中考数学二轮复习题精选(第四辑)1

合集下载

中考数学2轮复习专题(14个)

中考数学2轮复习专题(14个)

中考数学二轮专题复习之一:配方法与换元法把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法.所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

【范例讲析】: 例1: 填空题:1).将二次三项式x 2+2x -2进行配方,其结果为 。

2).方程x 2+y 2+4x -2y+5=0的解是 。

3).已知M=x 2-8x+22,N=-x 2+6x -3,则M 、N 的大小关系为 。

例2.已知△ABC 的三边分别为a 、b 、c ,且a 2+b 2+c 2=ab+bc+ac ,则△ABC 的形状为 。

例3.解方程:422740x x --=【闯关夺冠】 1.已知13x x +=.则221x x+的值为__________. 2.若a 、b 、c 是三角形的三边长,则代数式a 2–2ab+b 2–c 2的值 ( ) A 大于零 B 等于零 C 小于零 D 不能确定 3已知:a 、b 为实数,且a 2+4b 2-2a+4b+2=0,求4a 2-b1的值。

4. 解方程: 211()65()11x x +=--中考数学专题复习之二:待定系数法对于某些数学问题,若得知所求结果具有某种确定的形式,则可研究和引入一些尚待确定的系数(或参数)来表示这样的结果.通过变形与比较.建立起含有待定字母系数(或参数)的方程(组),并求出相应字母系数(或参数)的值,进而使问题获解.这种方法称为待定系数法. 【范例讲析】:【例1】二次函数的图象经过A(1,0)、B(3,0)、C(2,-1)三点.(1)求这个函数的解析式.(2)求函数与直线y=-x+1的交点坐标.【例2】一次函数的图象经过反比例函数xy 8-=的图象上的A 、B 两点,且点A 的横坐标与点B 的纵坐标都是2。

(1)求这个一次函数的解析式;(2)若一条抛物线经过点A 、B 及点C (1,7),求抛物线的解析式。

中考数学第二轮复习专题(14个)

中考数学第二轮复习专题(14个)

中考数学二轮专题复习之一:配方法与换元法把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法.所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

【范例讲析】: 例1: 填空题:1).将二次三项式x 2+2x -2进行配方,其结果为 。

2).方程x 2+y 2+4x -2y+5=0的解是 。

3).已知M=x 2-8x+22,N=-x 2+6x -3,则M 、N 的大小关系为 。

例2.已知△ABC 的三边分别为a 、b 、c ,且a 2+b 2+c 2=ab+bc+ac ,则△ABC 的形状为 。

例3.解方程:422740x x --=【闯关夺冠】 1.已知13x x +=.则221x x+的值为__________. 2.若a 、b 、c 是三角形的三边长,则代数式a 2–2ab+b 2–c 2的值 ( ) A 大于零 B 等于零 C 小于零 D 不能确定 3已知:a 、b 为实数,且a 2+4b 2-2a+4b+2=0,求4a 2-b1的值。

4. 解方程: 211()65()11x x +=--对于某些数学问题,若得知所求结果具有某种确定的形式,则可研究和引入一些尚待确定的系数(或参数)来表示这样的结果.通过变形与比较.建立起含有待定字母系数(或参数)的方程(组),并求出相应字母系数(或参数)的值,进而使问题获解.这种方法称为待定系数法. 【范例讲析】:【例1】二次函数的图象经过A(1,0)、B(3,0)、C(2,-1)三点.(1)求这个函数的解析式.(2)求函数与直线y=-x+1的交点坐标.【例2】一次函数的图象经过反比例函数xy 8-=的图象上的A 、B 两点,且点A 的横坐标与点B 的纵坐标都是2。

(1)求这个一次函数的解析式;(2)若一条抛物线经过点A 、B 及点C (1,7),求抛物线的解析式。

安徽省中考数学决胜二轮复习 专题四 阅读理解问题习题-人教版初中九年级全册数学试题

安徽省中考数学决胜二轮复习 专题四 阅读理解问题习题-人教版初中九年级全册数学试题

专题四 阅读理解问题1.(改编题)定义新运算:ab =a (b -1),若a ,b 是关于一元二次方程x 2-x +14m =0的两实数根,则bb -aa 的值为( B )A .-1B .0C .1D .22.在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点O 为极点;从点O 出发引一条射线Ox 称为极轴;线段OP 的长度称为极径.点P 的极坐标就可以用线段OP 的长度以及从Ox 转动到OP 的角度(规定逆时针方向转动角度为正)来确定,即P (3,60°)或P (3,-300°)或P (3,420°)等,则点P 关于点O 成中心对称的点Q 的极坐标表示不正确的是( D )A .Q (3,240°)B .Q (3,-120°)C .Q (3,600°)D .Q (3,-500°)3.定义[x ]表示不超过实数xy =[x ]的图象如图所示,则方程[x ]=12x 2的解为( A )A .0或 2B .0或2C .1或- 2D .2或- 24.定义运算:a ⊗b =a (1-b ).下面给出了关于这种运算的几种结论:①2⊗(-2)=6;②a ⊗b =b ⊗a ;③若a +b =1,则(a ⊗a )=(b ⊗b );④若b ⊗a =0,则a =0或b =1.其中结论正确的序号是( D )A .②④B .②③C .①④D .①③5.(2018·某某)阅读材料:若a b=n ,则b =log Na ,称b 为以a 为底N 的对数.例如23=8,则log 82=log232=3.根据材料填空:log 93=__2__.6.(原创题)定义⎪⎪⎪⎪⎪⎪ab cd 为二阶行列式,规定它的运算法则为⎪⎪⎪⎪⎪⎪ab cd =ad -bc ,那么当x =1时,二阶行列式⎪⎪⎪⎪⎪⎪x +1 10 x -1的值为__0__.7.(改编题)定义:在平面直角坐标系xOy 中,任意两点A (x 1,y 1),B (x 2,y 2)之间的“直角距离”为d (A ,B )=|x 1-x 2|+|y 1-y 2|;已知点A (1,1),那么d (A ,O )=__2__.8.已知以点C (a ,b )为圆心,半径为r 的圆的标准方程为(x -a )2+(y -b )2=r 2.例如:已知以点A (2,3)为圆心,半径为2的圆的标准方程为(x -2)2+(y -3)2=4,则以原点为圆心,过点P (1,0)的圆的标准方程为__x 2+y 2=1__.9.设a ,b 是任意两个实数,规定a 与b 之间的一种运算“⊕”为a ⊕b =⎩⎪⎨⎪⎧b a a >0,a -b a ≤0.如1⊕(-3)=-31=-3,(-3)⊕2=(-3)-2=-5,(x 2+1)⊕(x -1)=x -1x 2+1.(因为x 2+1>0) 参照上面材料,解答下列问题: (1)2⊕4=__2__,(-2)⊕4=__-6__;(2)若x >12,且满足(2x -1)⊕(4x 2-1)=(-4)⊕(1-4x ),求x 的值.解:(2)∵x>12,∴2x -1>0,∴(2x -1)⊕(4x 2-1)=4x 2-12x -1=2x +12x -12x -1=2x+1,(-4)⊕(1-4x )=-4-(1-4x )=-4-1+4x =-5+4x.∴2x +1=-5+4x ,解得x =3.10.(2018·内江)对于三个数a ,b ,c 用M {a ,b ,c }表示这三个数的中位数,用max{a ,b ,c }表示这三个数中最大数,例如:M {-2,-1,0}=-1,max{-2,-1,0}=0,max{-2,-1,a }=⎩⎪⎨⎪⎧a a ≥-1,-1a <-1.解决问题:(1)填空:M {sin 45°,cos 60°,tan 60°}=__sin__45°__,如果max{3,5-3x,2x -6}=3,则x 的取值X 围为__23≤x≤92__;(2)如果2·M {2,x +2,x +4}=max{2,x +2,x +4},求x 的值; (3)如果M {9,x 2,3x -2}=max{9,x 2,3x -2},求x 的值.解:(2)当x +4>x +2>2时,M {2,x +2,x +4}=x +2,max {2,x +2,x +4}=x +4,∴2·(x +2)=x +4,解得x =0;当2>x +4>x +2时,M {2,x +2,x +4}=x +4,max {2,x +2,x +4}=2,∴2·(x +4)=2,解得x =-3,当x +4>2>x +2时,M {2,x +2,x +4}=2,max {2,x +2,x +4}=x +4,∴2·2=x +4,解得x =0;所以综上所述,x 的值为0或-3;(3)∵将M {9,x 2,3x -2}中的三个元素分别用三个函数表示,即y =9,y =x 2,y =3x -2,在同一个直角坐标系中表示如下:由几个交点划分区间,分类讨论:当x≤-3时,可知M {9,x 2,3x -2}=9,max {9,x 2,3x -2}=x 2,得x 2=9,x =±3,x =3(舍),∴x =-3;当-3<x<1时,可知M {9,x 2,3x -2}=x 2,max {9,x 2,3x -2}=9,得x 2=9,∴x =±3(舍);当1≤x≤2时,可知M {9,x 2,3x -2}=3x -2,max {9,x 2,3x -2}=9,得3x -2=9,∴x =113(舍);当2<x≤3时,可知M {9,x 2,3x -2}=x 2,max {9,x 2,3x -2}=9,得x 2=9,∴x =±3,x =-3(舍),∴x =3;当3<x≤113时,可知M {9,x 2,3x -2}=9,max {9,x 2,3x -2}=x 2,得x 2=9,∴x =±3(舍);当x >113时,可知M {9,x 2,3x -2}=3x -2,max {9,x 2,3x -2}=x 2,得3x -2=x 2,∴x 1=1(舍);x 2=2(舍).综上所述,满足条件的x 的值为3或-3.11.(2018·某某)【阅读教材】 宽与长的比是5-12(约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调、匀称的美感,世界各国许多著名的建筑为取得最佳的视觉效果,都采用了黄金矩形的设计,下面我们用宽为2的矩形纸片折叠黄金矩形.(提示:MN =2)第一步,在矩形纸片一端,利用图①的方法折出一个正方形,然后把纸片展平. 第二步,如图②,把这个正方形折成两个相等的矩形,再把纸片展平. 第三步,折出内侧矩形的对角线AB ,并把AB 折到图③中所示的AD 处.第四步,展平纸片,按照所得的点D 折出DE ,使DE ⊥ND ,则图④中就会出现黄金矩形. 【问题解决】(1)图③中AB =__5__(保留根号);(2)如图③,判断四边形BADQ的形状,并说明理由;(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.【实际操作】(4)结合图④.请在矩形BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.解:(2)四边形BADQ是菱形.理由如下:∵四边形ACBF是矩形,∴BQ∥AD,∴∠BQA=∠QAD,由折叠得:∠BAQ=∠DQA,AB=AD,∴∠BQA=∠BAQ,∴BQ=AB,∴BQ=AD,∵BQ∥AD,∴四边形BADQ是平行四边形.∵AB =AD,∴四边形BADQ是菱形;(3)图④中的黄金矩形有矩形BCDE、矩形MNDE,以黄金矩形BCDE为例,理由如下:∵AD=5,AN=AC=1,∴CD=AD-AC=5-1,又∵BC=2,∴CDBC=5-12,故矩形BCDE是黄金矩形;(4)如图,在矩形BCDE上添加线段GH,使四边形GCDH为正方形,此时四边形BGHE为所要作的黄金矩形长GH=5-1,宽BG=3-5,BGGH=3-55-1=5-12.12.我们把两条中线互相垂直的三角形称为“中垂三角形”,例如图1,图2,图3中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均为“中垂三角形”,设BC=a,AC=b,AB=c.【特例探索】(1)如图1,当∠ABE=45°,c=22时,a=__25__,b=__25__;如图2,当∠ABE =30°,c=4时,a=__213__,b=__27__;【归纳证明】(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,请利用图3证明你发现的关系式;【拓展应用】(3)如图4,在▱ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG,AD=25,ABAF 的长.解:(2)猜想:a 2,b 2,c 2三者之间的关系是:a 2+b 2=5c 2,证明:如图3,连接EF ,∵AF ,BE 是△ABC 的中线,∴EF 是△ABC 的中位线,∴EF∥AB ,且EF =12AB =12c ,∴PE PB =PF PA =12,设PF =m ,PE =n 则AP =2m ,PB =2n ,在Rt△APB 中,(2m )2+(2n )2=c 2①,在Rt△APE 中,(2m )2+n 2=⎝ ⎛⎭⎪⎫b 22②,在Rt △BPF 中,m 2+(2n )2=⎝ ⎛⎭⎪⎫a 22③,由①得:m 2+n 2=c 24,由②+③得:5(m2+n 2)=a 2+b 24,∴a 2+b 2=5c 2;(3)如图4,连接AC ,EF 交于H ,AC 与BE 交于点Q ,设BE 与AF 的交点为P ,∵点E ,G 分别是AD ,CD 的中点,∴EG ∥AC ,∵BE ⊥EG ,∴BE ⊥AC ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC =25,∴∠EAH =∠FCH ,∵E ,F 分别是AD ,BC 的中点,∴AE =12AD ,BF =12BC ,∴AE =BF =CF =12AD =5,∵AE ∥BF ,∴四边形ABFE 是平行四边形,∴EF =AB =3,AP =PF ,在△AEH 和△CFH 中,⎩⎪⎨⎪⎧∠EAH =∠FCH ,∠AHE =∠FHC ,AE =CF ,∴△AEH ≌△CFH ,∴EH =FH ,∴EP ,AH是△AFE 的中线,由(2)的结论得:AF 2+EF 2=5AE 2,∴AF 2=5(5)2-EF 2=16,∴AF =4.。

中考数学二轮复习题第四辑参考答案

中考数学二轮复习题第四辑参考答案

中考数学二轮复习题精选(第四辑参考答案)1、n2、C3、C4、C5、C6、5 7~9(略)10、(1)314;……3分(2)16.4;……8分(3)28.4>18,所以渔船A 不会进入海洋生物保护区. ……9分11、12、(1)∠A=∠B ,因为M 为直角三角形AOD 的斜边中点,所以OM=MA ,则∠A=∠MOA ,所以∠MOA=∠B ;又OE ⊥BC ,所以∠B+∠BOE=90°,所以∠MOA+∠BOE=90°,则OM ⊥OE ;(2)可以求得D (0,4),A (-3,0)所以OA=3,OD=4,AB=8,DC=2,所以B (5,0)、C (2,4),设过A 、B 、D 的抛物线为()()53-+=x x a y ,将点D 的坐标代入,求出a =154-,即()()53151-+-=x x y ,验证点C 也在此抛物线上,所以所求的抛物线为()()53151-+-=x x y ; (3)可以求出N (0.5,2),所以平行四边形MNCD 的面积为4,设P (m ,n ),又AB=8,所以4821=⨯n ,则1=n ,所以n =±1;当n=1时,()()531511-+-=x x ,所以x=0或2;当因此这样n=-1时,()()531511-+-=-x x ,所以x=311±;的点P 有四个,分别为(0,1)、(2,1)、(311+,-1)、(311-,-1)。

DE =OE ,∵13、解:⑴据题意可得∠1=12ABO ∠,OB =BD 3Rt △AOB 中,∠BAO =30°,∴∠ABO =60°,OA =3,AB =3∴∠1=30°。

Rt △EOB 中,∵OE tan 1=OB ∠ ∴= ∴OE =1 ∴E 点坐标为(1,0),过点D 作DG ⊥OA 于G ,Rt △ADG 中,AD =AB -BD =,∠BAO =30°,∵sin DG BAO AD ∠=,cos AG BAO AD ∠=∴DG =, 1.5AG =,∴3 1.5 1.5OG OA AF =-=-= 。

2022年中考数学二轮复习攻略专题04 分式、分式方程及一元二次方程

2022年中考数学二轮复习攻略专题04 分式、分式方程及一元二次方程

专题04分式、分式方程及一元二次方程复习考点攻略考点01 分式相关概念1、分式的定义一般地,如果A 、B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式。

【注意】A 、B 都是整式,B 中含有字母,且B ≠0。

2、分式的基本性质分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变。

A A CB BC ⋅=⋅;A A CB B C÷=÷(C≠0)。

3、分式的约分和通分(1)约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去叫做分式的约分。

(2)通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式叫做分式的通分。

(3)最简分式:分子与分母没有公因式的分式,叫做最简分式。

(4)最简公分母:各分母的所有因式的最高次幂的积叫做最简公分母。

【注意1】约分的根据是分式的基本性质.约分的关键是找出分子和分母的公因式。

【注意2】通分的根据是分式的基本性质.通分的关键是确定几个分式的最简公分母。

4、分式的乘除①乘法法则:db ca d cb a ⋅⋅=⋅。

分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。

②除法法则:cb d acd b a d c b a ⋅⋅=⋅=÷。

分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。

③分式的乘方:nn n a a b b ⎛⎫= ⎪⎝⎭。

分式乘方要把分子、分母分别乘方。

④整数负指数幂:1nn aa-=。

5、分式的加减同分母分式相加减,分母不变,把分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减。

①同分母分式的加减:a b a bc c c±±=;②异分母分式的加法:a c ad bc ad bcb d bd bd bd±±=±=。

【注意】不论是分式的哪种运算,都要先进行因式分解。

6、分式的混合运算(1)含有分式的乘方、乘除、加减的多种运算叫做分式的混合运算.(2)混合运算顺序:先算乘方,再算乘除,最后算加减.有括号的,先算括号里的.【例1】若分式21xx-在实数范围内无意义,则x的取值范围是()A.x≠1 B.x=1 C.x=0 D.x>1【例2】若分式11x+的值不存在,则x=__________.【例3】分式52xx+-的值是零,则x的值为()A.5B.2C.-2D.-5 【例4】下列变形正确的是()A.ab=22ab++B.0.220.1a b a bb b++=C.ab–1=1ab-D.ab=22(1)(1)a mb m++考点02 分式方程相关概念1.分式方程:分母中含有未知数的方程叫做分式方程.2.分式方程的解法(1)解分式方程的基本思路是将分式方程化为整式方程,具体做法是去分母,即方程两边同乘以各分式的最简公分母。

初中数学二轮复习题及答案

初中数学二轮复习题及答案

初中数学二轮复习题及答案初中数学是学生们学习过程中的一门重要学科,也是学生们备考中考的关键科目之一。

为了帮助同学们更好地复习数学知识,下面将为大家整理一些初中数学二轮复习题及答案。

希望对同学们的学习有所帮助。

一、整数运算1. 计算:(-8)×(-4)+(-8)×2解答:根据整数乘法的运算法则,两个负数相乘得到正数,所以(-8)×(-4)=32。

然后,根据整数乘法的运算法则,负数与正数相乘得到负数,所以(-8)×2=-16。

最后,将两个结果相加,得到32+(-16)=16。

答案:162. 若a是一个整数,且a×(-3)=-12,则a的值是多少?解答:根据等式,可以得到a×(-3)=-12。

根据整数乘法的运算法则,负数与正数相乘得到负数,所以a×(-3)的结果是负数。

根据等式,可以得到a=-12÷(-3)=4。

答案:4二、代数式与方程1. 已知a=3,求a²-2a+1的值。

解答:将a=3代入a²-2a+1,得到3²-2×3+1=9-6+1=4。

答案:42. 解方程:2x+5=13解答:将方程2x+5=13化简,得到2x=13-5=8。

然后,将方程2x=8化简,得到x=8÷2=4。

答案:4三、平面几何1. 已知△ABC中,AB=AC,∠B=40°,则∠C的度数是多少?解答:由于AB=AC,所以△ABC是一个等腰三角形。

根据等腰三角形的性质,等腰三角形的底角相等,所以∠B=∠C。

又已知∠B=40°,所以∠C的度数也是40°。

答案:40°2. 在长方形ABCD中,AB=6cm,BC=8cm,求长方形的面积。

解答:长方形的面积等于长乘以宽,所以面积=6cm×8cm=48cm²。

答案:48cm²四、数据统计1. 某班级的学生身高如下:150cm,152cm,155cm,158cm,160cm,162cm,165cm,168cm,170cm,173cm。

2019中考数学二轮专项练习测试题(4)及解析.doc

2019中考数学二轮专项练习测试题(4)及解析.doc

2019中考数学二轮专项练习测试题(4)及解析【一】教材内容八年级第一学期:第十七章一元二次方程〔11课时〕【二】“课标”要求1、理解一元二次方程的概念;经历一元二次方程解法的探索过程,会用直接开平方法、因式分解法解一元二次方程;再进一步懂得利用配方法求解。

体会配方法和探究性学习的价值,增强化归意识2、在探索和实践的活动中归纳判别式和求根公式。

会求一元二次方程的判别式的值,知道判别式与方程实根情况之间的联系;初步掌握一元二次方程的求根公式〔说明〕3、会用公式法对二次三项式在实数范围内进行因式分解〔注意:考纲没提及〕说明:利用一元二次方程的求根公式解方程,这里只涉及判别式为完全平方数的情况,一般情况下的求根问题在“简单的代数方程”主题中学习,并达到掌握求根公式的要求 判别式的应用限于在简单情形下判断实根的情况或判断实根的存在性例如:〔1〕不解方程,判断方程2x 2-5x =-4根的情况〔2〕当m 为何值时,方程x 2+m 〔x +1〕+x =0有两个实数根?〔3〕方程x 2+2m x -1=0有两个不相等的实数根吗?为什么?方程与代数〔4〕一元二次方程 【一】选择题:〔每题4分,总分值24分〕1.方程20y a +=的根是〔〕〔A 〕〔B 〕无解;〔C 〕0;〔D 〕或无解.2.方程()()3532-=-x x x 的根为〔〕〔A 〕25=x ;〔B 〕3=x ;〔C 〕3,25==x ;〔D 〕52=x . 3.方程(1)(3)1x x --=的两个根是〔〕〔A 〕121,3x x ==;〔B 〕122,4x x ==;〔C 〕1222x x ==〔D 〕1222x x =-=-4.以下说法中正确的选项是〔〕〔A 〕方程280x -=有两个相等的实数根;〔B 〕方程252x x =-没有实数根;〔C 〕如果一元二次方程20ax bx c ++=有两个实数根,那么0∆=;〔D 〕如果a c 、异号,那么方程20ax bx c ++=有两个不相等的实数根.5.如果二次三项式257mx x ++在实数范围内不能分解因式,那么m 的取值范围是〔〕 〔A 〕2528m >;〔B 〕0m ≠; 〔C 〕280,025m m <<<且;〔D 〕507m m <≠,且. 6.假设方程02=++q px x 的两个实根中只有一个根为0,那么〔〕〔A 〕0==q p ;〔B 〕0,0≠=q p ;〔C 〕0,0=≠q p ;〔D 〕0,0≠≠q p .【二】填空题:〔每题4分,总分值48分〕7.关于x 的方程250x mx +-=的一个根是5,那么m =.8.关于y 的方程(54)(45)0y a y a +-=的根是.9.2230mx x -+=有两个实数根,那么m .10.假设代数式22531x x x ---与的值互为相反数,那么x 的值为.11假设n 是20(0)x mx n n -+=≠的根,那么m n -=.12关于x 的方程2()0x a b -+=有解,那么b 的取值范围是.13.因式分解:212x x --=.14.关于x 的方程20ax bx c ++=有一根是1,一个根为1-,那么a b c a b c ++=-+=. 15.231x x +-的值为2,那么2931x x +-的值为.16.某工厂在第一季度的生产中,一月份的产值为150万元,【二】三月份产值的月增长率相同.第一季度的总产值是650万元,求【二】三月份的月增长率?现设【二】三月份的月增长率为x ,那么根据题意可列出方程.17.当m 时,关于2232x mx x x mx -=-+的方程是一元二次方程.18.假设关于2320x kx x -+=的一元二次方程有实数根,那么k 的非负整数值是.【三】解答题:〔本大题共7题,总分值78分〕19、〔此题总分值10分,每题总分值各5分〕解方程:(1)()31132=+x .〔2〕2430x x +-=. 20、〔此题总分值10分,每题总分值各5分〕解方程:(1)0762=-+x x .(2)012=--x x .21、(此题总分值10分)关于x 的一元二次方程22(1)30m x mx m -+--=有一根是1,求m 的值.22、〔此题总分值10分,第〔1〕小题7分,第〔2〕小题3分〕关于x 的一元二次方程2(4)210k x x ---=:(1)假设方程有两个不相等的实数根,那么k 的取值范围;(2)当k 是怎样的正整数时,方程没有实数根.23、〔此题总分值12分〕x 为实数,且22(2)(21)6x x x x --+=,求x 的值.24、〔此题总分值12分〕三角形的边长1和2,第三边长为20.090.210.10y y -+=的根,求这个三角形的周长.25、〔此题总分值14分,第〔1〕题8分,第〔2〕题6分〕某学校计划利用一片空地建一个学生自行车车棚,其中一面靠墙,这堵墙的长度为12米.计划建造车棚的面积为80平方米,现有的木板材料可使新建板墙的总长为26米.〔1〕为了方便学生出行,学校决定在与墙平行的一面开一个2米宽的门,那么这个车棚的长和宽分别应为多少米?〔2〕如图,为了方便学生取车,施工单位决定在车棚内修建几条等宽的小路,使得停放自行车的面积为54平方米,那么小路的宽度是多少米?参考答案1.D ;2.C ;3.C ;4.D ;5.A ;6.C 、7.4m =-;8.1245,54a a y y =-=;9.103m m ≤≠且;10.123,2x x =-=;11.1m n -=;12.0b ≤.;13.(11x x -+-;14.0;15.8;16.2150150(1)150(1)650x x ++++=;17.1m ≠;18.1、19、〔此题总分值10分,每题总分值各5分〕(1)解:原方程可变形为,()9112=+x -----2分 解得311311-=+=+x x 或------2分 所以原方程的根34,3221-=-=x x -----1分 (2)解:原方程可变形为,(1)(4-3)=0x x +-----2分可得10430x x +=-=或------1分 解得31.4x x =-=或------1分 所以原方程的根1231,.4x x =-=-----1分 20、〔此题总分值10分,每题总分值各5分〕(1)解:由0762=-+x x 得762=+x x ------1分得7336222+=++x x ------1分即()1632=+x ------1分所以43±=+x ------1分故7,121-==x x ------1分(2)解:a =1,b =-1,c =-1------1分()()51141422=-⨯⨯--=-=∆ac b ------1分 所以251±=x ------2分 故251,25121-=+=x x ------1分21、解:由题意2m m m-+--=------2分(1)30整理得240m-=------2分得2m=±-----2分210,1-≠≠±.------2分m m∴=±------2分2m22、解:44(4)412k k∆=+-=-------2分〔1〕当4120k->------1分即3k>------1分又40k-≠------1分4k≠------1分所以,当34且时,方程2k k>≠k x x---=有两个不相等的实数根.------1分(4)210(2)当4120k-<------1分即3k<------1分因为k是正整数,所以k=1或k=2------1分所以,当k=1或k=2时,方程2---=没有实数根.k x x(4)21023、〔此题总分值12分〕解:原方程可变形为222-+--=------2分(2)(2)60x x x x可化为22-+--=------2分(23)(22)0x x x x可得22或------1分-+=--=x x x x230220当2230-+=时x x∆------2分=4-12<0所以方程没有实数根------1分当2220--=时x x=4+8=12∆------2分 所以1x ==±分 所以x 的值为1±24、解:将方程20.090.210.10y y -+=整理得2921100y y -+=------1分变形为(32)(35)0y y --=-----2分可得320350y y -=-=或------1分 解得2533y y ==或------2分 当23y =时,21+23<------2分 所以不成立------1分 当53y =时,51+23>,符合要求-----2分 所以,三角形的周长为5141233++=.------1分 25、(1)解:设垂直于墙的一面长为x 米,平行于墙的一面长为〔26+2-2x 〕米,------1分.由题意得(2622)80x x +-=------2分整理方程得214400x x +-=------1分解得124,10x x ==------1分当14x =时,26222882012x +-=-=>不合题意舍去;当210x =时,26222820812x +-=-=<符合题意.------1分答:垂直于墙的一面长为10米,平行于墙的一面长为8米.------1分(2)解:设小路的宽度为x 米,------1分由题意得(10)(82)54x x --=------2分整理方程得214130x x -+=------1分解得1213,1x x ==------1分经检验:21x =符合实际题意------1分答:小路的宽度为1米.-----1分。

专题04 图形变化类规律问题(解析版)2021年中考数学二轮复习之难点突破热点解题方法

专题04 图形变化类规律问题(解析版)2021年中考数学二轮复习之难点突破热点解题方法

专题04 图形变化类规律问题一、单选题1.如图是一组有规律的图案,它们是由边长相同的正方形和正三角形拼接而成,第①个图案有4个三角形和1个正方形,第②个图案有7个三角形和2个正方形,第③个图案有10个三角形和3个正方形,⋯依此规律,如果第n 个图案中正三角形和正方形的个数共有2021个,则n =( )A .504B .505C .506D .507【答案】B 【分析】根据图形的变化规律、正方形和三角形的个数可发现第n 个图案有31n +个三角形和n 个正方形,正三角形和正方形的个数共有41n +个,进而可求得当412021n +=时n 的值. 【详解】解:∵第∵个图案有4个三角形和1个正方形,正三角形和正方形的个数共有5个; 第∵个图案有7个三角形和2个正方形,正三角形和正方形的个数共有9个; 第∵个图案有10个三角形和3个正方形,正三角形和正方形的个数共有13个; 第∵个图案有13个三角形和4个正方形,正三角形和正方形的个数共有17个;∵第n 个图案有()43131n n +-=+个三角形和n 个正方形,正三角形和正方形的个数共有3141n n n ++=+个∵第n 个图案中正三角形和正方形的个数共有2021个∵412021n += ∵505n =. 故选择:B 【点睛】本题考查了图形变化类的规律问题、利用一元一次方程求解等,解决本题的关键是观察图形的变化寻找规律.2.如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第n 个知形的面积为( )A .14B .114n - C .14nD .114n + 【答案】B 【分析】易得第二个矩形的面积为(21)2,第三个矩形的面积为(41)2,依此类推,第n 个矩形的面积为(221)2n -.【详解】解:已知第一个矩形的面积为1; 第二个矩形的面积为原来的(22211)24⨯-=; 第三个矩形的面积是(23211)216⨯-=; ⋯故第n 个矩形的面积为:(2211111)()244n n n ---==.【点睛】本题考查了三角形的中位线定理及矩形、菱形的性质,是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.3.如图,第1个图形中小黑点的个数为5个,第2个图形中小黑点的个数为9个,第3个图形中小黑点的个数为13个,…,按照这样的规律,第n 个图形中小黑点的个数应该是( )A .41n +B .32n +C .51n -D .62n -【答案】A 【分析】观察规律,逐个总结,从特殊到一般即可. 【详解】第1个图形,1+1×4=5个; 第2个图形,1+2×4=9个; 第3个图形,1+3×4=13个;第n 个图形,1+4n 个; 故选:A .本题考查利用整式表示图形的规律,仔细观察规律并用整式准确表达是解题关键.4.按图示的方式摆放餐桌和椅子,图1中共有6把椅子,图2中共有10把椅子,…,按此规律,则图7中椅子把数是()A.28B.30C.36D.42【答案】B【分析】观察图形变化,得出n张餐桌时,椅子数为4n+2把(n为正整数),代入n=7即可得出结论.【详解】解:1张桌子可以摆放的椅子数为:2+1×4=6,2张桌子可以摆放的椅子数为:2+2×4=10,3张桌子可以摆放的椅子数为:2+3×4=14,…,n张桌子可以摆放的椅子数为:2+4n,令n=7,可得2+4×7=30(把).故选:B.【点睛】此题考查图形类规律探究,列式计算,根据图形的排列总结规律并运用解决问题是解题的关键.5.如图,用黑白两种颜色的纸片,按黑色纸片数逐渐增加1的规律拼成下列图案.若第n个图案中有202个白色纸片,则n的值为()A.66B.67C.68D.69【答案】B【分析】根据题目中的图形,可以发现白色纸片个数的变化规律,然后根据第n个图案中有202张白色纸片,即可求得n的值.【详解】由图可得,第1个图案中白色纸片的个数为:1+1×3=4,第2个图案中白色纸片的个数为:1+2×3=7,第3个图案中白色纸片的个数为:1+3×3=10,…,第n个图案中白色纸片的个数为:1+n×3=3n+1,令3n+1=202,解得,n=67,故答案为:B.【点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中白色纸片的变化规律,利用数形结合的思想解答.6.如图所示的图形都由同样大小的小圆圈按一定规律所组成的,若按此规律排列下去,则第50个图形中有()个小圆圈.A.2454B.2605C.2504D.2554【答案】D【分析】设第n个图形中有a n个小圆圈(n为正整数),根据图形中小圆圈个数的变化可找出“a n=4+n(n+1)(n为正整数)”,再代入n=50即可求出结论.【详解】解:设第n个图形中有a n个小圆圈(n为正整数)观察图形,可知:a1=4+1×2,a2=4+2×3,a3=4+3×4,a4=4+4×5,…,∵a n=4+n(n+1)(n为正整数),∵a50=4+50×51=2554故选D.【点睛】本题考查了规律型:图形的变化类,根据图形中小圆圈个数的变化找出变化规律“a n=4+n(n+1)(n为正整数)”是解题的关键.7.用火柴棒按下图的方式搭图形,搭第n个图形需要火柴棒根数为()A .21nB .2nC .21n -D .2(1)n +【答案】A 【分析】观察给出图形的根数,发现以此增加2,即可列出代数式. 【详解】第一个图形有:1+2=3根, 第二个图形有:1+2×2=5根, 第三个图形有:1+2×3=7根, 第四个图形有:1+2×4=9根,⋯⋯∵第n 个图形有:2n+1根; 故选:A . 【点睛】本题考查列代数式表示图形的变化规律,找准每个图形增加的数量关系是解题关键.8.按照如图所示的方法排列黑色小正方形地砖,则第14个图案中黑色小正方形地砖的数量是( )A.360B.363C.365D.369【答案】C【分析】观察求出图案中地砖的块数,找到规律再求出黑色的地砖的数量即可.【详解】第1个图案只有(2×1﹣1)2=12=1块黑色地砖,第2个图案有黑色与白色地砖共(2×2﹣1)2=32=9,其中黑色的有12(9+1)=5块,第3个图案有黑色与白色地砖共(2×3﹣1)2=52=25,其中黑色的有12(25+1)=13块,…第n个图案有黑色与白色地砖共(2n﹣1)2,其中黑色的有12[(2n﹣1)2+1],当n=14时,黑色地砖的块数有12×[(2×14﹣1)2+1]=12×730=365.故选:C.【点睛】此题考查图形类规律的探究,有理数的混合运算,根据所给图案总结出图案排列的规律由此进行计算是解题的关键.9.法国数学家柯西于1813年在拉格朗日、高斯的基础上彻底证明了《费马多边形数定理》,其主要突破在“五边形数”的证明上.如图为前几个“五边形数”的对应图形,请据此推断,第20个“五边形数”应该为(),第2020个“五边形数”的奇偶性为()A .533;偶数B .590;偶数C .533;奇数D .590;奇数【答案】B 【分析】根据前几个“五边形数”的对应图形找到规律,得出第n 个“五边形数”为23122n n -,将n=10代入可求得第20个“五边形数”,利用奇偶性判断第2020个“五边形数”的奇偶性. 【详解】解:第1个“五边形数”为1=2311122⨯-⨯, 第2个“五边形数”为5=2312222⨯-⨯, 第3个“五边形数”为12=2313322⨯-⨯, 第4个“五边形数”为22=2314422⨯-⨯, 第5个“五边形数”为35=2315522⨯-⨯, ···由此可发现:第n 个“五边形数”为23122n n -, 当n=20时,23122n n -= 231202022⨯-⨯=590, 当n=2020时,232n =3×2020×1010是偶数,12n =1010是偶数,所以23122n n -是偶数,故选:B .【点睛】本题考查数字类规律探究、有理数的混合运算,通过观察图形,发现数字的变化规律是解答的关键. 10.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,按此规律第8个图中共有点的个数是( )个A .108B .109C .110D .112【答案】B 【分析】由图可知:其中第1个图中共有1+1×3=4个点,第2个图中共有1+1×3+2×3=10个点,第3个图中共有1+1×3+2×3+3×3=19个点,…,由此规律得出第n 个图有1+1×3+2×3+3×3+…+3n 3(1)12n n +=+个点,然后依据规律解答即可. 【详解】解:第1个图中共有1+1×3=4个点, 第2个图中共有1+1×3+2×3=10个点, 第3个图中共有1+1×3+2×3+3×3=19个点, …第n 个图有1+1×3+2×3+3×3+…+3n=13(123)n ++++⋯+3(1)12n n +=+个点, ∵第8个图中共有点的个数38(81)11092⨯+=+=个,故选B.【点睛】此题考查图形的变化规律,根据图形得出数字之间的运算规律是解题的关键.11.观察下列图形:它们是按一定规律排列的,依照此规律,第7个图形共有()个五星.A.14B.18C.21D.28【答案】C【分析】根据图形的变化发现规律即可求解.【详解】解:第一个图形中有1×3=3个五星,第二个图形中有2×3=6个五星,第三个图形中有3×3=9个五星,第四个图形中有4×3=12个五星,…根据规律可知第n个图形有3n个五星,所以第7个图形共有7×3=21个五星.故选:C.【点睛】考查了规律型:图形的变化类,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.本题的关键规律为第n 个图形有3n 个五星.12.如图所示,2条直线相交只有1个交点,3条直线相交最多能有3个交点,4条直线相交最多能有6个交点,5条直线相交最多能有10个交点,……,n (n ≥2,且n 是整数)条直线相交最多能有( )A .()23n -个交点B .()36n -个交点C .()410n -个交点D .()112n n -个交点 【答案】D【分析】根据题目中的交点个数,找出n 条直线相交最多有的交点个数公式:()112n n - 【详解】解:2条直线相交有1个交点;3条直线相交有1+2=3个交点;4条直线相交有1+2+3=6个交点;5条直线相交有1+2+3+4=10个交点;6条直线相交有1+2+3+4+5=15个交点;…n 条直线相交有1+2+3+4+…+(n -1)=()112n n -故选:D【点睛】本题考查的是多条直线相交的交点问题,解答此题的关键是找出规律,即n 条直线相交最多有()112n n -个交点. 13.如图所示图形是由相同的小五角星按一定的规律排列组合而成,其中第一个图形有6个五角星,第二个图形有10个五角星,第三个图形有16个五角星,第四个图形有24个五角星,……,则第八个图形五角星的个数为( )A .74B .76C .78D .80【答案】B【分析】 根据已知图形得出第n 个图形中五角星个数为4+n(n+1),据此可得.【详解】解:∵第一个图形中五角星的个数6=4+1×2,第二个图形中五角星的个数10=4+2×3,第三个图形中五角星的个数16=4+3×4,……,∵第八个图形中五角星的个数为4+8×9=76,故选B .【点睛】本题主要考查图形的变化规律,解题的关键是将已知图形分割成两部分,并从中找到总个数的通项公式4+n(n+1)14.观察下列一组图形,其中图形(1)中共有2颗星,图形(2)中共有6颗星,图形(3)中共有11颗星,图形(4)中共有17颗星,…,按此规律,图形(20)中的星星颗数是( )A .210B .236C .249D .251【答案】C【分析】 设图中第n 个图形的星星个数为a n (n 为正整数),然后列出各个图形星星的个数,去判断星星个数的规律,然后计算第20个图形的星星个数.【详解】解:第n 个图形的星星个数为a n (n 为正整数)则a 1=2=1+1,a 2=6=1+2+3,a 3=11=1+2+3+5,a 4=17=1+2+3+4+7∵a n =1+2+3+……+n +(2n -1)=2(1)15(21)1222n n n n n ++-=+- 令n =20,则2215151?20+?20-12222n n +-==249 故选:C【点睛】本题主要考查根据图形找规律,解题的关建是找出图形规律,然后计算.二、填空题15.如图,45MON ∠=︒,正方形1ABB C ,正方形1121A B B C ,正方形2232A B B C ,正方形3343A B B C ,…,的顶点A ,123,,A A A ,在射线OM 上,顶点1234,,,,,B B B B B ,在射线ON 上,连接2AB 交11A B 于点D ,连接13A B 交22A B 于点1D ,连接24A B 交33A B 于点2D ,…,连接11B D 交2AB 于点E ,连接22B D 交13A B 于点1E ,…,按照这个规律进行下去,设四边形11A DED 的面积为1S ,四边形2112A D E D 的面积为2S ,四边形3223A D E D 的面积为3S ,…,,若2AB =,则n S 等于________.(用含有正整数n 的式子表示).【答案】2429n +. 【分析】先证得∵ADC ~∵21B DB ,推出CD=23,143DB =,同理得到1143C D =,1283D B =,由∵1~EDB ∵21EB D ,推出∵ED 1B 边D 1B 上的高为43,计算出1649S =,同理计算得出26449S =⨯,236449S =⨯,找到规律,即可求解【详解】解:∵正方形1ABB C ,正方形1121A B B C ,且45MON ︒∠=,∵OAB ∆和11AA B ∆都是等腰直角三角形,∵12OB AB BB ===,∵1114A B OB ==,同理228A B =,∵正方形1ABB C ,正方形1121A B B C ,正方形2232A B B C ,边长分别为2,4, 8,∵12112//,//AC B B DB D B ,∵11224CD AC DB B B ==, ∵12DB CD =,∵11124,333CD CB DB ===, 同理:1112122223231481816,,,333333C D C B D B C D C B D B ======, ∵112//DB D B ,∵121DEB EB D ∆∆∽,设∵EDB 1和∵EB 2D 1的边DB 1和B 2D 1上的高分别为h 1和1h ', ∵11112413,823h DB h D B '=== ∵11124,h h B B '+== ∵1148,33h h '==, 设1112223,,D E D B B E B E D ∆∆∆的边11223,,DB D B D B 的高分别为123,,h h h , ∵1234816,,,333h h h === ∵11112211111114464442222339A B D DB E S S S DB h ∆∆=-=⨯-⨯⋅=⨯-⨯⨯=; 同理求得:221212222122111188648842222339A B D D B E S S S D B h ∆∆=-=⨯-⨯⋅=⨯-⨯⨯=⨯; 333232223233111161664161284222339A B D D B E S S S D B h ∆∆=-=⨯-⨯⋅=-⨯⨯=⨯; …224164424999n n n n S ++-=⨯==.故答案为:2429n.【点睛】本题考查了正方形的性质,等腰直角三角形的判定和性质,相似三角形的判定与性质在规律型问题中的应用,数形结合并善于发现规律是解题的关键.16.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品......,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉..............,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图).若有43枚图钉可供选用,则最多可以按照要求展示绘画作品________张.【答案】30【分析】分别找出展示的绘画作品展示成一行、二行、三行、四行、五行、六行、七行的时候,43枚图钉最多可以展示的画的数量,比较后即可得出结论.【详解】解:∵如果所有的画展示成一行,43÷(1+1)=21……1,∵43枚图钉最多可以展示20张画;∵如果所有的画展示成两行,43÷(2+1)=14……1,14-1=13(张),2×13=26(张),∵43枚图钉最多可以展示26张画;∵如果所有的画展示成三行,43÷(3+1)=10……3,10-1=9(张),3×9=27(张),∵43枚图钉最多可以展示27张画;∵如果所有的画展示成四行,43÷(4+1)=8……3,8-1=7(张),4×7=28(张),∵43枚图钉最多可以展示28张画;∵如果所有的画展示成五行,43÷(5+1)=7……1,7-1=6(张),5×6=30(张),∵43枚图钉最多可以展示30张画;∵如果所有的画展示成六行,43÷(6+1)=6……1,6-1=5(张),6×5=30(张),∵43枚图钉最多可以展示30张画;∵如果所有的画展示成七行,43÷(7+1)=5……3,5-1=4(张),4×7=28(张),∵43枚图钉最多可以展示28张画;综上所述:43枚图钉最多可以展示30张画.故答案为:30.【点睛】本题考查了规律型中图形的变化类,观察图形,求出展示的绘画作品展示成一行、二行、三行、四行、五行、六行、七行时,最多可以展示的画的数量是解题的关键.17.如图,每条边上有n(n≥2)个方点,每个图案中方点的总数是S.(1)请写出n=5时,S=_____________ ;(2)按上述规律,写出S与n的关系式,S=__________________ .【答案】16; 44n -.【分析】当2n =时,4(21)4S =⨯-=;当3n =时,4(31)8S =⨯-=,⋯,以此类推,可知当n n =时,4(1)S n =⨯-,即4(1)S n =-,根据解答即可.【详解】解:(1)2n =,()4421S ==⨯-;3n =,()8431S ==⨯-;4n =,()12441S ==⨯-;()()412S n n ∴=-≥.∵4n =,()45116S =⨯-=;(2)由(1)可得()4144S n n =-=-.【点睛】主要考查了图形类的规律,正确分析理解题目是解题的关键.18.如图,在矩形ABCD 中,AD=2,CD=1,连接AC ,以对角线AC 为边,按逆时针方向作矩形ABCD 的相似矩形AB 1C 1C ,再连接AC 1,以对角线AC 1为边作矩形AB 1C 1C 的相似矩形AB 2C 2C 1,…,按此规律继续下去,则矩形AB4C4C3的面积为_____.【答案】4 75 2【分析】利用勾股定理可求得AC的长,根据面积比等于相似比的平方可得矩形AB1C1C的面积,同理可求出矩形AB2C2C1、AB3C3C2,……的面积,从而可发现规律,根据规律即可求得第n个矩形的面积,继而即可求得矩形AB4C4C3的面积.【详解】∵在矩形ABCD中,AD=2,CD=1,=∵矩形ABCD与矩形AB1C1C相似,∵矩形AB1C1C与矩形ABCD,∵矩形AB1C1C与矩形ABCD的面积比为54,∵矩形ABCD的面积为1×2=2,∵矩形AB1C1C的面积为2×54=52,同理:矩形AB2C2C1的面积为52×54=258=2352,矩形AB 3C 3C 2的面积为258×54=12532=3552, ……∵矩形AB n C n C n -1面积为2152nn , ∵矩形AB 4C 4C 3的面积为=4752, 故答案为:4752【点睛】本题考查了矩形的性质,勾股定理,相似多边形的性质,根据求出的结果得出规律并熟记相似图形的面积比等于相似比的平方是解题关键.19.如图所示,第(1)个图有2个相同的小正方形,第(2)个图有6个相同的小正方形,第(3)个图有12个相同的小正方形,第(4)个图有20个相同的小正方形,……,按此规律,那么第(n )个图有________个相同的小正方形.【答案】n(n +1)【分析】通过观察可以发现,每一个图形中正方形的个数等于图形序号乘以比序号大一的数,根据此规律解答即可.【详解】第(1)个图有2个相同的小正方形,2=1×2,第(2)个图有6个相同的小正方形,6=2×3,第(3)个图有12个相同的小正方形,12=3×4,第(4)个图有20个相同的小正方形,20=4×5,…,以此类推,第n 个图应有n(n +1)个相同的小正方形.【点睛】本题是对图形变化规律的考查,发现正方形的个数是两个连续整数的乘积是解题的关键,此类题目对同学们的能力要求较高,在平时的学习中要不断积累.20.如图所示是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,按照这样的规律,第4个图案中有______个涂有阴影的小正方形,第n个图案中有_______个涂有阴影的小正方形(用含有n的代数式表示).【答案】17 4n+1【分析】观察发现,后一个图案比前一个图案多涂4个有阴影的小正方形,根据规律写出第n个图案的涂阴影的小正方形的个数即可.【详解】由图可得,第1个图案涂有阴影的小正方形的个数为5个,第2个图案涂有阴影的小正方形的个数为5+4=9个,第3个图案涂有阴影的小正方形的个数为5+4+4=13个,第4个图案涂有阴影的小正方形的个数为5+4+4+4=17个,,第n个图案涂有阴影的小正方形的个数为5+4(n-1)=4n+1(个),故答案为:17,4n+1.【点睛】此题考查图形类规律的探究,列代数式,有理数的加法计算法则,观察图形得到图形的变化规律,总结规律并解决问题是解题的关键.21.将一半径相同的小圆按如图所示的规律摆放,第1个图形有4个小圆,第2个图形有8个小圆,第3个图形有14个小圆,…,依此规律,第11个图形的小圆个数是______.【答案】134【分析】根据图形的变化寻找规律即可求解.【详解】解:观察图形的变化可知:第1个图形有1×2+2=4个小圆,第2个图形有2×3+2=8个小圆,第3个图形有3×4+2=14个小圆,…,发现规律:第n个图形的小圆个数是n(n+1)+2.所以第11个图形的小圆个数是11×12+2=134.故答案为:134.【点睛】本题考查了规律型-图形的变化,解决本题的关键是观察图形的变化寻找规律并总结规律,会利用找到的规律进行解题.22.德国数学家康托尔引入位于一条线段上的一些点的集合,做法如下:取一条长度为1的线段三等分后,去掉中间段,余下两条线段,达到第1阶段;将剩下的两条线段分别三等分后,各去掉中间段,余下四条线段,达到第2阶段;再将剩下四条线段分别三等分后,各去掉中间段,余下八条线段,达到第3阶段;..,一直如此操作下去大在不断分割舍弃过程中,所形成的线段数目越来越多.如图是最初几个阶段,(1)当达到第5个阶段时,余下的线段条数为____________.(2)当达到第n个阶段时(n为正整数),去掉的线段的长度之和为___ (用含n的式子表示)【答案】(1)32;(2)1 ()3n.【分析】根据题意写出前面所求的结果的式子,然后推广得出规律,即可解答.【详解】(1)根据题意可知:第一阶段余下的线段的条数为12=2条;第二阶段余下的线段的条数为22=4条;第三阶段余下的线段的条数为32=8条;第四阶段余下的线段的条数为42=16条;第五阶段余下的线段的条数为52=32条;故答案为32.(2)根据题意可知:第一阶段去掉的线段的长度为11()3; 第二阶段去掉的线段的长度和为211111=()33333⨯+⨯; 第三阶段去掉的线段的长度和为22311111()()()33333⨯+⨯=; 以此类推,第n 阶段去掉的线段的长度和为1()3n. 故答案为1()3n.【点睛】考查发现图形的规律,根据图形写出前面的几种情况,然后找出其规律是解答本题的关键.23.如图,用火柴棍摆出一列正方形图案,其中图∵有4根火柴棍,图∵有12根火柴棍,图∵有24根火柴棍… …以此类推,则图∵中火柴棍的根数是_____________.【答案】220【分析】图形从上到下可以分成几行,第n 个图形中,竖放的火柴有n (n+1)根,横放的有n (n+1)根,因而第n 个图案中火柴的根数是:n (n+1)+n (n+1)=2n (n+1),把n=10代入就可以求出.【详解】设摆出第n 个图案用火柴棍为S n .∵图,S 1=1×(1+1)+1×(1+1);∵图,S 2=2×(2+1)+2×(2+1);∵图,S 3=3×(3+1)+3×(3+1);…;第n 个图案,S n =n (n+1)+n (n+1)=2n (n+1),则第∵个图案为:2×10×(10+1)=220.故答案为:220.【点睛】本题考查了规律型图形的变化,有一定难度,注意此题第n 个图案用火柴棍为2n (n+1),要拥有一定的推理与论证能力.24.如图,用棋子摆出下列一组图形:按照这种规律摆下去,第2020个图形用的棋子个数是_______.【答案】6063个【分析】根据各图形中所用棋子个数的变化可得出变化规律“33n a n =+”,此题得解.【详解】设第n 个图形用的棋子个数为n a 个(n 为正整数),∵1123a =++,2234a =++,3345a =++,…,∵()()1233n a n n n n =++++=+,∵20203202036063a =⨯+=.故答案为:6063个.【点睛】本题考查了规律型:图形的变化类,根据各图形中所用棋子个数的变化,找出变化规律“33n a n =+”是解题的关键.25.如图,正方形ABCD 的边长为1,其面积标记为1S ,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为2···S ,按照此规律继续下去,则5S 的值为__________【答案】116【分析】根据正方形的面积公式以及勾股定理的内容发现S 1=12=1,S 2=12S 1=12,S 3=12S 2=14,S 4=12S 3=18,…,继而得出规律即可求得答案.【详解】观察,发现规律:S 1=12=1,S 2=12S 1=12,S 3=12S 2=14,S 4=12S 3=18,…, ∵S n =(12)n -1,当n=5时,S 5=411=126⎛⎫ ⎪⎝⎭, 故答案为:116. 【点睛】本题考查了规律型——图形的变化类,推导出前几个正方形的面积得出面积变化的规律是解题的关键∵ 26.有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,且该塔形的表面积(含最底层正方体的底面面积)超过39,则该塔形中正方体的个数至少是___________.【答案】6【分析】求出各个层的正方体的表面积,求出它们的和,该塔形的表面积(含最底层正方体的底面面积)超过39,求出正方体的个数至少个数.【详解】解:底层正方体的表面积为24;第2层正方体的棱长214()2⨯;第3层正方体的棱长为222⨯,每个面的面积为214()2⨯;第n 层正方体的棱长为12)2n -⨯,每个面的面积为114()2n -⨯; 若该塔形为n 层,则它的表面积为2151111244[4()4()4()]40()2222n n --+⨯+⨯+⋯+⨯=-因为该塔形的表面积超过39,所以该塔形中正方体的个数至少是6.故答案为:6.【点睛】本题是中档题,考查计算能力,数列求和的知识,正确就是解好数学问题的关键,常考题型. 27.如图1是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示的方式两两相扣,相扣处不留空隙,小明用x 个如图1所示的图形拼出来的总长度y 会随着x 的变化而变化,y 与x 的关系式为y =______.【答案】52x +【分析】探究规律,利用规律解决问题即可.【详解】观察图形可知:当两个图(1)拼接时,总长度为:7+5=12;当三个图(1)拼接时,总长度为:7+2×5;以此类推,可知:用x 个这样的图形拼出来的图形总长度为:()75152x x +-=+,∵y 与x 的关系式为52y x =+.【点睛】本题考查了图形规律,根据图形的拼接规律得出y 与x 的关系式是解题的关键.28.如图,古希腊人常用小石子在沙滩上摆成各种图形来研究数.例如:图中的数1,5,12,22…,由于这些数能够表示成五边形,所以将它们称为五边形数,按照此规律,第40个图形表示的五边形数是_____.【答案】2380【分析】观察图形得到第1个五边形数为1,第2个五边形数为1+4=5,第3个五边形数为1+4+7=12,第4个五边形数为1+4+7+10=22,即每个五边形数是从1开始,后面的数都比前面一个数大3的几个数的和,且数的个数等于序号数,则第n 个五边形数为232n n -,把n =40代入计算即可. 【详解】第一个图形有1个,第二个图形有5=2+3个,第三个图形有12=3+4+5个,第n 个图形五边形数为()2312312n n n n n n n n -⎡⎤+++++++⋯++-=⎣⎦故第40个图形表示的五边形数是:23404023802⨯-=个【点睛】本题考查了规律型:图形的变化类,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.29.如图,∵ABC 的面积为1,分别倍长(延长一倍)AB ,BC ,CA 得到∵A 1B 1C 1,再分别倍长A 1B 1,B 1C 1,C 1A 1得到∵A 2B 2C 2.…按此规律,倍长2020次后得到的∵A 2020B 2020C 2020的面积为_____.【答案】72020【分析】连接AB 1、BC 1、CA 1,根据等底等高的三角形面积相等,可得111A B C S △=7S ∵ABC ,由此即可解题.【详解】连接AB 1、BC 1、CA 1,根据等底等高的三角形面积相等,∵A 1BC 、∵A 1B 1C 、∵AB 1C 、∵AB 1C 1、∵ABC 1、∵A 1BC 1、∵ABC 的面积都相等,所以,111A B C S △=7S ∵ABC ,同理222A B C S △=7111A B C S △=72S ∵ABC ,依此类推,∵A 2020B 2020C 2020的面积为=72020S ∵ABC ,∵∵ABC 的面积为1,∵202020202020A S B C =72020.故答案为:72020.【点睛】本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.30.(观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,…将这种做法继续下去(如图2,图3…),则图6中挖去三角形的个数为______.【答案】364【分析】根据题意找出图形的变化规律,根据规律计算即可.【详解】因为1n =时,挖去三角形的个数是1个,即03个,2n =时,挖去三角形的个数是4个,即()0133+个,3n =时,挖去三角形的个数是13个,即()012333++个,所以图n 中挖去三角形的个数是()011333n -+++个,所以图∵中挖去三角形的个数是012345333333364+++++=个.故答案为:364.【点睛】本题考查的是图形的变化,掌握图形的变化规律是解题的关键.31.如图,有一个正六边形的点阵,层数由内向外第一层每边有两个点,第二层每边有三个点,依此类推,从射线OA 开始,沿逆时针方向按顺序将每个点依次标上1,2,3,4,5,6,7,……用含n 的代数式表示:第n 层共有______个点、射线OC 上第n 个数字是________.【答案】6n 231n n -+【分析】先分别求出第1、2、3层的点的个数,再归纳类推出一般规律即可得;先分别求出射线OC 上第1、2、3个数字,再归纳类推出一般规律即可得.【详解】第1层共有的点的个数为6,第2层共有的点的个数为1262=⨯,第3层共有的点的个数为1863=⨯,归纳类推得:第n 层共有的点的个数为6n ;射线OC 上第1个数字为33021160=+=⨯++⨯,射线OC 上第2个数字为()1156221601=+=⨯++⨯+,射线OC 上第3个数字为()257182316012=+=⨯++⨯++,归纳类推得:射线OC 上第n 个数字为()2160121n n ++++++-,()()1112162n n n -+-=++⨯,()2131n n n =++-,231n n =-+,故答案为:6n ,231n n -+.【点睛】本题考查了用代数式表示图形的规律型问题、整式的乘法与加减法的应用,正确归纳类推出一般规律是解题关键.32.(2020·达州市达川区中小学教学研究室)如图,有一个面积为1的正方形纸板,第一次剪掉这块正方形纸板的一半,第二次剪掉剩下的一半,以此类推.小明想到第n 次剪掉的面积是12n ,第n 次剪掉后剩下的面积也是12n ,小明受此启发,于是计算出202011112482++⋯+=_____________.【答案】2020112-【分析】 根据第1次剪掉的面积是12,第1次剪掉后剩下的面积是12;第2次剪掉的面积是14,第2次剪掉后剩下的面积是14;…第n 次剪掉的面积是12n ,第n 次剪掉后剩下的面积也是12n ;由此规律得出:利用1减去最后剩下的面积计算得出202011112482++⋯+的结果. 【详解】解:∵第1次剪掉的面积是12,第1次剪掉后剩下的面积是12; 第2次剪掉的面积是14,第2次剪掉后剩下的面积是14;。

中考数学第二轮复习题精选(含答案)

中考数学第二轮复习题精选(含答案)

中考数学第二轮复习题精选1、如图,正方形ABCD 的边长为8,M 在DC 上,且DM=2,N 是AC 上一动点,则DN+MN 的最小值为 .第1题图 第2题图 第3题图 第6题图 2、如图,一牧童在A 处牧马,牧童家在B 处,A ,B 处距河岸的距离AC ,BD 分别为500m 和700m ,且CD=500m ,天黑前牧童从A 处将马赶到河边去饮水后再回家,那么牧童最少要走__________m .3、如图,将半径为2cm 的⊙O 分割成十个区域,其中弦AB 、CD 关于点O 对称,EF 、GH 关于点O 对称,连结PM ,则图中阴影部分的面积是__ cm 2(结果用π表示).4、观察右表中数字的排列规律,回答下面的问题:①表中第1行第5列的数字是 ;②表中第5行第4列的数字是 ;③请用关于n 的代数式表示表中第3列第n 行的数为 ;④数字2006的位置是第 行,第列.5、甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到B 地,他们离出发地的距离s (千米)和行驶时间t (小时)之间的函数关系的图象如图6所示,根据图中提供的信息,有下列说法:(1)他们都行驶了18千米;(2)甲在途中停留了0.5小时;(3)乙比甲晚出发了0.5小时; (4)相遇后,甲的速度小于乙的速度; (5)甲、乙两人同时到达目的地.DC A B其中,符合图象描述的说法有( )A .2个B .3个C .4个D .5个6、如图,一宽为2cm 的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“1”和“4”(单位:cm ),则该圆的半径为( )A .5cmB .413cm C .1625cm D .5cm7、“数缺形时少直观,形少数时难入微”。

小明学习上爱动脑,在计算...41...41412++++n 的值时构造了这样一个图形:如图,正△ABC 面积为31,分别取AC 、BC 两边的中点D 、E ,再分别取CD 、CE 的中点,依次取下去…,能直观地求出它的值。

中考数学二轮专题复习试卷:四边形(含答案)

中考数学二轮专题复习试卷:四边形(含答案)

中考数学二轮专题复习试卷:四边形(时间:120分钟 满分:120分)一、选择题(本大题共15个小题,每小题3分,共45分)1.(山东烟台)一个多边形截去一个角后, 形成另一个多边形的内角和为720°,那么原多边形的边数为( )A.5B.5或6C.5或7D.5或6或7 2.(浙江宁波)如图,梯形ABCD 中,AD ∥BC ,5AB 2=,BC=4,连接BD ,∠BAD 的平分线交BD 于点E ,且AE ∥CD ,则AD 的长为( )435A. B. C. D.23233.(江苏扬州)如图,在菱形ABCD 中, ∠BAD=80°,AB 的垂直平分线交对角线AC 于 点F ,垂足为E ,连接DF ,则∠CDF 等于( )A .50°B .60°C .70°D .80° 4.(福建漳州)用下列一种多边形不能铺满地面的是( ) A.正方形 B .正十边形 C .正六边形 D .等边三角形 5.(云南曲靖)如图,在ABCD 中,对角线AC 与BD 相交于点O ,过点O 作EF ⊥AC 交BC 于点E ,交AD 于点F ,连接AE 、CF .则四边形AECF 是( ) A.梯形 B.矩形 C.菱形 D.正方形 6.菱形OABC 在平面直角坐标系中的位置如图所示, 若OA=2,∠AOC=45°,则B 点的坐标是( )((((A.22,2 B.22,2C.22,2 D.22,2+ --+--7.(湖南邵阳)如图所示,点E 是矩形ABCD 的边AD 延长线上的一点,且AD=DE ,连接BE 交CD 于 点O ,连接AO ,下列结论不正确...的是( ) A.△AOB ≌△BOC B.△BOC ≌△EOD C.△AOD ≌△EOD D.△AOD ≌△BOC8.(重庆)下列图形都是由同样大小的矩形按一定的规律组成,其中第1个图形的面积为2 cm 2,第2个图形的面积为8 cm 2,第3个图形的面积为18 cm 2,…,则第10个图形的面积为( )A.196 cm2B.200 cm2C.216 cm2D.256 cm29.(山东菏泽)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为( )A.16B.17C.18D.1910.(湖南襄阳)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是( )A.18 B.28 C.36 D.4611.(四川雅安)如图,正方形 ABCD中,点E、F 分别在 BC、CD上,△AEF是等边三角形,连接AC 交 EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC 垂直平分EF,④BE+DF=EF,⑤S△C E F=2S△ABE.其中正确结论有( )个A.2B.3C.4D.512.(重庆)如图,矩形纸片ABCD中,AB=6 cm,BC=8 cm,现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为( )A.6 cmB.4 cmC.2 cm D.1 cm13.(贵州黔南州)如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是( )A.AB=CDB.AD=BCC.AB=BCD.AC=BD14.(四川巴中)如图,在梯形ABCD中,AD∥BC,点E、F分别是AB、CD的中点,且EF=6,则AD+BC的值是( )A.9B.10.5C.12D.1515.(湖北十堰)如图,梯形ABCD中,AD∥BC,AB=DC=3,AD=5,∠C=60°,则下底BC的长为( )A.8B.9C.10D.11二、填空题(本大题共6个小题,每小题3分,共18分)16.(四川遂宁)若一个多边形内角和等于1 260°,则该多边形边数是.17.(浙江舟山)如图,正方形ABCD的边长为3,点E、F分别在边AB、BC上,AE=BF=1,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到点E时,小球P所经过的路程为.18.(江苏苏州)如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A,C分别在x,y轴的正半轴上.点Q在对角线OB上,且OQ=OC,连接CQ并延长CQ交边AB于点P,则点P的坐标为( , ).19.(江苏苏州)如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部,将AF延长交边BC于点G.若CG1ADGB k AB,则= (用含k的代数式表示).20.(贵州六盘水)如图,梯形ABCD中,AD∥BC,AD=4,AB=5,BC=10,CD的垂直平分线交BC于E,连接DE,则四边形ABED的周长等于.21.(云南曲靖)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,∠C=45°,AD=1,BC=4,则CD= .三、解答题(本大题共5个小题,共57分)22.(本小题满分10分)(广东深圳)如图,在等腰梯形ABCD中,已知AD∥BC,AB=DC,AC与BD交于点O,廷长BC到E,使得CE=AD,连接DE.(1)求证:BD=DE.(2)若AC⊥BD,AD=3,S梯形ABCD=16,求AB的长.23.(本小题满分10分)(重庆)如图,在矩形ABCD中,E、F分别是AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=23,求AB的长.24.(本小题满分10分)(山东济宁)如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE;(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由.25.(本小题满分12分)(江苏苏州)如图,点P是菱形ABCD对角线AC上的一点,连接DP并延长DP交边AB于点E,连接BP并延长BP交边AD于点F,交CD的延长线于点G.(1)求证:△APB≌△APD;(2)已知DF∶FA=1∶2,设线段DP的长为x,线段PF的长为y.①求y与x的函数关系式;②当x=6时,求线段FG的长.26.(本小题满分15分)(江苏苏州)如图,点O为矩形ABCD的对称中心,AB=10 cm,BC=12 cm.点E、F、G分别从A、B、C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为 1 cm/s,点F的运动速度为3 cm/s,点G的运动速度为1.5 cm/s.当点F到达点C(即点F与点C 重合)时,三个点随之停止运动.在运动过程中,△EBF 关于直线EF 的对称图形是△EB ′F ,设点E 、F 、G 运动的时间为t (单位:s ). (1)当t =______s 时,四边形EBFB ′为正方形;(2)若以点E 、B 、F 为顶点的三角形与以点F 、C 、G 为顶点的三角形相似,求t 的值; (3)是否存在实数t ,使得点B ′与点O 重合?若存在,求出t 的值;若不存在,请说明理由.参考答案1.D2.B3.B4.B5.C6.D7.A8.B9.B 10.C 11.C 12.C 13.D 14.C 15.A 16.9 17.65(2422)-,19.k 12+ 20.19 21.3222.(1)证明:∵AD ∥BC ,CE=AD , ∴四边形ACED 是平行四边形, ∴AC=DE ,∵四边形ABCD 是等腰梯形,AD ∥BC ,AB=DC , ∴AC=BD , ∴BD=DE .(2)解:过点D 作DF ⊥BC 于点F ,∵四边形ACED 是平行四边形, ∴CE=AD=3,AC ∥DE , ∵AC ⊥BD , ∴BD ⊥DE , ∵BD=DE ,2BDE ABCD 111S BD DE BD BE DF.22211BC CE DF BC AD DF 22S 16∴====+=+==梯形()(),∴BD= 42, ∴2,221DF BF EF BE 42CF EF CE 1AB CD CF DF 17.∴====∴=-=∴==+=,,23.证明:(1)∵四边形ABCD 是矩形,∴CD ∥AB , ∴∠FCO=∠EAO. 在△FCO 与△EAO 中,FOC EOA FCO EAO CF AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴△FCO ≌△EAO(AAS), ∴OF=OE ; (2)解:连接OB , ∵∠BEF=2∠BAC, 又∠BEF=∠BAC+∠AOE , ∴∠BAC=∠AOE , ∴△EAO 为等腰三角形, ∴AE=OE.∵△FCO ≌△EAO(已证), ∴△FCO 为等腰三角形, ∴OF=CF=AE=OE, ∴O 为EF 的中点. ∵BE=BF, ∴BO 垂直平分EF,∴Rt △BCF ≌Rt △BOF ≌Rt △BOE(HL), ∴∠CBF=∠OBF=∠OBE=30°. ∵BC=3,∴CF=AE=2,BF=BE=4,∴AB=AE+BE=2+4=6.24.证明:(1)设AF与BE交于点G,∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠D=90°,∴Rt△ADF中,∠FAD+∠AFD=90°.∵AF⊥BE,∴∠AGE=90°,∴Rt△AGE中,∠EAG+∠AEG=90°,∴∠AFD=∠AEG,∴△DAF≌△ABE,∴AF=BE;(2)解:过点A作AF∥MP交CD于点F,过点B作BE∥NQ交AD于E,得到,∴AF=MP,BE=NQ.由(1)得AF=BE,∴MP=NQ.25.(1)证明:∵四边形ABCD是菱形,∴AB=AD,AC平分∠DAB,∴∠DAP=∠BAP.在△APB和△APD中,AB AD,BAP DAP,AP AP,=⎧⎪∠=∠⎨⎪=⎩∴△APB ≌△APD;(2)解:①∵四边形ABCD 是菱形,∴AD ∥BC ,AD=BC. ∴△AFP ∽△CBP ,AF FP.BC BP∴= ∵DF ∶FA=1∶2,∴AF ∶BC=2∶3,∴FP ∶BP=2∶3. 由(1)知PB=PD=x , 又∵PF=y ,y 22y x x 33∴=∴=,,即y 与x 的函数关系式为2y x 3=; ②当x=6时,2y 643=⨯=,∴FB=FP+PB=10. FG FD 1DG AB DFG AFB FB FA 21FG 10 5.2∴∴==∴=⨯=,∽,,∴线段FG 的长为5.26.解:(1)2.5(2)由题意知AE=t ,BF=3t ,CG=1.5t. ∵AB=10,BC=12,∴BE=10-t ,FC=12-3t.∵点F 在BC 上运动,∴0≤t ≤4. ①当△EBF ∽△FCG 时,得EB BF 10t 3t 14:,t ;FC CG 123t 1.5t 5-==∴=-,即 ②当△EBF ∽△GCF 时,得EB BF 10t 3t,CG FC 1.5t 123t-==-,即: 整理得:t 2+28t-80=0, ∴t 1=-14+269,2t 14269=--.∵0≤t ≤4,(14t s t 1469 s 5∴==-+或符合题意. (3)不存在.理由如下: 连接BD.∵点O 为矩形ABCD 的对称中心, ∴点O 为BD 的中点.假设存在这样的实数t ,使得点B ′与点O 重合,此时EF 是OB 的垂直平分线,垂足为点H.BD 61BD 261BH 42EHB BHF BCD,BE BH BF BH,,DB DC BD BC6161BE BF 1012∴===∴==∴==易知,易证∽∽,,∴AE=10-BE=3.9.∵点F 的运动速度是点E 运动速度的3倍,但BF3,AE≠∴不存在实数t,使得点B′与点O重合.11 / 11。

初中数学二轮复习题及答案

初中数学二轮复习题及答案

初中数学二轮复习题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14159B. √2C. 0.33333D. 1/32. 如果一个角的度数是30°,那么它的余角是:A. 45°B. 60°C. 90°D. 120°3. 一个数的平方根是4,这个数是:A. 16B. -16C. 8D. -84. 一个等腰三角形的底边长为5,两腰相等,若底角为30°,则腰长为:A. 5B. 10C. 15D. 205. 一个多项式减去2x+3得到3x-5,那么这个多项式是:A. 5x+2B. x-8C. 5x-2D. x+86. 一个圆的半径是3,那么它的面积是:A. 9πB. 18πC. 28πD. 36π7. 一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 88. 一个数的立方根是2,这个数是:A. 2B. 4C. 6D. 89. 一个等差数列的首项是2,公差是3,那么第5项是:A. 14B. 17C. 20D. 2310. 一个二次方程x² - 5x + 6 = 0的根是:A. x = 2, 3B. x = -2, -3C. x = 1, 6D. x = 3, 2二、填空题(每题2分,共20分)11. 一个数的相反数是-5,这个数是________。

12. 一个数的绝对值是5,这个数可以是________或________。

13. 一个三角形的内角和为________度。

14. 一个数的平方是25,这个数可以是________或________。

15. 一个圆的直径是10,那么它的周长是________π。

16. 一个直角三角形的斜边长是13,一条直角边是5,另一条直角边是________。

17. 一个数的立方是-8,这个数是________。

18. 一个等差数列的第3项是10,第5项是14,那么它的公差是________。

题型四 解直角三角形-2021年中考数学二轮复习重点题型专项训练(含解析)

题型四 解直角三角形-2021年中考数学二轮复习重点题型专项训练(含解析)

数学第二轮复习-----题型四解直角三角形1.如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B处仰角为30°,则甲楼高度为()A. 11米 B.(36﹣15)米 C. 15米 D. (36﹣10)米2.如图,一架长为6米的梯子AB斜靠在一竖直的墙AO上,这时测得∠ABO=70°,如果梯子的底端B外移到D,则梯子顶端A下移到C,这时又测得∠CDO=50°,那么AC的长度约为______米.(sin70°约等于0.94,sin50°约等于0.77,cos70°约等于0.34,cos50°约等于0.64)第1题图第2题图第3题图第4题图3.一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为______米.4.居家学习期间,小晴同学运用所学知识在自家阳台测对面大楼的高度.如图,她利用自制的测角仪测得该大楼顶部的仰角为45°,底部的俯角为38°;又用绳子测得测角仪距地面的高度AB为31.6m.求该大楼的高度(结果精确到0.1m).(参考数据:sin38°≈0.62,cos38°≈0.79,tan38°≈0.78)5.如图,要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α般要满足60°≤α≤75°,现有一架长5.5m的梯子.(1)使用这架梯子最高可以安全攀上多高的墙(结果保留小数点后一位)?(2)当梯子底端距离墙面2.2m时,α等于多少度(结果保留小数点后一位)?此时人是否能够安全使用这架梯子?(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73,sin23.6°≈0.40,cos66.4°≈0.40,tan21.8°≈0.40.)6.某兴趣小组为了测量大楼CD的高度,先沿着斜坡AB走了52米到达坡顶点B处,然后在点B处测得大楼顶点C的仰角为53°,已知斜坡AB的坡度为i=1:2.4,点A到大楼的距离AD为72米,求大楼的高度CD.(参考数据:sin53°≈,cos53°≈,tan53°≈)7.如图,无人机在离地面60米的C处,观测楼房顶部B的俯角为30°,观测楼房底部A的俯角为60°,求楼房的高度.8.如图,小莹在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量,先测得居民楼AB与CD之间的距离AC为35m,后站在M点处测得居民楼CD的顶端D的仰角为45°,居民楼AB的顶端B的仰角为55°,已知居民楼CD的高度为16.6m,小莹的观测点N距地面1.6m.求居民楼AB的高度(精确到lm).(参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈l.43).9.如图是把一个装有货物的长方体形状的木箱沿着坡面装进汽车货厢的示意图.已知汽车货厢高度BG=2米,货厢底面距地面的高度BH=0.6米,坡面与地面的夹角∠BAH=α,木箱的长(FC)为2米,高(EF)和宽都是1.6米.通过计算判断:当sinα=,木箱底部顶点C与坡面底部点A重合时,木箱上部顶点E 会不会触碰到汽车货厢顶部.10.某数学兴趣小组要测量实验大楼部分楼体的高度(如图①所示,CD部分),在起点A处测得大楼部分楼体CD的顶端C点的仰角为45°,底端D点的仰角为30°,在同一剖面沿水平地面向前走20米到达B 处,测得顶端C的仰角为63.4°(如图②所示),求大楼部分楼体CD的高度约为多少米?(精确到1米,参考数据:sin63.4°≈0.89,cos63.4°≈0.45,tan63.4°≈2.00,≈1.41,≈1.73)11.鲁南高铁临沂段修建过程中需要经过一座小山.如图,施工方计划沿AC方向开挖隧道,为了加快施工速度,要在小山的另一侧D(A、C、D共线)处同时施工.测得∠CAB=30°,AB=4km,∠ABD=105°,求BD的长.12.由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A处时,测得小岛B位于它的北偏东30°方向,且小岛与航母相距80海里,航母再航行一段时间后到达C处,测得小岛B位于它的西北方向,求此时航母与小岛的距离BC的长.13.在小水池旁有一盏路灯,已知支架AB的长是0.8m,A端到地面的距离AC是4m,支架AB与灯柱AC的夹角为65°.小明在水池的外沿D测得支架B端的仰角是45°,在水池的内沿E测得支架A端的仰角是50°(点C、E、D在同一直线上),求小水池的宽DE.(结果精确到0.1m)(sin65°≈0.9,cos65°≈0.4,tan50°≈1.2)14如图,C处是一钻井平台,位于东营港口A的北偏东60°方向上,与港口A相距60海里,一艘摩托艇从A出发,自西向东航行至B时,改变航向以每小时50海里的速度沿BC方向行进,此时C位于B的北偏西45°方向,则从B到达C需要多少小时?第2页,共6页1.【答案】D【解析】【分析】此题考查了解直角三角形的应用,解答本题的关键是将实际问题转化为解直角三角形的问题,求出BE的长度,难度一般.过点A作AE⊥BD,交BD于点E;可构造Rt△ABE,利用已知条件可求BE;而甲楼高AC=ED=BD-BE.【解答】解:过点A作AE⊥BD,交BD于点E,在Rt△ABE中,AE=30米,∠BAE=30°,∴BE=30×tan30°=10(米),∴AC=ED=BD-BE=(36-10)(米).∴甲楼高为(36-10)米.故选:D.2.【答案】1.02【解析】解:由题意可得:∵∠ABO=70°,AB=6m,∴sin70°==≈0.94,解得:AO=5.64(m),∵∠CDO=50°,DC=6m,∴sin50°=≈0.77,解得:CO=4.62(m),则AC=5.64-4.62=1.02(m),答:AC的长度约为1.02米.故答案为:1.02.直接利用锐角三角函数关系得出AO,CO的长,进而得出答案.此题主要考查了解直角三角形的应用,正确得出AO,CO的长是解题关键.3.【答案】【解析】解:在Rt△BCD中,∵tanβ=,∴BD =,在Rt△ACD中,∵tanα==,∴tanα=,解得:CD =,故答案为:.在Rt△BCD中有BD =,在Rt△ACD中,根据tanα==可得tanα=,解之求出CD即可得.本题主要考查解直角三角形的应用-仰角俯角问题,解题的关键是根据两直角三角形的公共边利用三角函数建立方程求解.4.【答案】解:作AH⊥CD于H,如图:则四边形ABDH是矩形,∴HD=AB=31.6m,在Rt△ADH中,∠HAD=38°,tan∠HAD =,∴AH ===≈40.51(m),在Rt△ACH中,∠CAH=45°,∴CH=AH=40.51m,∴CD=CH+HD=40.51+31.6≈72.1(m),答:该大楼的高度约为72.1m.【解析】作AH⊥CD于H,则四边形ABDH是矩形,得出HD=AB=31.6m,由三角函数定义求出AH≈40.51(m),证出CH=AH=40.51m,进而得出答案.本题考查了解直角三角形的应用-仰角俯角问题以及等腰直角三角形的判定,解答本题的关键是根据仰角构造直角三角形,利用三角函数的知识求解.5.【答案】解:(1)由题意得,当α=75°时,这架梯子可以安全攀上最高的墙,在Rt△ABC中,sinα=,∴AC=AB•sinα≈5.3,答:使用这架梯子最高可以安全攀上5.3m的墙;(2)在Rt△ABC中,cosα==0.4,则α≈66.4°,∵60°≤66.4°≤75°,∴此时人能够安全使用这架梯子.【解析】(1)根据正弦的定义求出AC,得到答案;(2)根据余弦的定义求出α,根据题意判断即可.本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡角的概念、熟记锐角三角函数的定义是解题的关键.6.【答案】解:如图,过点B作BE⊥AD于点E,BF⊥CD于点F,∵CD⊥AD,∴易得四边形BEDF是矩形,∴FD=BE,FB=DE,在Rt△ABE中,BE:AE=1:2.4=5:12,设BE=5x,AE=12x,根据勾股定理,得AB=13x,∴13x=52,解得x=4,∴BE=FD=5x=20,AE=12x=48,∴DE=FB=AD-AE=72-48=24,∴在Rt△CBF中,CF=FB×tan∠CBF ≈24×≈32,∴CD=FD+CF=20+32=52(米).答:大楼的高度CD约为52米.【解析】本题考查了解直角三角形的应用-仰角俯角问题和坡度坡角问题,解决本题的关键是掌握仰角俯角和坡度坡角定义.过点B作BE⊥AD于点E,BF⊥CD于点F,可得四边形BEDF是矩形,设BE=5x,AE=12x,根据斜坡AB 的坡度为i=1:2.4,利用勾股定理可得x的值,再根据锐角三角函数即可进一步求大楼的高度CD.7.【答案】解:过B作BE⊥CD交CD于E,由题意得,∠CBE=30°,∠CAD=60°,在Rt△ACD中,tan∠CAD=tan60°==,∴AD ==20,∴BE=AD =20,在Rt△BCE中,tan∠CBE=tan30°==,∴CE =20=20,∴ED=CD-CE=60-20=40,∴AB=ED=40(米),答:楼房的高度为40米.【解析】过B作BE⊥CD交CD于E,由题意得,∠CBE=30°,∠CAD=60°,解直角三角形即可得到结论.此题考查了解直角三角形的应用-仰角俯角问题,用到的知识点是俯角的定义、特殊角的三角函数值,关键是作出辅助线,构造直角三角形.8.【答案】解:过点N作EF∥AC交AB于点E,交CD于点F,则AE=MN=CF=1.6m,EF=AC=35m,∠BEN=∠DFN=90°,EN=AM,NF=MC,第4页,共6页则DF=DC-CF=16.6-1.6=15m,在Rt△DFN中,∵∠DNF=45°,∴NF=DF=15m,∴EN=EF-NF=35-15=20m,在Rt△BEN中,∵tan∠BNE =,∴BE=EN•tan∠BNE=20×tan55°≈20×1.43=28.6m,∴AB=BE+AE≈28.6+1.6≈30m.答:居民楼AB的高度约为30米.【解析】本题考查了解直角三角形的应用-仰角俯角问题,解决本题的关键是掌握仰角俯角定义.过点N作EF∥AC交AB于点E,交CD于点F,可得AE=MN=CF=1.6m,EF=AC=35m,再根据锐角三角函数可得BE 的长,进而可得AB的高度.9.【答案】解:∵BH=0.6米,sinα=,∴AB ==1米,∴AH=0.8米,∵AF=FC=2米,∴BF=1米,作FJ⊥BG于点J,作EK⊥FJ于点K,∵EF=FB=AB=1米,∠EKF=∠FJB=∠AHB=90°,∠EFK=∠FBJ=∠ABH,∴△EFK≌△FBJ≌△ABH,∴EK=FJ=AH,BJ=BH,∴BJ+EK=0.6+0.8=1.4<2,∴木箱上部顶点E不会触碰到汽车货厢顶部.【解析】根据题意作出合适的辅助线,然后利用锐角三角函数求出BM+EN的长度,再与2比较大小即可解答本题.本题考查解直角三角形的应用-坡度坡角问题,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.10.【答案】解:设楼高CE为x米,∵在Rt△AEC中,∠CAE=45°,∴AE=CE=x米,∵AB=20米,∴BE=(x-20)米,在Rt△CEB中,CE=BE•tan63.4°≈2(x-20)米,∴2(x-20)=x,解得:x=40,在Rt△DAE中,DE=AE·tan30°=40×=米,∴CD=CE-DE =40-≈17(米),答:大楼部分楼体CD的高度约为17米.【解析】此题考查解直角三角形的应用——仰角和俯角,解本题的关键是利用三角函数解答.设楼高CE为x米,于是得到BE=(x-20)米,解直角三角形即可得到结论.11.【答案】解:作BE⊥AD于点E,∵∠CAB=30°,AB=4km,∴∠ABE=60°,BE=2km,∵∠ABD=105°,∴∠EBD=45°,∴∠EDB=45°,∴BE=DE=2km,∴BD ==2km,即BD的长是2km.【解析】根据∠CAB=30°,AB=4km,可以求得BE的长和∠ABE的度数,进而求得∠EBD的度数,然后利用勾股定理即可求得BD的长.本题考查解直角三角形的应用,解答本题的关键是明确题意,利用数形结合的思想解答.12.【答案】解:过点B作BD⊥AC于点D,由题意,得:∠BAD=60°,∠BCD=45°,AB=80,在Rt△ADB中,∠BAD=60°,∴AD =AB=40,BD =AB =40,在Rt△BCD中,∠BCD=45°,∴BD=CD =40,∴BC =BD =40,答:BC的距离是40海里.【解析】过点B作BD⊥AC于点D,根据题意得到∠BAD=60°,∠BCD=45°,AC=80,解直角三角形即可得到结论.本题考查了解直角三角形的应用-方向角问题,作出辅助线构造直角三角形是解题的关键.13.【答案】解:过点B作BF⊥AC于F,BG⊥CD于G ,在Rt△BAF中,∠BAF=65°,BF=AB•sin∠BAF=0.8×0.9=0.72,AF=AB•cos∠BAF=0.8×0.4=0.32,∴FC=AF+AC=4.32,∵四边形FCGB是矩形,∴BG=FC=4.32,CG=BF=0.72,∵∠BDG=45°,∴∠BDG=∠GBD,∴GD=GB=4.32,∴CD=CG+GD=5.04,在Rt△ACE中,∠AEC=50°,CE =,∴DE=CD-CE=5.04-3.33=1.71≈1.7,答:小水池的宽DE为1.7米.【解析】过点B作BF⊥AC于F,BG⊥CD于G,根据三角函数和直角三角形的性质解答即可.此题考查的知识点是解直角三角形的应用-仰角俯角问题,关键是本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.14.【答案】解:过C作CD⊥AB于D,在点A的正北方向上取点M,在点B的正北方向上取点N,由题意得:∠MAB=∠NBA=90°,∠MAC=60°,∠NBC=45°,AC =60海里,∴∠CDA=∠CDB=90°,∵在Rt△ACD中,∠CAD=∠MAB-∠MAC=90°-60°=30°,∴CD =AC =30(海里),在Rt△BCD中,∠CDB=90°,∠CBD=∠NBD-∠NBC=90°-45°=45°,∴BC =CD=60(海里),∴60÷50=1.2(小时),∴从B处到达C岛处需要1.2小时.【解析】此题考查了解直角三角形的应用-方向角,熟练掌握锐角三角函数定义是解本题的关键.过C作CD⊥AB于D,在点A的正北方向上取点M,在点B的正北方向上取点N,在直角三角形ACD中,求出CD 的长,在直角三角形BCD中,利用锐角三角函数定义求出BC的长,进而求出所求时间即可.第6页,共6页。

中考数学二轮复习4 试题

中考数学二轮复习4 试题

卜人入州八九几市潮王学校中考二轮复习(四)一、选择题: 1.2的相反数是〔〕 〔A 〕-2〔B 〕2〔C 〕21〔D 〕21- 2.计算)3(623m m-÷的结果是〔〕〔A 〕m 3-〔B 〕m 2-〔C 〕m 2〔D 〕m 33.直辖十年以来,全投入环保资金约3730000万元,那么3730000万元用科学记数法表示为〔〕 〔A 〕3×105万元〔B 〕3×106万元〔C 〕0.373×107万元〔D 〕373×104万元4.在以下各电视台的台标图案中,是轴对称图形的是〔〕 〔A 〕〔B 〕〔C 〕〔D 〕5.将如下列图的Rt △ABC 绕直角边AC 旋转一周,所得几何体的主视图是〔〕6.⊙O 1的半径r 为3cm ,⊙O 2的半径R 为4cm ,两圆的圆心距O 1O 2为1cm ,那么这两圆的位置关系是〔〕 〔A 〕相交〔B 〕内含〔C 〕内切〔D 〕外切 7.分式方程1321=-x 的解为〔〕〔A 〕2=x〔B 〕1=x 〔C 〕1-=x 〔D 〕2-=x8.一个等腰三角形两内角的度数之比为1∶4,那么这个等腰三角形顶角的度数为〔〕 〔A 〕200〔B 〕1200〔C 〕200或者1200〔D 〕3609.甲、乙两名学生进展射击练习,两人在一样条件下各射靶5次,射击成绩统计如下:从射击成绩的平均数评价甲、乙两人的射击程度,那么〔〕 〔A 〕甲比乙高〔B 〕甲、乙一样〔C 〕乙比甲高〔D 〕不能确定10.如图,在矩形ABCD 中,AB =3,BC =4,点P 在BC 边上运动,连结DP ,过点A 作AE⊥DP,垂足为E ,设DP =x ,AE =y ,那么能反映y 与x 之间函数关系的大致图象是〔〕〔A 〕〔B 〕〔C 〕〔D 〕 二、填空题:11.计算:=-xx 53。

12.,如图,AD 与BC 相交于点O ,AB∥CD,假设∠B=200,∠D=400,那么∠B OD为度。

中考二轮复习数学试卷

中考二轮复习数学试卷

一、选择题(本大题共10小题,每小题3分,共30分)1. 下列各数中,有理数是()A. √9B. √-9C. πD. √4/32. 下列函数中,一次函数是()A. y = 2x^2 - 3x + 1B. y = 3x + 5C. y = 5/xD. y = 2√x3. 若a > b,且a、b都是正数,则下列不等式成立的是()A. a^2 > b^2B. a^2 < b^2C. a^3 > b^3D. a^3 < b^34. 下列各式中,分母为有理数的是()A. √2/3B. √3/4C. √5/6D. √6/75. 已知等差数列{an}中,a1 = 3,公差d = 2,则第10项an的值为()A. 17B. 19C. 21D. 236. 下列函数中,反比例函数是()A. y = 2x + 3B. y = 2/xC. y = x^2 + 2D. y = 3x^2 - 2x + 17. 已知二次函数y = ax^2 + bx + c(a≠0)的图像开口向上,且顶点坐标为(1,-2),则a的取值范围是()A. a > 0B. a < 0C. a > -2D. a < -28. 下列各式中,完全平方公式应用正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab - b^29. 在直角坐标系中,点A(-3,4)关于原点对称的点的坐标是()A.(3,-4)B.(-3,-4)C.(4,-3)D.(-4,3)10. 下列各式中,根式化简正确的是()A. √(18) = 3√2B. √(36) = 6C. √(49) = 7D. √(81) = 9二、填空题(本大题共5小题,每小题5分,共25分)11. 若方程2x - 3 = 5的解为x = 4,则方程2(x + 1) - 3 = 5的解为x =__________。

中考数学第二轮复习专题(共34专题) 精品

中考数学第二轮复习专题(共34专题) 精品

九年级数学复习一—实数(1)一、中考要求:1.主要考查实数及其相关概念,如:相反数、绝对值、倒数、平方根、算术平方根、立方根、无理数、实数等概念。

会进行实数的简单四则运算。

2.了解实数与数轴上的点一一对应关系,会用数轴比较大小。

3.科学记数法,近似数和有效数字,会按照题目要求取近似数。

二、知识要点:1.实数的组成{}⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎨⎪⎪⎪⎭⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数有限小数或无限循环小数正分数实数分数负分数正无理数无理数无限不循环小数负无理数或 实数0⎧⎪⎨⎪⎩正实数负实数强调:(1)分数一定是有理数(2)无限不循环小数叫无理数.从形式上看有以下三类无理数:⑴含π的数:如π+2,31-π;⑵开不尽的方根:如39,2,sin60°;⑶无限不循环小数如1.212112…. 2.数轴:规定了原点、正方向和单位长度的直线叫做数轴。

实数与数轴上的点是 一 一对应的。

数轴上任一点对应的数总大于这个点左边的点对应的数。

3.相反数:只有符号不同的两个数,叫做互为相反数,零的相反数是零.从数轴上看,互为相反数的两个数所对应的点关于原点对称. 4.绝对值⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a注意:(1)若a a =,则a_0,若a a =-,则a_0。

(2)从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离(3) 绝对值 2x =的解为2±=x ;而22=-,不能写成 22±=-.5.倒数 实数a(a ≠0)的倒数是a1。

强调:零没有倒数. 6.科学记数法:10na ⨯,其中1≤a <10,n 为整数 有效数字:一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是 的数起,到 止,所有的数字都叫做这个数的有效数字.例如:15876保留两个有效数字是1.6×104,不能写成160007.⑴正数a 有______个平方根,它们互为________.其中正的平方根a 叫__________. 没有平方根,0的平方根为______. ⑵ 任何一个实数a 都有立方根,记为 .⑶ =2a ⎩⎨⎧<≥=)0( )0( a a a .(4)无理数的估算:记住常用的1.414≈,1.732≈, 2.236≈3.162≈8.零指数幂和负指数幂:0a = ,其中 ;pa-= ,其中 。

中考数学二轮复习平行四边形复习题含答案

中考数学二轮复习平行四边形复习题含答案

中考数学二轮复习平行四边形复习题含答案一、解答题1.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形;(2)若∠DEF=90°,DE=8,EF=6,当AF为时,四边形BCEF是菱形.2.已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交于BE的延长线于点F,且AF=DC,连接CF.(1)求证:D是BC的中点;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.3.如图,在平行四边形ABCD中,AB⊥AC,对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转一个角度α(0°<α≤90°),分别交线段BC,AD于点E,F,连接BF.(1)如图1,在旋转的过程中,求证:OE=OF;(2)如图2,当旋转至90°时,判断四边形ABEF的形状,并证明你的结论;(3)若AB=1,BC5BF=DF,求旋转角度α的大小.4.已知:在ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C 重合).以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,BD与CF的位置关系为__________;CF、BC、CD三条线段之间的数量关系____________________.(2)如图2,当点D在线段BC的延长线上时,其它条件不变,请你写出CF、BC、CD三条线段之间的数量关系并加以证明;(3)如图3,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC的两侧,其它条件不变:①请直接写出CF 、BC 、CD 三条线段之间的关系.②若连接正方形对角线AE 、DF ,交点为O ,连接OC ,探究AOC △的形状,并说明理由.5.如图.正方形ABCD 的边长为4,点E 从点A 出发,以每秒1个单位长度的速度沿射线AD 运动,运动时间为t 秒(t >0),以AE 为一条边,在正方形ABCD 左侧作正方形AEFG ,连接BF .(1)当t =1时,求BF 的长度;(2)在点E 运动的过程中,求D 、F 两点之间距离的最小值;(3)连接AF 、DF ,当△ADF 是等腰三角形时,求t 的值.6.已知,如图,在三角形ABC ∆中,20AB AC cm ==,BD AC ⊥于D ,且16BD cm =.点M 从点A 出发,沿AC 方向匀速运动,速度为4/cm s ;同时点P 由B 点出发,沿BA 方向匀速运动,速度为1/cm s ,过点P 的动直线//PQ AC ,交BC 于点Q ,连结PM ,设运动时间为()t s ()05t <<,解答下列问题:(1)线段AD =_________cm ;(2)求证:PB PQ =;(3)当t 为何值时,以P Q D M 、、、为顶点的四边形为平行四边形?7.类比等腰三角形的定义,我们定义:有三条边相等的凸四边形叫做“准等边四边形”. (1)已知:如图1,在“准等边四边形”ABCD 中,BC ≠AB ,BD ⊥CD ,AB =3,BD =4,求BC 的长;(2)在探究性质时,小明发现一个结论:对角线互相垂直的“准等边四边形”是菱形.请你判断此结论是否正确,若正确,请说明理由;若不正确,请举出反例;(3)如图2,在△ABC 中,AB =AC=2,∠BAC =90°.在AB 的垂直平分线上是否存在点P ,使得以A ,B ,C ,P 为顶点的四边形为“准等边四边形”. 若存在,请求出该“准等边四边形”的面积;若不存在,请说明理由.8.如图,ABC ADC ∆≅∆,90,ABC ADC AB BC ︒∠=∠==,点F 在边AB 上,点E 在边AD 的延长线上,且,DE BF BG CF =⊥,垂足为H ,BH 的延长线交AC 于点G .(1)若10AB =,求四边形AECF 的面积;(2)若CG CB =,求证:2BG FH CE +=.9.在正方形AMFN 中,以AM 为BC 边上的高作等边三角形ABC ,将AB 绕点A 逆时针旋转90°至点D ,D 点恰好落在NF 上,连接BD ,AC 与BD 交于点E ,连接CD ,(1)如图1,求证:△AMC ≌△AND ;(2)如图1,若3,求AE 的长;(3)如图2,将△CDF 绕点D 顺时针旋转α(090α<<),点C,F 的对应点分别为1C 、1F ,连接1AF 、1BC ,点G 是1BC 的中点,连接AG ,试探索1AG AF 是否为定值,若是定值,则求出该值;若不是,请说明理由.10.如图,四边形ABCD为矩形,C点在x轴上,A点在y轴上,D(0,0),B(3,4),矩形ABCD沿直线EF折叠,点B落在AD边上的G处,E、F分别在BC、AB边上且F(1,4).(1)求G点坐标(2)求直线EF解析式(3)点N在坐标轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,直接写出M点坐标;若不存在,请说明理由【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)详见解析;(2)145.【分析】(1)由AB=DE,∠A=∠D,AF=DC,易证得△ABC≌DEF(SAS),即可得BC=EF,且BC∥EF,即可判定四边形BCEF是平行四边形;(2)由四边形BCEF是平行四边形,可得当BE⊥CF时,四边形BCEF是菱形,所以连接BE,交CF与点G,由三角形DEF的面积求出EG的长,根据勾股定理求出FG的长,则可求出答案.【详解】(1)证明:∵AF=DC,∴AC=DF,在△ABC 和△DEF 中,AB DE A D AC DF =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEF (SAS ),∴BC =EF ,∠ACB =∠DFE ,∴BC ∥EF ,∴四边形BCEF 是平行四边形;(2)如图,连接BE ,交CF 于点G ,∵四边形BCEF 是平行四边形,∴当BE ⊥CF 时,四边形BCEF 是菱形,∵∠DEF =90°,DE =8,EF =6,∴DF 222286DE EF +=+10,∴S △DEF 1122EG DF EF DE =⋅=⋅, ∴EG 6824105⨯==, ∴FG =CG 22222418655EF EG ⎛⎫=-=-= ⎪⎝⎭, ∴AF =CD =DF ﹣2FG =10﹣365=145. 故答案为:145. 【点睛】本题考查了全等三角形的判定与性质、平行四边形的判定与性质、菱形的判定与性质以及勾股定理等知识.熟练掌握平行四边形的判定与性质是解题的关键.2.(1)见详解;(2)四边形ADCF 是矩形;证明见详解.【分析】(1)可证△AFE ≌△DBE ,得出AF=BD ,进而根据AF=DC ,得出D 是BC 中点的结论; (2)若AB=AC ,则△ABC 是等腰三角形,根据等腰三角形三线合一的性质知AD ⊥BC ;而AF 与DC 平行且相等,故四边形ADCF 是平行四边形,又AD ⊥BC ,则四边形ADCF 是矩形.【详解】(1)证明:∵E 是AD 的中点,∴AE=DE .∵AF ∥BC ,∴∠FAE=∠BDE ,∠AFE=∠DBE .在△AFE 和△DBE 中,FAE BDE AFE DBE AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DBE (AAS ).∴AF=BD .∵AF=DC ,∴BD=DC .即:D 是BC 的中点.(2)解:四边形ADCF 是矩形;证明:∵AF=DC ,AF ∥DC ,∴四边形ADCF 是平行四边形.∵AB=AC ,BD=DC ,∴AD ⊥BC 即∠ADC=90°.∴平行四边形ADCF 是矩形.【点睛】此题主要考查了全等三角形的判定和性质,等腰三角形的性质,平行四边形、矩形的判定等知识综合运用.解题的关键是熟练掌握矩形的判定方法,以及全等三角形的判定和性质进行证明.3.(1)证明见解析;(2)平行四边形,理由见解析;(3)45°【分析】(1)由平行四边形的性质得出∠OAF =∠OCE ,OA =OC ,进而判断出△AOF ≌△COE ,即可得出结论;(2)先判断出∠BAC =∠AOF ,得出AB ∥EF ,即可得出结论;(3)先求出AC =2,进而得出A =1=AB ,即可判断出△ABO 是等腰直角三角形,进一步判断出△BFD 是等腰三角形,利用等腰三角形的三线合一得出∠BOF =90°,即可得出结论.【详解】(1)证明:在▱ABCD 中,AD ∥BC ,∴∠OAF =∠OCE ,∵OA =OC ,∠AOF =∠COE ,∴△AOF ≌△COE (ASA ),∴OE =OF ;(2)当旋转角为90°时,四边形ABEF 是平行四边形,理由:∵AB⊥AC,∴∠BAC=90°,∵∠AOF=90°,∴∠BAC=∠AOF,∴AB∥EF,∵AF∥BE,∴四边形ABEF是平行四边形;(3)在Rt△ABC中,AB=1,BC∴AC=2,∴OA=1=AB,∴△ABO是等腰直角三角形,∴∠AOB=45°,∵BF=DF,∴△BFD是等腰三角形,∵四边形ABCD是平行四边形,∴OB=OD,∴OF⊥BD(等腰三角形底边上的中线是底边上的高),∴∠BOF=90°,∴∠α=∠AOF=∠BOF﹣∠AOB=45°.【点睛】此题是四边形综合题,主要考查了平行四边形的性质和判定,全等三角形的判定和性质,等腰三角形的判定和性质,等腰直角三角形的性质,旋转的性质,判断出△ABO是等腰直角三角形是解本题的关键.4.(1)BD⊥CF,CF=BC-CD;(2)CF=BC+CD,见解析;(3)①CF=CD−BC,②等腰三角形,见解析【分析】(1)先说明△ABC是等腰直角三角形,利用SAS即可证明△BAD≌△CAF,从而证得CF⊥BD、CF=BD,又 BD+CD=BC, CF=BC-CD;(2)先利用SAS即可证得△BAD≌△CAF,从而证得BD=CF,即可得到CF-CD=BC;(3)①与(2)同理可得BD=CF,然后结合图形可得CF=CD-BC;②先根据等腰直角三角形的性质得到∠ABC=∠ACB=45°,再根据邻补角的定义求出∠ABD=135°,再根据同角的余角相等求出∠BAD=∠CAF,然后利用“边角边”证明△BAD≌△CAF,得∠ACF=∠ABD,求出∠FCD=90°,然后根据直角三角形斜边上的中线等于斜边的一半求出OC=12DF,再根据正方形的对角线相等求出OC=OA,从而得到△AOC是等腰三角形.【详解】(1)解:∵∠B4C=90°,AB=AC ∴∠ABC=∠ACB=45°∵四边形ADEF是正方形∴AD=AF,∠DAF=90°∵∠BAC=∠BAD+∠DAC=90°,∠DAF=∠CAF+∠DAC=90°∴∠BAD=∠CAF在△BAD和△CAF中,AB=AC,∠BAD=∠CAF,AD=AF,∴△BAD≌△CAF(SAS),∴BD=CF,∠ABD=∠ACF=45°∴∠FCB=∠ACF+ ∠ACB=90°,即CF⊥BC∵BD+CD=BC∴CF+CD=BC;故答案为:BD⊥CF,CF=BC-CD;(2)证明:∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=∠BAC+∠DAC,∠CAF=∠DAF+∠DAC,∴∠BAD=∠CAF,在△BAD和△CAF中,AB=AC,∠BAD=∠CAF,AD=AF,∴△BAD≌△CAF(SAS),∴BD=CF,∵BD=BC+CD,∴CF=BC+CD;(3)①与(2)同理可得,BD=CF,所以,CF=CD−BC;②∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,则∠ABD=180∘−45°=135°,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAC=∠BAF+∠CAF=90°,∠DAF=∠BAD+∠BAF=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,AB=AC,∠BAD=∠CAF,AD=AF,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD=180°−45°=135°,∴∠FCD=∠ACF−∠ACB=90°,则△FCD为直角三角形,∵正方形ADEF中,O为DF中点,∴OC=1DF,2∵在正方形ADEF中,OA=1AE,AE=DF,2∴OC=OA,∴△AOC是等腰三角形.【点睛】本题考查了四边形的综合题,正方形的性质、全等三角形的判定与性质、等腰直角三角形的性质、等腰三角形的判定以及同角的余角相等的性质,在(1)证明三角形全等得到思路并推广到(2)(3)是解答本题的关键.5.(1)26(2)22(3)2或22或4【分析】(1)由勾股定理可求出答案;(2)延长AF,过点D作射线AF的垂线,垂足为H,设AH=DH=x,在Rt△AHD中,得出x2+x2=42,解方程求出x即可得出答案;(3)分AF=DF,AF=AD,AD=DF三种情况,由正方形的性质及直角三角形的性质可得出答案.【详解】解:(1)当t=1时,AE=1,∵四边形AEFG是正方形,∴AG=FG=AE=1,∠G=90°,∴BF=22+=22FG BG15+=26,(2)如图1,延长AF,过点D作射线AF的垂线,垂足为H,∵四边形AGFE是正方形,∴AE=EF,∠AEF=90°,∴∠EAF=45°,∵DH⊥AH,∴∠AHD =90°,∠ADH =45°=∠EAF ,∴AH =DH ,设AH =DH =x ,∵在Rt △AHD 中,∠AHD =90°,∴x 2+x 2=42,解得x 1=﹣22(舍去),x 2=22,∴D 、F 两点之间的最小距离为22;(3)当AF =DF 时,由(2)知,点F 与点H 重合,过H 作HK ⊥AD 于K ,如图2,∵AH =DH ,HK ⊥AD ,∴AK =2AD =2, ∴t =2. 当AF =AD =4时,设AE =EF =x , ∵在Rt △AEF 中,∠AEF =90°,∴x 2+x 2=42,解得x 1=﹣2(舍去),x 2=2,∴AE =2,即t =2.当AD =DF =4时,点E 与D 重合,t =4,综上所述,t 为2或2或4.【点睛】本题是四边形综合题,考查了勾股定理,正方形的性质,等腰三角形的性质等知识,解题的关键是熟练掌握正方形的性质,学会用分类讨论的思想思考问题.6.(1)12;(2)证明见详解;(3)125t s或t=4s . 【分析】(1)由勾股定理求出AD 即可;(2)由等腰三角形的性质和平行线的性质得出∠PBQ=∠PQB ,再由等腰三角形的判定定理即可得出结论;(3)分两种情况:①当点M 在点D 的上方时,根据题意得:PQ=BP=t ,AM=4t ,AD=12,得出MD=AD-AM=12-4t,由PQ∥MD,当PQ=MD时,四边形PQDM是平行四边形,得出方程,解方程即可;②当点M在点D的下方时,根据题意得:PQ=BP=t,AM=4t,AD=12,得出MD=AM-AD=4t-12,由PQ∥MD,当PQ=MD时,四边形PQDM是平行四边形,得出方程,解方程即可.【详解】(1)解:∵BD⊥AC,∴∠ADB=90°,∴2222=-=-=(cm),AD AB BD201612(2)如图所示:∵AB=AC,∴∠ABC=∠C,即∠PBQ=∠C,∵PQ∥AC,∴∠PQB=∠C,∴∠PBQ=∠PQB,∴PB=PQ;(3)分两种情况:①当点M在点D的上方时,如图2所示:根据题意得:PQ=BP=t,AM=4t,AD=12,∴MD=AD-AM=12-4t,∵PQ∥AC,∴PQ∥MD,∴当PQ=MD时,四边形PQDM是平行四边形,即:当t=12-4t,时,四边形PQDM是平行四边形,解得:125t=(s);②当点M在点D的下方时,如图3所示:根据题意得:PQ=BP=t,AM=4t,AD=12,∴MD=AM-AD=4t-12,∵PQ∥AC,∴PQ∥MD,∴当PQ=MD时,四边形PQDM是平行四边形,即:当t=4t-12时,四边形PQDM是平行四边形,解得:t=4(s);综上所述,当125t s=或t=4s时,以P、Q、D、M为顶点的四边形为平行四边形.【点睛】本题是四边形综合题目,考查了平行四边形的判定、等腰三角形的判定与性质、勾股定理以及分类讨论等知识;本题综合性强,熟练掌握平行四边形的判定方法,进行分类讨论是解决问题(3)的关键.7.(1)5;(2)正确,证明详见解析;(3)存在,有四种情况,面积分别是:7 1+2,31+2,13+22,33+22【分析】(1)根据勾股定理计算BC的长度,(2)根据对角线互相垂直平分的四边形是菱形判断,(3)有四种情况,作辅助线,将四边形分成两个三角形和一个四边形或两个三角形,相加可得结论.【详解】(1)∵BD⊥CD∴∠BDC=90°,BC>CD∵在“准等边四边形”ABCD中,BC≠AB,∴AB=AD=CD=3,∵BD=4,∴BC225CD BD+=,(2)正确.如图所示:∵AB =AD∴ΔABD 是等腰三角形.∵AC ⊥BD .∴AC 垂直平分BD .∴BC =CD∴CD =AB =AD =BC∴四边形 ABCD 是菱形.(3)存在四种情况,如图2,四边形ABPC 是“准等边四边形”,过C 作CF PE ⊥于F ,则∠CFE=90,∵EP 是AB 的垂直平分线,∴90AEF A ==∠∠ ,∴四边形AEFC 是矩形,在Rt ABC 中,2,2AB AC BC === , ∴22CF AE BE ===, ∵2AB PC ==∴2262PF PC CF =-= ∴BEP CFP AEFC S S S S =++四边形ABPC 矩形12621262222⎛⎫=⨯⨯++⨯+⨯⨯ ⎪ ⎪⎭33+= 如图4,四边形ABPC 是“准等边四边形”,∵2AP BP AC AB ==== , ∴ABP △是等边三角形, ∴2313(2)221422ABP ABC S S S =+=⨯+⨯⨯=+四边形ACBP ; 如图5,四边形ABPC 是“准等边四边形”,∵2AB BP BC === ,PE 是AB 的垂直平分线,∴,PD AB ⊥ E 是AB 的中点,∴1222BE AB == , ∴2222214222PE PB BE ⎛⎫=-=-= ⎪ ⎪⎝⎭∴ACBP 11417222122APB ABC S S S =+=⨯⨯+⨯⨯=+四边形 如图6,四边形ABPC 是“准等边四边形”,过P 作PF AC ⊥于F ,连接AP ,∵2AB AC PB ===∴6PE = ∴16123122222APB APC ABPC S SS +=+=⨯+=四边形【点睛】 本题考查了四边形综合题,矩形和菱形的判定和性质,“准等边四边形”的定义等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形和矩形解题,学会用分类讨论的思想解决问题,难度较大,属于中考压轴题.8.(1)100;(2)见解析.【分析】(1)先证明四边形ABCD 是正方形,再根据已知条件证明△BCF ≌△DCE ,即可得到四边形AECF 的面积=正方形ABCD 的面积;(2) 延长BG 交AD 于点M ,作AN ⊥MN ,连接FG ,先证明四边形BCEM 是平行四边形,得到BM=CE ,证明△BCF ≌△GCF ,得到BF=GF ,∠FGC=∠FBC=90︒,由AN ⊥MN ,得GM=2MN ,根据∠BAC=45︒,BC ∥AD 得到AM=BF ,再证△BFH ≌△AMN,得到GM=2FH , 由此得到结论.【详解】(1)∵9,0ABC AB BC ︒∠==,∴△ABC 是等腰直角三角形,∵ABC ADC ∆≅∆,∴AB=AD=BC=DC ,∴四边形ABCD 是菱形,∵90ABC ADC ︒∠=∠=,∴四边形ABCD 是正方形,∴∠BCD=90ABC ADC ︒∠=∠=,∴∠CDE=90ABC ADC ︒∠=∠=,∵BF=DE,BC=DC ,∴△BCF ≌△DCE ,∴四边形AECF 的面积=S 正方形ABCD =AB 2=102=100.(2)延长BG 交AD 于点M ,作AN ⊥MN ,连接FG,∵△BCF ≌△DCE ,∴∠BCF=∠DCE ,∴∠FCE=∠BCD=90︒,∵BG ⊥CF ,∴∠FHM=∠FCE=90︒,∴BM ∥CE,∵BC ∥AD,∴四边形BCEM 是平行四边形,∴BM=CE.∵CG CB =,BG ⊥CF ,∴∠BCH=∠GCH,∠CBM=∠CGB,∴△BCF ≌△GCF,∴BF=GF,∠FGC=∠FBC=90︒,∵∠BAC=45︒,∴∠AFG=∠BAC=45︒,∴FG=AG,∵BC ∥AD,∴∠CBM=∠AMB,∴∠AGM=∠CGB=∠CBM=∠AMB,∴AM=AG,∵AN ⊥MN ,∴GM=2MN,∵∠BAD=∠ANM=90︒,∴∠ABM+∠AMN=∠MAN+∠AMN=90︒,∴∠ABM=∠MAN,∵AM=AG=FG=BF,∠BHF=∠ANM=90︒,∴△BFH ≌△AMN,∴FH=MN,∴GM=2FH,∵BG+GM=CE,∴2BG FH CE +=.【点睛】此题是四边形的综合题,考查正方形的判定及性质,全等三角形的判定及性质,等腰三角形的性质,平行四边形的性质,解题中注意综合思想的方法积累.9.(1)见解析;(2)AE =33)(3)122AG AF =,理由见解析. 【分析】(1)运用四边形AMFN 是正方形得到判断△AMC,△AND 是Rt △,进一步说明△ABC 是等边三角形,在结合旋转的性质,即可证明.(2)过E 作EG ⊥AB 于G,在BC 找一点H ,连接DH,使BH=HD ,设AG =x ,则AE=2x 3x ,得到△GBE 是等腰直角三角形和∠DHF=30°,再结合直角三角形的性质,判定Rt △AMC ≌Rt △AND ,最后通过计算求得AE 的长;(3)延长F 1G 到M,延长BA 交11F C 的延长线于N,使得1GM FG =,可得GMB ∆≌11GFC ∆,从而得到111BM FC DF == 1BMG GFN ∠=,可知BM ∥1F N , 再根据题意证明ABM ∆≌1ADF ∆,进一步说明1AMF ∆是等腰直角三角形,然后再使用勾股定理求解即可.【详解】(1)证明:∵四边形AMFN 是正方形,∴AM=AN ∠AMC=∠N=90°∴△AMC,△AND 是Rt △∵△ABC 是等边三角形∴AB=AC∵旋转后AB=AD∴AC=AD∴Rt △AMC ≌Rt △AND(HL)(2)过E 作EG ⊥AB 于G,在BC 找一点H ,连接DH,使BH=HD ,设AG =x则AE=2x 3x易得△GBE 是等腰直角三角形∴BG=EG 3x∴AB=BC=31)x易得∠DHF=30°∴HD=2DF=3,HF=3∴BF=BH+HF=233∵Rt △AMC ≌Rt △AND(HL)∴易得3∴BC=BF-CF=233333=+∴(31)33x =∴3x =∴AE =223x =(3)12AG AF =; 理由:如图2中,延长F 1G 到M,延长BA 交11F C 的延长线于N,使得1GM FG =,则GMB ∆≌11GFC ∆,∴111BM FC DF == 1BMG GFN ∠=, ∴BM ∥1F N ,∴MBA N ∠=∠∵0190NAO OF D ∠=∠= 1AON DOF ∠=∠∴1N ADF ∠=∠∴1ABM ADF ∠=∠,∵AB AD =∴ABM ∆≌1ADF ∆(SAS )∴1AM AF = 1MAB DAF ∠=∠∴0190MAF BAD ∠=∠=∴1AMF ∆是等腰直角三角形∴1AG MF ⊥ 1AG GF = ∴12AF ∴12AG AF =【点睛】本题考查正方形的性质、三角形全等、以及勾股定理等知识点,综合性强,难度较大,但解答的关键是正确做出辅助线.10.(1)G (0,32)343y x =++3)234434366433,3,(1,423),3M M M +---+⎝⎝⎝. 【解析】【分析】1(1)由F (1,4),B (3,4),得出AF=1,BF=2,根据折叠的性质得到GF=BF=2,在Rt △AGF 中,利用勾股定理求出223AG GF AF -=,那么OG=OA-AG=4-,于是G (0,);(2)先在Rt △AGF中,由tan 1AG AFG AF ∠===,得出∠AFG=60°,再由折叠的性质得出∠GFE=∠BFE=60°,解Rt △BFE ,求出BE=BF tan60°,那么CE=4-2E (3,.设直线EF 的表达式为y=kx+b ,将E (3,F (1,4)代入,利用待定系数法即可求出直线EF 的解析.(3)因为M 、N 均为动点,只有F 、G 已经确定,所以可从此入手,结合图形,按照FG 为一边,N 点在x 轴上;FG 为一边,N 点在y 轴上;FG 为对角线的思路,顺序探究可能的平行四边形的形状.确定平行四边形的位置与形状之后,利用平行四边形及平移的性质求得M 点的坐标.【详解】解:(1)∵F (1,4),B (3,4),∴AF=1,BF=2,由折叠的性质得:GF=BF=2,在Rt △AGF 中,由勾股定理得,AG ==∵B (3,4),∴OA=4,∴∴G (0,(2)在Rt △AGF 中,∵tan 1AG AFG AF ∠===, ∴∠AFG=60°,由折叠的性质得知:∠GFE=∠BFE=60°,在Rt △BFE 中,∵BE=BF tan60°,.E (3,).设直线EF 的表达式为y=kx+b ,∵E (3,F (1,4),∴344k b k b ⎧+=-⎪⎨+=⎪⎩解得4k b ⎧=⎪⎨=+⎪⎩∴4y =++;(3)若以M 、N 、F 、G 为顶点的四边形是平行四边形,则分如下四种情况: ①FG 为平行四边形的一边,N 点在x 轴上,GFMN 为平行四边形,如图1所示. 过点G 作EF 的平行线,交x 轴于点N 1,再过点N :作GF 的平行线,交EF 于点M ,得平行四边形GFM 1N 1.∵GN 1∥EF ,直线EF 的解析式为343,(0,43)y x G =-++- ∴直线GN 1的解析式为34-3y x =-+,当y=0时,1433433,,0x N ⎛⎫--= ⎪ ⎪⎝⎭. ∵GFM 1N 1是平行四边形,且G (0,4-3),F (1,4),N 1(433- ,0), ∴M ,(43 ,3);②FG 为平行四边形的一边,N 点在x 轴上,GFNM 为平行四边形,如图2所示. ∵GFN 2M 2为平行四边形,∴GN ₂与FM 2互相平分.∴G (0,3N2点纵坐标为0∴GN :中点的纵坐标为32-, 设GN ₂中点的坐标为(x ,32.∵GN2中点与FM2中点重合,∴3 3432x-++=-∴x=4396+∵.GN2的中点的坐标为(4393,262+-),.∴N2点的坐标为(439+,0).∵GFN2M2为平行四边形,且G(0,4-3),F(1,4),N2(439+,0),∴M2(436,33+-);③FG为平行四边形的一边,N点在y轴上,GFNM为平行四边形,如图3所示.∵GFN3M3为平行四边形,.∴GN3与FM3互相平分.∵G(0,3N2点横坐标为0,.∴GN3中点的横坐标为0,∴F与M3的横坐标互为相反数,∴M3的横坐标为-1,当x=-1时,y=3(1)4343-+=+∴M3(-1,3④FG 为平行四边形的对角线,GMFN 为平行四边形,如图4所示.过点G 作EF 的平行线,交x 轴于点N 4,连结N 4与GF 的中点并延长,交EF 于点M 。

中考数学二轮复习题精选第四辑

中考数学二轮复习题精选第四辑

OA F DC EB ACEADCB中考数学二轮复习题精选(第四辑)1、用一只平地锅煎饼,每次只能放2只饼,煎一只需要2分钟,(规定正反各需1分钟),如果煎n(n>1)只饼,至少需__________分钟。

2、如图,O 是△ABC 的外心,OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,则OD :OE:OF=( )A 、a:b:cB 、1a : 1b : 1c C 、cosA:cosB:cosC; D 、sinA:sinB:sinC3、某校数学课外活动探究小组,在老师的引导下进一步研究了完全平方公式.结合实数的性质发现以下规律:对于任意正数a 、b , 都有a+b ≥2ab 成立.某同学在做一 个面积为3 600cm 2,对角线相互垂直的四边形风筝时,运用上述 规律,求得用来做对角线用的竹条至少需要准备x cm . 则x 的值是( ) (A) 1202 (B) 602 (C) 120 (D) 604、如图,一种圆管的横截面是同心圆的圆环面,大圆的弦AB 切小圆于点C ,大圆弦AD 交小圆于点E 和F .为了计算截面(图中阴影部分)的面积,甲、乙、丙三位同学分别用刻度尺测量出有关线段的长度.甲测得AB 的长,乙测得AC 的长,丙测得AD 的长和EF 的长.其中可以算出截面面积的同学是 A .甲、乙 B .丙C .甲、乙、丙D .无人能算出5、甲、乙、丙三人参加央视的“幸运52”.幸运的是,他们都得到了一件精美的礼物.其过程是这样的:墙上挂着两串礼物(如图),每次只能从其中一串的最下端取一件,直到礼物取完为止.甲第一个取得礼物,然后,乙、丙依次取得第2件、第3件礼物.事后他们打开这些礼物仔细比较发现礼物B 最精美,那么取得礼物B 可能性最大的是A .甲B .乙C .丙D .无法确定6、如图,直角梯形ABCD 中,AD∥BC,AB⊥BC,AD = 2,将腰CD 以D 为中心逆时针旋转90°至ED ,连接AE 、CE ,△ADE 的面积为3,则BC 的长为________________.7、点E 、F 分别在一张长方形纸条ABCD 的边AD 、BC 上,将这张纸条沿着直线EF 对折后如图,BF 与DE 交于点G ,如果∠BGD =30°,长方形纸条的宽AB =2cm ,那么这张纸条对折后的重叠部分的面积S △GEFCF(第7题图)=_________ cm 2.8、如图,有一个边长为6cm 的正三角形木块ABC ,点P 是CA 延长线上的一点,在A 、P 之间拉一条长为15cm 细丝,握住点P ,拉直细线,把它全部紧紧绕在△ABC 木块上(缠绕时木块不动),则点P 运动的路线长为(π取3.14,精确到0.1cm ) ( ) A 、28.3cm B 、28.2cm C 、56.5cm D 、56.6cm9、如图,已知菱形ABCD ,且AB=3,∠B=120°,O 1、O 2是对角线AC 上的两个动点,⊙O 1与AB 相切于E ,⊙O 2与CD 相切于F ,并且⊙O 1与⊙O 2外切,设⊙O 1的半径为R ,设⊙O 2的半径为r ,则R+r 的值为 。

2020中考数学二轮复习题精选(第四辑)

2020中考数学二轮复习题精选(第四辑)

OA BF DC EB ACEADCB2020中考数学二轮复习题精选(第四辑)〔第四辑〕1、用一只平地锅煎饼,每次只能放2只饼,煎一只需要2分钟,〔规定正反各需1分钟〕,假如煎n(n>1)只饼,至少需__________分钟。

2、如图,O 是△ABC 的外心,OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,那么OD :OE :OF=( )A 、a:b:cB 、1a : 1b : 1cC 、cosA:cosB:cosC;D 、sinA:sinB:sinC3、某校数学课外活动探究小组,在老师的引导下进一步研究了完全平方公式.结合实数的性质发觉以下规律:关于任意正数a 、b , 都有a+b ≥2ab 成立.某同学在做一 个面积为3 600cm 2,对角线相互垂直的四边形风筝时,运用上述 规律,求得用来做对角线用的竹条至少需要预备x cm . 那么x 的值是〔 〕 (A) 1202 (B) 602 (C) 120 (D) 60 4、如图,一种圆管的横截面是同心圆的圆环面,大圆的弦AB 切小圆于点C ,大圆弦AD 交小圆于点E 和F .为了运算截面(图中阴影部分)的面积,甲、乙、丙三位同学分不用刻度尺测量出有关线段的长度.甲测得AB 的长,乙测得AC 的长,丙测得AD 的长和EF 的长.其中能够算出截面面积的同学是A .甲、乙B .丙C .甲、乙、丙D .无人能算出 5、甲、乙、丙三人参加央视的〝幸运52”.幸运的是,他们都得到了一件精美的礼物.其过程是如此的:墙上挂着两串礼物〔如图〕,每次只能从其中一串的最下端取一件,直到礼物取完为止.甲第一个取得礼物,然后,乙、丙依次取得第2件、第3件礼物.事后他们打开这些礼物认真比较发觉礼物B 最精美,那么取得礼物B 可能性最大的是 A .甲 B .乙 C .丙 D .无法确定6、如图,直角梯形ABCD 中,AD∥BC,AB⊥BC,AD = 2,将腰CD 以D 为中心逆时针旋转90°至ED ,连接AE 、CE ,△ADE 的面积为3,那么BC 的长为________________.7、点E 、F 分不在一张长方形纸条ABCD 的边AD 、BC 上,将这张纸条沿着直线EF 对折后如图,BF 与DE 交于点G ,假如∠BGD =30°,长方形纸条的宽AB =2cm ,那么这张纸条对折后的重叠部分的面积S △GEF =_________ cm 2.8、如图,有一个边长为6cm 的正三角形木块ABC ,点P 是CA 延长线上的一点,在A 、P 之间拉一条长为15cm 细丝,握住点P ,拉直细线,把它全部紧紧绕在△ABC 木块上〔缠绕时木块不动〕,那么点P 运动的路线长为〔π取 3.14,精确到0.1cm 〕 〔 〕A 、28.3cmB 、28.2cmC 、56.5cmD 、56.6cm9、如图,菱形ABCD ,且AB=3,∠B=120°,O 1、O 2是对角线AC 上的两个动点,⊙O 1与AB 相切于E ,⊙O 2与CD 相切于F ,同时⊙O 1与⊙O 2外切,设⊙O 1的半径为R ,设⊙O 2的半径为r ,那么R+r的值为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009年中考数学二轮复习题精选(第四辑)
1、如图,地面上有不在同一直线上的A 、B 、C 三点,一只青蛙位于地面异于A 、B 、C 的P 点,第一步青蛙从P 跳到P 关于A 的对称点P 1,第二步从P 1跳到P 1关于B 的对称点P 2,第三步从P 2跳到P 2关于C 的对称点P 3,第四步从P 3跳到P 3关于A 的对称点P 4……以下跳法类推,青蛙至少跳几步回到原处P .( )
A .4
B .5
C .6
D .8
2、有一张矩形纸片ABCD ,其中AD=4cm ,上面有一个以AD 为直径的半园,正好与对边BC 相切,如图(甲)。

将它沿DE 折叠,是A 点落在BC 上,如图(乙)。

这时,半圆还露在外面的部分(阴影部分)的面积是( )
A 、(π-32)c m 2
B 、(
2
1
π+3)c m 2 C 、(34π-3)cm 2 D 、(3
2
π+3)c m 2
3、已知函数y =x -5,令x =21、1、23、2、25、3、27、
4、2
9、5,可得函数图象上的十个点.在这十个点中随机取两个点P (x 1,y 1)、Q (x 2,y 2),则P 、Q 两点在同一反比例函数图象上的概率是( ) (A )9
1 (B )
45
4 (C )
457 (D )5
2 4、编织一个底面周长为a 、高为b 的圆柱形花架,需用沿圆柱表面绕织一周的竹条若干根,如图中的A 1C 1B 1,A 2C 2B 2,… , 则每一根这样的竹条的长度最少是( )
A. 2
2
b a + B.b a
+2
C. 222b a +
D. b a +
5、已知一列数:1,―2,3,―4,5,―6,7,… 将这列数排成下列形式: 第1行 1
第2行 -2 3
第3行 -4 5 -6
第4行 7 -8 9 -10
A ·
·B
P ·
C ·
D 3
C 3
B 3
A 3D 2
C 2B 2
A 2
D 1
C 1
B 1
A 1
D
C B
A 第5行 11 -12 13 -14 15 … …
按照上述规律排下去,那么第10行从左边数第5个数等于( ) A .50 B.49 C.-50 D.-48 6、如图,已知四边形ABCD 的对角线AC=BD ,AC ⊥BD ,四边形A 1B 1C 1D 1的四个顶点A 1、B 1、C 1、D 1分别为AB 、BC 、CD 、DA 的中点,四边形A 2B 2C 2D 2的四个顶点A 2、B 2、C 2、D 2分别为A 1B 1、B 1C 1、C 1D 1、D 1A 1的中点,如果AC=2a ,那么S 四边形AnBnCnDn =________ 7、如图,在等腰△ABC 中,∠C =90º,BC=2 cm ,
如果以AC 的中点O 为旋转中心,将这个三角形旋转180º,点B 落在点B ´处,那么点B ´与点B
原来位置相距 .
8、刘先生买了一套住房,并对房屋进行装修,工人师傅用半
径为10 cm 的圆形地板打磨机打磨地板,如图所示阴影部分表示一个墙角打磨不到的面积,那么一个矩形房间的地板打磨不到的面积为__________平方厘米.(π取3) 9、如图,如果以正方形ABCD 的对角线AC 为边作第二个
正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去,…,已知正方形ABCD 的面积1s 为1,
按上述方法所作的正方形的面积依次为2s ,3s ,…..,n s (n 为正整数),那么第8个正方形的面积8s =_______。

10、一只昆虫从点A 处出发,以每分钟2米的速度在一条直线上运动,它先前进1米,再后退2米,又前进3米,再后退4米,……依此规律继续走下去,则运动1小时时这只昆虫与A 点相距___________米.
11、如图,将半径为1、圆心角为 60的扇形纸片AOB ,在直线l 上向右作无滑动的滚动至
A B
C D E
F G
H
I
J
扇形B
O
A'
'
'处,则顶点O经过的路线总长为。

12、(1)观察右边的一列数:
2
1

6
1

12
1

20
1

30
1

42
1
,……,根据其规律可知:
第7个数是,
132
1
是第个数,第n个数是n(为正整数)。

(2)观察图①~④中阴影部分构成的图案:
①②③④⑤⑥
请写出这四个图案都具有的两个共同特征:;。

并在图
⑤、⑥中各设计一个新的图案,使该图案同时具有图①~④中的两个共同性质。

13、如图,在直角坐标系中,直线x
y-
=6与
)0
(
4
>
=x
x
y的图像相交于点A、B,设点A的坐标为
)
,
(
1
1
y
x,那么长为x1,宽为y1的矩形面积和周长分
别为()
A、4,12
B、8,12
C、4,6
D、
8,6
14、某校九年级学生开展了丰富多彩的数学课题学习活动。

在探讨《美丽的正六边形》课题
(如图16-1),也可以分成八个全等的等腰梯形(如
图16-2)
的比值是.
15、图有一矩形纸片,已知长是宽的2倍。

把这个矩形分别剪成:
(1)两部分,使得能用它们拼成一个等腰三角形(图甲);
(2)两部分,使得能用它们拼成一个等腰梯形(图乙);
(3)三部分,使得能用它们拼成一个正方形(图丙);
请按上述要求在对应图中画出拼成图形的示意图。

16、在一张长为9厘米,宽为8厘米的矩形纸板上,剪下一个腰长为5厘米的等腰三角形(要
求等腰三角形的一个顶点与矩形的一个顶点重合,其余两个顶点在矩形的边上),请你计算剪下的等腰三角形的面积?
18、如图,在直角坐标系中,半径为2cm的动圆M与y轴交于A、B两点,且保持弦AB长为
定值2cm,圆M与x轴没有交点,且圆心M在第一象限内,P是x轴正半轴上一动点,MQ⊥AB于Q,且MP=3cm,设OA=y cm,OP=x cm。

(1)求x、y所满足的关系式,并写出x的取值范围;
(2)当∆MOP为等腰三角形时,求相应x的值;
(3)是否存在大于2的实数x,使∆MQO∽∆OMP?若存在,求出相应的值;若不存在,请说明理由。

参考答案
1、C
2、C
3、B
4、A
5、C
6、
21
21a n - 7、52cm 8、100
9、128 10、8 11、(略) 12、(略) 13、A 14、4
1
15、(略) 16、解:分三种情况计算:
⑴当AE=AF=5厘米时(图一)
2
25
21=
⋅∆AF AE S AEF
⑵当AE=EF=5厘米时(图2)
4352222=-=-=BE EF BF
∴102
1
=⋅=
∆BF AE S AEF ⑶当AE=EF=5厘米时(图3)
3452222=-=-=
DE EF DF
∴2
15
21=⋅=
∆DF AE S AEF 18、解:(1)过M 点作MN OA ⊥,垂足为N ,连结MA
2,2,AB MA M ==为圆心 1
12
AQ AB ∴=
=
1ON QM MN y ∴===+
在Rt MNP ∆中,3,MP PN x ==
22
(1)9(y x ∴+=--
1(0y x ∴=<<
(2)当MOP ∆为等腰三角形时 ①若3OP PM ==时,3x =
②若OM PM =时,x =
③若OM OP =时,有22
(1)3y x ++= 即229(3x x -+=
解得x =
或x = (3)当MQO ∆∽OMP ∆时,有
MQ OM
OM OP
=
即=
∴223(1),(1)3y y ++=+=-
29(3x ∴-=-
解得x =
x =
>∴不存在满足条件的实数x ,使MQO ∆∽OMP ∆。

相关文档
最新文档