neighbourhood algorithm(Sambridge1999a,b)to explore the model space in detail and to obtain directly a1-D velocity model which achieves the minimum misfit.It is difficult to compare the efficiency of these methods because they all follow different approaches to taking account of the non-linearity of the problem.Up to now,it has only been possible to compare tomographic results obtained using these different techniques.In this paper,we introduce a new semi-automatic inverse procedure,the‘roller coaster’technique(owing to the shape of the misfit curve displayed in Fig.6b in Section3.4.1),to measure fundamental and overtone phase velocities both for Rayleigh and Love waves.This method can be applied either to a single seismogram or to a set of seismograms recorded at a single station.To deal with the non-linearity of the problem,the roller coaster technique combines the detection of all possible solutions at a large scale(which means solutions of large-wavelength variations of the parameter vector over the model space),and local least-squares inversions close to each of them,in order to match small variations of the model.The purpose of this article is to present an inverse procedure that introduces as little a priori information as possible in a non-linear scheme.So,even using a straightforward phase perturbation theory,we show how this algorithm detects and converges towards the best global misfit model.The roller coaster technique is applied to a path average theory but can be later adapted and used with a more realistic wave propagation theory.One issue of this study is to provide a3-D global model which does not suffer from strong a priori constraints during the inversion and which then can be used in the future as a reference model.We describe hereafter the forward problem and the non-linear inverse approach developed for solving it.An essential asset of this technique is to provide quantitative a posteriori information,in order to assess the accuracy of the phase velocity measurements.Resolution tests on both synthetic and real data are presented for Love and Rayleigh waves.2F O RWA R D P R O B L E MFollowing the normal-mode summation approach,a long-period seismogram can be modelled as the sum of the fundamental mode(n=0) and thefirst higher modes(n≥1),hereafter referred to as FM and HM,respectively.Eigenfrequencies and eigenfunctions are computed for both spheroidal and toroidal modes in a1-D reference model,PREM(Dziewonski&Anderson1981)in our case.Stoneley modes are removed,then the radial order n for the spheroidal modes corresponds to Okal’s classification(Okal1978).In the following,all possible sorts of coupling between toroidal and spheroidal mode-branches(Woodhouse1980;Lognonn´e&Romanowicz1990;Deuss&Woodhouse2001) and off-great-circle propagation effects(Woodhouse&Wong1986;Laske&Masters1996)are neglected.For a given recorded long-period seismogram,the corresponding synthetic seismogram is computed using the formalism defined by Woodhouse&Girnius(1982).In the most general case,the displacement u,corresponding of thefirst surface wave train,in the time domain, can be written asu(r,t)=12π+∞−∞nj=0A j(r,ω)exp[i j(r,ω)]exp(iωt)dω,(1)where r is the source–receiver spatial position,ωis the angular frequency and where A j and j represent the amplitude and the phase of the j th mode-branch,respectively,in the frequency domain.In the following,the recorded and the corresponding synthetic seismogram spectra (computed in PREM)are denoted by(R)and(S),respectively.In the Fourier domain,following Kanamori&Given(1981),a recorded seismogram spectrum can be written asA(R)(r,ω)expi (R)(r,ω)=nj=0B j(r,ω)expij(r,ω)−ωaCj(r,ω),(2)where a is the radius of the Earth, is the epicentral distance(in radians)and C(R)j(r,ω)is the real average phase velocity along the epicentre–station path of the j th mode-branch,which we wish to measure.The term B j(r,ω)includes source amplitude and geometrical spreading, whereas j(r,ω)corresponds to the source phase.The instrumental response is included in both terms and this expression is valid for bothRayleigh and Love waves.The phase shift due to the propagation in the real medium then resides in the term exp[−iωa /C(R)j(r,ω)].C 2003RAS,GJI,155,289–307The roller coaster technique291 Figure1.Illustration of possible2πphase jumps over the whole frequency range(dashed lines)or localized around a given frequency(dotted line).Thereference phase velocity used to compute these three curves is represented as a solid line.Considering that,tofirst order,the effect of a phase perturbation dominates over that of the amplitude perturbation(Li&Tanimoto 1993),and writing the real slowness as a perturbation of the synthetic slowness(computed in the1-D reference model),eq.(2)becomesA(R)(r,ω)expi (R)(r,ω)=nj=0A(S)j(r,ω)expij(r,ω)−ωaC(S)j(ω)−χ,(3) whereχ=ωa1C(R)j(r,ω)−1C(S)j(r,ω).(4) Let us now denote by p j(r,ω),the dimensionless parameter vector of the j th mode-branch defined byp j(r,ω)=C(R)j(r,ω)−C(S)j(ω)Cj(ω).(5)Finally,introducing the synthetic phase (S)j(r,ω),as the sum of the source phase and the phase shift due to the propagation in the reference model,the forward problem can be expressed asd=g(p),A(R)(r,ω)expi (R)(r,ω)=nj=0A(S)j(r,ω)expi(S)j(r,ω)+ωaCj(ω)p j(r,ω).(6)For practical reasons,the results presented in this paper are computed following a forward problem expression based on phase velocity perturbation expanded to third order(eq.A5).When considering an absolute perturbation range lower than10per cent,results are,however, identical to those computed following eq.(6)(see Appendix A).Formally,eq.(6)can be summarized as a linear combination of complex cosines and sines and for this reason,a2πundetermination remains for every solution.For a given parameter p j(r,ω),it is obvious that two other solutions can be found by a2πshift such asp+j(r,ω)=p j(r,ω)+2πC(S)j(ω)ωa and p−j(r,ω)=p j(r,ω)−2πC(S)j(ω)ωa.(7) As an example of this feature,all the phase velocity curves presented in Fig.1satisfy eq.(6).This means that2πphase jumps can occur over the whole frequency range but can also be localized around a given frequency.Such an underdetermination as expressed in eq.(6)and such a non-unicity,in most cases due to the2πphase jumps,are often resolved by imposing some a priori constraints in the inversion.A contrario, the roller coaster technique explores a large range of possible solutions,with the smallest a priori as possible,before choosing the model that achieves the minimum misfit.3D E S C R I P T I O N O F T H E R O L L E R C O A S T E R T E C H N I Q U EThe method presented in this paper is a hybrid approach,combining detection of all possible large-scale solutions(which means solutions of long-wavelength configurations of the parameter vector)and local least-squares optimizations starting from each of these solutions,in order to match the short-wavelength variations of the model space.The different stages of the roller coaster technique are presented in Fig.2and described hereafter.Thefirst three stages are devoted to the reduction of the problem underdetermination,while the non-linearity and the non-unicity are taken into account in the following steps.C 2003RAS,GJI,155,289–307292´E.Beucler,´E.Stutzmann and J.-P.MontagnerStage1Stage2Stage3Stage4using least-squares2phasejumps?Stage5Stage6Figure2.Schematic diagram of the roller coaster technique.See Section3for details.3.1Selection of events,mode-branches and time windowsEvents with epicentral distances larger than55◦and shorter than135◦are selected.Thus,the FM is well separated in time from the HM(Fig.3), and thefirst and the second surface wave trains do not overlap.Since the FM signal amplitude is much larger than the HM amplitude for about 95per cent of earthquakes,each seismogram(real and synthetic)is temporally divided into two different time windows,corresponding to the FM and to the HM parts of the signal.An illustration of this amplitude discrepancy in the time domain is displayed in Fig.3(b)and when focusing on Fig.4(a),the spectrum amplitude of the whole real signal(FM+HM)is largely dominated by the FM one.Eight different pickings defining the four time windows,illustrated in Fig.3(a),are computed using synthetic mode-branch wave trains and are checked manually.For this reason,this method is not completely automated,but this picking step is necessary to assess the data quality and the consistency between recorded and synthetic seismograms.In Appendix B,we show that the phase velocity measurements are not significantly affected by a small change in the time window dimensions.An advantage of this temporal truncation is that,whatever the amplitude of the FM,the HM part of the seismograms can always be treated.Hence,the forward problem is now split into two equations,corresponding to the FM and to the HM parts,respectively.A(R) FM (r,ω)expi (R)FM(r,ω)=A(S)0(r,ω)expi(S)0(r,ω)+ωaC(ω)p0(r,ω)(8)andA(R) HM (r,ω)expi (R)HM(r,ω)=6j=1A(S)j(r,ω)expi(S)j(r,ω)+ωaC(S)j(ω)p j(r,ω).(9)Seismograms(real and synthetic)are bandpassfiltered between40and500s.In this frequency range,only thefirst six overtone phase velocities can be efficiently retrieved.Tests on synthetic seismograms(up to n=15)with various depths and source parameters have shown that the HM for n≥7have negligible amplitudes in the selected time and frequency windows.C 2003RAS,GJI,155,289–307The roller coaster technique293Figure3.(a)Real vertical seismogram(solid line)and its corresponding synthetic computed in PREM(dotted line).The earthquake underlying this waveform occurred on1993September4in Afghanistan(36◦N,70◦E,depth of190km)and was recorded at the CAN GEOSCOPE station(Australia).The epicentral distance is estimated at around11340km.Both waveforms are divided into two time windows corresponding to the higher modes(T1–T2,T5–T6)and to the fundamental mode(T3–T4,T7–T8).(b)The contribution of each synthetic monomode shows the large-amplitude discrepancy and time delay between the fundamental mode and the overtones.The different symbols refer to the spectra displayed in Fig.4.3.2Clustering the eventsFollowing eq.(8),a single seismogram is sufficient to measure the FM phase velocity,whereas for the HM(eq.9)the problem is still highly underdetermined since the different HM group velocities are very close.This can be avoided by a reduction of the number of independent parameters considering mathematical relations between different mode-branch phase velocities.The consequence of such an approach is to impose a strong a priori knowledge on the model space,which may be physically unjustified.Another way to reduce this underdetermination is to increase the amount of independent data while keeping the parameter space dimension constant.Therefore,all sufficiently close events are clustered into small areas,and each individual ray path belonging to the same box is considered to give equivalent results as a common ray path.This latter approach was followed by Stutzmann&Montagner(1993),but with5×5deg2boxes independently of epicentral distance and azimuth values,due to the limited number of data.Here,in order to prevent any bias induced by the clustering of events too far away from one to another,and to be consistent with the smallest wavelength,boxes are computed with a maximum aperture angle of2◦and4◦in the transverse and longitudinal directions,respectively(Fig.5),with respect to the great circle path.The boxes are computed in order to take into account as many different depths and source mechanisms as possible.The FM phase velocity inversion is performed for each path between a station and a box,whereas the HM phase velocities are only measured for the boxes including three or more events.Since only the sixfirst mode-branches spectra are inverted,the maximum number of events per box is set to eight.The use of different events implies average phase velocity measurements along the common ray paths which can be unsuitable for short epicentral distances,but increases the accuracy of the results for the epicentral distances considered.C 2003RAS,GJI,155,289–307294´E.Beucler,´E.Stutzmann and J.-P.MontagnerFigure4.(a)The normalized amplitude spectra of the whole real waveform(solid line)displayed in Fig.3(a).The real FM part of the signal(truncated between T3and T4)is represented as a dotted line and the real HM part(between T1and T2)as a dashed line.(b).The solid line corresponds to the normalized spectrum amplitude of the real signal truncated between T3and T4(Fig.3a).The corresponding synthetic FM is represented as a dotted line and only the frequency range represented by the white circles is selected as being significant.(c)Selection of HM inversion frequency ranges using synthetic significant amplitudes.The solid line corresponds to the real HM signal,picked between T1and T2(Fig.3a).For each mode-branch(dotted lines),only the frequency ranges defined by the symbols(according to Fig.3b)are retained for the inversion.(d)Close up of the sixth synthetic overtone,in order to visualize the presence of lobes and the weak contribution frequency range in the spectrum amplitude.The stars delimit the selected frequency range.3.3Determination of the model space dimensionReal and synthetic amplitude spectra are normalized in order to minimize the effects due to the imprecision of source parameters and of instrumental response determination.As presented in Fig.4,a synthetic mode-branch spectrum is frequently composed by several lobes due to the source mechanism.Between each lobe and also near the frequency range edges due to the bandpassfilter,the amplitude strongly decreases down to zero,and therefore phase velocities are absolutely not constrained at these frequencies.It is around these frequencies that possible local2πphase jumps may occur(Fig.1).Then,we decide to reduce the model space dimension in order to take into account only well-constrained points.For each spectrum,the selection of significant amplitudes,with a thresholdfixed to10per cent of the mean maximum spectra amplitude,defines the inverted frequency range.In the case of several lobes in a synthetic mode-branch amplitude spectrum,only the most energetic one is selected as shown in Figs4(c)and(d).For a given mode-branch,the simultaneous use of different earthquakes implies a discrimination criterion based upon a mean amplitude spectrum of all spectra,which tends to increase the dimensions of the significant frequency range.The normalization and this selection of each mode-branch significant amplitudes is also a way to include surface wave radiation pattern information in the procedure.Changes in source parameters can result in changes in the positions of the lobes in the mode-branch amplitude spectra over the whole frequency range(40–500s).In the future,it will be essential to include these possible biases in the scheme and then to simultaneously invert moment tensor,location and depth.C 2003RAS,GJI,155,289–307The roller coaster technique295Figure5.Geographical distribution of inversion boxes for the SSB GEOSCOPE station case.The enlarged area is defined by the bold square in the inset (South America).Black stars denote epicentres and hatched grey boxes join each inversion group.Each common ray path(grey lines)starts from the barycentre (circles)of all events belonging to the same box.The maximum number of seismograms per box isfixed at eight.3.4Exploration of the model space at very large scaleThe main idea of this stage is to test a large number of phase velocity large-scale perturbations with the view of selecting several starting vectors for local inversions(see Section3.5).The high non-linearity of the problem is mainly due to the possible2πphase jumps.And,even though the previous stage(see Section3.3)prevents the shifts inside a given mode-branch phase velocity curve,2πphase jumps over the whole selected frequency range are still possible.For this reason a classical gradient least-squares optimization(Tarantola&Valette1982a)is inadequate.In a highly non-linear problem,a least-squares inversion only converges towards the best misfit model that is closest to the starting model and the number of iterations cannot change this feature.On the other hand,a complete exploration of all possible configurations in the parameter space is still incompatible with a short computation time procedure.Therefore,an exploration of the model space is performed at very large scale,in order to detect all possible models that globally explain the data set well.3.4.1Fundamental mode caseWhen considering a single mode-branch,the number of parameter vector components is rather small.The FM large-scale exploration can then be more detailed than in the HM case.Considering that,at low frequencies,data are correctly explained by the1-D reference model,the C 2003RAS,GJI,155,289–307296´E.Beucler,´E.Stutzmann and J.-P.MontagnerabFigure6.(a)Five examples of the FM parameter vector configurations during the exploration of the model space at large scale corresponding toαvalues equal to−5,−,0,+2.5and+5per cent.The selected points for which the phase velocity is measured(see Section3.3)are ordered into parameter vector components according to increasing frequency values.Thefirst indices then correspond to the low-frequency components(LF)and the last ones to the high-frequency(HF) components.Varying the exploration factorα,different perturbation shapes are then modelled and the misfit between data and the image of the corresponding vector is measured(represented in thefigure below).(b)The misfit in the FM case,symbolized by+,is the expression of the difference between data and the image of the tested model(referred to as pα)through the g function(eq.8).Theαvalues are expressed as a percentage with respect to the PREM.As an example,thefive stars correspond to the misfit values of thefive models represented in thefigure above.The circles represent the bestαvalues and the corresponding vectors are then considered as possible starting models for the next stage.dimensionless phase velocity perturbation(referred to as pα)can be modelled as shown in thefive examples displayed in Fig.6(a).Basically, the low-frequency component perturbations are smaller than the high-frequency ones.However,if such an assumption cannot be made,the simplest way to explore the model space is then byfixing an equalαperturbation value for all the components.The main idea is to impose strong correlations between all the components in order to estimate how high the non-linearity is.Varyingαenables one to compute different parameter vectors and solving eq.(8)to measure the distance between data and the image of a given model through the g function,integrated over the whole selected frequency range.Considering that only small perturbations can be retrieved,the exploration range is limited between−5and+5per cent,using an increment step of0.1per cent.The result of such an exploration is displayed in Fig.6(b)and clearly illustrates the high non-linearity and non-unicity of the problem.In a weakly non-linear problem,the misfit curve(referred to as||d−g(pα)||)should exhibit only one minimum.This would indicate that,whatever the value of the starting model,a gradient algorithm always converges towards the samefinal model,the solution is then unique.In our case,Fig.6(b)shows that,when choosing the reference model(i.e.α=0per cent)as the starting model,a gradient least-squares optimization converges to the nearest best-fitting solution(corresponding to the third circle),and could never reach the global best-fitting model(in this example representedC 2003RAS,GJI,155,289–307The roller coaster technique 297by the fourth circle).Therefore,in order not to a priori limit the inversion result around a given model,all minima of the mis fit curve (Fig.6b)are detected and the corresponding vectors are considered as possible starting models for local optimizations (see Section 3.5).3.4.2Higher-mode caseThe introduction of several mode-branches simultaneously is much more dif ficult to treat and it becomes rapidly infeasible to explore the model space as accurately as performed for the FM.However,a similar approach is followed.In order to preserve a low computation time procedure,the increment step of αis fixed at 1per cent.The different parameter vectors are computed as previously explained in Section3.4.1(the shape of each mode-branch subvector is the same as the examples displayed in Fig.6a).In order to take into account any possible in fluence of one mode-branch on another,all combinations are tested systematically.Three different explorations of the model space are performed within three different research ranges:[−4.5to +1.5per cent],[−3to +3per cent]and [−1.5to +4.5per cent].For each of them,76possibilities of the parameter vector are modelled and the mis fit between data and the image of the tested vector through the g function is computed.This approach is almost equivalent to performing a complete exploration in the range [−4.5to +4.5per cent],using a step of 0.5per cent,but less time consuming.Finally,all mis fit curve minima are detected and,according to a state of null information concerning relations between each mode-branch phase velocities,all the corresponding vectors are retained as possible starting models.Thus,any association between each starting model subvectors is allowed.3.5Matching the short-wavelength variations of the modelIn this section,algorithms,notation and comments are identical for both FM and HM.Only the main ideas of the least-squares criterion are outlined.A complete description of this approach is given by Tarantola &Valette (1982a,b)and by Tarantola (1987).Some typical features related to the frequency/period duality are also detailed.3.5.1The gradient least-squares algorithmThe main assumption which leads us to use such an optimization is to consider that starting from the large-scale parameter vector (see Section 3.4),the non-linearity of the problem is largely reduced.Hence,to infer the model space from the data space,a gradient least-squares algorithm is performed (Tarantola &Valette 1982a).The expression of the model (or parameter)at the k th iteration is given by p k =p 0+C p ·G T k −1· C d +G k −1·C p ·G T k −1−1· d −g (p k −1)+G k −1·(p k −1−p 0) ,(10)where C p and C d are the a priori covariance operators on parameters and data,respectively,p 0the starting model,and where G k −1=∂g (p k −1)/∂p k −1is the matrix of partial derivatives of the g function established in eqs (8)and (9).The indices related to p are now expressing the iteration rank and no longer the mode-branch radial order.De fining the k th image of the mis fit function byS (p k )=12[g (p k )−d ]T ·C −1d ·[g (p k )−d ]+(p k −p 0)T ·C −1p ·(p k −p 0) ,(11)the maximum-likelihood point is de fined by the minimum of S (p ).Minimizing the mis fit function is then equivalent to finding the best compromise between decreasing the distance between the data vector and the image of the parameter vector through the g function,in the data space on one hand (first part of eq.11),and not increasing the distance between the starting and the k th model on the other hand (second part of eq.11),following the covariances de fined in the a priori operators on the data and the parameters.3.5.2A priori data covariance operatorThe a priori covariance operator on data,referred to as C d ,includes data errors and also all effects that cannot be modelled by the g function de fined in eq.(8)and (9).The only way to really measure each data error and then to compute realistic covariances in the data space,would be to obtain exactly the corresponding seismogram in which the signal due to the seismic event is removed.Hence,errors over the data space are impossible to determine correctly.In order to introduce as little a priori information as possible,the C d matrix is computed with a constant value of 0.04(including data and theory uncertainties)for the diagonal elements and zero for the off-diagonal elements.In other words,this choice means that the phase velocity perturbations are expected to explain at least 80per cent of the recorded signal.3.5.3A priori parameter covariance operatorIn the model space,the a priori covariance operator on parameters,referred to as C p ,controls possible variations between the model vector components for a given iteration k (eq.10),and also between the starting and the k th model (eq.11).Considering that the phase velocity perturbation between two adjoining components (which are ordered according to increasing frequency values)of a given mode-branch do not vary too rapidly,C p is a non-diagonal matrix.This a priori information reduces the number of independent components and then induces smoothed phase velocity perturbation curves.A typical behaviour of our problem resides in the way the parameter space is discretized.In the matrix domain,the distance between two adjoining components is always the same,whereas,as the model space is not evenly spaced C 2003RAS,GJI ,155,289–307。
哈姆林中心杨广中实验室
Predictive Cardiac Motion Modeling and Correction with PLSR Predictive cardiac motion modeling and correction based on partial least squares regression to extract intrinsic relationships between three-dimensional (3D) cardiac deformation due to respiration and multiple one-dimensional real-time measurable surface intensity traces at chest or abdomen. - see IEEE TMI 23(10), 2004
Myocardial Strain and Stain Rate Analysis Virtual tagging with MR myocardial velocity mapping - IEEE TMI Strain rate analysis with constrained myocardial velocity restoration Review of methods for measuring intrinsic myocardial mechanics - JMRI Atheroma Imaging and Analysis The use of selective volume excitation for high resolution vessel wall imaging (JMRI, 2003;17(5):572-80). 3D morphological modeling of the arterial wall Feature reduction based atheroma classification Volume Selective Coronary Imaging A locally focused MR imaging method for 3-D zonal echo-planar coronary angiography using volume selective RF excitation. Spatially variable resolution was used for delineating coronary arteries and reducing the effect of residual signals caused by the imperfect excitation profile of the RF pulse. The use of variable resolution enabled the derivation of basis functions having variable spatial characteristics pertain to regional object details and a significantly smaller number of phase encoded signal measurements was needed for image reconstruction. Gatehouse PD, Keegan J, Yang GZ, Firmin DN. Magn Reson Med, 2001 Nov;46(5):1031-6. Yang GZ, Burger P, Gatehouse, PD, Firmin DN. Magn Reson Med, 41, 171-178, 1999. Yang GZ, Gatehouse PD, Keegan J, Mohiaddin RH, Firmin DN. J. Magn Reson Med, 39: 833-842, 1998.
美国洛克希德·马丁公司将研制地球同步碳循环观测任务有效载荷
图3碲镉汞薄膜截面的SBM 测试结果4结论采用扫描电镜分别测试了碲镉汞薄膜经过 粗磨和经过细磨后的表面形貌像和解理面形貌 像,得到了经过两种不同减薄工艺后的碲镉汞 薄膜损伤层信息,获得了非常有价值的实验结 果。
实验结果显示,采用细磨的方式对碲镉汞薄 膜进行减薄产生的损伤层的最大深度比采用粗 磨方式要小得多。
通过扫描电镜对减薄后的碲 镉汞薄膜损伤层进行研究,认识并掌握了碲镉汞 薄膜的损伤层信息,这为后续碲镉汞薄膜减薄 工艺方法和参数的优化与改进提供了重的参 考依据和指导意义。
这也表明采用扫描电镜测 试碲镉汞薄膜的损伤层是评价碲镉汞薄膜减薄 后损伤层的一种非常有效的检测方法。
参考文献[1] 郎艳菊.GSP 晶体加工表面/亚表茴损伤研究p].大连:大连理工大学,2008.[2] 许秀娟,田震.碲镉汞薄膜减薄工艺损伤层的评价方法及应用[J].激光与红外,2〇15, 45(3): 235-239.[3] 康俊勇,黄启圣,王家库,等.HgCdTe 晶片研磨和拋光表面的扫描电镜观察[J].红外技术,1999, 21⑷: 24-27.[4] Li Y , Yi X J, Cai L P. Study on Surface Oxidative Characterization of LPE HgCdTe Epilayer by X-ray Photoelectron Spectroscopy [J]. International Journal of Infrared and Millimeter Waves, 2000, 21(1): 31-37.[5] Madejczyk P, Piotrowski A, Klos K. Surface Smoothness Improvement of HgCdTe Layers Grown by MOCVD [J]. Bulletin of the Polish Academy of Sciences, Technical Sciences, 2009, 57(2): 139-146.[6] Farrell S, Mulpuri V, Rao G, et al. Comparison of the Schaake and Benson Etches to Delineate Dislocations in HgCdTe Layers [J]. Journal of Electronic Materials, 2013, 42(11): 3097-3102.[7] Mollard L, Destefanis G, Rothman J, et al. HgCdTe FPAs Made by Arsenic-ion Implantation [C]. SPIE, 2008, 6940: 69400F.[8] Mollard L, Destefanis G, Bourgeois G, et al. State of p-on-n Arsenic-implanted HgCdTe Technologies [J]. Journal of Electronic Materials, 2011, 40(8): 18301839.新闻动态News美国洛克希德•马丁公司将研制地球同步碳循环观测任务有效载荷据 www.lockheedm 网站报道,美国洛克希德.马丁公司将为美国国家航空航 天局(NASA )的地球同步碳循环观濒(GeoCARB ) 任务研制一台搭载于商业地球同步轨道卫星的 先进红外光谱仪,以帮助科学家们更好地了解 地球的碳循环i 和植被健康状况,相关人员表示,该公司在红外探测和搭载 有教载#方面具有丰富'经验,他们也将与儀克 拉荷马大学、N _A S A 以及科罗拉多.:州立大学合# 完成此次任务.洛克希德•马丁公司位于柏洛阿尔托的先 进技术中心(A TC )将基于詹姆斯.韦伯望远镜 (JWST )的遮..紅外相机(N IR C 爾)谁计来欄这 个搭载有效载荷《与深空探溯:不同,预计于2022 年升空的G eoC A R B 红外光谱仪将用于澜量地球 大气中的二氧化碳、一氧化碳和甲規以及太阳 光诱导..荧光敷据。
心理学英语术语
心理学英语术语心理现象要素element of mental phenomenon 心理现象结构structure of mental phenomenon官能心理学faculty psychology个体心理学personal psychology差异心理学differential psychology物理主义心理学physicalistic psychology心理化学mental chemistry拟人论anthropomorphism生物主义biologism环境论environmentalism反射学reflexology反应学reactology颅相学phrenology等势原理principle of equipotentiality中枢论centralism决定论determinism决定论原则principle of determinism交互决定论reciprocal determinism文化决定论cultural determinism社会文化历史学派social-cultural-historical school 文化历史心理学cultural-historical psychology定势理论set theory意向论intentionalism相对论relativism互动论interactionism微型学习理论miniature theory of learning思维边缘理论peripheral theory of thinking点状感觉说theory of punctiform sensation沙赫特情绪实验Schachter's experiment on emotion原子心理学atomistic psychology构造心理学structural psychology内容心理学content psychology内容分析content analysis民族心理学folk psychology屈尔珀学派Külpe school二重心理学dual psychology一种调和折中的心理学,认为心理学应研究兼括内容与意动的广义经验。
基于多模态融合的阿尔茨海默病分类预测研究
基于多模态融合的阿尔茨海默病分类预测研究摘要阿尔茨海默病是一种神经系统退行性疾病,严重影响着老年人的生活质量。
早期的阿尔茨海默病诊断对于及时干预及治疗至关重要。
本研究提出了一种基于多模态融合的阿尔茨海默病分类预测模型,并且使用互信息进行模态选择和特征选择,建立了一个有效的分类器。
研究数据来自于三种脑部医学影像模态和认知测试的结果。
我们首先将数据进行预处理,提取各模态中的特征,然后使用互信息和随机森林进行特征选择,再将不同模态的特征进行融合。
最后,使用支持向量机等不同分类器进行分类预测,并利用交叉验证方法来评估模型的性能。
实验结果表明,我们提出的模型能够对阿尔茨海默病进行有效分类预测,分类准确率可达到92.17%。
关键词:阿尔茨海默病;多模态;特征选择;融合;分类预测AbstractAlzheimer’s disease is a degenerative disease of the nervous system that severely affects the quality of life of elderly people. Early diagnosis of Alzheimer's disease is crucial for timely intervention and treatment. In this study, we propose a multimodalfusion-based Alzheimer's disease classification and prediction model, and use mutual information for modality and feature selection to establish aneffective classifier. Research data comes from three brain medical imaging modalities and cognitive test results. We first preprocess the data, extractfeatures from each modality, then use mutual information and random forest for feature selection, and finally fuse the features of different modalities. Classification and prediction were performed using different classifiers such as Support Vector Machine, and the performance of the model was evaluated using cross-validation. The experimental results show that our proposed model can effectively classify andpredict Alzheimer's disease with an accuracy of 92.17%.Keywords: Alzheimer's disease; multimodal; feature selection; fusion; classification predictioAlzheimer's disease (AD) is a neurodegenerative disorder that affects millions of people worldwide. Early detection and accurate diagnosis of AD arecrucial for effective treatment and management. Multimodal imaging techniques, such as magnetic resonance imaging (MRI), positron emission tomography (PET), and single-photon emission computed tomography (SPECT), have been widely used to diagnose AD. However,the integration of multiple modalities to improve classification and prediction accuracy remains a challenging task.In this study, we proposed a multimodal feature selection and fusion model for the classification and prediction of AD. First, features were extracted from different imaging modalities, including MRI, PET, and SPECT. Then, a feature selection method was applied to select the most discriminative features for each modality. The selected features were then fused to form a comprehensive set of features that capture the underlying characteristics of AD.To classify and predict AD, we employed different classifiers, such as Support Vector Machine (SVM), and evaluated the performance of the model using cross-validation. The experimental results demonstrated that our proposed model achieved an accuracy of 92.17%. This is a significant improvement over single-modality approaches and highlights the potential of multimodal feature selection and fusion for AD diagnosis.In conclusion, our study demonstrates that multimodal feature selection and fusion can improve the accuracy of AD classification and prediction. This approach has the potential to be used for early detection andpersonalized treatment of AD. Future work will focus on expanding the dataset and exploring the use of other multimodal features for AD diagnosisIn addition to improving AD classification and prediction accuracy, multimodal feature selection and fusion also have the potential to enhance our understanding of the underlying mechanisms of AD. By analyzing different imaging modalities and clinical data together, we may gain insights not possible through individual modalities alone.Furthermore, the use of multimodal features may lead to the development of more personalized treatment plans for AD patients. Currently, AD treatments are limited and are not effective for all patients. By identifying specific multimodal features that are indicative of different subtypes of AD, we may be able to develop targeted treatments for these subtypes.However, there are still challenges to be addressed in the use of multimodal feature selection and fusion for AD diagnosis. One challenge is the variability in data acquisition across different imaging modalities and clinical assessments. This can lead to differences in feature distributions and make it difficult to combine features across modalities. Future work will need toaddress these challenges and develop standardized protocols for data acquisition and feature extraction.Another challenge is the interpretation of the combined features. While the use of multimodal features may improve classification accuracy, it may also make it more difficult to discern whichindividual features are driving the classification. Further research is needed to investigate ways to interpret these combined features and identify the most useful features for AD diagnosis and prediction.Overall, multimodal feature selection and fusion hold great promise for improving our understanding and treatment of AD. By combining data from different modalities, we may be able to identify more accurate biomarkers for AD diagnosis and develop personalized treatment plans that are tailored to individual patients. With continued research in this area, we may be able to slow the progression of AD and improve outcomes for patients and their familiesAnother potential application of multimodal feature selection and fusion in AD research is in the development and evaluation of new treatments. With such a complex and multifactorial disease, it can be difficult to determine whether a particularintervention is effective or not. By using multiple types of data, such as imaging, genetic, and clinical data, researchers may be able to better track the progression of the disease and evaluate the effectiveness of different treatments.For example, in a recent study, researchers used multimodal data to evaluate the effects of a drug called solanezumab on patients with mild AD. The study used data from brain imaging, cognitive tests, and biomarkers in the blood to assess the drug’s impact on disease progression. The results showed that the drug had a modest but significant effect on slowing cognitive decline in patients with mild AD (Doody et al., 2018).Multimodal data may also be useful for predicting the effectiveness of different treatments for individual patients. By analyzing multiple types of data, researchers may be able to identify specific subgroups of patients who are more likely to respond to a particular treatment. This could help clinicians personalize treatment plans for individual patients and improve outcomes.Despite the promise of multimodal feature selection and fusion in AD research, there are also somechallenges and limitations to consider. One major challenge is the integration of data from different sources, which may have different types of noise and bias. Careful preprocessing and normalization of data is essential to ensure that the different types ofdata are compatible and can be compared.Another challenge is the sheer complexity of AD andthe many different factors that contribute to its development and progression. Even with multimodal data, it may be difficult to capture all of the relevant information and understand the interactions between different factors.In conclusion, multimodal feature selection and fusion hold great promise for improving our understanding and treatment of AD. By combining data from multiple sources, researchers may be able to identify more accurate biomarkers for diagnosis, developpersonalized treatment plans, and evaluate the effectiveness of different treatments. While there are challenges to integrating data from different sources and understanding the complexity of AD, continued research in this area has the potential to make a significant impact on the lives of patients and their familiesIn conclusion, the integration of data from various sources has shown promise in improving our understanding and treatment of Alzheimer's Disease. This approach can lead to the identification of more accurate biomarkers, personalized treatment plans, and better evaluation of treatment effectiveness. However, there are challenges in integrating different types of data and addressing the complexity of AD. Nonetheless, continued research in this area has the potential to make a significant impact on those impacted by AD and their loved ones。
纹理物体缺陷的视觉检测算法研究--优秀毕业论文
摘 要
在竞争激烈的工业自动化生产过程中,机器视觉对产品质量的把关起着举足 轻重的作用,机器视觉在缺陷检测技术方面的应用也逐渐普遍起来。与常规的检 测技术相比,自动化的视觉检测系统更加经济、快捷、高效与 安全。纹理物体在 工业生产中广泛存在,像用于半导体装配和封装底板和发光二极管,现代 化电子 系统中的印制电路板,以及纺织行业中的布匹和织物等都可认为是含有纹理特征 的物体。本论文主要致力于纹理物体的缺陷检测技术研究,为纹理物体的自动化 检测提供高效而可靠的检测算法。 纹理是描述图像内容的重要特征,纹理分析也已经被成功的应用与纹理分割 和纹理分类当中。本研究提出了一种基于纹理分析技术和参考比较方式的缺陷检 测算法。这种算法能容忍物体变形引起的图像配准误差,对纹理的影响也具有鲁 棒性。本算法旨在为检测出的缺陷区域提供丰富而重要的物理意义,如缺陷区域 的大小、形状、亮度对比度及空间分布等。同时,在参考图像可行的情况下,本 算法可用于同质纹理物体和非同质纹理物体的检测,对非纹理物体 的检测也可取 得不错的效果。 在整个检测过程中,我们采用了可调控金字塔的纹理分析和重构技术。与传 统的小波纹理分析技术不同,我们在小波域中加入处理物体变形和纹理影响的容 忍度控制算法,来实现容忍物体变形和对纹理影响鲁棒的目的。最后可调控金字 塔的重构保证了缺陷区域物理意义恢复的准确性。实验阶段,我们检测了一系列 具有实际应用价值的图像。实验结果表明 本文提出的纹理物体缺陷检测算法具有 高效性和易于实现性。 关键字: 缺陷检测;纹理;物体变形;可调控金字塔;重构
Keywords: defect detection, texture, object distortion, steerable pyramid, reconstruction
II
残缺矢量阵列波前畸变信号波达方向估计
H (θ,φ )
[7]
(1)
业已证明 :上述角度-流型对应关系是一一对应的,即无论极化参数如何取值,不同的角 度组合 (θ, φ) 在 θ ∈ [0,2π) 和 φ ∈ [0, π ] 区域上一定对应于不同的阵列流型矢量 a(θ, φ, γ, η) 。基 于这一特点,可利用空域稀疏采样矢量阵列实现高精度的多分辨 DOA 估计 。这一点有别于 传统的空间采样标量子阵。 由于只能反映信号空间场宏观结构的离散采样值, 后者通常需要 满足空域采样定理,否则会出现参数估计模糊问题。 实际中, 由于传输媒质的复杂性和非均匀性, 稀疏矢量阵列中各个矢量传感器所接收到 的信号间的相关性通常会遭到破坏,发生所谓波前畸变现象 ,此时利用空间相位信息获取 信号 DOA 理论上是不可靠的; 同时, 组成阵列的各矢量传感器可能会因为故障发生而出现不 同的残缺现象
-2-
对 Rq 进行特征分解得到:
H H Rp = U p,s Σp,sU p ,s + U p ,n Σp ,nU p ,n
(6)
式中U p,s 和U p,n 分别由 Rp 的 M 个主特征矢量和 N p − M 个次特征矢量组成,而 Σp,s 和 Σp,n 分别是对应的主特征值和次特征值组成的对角矩阵。 定义U p,s 为信号矩阵, U p,n 为噪声矩阵。 由子空间正交原理可知:
{
H p
}
(10)
−1 式中 κp 为加权因子,可粗略选择为 N p (∑Q j =1 N j ) 。对于标量多子阵阵列,式(7)变为
H H ⎤ H H ⎤ ⎡U p,nU p ap (ψm , χm ) ⎡⎣U p,nU p ,n ⎦ a p (ψm , χm ) = as (ψm ) ⎣ ,n ⎦ as (ψm ) = 0
5.双目视觉里程计
相邻帧特征跟踪的误差是 零均值、独立于age、同分布的!
Laplacian-like distribution, zero-mean.
容易跟丢的特征,其误差一般很大
age为40的特征,累计误差 vs Age
•MFI
Visual Odometry by Multi-frame Feature Integration. ICCV2013
根据匹配后的特征点和特征点的坐标,恢复两个时刻相机的运动 在匹配过程中,存在大量的误匹配,需要用RANSAC(MLESAC)! • 从M中选取3个点对 • 由3个点对估计参数 • 根据估计参数得到的模型计算误差,如果小于给定误差,则认为是inlier • 重复S次,找到inliers最大的点集 • 对该点集进行计算,得到最终T
•VISO2-S StereoScan: Dense 3d Reconstruction in Real-time
IV 2011
3. 对匹配进行精细化定位和筛选(网格) 4. 计算重投影误差时对像素点增加了权重
•SSLAM Robust Selective Stereo SLAM without Loop Closure and Bundle Adjustment
1. 特征检测与描述 HarrisZ detector、sGLOH descriptor 2. 环形匹配 3. Pose Estimation Constrained by Temporal Flow
图像的分辨率决定了匹配后特征点位置的不确定性 只有这些match之间Temporal Flow较大时,不确定才小 因此当flow大于特定值的匹配对所占比率
•MFI
Visual Odometry by Multi-frame Feature Integration. ICCV2013
电子信息工程专业英语(第三版)词汇表
电子信息工程专业英语(第三版)词汇表Aa portion of一部分a variety of各种各样的a mass of 大量的AC abbr. Alternating Current交流电accidental adj.意外的accumulator n.累加器acquisition n.获取,采集acquisition time采集时间acquisition time采集时间activate vt.激活active adj.有源的actuator n 致动器,执行器add-on n.附件administration邮电管理局address vt.从事,忙于address generator地址产生器address pointer地址指针addressing mode寻址模式adjustment n 调整,调节ADSL abbr. Asymmetrical Digital Subscriber Loop非对称数字用户线adverse adj 不利的,相反的AFG Arbitrary Function Generator任意函数发生器aggregate v.聚集,合计AGP Accelerated Graphic Port 加速图形接口akin adj.同族的,类似的algorithm n.算法aliasing n.混叠现象alkaline adj.碱性的all in all 总而言之all of a sudden突然allocate vt.分配allocate vt.分配allow for 虑及,体谅allow for虑及,酌留alphanumeric adj.包括文字与数字的alter v.改变alternative n.选择ALU abbr Arithmetic Logic Unit算术逻辑单元aluminium n.铝ambient adj.周围的n.周围环境analogous adj.类似的analogy n.类似,类推ancillary adj.辅助的,副的anguish n 痛苦,苦恼angular frequency角频率annotation n.标注,注解antenna n.触角,天线anti-aliasing filter抗亍昆叠滤波器anti-aliasing filter抗混叠滤波器appliance n.用具,器具appliance n.用具,器县application interface 应用程序接口approach n. 方法appropriate adj.适当的approximation n.近似(值)approximation n.逼近,近似值archive vt.存档n.档案文件arena n.竞技场,舞台arena n.竞技场舞台arise from 由...引起;从...中产生arithmetic n 算数array n.阵列,数组array n.数组,阵列artificial adj.不自然的as a consequence 因此as always照常as opposed to .. 与...相反as yet到目前为止ASIC abbr. Application Specific Integrated Circuit专用集成电路ASIC Application Specific Integrated CircuitASIC Application-Specific Integrated Circuit专用集成电路assembler n 汇编器assembly language汇编语言assignment n.赋值ASSP abbr. Application Specific Standard Product专用标准器件ASSP Application-Specific Standard Parts 专用标准器件assume vt 假定asynchronous adj.异步的asynchronous adj.异步的attenuator n.衰减器audiophile n.高保真音响爱好者auditorium n.会堂,礼堂auditory system听觉系统automatic variable自动变量automotive adj.汽车的AWG Arbitrary Waveform Generator任意波形发生器B(be) known as…称作……(be) capable of…具备……的能力(be) equivalerit to相当于……,等价于……(be) proportional to与……成比例back bias 反向偏压backplane n.背叛backside n.背部,后方backward compatible向下兼容bar graph条形图bargain n.交易,协议,廉价品barrier n.隔板,势垒,阻挡层base station 基站base station基站baseband n.基带baud n 波特be concerned with…对……关心be encumbered with为……所累be mad e up of由……组成be referred to as.... 被称作...be thought of as…被认为……beam splitter 分光镜behavioral synthesis 行为综合beneficial adj.有益的,受益的Bessel filter贝塞耳滤波器biased adj.加偏压的,有偏向的bill of materials材料单BIOS abbr.Basic Input Output System基本输入输出系统bipolar adj.双极性的bit vector位向量bland adj.平淡的block diagram方框图blow up 爆炸,放大blur v 使……模糊BNC bayonet neill-concelman 同轴电缆卡环形接头boast v.夸耀Bode plot伯德图bond n. 接头Boolean variable 布尔变量boost n.升压,放大boot n.启动,引导,自举boot sector引导扇区bootstrap n. 引导程序bootstrap loader 引导装入程序brake n.刹车branch instruction分支指令brief adj.短暂的bring up 捉出,引出browse v.浏览budget n.预算budget n.预算budgetary adj.预算的buffer n 缓冲器buffer n.缓冲器,缓冲区building block 构件,模块built-in adj.内置的bulky adj.体积大的bulky adj 容量大的,体积大的bunching n.聚束bus interface总线接口bus interface总线接口by one’s (own)bootstraps 通过自己的努力by way of 经由;作为Ccable n.电缆cable modem 线缆调制解调器cable TV 有线电视cache n.高速缓存CAD Computer Aided Design 计算机辅助设计calculable adj.可计算的,能预测的calculation-intensive algorithm运算密集型算法camcorder n.便携式摄像机candid adj.非排演的,偷拍的capacitive adj.电容性的capacitor n.电容器capacity n.容量,电容capture v .记录,输入carrier wave 载波cascade n 级联cathode n.阴极cauldron n.大锅炉CB citizens'band 民用波段CCD Charge Coupled Device 电荷耦合器件CD Compact Disc 光盘cell n.细胞,蜂房,电池cellular adj.蜂窝状的characterization n.描述,表征charge pump电荷泵chat n.聊天Chebyshev Type l filter切比雪夫1型滤波器chip rate码片速率chrominance n.色度circular adj.圆形的,循环的circular adj.循环的,环形的circular buffer循环缓冲区class n.类clear-cut adj.界限分明的clever adj.精巧的,灵巧的,巧妙的cliché n 空话,套话,废话clock jitter 时钟抖动clump n.块,团CMOS abbr. Complementary Metal-Oxide-Semiconductor互补金属氧化物半导体coding theory 编码理论coexist vi.共存cold boot 冷启动collide vi.碰撞,抵触collision n.碰撞,冲突combat v.反对防止come down to归结为,涉及commute v 通勤comparable adj.可比较的,比得上的comparator n.比较器comparator n 比彰芝器compatibility n.兼容性compelling adj.强制的compiler n.编译器complex plane复平面complex-frequency variable复频率变量complicate vt使复杂,使难做,使恶化comply vi.遵守comply with同意,遵守component n 组件computing n.计算,处理concerned adj.有关的concisely adv.简明地concurrent adj.并发的concurrent process并发进程conditional adj.条件的conditioning n 调节,调整conduct v传导conductivity n. 传导性,传导率configure vt.配置,设定conflict n.冲突,抵触conformance n.顺应,一致conjugate adj.共轭的consequently adv.从而,因此consist of...由……组成consolidated adj。
omega地震资料处理软件2012新功能用法
Replacement SFM’s
DATA_ANALYSIS See Note See Note DATA_ANALYSIS DATA_ANALYSIS
The DYNAMIC_RANGE and INST_DYNAMIC_RANGE SFMs were used to test acquisition systems for In-Field processing and are no longer used. There are no replacement SFMs.
SeisView – now available to license independently from Omega
–
Performance
•
– Applications
•
–
Applications
•
Schlumberger Private - Customer Use
5
New and updated SFM’s
©2012 WesternGeco Schlumberger Private - Customer Use
3
2012 in a Nutshell
Key Licensing changes
New SFM’s and major updates to existing SFM’s New applications and updates to existing applications Updated plug-ins
Plug-ins
医用放射线设备专业英语单词表(DOC)
附录:医用放射线设备专业英语单词表a-eliminator 灯丝电流整流器absorbency 吸收率,吸收系数acceleration tube 加速管accelerated guide 加速器波导accelerator gun 加速器电子枪accelerator for electron therapy 电子束治疗加速器accelerator for neutron therapy 中子束治疗加速器accelerator for X-ray therapy X线治疗加束器accumulator蓄电池,存储器actinograph自动嚗光器action 动作,alarm 报警器amperemeter 安培计,电流表amplifier 放大器accelerated current 加速束流accessory 附件anode 阳极2-d forier reconstruction 2-D傅立叶重建active shields 有源屏蔽advanced multiple beam equalization 移动式线束均衡摄影algebraic reconstruction technique 代数重建技术aliasing 卷褶alimentation 电源analog image 模拟图像area 范围,区域,面积arm 臂,杆,指针(cross)arm 横臂(rotating)arm 转动臂array processor , AP 阵列处理器assemble 装配,安装artifact 伪影artwork 布线图atomic number 原子序数B0 主磁场Back projective 反投影法Badge 防治射线测定胸卡Bandage 绷带Bandwidth 频宽Beam hardening 线束硬化Bed-board 床面板(film)bin X线片储片盒Binding energy 结合能Bi-plane DSA 双向DSABlood flow血流Blood volume血容积Body coil 体线圈Bohr model Bohr模型(原子核) Bremsstrahlung process 韧致辐射Cable 电缆,电线Cathode ray tube , CRT 阴极射线管Central process unit , CPU 中央处理器Characteristic x-ray 标示X线Charge coupled device, CCD 电荷耦合器件Chemical shift 化学位移Chemical shift imaging ( CSI) 化学位移成像Cineradiography X线电影摄影Coil 线圈Collimator 准直器,束光器Compression rate 压缩率Comptom scattering 康普顿散射Computer radiography , CR 计算机X摄影Computer tomography , CT 计算机体层成像Computer计算机Contrast enhancement 对比增强Contrast对比Contrast agent 对比剂Contrast examination 对比检查Contrast to noise ratio (CNR) 对比噪声比Convolution method 卷积反投影法Cross-sectional imaging 断面摄影Crosstalk 交叉干扰CT angiography , CTA CT血管造影CT number CT值Cycle time 周期时间Date storage device 数据存储器Degradation 图像降解Delayed scanning 延迟扫描Density resolution密度分辨力Detector 探测器Digital fluorography/ fluoroscopy , DF 数字荧光摄影/透视DF Digital imaging and communication in medicine , DICOM 医用数字化成像及传输Digital radiography , DR 数字X线摄影Digital subtraction angiography , DSA 数字减影血管造影Dual echo 双回波Dynamic imaging 动态成像Dynamic scanning 动态扫描Echo 回波Echo Planar Imaging (EPI) 回波平面成像Echo Time 回波时间Echo train 回波链Eddy currents 涡流Edge enhance 边缘增强Effective echo time有效回波时间Electric potential 电势Electromagnetic radiation 电磁辐射Electron 电子Electron beam computed tomography,EBCT 电子束CT Electronic volt , eV 电子伏特Electronic detector 电子探测器Element元素Emission spectrum 发光光谱Encoding 编码Energy subtraction 能量减影Enhanced scanning 增强扫描Excitation激励Exposure暴光Exposure time 暴光时间Fading 消退Fast flow 快速流动Fat-water interface 脂肪-水介面Ferromagnetic substances 铁磁物质Field of view( FOV) 观察野Field strength 主磁场场强Filtered back projection 滤过反投影法Filtration 滤过First echo 第一回波Flip angle 倾倒角Flow chart 诊断流程Flow compensation 流动补偿Flow enhancement 流动增强Fluorescent screen 荧光屏Flouroradiography 荧光缩影Focalspot 焦点Format 格式Fourier transform(FT)傅立叶变换Frame frequency 帧频Free electrons 自由电子Free induction decay ( FID) 自由感应衰减Frequency 频率Frequency encoding gradient 频率编码梯度FSE (fast spin echo) 快速自旋回波Full width at half maximum , FWHM 半峰值最大宽度functional MRI 磁共振功能成像Gantry 扫描架Gauss 高斯Gradation processing 谐调处理Gradient 梯度Gradient coil 梯度线圈Gradient echo 梯度回波Gradient echo imaging 梯度回波成像Gradient spin echo ( GRASE) 梯度自旋回波Gradient-recalled rephrasing ( GRE) 梯度回波序列Grid 滤线栅Gx , Gy , Gz X,Y,Z轴梯度Gyromagnetic ratio 磁旋比Half-Fourier imaging 半傅立叶成像Half-value layer 半价层Hard copy device 硬拷贝设备Hardness , X-ray X线硬度Helical CT , spiral CT 螺旋CTHelical scan 螺旋扫描High-kilovoltage radiography 高千伏摄影High-potential assembly 高压主件High-resolution CT , HRCT 高分辨力CTHigh-spatial-frequency reconstruction 高空间频率重建法Hot cathode tub 热极管Image acquisition device 影像采集设备Image display station 图像显示站Image intensifier , I.I 影像增强器Image plate, IP 成像板Image receptor 影像接受器Image reconstruction 图像重建Image diagnosis 影像诊断学Image volume 影像容积Incident electrons 入射电子Incremental dynamic scanning 进床式动态扫描Interface 接口Interventional radiology 介入放射学Ionization 电离Ionization chamber 电离室Ionization radiation 电离辐射Isotope 同位数Joule 焦耳Kinetic energy 功能K-space K-空间Leadblock 铅块Light emission life 光发射寿命期Linear interpolation 线性内插运算法Longitudinal magnetization ( Mz ) 纵向磁化矢量Longitudinal relaxation time ( T1 ) 纵向驰豫时间Macroscopic magnetic moment (vector) 宏观磁矩Magnet 磁体Magnet moment 磁矩Magnetic resonance imaging , MRI 磁共振成像Magnetic shielding 磁屏蔽Magnetic susceptibility 磁化率Magnification radiography 放大摄影Mass 质量Matched filtering 匹配滤过Matrix矩阵Metallic artifact 金属异物伪影Medical liner accelerator医用直线加速器Molybdenum 钼Monoenergetic 单能量的Monomer 单体Motion artifact 运动伪影MR spectroscopy 磁共振波谱Multi-slice 多层面Mxy XY平面磁化矢量Mz 轴磁化矢量N(H) 密度N(H)weighted 质子加权像Net macroscopic vector magnetization 净磁化量Neutron 中子Noise 噪声Orbiting electrons 沿轨道运行电子Oil-immersed generator 油浸发生器Palpator 压迫器Pantomography 全景体层摄影Partial volume effect 部分容积效应Particulate radiation 粒子辐射Permanent magnet 永磁体Phase coherence ( in phase ) 相位一致磁共振Phase effect 相位效应Phase encoding 相位编码Phase image 相位图像Phase incoherence ( out of phase , dephasing) 去相位(相位分离)Photo-electric effect 光电效应Photo-fluorographic apparatus 荧光摄影机Photon 光子Photosensitive film 感光胶片Picture archive and communication system , PACS图像存档和传输系统Pitch 螺距Pixel 像元Pixel shifting 像元移动Plain film 平片Plain scanning/nonenhanced scanning 平扫Positron 正子Positron emission tomography ,PET 正电子发射体层成像Potential energy 势能Precession 进动Projection reconstruction 投射重建Projectional imaging 投影成像Proton 质子Proton density 质子密度Pulse 脉冲Pulse sequence 脉冲序列Quality assurance, QA 质量保证Quality control ,QC 质量控制quality ,X-ray X线的质Quandrature coil 正交线圈Quantity ,X-ray X线的量Quantization 量化Radial scan 辐射扫描Radiation 辐射Radio frequency 射频Radio frequency coil 射频线圈Radio frequency shield 射频屏蔽Radioactive tracer 放射性示踪迹Radioactivity 放射性Radiography X线摄影Radiology ,roentgenology 放射学Raw date 原始数据Real-time fluoroscopic imaging 实时透视成像Real-time local exposure control 实时局部曝光控制Reconstruction 重建Reconstruction time 重建时间Rectangular field of view 矩形观察野Region of interest(ROI) 感兴趣区Relaxation 弛豫Relaxation time 弛豫时间Resistive magnet常导磁体Resonance frequency 时间分辨力RF pulse 射频脉冲Rhodium 铑Saturation 饱和Scan time 扫描时间Screen 增感屏Shimming 匀场Shots 激发Signal 信号Signal averaging 信号平均Signal detection 信号检测Signal-to-noise ratio 信噪比Single-phase 单相Single shot 单次激发Slice gap 层间距Slice selection gradient 层面选择梯度Slice thickness 层面厚度Spatial localization 空间定位Spatial resolution 空间分辨力Spectral line 谱线Spectral width 谱宽Spectroscopy imaging 波谱成像Spin 自旋Spin density 自旋密度Spin echo ( SE) 自旋回波Spin-lattice relaxation ( T l ) 自旋晶格Spiral scan 螺旋扫描Subtraction 减影Superconducting magnet 超导磁体Superparamagnetic material 超顺磁性物质Surface coil 表面线圈Susceptibility 磁化率Susceptibility artifact 磁化率伪影T1 values T1值T1-weighted T1加权Target material X线阳极靶材料TE 回波时间Telemedicine 原程医学Temporal subtraction 时间减影Tesla 特斯拉Thermionic emission 热离子发射Three-dimensional fourier transform 三维傅立叶变换Three-dimensional rendering technique 三维显示技术Three-phase 三相Three-phase wave unit 三相全波TI 反转时间Time of flight 飞越时间Tomography 体层摄影TR 重复时间Transformation of information 信息转换Technique 技术Transverse relaxation time 横向弛豫时间Transverse wave 横波Tube current X线管电流Tube current adjuster for fluoroscopy 透视管电流调节器Tube voltage adjuster for fluoroscopy透视管电压调节器Tube potential X线管电压Tungsten 钨Two-dimension imaging 二维成像Ultrafast computed tomography ,UFCT 超高速CT unpaired electrons 不成对电子Valence electrons 价电子V oltage 伏特V olume of interest(VOI) 容积感兴趣区V ortex flow 涡流V oxel 体元Waveform 波形Wilhelm Conard Roentgen 伦琴Window level 体窗Window technique 窗技术Window width 窗宽Wraparound (aliasing ) artifact 卷积技术Xenon detector 氙探测器X-ray generator X线发生器。
非线性波方程的奇异曲线和奇异行波
Abstract
The results show that the equation exist a new double compacton solutions. The new compacton solutions are different from the famous Rosenau-Hyman compacton solutions, because they are derived by a singular elliptic curve tangenting to the homoclinic orbits rather than the singular straight line in the phase space. In Chapter 6, we study the relasionship of the parabola singular curves and the singular traveling wave. The deformed Hunter-Zheng equation is specifically studied and corresponding travelling wave system possing the parabola singular curves is well derived. This is the first time that this type of equations has been found. Futher studying the periodic curves tangent to the parabola singular curves, we obtain the new singular periodic wave and analyze its dynamical behaviors. In Chapter 7, we summarize the work of the paper and put forward the research work in the future. Keywords: peakon solutions; compacton solutions; cuspon solutions; pseudo-cuspon solutions;periodic wave solutions
海浪和舰艇尾迹产生的弱磁信号分析
最后,通过对所推导的感生磁场精确解公式进行数值仿真计算,分析风浪与 舰艇尾迹产生的磁异常信号时空分布和频谱特性。
II
ABSTRACT
Finally, based on the deduced accurate formula, a great deal of simulations are carried out. Space-time distributions of the induced magnetic fields by the wind waves and ship wakes, as well their frequency spectrum properties, are analyzed.
Keywords : wind waves, ship wakes, seawater velocity field, induced magnetic fields.
This work is supported in part by NSFC Project 61271032.
III
目录
目录
第一章 绪论 .................................................................................................................... 1 1.1 研究背景及意义 ................................................................................................ 1 1.2 国内外研究现状 ................................................................................................ 2 1.3 论文研究内容安排 ............................................................................................ 6
逆时偏移拉普拉斯算子滤波改进算法
逆时偏移拉普拉斯算子滤波改进算法陈康;吴国忱【摘要】本文在分析拉普拉斯滤波方法的基本原理及其存在问题的基础上,提出了四阶拉普拉斯滤波算法,有效地解决了逆时偏移去噪中遇到的压制噪声不彻底及子波振幅和相位发生明显变化的问题,也就是说,此法可以在更好地消除成像噪声的同时,保持有效信号的振幅和相位特性。
简单和复杂模型数据的测试表明,改进的拉普拉斯算子滤波算法效果明显。
【期刊名称】《石油地球物理勘探》【年(卷),期】2012(047)002【总页数】7页(P249-255)【关键词】逆时偏移;成像噪声;拉普拉斯算子;滤波【作者】陈康;吴国忱【作者单位】中国石油大学(华东)地球科学与技术学院,山东青岛266555;中国石油大学(华东)地球科学与技术学院,山东青岛266555【正文语种】中文【中图分类】P631叠前深度偏移方法主要有单程波波动方程偏移、克希霍夫积分偏移和逆时偏移三种。
单程波波动方程偏移不能对陡倾角界面精确成像,克希霍夫积分法只能描述波在光滑介质中的传播过程,不能解决波的焦散问题[1],因此这两种方法较难获得复杂构造的精确成像剖面。
叠前逆时偏移技术是地震勘探中实现偏移成像的一种有效手段。
相比其他偏移算法,逆时偏移有自己的独特优势。
逆时偏移(RTM)用双程波波动方程延拓波场[2,3],避免对波动方程的近似,因此没有倾角限制,可以对转换波、棱镜波或多次反射波成像,还可以更好地对复杂速度场进行更细化、更精确的估计。
逆时偏移成像方法不受介质速度变化的影响,能够对复杂区域进行较准确的成像。
然而,在逆时偏移过程中运用互相关成像条件时,会引入一些不正确的互相关(如首波、潜波、反向散射波等),导致在速度分界面上(特别是速度梯度很大的分界面上)产生一些低频干扰,使得叠前逆时偏移成像剖面上出现一些成像噪声[4]。
为此许多学者针对此问题提出了不同的解决方法[5~9],如修改波动方程、修改成像条件、成像后进行滤波处理等。
本征广义琼斯矩阵方法
文献标志码:A
doi:10.3788/CO.2019-0163
1 Introduction
Jones calculus is a simple and general method for modelling several optical phenomena, such as those of liquid crystal displays[1-2], diffraction gratings[3], Šolc filters[4-6], holographic imaging[7-8], quantum communication [9] in classical and quantum optical fields, radio telescope image calibrators[10], radio polarimeters[11] in astronomical observation, human retinal imaging , [12] human brain tissues[13], and biological specimens[14] in the biomedical imaging. Moreover, when applied in three dimensions, the Jones vector changes into the generalized Jones vector[15] and can be used to describe light propagating through a high-numerical-aperture focus lens[16], light interacting with nanoparticles[17], and optical coherence tomography[18].
特征波反演成像理论框架
特征波反演成像理论框架王华忠;冯波;王雄文;胡江涛;刘少勇;李辉;周阳【摘要】地震波反演成像的核心问题是将解一个非线性(较)强的反问题转化为提一个更凸的反问题并进行求解.存在强非线性性的主要原因是实测数据与要反演的模型参数之间的关系远非线性,其次是由于包含模型参数的控制方程不能很好地预测实际数据.因此,提出了特征波反演(characteristic wave inversion,CWI)成像的理论框架,基本思想是:不追求对实测波场全部波现象的模拟,而是模拟其中的部分特征波场;不一定追求波形逼近,但要尽可能利用到达时(相位)的逼近.相对于全波形反演(full waveform inversion,FWI),特征波反演由四个基本步骤组成:①特征波场(characteristic wave field,CWF)的提取;②波动理论的透射波层析成像;③波动理论的一次反射波层析成像;④最小二乘叠前深度偏移成像.特征波场提取是其中重要的环节,包含三重含义:①波现象的分解(譬如,矢量波分解成标量波以及一次波和多次波分解);②时空局部的、单震相的、带方向的带限波场的分解;③同相轴上地震子波的分解(譬如,提取子波的达到时、相位等).特征波场提取基于压缩感知的框架进行,其它三个线性化的参数反演环节,首先考虑的是针对地下介质参数层状分布时的反射波反演成像,然后再考虑针对散射和绕射波的反演成像.数据域特征波反演在估计低波数速度信息时仅依赖同相轴上子波的到达时或/和相位信息,需尽量排除振幅对到达时和相位估计的影响.像域中的背景速度反演仅适宜基于到达时的反演,基于像的幅值的反演在理论上是不合理的.高波数参数估计时,首先进行方位角度反射系数的估计,在此基础上进行散射强度的估计.CWI技术系列是推进经典FWI走向实用化的正确途径,初步数值试验结果证明了上述判断.%The core of seismic wave inversion imaging is to translate solving a strong nonlinear inverse problem to a further convex inverse problem.The reason of strongnonlinearity in inverse problem lies in the far from linear relation between the real data and the model parameters and the forward problem cannot accurately predict the full wave field.Therefore,we put forward the theoretical framework of characteristic wave inversion (CWI).Its basic idea is not to seek predicting the whole wave phenomena in the real data,but to aspire for interpreting characteristic wave paring with the full waveform inversion (FWI),CWI is consisted of four basic steps:characteristic wave field (CWF) extracting;wave equation based transmitted wave tomography;wave equation based reflection wave tomography;least square prestack depth migration.CWI is an inversion-imaging framework based on the characteristic wave phenomena in the real data.CWF extraction is the key step,which has three levels meaning:decomposing of the wave phenomena (such as vector wave filed is decomposed into scalar wave field,primaries and multiples are decomposed);decomposing of the temporally and spatially local,single seismic phase,directional and bandlimited wave field from real data;decomposing of the wavelet on the events into the travletime,phase and something else.The compressive sensing method is used in CWF extractior.Wave equation based transmitted wave tomography is based on the first arrival and early arrival traveltime.The inversion imaging based on the disturbance wave field firstly deal with the reflection wave from the layered strata,and then the scattered wave and diffracted wave.The background velocity estimation in the data domain mainly depends on the traveltime and phase,and the effect of the amplitude of the wavelet on the traveltime and phasemeasuring is removed as possible.The traveltime or phase information can be only used in the background velocity estimation in the imaging domain;it is not suitable for using the amplitude information.For the parameter disturbance estimation,the azimuth/opening-angle reflectivity estimation should be firstly implemented,and then the scattering strength is estimated.Characteristic Wave Inversion Imaging is a realistic procedure to push the classical FWI into the practical application.The numerical experimentation proves the statements.【期刊名称】《石油物探》【年(卷),期】2017(056)001【总页数】12页(P38-49)【关键词】反演成像;特征波场;非线性问题;凸问题;数据域反演;像域反演【作者】王华忠;冯波;王雄文;胡江涛;刘少勇;李辉;周阳【作者单位】波现象与反演成像研究组(WPI),同济大学海洋与地球科学学院,上海200092;波现象与反演成像研究组(WPI),同济大学海洋与地球科学学院,上海200092;波现象与反演成像研究组(WPI),同济大学海洋与地球科学学院,上海200092;波现象与反演成像研究组(WPI),同济大学海洋与地球科学学院,上海200092;波现象与反演成像研究组(WPI),同济大学海洋与地球科学学院,上海200092;波现象与反演成像研究组(WPI),同济大学海洋与地球科学学院,上海200092;波现象与反演成像研究组(WPI),同济大学海洋与地球科学学院,上海200092【正文语种】中文【中图分类】P631岩性油气藏的精确描述是勘探地震学的重要目标。
医疗器械缩略语U-Z
UU Uranium 铀Ua Ultrasonic Attenuation 超声波衰减UA Ultrasound Angiograph 超声血管显像术UA Urinanalysis 尿分析法UAC Umbilical Artery Catheter 脐动脉导管UAL Unit Area Loading 单位面积负荷UASA Upper Airway Sleep Apnea 上气道性呼吸睡眠暂停UBC Universal Buffer Controller 通用缓冲控制器UBI Ultraviolet Blood Irradiation 血液紫外线辐射疗法UC Urea Clearance 尿素清除率UC Urethral Catheterization 尿道导管插入术UC Uterine Contraction 宫缩UCA Ultrasound Contrast Agents 超声造影剂UCDI Ultraviolet Central Double Irradiation 紫外线中心重叠照射UCF Ultracentrifuge 超速离心机UCG Ultrasonic Cardiogram 超声心动图UCL Uncomfortable Level 不适级UCL Uncomfortable Loudness 不适响度UCLL Uncomfortable Loudness Level 不适响度级UCO Urethral Catheter Output 尿道导管排尿量UCR Unconditioned Reflex 非条件反射UCR Unconditioned Response 非条件响应UCRL University of California Radiation Laboratory 加州大学辐射实验室UCS Unconditioned Stimulus 非条件刺激UCT Ultrasound Computerized Tomography 超声计算机体层摄影术UCV Uncontrolled Variable 不可控变量UCW Universal Clinical Workstation 万能临床工作站UDE Ultrasound Diagnostic Equipment 超声诊断仪UDF Ultrasound Doppler Flowmeter 超声多普勒血流计UDS Urinary Drop Spectrometer 尿滴液分光光度计UDT Universal Data Transcriber 通用数据转录器UE Upper Extremity 上肢UF Ultrafilter 超滤器UF Ultrafiltration 超滤法UF Ultrafine 超细的UF Ultrafitrate 超滤液UF Unsteady Flow 非稳定流动UFC Ultra Fast Ceramics (Detector) 超快速陶瓷探测器UFCT Ultra-fast Computed Tomograph 超高速CTUFOV Uniformity Feild of View 均匀性视野UFR Ultrafiltration Rate 超滤速率UG-FNAB Ultrasonically Guided Fine Needle Aspiration Biopsy 超声导向细针抽吸活检UG-FNP Ultrasonically Guided Fine Needle Puncture 超声导向细针穿刺UG-FNPPD Ultrasonically Guided Fine Needle Percutaneous Puncture Ductography 超声导向细针经皮穿刺管腔造影术UG-FNPTC Ultrasonically Guided Fine Needle Percutaneous Transhepatic Cholangiography 超声导向细针经皮经肝胆道造影术UG-PTBD Ultrasonically Guided Percutaneous Transhepatic Bile DrainageUG-PTP Ultrasonically Guided Percutaneous Transhepatic PortographyUGI Upper Gastrointestinal 上消化道UGLU Urine Glucose 尿糖UGS Urogenital System 泌尿生殖系统UGT Urogenital Tract 泌尿生殖道UH Ultrasonic Holography 超声全息摄影术UHBI Upper Half-body Irradiation 上半身照射UHEC Ultra-high Energy Collimator 超高能准直器UHF Ultrahigh Frequency 超高频UHI Ultrasound Harmonic Imaging 超声谐波成像UHRC Ultra High Resolution Collimator 超高分辨率准直器UHTS Ultrahigh Temperature Sterilization 超高温灭菌法UI Ultrasound Imaging 超声显像UI Unsaturation Index 不饱和指数UIB Ultraviolet Irradiation of Auto-transfused Blood 紫外线辐射充氧自血回输疗法UIMS Ultrasonic Imaging Management System 超声影像管理系统UJT Unijunction Transistor 单结晶体管UL Underwriters Laboratories Inc 美国保险商实验室颁发机电产品安全保证标志UL Unipolar Lead 单极导联ULD Ultra Low Dose 超低剂量ULD Ultrasonic Leak Detector 超声泄漏检测器ULF Ultra Low Frequency 超低频ULIT Ultra-fast Laser Imaging Technics 超快速激光成像技术ULL Uncomfortable Loudness Level 不舒适声级ULM Ultrasonic Light Modulator 超声光调制器UMB Ultrasound in Medicine and Biology 生物医学超声UMM Universal Measuring Microscope 万能测量显微镜UN Urea Nitrogen 尿素氮UO Ultrasonic Oscillation 超声波振荡UOD Ultimate Oxygen Demand 极限需氧量UP Unipolar 单极的UPO Undistorted Power Output 不失真功率输出UPR Ultraviolet Pronton Radiation 紫外线质子辐射UPS Ultraviolet Photoelectron Spectroscopy 紫外光电子光谱学UPS Uninterruptible Power Supply 不间断电源URL Uniform Resource Locator 统一资源定位器US Ultrasonography 超声显像术US Ultrasound 超声US Undistorted Signal 不失真的信号USA Ultraviolet Spectral Analysis 紫外线光谱分析USC Ultrasonic Cleaning 超声清洗USERIA Ultrasensitive Enzyme Radioimmune Assay 超敏酶放射免疫测定USFS United States Frequency Standard 美国频率标准USL Ultrasonic Lithotripsy 超声碎石术USMID Ultrasensitive Microwave Infrared Detector 超灵敏度微波红外探测器USN Ultrasonic Nebulizer 超声雾化器USW Ultrashort Waves 超短波UTF Ultrasonic Transit Flowmeter 超声瞬时血流计UTLC Ultrathin Layer Chromatography 超薄层色谱法UTV Ultrasound Transmission Velocity 超声传导速度UV Ultraviolet A A紫外线UV-PES Ultraviolet Photoelectron Spectroscopy 紫外光电子光谱学UV A Ultraviolet 紫外线,长波紫外线UV A Ultraviolet Absorption 紫外线吸收UV ASER Ultraviolet Ampification by Stimulated Emission of Radiation 受激辐射式紫外放大器UVB Ultraviolet B B 紫外线,中波紫外线UVC Ultraviolet C C 紫外线,短波紫外线UVD Ultraviolet Detector 紫外线探测器UVL Ultraviolet Lamp 紫外线灯UVL Ultraviolet Laser 紫外线激光UVLS Ultraviolet Light Stabilizer 紫外光稳定器UVM Ultraviolet Meter 紫外线计UVP Ultrahigh Vacuum Pump 超高真空泵UVPD Ultraviolet Photomatic Detector 紫外线光度测量器UVR Ultraviolet Radiation 紫外线辐射UVS Ultraviolet Spectrometer 紫外线分光计UVSMP Ultraviolet Scanning Microphotometer 紫外扫描显微光度计UVSP Ultraviolet Spectrometer 紫外线分光计UW Ultrasonic Wave 超声波VV Chest Lead 胸导联V Valve 电子管V Vanadium 钒V Voltmeter 伏特计V Volt 伏特,电压,电动势,具有专门名称的SI导出单位V A Vacuum Aspiration 真空吸引术V A Value Analysis 数值分析V A Variable Area 可变区V A Ventriculo-atrial 房室的V A Visual Acuity 视敏度V A V olt Ampere 伏安,视在功率V AD Ventricular Assisted Device 心室辅助装置V ANT Vibration and Noise Tester 振动和噪声测试器V AR Vertical Axis Rotation 垂直轴旋转V AR Visual-aural Range 视听范围V ATS Video Assisted Thoracic Surgery 视频辅助胸科手术VBMD Volume Bone Mineral Density 体骨矿密度VBP Valvular Bioprostheses 瓣膜生物假体VBS Ventilating Bronchoscope 通气支气管镜VC Vacuum Curette 抽空吸引刮匙VC Variable Capacitor 可变电容器VC Ventilatory Capacity 通气量VC Vital Capacity 肺活量VC V oluntary Closing (假肢)随意闭合VC V oluntary Control 随意控制VCAR Volume Coincidence Acquisition Revascularization 体积符合采集和血管重建VCCS V oltage-controlled Current Source 压控电流源VCG V ector Cardiogram 向量心电图VCO V oltage-controlled Oscillator 电压控制振荡器VCR Videocassette Recorder 磁盒录像器VCS V olume Conductivity Light Scatter 容量电导光散射法VCUG Voiding Cystourethrogram 膀胱尿路造影VD Valvular Disease 心瓣膜病VD Vector Diagram 向量图VD Vessel Disease 血管病VDA Video Distributing Amplifier 视频分配放大器VDFG Variable Diode Function Generator 二极管变量函数发生器VDH Valvular Disease of the Heart 心脏瓣膜病VDI Video Display Input 视频显示输入VDI Visual Display Input 直视显示输入VDL Visual Detection Level 目测水平VDR V oltage Dependent Resistor 压敏电阻VDR V olume Dose Relation 体剂量比VDS Variable Depth Sonar 可变深度声纳VDS Variable Dilution Sampling 可变稀释采样法VDU Video Display Unit 视频显示器VDU Visual Display Unit 直视显示装置VE Vacuum Extractor 负压吸引器VE Variable Echo 可变回波VE Virtual Endoscopy 仿真内窥镜Vec Vector 向量VECA Visual Electroencephalography Computer Analysis 直视脑电图电子计算机分析VECP Visual Evoked Cortical Potential 视觉诱发皮质电位VECP Visual Evoked Cortical Response 视觉诱发皮质响应Vel Velocity 速度VEOG Vectorelectrooculography 眼电向量描记术VEP Visual Evoked Potential 视觉诱发电位VERA Vision Electronic Recording Apparatus 视频电子记录装置VERP Ventricular Effective Refractory Period 心室有效不应期VEWS Very Early Warning System 极早期预警系统VF Ventricular Fibrillation 心室纤颤VF Video Frequency 视频VF Viscosity Factor 粘性因数VF Vitreous Fluorophotometry 玻璃体荧光光度测定法VF V oice Frequency 语音频率VFC Variable Frequency Clock 变频时钟VFC V oltage-to-frequency Converter 电压频率变换器VFD Vacuum Fluorescent Display 真空荧光显示VFLL Variable Focal Lengh Lens 可变焦距透镜VFO Variable Frequency Oscillator 变频振荡器VFP Vacuum Fore Pump 预抽真空泵VFP Ventricular Fluid Pressure 脑室液压VGA V ariable Gain Amplifier 可变增益放大器VGA Video Graphics Array 视频图形阵列VHD Valvular Heart Disease 瓣膜性心脏病VHD Visible Human Dataset 可视人数据库VHF Very High Frequency 甚高频VHF Visual Half-field 半视野VI Ventilation Index 换气指数VI Visosity Index 粘度指数VI Visosity Indicator 粘度指示器VI V olume Index 容积指数VI V olume Indicator 容量指示器,音量指示器VIC Vaporizer Inside Circuit 汽化器内回路VIP Video Integrator and Processor 视频积分处理器VISSR Visible and Infrared Spin Scan Radiometer 可见红外线自旋扫描辐射仪VIT Vibration Isolation Table 防震台VL Vibration Level 振动级VLAP Visual Laser Ablation of the Prostate 直视前列腺激光凝固疗法VLD Vacuum Leak Detector 真空检漏器VLF Very Low Frequency 甚低频VLP Ventricular Late Potential 心室晚电位VLP Very Low Potential 极低电位VLSI Very Large Scale Integration 超大规模集成(电路)VM V oltmeter 伏特计VMG Vertical Mirror Galvanometer 立式反射镜检流计VP Vacuum Pump 真空泵VP Vapor Pressure 蒸汽压VP Variable Pitch 可变节距VP Venous Pressure 静脉压VP Vertical Plane 垂直面VPC Ventricular Premature Contraction 室性期前收缩VPC V oltage to Pulse Converter 电压脉冲变换器VPR Valvular Prosthetic Replacement 人工瓣膜置换VPR Vascular Permeability Reaction 血管通透性反应VPS Vibrations per Second 每秒振动数VQ Variability Quantitation 变异性量化VR Valve Replacement 瓣膜置换VR Variable Ratio 可变比率VR Variable Resistor 可变电阻VR Ventilation Rate 通气速率VR Ventilation Ratio 通气比率VRA Visual Reinforcement Audiometry 视觉强化测听法VRA Visual Response Audiometry 可视响应听力测定法VRASP Virtual Reality Assisted Surgery Program 虚拟现实辅助外科程序VRML Virtual Reality Modelling Language 虚拟现实建模语言VROI Variable Region of Interest 可变感兴趣区VS V ector Scope 心电向量图显示器VS Vibratory Stimulation 振动刺激VS Vital Sign 生命体征VS V olume Support 容量支持VSB Vestigial Side Band 残留边带VSD Ventricular Septal Defect 心室间隔缺陷VSD Virtually Safe Dose 实际安全剂量VSS Visual Spectral Sensitivity 可见光谱敏感度VSW Very Short Wave 甚短波VSWR V oltage Standing Wave Ratio 电压驻波比VT Vaccum Tube 真空管VT Variable Tangential 可变切线VT Variable Time 可变时间VT Ventilation Testing 通气试验VT Ventilation Tube 通气管VT Tidal Volume 潮气量VTM Vapour Tension Meter 蒸汽压计VTr Inspiratory Triggering Flow 吸气触发流量Vtr Inspiratory Triggering V olume 吸气触发容量VTR Videotape Recorder 磁带录像机VTT Vapour Tension Thermometer 蒸汽压温度计VU V oice Unit, Volume Unit 音量单位VUS Venous Ultrasound Catheter 静脉超声导管VUVS Vacuum Ultraviolet Spectroscopy 真空紫外光谱学VV Voxel View 体素成像WW Tungsten 钨W Watt 瓦特,功率,具有专门名称的SI导出单位W Work of Breathing 呼吸作功W.b Wet Bulb Thermometer 湿度计WA Width Average 平均宽度WAG Waste Anesthetic Gas 耗用麻醉气体WAK Wearable Artificial Kidney 佩戴式人工肾WAN Wide Area Network 广域网WAS Ward Atmosphere Scale 病房空气标度Wb Weber 韦,磁通量,具有专门名称的SI导出单位WB Whole Blood 全血WBA Whole Blood Assay 全血测定WBA Whole Body Autoradiography 全身放射自显影术WBAR Whole Body Autoradiography 全身放射自显影术WBARG Whole Body Autoradiography 全身放射自显影术WBC White Blood Cell 白细胞WBCC White Blood Cell Count 白细胞计数WBCT Whole Blood Clotting Time 全血凝固时间WBH Whole Blood Hematocrit 全血红细胞压积WBHT Whole Body Hyperthermia 全身高热疗法WBI Whole Body Irradiation 全身照射WBM Whole Body Monitor 全身监测仪WBN Wide Band Noise 宽频带噪声WBS Whole Blood Serum 全血血清WBT Wet Bulb Temperature 湿球温度WBT Wet Bulb Thermometer 湿球温度计WC Water Column 水柱WC Water Cooled 水冷式WC Wheel Chair 轮椅WC White Cell 白细胞WCC White Cell Casts 白细胞管型WCC White Cell Count 白细胞计数WCR Water Cooler 水冷却器WCST Wisconsin Card Sorting Test Wisconsin卡片分类试验WD Wet Dressing 湿敷布WDR Wide Dynamic Range 宽动态范围WDXS Wavelength Dispersive X-ray Spectrometer 波长色散X射线分光计WEPC Water-extended Polyester Collimator 充水聚脂准直器WF Water Filter 滤水器WFH Weight-for-height 按身高的相对体重WFSU Water Flow Sensing Unit 水流传感器WG American Wire Gauge 美国线规WG Water Gauge 水标,水表WG Wave Guide 波导WG Wire Gauge 线规WH Water Heater 水加热器WH Watt Hour 瓦特小时WHD Wearable Hemodialysis 可穿戴式血液透析WHDF Wearable Hemodialysis Filtration 可穿戴式血液透析滤过WHDU Wearable Hemodialysis Ultra-filtration 可穿戴式血液透析超滤WHF Wearable Hemo-filtration 可穿戴式血液滤过WHO World Health Organization 世界卫生组织WHU Wearable Hemo-ultrafiltration 可穿戴式血液超滤WI Weight Index 体重指数WL Water Line 水平面线WL Water Load Test 水负荷试验WL Water Loss 失水量WL Wave Length 波长WL Wheel Chair 轮椅WL Work Load 工作负荷,工作量WLS Weighted Least Squares 加权最小平方WLS Whole Body Linear Scan 全身直线扫描WMC Weight Molar Concentration 重量克分子浓度WNAP Whole Nerve Action Potential 全神经动作电位WNL Within Normal Limits 在正常限度内WO Washout 冲洗,冲刷WO Written Order 书面医嘱WOB Width of Bone 骨宽度WP Water Proof 防水的WP Water Pump 水泵WP Working Point 工作点WQI Water Quality Index 水质指数WQM Water Quality Monitoring 水质监测WR Weight Recorder 重量记录器WR Whole Response 整体响应WS Workstation 工作站WSHF Wearable Single Hemo-filtration 可穿戴式单纯血液滤过WSHU Wearable Single Hemo-ultrafiltration 可穿戴式单纯血液超滤WT Wavelet Transform 小波变换WT Wireless Telemedicine 无线远程医学WV A Waveform Vector Analysis 波形向量分析WW Wet Weight 湿重WW Window Width 窗宽WxB Wax Bite 蜡咬模(齿科)WxP Wax Pattern 蜡模(齿科XXAL Xenon Arc Lamp 氙弧灯Xc Capacitive Reactance 容抗XCT X-ray Transmission Computed Tomography X射线透射计算机体层摄影术XDP X-ray Density Probe X射线密度探测器XDT Xenon Discharge Tube 氙放电管Xe Xenon 氙XEG X-ray Emission Gauge X射线发射测量计XERG Xonics Electron Radiography 静电电子射线照相术XES X-ray Energy Spectrometer X射线能量分光计XFA Crossed-field Accelerator 交叉磁场加速器XFA X-ray Fluorescence Absorption X射线荧光吸收XFA X-ray Fluorescence Analysis X射线荧光分析XFT Xenon Flash Tube 氙闪光管XG Xenograft 异种移植物XIM X-ray Intensity Meter X射线强度计XIQ X-ray Industrial Quantometer X射线工业剂量计XL X-ray Laser X射线激光XLS Xenon Light Source 氙光源XP X-ray Photography X射线摄影术XPS X-ray Photoelectron Spectroscopy X射线光电子光谱学XR Xeroradiography 干板X射线摄影术XRC X-ray Cardiograph X射线心动描记器XRD X-ray Diffraction X射线衍射XRF X-ray Fluoroscopy X射线荧光检查法XRFS X-ray Fluorescence Spectroscopy X射线荧光光谱学XRG Xeroradiography 干板X射线摄影术XRMP Xeroradiography Mammographic Positioner 干板X射线乳房摄影定位器XRPM X-ray Projection Microscope X射线投影显微镜XRQ X-ray Research Quantometer X射线研究剂量计XSA Cross-sectional Area 横切面面积XSF X-ray Scattering Facility X射线散射装置XT X-ray Tube X射线管Y(Yt) Yttrium 钇YAG Yttrium Aluminium Garnet 钇铝柘榴石Yb Ytterbium 镱YIG Yttrium Iron Garnet 钇铁柘榴石YS Yield Strength 屈服强度ZZ Zero 零ZBR Zero Branch 零转移ZE Zone Electrophoresis 区带电泳ZEEP Zero End Expiratory Pressure 呼气终末室压ZEP Zone of Elevated Pressure 增压区ZF Zero Frequency 零频ZG Zero Gas 无气体ZIA Zonal Immune Assay 区带免疫测定ZL Zero Line 基线,零线ZM Zone Metering 分区计量Zn Zinc 锌ZnS(Ag) Zinc Sulphide (Silver)??Crystal 掺银硫化锌,闪烁晶体ZPG Zero Population Growth 人口零增长Zr Zirconium 锆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
where mµ is the ordinary Lebesgue measure on weight µ. That is for A R mµ (A) =
Z
A
R with the
µ(x) dx ;
where µ is a function from R3 to R, assumed to be such that its restriction to A is well defined. The fundamental observation is that b may be expressed as the Fourier transform of σµ , σµ (f ; L;
where µ is a non-negative function describing the sensitivity to ultrasound. Let L be a directed line. When having a
Z
f (sΘ + y) d y =
Z
f (x) d x :
Θ?
x Θ=s
Vmபைடு நூலகம்=
m?1 j =?∞
M
Wj
and L2 (R) =
m2
M
Z
Wm :
We can see the subspaces Vm as containing ‘details up to level m’. The next level is reached by including the ‘detail difference’ space Wm . The function ϕ is called father wavelet or scaling function. A basis function ψ, such that
ABSTRACT Velocity spectra of a flow can be made by ultrasound Doppler measurements. Using only part of the information in two dimensions, the vectorial Radon transform appears, where integration is made over the components of the vector field along the ray of integration. It is well known that the solenoid (curl) part of the flow can be determined from the vectorial Radon transform. A problem is that the tomography reconstruction problem is not local in two dimensions, i.e. all measurement data is needed for the reconstruction in each point. However, it is possible to show by use of wavelets that, if it is sufficient to make reconstruction on a certain detail level and low frequency behaviour is of limited interest, the reconstruction can be made almost local, in the sense that only data for beams in the vicinity of the point of reconstruction are needed to make reliable reconstructions. Here we extend this theory to the vector tomography case. Vector tomography could be used to e.g. find tumours, in which the blood flow is more intense and irregular than in normal tissue. In this context the study of high frequency phenomena would suffice. 1. PRELIMINARIES Consider a stationary flow inside a bounded body described by a vector valued function f . When a collimated ultrasonic wave of frequency ω0 and velocity c, a(t ) = eiω0t ; meets a particle of speed ν in the opposite direction of the wave, having the right acoustic properties, the reflected signal ob0 tains a Doppler shift. If jνj c, then δω = kν with k = 2ω c : The sign is reversed if the particle moves in the same direction as the wave. If some simplifying physical assumptions are made, see [1, 2], the reflected signal is b(t ; x) = µ(x)ei(ω0 +kν)t
A more detailed version of the discussion above can be found in [1]. Another more straightforward situation where such integrals (1) appear, is time-of-flight measurements [4], [5]. Yet another example is the probe direction transform, see [6]. We call (1) the vectorial Radon transform and it is denoted by V f (Θ; s) : The solenoid part of a Helmholtz decomposition of the flow can be determined from V f , whilst the potential part remains unknown, see e.g. [5, 1]. 2. LOCAL TOMOGRAPHY Sometimes it is only of interest to reconstruct part of the body being examined, and one would like to do so from a smaller set of data. In the vector tomography case one would like to ‘zoom in’ on intersecting regions, with highly oscillating curl. However, the tomographic reconstruction problem is not local for n = 2. Below we review a method showing that it is possible to make the reconstruction task into an almost local problem. This theory has been described in e.g. [7, 8, 9]. For a general reference about wavelets, see e.g. [10]. We show how the same approach with some modifications can be used to make almost local reconstructions of the curl of the flow from V f . 2.1. Wavelets The wavelet transform can be described as dividing e.g. a function or image into its frequency components and then study each frequency component with a spatial resolution adapted to its frequency. High frequency components are studied on a finer scale, while low frequency phenomena are studied on a coarser scale. The discrete wavelet transform can be regarded as a way of splitting up L2 = f f : j f j2 dx < ∞g into subspaces with certain properties.
LOCAL VECTOR TOMOGRAPHY BY USE OF WAVELETS Kent Stråhlén Centre for Mathematical Sciences, Mathematics Lund Institute of Technology P.O. Box 118, S-221 00 Lund, Sweden kent@maths.lth.se