2020-2021学年高考总复习数学(理)第二次模拟考试试题及答案解析六

合集下载

2020-2021学年高考数学专版三维二轮专题复习训练:6个解答题综合仿真练(六)_含解析

2020-2021学年高考数学专版三维二轮专题复习训练:6个解答题综合仿真练(六)_含解析

6个解答题综合仿真练(六)1.如图,在四棱锥E ­ABCD 中,平面EAB ⊥平面ABCD ,四边形ABCD 为矩形,EA ⊥EB ,点M ,N 分别是AE ,CD 的中点.求证:(1)MN ∥平面EBC ; (2)EA ⊥平面EBC.证明:(1)取BE 中点F ,连结CF ,MF , 又M 是AE 的中点, 所以MF 綊12AB.又N 是矩形ABCD 边CD 的中点,所以NC 綊12AB ,所以MF 綊NC ,所以四边形MNCF 是平行四边形,所以MN ∥CF. 又MN ⊄平面EBC ,CF ⊂平面EBC , 所以MN ∥平面EBC. (2)在矩形ABCD 中,BC ⊥AB ,又平面EAB ⊥平面ABCD ,平面ABCD ∩平面EAB =AB ,BC ⊂平面ABCD , 所以BC ⊥平面EAB.又EA ⊂平面EAB ,所以BC ⊥EA.又EA ⊥EB ,BC ∩EB =B ,EB ⊂平面EBC ,BC ⊂平面EBC ,所以EA ⊥平面EBC. 2.△ABC 中,AB ―→·AC ―→=27S △ABC (S △ABC 表示△ABC 的面积).(1)若BC =2,求△ABC 外接圆的半径; (2)若B -C =π4,求sin B 的值.解:(1)因为AB ―→·AC ―→=27S △ABC ,所以AB ·AC ·cos A =27·12AB ·AC ·sin A ,即cos A =17sin A ,又因为cos 2A +sin 2A =1,A ∈(0,π),解得sin A =7210,cos A =210.设△ABC 外接圆的半径为R ,则2R =BC sin A =27210=1027,所以R =527,即△ABC 外接圆的半径为527.(2)因为A +B +C =π,所以sin(B +C)=sin(π-A)=sin A =7210,cos(B +C)=cos(π-A)=-cos A =-210, 则cos 2B =cos[(B +C)+(B -C)] =cos ⎣⎢⎡⎦⎥⎤B +C +π4 =cos(B +C)cos π4-sin(B +C)sin π4=-210×22-7210×22=-45. 又cos 2B =1-2sin 2B ,所以sin 2B =1-cos 2B 2=1+452=910,又因为B ∈(0,π),所以sin B >0,所以sin B =31010.3.如图是一座桥的截面图,桥的路面由三段曲线构成,曲线AB 和曲线DE 分别是顶点在路面A ,E 的抛物线的一部分,曲线BCD 是圆弧,已知它们在接点B ,D 处的切线相同,若桥的最高点C 到水平面的距离H =6米,圆弧的弓高h =1米,圆弧所对的弦长BD =10米.(1)求BCD 所在圆的半径;(2)求桥底AE 的长.解:(1)设BCD 所在圆的半径为r(r>0), 由题意得r 2=52+(r -1)2,∴r =13. 答:BCD 所在圆的半径为13米.(2)以线段AE 所在直线为x 轴,线段AE 的中垂线为y 轴,建立如图所示的平面直角坐标系.∵H =6米,BD =10米,弓高h =1米,∴B(-5,5),D(5,5),C(0,6),设BCD 所在圆的方程为x 2+(y -b)2=r 2(r>0),则⎩⎨⎧ 6-b 2=r 2,52+5-b 2=r 2,∴⎩⎨⎧b =-7,r =13.∴BCD 的方程为x 2+(y +7)2=169(5≤y ≤6). 设曲线AB 所在抛物线的方程为y =a(x -m)2, ∵点B(-5,5)在曲线AB 上, ∴5=a(5+m)2,①又BCD 与曲线段AB 在接点B 处的切线相同,且BCD 在点B 处的切线的斜率为512,由y =a(x -m)2,得y ′=2a(x -m), ∴2a(-5-m)=512,∴2a(5+m)=-512,②由①②得m =-29, ∴A(-29,0),E(29,0).∴桥底AE =29-(-29)=58米. 答:桥底AE 的长58米.4.如图,已知椭圆E :x 2a 2+y 2b 2=1(a>b>0)的左顶点A(-2,0),且点⎝⎛⎭⎪⎫-1,32在椭圆上,F 1,F 2分别是椭圆的左、右焦点.过点A 作斜率为k(k>0)的直线交椭圆E 于另一点B ,直线BF 2交椭圆E 于点C.(1)求椭圆E 的标准方程;(2)若△CF 1F 2为等腰三角形,求点B 的坐标; (3)若F 1C ⊥AB ,求k 的值. 解:(1)由题意得⎩⎪⎨⎪⎧a =2,a 2=b 2+c 2,14+94b 2=1,解得⎩⎨⎧a =2,b =3,c =1.∴椭圆E 的标准方程为x 24+y23=1.(2)∵△CF 1F 2为等腰三角形,且k>0, ∴点C 在x 轴下方,若F 1C =F 2C ,则C(0,-3);若F 1F 2=CF 2,则CF 2=2,∴C(0,-3); 若F 1C =F 1F 2,则CF 1=2,∴C(0,-3), ∴C(0,-3).∴直线BC 的方程y =3(x -1),由⎩⎨⎧y =3x -1,x 24+y23=1,得⎩⎨⎧x =0,y =-3或⎩⎪⎨⎪⎧x =85,y =335.∴B ⎝ ⎛⎭⎪⎫85,335.(3)设直线AB 的方程为y =k(x +2),由⎩⎨⎧y =k x +2,x 24+y 23=1消去y ,得(3+4k 2)x 2+16k 2x +16k 2-12=0,∴x A ·x B =-2x B =16k 2-123+4k 2,∴x B =-8k 2+63+4k 2,∴y B =k(x B +2)=12k3+4k2,∴B ⎝ ⎛⎭⎪⎫-8k 2+63+4k2,12k 3+4k 2.若k =12,则B ⎝ ⎛⎭⎪⎫1,32,∴C ⎝⎛⎭⎪⎫1,-32,∵F 1(-1,0),∴kCF 1=-34,∴F 1C 与AB 不垂直; ∴k ≠12,∵F 2(1,0),kBF 2=4k 1-4k 2,kCF 1=-1k ,∴直线BF 2的方程为y =4k1-4k 2(x -1),直线CF 1的方程为y =-1k (x +1),由⎩⎪⎨⎪⎧y =4k1-4k 2x -1,y =-1k x +1,解得⎩⎨⎧x =8k 2-1,y =-8k.∴C(8k 2-1,-8k). 由点C 在椭圆上,得8k 2-124+-8k 23=1,即(24k 2-1)(8k 2+9)=0,即k 2=124,∵k>0,∴k =612. 5.数列{a n }的前n 项和为S n ,且满足S n =4-a n . (1)求证:数列{a n }为等比数列,并求通项公式a n ;(2)是否存在自然数c 和k ,使得a k +1S k -c >1成立?若存在,请求出c 和k 的值; 若不存在,请说明理由.解:(1)证明:当n =1时,S 1+a 1=4,得a 1=2,由S n =4-a n ,① 得S n +1=4-a n +1,②②-①得,S n +1-S n =a n -a n +1,即a n +1=12a n,所以a n +1a n =12,且a 1=2,所以数列{a n }是首项为2,公比为12的等比数列,且a n =12n -2.(2)法一:因为a n =12n -2,所以a k +1=12k -1,S k =4⎝ ⎛⎭⎪⎫1-12k ,要使a k +1S k -c =242k -1-c ·2k>1成立,只要使c -42k+6c -42k+4<0(*)成立, 当c ≥4时,不等式(*)不成立;(也可以根据S k =4⎝ ⎛⎭⎪⎫1-12k >c ,且2≤S k <4,所以c 的可能取值为0,1,2,3)当c =0时,1<2k<32,不存在自然数k 使(*)成立;当c =1时,43<2k<2,不存在自然数k 使(*)成立;当c =2时,2<2k<3,不存在自然数k 使(*)成立; 当c =3时,4<2k <6,不存在自然数k 使(*)成立. 综上所述,不存在自然数c ,k ,使a k +1S k -c >1成立.法二:要使a k +1S k -c >1,只要S k +1-cS k -c>2,即只要c -⎝ ⎛⎭⎪⎫32S k -2c -S k <0,因为S k =4⎝ ⎛⎭⎪⎫1-12k <4,所以S k -⎝ ⎛⎭⎪⎫32S k -2=2-12S k >0,故只要32S k -2<c <S k .①因为S k +1>S k , 所以32S k -2≥32S 1-2=1.又S k <4,故要使①成立,c 只能取2或3.当c =2时,因为S 1=2,所以当k =1时,c <S k 不成立,从而①不成立. 当k ≥2时,因为32S 2-2=52>c ,由S k <S k +1,得32S k -2<32S k +1-2,故当k ≥2时,32S k -2>c ,从而①不成立.当c =3时,因为S 1=2,S 2=3,所以当k =1,k =2时,c <S k 不成立,从而①不成立. 因为32S 3-2=134>c ,又32S k -2<32S k +1-2,所以当k ≥3时,32S k -2>c ,从而①不成立.综上所述,不存在自然数c ,k ,使a k +1S k -c >1成立.6.已知二次函数f(x)=ax 2+bx +1,g(x)=a 2x 2+bx +1. (1)若f(x)≥g(x)对任意实数x 恒成立,求实数a 的取值范围;(2)若函数f(x)有两个不同零点x 1,x 2,函数g(x)有两个不同零点x 3,x 4. ①若x 3<x 1<x 4,试比较x 2,x 3,x 4的大小关系;②若x 1=x 3<x 2,m ,n ,p ∈(-∞,x 1),f ′m g n =f ′n g p =f ′pg m ,求证:m =n =p.解:(1)因为f(x)≥g(x)对任意实数x 恒成立, 所以ax 2≥a 2x 2对任意实数x 恒成立, 所以a 2-a ≤0,解得0≤a ≤1.又由题意可得a ≠0,所以实数a 的取值范围为(0,1]. (2)①因为函数g(x)的图象开口向上,且其零点为x 3,x 4, 故g(x)<0,得x 3<x<x 4.因为x1,x2是f(x)的两个不同零点,故f(x1)=f(x2)=0.因为x3<x1<x4,故g(x1)<0=f(x1),于是(a2-a)x21<0.注意到x1≠0,故a2-a<0.因为g(x2)-f(x2)=(a2-a)x22<0,故g(x2)<f(x2)=0,从而x3<x2<x4,于是x3<x2<x4.②证明:记x1=x3=t,故f(t)=at2+bt+1=0,g(t)=a2t2+bt+1=0,于是(a-a2)t2=0.因为a≠0,且t≠0,故a=1.所以f(x)=g(x)且函数图象开口向上.所以当x∈(-∞,x1)时,f(x)单调递减,f′(x)单调递增且f′(x)<0,g(x)单调递减且g(x)>0.若m>n,则f′(n)<f′(m)<0,于是1g n >1g p>0,从而g(p)>g(n)>0,故n>p.同上,当n>p时,可推得p>m.所以p>m>n>p,矛盾.所以m>n不成立. 同理,n>m亦不成立.所以m=n.同理,n=p.所以m=n=p.。

2020-2021学年江苏省高考考前调研测试(5月)数学试卷及答案解析

2020-2021学年江苏省高考考前调研测试(5月)数学试卷及答案解析

高三考前调研测试试 题Ⅰ(全卷满分160分,考试时间120分钟)注意事项:1.答卷前,请考生务必将自己的学校、姓名、考试号等信息填写在答卷规定的地方. 2.试题答案均写在答题卷相应位置,答在其它地方无效.一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应位置) 1.已知{}{}0,1,2,2,4A B ==,则A B ⋃= ▲ .2.若复数z 满足(2)1i z i -=+,则复数z 在复平面上对应的点在第 ▲ 象限.3.随着社会的发展,食品安全问题渐渐成为社会关注的热点,为了提高学生的食品安全意识,某学校组织全校学生参加食品安全知识竞赛,成绩的频率分布直方图如下图所示,数据的分组依次为[)20,40,[)40,60,[)60,80,[)80,100,若该校的学生总人数为3000,则成绩不超过60分的学生人数大约为▲ .第5题4.在区间()0,5内任取一个实数m , 则满足34m <<的概率为 ▲ . 5.如图是一个算法流程图,则输出S 的值为 ▲ .6.函数1()()42x f x =-的定义域为 ▲ . 7.已知双曲线2221(0)20x y a a -=>的一条渐近线方程为2y x =,则该双曲线的焦距为 ▲ . 8.已知1sin ,(0,)32πθθ=∈,则tan 2θ= ▲ . 9.已知圆锥的侧面展开图是半径为4,圆心角等于2π的扇形,则这个圆锥的体积是 ▲ 10.已知圆22:2220(C x y ax y a +--+=为常数)与直线y x =相交于,A B 两点,若3ACB π∠=,则实数a = ▲ .11、设等差数列{}n a 的前n 项和为n S ,若53a =,1040S =, 则n nS 的最小值为 ▲ . 12.若动直线(x t t R =∈)与函数2()cos ()4f x x π=-,()3sin()cos()44g x x x ππ=++的图第3题象分别交于,P Q 两点,则线段PQ 长度的最大值为 ▲ .13.在ABC ∆中,D 、E 分别是AB 、AC 的中点,M 是直线DE 上的动点.若ABC ∆的面积为2,则2BC MC MB +⋅的最小值为 ▲ .14.已知函数221,(0,1]()1,(1,)kx x x f x kx x ⎧+-∈=⎨+∈+∞⎩有两个不相等的零点12,x x ,则1211x x +的最大值为▲ .二、解答题(本大题共6小题,共90分.解答应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分14分)在ABC ∆中,角A,B,C 的对边分别为a,b,c ,若2222a c ac b +=,10sin 10A =. ⑴求sin C 的值;⑵若2a =,求ABC ∆的面积. 16.(本小题满分14分)如图,在四棱锥P-ABCD 中,底面ABCD 为梯形,CD ∥AB ,AB=2CD , AC 交BD 于O ,锐角∆PAD 所在平面⊥底面ABCD ,PA ⊥BD ,点Q 在侧棱PC 上,且PQ=2QC. 求证:⑴PA ∥平面QBD ;QCDPO⑵BD ⊥ AD.17.(本小题满分14分)如图是一座桥的截面图,桥的路面由三段曲线构成,曲线AB 和曲线DE 分别是顶点在路面A 、E 的抛物线的一部分,曲线BCD 是圆弧,已知它们在接点B 、D 处的切线相同,若桥的最高点C 到水平面的距离6H =米,圆弧的弓高1h =米,圆弧所对的弦长10BD =米.(1)求弧¼BCD所在圆的半径; (2)求桥底AE 的长.18.(本小题满分16分)如图,已知椭圆2222:1(0)x y E a b a b +=>>的左顶点(2,0)A -,且点3(1,)2-在椭圆上,1F 、2F 分别是椭圆的左、右焦点。

2020-2021学年度山西省高考第一次模拟考试数学(理)试题及答案

2020-2021学年度山西省高考第一次模拟考试数学(理)试题及答案

理科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知单元素集合(){}2|210A x x a x =-++=,则a =( ) A . 0 B . -4 C . -4或1 D .-4或02. 某天的值日工作由4名同学负责,且其中1人负责清理讲台,另1人负责扫地,其余2人负责拖地,则不同的分工共有( )A .6种B . 12种C .18种D .24种3. 已知函数()sin f x x x =+,若()()()23,2,log 6a f b f c f ===,则,,a b c 的大小关系是( ) A .a b c << B .c b a << C .b a c << D .b c a <<4.在平行四边形ABCD 中,点E 为CD 的中点,BE 与AC 的交点为F ,设,AB a AD b ==u u u r u u u r ,则向量BF =u u u r( ) A .1233a b+B .1233a b -- C. 1233a b -+ D .1233a b - 5.已知抛物线2:C y x =,过点(),0P a 的直线与C 相交于,A B 两点,O 为坐标原点,若0OA OB <u u u r u u u rg,则a 的取值范围是 ( )A .(),0-∞B .()0,1 C. ()1,+∞ D .{}16.《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵.将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均匀直角三角形的四面体).在如图所示的堑堵111ABC A B C -中,15,3,4AA AC AB BC ====,则阳马111C ABB A -的外接球的表面积是 ( )A .25πB . 50π C. 100π D .200π7. 若,x y 满足约束条件44030y x x y x y ≤⎧⎪+-≥⎨⎪+-≤⎩,则1x y +的取值范围是( )A .5,113⎡⎤⎢⎥⎣⎦B .13,115⎡⎤⎢⎥⎣⎦ C. 3,115⎡⎤⎢⎥⎣⎦ D .15,113⎡⎤⎢⎥⎣⎦8. 执行如图所示的程序框图,如果输入的n 是10,则与输出结果S 的值最接近的是( )A . 28eB . 36e C. 45e D .55e9.在ABC ∆中,点D 为边AB 上一点,若3,32,3,sin 3BC CD AC AD ABC ⊥==∠=,则ABC ∆的面积是( ) A .922 B .1522C. 62 D .122 10.某市1路公交车每日清晨6:30于始发站A 站发出首班车,随后每隔10分钟发出下一班车.甲、乙二人某日早晨均需从A 站搭乘该公交车上班,甲在6:35-6:55内随机到达A 站候车,乙在6:50-7:05内随机到达A 站候车,则他们能搭乘同一班公交车的概率是 ( ) A .16 B . 14 C. 13 D .51211.如图,Rt ABC ∆中,,6,2AB BC AB BC ⊥==,若其顶点A 在x 轴上运动,顶点B 在y 轴的非负半轴上运动.设顶点C 的横坐标非负,纵坐标为y ,且直线AB 的倾斜角为θ,则函数()y f θ=的图象大致是 ( )A .B .C. D .12. 定义在R 上的函数()f x 满足()()f x f x -=,且当0x ≥时,()21,0122,1xx x f x x ⎧-+≤<=⎨-≥⎩,若对任意的[],1x m m ∈+,不等式()()1f x f x m -≤+恒成立,则实数m 的最大值是( ) A . -1 B .12-C. 13- D .13二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上13.在复平面内,复数()228z m m m i =+--对应的点位于第三象限,则实数m 的取值范围是. 14.已知tan 24πα⎛⎫+=-⎪⎝⎭,则1sin 2cos 2αα-=.15.过双曲线()2222:10,0x y E a b a b-=>>的右焦点,且斜率为2的直线与E 的右支有两个不同的公共点,则双曲线离心率的取值范围是.16.一个正方体的三视图如图所示,若俯视图中正六边形的边长为1,则该正方体的体积是.三、解答题 :共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17. 已知等比数列{}n a 中,*11211120,,,64n n n n a a n N a a a ++>=-=∈. (1)求{}n a 的通项公式;(2)设()()221log nn n b a =-g ,求数列{}n b 的前2n 项和2n T .18.某快递公司收取快递费用的标准是:重量不超过1kg 的包裹收费10元;重量超过1kg 的包裹,除1kg 收费10元之外,超过1kg 的部分,每超出1kg (不足1kg ,按1kg 计算)需再收5元.该公司将最近承揽的100件包裹的重量统计如下: 包裹重量(单位:kg )1234 5包裹件数43 30 15 8 4包裹件数范围 0100: 101200: 201300: 301400: 401500:包裹件数(近似处理)50 150 250 350 450 天数6630126(1)计算该公司未来3天内恰有2天揽件数在101400:之间的概率; (2)①估计该公司对每件包裹收取的快递费的平均值;②公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员3人,每人每天揽件不超过150件,工资100元.公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,并判断裁员是否对提高公司利润更有利?19.如图,在多面体ABCDEF 中,四边形ABCD 为菱形,//,AF DE AF AD ⊥,且平面BED ⊥平面ABCD .(1)求证:AF CD ⊥; (2)若0160,2BAD AF AD ED ∠===,求二面角A FB E --的余弦值.20.已知椭圆()2222:10x y E a b a b +=>>过点⎛ ⎝⎭,且两个焦点的坐标分别为()()1,0,1,0-. (1)求E 的方程;(2)若,,A B P 为E 上的三个不同的点,O 为坐标原点,且OP OA OB =+u u u r u u u r u u u r,求证:四边形OAPB 的面积为定值.21. 已知函数()()()221ln f x x m x x m R =-++∈. (1)当12m =-时,若函数()()()1ln g x f x a x =+-恰有一个零点,求a 的取值范围; (2)当1x >时,()()21f x m x <-恒成立,求m 的取值范围.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22. 【选修4-4:坐标系与参数方程】在平面直角坐标系xOy 中,曲线1C 的参数方程为:cos sin x y θθ=⎧⎨=⎩(θ为参数,[]0,θπ∈),将曲线1C 经过伸缩变换:x xy '=⎧⎪⎨'=⎪⎩得到曲线2C .(1)以原点为极点,x 轴的正半轴为极轴建立坐标系,求2C 的极坐标方程;(2)若直线cos :sin x t l y t αα=⎧⎨=⎩(t 为参数)与12,C C 相交于,A B两点,且1AB ,求α的值.23. 【选修4-5:不等式选讲】 已知函数()()1f x x a a R =--∈.(1)若()f x 的最小值不小于3,求a 的最大值;(2)若()()2g x f x x a a =+++的最小值为3,求a 的值.试卷答案一、选择题1-5: DBDCB 6-10: BABCA 11、12:AC 二、填空题13. ()2,0- 14. 12-15. (16.三、解答题17.解:(1)设等比数列{}n a 的公比为q ,则0q >, 因为12112n n n a a a ++-=,所以11111112n n n a q a q a q -+-=, 因为0q >,解得2q =, 所以17*122,64n n n a n N --=⨯=∈; (2)()()()()()()2227221log 1log 217nnnn n n b a n -=-=-=--g g g ,设7n c n =-,则()()21nn n b c =-g ,()()()()()()222222212342121234212n n n n n T b b b b b b c c c c c c --⎡⎤⎡⎤=++++++=-++-+++-+⎣⎦⎣⎦L L()()()()()()12123434212212n n n n c c c c c c c c c c c c --=-+++-++++-++L ()()2123421226272132132n n n n c c c c c c n n n n --+-⎡⎤⎣⎦=++++++==-=-L .18.解:(1)样本中包裹件数在101400:之间的天数为48,频率484605f ==, 故可估计概率为45, 显然未来3天中,包裹件数在101400:之间的天数X 服从二项分布,即43,5X B ⎛⎫ ⎪⎝⎭:,故所求概率为223414855125C ⎛⎫⨯⨯=⎪⎝⎭; (2)①样本中快递费用及包裹件数如下表:故样本中每件快递收取的费用的平均值为1530201525830415100+⨯+⨯+⨯+⨯=(元), 故该公司对每件快递收取的费用的平均值可估计为15元.②根据题意及(2)①,揽件数每增加1,可使前台工资和公司利润增加11553⨯=(元), 将题目中的天数转化为频率,得若裁员1人,则每天可揽件的上限为300件,公司每日揽件数情况如下:EY500.11500.12500.53000.23000.1235⨯+⨯+⨯+⨯+⨯=因9751000<,故公司将前台工作人员裁员1人对提高公司利润不利.19.(1)证明:连接AC,由四边形ABCD为菱形可知AC BD⊥,∵平面BED⊥平面ABCD,且交线为BD,∴AC⊥平面BED,∴AC ED⊥,又//AF DE,∴AF AC⊥,∵,AC AD AAF AD⊥=I,∴AF⊥平面ABCD,∵CD⊂平面ABCD,∴AF CD⊥;(2)解:设AC BD O=I,过点O作DE的平行线OG,由(1)可知,,OA OB OG两两互相垂直,则可建立如图所示的空间直角坐标系O xyz-,设()1202AF AD ED a a===>,则)()()()3,0,0,0,,0,3,0,2,0,,4A aB a F a a E a a-,所以()()()()3,,0,0,0,2,0,2,4,3,,2 AB a a AF a BE a a BF a a a=-==-=-u u u r u u u r u u u r u u u r,设平面ABF的法向量为(),,m x y z=u r,则m ABm AF⎧=⎪⎨=⎪⎩u r u u u rgu r u u u rg,即3020x yz⎧+=⎪⎨=⎪⎩,取3y=()3,0m=u r为平面ABF的一个法向量,同理可得()0,2,1n=r为平面FBE的一个法向量.则2315cos,525m n==⨯,又二面角A FB E--的平面角为钝角,则其余弦值为1520.解:(1)由已知得1,2c a ===∴1a b ==,则E 的方程为2212x y +=; (2)当直线AB 的斜率不为零时,可设:AB x my t =+代入2212x y +=得: ()2222220my mty t +++-=,设()()1122,,,A x y B x y ,则212122222,22mt t y y y y m m -+=-=++,()2282m t ∆=+-,设(),P x y ,由OP OA OB =+u u u r u u u r u u u r,得()121212122224,222mt ty y y x x x my t my t m y y t m m =+=-=+=+++=++=++, ∵点P 在椭圆E 上,∴()()22222221641222t m t m m+=++,即()()22224212t m m+=+,∴2242t m =+,AB ===原点到直线x my t =+的距离为d =∴四边形OAPB的面积:22122242OABS S AB d t ∆==⨯⨯===. 当AB的斜率为零时,四边形OAPB的面积112222S =⨯⨯=,∴四边形OAPB 21.解:(1)函数()g x 的定义域为()0,+∞,当12m =-时,()2ln g x a x x =+,所以()222a x a g x x x x +'=+=,①当0a =时,()2,0g x x x =>时无零点,②当0a >时,()0g x '>,所以()g x 在()0,+∞上单调递增, 取10ax e-=,则21110aa g e e --⎛⎫⎛⎫=-+< ⎪ ⎪⎝⎭⎝⎭,因为()11g =,所以()()010g x g <g ,此时函数()g x 恰有一个零点,③当0a <时,令()0g x '=,解得x =当0x <<()0g x '<,所以()g x 在⎛ ⎝上单调递减;当x >()0g x '>,所以()g x 在⎫+∞⎪⎪⎭上单调递增.要使函数()f x 有一个零点,则ln 02ag a ==即2a e =-,综上所述,若函数()g x 恰有一个零点,则2a e =-或0a >;(2)令()()()()22121ln h x f x m x mx m x x =--=-++,根据题意,当()1,x ∈+∞时,()0h x <恒成立,又()()()()1211221x mx h x mx m x x--'=-++=, ①若102m <<,则1,2x m ⎛⎫∈+∞⎪⎝⎭时,()0h x '>恒成立,所以()h x 在1,2m ⎛⎫+∞ ⎪⎝⎭上是增函数,且()1,2h x h m ⎛⎫⎛⎫∈+∞ ⎪ ⎪⎝⎭⎝⎭,所以不符题意. ②若12m ≥,则()1,x ∈+∞时,()0h x '>恒成立,所以()h x 在()1,+∞上是增函数,且()()()1,h x h ∈+∞,所以不符题意.③若0m ≤,则()1,x ∈+∞时,恒有()0h x '<,故()h x 在()1,+∞上是减函数,于是“()0h x <对任意()1,x ∈+∞,都成立”的充要条件是()10h ≤,即()210m m -+≤,解得1m ≥-,故10m -≤≤.综上,m 的取值范围是[]1,0-.22.解:(1)1C 的普通方程为()2210x y y +=≥,把,3x x y y ''==代入上述方程得,()22103y x y '''+=≥, ∴2C 的方程为()22103y x y +=≥, 令cos ,sin x y ρθρθ==, 所以2C 的极坐标方程为[]()2222230,3cos sin 2cos 1ρθπθθθ==∈++;(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为()R θαρ=∈,由1ρθα=⎧⎨=⎩,得1A ρ=, 由2232cos 1ρθθα⎧=⎪+⎨⎪=⎩,得B ρ=,11=,∴1cos 2α=±, 而[]0,απ∈,∴3πα=或23π. 23.解:(1)因为()()min 1f x f a ==-,所以3a -≥,解得3a ≤-,即max 3a =-;(2)()()212g x f x x a a x x a =+++=-++,当1a =-时,()310,03g x x =-≥≠,所以1a =-不符合题意,当1a <-时,()()()()()()()12,12,112,1x x a x a g x x x a x a x x a x -++≥-⎧⎪=--+≤<-⎨⎪---+<⎩,即()312,12,1312,1x a x a g x x a x a x a x -+≥-⎧⎪=---≤<-⎨⎪-+-<⎩, 所以()()min 13g x g a a =-=--=,解得4a =-,当1a >-时,同法可知()()min 13g x g a a =-=+=,解得2a =,综上,2a =或-4.。

2020-2021学年上海市嘉定区第二次高考模拟高三数学试卷及答案解析

2020-2021学年上海市嘉定区第二次高考模拟高三数学试卷及答案解析
即 是偶函数. ………………………………………………………………(1分)
所以当 时, , . ……………(2分)
当 时,函数 在 上递增,值域为 . ……………(3分)
当 时,函数 在 上递减,在 上递增, , ,值域为 . …………………………………(4分)
同理,当 时, , ,值域为 .…(5分)
13.命题“若 ,则 ”的逆否命题是………………………………( ).
(A)若 ,则 (B)若 ,则
(C)若 ,则 (D)若 ,则
14.如图,在正方体 中, 、 是
的三等分点, 、 是 的三等分点, 、
分别是 、 的中点,则四棱锥
的左视图是…………………………………………( ).
(A) (B) (C) (D)
(2) 由题意, ,所以数列 是首项为 ,公比为 的等比数列. ……………………………………………………………………(2分)
所以 .所以,
,即 的通项公式为 ( ). ………………(5分)
所以 ,故 是指数数列. …………………………(6分)
(3)因为数列 是指数数列,故对于任意的 ,有 ,令 ,则 ,所以 是首项为 ,公比为 的等比数列,所以, . …………………………………………………………………………(2分)
20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)
如果函数 的定义域为 ,且存在实常数 ,使得对于定义域内任意 ,都有 成立,则称此函数 具有“ 性质”.
(1)判断函数 是否具有“ 性质”,若具有“ 性质”,求出所有 的值的集合;若不具有“ 性质”,请说明理由;
(2)已知函数 具有“ 性质”,且当 时, ,求函数 在区间 上的值域;
6.设等差数列 的前 项和为 ,若 ,则 ___________.

2020-2021学年山西省太原市高考第二次模拟考试理综化学试卷及答案

2020-2021学年山西省太原市高考第二次模拟考试理综化学试卷及答案

山西省太原市高三第二次模拟考试理综化学试题可能用到的相对原子质量:H-1 C-12 O-16 S-32 Zn-65第一部分选择题(一)本题共13小题,每小题6分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

7、有机化学与材料、生活和环境密切相关。

下列说法正确的是A.利用植物秸秆可以生产香料乙酸乙酯B.从煤焦油中提取苯和苯的同系物,可采取的方法是萃取C.用石油裂解产物通过加聚反应直接制备PVC(聚氯乙烯)D.油脂在氢氧化钠溶液中加热发生皂化反应,最终生成高级脂肪酸和丙三醇8、1934年,科学家首先从人尿中分离出具有生长素效应的化学物质一吲哚乙酸,吲哚乙酸的结构如图所示。

下列有关吲哚乙酸的说法正确的是A.吲哚乙酸的分子式是C10H10NO2B.吲哚乙酸苯环上的二氯代物共有四种(不考虑立体异构)C.吲哚乙酸可以发生取代反应、加成反应、氧化反应和还原反应D. 1 mol吲哚乙酸与足量氢气发生加成反应时,最多可以消耗5 mol H29、短周期元素a、b、c、d分属三个周期,且原子序数依次增大。

其中b与a、c两种元素均可形成原子个数比为1:1或1:2的化合物,a、c的原子具有相同的最外层电子数,b、d形成的一种化合物在工业上是一种新型自来水消毒剂。

下列说法一定正确的是A. d的含氧酸是强酸B.离子半径:d>c>bC. b、c、d形成的化合物中只含离子键D. a、c形成的离子化合物具有还原性,可与水反应10、下列说法对应的离子方程式合理的是A.纯碱溶液去油污:CO32-+H2O=HCO3-+OH-B.泡沫灭火器工作原理:2Al3++3CO32-+3H2O= 2A1(OH)3↓+3CO2↑C.明矾溶液中加入过量的氢氧化钡溶液:Al3++SO42-+Ba2++4OH-=BaSO4↓+AlO2-+2H2OD.用石墨为电极,电解Pb(NO3)2和Cu(NO3)2的混合溶液制取PbO2时,阳极上发生的电极反应式:Pb2++2 H2O-2e-=PbO2+4H+11、下列实验操作、现象和对应的实验结论均正确的是12A.在铝土矿制备较高纯度A1的过程中常用到NaOH溶液、CO2气体、冰晶石B.石灰石、纯碱、石英、玻璃都属于盐,都能与盐酸反应C.在制粗硅时,被氧化的物质与被还原的物质的物质的量之比为2∶1D.黄铜矿(CuFeS2)与O2反应产生的Cu2S、FeO均是还原产物13、已知:25℃时,电离常数Kb(NH3·H2O)=1.8×l0-5,CH3COOH的电离常数与其相等。

2020-2021学年河南省六市联考高考数学二模试卷(理科)及答案解析

2020-2021学年河南省六市联考高考数学二模试卷(理科)及答案解析

2020-2021学年河南省六市联考高考数学二模试卷(理科)及答案解析河南省六市联考高考数学二模试卷(理科)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合A={x|x2+x≥0},B={x|5x≥5},则A∩B=()A.{x|x≥0或x≤﹣1} B.{x|x≥﹣1} C.{x|x≥1} D.{x|x≥0}2.已知=b+i(a,b∈R),其中i为虚数单位,则a+b=()A.﹣1 B.1 C.2 D.33.下列函数中既是奇函数又在区间,[﹣1,1]上单调递减的是()A.y=sinx B.y=﹣|x+1| C.D.y=(2x+2﹣x)4.下列说法错误的是()A.自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系B.在线性回归分析中,相关系数r的值越大,变量间的相关性越强C.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高D.在回归分析中,R2为0.98的模型比R2为0.80的模型拟合的效果好5.在明朝程大位《算法统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”.这首古诗描述的这个宝塔古称浮屠,本题说它一共有7层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?你算出顶层有()盏灯.A.2 B.3 C.5 D.66.执行如图所示的程序框图,若输入x=2,则输出y的值为()A.23 B.11 C.5 D.27.双曲线=1(a>0,b>0)的左、右焦点分别是F1,F2,过F1作倾斜角为45°的直线交双曲线右支于M点,若MF2垂直x轴,则双曲线的离心率为()A.B.C.1+D.1+8.已知实数x,y满足,则z=的最大值是()A.B.1 C.3 D.99.已知某几何体的三视图如图所示(图中数据单位:cm),则这个几何体的体积为()A.20cm3B.22cm3C.24cm3D.26cm310.在△ABC中,BC=7,cosA=,cosC=,若动点P满足=+(1﹣λ)(λ∈R),则点P的轨迹与直线AB、AC所围成的封闭区域的面积为()A.3B.4C.6D.1211.如图,在长方形ABCD中,AB=,BC=1,E为线段DC上一动点,现将△AED沿AE折起,使点D在面ABC上的射影K在直线AE 上,当E从D运动到C,则K所形成轨迹的长度为()A.B.C.D.12.已知函数f(x)=alnx﹣x2+bx存在极小值,且对于b的所有可能取值f(x)的极小值恒大于0,则a的最小值为()A.﹣e3B.﹣e2C.﹣e D.﹣二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13.将函数f(x)=sin(2x+φ)(|φ|<)的图象向左平移个单位后的图形关于原点对称,则函数f(x)在[0,]上的最小值为______.14.若y3(x+)n(n∈N*)的展开式中存在常数项,则常数项为______.15.已知等差数列{a n}的公差d≠0,且a1,a3,a13成等比数列,若a1=1,S n是数列{a n}前n项的和,则的最小值为______.16.已知抛物线y2=4x,过其焦点F作直线l交抛物线于A、B两点,M为抛物线的准线与x轴的交点,tan∠AMB=,则|AB|=______.三、解答题:本大题共5小题,满分60分,选做题3小题,考生任作一题,共10分17.已知△ABC中,内角A,B,C的对边分别为a,b,c.(1)若=,且sin2A(2﹣cosC)=cos2B+,求角C的大小;(2)若△ABC为锐角三角形,且A=,a=2,求△ABC面积的取值范围.18.微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间情况,某经销化妆品的微商在一广场随机采访男性、女性微信用户各50名.其中每天玩微信时间超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如表:微信控非微信控合计男性26 24 50女性30 20 50合计56 44 100(1)根据以上数据,能否有60%的把握认为“微信控”与“性别”有关?(2)现从参与调查的女性用户中按分层抽样的方法选出5人赠送营养面膜1份,求所抽取的5人中“微信控”和“非微信控”的人数;(3)从(2)中抽选取的5人中再随机抽取3人赠送价值200元的护肤品套装,记这3人中“微信控”的人数为X,试求X的分布列及数学期望.参考公式:,其中n=a+b+c+d.P(K20.50 0.40 0.25 0.05 0.025 0.010≥k0)k00.455 0.708 1.323 3.841 5.024 6.63519.在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是菱形,且AB=AA1,∠A1AB=∠A1AD=60°(1)求证:平面A1BD⊥平面A1AC;(2)若BD=,A1D=2,求二面角A1﹣BD﹣B1的大小.20.已知椭圆C:的左、右焦点分别为F1(﹣c,0)、F2(c,0),P为椭圆C 上任意一点,且最小值为0.(Ⅰ)求曲线C的方程;(Ⅱ)若动直线l2,l2均与椭圆C相切,且l1∥l2,试探究在x轴上是否存在定点B,使得点B到l1,l2的距离之积恒为1?若存在,请求出点B的坐标;若不存在,请说明理由.21.设函数f(x)=e x+ln(x+1)﹣ax.(1)当a=2时,判断函数f(x)在定义域内的单调性;(2)当x≥0时,f(x)≥cosx恒成立,求实数a的取值范围.[选修4-1几何证明选讲]22.自圆O外一点P引圆O的两条割线PAB和PDC,如图所示,其中割线PDC过圆心O.AB= OA,PD=,∠P=15°,(1)求∠PCB的大小;(2)分别球线段BC和PA的长度.[选修4-4坐标系与参数方程]23.已知曲线C的极坐标方程为ρsinθ+2ρcosθ=20,将曲线C1:(α为参数)经过伸缩变换后得到C2(1)求曲线C2的参数方程;(2)若点M在曲线C2上运动,试求出M到曲线C的距离d的取值范围.[选修4-5不等式选讲]24.已知函数f(x)=|x﹣5|﹣|x+a|(1)当a=3时,不等式f(x)≥k+2的解集不是R,求k的取值范围;(2)若不等式f(x)≤1的解集为{x|x≥},求a的值.参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合A={x|x2+x≥0},B={x|5x≥5},则A∩B=()A.{x|x≥0或x≤﹣1} B.{x|x≥﹣1} C.{x|x≥1} D.{x|x≥0}【考点】交集及其运算.【分析】分别求解一元二次不等式与指数不等式化简集合A,B,然后利用交集运算得答案.【解答】解:由x2+x≥0,得x≤﹣1或x≥0,∴A={x|x2+x≥0}={x|x≤﹣1或x≥0},由5x≥5,得x≥1,∴B={x|5x≥5}={x|x≥1},∴A∩B={x|x≤﹣1或x≥0}∩{x|x≥1}={x|x≥1}.故选:C.2.已知=b+i(a,b∈R),其中i为虚数单位,则a+b=()A.﹣1 B.1 C.2 D.3【考点】复数代数形式的混合运算.【分析】先化简复数,再利用复数相等,解出a、b,可得结果.【解答】解:由得a+2i=bi﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1 另解:由得﹣ai+2=b+i(a,b∈R),则﹣a=1,b=2,a+b=1.故选B.3.下列函数中既是奇函数又在区间,[﹣1,1]上单调递减的是()A.y=sinx B.y=﹣|x+1| C.D.y=(2x+2﹣x)【考点】奇偶性与单调性的综合.【分析】判断函数的奇偶性,以及函数的单调性推出结果即可.【解答】解:y=sinx是奇函数,但是,[﹣1,1]上单调增函数.y=﹣|x+1|不是奇函数,对于,因为f(﹣x)==﹣=﹣f(x),所以是奇函数,在[﹣1,1]上单调减函数,y=(2x+2﹣x)是偶函数,[﹣1,1]上单调递增.故选:C.4.下列说法错误的是()A.自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系B.在线性回归分析中,相关系数r的值越大,变量间的相关性越强C.在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高D.在回归分析中,R2为0.98的模型比R2为0.80的模型拟合的效果好【考点】相关系数.【分析】A根据相关关系的定义,判断命题A正确;B线性回归分析的相关系数r的绝对值越接近1,线性相关性越强,判断命题B错误;C一组数据拟合程度的好坏,是残差点分布的带状区域宽度越狭窄,其模型拟合的精度越高,判断命题C正确;D用相关指数R2刻画回归效果时,R2的值越大说明模型拟合效果越好,由此判断命题D正确.【解答】解:对于A,根据相关关系的定义,即可判断自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系是相关关系,∴命题A正确;对于B,线性回归分析中,相关系数r的绝对值越接近1,两个变量的线性相关性越强,反之,线性相关性越弱,∴命题B错误;对于C,残差图中,对于一组数据拟合程度的好坏评价,是残差点分布的带状区域宽度越狭窄,其模型拟合的精度越高,∴命题C正确;对于D,回归分析中,用相关指数R2刻画回归效果时,R2的值越大说明模型拟合效果越好,∴R2为0.98的模型比R2为0.80的模型拟合效果好,命题D正确.故选:B.5.在明朝程大位《算法统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”.这首古诗描述的这个宝塔古称浮屠,本题说它一共有7层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?你算出顶层有()盏灯.A.2 B.3 C.5 D.6【考点】等比数列的前n项和.【分析】由题意知第七层至第一层的灯的盏数构成一个以a为首项,以2为公比的等比数列,由等比数列的求和公式可得a的方程,解方程可得.【解答】解:设第七层有a盏灯,由题意知第七层至第一层的灯的盏数构成一个以a为首项,以2为公比的等比数列,∴由等比数列的求和公式可得=381,解得a=3,∴顶层有3盏灯,故选:B.6.执行如图所示的程序框图,若输入x=2,则输出y的值为()A.23 B.11 C.5 D.2【考点】程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体后,y=5,不满足输出条件,故x=5,再次执行循环体后,y=11,不满足输出条件,故x=11,再次执行循环体后,y=23,满足输出条件,故输出的y值为23,故选:A.7.双曲线=1(a>0,b>0)的左、右焦点分别是F1,F2,过F1作倾斜角为45°的直线交双曲线右支于M点,若MF2垂直x轴,则双曲线的离心率为()A.B.C.1+D.1+【考点】双曲线的简单性质.【分析】将x=c代入双曲线方程求出点M的坐标,通过解直角三角形列出三参数a,b,c的关系,求出离心率的值.【解答】解:将x=c代入双曲线的方程=1(a>0,b>0)得y=,即M(c,).在△MF1F2中tan45°==1即,解得e==+1.故选:C.8.已知实数x,y满足,则z=的最大值是()A.B.1 C.3 D.9【考点】简单线性规划.【分析】作出不等式组对应的平面区域要使z=最大,则x最小,y最大即可,利用数形结合进行求解即可.【解答】解:作出不等式组对应的平面区域如图:则x≥1,y≥1,要使z=的最大,则x最小,y最大即可,由图象知当z=经过点A时,z取得最大值,由,得x=1,y=3,即A(1,3),则z=的最大值是z==9,故选:D.9.已知某几何体的三视图如图所示(图中数据单位:cm),则这个几何体的体积为()A.20cm3B.22cm3C.24cm3D.26cm3【考点】由三视图求面积、体积.【分析】根据三视图可知几何体是组合体:左边是三棱锥、右边是直四棱锥,由三视图求出几何元素的长度,由柱体、锥体的体积公式求出几何体的体积.【解答】解:根据三视图可知几何体是组合体:左边是三棱锥、右边是直四棱锥,直四棱锥底面是一个边长为1.5、4的矩形,高是3,由俯视图得三棱锥的底面是直角三角形,直角边为1、4,由正视图得高即四棱锥的侧棱为3,∴几何体的体积V=+1.5×4×3=20(cm3)故选:A.10.在△ABC中,BC=7,cosA=,cosC=,若动点P满足=+(1﹣λ)(λ∈R),则点P的轨迹与直线AB、AC所围成的封闭区域的面积为()A.3B.4C.6D.12【考点】轨迹方程.【分析】根据向量加法的几何意义得出P点轨迹,利用正弦定理解出AB,得出△ABC的面积,从而求出围成封闭区域的面积.【解答】解:设=.∵=+(1﹣λ)=+(1﹣λ).∴C,D,P三点共线.∴P点轨迹为直线CD.在△ABC中,sinA=.sinC=.由正弦定理得AB==.sinB=sin (A+C )=sinAcosC+cosAsinC==.∴S △ABC ==.∴S △ACD =S △ABC =.故选:B .11.如图,在长方形ABCD 中,AB=,BC=1,E 为线段DC 上一动点,现将△AED 沿AE 折起,使点D 在面ABC 上的射影K 在直线AE 上,当E 从D 运动到C ,则K 所形成轨迹的长度为()A .B .C .D .【考点】轨迹方程.【分析】根据图形的翻折过程中变与不变的量和位置关系知,若连接D'K ,则D'KA=90°,得到K 点的轨迹是以AD'为直径的圆上一弧,根据长方形的边长得到圆的半径,求得此弧所对的圆心角的弧度数,利用弧长公式求出轨迹长度.【解答】解:由题意,将△AED 沿AE 折起,使平面AED ⊥平面ABC ,在平面AED 内过点D 作DK ⊥AE ,K 为垂足,由翻折的特征知,连接D'K ,则D'KA=90°,故K 点的轨迹是以AD'为直径的圆上一弧,根据长方形知圆半径是,如图当E 与C 重合时,AK==,取O 为AD ′的中点,得到△OAK 是正三角形.故∠K0A=,∴∠K0D'=,其所对的弧长为=,故选:D.12.已知函数f(x)=alnx﹣x2+bx存在极小值,且对于b的所有可能取值f(x)的极小值恒大于0,则a的最小值为()A.﹣e3B.﹣e2C.﹣e D.﹣【考点】利用导数研究函数的极值.【分析】求函数的导数,根据函数存在极小值等价为f′(x)=﹣x+b=0有解,转化为一元二次方程,根据一元二次方程根与判别式△之间的关系进行转化求解即可.【解答】解:函数的定义域为(0,+∞),则函数的导数f′(x)=﹣x+b,若函数f(x)=alnx﹣x2+bx存在极小值,则f′(x)=﹣x+b=0有解,即﹣x2+bx+a=0有两个不等的正根,则,得b>2,(a<0),由f′(x)=0得x1=,x2=,分析易得f(x)的极小值点为x1,∵b>2,(a<0),∴x1==∈(0,),则f(x)极小值=f(x1)=alnx1﹣x12+bx1=alnx1﹣x12+x12﹣a=alnx1+x12﹣a,设g(x)=alnx+x2﹣a,x∈(0,),f(x)的极小值恒大于0等价为g(x)恒大于0,∵g′(x)=+x=<0,∴g(x)在(0,)上单调递减,故g(x)>g()=aln﹣a≥0,得ln≤,即﹣a≤e3,则a≥﹣e3,故a的最小值为是﹣e3,故选:A二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13.将函数f(x)=sin(2x+φ)(|φ|<)的图象向左平移个单位后的图形关于原点对称,则函数f(x)在[0,]上的最小值为﹣.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】根据函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得φ的值,可得函数的解析式,再利用正弦函数的定义域和值域,求得函数f(x)在[0,]上的最小值.【解答】解:将函数f(x)=sin(2x+φ)(|φ|<)的图象向左平移个单位后,得到y=sin(2x++φ)的图象,再根据所得图象关于原点对称,可得+φ=kπ,即φ=kπ﹣,k∈Z,又|φ|<,∴φ=﹣,f(x)=sin(2x﹣).∵x∈[0,],∴2x﹣∈[﹣,],故当2x﹣=﹣时,f(x)取得最小值为﹣,故答案为:﹣.14.若y3(x+)n(n∈N*)的展开式中存在常数项,则常数项为84 .【考点】二项式系数的性质.【分析】写出二项式(x+)n的展开式的通项,可得y3(x+)n 的展开式的通项,再由x,y的指数为0求得n,r的值,则答案可求.【解答】解:二项式(x+)n的展开式的通项为,则要使y3(x+)n(n∈N*)的展开式中存在常数项,需,即n=9,r=3.∴常数项为:.故答案为:84.15.已知等差数列{a n}的公差d≠0,且a1,a3,a13成等比数列,若a1=1,S n是数列{a n}前n项的和,则的最小值为 4 .【考点】等差数列的性质.【分析】由等比中项的性质、等差数列的通项公式列出方程求公差d,代入等差数列的通项公式、前n项和公式求出a n、S n,代入利用分离常数法化简后,利用基本不等式求出式子的最小值.【解答】解:因为a1,a3,a13成等比数列,所以,又a1=1,所以(1+2d)2=1×(1+12d),解得d=2或d=0(舍去),所以a n=1+(n﹣1)×2=2n﹣1,S n==n2,则====﹣2≥2﹣2=4,当且仅当时取等号,此时n=2,且取到最小值4,故答案为:4.16.已知抛物线y2=4x,过其焦点F作直线l交抛物线于A、B两点,M为抛物线的准线与x轴的交点,tan∠AMB=,则|AB|= 16 .【考点】抛物线的简单性质.【分析】设AB方程y=k(x﹣1),与抛物线方程y2=4x联立,利用tan∠AMB=,建立k的方程,求出k,即可得出结论.【解答】解:焦点F(1,0),M(﹣1,0),设AB方程y=k (x﹣1),设A(x1,y1),B(x2,y2)∵tan∠AMB=,∴=,整理可得2k(x1﹣x2)=(x1+1)(x2+1)+y1y2…(*)y=k(x﹣1),与y2=4x联立可得k2x2﹣(2k2+4)x+k2=0 可得x1x2=1,x1+x2=+2,y1y2=﹣4代入(*)可得2k(x1﹣x2)=?,∴x1﹣x2=,∴(+2)2﹣4=()2,∴k=±,∴x1+x2=+2=14,∴|AB|==16.故答案为:16.三、解答题:本大题共5小题,满分60分,选做题3小题,考生任作一题,共10分17.已知△ABC中,内角A,B,C的对边分别为a,b,c.(1)若=,且sin2A(2﹣cosC)=cos2B+,求角C的大小;(2)若△ABC为锐角三角形,且A=,a=2,求△ABC面积的取值范围.【考点】余弦定理;正弦定理.【分析】(1)利用正弦定理化简可得tanA=tanB,于是C=π﹣2A,代入sin2A(2﹣cosC)=cos2B+化简可求得A;(2)利用正弦定理用B表示出b,c,得到面积S关于B的函数,求出B的范围,得出S的范围.【解答】解:(1)∵,,∴tanA=tanB,∴A=B.∴C=π﹣2A.∵sin2A(2﹣cosC)=cos2B+,∴sin2A(2+cos2A)=cos2A+,即(1﹣cos2A)(2cos2A+1)=cos2A+,解得cos2A=,∵A+B+C=π,A=B,∴A,∴cosA=,∴A=,C=π﹣2A=.(2)由正弦定理得,∴b=2sinB,c=2sinC=2sin()=2sinB+2cosB.∴S==2sin2B+2sinBcosB=sin2B﹣cos2B+1=sin(2B﹣)+1.∵△ABC为锐角三角形,∴,∴.∴<2B﹣<,∴2<sin(2B﹣)≤1+.∴△ABC面积的取值范围是(2,1+].18.微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间情况,某经销化妆品的微商在一广场随机采访男性、女性微信用户各50名.其中每天玩微信时间超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如表:微信控非微信控合计男性26 24 50女性30 20 50合计56 44 100(1)根据以上数据,能否有60%的把握认为“微信控”与“性别”有关?(2)现从参与调查的女性用户中按分层抽样的方法选出5人赠送营养面膜1份,求所抽取的5人中“微信控”和“非微信控”的人数;(3)从(2)中抽选取的5人中再随机抽取3人赠送价值200元的护肤品套装,记这3人中“微信控”的人数为X,试求X的分布列及数学期望.参考公式:,其中n=a+b+c+d.P(K20.50 0.40 0.25 0.05 0.025 0.010≥k0)k00.455 0.708 1.323 3.841 5.024 6.635【考点】独立性检验的应用.【分析】(1)计算K2的值,与临界值比较,可得结论;(2)从参与调查的女性用户中按分层抽样的方法,比例为3:2,选出5人赠送营养面膜1份,可得结论.(3)X的取值为1,2,3,再求出X取每一个值的概率,即可求得X的分布列和数学期望.【解答】解:(1)由题意,K2=≈0.65<0.708,∴没有60%的把握认为“微信控”与“性别”有关;(2)从参与调查的女性用户中按分层抽样的方法,比例为3:2,选出5人赠送营养面膜1份,所抽取的5人中“微信控”有3人,“非微信控”的人数有2人;(3)X=1,2,3,则P(X=1)==0.3,P(X=2)==0.6,P(X=3)==0.1.X的分布列为:X 1 2 3P 0.3 0.6 0.1X的数学期望为EX=1×0.3+2×0.6+3×0.1=1.8.19.在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是菱形,且AB=AA1,∠A1AB=∠A1AD=60°(1)求证:平面A1BD⊥平面A1AC;。

2020-2021学年高考总复习数学(文)二轮复习模拟试题及答案解析

2020-2021学年高考总复习数学(文)二轮复习模拟试题及答案解析

最新高考数学二模试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.设集合A={﹣1,0,1,2,3},B={x|x2﹣2x>0},则A∩B=()A.{3} B.{2,3} C.{﹣1,3} D.{0,1,2}2.命题“∀x∈R,x2﹣x+1>0”的否定是()A.∀x0∈R,x02﹣x0+1≤0 B.∀x0∈R,x02﹣x0+1≤0C.∃x0R,x02﹣x0+1≤0 D.∃x0∈R,x02﹣x0+1≤03.在复平面内,复数z与的对应点关于虚轴对称,则z=()A.2﹣i B.﹣2﹣i C.2+i D.﹣2+i4.在等差数列{a n}中,a7=8,前7项和S7=42,则其公差是()A.﹣B.﹣C.D.5.执行如图的程序框图,若输入的a=209,b=76,则输出的a是()A.3 B.57 C.19 D.766.函数y=4sin(ωx+φ)(ω>0,|φ|<π)部分图象如图,其中点A(,0),B(,0),则()A.ω=,φ=﹣B.ω=1,φ=﹣C.ω=,φ=﹣D.ω=1,φ=﹣7.已知函数f(x)=+a,若f(x)是奇函数,则a=()A.0 B.C.D.8.设实数x,y满足约束条件,则z=的取值范围是()A.[,1] B.[,] C.[,] D.[,]9.某几何体的三视图如图所示,该几何体的体积为()A.B.C.D.310.当x∈[1,2],函数y=x2与y=a x(a>0)的图象有交点,则a的取值范围是()A.[,2] B.[,] C.[,2] D.[,]11.在△ABC中,AB=2BC,以A,B为焦点,经过C的椭圆和双曲线的离心率分别为e1,e2,则()A.﹣=1 B.﹣=2C.﹣=1 D.﹣=212.已知圆C:x2+y2=1,点M(t,2),若C上存在两点A、B满足=,则t的取值范围是()A.[﹣2,2] B.[﹣,] C.[﹣3,3] D.[﹣5,5]二、填空题(共4小题,每小题5分,满分20分)13.曲线y=e x在点(0,1)处的切线方程是.14.已知||=,||=2,若(+)⊥,则与的夹角是.15.设S n是数列{a n}的前n项和,a n=4S n﹣3,则S4= .16.在三棱锥P﹣ABC中,△ABC与△PBC都是等边三角形,侧面PBC⊥底面ABC,AB=2,则该三棱锥的外接球的表面积为.三、简答题,本大题共70分,17-21题为必考题,22-24为选考题17.在△ABC中,角A,B,C所对的边分别为a,b,c,2(a2﹣b2)=2accosB+bc.(Ⅰ)求A;(Ⅱ)D为边BC上一点,BD=3DC,∠DAB=,求tanC.18.四棱锥P﹣ABCD的底面ABCD是平行四边形,PA=AD,M,N分别是棱PC,AB 的中点,且MN⊥CD.(Ⅰ)求证:PN=CN;(Ⅱ)直线MN与平面PBD相交于点F,求MF:FN.19.某市工业部门计划对所辖中小型工业企业推行节能降耗技术改造,对所辖企业是否支持改造进行问卷调查,结果如表:支持不支持合计中型企业80 40 120小型企业240 200 440合计320 240 560(Ⅰ)能否在犯错误的概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关?(Ⅱ)从上述320家支持节能降耗改造的中小企业中按分层抽样的方法抽出8家,然后从这8家中选出2家,求这2家中恰好中、小型企业各一家的概率K2=0.050 0.025 0.010P(K2≥k0)3.841 5.024 6.635K020.已知抛物线E:x2=4y,m,n是经过点A(a,﹣1)且倾斜角互补的两条直线,其中m与E有唯一公共点B,n与E相交于不同的两点C,D(Ⅰ)求m的斜率k的取值范围;(Ⅱ)当n过E的焦点时,求B到n的距离.21.设函数f(x)=x++alnx,其中a∈R.(Ⅰ)设f(x)的极小值点为x=t,请将a用t表示;(Ⅱ)记f(x)的极小值为g(t),证明:(1)g(t)=g();(2)函数y=g(t)恰有两个零点,且互为倒数.22.如图,AB为圆O的直径,PB,PC分别与圆O相切于B,C两点,延长BA,PC相交于点D.(Ⅰ)证明:AC∥OP;(Ⅱ)若CD=2,PB=3,求AB.23.在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ﹣)=,C与l有且仅有一个公共点.(Ⅰ)求a;(Ⅱ)O为极点,A,B为C上的两点,且∠AOB=,求|OA|+|OB|的最大值.24.设f(x)=|x﹣1|﹣2|x+1|的最大值为m.(Ⅰ)求m;(Ⅱ)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.设集合A={﹣1,0,1,2,3},B={x|x2﹣2x>0},则A∩B=()A.{3} B.{2,3} C.{﹣1,3} D.{0,1,2}考点:交集及其运算.专题:集合.分析:求出B中不等式的解集确定出B,找出A与B的交集即可.解答:解:由B中不等式变形得:x(x﹣2)>0,解得:x<0或x>2,即B={x|x<0或x>2},∵A={﹣1,0,1,2,3},∴A∩B={﹣1,3},故选:C.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.命题“∀x∈R,x2﹣x+1>0”的否定是()A.∀x0∈R,x02﹣x0+1≤0 B.∀x0∈R,x02﹣x0+1≤0C.∃x0R,x02﹣x0+1≤0 D.∃x0∈R,x02﹣x0+1≤0考点:命题的否定.专题:简易逻辑.分析:直接利用全称命题的否定是特称命题写出结果即可.解答:解:因为全称命题的否定是特称命题,所以,命题“∀x∈R,x2﹣x+1>0”的否定是:∃x0∈R,x02﹣x0+1≤0.故选:D.点评:本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.3.在复平面内,复数z与的对应点关于虚轴对称,则z=()A.2﹣i B.﹣2﹣i C.2+i D.﹣2+i考点:复数的代数表示法及其几何意义.专题:数系的扩充和复数.分析:化简复数为a+bi的形式,然后利用对称性求解即可.解答:解:==﹣2﹣i.在复平面内,复数z与的对应点关于虚轴对称,则z=2﹣i.故选:A.点评:本题考查复数的基本概念,复数的乘除运算,考查计算能力.4.在等差数列{a n}中,a7=8,前7项和S7=42,则其公差是()A.﹣B.﹣C.D.考点:等差数列的通项公式.专题:等差数列与等比数列.分析:直接由已知结合等差数列的通项公式和前n项和列式求得公差.解答:解:设等差数列{a n}的首项为a1,公差为d,由a7=8,S7=42,得,解得:.故选:D.点评:本题考查了等差数列的通项公式,考查了等差数列的前n项和,是基础题.5.执行如图的程序框图,若输入的a=209,b=76,则输出的a是()A.3 B.57 C.19 D.76考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的a,b,c的值,当b=0时满足条件b=0,退出循环,输出a的值为19.解答:解:模拟执行程序框图,可得a=209,b=76c=57a=76,b=57,不满足条件b=0,c=19,a=57,b=19不满足条件b=0,c=0,a=19,b=0满足条件b=0,退出循环,输出a的值为19.故选:C.点评:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模,本题属于基础知识的考查.6.函数y=4sin(ωx+φ)(ω>0,|φ|<π)部分图象如图,其中点A(,0),B(,0),则()A.ω=,φ=﹣B.ω=1,φ=﹣C.ω=,φ=﹣D.ω=1,φ=﹣考点:正弦函数的图象.专题:三角函数的图像与性质.分析:结合图象,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.解答:解:由函数的图象可得==﹣,∴ω=.再根据五点法作图可得•+φ=0,求得φ=﹣,故选:C.点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值,属于基础题.7.已知函数f(x)=+a,若f(x)是奇函数,则a=()A.0 B.C.D.考点:函数奇偶性的性质.专题:函数的性质及应用.分析:根据奇函数的定义f(x)+f(﹣x)=0,x=1,特殊值求解即可.解答:解:∵函数f(x)=+a,f(x)是奇函数,∴f(1)+f(﹣1)=0,即++a=0,2a=1,a=,故选:B点评:本题考查了奇函数的定义性质,难度很小,属于容易题.8.设实数x,y满足约束条件,则z=的取值范围是()A.[,1] B.[,] C.[,] D.[,]考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义以及斜率公式的计算,即可求z的取值范围.解答:解:作出不等式组对应的平面区域如图:(阴影部分).z=的几何意义是区域内的点(x,y)到定点D(﹣1,0)的斜率,由图象知BD的斜率最大,CD的斜率最小,由,解得,即B(,),即BD的斜率k==,由,解得,即C(,),即CD的斜率k==,即≤z≤,故选:D.点评:本题主要考查线性规划以及直线斜率的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.9.某几何体的三视图如图所示,该几何体的体积为()A.B.C.D.3考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:根据几何体的三视图,得出该几何体是三棱柱与三棱锥的组合体,结合图中的数据,求出它的体积.解答:解:根据几何体的三视图,得;该几何体是下部为直三棱柱,上部为直三棱锥的组合体;如图所示:∴该几何体的体积是V几何体=V三棱柱+V三棱锥=×2×1×1+××2×1×1=.故选:A.点评:本题考查了利用空间几何体的三视图求体积的应用问题,是基础题目.10.当x∈[1,2],函数y=x2与y=a x(a>0)的图象有交点,则a的取值范围是()A.[,2] B.[,] C.[,2] D.[,]考点:函数的零点与方程根的关系.专题:计算题;作图题;函数的性质及应用.分析:作函数y=x2与y=a x(a>0)在[1,2]上的图象,结合图象写出a的取值范围即可.解答:解:作函数y=x2与y=a x(a>0)在[1,2]上的图象如下,结合图象可得,a的取值范围是[,],故选:B.点评:本题考查了函数的图象的应用,属于基础题.11.在△ABC中,AB=2BC,以A,B为焦点,经过C的椭圆和双曲线的离心率分别为e1,e2,则()A.﹣=1 B.﹣=2C.﹣=1 D.﹣=2考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:以AB所在直线为x轴,其中点为原点,建立坐标系,再通过椭圆及双曲线的基本概念即可得到答案.解答:解:以AB所在直线为x轴,其中点为原点,建立坐标系,则A(﹣1,0),B(1,0),C(1+cosθ,sinθ),所以AC==,对于椭圆而言,2c=2,2a=AC+BC=+1,所以==;对于双曲线而言,2c=2,2a=AC﹣BC=﹣1,所以==;故﹣=﹣=1,故选:A.点评:本题考查椭圆、双曲线的概念,建立坐标系是解决本题的关键,属于中档题.12.已知圆C:x2+y2=1,点M(t,2),若C上存在两点A、B满足=,则t的取值范围是()A.[﹣2,2] B.[﹣,] C.[﹣3,3] D.[﹣5,5]考点:直线与圆的位置关系.专题:计算题;直线与圆.分析:确定A是MB的中点,利用圆x2+y2=1的直径是2,可得MA≤2,即点M到原点距离小于等于3,从而可得结论.解答:解:∵=,∴A是MB的中点,∵圆x2+y2=1的直径是2,∴MA≤2,∴点M到原点距离小于等于3,∴t2+4≤9,∴﹣≤t≤,故选:B.点评:本题考查向量知识的运用,考查直线与圆的位置关系,考查学生分析解决问题的能力,属于中档题.二、填空题(共4小题,每小题5分,满分20分)13.曲线y=e x在点(0,1)处的切线方程是x﹣y+1=0 .考点:利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:求出原函数的导函数,得到在x=0处的导数值,再求出f(0),然后直接写出切线方程的斜截式.解答:解:由f(x)=e x,得f′(x)=e x,∴f′(0)=e0=1,即曲线f(x)=e x在x=0处的切线的斜率等于1,曲线经过(0,1),∴曲线f(x)=e x在x=0处的切线方程为y=x+1,即x﹣y+1=0.故答案为:x﹣y+1=0.点评:本题考查利用导数研究曲线上某点的切线方程,曲线上某点处的导数值,就是曲线在该点处的切线的斜率,是中档题.14.已知||=,||=2,若(+)⊥,则与的夹角是150°.考点:平面向量数量积的运算.专题:平面向量及应用.分析:根据已知条件即可得到,所以根据进行数量积的运算即可得到3,所以求出cos<>=,从而便求出与的夹角.解答:解:∵;∴=;∴;∴与的夹角为150°.故答案为:150°.点评:考查两非零向量垂直的充要条件,以及数量积的计算公式,向量夹角的范围.15.设S n是数列{a n}的前n项和,a n=4S n﹣3,则S4= .考点:数列递推式.专题:等差数列与等比数列.分析:a n=4S n﹣3,当n=1时,a1=4a1﹣3,解得a1.当n≥2时,S n﹣S n﹣1=4S n﹣3,化为,利用等比数列的通项公式即可得出.解答:解:∵a n=4S n﹣3,∴当n=1时,a1=4a1﹣3,解得a1=1.当n≥2时,S n﹣S n﹣1=4S n﹣3,化为,∴数列是等比数列,首项为,公比为﹣,∴=.令n=4,则S4=+=.故答案为:.点评:本题考查了等比数列的通项公式,考查了变形能力,考查了推理能力与计算能力,属于中档题.16.在三棱锥P﹣ABC中,△ABC与△PBC都是等边三角形,侧面PBC⊥底面ABC,AB=2,则该三棱锥的外接球的表面积为20π.考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:由题意,等边三角形的高为3,设球心到底面的距离为x,则r2=22+x2=12+(3﹣x)2,求出x,可得r,即可求出该三棱锥的外接球的表面积.解答:解:由题意,等边三角形的高为3,设球心到底面的距离为x,则r2=22+x2=12+(3﹣x)2,所以x=1,所以该三棱锥的外接球的表面积为4πr2=20π.故答案为:20π.点评:本题考查求三棱锥的外接球的表面积,考查学生的计算能力,确定球的半径是关键.三、简答题,本大题共70分,17-21题为必考题,22-24为选考题17.在△ABC中,角A,B,C所对的边分别为a,b,c,2(a2﹣b2)=2accosB+bc.(Ⅰ)求A;(Ⅱ)D为边BC上一点,BD=3DC,∠DAB=,求tanC.考点:余弦定理;正弦定理.专题:三角函数的求值;解三角形.分析:(Ⅰ)由余弦定理可得2accosB=a2+c2﹣b2,代入已知等式整理得cosA=﹣,即可求得A.(Ⅱ)由已知可求∠DAC=,由正弦定理有=,又BD=3CD,可得3sinB=2sinC,由B=﹣C化简即可得解.解答:解:(Ⅰ)因为2accosB=a2+c2﹣b2,所以2(a2﹣b2)=a2+c2﹣b2+bc.…(2分)整理得a2=b2+c2+bc,所以cosA=﹣,即A=.…(4分)(Ⅱ)因为∠DAB=,所以AD=BD•sinB,∠DAC=.…(6分)在△ACD中,有=,又因为BD=3CD,所以3sinB=2sinC,…(9分)由B=﹣C得cosC﹣sinC=2sinC,…(11分)整理得tanC=.…(12分)点评:本题主要考查了余弦定理,正弦定理,同角三角函数关系式,三角函数恒等变换的应用,综合性较强,属于基本知识的考查.18.四棱锥P﹣ABCD的底面ABCD是平行四边形,PA=AD,M,N分别是棱PC,AB 的中点,且MN⊥CD.(Ⅰ)求证:PN=CN;(Ⅱ)直线MN与平面PBD相交于点F,求MF:FN.考点:点、线、面间的距离计算;空间中直线与平面之间的位置关系.专题:综合题;空间位置关系与距离.分析:(Ⅰ)取PD中点E,连AE,EM,证明MN⊥平面PCD,可得MN⊥PC,即可证明PN=CN;(Ⅱ)设M,N,C,A到平面PBD的距离分别为d1,d2,d3,d4,则d3=2d1,d4=2d2,由V A﹣PBD=V C﹣PBD,得d3=d4,则d1=d2,即可得出结论.解答:(Ⅰ)证明:取PD中点E,连AE,EM,则EM∥AN,且EM=AN,四边形ANME是平行四边形,MN∥AE.由PA=AD得AE⊥PD,故MN⊥PD.又因为MN⊥CD,所以MN⊥平面PCD,则MN⊥PC,PN=CN.…(6分)(Ⅱ)解:设M,N,C,A到平面PBD的距离分别为d1,d2,d3,d4,则d3=2d1,d4=2d2,由V A﹣PBD=V C﹣PBD,得d3=d4,则d1=d2,故MF:FN=d1:d2=1:1.…(12分)点评:本题考查线面垂直的证明,考查等体积的运用,考查学生分析解决问题的能力,属于中档题.19.某市工业部门计划对所辖中小型工业企业推行节能降耗技术改造,对所辖企业是否支持改造进行问卷调查,结果如表:支持不支持合计中型企业80 40 120小型企业240 200 440合计320 240 560业规模”有关?(Ⅱ)从上述320家支持节能降耗改造的中小企业中按分层抽样的方法抽出8家,然后从这8家中选出2家,求这2家中恰好中、小型企业各一家的概率K2=0.050 0.025 0.010P(K2≥k0)3.841 5.024 6.635K0考点:独立性检验.专题:计算题;概率与统计.分析:(Ⅰ)由题意知根据表中所给的数据,利用公式可求K2的值,从临界值表中可以知道K2>5.024,根据临界值表中所给的概率得到与本题所得的数据对应的概率是0.025,得到结论;(Ⅱ)由(Ⅰ)可知“支持”的企业中,中、小企业数之比为1:3,按分层抽样得到的8家中,中、小企业分别为2家和6家,列表确定基本事件,即可求出这2家中恰好中、小型企业各一家的概率.解答:解:(Ⅰ)K2=≈5.657,因为5.657>5.024,所以能在犯错概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关.…(4分)(Ⅱ)由(Ⅰ)可知“支持”的企业中,中、小企业数之比为1:3,按分层抽样得到的8家中,中、小企业分别为2家和6家,分别记为A1,A2,B1,B2,B3,B4,B5,B6,把可能结果列表如下:A1 A2 B1 B2 B3 B4 B5 B6A1﹣+ + + + + +A2﹣+ + + + + +B1 + + ﹣B2 + + ﹣B3 + + ﹣B4 + + ﹣B5 + + ﹣B6 + + ﹣结果总数是56,符合条件的有24种结果.(若用树状图列式是:)从8家中选2家,中、小企业恰各有一家的概率为=.…(12分)点评:本题考查独立性检验的应用,考查概率的计算,考查学生的计算能力,属于中档题.20.已知抛物线E:x2=4y,m,n是经过点A(a,﹣1)且倾斜角互补的两条直线,其中m与E有唯一公共点B,n与E相交于不同的两点C,D(Ⅰ)求m的斜率k的取值范围;(Ⅱ)当n过E的焦点时,求B到n的距离.考点:直线与圆锥曲线的关系.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)设直线m:y+1=k(x﹣a),n:y+1=﹣k(x﹣a),代入抛物线方程,运用判别式等于0和大于0,解不等式即可得到k的范围;(Ⅱ)k AF==﹣k,所以ak=2,确定B的坐标,再求出B到n的距离.解答:解:(Ⅰ)m:y+1=k(x﹣a),n:y+1=﹣k(x﹣a),分别代入x2=4y,得x2﹣4kx+4ka+4=0①,x2+4kx﹣4ka+4=0②,…(2分)由△1=0得k2﹣ka﹣1=0,由△2>0得k2+ka﹣1>0,…(4分)故有2k2﹣2>0,得k2>1,即k<﹣1或k>1.…(6分)(Ⅱ)F(0,1),k AF==﹣k,所以ak=2.…(8分)由△1=0得k2=ka+1=3,B(2k,k2),所以B到n的距离d===4 …(12分)点评:本题考查抛物线的方程和性质,主要考查直线和抛物线方程联立,运用判别式,考查运算化简的能力,属于中档题.21.设函数f(x)=x++alnx,其中a∈R.(Ⅰ)设f(x)的极小值点为x=t,请将a用t表示;(Ⅱ)记f(x)的极小值为g(t),证明:(1)g(t)=g();(2)函数y=g(t)恰有两个零点,且互为倒数.考点:利用导数研究函数的极值;函数的零点.专题:导数的综合应用.分析:(Ⅰ)求出导函数,利用f(x)的极小值点为x=t.推出t=>0,然后求解单调区间,a=﹣表示出a与t的关系.(Ⅱ)(ⅰ)由(Ⅰ)知f(x)的极小值,就是证明g()=g(t).(ⅱ)求出函数的g′(t)=﹣(1+)lnt,利用单调性以及极值,判断分别存在唯一的c ∈(1,1)和d∈(1,e2),推出g(c)=g(d)=0,化简即可.解答:解:(Ⅰ)f′(x)=1﹣+=.t=>0,…(2分)当x∈(0,t)时,f′(x)<0,f(x)单调递减;当x∈(t,+∞)时,f′(x)>0,f(x)单调递增.…(4分)由f′(t)=0得a=﹣t.…(6分)(Ⅱ)(ⅰ)由(Ⅰ)知f(x)的极小值为g(t)=t++(﹣t)lnt,则g()=+t+(t﹣)ln=t++(﹣t)lnt=g(t).…(8分)(ⅱ)g′(t)=﹣(1+)lnt,…(9分)当t∈(0,1)时,g′(t)>0,f(t)单调递增;当t∈(1,+∞)时,g′(t)<0,g(t)单调递减.…(10分)又g()=g(e2)=﹣e2<0,g(1)=2>0,分别存在唯一的c∈(1,1)和d∈(1,e2),使得g(c)=g(d)=0,且cd=1,所以y=g(t)有两个零点且互为倒数.…(12分)点评:本题考查函数的导数的综合应用,函数的单调性以及函数的极值的求法,函数的零点的应用,考查计算能力.22.如图,AB为圆O的直径,PB,PC分别与圆O相切于B,C两点,延长BA,PC相交于点D.(Ⅰ)证明:AC∥OP;(Ⅱ)若CD=2,PB=3,求AB.考点:与圆有关的比例线段;空间中直线与直线之间的位置关系.专题:选作题;立体几何.分析:(Ⅰ)利用切割线定理,可得PB=PC,且PO平分∠BPC,可得PO⊥BC,又AC ⊥BC,可得AC∥OP;(Ⅱ)由切割线定理得DC2=DA•DB,即可求出AB.解答:(Ⅰ)证明:因PB,PC分别与圆O相切于B,C两点,所以PB=PC,且PO平分∠BPC,所以PO⊥BC,又AC⊥BC,即AC∥OP.…(4分)(Ⅱ)解:由PB=PC得PD=PB+CD=5,在Rt△PBD中,可得BD=4.则由切割线定理得DC2=DA•DB,得DA=1,因此AB=3.…(10分)点评:本题考查切割线定理,考查学生分析解决问题的能力,正确运用切割线定理是关键.23.在极坐标系中,曲线C:ρ=2acosθ(a>0),l:ρcos(θ﹣)=,C与l有且仅有一个公共点.(Ⅰ)求a;(Ⅱ)O为极点,A,B为C上的两点,且∠AOB=,求|OA|+|OB|的最大值.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(I)把圆与直线的极坐标方程分别化为直角坐标方程,利用直线与圆相切的性质即可得出a;(II)不妨设A的极角为θ,B的极角为θ+,则|OA|+|OB|=2cosθ+2cos(θ+)=2cos(θ+),利用三角函数的单调性即可得出.解答:解:(Ⅰ)曲线C:ρ=2acosθ(a>0),变形ρ2=2ρacosθ,化为x2+y2=2ax,即(x﹣a)2+y2=a2.∴曲线C是以(a,0)为圆心,以a为半径的圆;由l:ρcos(θ﹣)=,展开为,∴l的直角坐标方程为x+y﹣3=0.由直线l与圆C相切可得=a,解得a=1.(Ⅱ)不妨设A的极角为θ,B的极角为θ+,则|OA|+|OB|=2cosθ+2cos(θ+)=3cosθ﹣sinθ=2cos(θ+),当θ=﹣时,|OA|+|OB|取得最大值2.点评:本题考查了把圆与直线的极坐标方程分别化为直角坐标方程、直线与圆相切的性质、极坐标方程的应用、三角函数的单调性,考查了推理能力与计算能力,属于中档题.24.设f(x)=|x﹣1|﹣2|x+1|的最大值为m.(Ⅰ)求m;(Ⅱ)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.考点:绝对值不等式的解法;基本不等式.专题:计算题;分类讨论;不等式的解法及应用.分析:(Ⅰ)运用零点分区间,讨论x的范围,去绝对值,由一次函数的单调性可得最大值;(Ⅱ)由a2+2b2+c2=(a2+b2)+(b2+c2),运用重要不等式,可得最大值.解答:解:(Ⅰ)当x≤﹣1时,f(x)=3+x≤2;当﹣1<x<1时,f(x)=﹣1﹣3x<2;当x≥1时,f(x)=﹣x﹣3≤﹣4.故当x=﹣1时,f(x)取得最大值m=2.(Ⅱ)a2+2b2+c2=(a2+b2)+(b2+c2)≥2ab+2bc=2(ab+bc),当且仅当a=b=c=时,等号成立.此时,ab+bc取得最大值=1.点评:本题考查绝对值不等式的解法和运用,主要考查分类讨论的思想方法和重要不等式的解法,属于中档题.。

考点3复数—2021届高考数学(理科旧高考)二轮专题复习首选卷

考点3复数—2021届高考数学(理科旧高考)二轮专题复习首选卷

考点三 复数一、选择题1.(2020·新高考卷Ⅰ)2-i1+2i=( ) A .1 B .-1 C .iD .-i2.(2020·云南昆明三模)在复平面内,复数z =2i1+i所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限D .第四象限3.(2020·青海西宁检测(一))已知a +b i(a ,b ∈R )是1-i1+i的共轭复数,则a +b =( )A .-1B .-12C .12D .14.(2020·全国卷Ⅰ)若z =1+i ,则|z 2-2z |=( ) A .0 B .1 C . 2D .25.(2020·陕西咸阳一模)设z ·i=2i +1,则z =( ) A .2+i B .2-i C .-2+iD .-2-i6.(2020·浙江宁波二模)已知复数z 是纯虚数,满足z (1-i)=a +2i(i 为虚数单位),则实数a 的值是( )A .1B .-1C .2D .-27.(2020·江西6月大联考)若复数z=1+2i1-i,则|z-|=( )A.10 B. 5C.105D.1028.(2020·北京高考)在复平面内,复数z对应的点的坐标是(1,2),则i·z =( )A.1+2i B.-2+iC.1-2i D.-2-i9.(2020·湖南师大附中高三摸底考试)满足条件|z+4i|=2|z+i|的复数z 对应点的轨迹是( )A.直线B.圆C.椭圆D.双曲线10.(2020·湖南长沙长郡中学高三下学期第一次高考模拟)在复平面内与复数z=2i1+i所对应的点关于虚轴对称的点为A,则A对应的复数为( )A.-1-i B.1-iC.1+i D.-1+i11.(2020·福建厦门高三毕业班5月质量检查)已知i是虚数单位,复数z 满足(1-i)z=2i,则复平面内与z对应的点在( )A.第一象限B.第二象限C.第三象限D.第四象限12.(2020·湖南长沙长郡中学二模)下面是关于复数z=2-1+i(i为虚数单位)的命题,其中假命题为( )A.|z|= 2 B.z2=2iC.z的共轭复数为1+i D.z的虚部为-113.(2020·陕西西安中学高三下学期仿真考试(一))已知复数z满足z-+i i=-1+i,则复数z=( )A.-1-2i B.-1+2iC.1-2i D.1+2i14.(2020·贵州贵阳高三6月适应性考试二)已知复数z满足z(1+i)=|-1+3i|,则复数z的共轭复数为( )A.-1+i B.-1-iC.1+i D.1-i15.(2020·山西太原五中高三3月模拟)已知复数z=23-i,则|z|=( )A.1 B.2C. 3 D. 216.(2020·陕西咸阳三模)设复数z满足|z-1+i|=1,z在复平面内对应的点为P(x,y),则点P的轨迹方程为( )A.(x+1)2+y2=1 B.(x-1)2+y2=1C.x2+(y-1)2=1 D.(x-1)2+(y+1)2=117.(2020·吉林长春高三质量监测二)若z=1+(1-a)i(a∈R),|z|=2,则a=( )A.0或2 B.0C.1或2 D.118.下面四个命题中,①复数z=a+b i(a,b∈R)的实部、虚部分别是a,b;②复数z满足|z+1|=|z-2i|,则z对应的点构成一条直线;③由向量a的性质|a|2=a2,可类比得到复数z的性质|z|2=z2;④i为虚数单位,则1+i+i2+…+i2020=1.正确命题的个数是( )A.0 B.1C.2 D.3二、填空题19.(2020·江苏高考)已知i是虚数单位,则复数z=(1+i)(2-i)的实部是________.20.(2020·广州高三综合测试一)已知复数z=22-22i,则z2+z4=________.21.若i为虚数单位,图中网格纸的小正方形的边长是1,复平面内点Z表示复数z,则复数z1-2i的共轭复数是________.22.(2020·全国卷Ⅱ)设复数z1,z2满足|z1|=|z2|=2,z1+z2=3+i,则|z1-z2|=________.一、选择题1.(2020·全国卷Ⅲ)若z-(1+i)=1-i,则z=( )A.1-i B.1+iC.-i D.i2.(2020·吉林东北师大附中第四次模拟)在复平面内,复数z对应的点与3+i对应的点关于实轴对称,则zi=( )A.-1-3i B.-3+iC.-1+3i D.-3-i3.(2020·山西太原一模)已知i是虚数单位,复数m+1+(2-m)i在复平面内对应的点在第二象限,则实数m的取值范围是( )A.(-∞,-1) B.(-1,2)C.(2,+∞) D.(-∞,-1)∪(2,+∞)4.(2020·河南洛阳第三次统一考试)已知复数z满足|z|=1,则|z-1+3 i|的最小值为( )A.2 B.1C. 3 D. 25.(2020·辽宁丹东二模)已知复数z=a2+1+i1-i-ai-1为纯虚数,则实数a=( )A.0 B.±1C.1 D.-16.(2020·山西大同模拟)如图,在复平面内,复数z1,z2对应的向量分别是OA→,OB→,若z1=zz2,则z的共轭复数z-=( )A.12+32i B.12-32iC.-12+32i D.-12-32i7.(2020·广州综合测试)若复数z满足方程z2+2=0,则z3=( )A.±2 2 B.-2 2C.-22i D.±22i8.(2020·吉林长春质量监测四模)设复数z=x+y i(x,y∈R),下列说法正确的是( )A.z的虚部是y iB.z2=|z|2C.若x=0,则复数z为纯虚数D.若z满足|z-i|=1,则z在复平面内对应点(x,y)的轨迹是圆二、填空题9.(2020·河南开封3月模拟)若z=1+2i,则4iz z--1=________.10.若2-i是关于x的实系数方程x2+bx+c=0的一个复数根,则bc=________.11.(2020·浙江杭州高三下学期仿真模拟)复数z满足:z1+i=a-i(其中a>0,i为虚数单位),|z|=10,则a=________;复数z的共轭复数z-在复平面上对应的点在第________象限.12.定义复数的一种新运算z1@z2=|z1|+|z2|2(等式右边为普通运算).若复数z=x+y i,i为虚数单位,且实数x,y满足x+y=22,则z-@z的最小值为________.三、解答题13.已知z1=cosα+isinα,z2=cosβ-isinβ,且z1-z2=513+1213i,求cos(α+β)的值.14.设z+1为关于x的方程x2+mx+n=0,m,n∈R的虚根,i为虚数单位.(1)当z=-1+i时,求m,n的值;(2)若n=1,在复平面上,设复数z所对应的点为P,复数2+4i所对应的点为Q,试求|PQ|的取值范围.考点三复数一、选择题1.(2020·新高考卷Ⅰ)2-i1+2i=( )A.1 B.-1 C.i D.-i 答案 D解析2-i1+2i =2-i 1-2i 1+2i 1-2i=-5i5=-i ,故选D. 2.(2020·云南昆明三模)在复平面内,复数z =2i1+i所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限答案 A 解析 ∵z =2i1+i=2i 1-i 1+i 1-i=1+i ,∴复数z 所对应的点的坐标为(1,1),位于第一象限.故选A.3.(2020·青海西宁检测(一))已知a +b i(a ,b ∈R )是1-i1+i的共轭复数,则a +b =( )A .-1B .-12C .12D .1答案 D 解析 1-i1+i=1-i 21+i 1-i=-2i2=-i ,∴a +b i =-(-i)=i ,∴a=0,b =1,∴a +b =1.故选D.4.(2020·全国卷Ⅰ)若z =1+i ,则|z 2-2z |=( ) A .0 B .1 C . 2 D .2答案 D解析 z 2=(1+i)2=2i ,则z 2-2z =2i -2(1+i)=-2,故|z 2-2z |=|-2|=2.故选D.5.(2020·陕西咸阳一模)设z ·i=2i +1,则z =( ) A .2+i B .2-i C .-2+i D .-2-i 答案 B解析 ∵z ·i=2i +1,∴z =2i +1i =2i -i 2i=2-i.故选B.6.(2020·浙江宁波二模)已知复数z 是纯虚数,满足z (1-i)=a +2i(i 为虚数单位),则实数a 的值是( )A .1B .-1C .2D .-2答案 C解析 设z =b i(b ∈R 且b ≠0),则z (1-i)=b i(1-i)=b +b i =a +2i ,所以⎩⎨⎧b =a ,b =2,解得a =2.故选C.7.(2020·江西6月大联考)若复数z =1+2i1-i ,则|z -|=( ) A.10 B . 5 C .105D .102答案 D解析 因为z =1+2i1-i =1+2i 1+i 1-i1+i=1+i +2i +2i 22=-1+3i 2,所以z -=-12-3i 2,则|z -|=14+94=102.故选D. 8.(2020·北京高考)在复平面内,复数z 对应的点的坐标是(1,2),则i·z =( )A .1+2iB .-2+iC .1-2iD .-2-i答案 B解析 由题意得z =1+2i ,∴i·z =i -2.故选B.9.(2020·湖南师大附中高三摸底考试)满足条件|z +4i|=2|z +i|的复数z 对应点的轨迹是( )A .直线B .圆C .椭圆D .双曲线 答案 B解析设复数z=x+y i(x,y∈R),则|z+4i|=|x+(y+4)i|=x2+y+42,|z+i|=|x+(y+1)i|=x2+y+12,结合题意有x2+(y +4)2=4x2+4(y+1)2,整理可得x2+y2=4.即复数z对应点的轨迹是圆.故选B.10.(2020·湖南长沙长郡中学高三下学期第一次高考模拟)在复平面内与复数z=2i1+i所对应的点关于虚轴对称的点为A,则A对应的复数为( ) A.-1-i B.1-iC.1+i D.-1+i 答案 D解析由题意得z=2i1+i=2i1-i1+i1-i=2i+22=1+i,在复平面内对应的点为(1,1),关于虚轴对称的点为(-1,1),所以其对应的复数为-1+i.故选D.11.(2020·福建厦门高三毕业班5月质量检查)已知i是虚数单位,复数z 满足(1-i)z=2i,则复平面内与z对应的点在( )A.第一象限B.第二象限C.第三象限D.第四象限答案 B解析∵(1-i)z=2i,∴z=2i1-i=2i1+i2=-1+i,∴复平面内与z对应的点在第二象限,故选B.12.(2020·湖南长沙长郡中学二模)下面是关于复数z=2-1+i(i为虚数单位)的命题,其中假命题为( )A.|z|= 2 B.z2=2iC.z的共轭复数为1+i D.z的虚部为-1 答案 C解析因为z=2-1+i=2-1-i-1+i-1-i=-2-2i2=-1-i,所以|z|=2,A为真命题;z2=2i,B为真命题;z的共轭复数为-1+i,C为假命题;z的虚部为-1,D为真命题.故选C.13.(2020·陕西西安中学高三下学期仿真考试(一))已知复数z 满足z -+i i=-1+i ,则复数z =( )A .-1-2iB .-1+2iC .1-2iD .1+2i答案 B解析 已知复数z 满足z -+i i=-1+i ,则z -=i(-1+i)-i =-1-2i ,故z =-1+2i ,故选B.14.(2020·贵州贵阳高三6月适应性考试二)已知复数z 满足z (1+i)=|-1+3i|,则复数z 的共轭复数为( )A .-1+iB .-1-iC .1+iD .1-i答案 C解析 由z (1+i)=|-1+3i|=-12+32=2,得z =21+i=21-i1+i 1-i=1-i ,∴z -=1+i.故选C.15.(2020·山西太原五中高三3月模拟)已知复数z =23-i,则|z |=( ) A .1 B .2 C . 3 D . 2答案 A 解析 因为z =23-i=23+i 3-i 3+i=3+i 2=32+12i ,所以|z |=⎝ ⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫122=1.故选A. 16.(2020·陕西咸阳三模)设复数z 满足|z -1+i|=1,z 在复平面内对应的点为P (x ,y ),则点P 的轨迹方程为( )A .(x +1)2+y 2=1B .(x -1)2+y 2=1C .x 2+(y -1)2=1D .(x -1)2+(y +1)2=1答案 D解析由题意得z=x+y i,则由|z-1+i|=1得|(x-1)+(y+1)i|=1,即x-12+y+12=1, 则(x-1)2+(y+1)2=1.故选D.17.(2020·吉林长春高三质量监测二)若z=1+(1-a)i(a∈R),|z|=2,则a=( )A.0或2 B.0C.1或2 D.1答案 A解析因为z=1+(1-a)i(a∈R),|z|=2,所以12+1-a2=2,解得a=0或a=2.故选A.18.下面四个命题中,①复数z=a+b i(a,b∈R)的实部、虚部分别是a,b;②复数z满足|z+1|=|z-2i|,则z对应的点构成一条直线;③由向量a的性质|a|2=a2,可类比得到复数z的性质|z|2=z2;④i为虚数单位,则1+i+i2+…+i2020=1.正确命题的个数是( )A.0 B.1C.2 D.3答案 D解析①复数z=a+b i(a,b∈R)的实部为a,虚部为b,故正确;②设z=a+b i(a,b∈R),由|z+1|=|z-2i|计算得2a+4b-3=0,故正确;③设z=a +b i(a,b∈R),当b≠0时,|z|2=z2不成立,故错误;④1+i+i2+…+i2020=1,故正确.二、填空题19.(2020·江苏高考)已知i是虚数单位,则复数z=(1+i)(2-i)的实部是________.答案 3解析∵复数z=(1+i)(2-i)=2-i+2i-i2=3+i,∴复数z的实部为3.20.(2020·广州高三综合测试一)已知复数z =22-22i ,则z 2+z 4=________.答案 -1-i解析 ∵z 2=⎝ ⎛⎭⎪⎫22-22i 2=12-i -12=-i ,∴z 4=(z 2)2=(-i)2=-1,∴z 2+z 4=-1-i.21.若i 为虚数单位,图中网格纸的小正方形的边长是1,复平面内点Z 表示复数z ,则复数z 1-2i的共轭复数是________.答案 -i解析 由题图可得z =2+i ,复数z1-2i =2+i 1-2i =-2i 2+i1-2i=i ,其共轭复数为-i.22.(2020·全国卷Ⅱ)设复数z 1,z 2满足|z 1|=|z 2|=2,z 1+z 2=3+i ,则|z 1-z 2|=________.答案 2 3解析 解法一:设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ), ∵|z 1|=|z 2|=2, ∴a 2+b 2=4,c 2+d 2=4,∵z 1+z 2=a +b i +c +d i =3+i , ∴a +c =3,b +d =1,∴(a +c )2+(b +d )2=a 2+c 2+2ac +b 2+d 2+2bd =4, ∴2ac +2bd =-4,∵z 1-z 2=a +b i -(c +d i)=a -c +(b -d )i , ∴|z 1-z 2|=a -c2+b -d2=a 2+c 2-2ac +b 2+d 2-2bd =a 2+b 2+c 2+d 2-2ac +2bd=4+4--4=2 3.解法二:∵|z 1|=|z 2|=2,可设z 1=2cos θ+2sin θ·i,z 2=2cos α+2sin α·i, ∴z 1+z 2=2(cos θ+cos α)+2(sin θ+sin α)·i=3+i , ∴⎩⎨⎧2cos θ+cos α=3,2sin θ+sin α=1.两式平方作和,得4(2+2cos θcos α+2sin θsin α)=4, 化简得cos θcos α+sin θsin α=-12.∴|z 1-z 2|=|2(cos θ-cos α)+2(sin θ-sin α)·i| =4cos θ-cos α2+4sin θ-sin α2=8-8cos θcos α+sin θsin α=8+4 =2 3.一、选择题1.(2020·全国卷Ⅲ)若z -(1+i)=1-i ,则z =( ) A .1-i B .1+i C .-i D .i答案 D解析 因为z -=1-i 1+i=1-i 21+i 1-i=-2i2=-i ,所以z =i.故选D. 2.(2020·吉林东北师大附中第四次模拟)在复平面内,复数z 对应的点与3+i 对应的点关于实轴对称,则zi=( )A .-1-3iB .-3+iC .-1+3iD .-3-i答案 A解析 ∵复数3+i 在复平面内对应的点为(3,1),复数z 在复平面内对应的点与3+i 对应的点关于实轴对称,∴复数z 在复平面内对应的点为(3,-1),∴z =3-i ,∴zi =3-ii=3-i·ii 2=-1-3i.故选A.3.(2020·山西太原一模)已知i 是虚数单位,复数m +1+(2-m )i 在复平面内对应的点在第二象限,则实数m 的取值范围是( )A .(-∞,-1)B .(-1,2)C .(2,+∞)D .(-∞,-1)∪(2,+∞)答案 A解析 因为复数m +1+(2-m )i 在复平面内对应的点在第二象限,所以⎩⎨⎧m +1<0,2-m >0,解得m <-1.所以实数m 的取值范围为(-∞,-1).故选A.4.(2020·河南洛阳第三次统一考试)已知复数z 满足|z |=1,则|z -1+3i|的最小值为( )A .2B .1C . 3D . 2答案 B解析 设z =x +y i(x ∈R ,y ∈R ),由|z |=1得x 2+y 2=1,又|z -1+3i|=x -12+y +32表示定点(1,-3)与圆上任一点(x ,y )间的距离.则由几何意义得|z -1+3i|min =0-12+[0--3]2-1=2-1=1,故选B.5.(2020·辽宁丹东二模)已知复数z =a 2+1+i 1-i -ai-1为纯虚数,则实数a =( )A .0B .±1C .1D .-1答案 C解析 ∵z =a 2+1+i 1-i -ai -1=a 2+1+i 21-i 1+i-a i i2-1=a 2-1+(a +1)i 为纯虚数,∴⎩⎨⎧a 2-1=0,a +1≠0,解得a =1.故选C.6.(2020·山西大同模拟)如图,在复平面内,复数z 1,z 2对应的向量分别是OA →,OB →,若z 1=zz 2,则z 的共轭复数z -=( )A.12+32i B .12-32i C .-12+32iD .-12-32i答案 A解析 由题图可知z 1=1+2i ,z 2=-1+i ,所以z =z 1z 2=1+2i -1+i=1+2i -1-i -1+i-1-i=1-3i 2,所以z -=12+32i.故选A. 7.(2020·广州综合测试)若复数z 满足方程z 2+2=0,则z 3=( ) A .±2 2 B .-2 2 C .-22i D .±22i答案 D解析 z 2+2=0,即z 2=-2,解得z =±2i.所以z 3=z ·z 2=(±2i)·(-2)=±22i ,故选D.8.(2020·吉林长春质量监测四模)设复数z =x +y i(x ,y ∈R ),下列说法正确的是( )A .z 的虚部是y iB .z 2=|z |2C .若x =0,则复数z 为纯虚数D .若z 满足|z -i|=1,则z 在复平面内对应点(x ,y )的轨迹是圆 答案 D解析 z 的实部为x ,虚部为y ,所以A 错误;z 2=x 2-y 2+2xy i ,|z |2=x 2+y 2,所以B 错误;当x =0,y =0时,z 为实数,所以C 错误;由|z -i|=1得|x +y i -i|=1,所以|x +(y -1)i|=1,所以x 2+(y -1)2=1,所以D 正确.故选D.二、填空题9.(2020·河南开封3月模拟)若z =1+2i ,则4iz z --1=________. 答案 i 解析4iz z --1=4i1+2i1-2i-1=i.10.若2-i 是关于x 的实系数方程x 2+bx +c =0的一个复数根,则bc =________.答案 -20解析 把复数根2-i 代入方程中,得(2-i)2+b (2-i)+c =0,即3+2b +c -(4+b )i =0,所以⎩⎨⎧3+2b +c =0,4+b =0,解得⎩⎨⎧b =-4,c =5,故bc =-20.11.(2020·浙江杭州高三下学期仿真模拟)复数z 满足:z 1+i=a -i(其中a >0,i 为虚数单位),|z |=10,则a =________;复数z 的共轭复数z -在复平面上对应的点在第________象限.答案 2 四 解析 由z 1+i=a -i 可得,z =(a -i)(1+i)=a +1+(a -1)i ,所以|z |=a +12+a -12=10,左右同时平方得,a 2+2a +1+a 2-2a +1=10,所以a 2=4.又因为a >0,所以a =2.所以z =3+i ,z -=3-i ,所以z -在复平面上对应的点为(3,-1),位于第四象限.12.定义复数的一种新运算z 1@z 2=|z 1|+|z 2|2(等式右边为普通运算).若复数z =x +y i ,i 为虚数单位,且实数x ,y 满足x +y =22,则z -@z 的最小值为________.答案 2解析 z -@z =|z -|+|z |2=2|z |2=|z |=x 2+y 2.因为x +y =22,所以z -@z = 2x -22+4,故当x =2时,z -@z 取最小值2. 三、解答题13.已知z 1=cos α+isin α,z 2=cos β-isin β,且z 1-z 2=513+1213i ,求cos(α+β)的值.解 ∵z 1=cos α+isin α,z 2=cos β-isin β, ∴z 1-z 2=(cos α-cos β)+i(sin α+sin β)=513+1213i. ∴⎩⎪⎨⎪⎧cos α-cos β=513, ①sin α+sin β=1213. ②由①2+②2,得2-2cos(α+β)=1. ∴cos(α+β)=12.14.设z +1为关于x 的方程x 2+mx +n =0,m ,n ∈R 的虚根,i 为虚数单位. (1)当z =-1+i 时,求m ,n 的值;(2)若n =1,在复平面上,设复数z 所对应的点为P ,复数2+4i 所对应的点为Q ,试求|PQ |的取值范围.解 (1)因为z =-1+i ,所以z +1=i , 则i 2+m i +n =0,易得⎩⎨⎧m =0,n =1.(2)设z =a +b i(a ,b ∈R ),则(a +1+b i)2+m (a +1+b i)+1=0,于是⎩⎨⎧a +12-b 2+m a +1+1=0, ①2a +1b +mb =0, ②因为z +1为虚数根,所以b 不为零,所以由②得m =-2(a +1),代入①得,(a +1)2+b 2=1,则点P 是以(-1,0)为圆心,1为半径的圆(去掉b =0对应的两点)上任意一点.又复数2+4i 对应的点为Q ,所以|PQ |的最大值为2+12+42+1=6,|PQ |的最小值为4.所以|PQ |的取值范围是[4,6].。

2020-2021学年江苏省六校联考中考数学第二次模拟试题及答案解析

2020-2021学年江苏省六校联考中考数学第二次模拟试题及答案解析

江苏省最新中考联考九年级数学学科(试卷满分:150分 考试时间:120分钟)一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的。

) 1.722是 A .整数 B .自然数 C .无理数 D .有理数2.下列计算正确的是A .a 3+a 4=a 7B .a 3•a 4=a 7C .a 3﹣a 4=a ﹣1D .a 3÷a 4=a3.有一种病毒呈球形,其最小直径约为0.000 000 08米,用科学记数法表示为 A .80×190-米 B .0.8×170-米C .8×180-米 D .8×190-米4.如图所示的物体的左视图(从左面看得到的视图)是A .B .C .D .5. 甲、乙、丙、丁四位同学五次数学测验成绩统计如右表所 示.如果从这四位同学中,选出一位成绩较好且状态稳定的 同学参加全国数学联赛,那么应选A .甲B .乙C .丙D .丁 6.一个正方形的面积等于10,则它的边长a 满足A. 3<a <4B. 5<a <6C.7<a <8D. 9<a <10 7.无论m 为何值,点A (m ,5﹣2m )不可能在 A .第一象限 B .第二象限 C .第三象限 D .第四象限8.如图,点A 在双曲线y=上,点B 在双曲线y=(k ≠0)上,AB ∥x轴,过点A 作AD ⊥x 轴于D .连接OB ,与AD 相交于点C ,若AC=2CD ,则k 的值为 A .6 B .9C .10D .12甲 乙 丙 丁平均数 80 85 85 80 方差42 42 54 59二、填空题(本大题共10小题,每小题3分,共30分。

) 9.0的相反数是▲.10.分解因式:2mx 2-4mx +2m=▲.11.如果分式242--x x 的值为零,那么x =▲.12.如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率 约为▲(精确到0.1). 投篮次数(n ) 50 100 150 200 250 300 500 投中次数(m ) 28 60 78 104 123 152 251 投中频率(m/n )0.560.600.520.520.490.510.5013.如图,已知AB ∥CD ∥EF ,AD :AF=3:5,BE=12,那么CE 的长等于▲°. 14.一个圆锥的侧面展开图是半径为3,圆心角为120°的扇形,则这个圆锥的高为▲.15.如图,等腰△ABC 中,AB=AC ,BC=8.已知重心G 到点A 的距离为6,则G 到点B 的距离是▲.16.如图,正方形ABCD 和正方形OEFG 中,点E 、B 、C 在x 轴上,点A 和点F 的坐标分别为(3,2),(-1,-1),则两个正方形的位似中心的坐标是▲.17.如图①,在边长为8的等边△ABC 中,CD ⊥AB ,垂足为D ,⊙O 的圆心与点D 重合,⊙O 与线段CD 交于点E ,若将⊙O 沿DC 方向向上平移1cm 后,如图②,⊙O 恰与△ABC 的边AC 、BC 相切,则图①中CE 的长为▲cm .18.若关于x 的一元二次方程-x 2+2ax +2-3a =0的一根x 1≥1,另一根x 2≤-1,则抛物线y =-x 2+2ax +2-3a 的顶点到x 轴距离的最小值是▲. 三、解答题(本大题有10小题,共96分.) 19.(8分)(1)计算:)216tan 3012π-⎛⎫-︒++ ⎪⎝⎭(2)解不等式组⎪⎩⎪⎨⎧-+≤421-x 2)3(x 1)-4(x x π,并写出它的所有整数解.20.(本题满分8分)先化简,再求值:)1211(122+--÷--m m m m ,其中m 满足一元二次方程0342=+-m m .21. (本题满分8分)某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的图表.根据以上信息完成下列问题:(1)统计表中的m =▲,n =▲,并补全条形统计图; (2)扇形统计图中“C 组”所对应的圆心角的度数是▲;(3)已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的学生人数.22.(本题满分8分)小明有一个呈等腰直角三角形的积木盒,现在积木盒中只剩下如图1所示的九个空格,图2是可供选择的A 、B 、C 、D 四块积木.(1)小明选择把积木A 和B 放入图3,要求积木A 和B 的九个小圆恰好能分别与图3中的九个小圆重合,请在图3中画出他放入方式的示意图(温馨提醒:积木A 和B 的连接小圆的小线段还是要画上哦!);(2)现从A 、B 、C 、D 四块积木中任选两块,请用列表法或画树状图法求恰好能全部不重叠放入的概率.23.(本题满分10分)如图,在□ABCD 中,AE 平分∠BAD ,交BC 于点E ,BF 平分∠ABC ,交AD 于点F ,AE 与BF 交于点P ,连接EF ,PD . (1)求证:四边形ABEF 是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan ∠ADP.24.(本题满分10分)“上海迪士尼乐园”将于2016年6月16日开门迎客,小明准备利 用暑假从距上海2160千米的某地去“上海迪士尼乐园”参观游览,下图是他在火车站咨 询得到的信息:本地前往上海有城城际直达动车的平乘坐城际直达动车际直达动车和特快列车两种乘车方式可供选择!均时速是特快列车的1.6倍!要比乘坐特快列车少用6小时!根据上述信息,求小明乘坐城际直达动车到上海所需的时间.25.(本题满分10分)如图,在△ABC 中,AB=AC ,以AC 为直径作⊙O 交BC 于点D ,过点D 作⊙O 的切线,交AB 于点E ,交CA 的延长线于点F . (1)求证:EF ⊥AB ;BE ADCO(2)若∠C=30°,EF =EB 的长.26.(本题满分10分)在平面直角坐标系xOy 中,对于(,)P a b 和点(,)Q a b ',给出如下定义:若⎩⎨⎧<-≥=)1()1('a b a b b ,则称点Q 为点P 的限变点.例如:点()2,3的限变点的坐标是()2,3,点()2,5-的限变点的坐标是()2,5--.(1)点)的限变点的坐标是▲;(2)判断点()2,1A --、()1,2B -中,哪一个点是函数2y x=图象上某一个点的限变点? 并说明理由;(3)若点(,)P a b 在函数3+-=x y 的图象上,其限变点(,)Q a b '的纵坐标b '的取值范围是36'-≤≤-b ,求a 的取值范围.27.(本题满分12分)如图,△ABC和△DEF均是边长为4的等边三角形,△DEF的顶点D为△ABC的一边BC的中点,△DEF绕点D旋转,且边DF、DE始终分别交△ABC的边AB、AC于点H、G。

高考数学模拟复习试卷试题模拟卷206 2

高考数学模拟复习试卷试题模拟卷206 2

高考模拟复习试卷试题模拟卷【高频考点解读】能运用两角和与差的正弦、余弦、正切公式以及二倍角的正弦、余弦和正切公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).【热点题型】题型一 三角函数式的化简例1、化简:2cos4x -2cos2x +122tan ⎝⎛⎭⎫π4-x sin2⎝⎛⎭⎫π4+x. 【提分秘籍】三角函数式的化简要遵循“三看”原则(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式;(2)二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”; (3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式要通分”等. 【举一反三】化简:⎝ ⎛⎭⎪⎪⎫1tan α2-tan α2·⎝⎛⎭⎫1+tan α·ta n α2. 题型二 三角函数式的求值 例2、3cos 10°-1sin 170°=( ) A .4 B .2 C .-2D .-4【提分秘籍】 三角函数求值有三类(1)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(2)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角. 【举一反三】化简:sin 50°(1+3tan 10°)=________. 题型三 三角恒等综合应用例3、已知函数f(x)=cos x·sin ⎝⎛⎭⎫x +π3-3cos2x +34,x ∈R.(1)求f(x)的最小正周期;(2)求f(x)在闭区间⎣⎡⎦⎤-π4,π4上的最大值和最小值.【提分秘籍】三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为y =Asin(ωx +φ)的形式再研究其性质,解题时注意观察角、名、结构等特征,注意利用整体思想解决相关问题.【举一反三】已知函数f(x)=(2cos2x -1)sin 2x +12cos 4x. (1)求f(x)的最小正周期和最大值;(2)当α∈⎝⎛⎭⎫π2,π时,若f(α)=22,求α的值.【高考风向标】【高考陕西,文6】“sin cos αα=”是“cos20α=”的( )A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要【高考四川,文13】已知sinα+2cosα=0,则2sinαcosα-cos2α的值是______________.【高考押题】1.已知sin 2α=13,则cos2⎝⎛⎭⎫α-π4=( ) A .-13B .-23 C.13D.232.设tan ⎝⎛⎭⎫α-π4=14,则tan ⎝⎛⎭⎫α+π4=( )A .-2B .2C .-4D .43.已知角α的顶点与原点O 重合,始边与x 轴的正半轴重合,若它的终边经过点P(2,3),则tan ⎝⎛⎭⎫2α+π4=( )A .-125B.512 C.177D .-7174.若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( ) A.118 B .-118 C.1718D .-17185.cos π9·cos 2π9·cos ⎝⎛⎭⎫-23π9=()A .-18 B .-116C.116D.186.定义运算⎪⎪⎪⎪⎪⎪ab cd =ad -bc.若cos α=17,⎪⎪⎪⎪⎪⎪sin α sin βcos α cos β=3314,0<β<α<π2,则β等于( )A.π12B.π6 C.π4D.π37.函数y =32sin 2x +cos2x 的最小正周期为________.8.若锐角α、β满足(1+3tan α)(1+3tan β)=4,则α+β=________. 9.tan ⎝⎛⎭⎫π4+α·cos 2α2cos2⎝⎛⎭⎫π4-α的值为________. 10.3tan 12°-34cos212°-2sin 12°=________.11.已知函数f(x)=cos2x +sin xcos x ,x ∈R. (1)求f ⎝⎛⎭⎫π6的值; (2)若sin α=35,且α∈⎝⎛⎭⎫π2,π,求f ⎝⎛⎭⎫α2+π24.12.已知,0<α<π2<β<π,cos ⎝⎛⎭⎫β-π4=13,sin(α+β)=45.(1)求sin 2β的值; (2)求cos⎝⎛⎭⎫α+π4的值.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第03节变量间的相关性一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.对于给定的两个变量的统计数据,下列说法正确的是()(A)都可以分析出两个变量的关系(B)都可以用一条直线近似地表示两者的关系(C)都可以作出散点图(D)都可以用确定的表达式表示两者的关系【答案】C【解析】给出一组样本数据,总可以作出相应的散点图,但不一定能分析出两个变量的关系,更不一定符合线性相关或函数关系,故选C.2.下面两个变量间的关系不是函数关系的是()(A)正方体的棱长与体积(B)角的度数与它的正弦值(C)单位产量为常数时,土地面积与粮食总产量(D)日照时间与水稻亩产量【答案】D而D项是相关关系.3.【高考数学复习二轮】根据一组样本数据(x1,y1),(x2,y2),…,(xn,yn)的散点图分析存在线性相关关系,求得其回归方程y=0.85x-85.7,则在样本点(165,57)处的残差为()A.54.55 B.2.45 C.3.45 D.111.55【答案】B【解析】把x =165代入回归方程得y =0.85×165-85.7=54.55,所以残差为57-54.55=2.45. 4. 【高考前30天数学保温训练】对于相关系数r 下列描述正确的是( ) A .r >0表明两个变量线性相关性很强 B .r <0表明两个变量无关C .|r|越接近1,表明两个变量线性相关性越强D .r 越小,表明两个变量线性相关性越弱 【答案】C5.对有线性相关关系的两个变量建立的回归直线方程=+x 中,回归系数( ) (A)不能小于0 (B)不能大于0 (C)不能等于0 (D)只能小于0 【答案】C【解析】∵=0时,相关系数r=0,这时不具有线性相关关系,但能大于0也能小于0.6.【改编自高三十三校第二次联考】已知下列表格所示的数据的回归直线方程为ˆ4yx a =+,则a 的值为( ).A .240B .246C .274D .278 【答案】B【解析】由已知得,2345645x ++++==,2512542572622662625y ++++==,又因为回归直线必过样本点中心(4,262) ,则26244a =⨯+,解得246a =,选B.7.【教学合作高三10月联考】某车间加工零件的数量x 与加工时间y 的统计数据如下表:现已求得上表数据的回归方程^^^y b x a =+中的^b 的值为0.9,则据此回归模型可以预测,加工90个零件所需要的加工时间约为( )A .93分钟B .94分钟C .95分钟D .96分钟 【答案】A8.某商品的销售量y (件)与销售价格x (元/件)存在线性相关关系,根据一组样本数据(,)(1,2,)i i x y i n =…,,用最小二乘法建立的回归方程为ˆ10200,yx =-+则下列结论正确的是( ) (A )y 与x 具有正的线性相关关系(B )若r 表示变量y 与x 之间的线性相关系数,则10r =- (C )当销售价格为10元时,销售量为100件 (D )当销售价格为10元时,销售量为100件左右 【答案】D9. 小明同学根据右表记录的产量x (吨)与能耗y (吨标准煤)对应的四组数据,用最小二乘法求出了y关于x 的线性回归方程a x y+=7.0ˆ,据此模型预报产量为7万吨时能耗为( ) A. 5 B. 25.5 C . 5.5 D. 75.5【答案】B10.【龙岩市高三上学期期末】已知变量x ,y 之间具有线性相关关系,其回归方程为^y =-3+bx ,若10101117,4,ii i i xy ====∑∑则b 的值为( )A. 2B. 1C. -2D.-1 【答案】A【解析】依题意知,17 1.710x ==,40.410y ==,而直线3y bx ∧=-+一定经过点(,)x y ,所以3 1.70.4b ∧-+⨯=,解得2b ∧=.11.【江西新余市高三上学期期末质量检测】某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归直线方程,表中有一个数据模糊不清,请你推断出该数据的值为( )A .75B .62C .68D .81 【答案】C12.【高考数学(二轮专题复习)假设学生在初一和初二数学成绩是线性相关的,若10个学生初一(x)和初二(y)数学分数如下:x 74 71 72 68 76 73 67 70 65 74 y76757170767965776272则初一和初二数学分数间的回归方程是 ( ). A. y =1.218 2x -14.192 B. y =14.192x +1.218 2 C. y =1.218 2x +14.192 D. y =14.192x -1.218 2【答案】A二、三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.) 13.【烟台市高三5月适应性训练一】如果在一次试验中,测得(,x y )的四组数值分别是x1 2 3 4 y33.85.26根据上表可得回归方程ˆˆ1.04yx a =+,据此模型预报当x 为5时,y 的值为( ) A .6.9 B .7.1 C .7.04 D .7.2 【答案】B14.【高考数学人教版评估检测】在元旦期间,某市物价部门对本市五个商场销售的某商品一天的销售量及其价格进行调查,五个商场的售价x 元和销售量y 件之间的一组数据如表所示: 价格x 9 9.5 10 10.5 11 销售量y 1110865通过分析,发现销售量y 与商品的价格x 具有线性相关关系,则销售量y 关于商品的价格x 的线性回归方程为__________.【答案】 3.240.x =-+【解析】392,i i x y ==10,=8,=502.5,代入公式,得= 3.2,=-所以,==40,故线性回归方程为 3.240.x =-+15.【高考数学全程总复习课时提升】为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x(单位:小时)与当天投篮命中率y 之间的关系:时间x 1 2 3 4 5 命中率y0.40.50.60.60.4小李这5天的平均投篮命中率为;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率为. 【答案】0.50.53.,16.【揭阳市高三4月第二次模拟】某研究机构对高三学生的记忆力x 和判断力y 进行统计分析,得下表数据:x 68 10 12y2356根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y bx a =+中的b 的值为0.7,则记忆力为14的同学的判断力约为.(附:线性回归方程y bx a =+中,a y bx =-,其中x 、y 为样本平均值) 【答案】7.5.四、解答题 (本大题共4小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【宽甸二中高三最后一模】在一段时间内,某种商品价格x (万元)和需求量)(t y 之间的一组数据为: 价格x1.4 1.6 1.8 22.2 需求量y1210753(1)进行相关性检验;(2)如果x 与y 之间具有线性相关关系,求出回归直线方程,并预测当价格定为1.9万元,需求量大约是多少?(精确到0.01t )参考公式及数据:2121ˆxn x yx n yx bn i i ni ii -⋅-=∑∑==,))((2122121y n y x n x yx n yx r ni i ni i ni ii --⋅-=∑∑∑===,61.428.21≈相关性检验的临界值表: n2 12345678910小概率0.011.000 0.990 0.959 0.917 0.874 0.834 0.798 0.765 0.735 0.708【答案】(1)从而有99%的把握认为x 与y 之间具有线性相关关系(2)x y5.111.28ˆ-=,当价格定为9.1万元时,需求量大约为t 25.6【解析】】(1)①作统计假设:x 与y 不具有线性相关关系。

2020-2021学年高考总复习数学(理)5月模拟联考试题及答案解析

2020-2021学年高考总复习数学(理)5月模拟联考试题及答案解析

普通高中最新联考 理 科 数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其它题为必考题。

考生作答时,将答案答在答题卡上,在本试卷上答题无效。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。

2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。

3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。

4.保持卡面清洁,不折叠,不破损。

5.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑。

第I 卷一、选择题:本大题共12小题,每小题5分,满分60分. 在每小题给出的四个选项中,只有一项符合题目要求.1.设集合M ={-1,0,1},N ={x |x 2≤x },则M ∩N 等于( )A .{0}B .{0,1}C .{-1,1}D .{-1,0,1}2.在复平面内,复数Z 满足()i i z 311+=+,则Z 的共轭复数对应的点位于 ( )A .第一象限B . 第二象限C . 第三象限D . 第四象限 3. 等差数列}{n a 的前n 项和为30,1191=++a a a S n 若,那么13S 值的是( ) A .65 B .70 C .130 D .2604.给出下列四个结论,其中正确的是 ( ) A .若11a b>,则a <b B .“a =3"是“直线l 1:2310a x y +-=与直线l 2:320x y -+=垂直”的充要条件C .在区间[0,1]上随机取一个数x ,sin2x π的值介于0到12之间的概率是13D .对于命题P :x ∃∈R 使得21x x ++<0,则P ⌝:x ∀∈R 均有21x x ++>05.定义行列式运算:12142334a a a a a a a a =-.若将函数-sin cos ()1 -3x x f x =的图象向左平移m (0)m >个单位后,所得图象对应的函数为奇函数,则m 的最小值是( )A .32π B .3πC .π65 D .6π6.在△ABC 中,若(2)0AB ABAC ?=u u u r u u u ru u u r,则△ABC 的形状为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形7.设x,y 满足约束条件36020,0,0x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩,若目标函数()0,0z ax by a b =+>>的最大值为12,则32a b+=( ) A.4 B.83 C.113D.2568. 设()f x 是定义在R 上的恒不为零的函数,对任意实数,x y R ∈,都有()()()f x f y f x y ⋅=+,若()()11,2n a a f n n N *==∈,则数列{}n a 的前n 项和n S 的取值范围是( )A.1,22⎡⎫⎪⎢⎣⎭ B. 1,22⎡⎤⎢⎥⎣⎦ C. 1,12⎡⎫⎪⎢⎣⎭ D. 1,12⎡⎤⎢⎥⎣⎦9.已知a 为如图所示的程序框图输出的结果,则二项式6a x x ⎛- ⎪⎝⎭的展开式中常数项是( )A. -20B. 52C. -192D. -16010.已知三棱锥O —ABC ,A 、B 、C 三点均在球心为O 的球表面上,∠ABC=120°,AB=BC=1,俯视图正视图三棱锥O —ABC 的体则球O 的表面积是( )A .64πB .16πC .323π D .544π11.定义在R 上的函数()f x 满足f (1)=1,且对任意x ∈R 都有1()2f x '<,则不等式221()2x f x +>的解集为( )A .(1,2)B .(-∞,1)C .(1,+∞)D .(-1,1)12.过椭圆14922=+y x 上一点H 作圆222=+y x 的两条切线,点B A ,为切点.过B A ,的直线l 与x 轴, y 轴分别交于点,P Q 两点, 则POQ ∆的面积的最小值为( )A .21B . 32C . 1 D . 34 二.填空题:本大题共4小题,每小题5分,共20分。

2020-2021学年河北省数学中考模拟试题(2)含答案解析

2020-2021学年河北省数学中考模拟试题(2)含答案解析

河北省初中毕业生升学文化课模拟考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷I前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上. 考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑. 答在试卷上无效.一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果+30 m表示向东走30 m,那么向西走40 m表示为( ▲)A.+30 m B.-30 m C.+40 m D.-40 m2.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为( ▲)A.6.75×103吨B.6.75×104吨C.6.75×105吨D.6.75×10-4吨a 的值为( ▲)3. 已知点A(a,2013)与点A′(-2014,b)是关于原点O的对称点,则bA . 1B . 5C . 6D .44.如图,已知一商场自动扶梯的长l 为13米,高度h 为5米,自动扶梯与地面所成的夹角为θ,则tan θ的值等于( ▲ ) A .125 B .512C .135 D .1312 5.一组数据2,4,x ,2,4,7的众数是2,则这组数据的平均数、中位数分别为( ▲ ) A .3,4B .3,3.5C . 3.5,3D .4,36.反比例函数xm y 3-=(m ≠3)在图象所在的每一象限内,函数值y 随自变量x 的增大而增大,则m 的取值范围是( ▲ ) A .3m <-B . 3m >-C .3m <D . 3m >7.已知⊙O 1和⊙O 2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O 1O 2的取值范围在数轴上表示正确的是( ▲ )8.用棋子按下列方式摆图形,依此规律,第n 个图形比第(n-1)个图形多(▲ )枚棋子.0 0 3 5 3 5 1414ABCDA .4nB . 5n-4C .4n-3D . 3n-29. 如图,平行四边形ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,∠ADC=54°,连接AE ,则∠AEB 的度数为( ▲ ) A .27° B .36° C . 46° D .63°10.如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止,设点P 运动的路程为x ,△ABP 的面积为y ,y 关于x 的函数图象如图2所示, 则△ABC 的面积是( ▲ ) A .4 B .3 C .2 D .111.下列图形中,既是轴对称图形又是中心对称图形的是( ) A.菱形、正方形、平行四边形 B.矩形、等腰三角形、圆 C.矩形、正方形、等腰梯形D.菱形、正方形、圆12.有下列命题:①两条直线被第三条直线所截,同位角相等;②两点之间,线段最短;③相等的角是对顶角;④两个锐角的和是锐角;⑤同角或等角的补角相等. 正确命题的个数是( ) A.2个B.3个C.4个D.5个13.若不等式组211x a x a >-⎧⎨<+⎩无解,则a 的取值范围是( )A.2a <B.2a =C.2a >D.2a ≥ABCDP图114.已知,△ABC 中,∠A=90°,∠ABC=30°.将△ABC 沿直线BC 平移得到△111C B A ,1B 为BC 的中点,连结1BA ,则tan BC A 1∠的值为( ) A .43 B .53 C .63 D .73 15.一个几何体是由若干个相同的立方体组成,其主视图和左视图如图所示,则组成这个几何体的立方体个数不可能的是( )A .15个B .13个C .11个D .5个 16.给出以下命题:①已知8215-可以被在60~70之间的两个整数整除,则这两个数是63、65;②若,2=x a ,3=ya 则y x a -2=34; ③已知关于x 的方程322=-+x mx 的解是正数,则m 的取值范围为6-≠->m m 或; ④若方程x 2-2(m+1)x+m 2=0有两个整数根,且12<m<60, 则m 的整数值有2个. 其中正确的是( )A .①②B .①②④C .①③④ D.②③④ 河北省初中毕业生升学文化课模拟考试(第14题)总 分 核分人(第15题)数学试卷卷II(非选择题,共78分)注意事项:1.答卷II前,将密封线左侧的项目填写清楚.2.答卷II时,将答案用黑色字迹的钢笔、签字笔或圆珠笔直接写在试卷上.题号二三21 22 23 24 25 26得分得分评卷人二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.一个不透明的袋中装有除颜色外其他均相同的2个红球和3个黄球,从中随机摸出一个黄球的概率是▲ .18.若实数a、b满足a+b=5,a2b+ab2=-10,则ab的值是▲.19.如图,矩形ABCD中,AB=8,AD=3.点E从D向C以每秒1个单位的速度运动,以AE为一边在AE的右下方作正方形AEFG,同时垂直于CD 的直线MN 也从C 向D 以每秒2个单位的速度运动,当经过 ▲ 秒时,直线MN 和正方形AEFG 开始有公共点?20.如图,Rt △ABC 的斜边AB 在x 轴上,OA=OB=6,点C 在第一象限,∠A=30°, P (m ,n )是线段BC 上的动点,过点P 作BC 的垂线a ,以直线a 为对称轴,将线段OB 轴对称变换后得线段O ′B ′, (1)当点B ′ 与点C 重合时,m 的值为 ▲ ;(2)当线段O ′B ′与线段AC 没有公共点时,m 的取值范围是 ▲ .三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分9分)如图,用两段等长的铁丝恰好可以分别围成一个正五边形和一个正六边形,其中正五边形的边长为(217x +)cm ,正六边形的边长为(22x x +)cm (0)x >其中.求这两段铁丝的总长.得 分评卷人22.(本小题满分10分)已知:图1为一锐角是30°的直角三角尺,其边框为透明塑料制成(内、外直角三角形对应边互相平行且三处所示宽度相等).操作:将三角尺移向直径为6cm 的⊙O ,它的内Rt △ABC 的斜边AB 恰好等于⊙O 的直径,它的外Rt △A ′B ′C ′的直角边A ′C ′ 恰好与⊙O 相切(如图2)。

安徽省肥东县高级中学2020-2021学年高二上学期第二次月考数学(理)试题含答案

安徽省肥东县高级中学2020-2021学年高二上学期第二次月考数学(理)试题含答案

安徽省肥东县高级中学2020-2021学年高二上学期第二次月考数学(理)试题含答案2020—2021学年度第一学期高二第二次考试数学(理)试题 ★祝考试顺利★注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题前,考生务必将自己的姓名、考号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

第I 卷(选择题60分)一、选择题(本大题共12个小题,每小题5分,共60分。

) 1.若直线l 与直线1,7y x ==分别交于点,P Q ,且线段PQ 的中点坐标为()1,1-,则直线l 的斜率为( )A. 13 B 。

13- C 。

32- D.232。

直线l 经过()2,1A , 11,2B m m⎛⎫+-⎪⎝⎭两点()0m >,那么直线l 的倾斜角的取值范围是( )A. ,42ππ⎡⎫⎪⎢⎣⎭B.0,,42πππ⎡⎤⎛⎫⋃ ⎪⎢⎥⎣⎦⎝⎭C.0,4π⎡⎤⎢⎥⎣⎦D.0,,42πππ⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭3。

直线2130x my m -+-=,当m变化时,所有直线都过定点( )A. 1,32⎛⎫- ⎪⎝⎭B 。

1,32⎛⎫⎪⎝⎭C. 1,32⎛⎫- ⎪⎝⎭ D 。

1,32⎛⎫-- ⎪⎝⎭4。

下列说法的正确的是( )A .经过定点()P x y 000,的直线都可以用方程()y y k x x -=-00表示B .经过定点()b A ,0的直线都可以用方程y kx b =+表示C .不经过原点的直线都可以用方程x ay b+=1表示D 经过任意两个不同的点()()222111y x P y x P ,、,的直线都可以用方程()()()()y y x x x x y y --=--121121来表示5。

已知直线1l :70x my ++=和2l :()2320m x y m -++=互相平行,则实数m = ( )A. 1m =-或 3 B 。

2020-2021学年度山东省济南市高考第二次模拟考试数学试题(文)及答案

2020-2021学年度山东省济南市高考第二次模拟考试数学试题(文)及答案

文科数学参考公式:锥体的体积公式:1 3V Sh=,其中S为锥体的底面积,h为锥体的高.一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U R=,集合{}10A x x=-≤,集合{}260B x x x=--<则下图中阴影部分表示的集合为()A.{}3x x<B.{}31x x-<≤C.{}2x x<D.{}21x x-<≤2.设复数z满足()12z i-=(其中i为虚数单位),则下列说法正确的是()A.2z=B.复数z的虚部是iC.1z i=-+D.复数z在复平面内所对应的点在第一象限3.已知{}n a是公差为2的等差数列,n S为数列{}n a的前n项和,若515S=,则5a=()A.3B.5C.7D.94.已知角a的终边经过点(),2m m-,其中0m≠,则sin cosa a+等于()A.55-B.55± C.35-D.35±5.某商场举行有奖促销活动,抽奖规则如下:箱子中有编号为1,2,3,4,5的五个形状、大小完全相同的小球,从中任取两球,若摸出的两球号码的乘积为奇数则中奖;否则不中奖则中奖的概率为()A.110B.15C.310D.256.已知变量,x y满足约束条件1,50,210,xx yx x⎧≥⎪=-≥⎨⎪-+≤⎩则目标函数2z x y=+的最小值为()A.3B.6 C.7D.87.已知底面是直角三角形的直棱柱的正视图、俯视图如下图所示,则该棱柱5的左视图的面积为()A .186B .183 C. 182 D .27228.设12,F F 分别为双曲线()222210,0x y a b a b-=>>的左、右焦点,12,A A 为双曲线的左右顶点,其中1212,3,F F A A =,若双曲线的顶点到渐近线的距离为2,则双曲线的标准方程为( )A .22136x y -= B .22163x y -= C. 2212y x -= D .2212x y -= 9.执行如图所示的程序框图,则该程序框图的输出结果是( )A .3-B .12-C.13D .2 10.如图,半径为1的圆O 中,,A B 为直径的两个端点,点P 在圆上运动,设BOP x ∠=,将动点P 到,A B 两点的距离之和表示为x 的函数()f x ,则()y f x =在[]0,2π上的图象大致为( )A. B.C.C.11.已知抛物线2:4C x y =,过抛物线C 上两点,A B 分别作抛物线的两条切线,,PA PB P 为两切线的交点O为坐标原点若,0PA PB =u u u r u u u r,则直线OA 与OB 的斜率之积为( )A .14-B .3- C.18- D .4- 12.已知定义在R 上的函数()f x ,当1x >-时,21,10,()1n ,0,x x f x x x +-<≤⎧⎪=⎨>⎪⎩且(1)f x -为奇函数,若方程()()R f x kx k k =+∈的根为12,,,n x x x L ,则12x x x +++L 的所有的取值为( )A .6-或4-或2-B .7-或5-或3-C. 8-或6-或4-或2- D .9-或7-或5-或3-第Ⅱ卷(共90分)二、填空题:本题共4小题,每小题5分,满分20分.13.已知12,e e u r u u r 是互相垂直的单位向量,向量123a e e =-u r u u r r,12b e e =+u r u u r r ,则a b ⋅=r r .14.2018年4月4日,中国诗词大会第三季总决赛如期举行,依据规则,本场比赛共有甲、乙、丙、丁、戊五位选手有机会问鼎冠军,某家庭中三名诗词爱好者依据选手在之前比赛中的表现,结合自己的判断,对本场比赛的冠军进行了如下猜测:爸爸:冠军是甲或丙;妈妈:冠军一定不是乙和丙;孩子:冠军是丁或戊. 比赛结束后发现:三人中只有一个人的猜测是对的,那么冠军是.15.已知[]x 表示不超过x 的最大整数,例如:[][]2.32, 1.52=-=-.在数列{}n a 中,[]1,n a gn n N +=∈,记n S 为数列{}n a 的前n 项和,则2018S =.16.已知点,,,P A B C 均在表面积为81π的球面上,其中PA ⊥平面ABC ,30,=3BAC AC ∠=o,则三棱锥P ABC -的体积的最大值为.三、解答题:共70分。

河北省衡水中学2020-2021学年第二次联考数学(理科)试卷(全国Ⅱ) (解析版)

河北省衡水中学2020-2021学年第二次联考数学(理科)试卷(全国Ⅱ) (解析版)

2021年河北省衡水中学高考数学第二次联考试卷(理科)(全国Ⅱ)一、选择题(共12小题).1.已知集合U={0,1,2,3,4,5},A={2,4,5},B={0,2,4},则A∩∁U B=()A.{5}B.{2,4}C.{0,2,5}D.{0,2,4,5} 2.已知sinα>0,cosα<0,则()A.sin2α>0B.cos2α<0C.D.3.已知复数z=a+(a﹣1)i(a∈R),则|z|的最小值为()A.B.C.D.14.直线y=2x﹣1被过点(0,1)和(2,1),且半径为的圆截得的弦长为()A.B.C.D.或5.已知一四棱锥的三视图如图所示,则该四棱锥的较长侧棱与底面所成角的正切值为()A.B.C.D.6.已知双曲线的焦点F(c,0)到渐近线的距离为,且点在双曲线上,则双曲线的方程为()A.B.C.D.7.异或运算是一种逻辑运算,异或用符号“∧”表示,在二进制下,当输入的两个量的同一数位的两个数字不同时,输出1,反之输出0.如十进制下的数10与9表示成二进制分别是1010,1001(即10=1×23+0×22+1×21+0×20,9=1×23+0×22+0×21+1×20),那么10∧9=1010∧1001=0011,现有运算12∧m=1100∧n=0001,则m的值为()A.7B.9C.11D.138.已知奇函数f(x)的定义域为R,且满足f(2+x)=f(2﹣x),以下关于函数f(x)的说法:①f(x)满足f(8﹣x)+f(x)=0;②8为f(x)的一个周期;③是满足条件的一个函数;④f(x)有无数个零点.其中正确说法的个数为()A.1B.2C.3D.49.已知三棱锥P﹣ABC的高为1,底面△ABC为等边三角形,PA=PB=PC,且P,A,B,C都在体积为的球O的表面上,则该三棱锥的底面△ABC的边长为()A.B.C.3D.10.甲、乙两人拿两颗如图所示的正四面体骰子做抛掷游戏,规则如下:由一人同时掷两个骰子,观察底面点数,若两个点数之和为5,则由原掷骰子的人继续掷;若掷出的点数之和不是5,就由对方接着掷.第一次由甲开始掷,设第n次由甲掷的概率为P n,则P10的值为()A.B.C.D.11.若P(n)表示正整数n的个位数字,a n=P(n2)﹣P(2n),数列{a n}的前n项和为S n,则S2021=()A.﹣1B.0C.1009D.101112.已知函数f(x)=e x ln|x|,a=f(﹣ln3),b=f(ln3),c=f(3e),d=f(e3),则a,b,c,d的大小顺序为()A.a>b>c>d B.d>c>b>a C.c>d>b>a D.c>d>a>b二、填空题(共4小题).13.若向量,满足=(cosθ,sinθ)(θ∈R),||=2,则|2﹣|的取值范围为.14.在一次去敬老院献爱心活动中,甲、乙、丙、丁、戊5名同学比带队老师先到,老师想知道他们到的先后顺序,甲说乙不是最早的,乙说甲不是最晚的,丙说他比乙先到.若他们说的都为真话,从上述回答分析,5人可能到的先后顺序的不同情况种数为.15.已知等差数列{a n}满足a2=3,a3是a1与a9的等比中项,则的值为.16.在长方体ABCD﹣A1B1C1D1中,AB=1,AD+AA1=2,E为棱C1D1上任意一点,给出下列四个结论:①BD1与AC不垂直;②长方体ABCD﹣A1B1C1D1外接球的表面积最小为3π;③E到平面A1B1D的距离的最大值为;④长方体ABCD﹣A1B1C1D1的表面积的最大值为6.其中所有正确结论的序号为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.在四边形ABCD中,对角线AC与BD相交于点E,△ABD为等边三角形,BD=2,AC =,BC=1.(1)求∠CBD的大小;(2)求△ADE的面积.18.为贯彻“不忘立德树人初心,牢记为党育人、为国育才使命”的要求,某省推出的高考新方案是“3+1+2”模式,“3”是语文、外语、数学三科必考,“1”是在物理与历史两科中选择一科,“2”是在化学,生物,政治,地理四科中选择两科作为高考科目.某学校为做好选课走班教学,给出三种可供选择的组合进行模拟选课,其中A组合:物理、化学、生物,B组合:历史、政治、地理,C组合:物理、化学、地理根据选课数据得到,选择A组合的概率为,选择B组合的概率为,选择C组合的概率为,甲、乙、丙三位同学每人选课是相互独立的.(1)求这三位同学恰好选择互不相同组合的概率;(2)记η表示这三人中选择含地理的组合的人数,求η的分布列及数学期望.19.如图,两个全等的梯形ABCD与BAEF所在的平面互相垂直,AB⊥AD,AD∥BC,AB =AD,BC=2AD,P为CF的中点.(1)证明:DP∥平面ABFE;(2)求平面DEF与平面BCF所成的锐二面角的余弦值.20.已知曲线C的方程为.(1)求曲线C的离心率;(2)设曲线C的右焦点为F,斜率为k的动直线l过点F与曲线C交于A,B两点,线段AB的垂直平分线交x轴于点P,证明:为定值.21.已知函数f(x)=x+alnx,g(x)=x2e x,a∈R.(1)求函数f(x)的单调区间;(2)当a=2时,方程g(x)=mf(x)有两个实根,求实数m的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C1的参数方程为(α为参数)以O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为.(1)求曲线C1的普通方程及曲线C2的直角坐标方程;(2)若曲线C1上存在点P到曲线C2的距离为1,求b的取值范围.[选修4-5:不等式选讲]23.已知函数f(x)=|2x﹣a|+|x+b|,a,b∈R.(1)当a=4,b=1时,求不等式f(x)≤9的解集;(2)当ab>0时,f(x)的最小值为1,证明:|+|≥.参考答案一、选择题(共12小题).1.已知集合U={0,1,2,3,4,5},A={2,4,5},B={0,2,4},则A∩∁U B=()A.{5}B.{2,4}C.{0,2,5}D.{0,2,4,5}解:由题意得∁U B={1,3,5},所以A∩∁U B={5}.故选:A.2.已知sinα>0,cosα<0,则()A.sin2α>0B.cos2α<0C.D.解:由sinα>0,cosα<0,可得α∈(2kπ+,2kπ+π),k∈Z,对于A,可得sin2α=2sinαcosα<0,错误;对于B,当α∈(2kπ+,2kπ+π),k∈Z时,cosα∈(﹣1,0),此时cos2α=2cos2α﹣1∈(﹣1,1),错误;对于C,因为∈(kπ+,kπ+),k∈Z,可得,正确;对于D,因为∈(kπ+,kπ+),k∈Z,当k为偶数时,可得sin>0,错误;故选:C.3.已知复数z=a+(a﹣1)i(a∈R),则|z|的最小值为()A.B.C.D.1解:因为z=a+(a﹣1)i,所以,所以|z|的最小值为,故选:B.4.直线y=2x﹣1被过点(0,1)和(2,1),且半径为的圆截得的弦长为()A.B.C.D.或解:过点(0,1)和(2,1),半径为的圆的圆心(1,﹣1)或(1,3).过点(0,1),(2,1)且半径为的圆的方程为(x﹣1)2+(y+1)2=5或(x﹣1)2+(y﹣3)2=5,则圆心到直线y=2x﹣1的距离为或,则弦长=.故选:B.5.已知一四棱锥的三视图如图所示,则该四棱锥的较长侧棱与底面所成角的正切值为()A.B.C.D.解:设该四棱锥为P﹣ABCD,则由题意可知四棱锥P﹣ABCD满足底面ABCD为矩形,则:平面PDC⊥平面ABCD,且PC=PD=3,AB=4,AD=2.如图,过点P作PE⊥CD,则PE⊥平面ABCD,连接AE,可知∠PAE为直线PA与平面ABCD 所成的角,则,,所以.故选:C.6.已知双曲线的焦点F(c,0)到渐近线的距离为,且点在双曲线上,则双曲线的方程为()A.B.C.D.解:双曲线的焦点F(c,0)到渐近线bx±ay=0的距离为,解得,所以.又c2=a2+b2,所以b2=3a2.因为点在双曲线上,所以,所以a2=3,b2=9,所以双曲线的方程为.故选:D.7.异或运算是一种逻辑运算,异或用符号“∧”表示,在二进制下,当输入的两个量的同一数位的两个数字不同时,输出1,反之输出0.如十进制下的数10与9表示成二进制分别是1010,1001(即10=1×23+0×22+1×21+0×20,9=1×23+0×22+0×21+1×20),那么10∧9=1010∧1001=0011,现有运算12∧m=1100∧n=0001,则m的值为()A.7B.9C.11D.13解:由12∧m=1100∧n=0001,可得n=1101,表示成十进制为13,所以m=13.故选:D.8.已知奇函数f(x)的定义域为R,且满足f(2+x)=f(2﹣x),以下关于函数f(x)的说法:①f(x)满足f(8﹣x)+f(x)=0;②8为f(x)的一个周期;③是满足条件的一个函数;④f(x)有无数个零点.其中正确说法的个数为()A.1B.2C.3D.4解:因为f(2+x)=f(2﹣x),所以f(4+x)=f(﹣x),因为f(x)是奇函数,所以f(﹣x)=﹣f(x),所以f(4+x)=﹣f(x),所以f(8+x)=﹣f(x+4)=f(x),所以8为f(x)的一个周期,故②正确;由f(8+x)=f(x)可得f(8﹣x)=f(﹣x)=﹣f(x),所以f(8﹣x)+f(x)=0,故①正确;为奇函数满足f(x)+f(﹣x)=0,且一条对称轴为直线x=2,故③正确;由f(x)为奇函数且定义域为R知,f(0)=0,又f(x)为周期函数,所以f(x)有无数个零点,故④正确.故选:D.9.已知三棱锥P﹣ABC的高为1,底面△ABC为等边三角形,PA=PB=PC,且P,A,B,C都在体积为的球O的表面上,则该三棱锥的底面△ABC的边长为()A.B.C.3D.解:设球O的半径为R,由球的体积为可得,,解得R=2.因为三棱锥P﹣ABC的高h为1,所以球心O在三棱锥外.如图,设点O1为△ABC的外心,则OO1⊥平面ABC.在Rt△AO1O中,由,且OO1=R﹣h=1,得.因为△ABC为等边三角形,所以,所以.故选:C.10.甲、乙两人拿两颗如图所示的正四面体骰子做抛掷游戏,规则如下:由一人同时掷两个骰子,观察底面点数,若两个点数之和为5,则由原掷骰子的人继续掷;若掷出的点数之和不是5,就由对方接着掷.第一次由甲开始掷,设第n次由甲掷的概率为P n,则P10的值为()A.B.C.D.解:抛掷两颗正四面体骰子观察底面上的数字之和为5有4种情况,得点数之和为5的概率为,第n次由甲掷有两种情况:一是第n﹣1由甲掷,第n次由甲掷,概率为,二是第n﹣1次由乙掷,第n次由甲掷,概率为.这两种情况是互斥的,所以,即,所以,即数列是以为首项,为公比的等比数列,所以,所以.故选:A.11.若P(n)表示正整数n的个位数字,a n=P(n2)﹣P(2n),数列{a n}的前n项和为S n,则S2021=()A.﹣1B.0C.1009D.1011解:由题意得a1=﹣1,a2=0,a3=3,a4=﹣2,a5=5,a6=4,a7=5,a8=﹣2,a9=﹣7,a10=0,a11=﹣1,a12=0,…∴数列{a n}为周期数列,且周期为10,因为S10=5,所以S2021=5×202+(﹣1)=1009,故选:C.12.已知函数f(x)=e x ln|x|,a=f(﹣ln3),b=f(ln3),c=f(3e),d=f(e3),则a,b,c,d的大小顺序为()A.a>b>c>d B.d>c>b>a C.c>d>b>a D.c>d>a>b解:因为,所以a<b.因为函数f(x)=e x ln|x|在区间(0,+∞)上单调递增,所以b,c,d中b最小.构造函数g(x)=x﹣elnx,则,当x≥e时,g'(x)≥0,所以g(x)在区间[e,+∞)上单调递增,所以g(3)=3﹣eln3>g(e)=0,所以3>eln3.所以e3>3e,所以d>c,所以d>c>b>a.故选:B.二、填空题:本题共4小题,每小题5分,共20分.13.若向量,满足=(cosθ,sinθ)(θ∈R),||=2,则|2﹣|的取值范围为[0,4].解:,,设与的夹角为α,则:,∵α∈[0,π],∴0≤8﹣8cosα≤16,∴,∴的取值范围为[0,4].故答案为:[0,4].14.在一次去敬老院献爱心活动中,甲、乙、丙、丁、戊5名同学比带队老师先到,老师想知道他们到的先后顺序,甲说乙不是最早的,乙说甲不是最晚的,丙说他比乙先到.若他们说的都为真话,从上述回答分析,5人可能到的先后顺序的不同情况种数为48.解:按乙到达的名次顺序进行分类:乙第二个到达有A21A22=4种,乙第三个到达有A21A21A22=8种,乙第四个到达有A32A22=12种,乙最后到达有A44=24种,所以不同的情况种数为4+8+12+24=48.故答案为:48.15.已知等差数列{a n}满足a2=3,a3是a1与a9的等比中项,则的值为3n或(3n2+3n).解:设等差数列{a n}的公差为d,由a2=3,可得a1+d=3,①由a3是a1与a9的等比中项,可得a32=a1a9,即(a1+2d)2=a1(a1+8d),化为da1=d2,②由①②可得a1=d=或a1=3,d=0,当a1=3,d=0时,=a2+a4+…+a2n=3+3+…+3=3n;当a1=d=时,=a2+a4+…+a2n=3+6+…+3n=(3n2+3n).故答案为:3n或(3n2+3n).16.在长方体ABCD﹣A1B1C1D1中,AB=1,AD+AA1=2,E为棱C1D1上任意一点,给出下列四个结论:①BD1与AC不垂直;②长方体ABCD﹣A1B1C1D1外接球的表面积最小为3π;③E到平面A1B1D的距离的最大值为;④长方体ABCD﹣A1B1C1D1的表面积的最大值为6.其中所有正确结论的序号为②③④.解:对于①,当长方体为正方体时,BD1⊥AC,故①错误;对于②,如图,设AD=x,则AA1=2﹣x(0<x<2),所以,当x=1时,BD1的最小值为,即长方体ABCD﹣A1B1C1D1外接球的直径为,所以外接球表面积的最小值为3π,故②正确;对于③,设点E到平面A1B1D的距离为h,如图,由,可得,所以由②可知,,其中,当且仅当x=2﹣x,即x=1时等号成立,,当且仅当x=2﹣x,即x=1时等号成立,所以,当且仅当x=2﹣x,即x=1时,等号成立,故③正确;对于④,该长方体的表面积为S=2x+2x(2﹣x)+2(2﹣x)=4+4x﹣2x2=﹣2(x﹣1)2+6,当x=1时,S的最大值为6,故④正确.故答案为:②③④.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.在四边形ABCD中,对角线AC与BD相交于点E,△ABD为等边三角形,BD=2,AC=,BC=1.(1)求∠CBD的大小;(2)求△ADE的面积.解:(1)在△ABC中,,由余弦定理得.因为0<∠ABC<π,所以,所以.(2)由知,BC∥AD,所以△BCE∽△DAE,所以,所以DE=2BE.因为BD=2,所以.所以.18.为贯彻“不忘立德树人初心,牢记为党育人、为国育才使命”的要求,某省推出的高考新方案是“3+1+2”模式,“3”是语文、外语、数学三科必考,“1”是在物理与历史两科中选择一科,“2”是在化学,生物,政治,地理四科中选择两科作为高考科目.某学校为做好选课走班教学,给出三种可供选择的组合进行模拟选课,其中A组合:物理、化学、生物,B组合:历史、政治、地理,C组合:物理、化学、地理根据选课数据得到,选择A组合的概率为,选择B组合的概率为,选择C组合的概率为,甲、乙、丙三位同学每人选课是相互独立的.(1)求这三位同学恰好选择互不相同组合的概率;(2)记η表示这三人中选择含地理的组合的人数,求η的分布列及数学期望.解:用A i表示第i位同学选择A组合,用B i表示第i位同学选择B组合,用∁i表示第i 位同学选择C组合,i=1,2,3.由题意可知,A i,B i,∁i互相独立,且.(1)三位同学恰好选择不同组合共有种情况,每种情况的概率相同,故三位同学恰好选择不同组合的概率为:.(2)由题意知η的所有可能取值为0,1,2,3,且η~B(3,),所以,,,,所以η的分布列为η0123P所以.19.如图,两个全等的梯形ABCD与BAEF所在的平面互相垂直,AB⊥AD,AD∥BC,AB =AD,BC=2AD,P为CF的中点.(1)证明:DP∥平面ABFE;(2)求平面DEF与平面BCF所成的锐二面角的余弦值.【解答】(1)证明:如图,取BF的中点Q,连接PQ,AQ.因为P,Q为CF,BF的中点,所以PQ∥BC,且.又因为AD∥BC,BC=2AD,所以PQ∥AD,且PQ=AD,所以四边形ADPQ为平行四边形,所以DP∥AQ.又AQ⊂平面ABFE,DP⊄平面ABFE,所以DP∥平面ABFE.(2)解:因为平面ABCD⊥平面BAEF,平面ABCD∩平面BAEF=AB,FB⊥AB,FB⊂平面BAEF,所以FB⊥平面ABCD.又BC⊂平面ABCD,所以FB⊥BC.又AB⊥FB,AB⊥BC,所以以B为坐标原点,分别以BA,BC,BF所在直线为x,y,z轴建立如图所示的空间直角坐标系.设BC=2,则.设平面DEF的一个法向量为,则,令z=1,得.易知平面BCF的一个法向量为,所以.所以平面DEF与平面BCF所成锐二面角的余弦值为.20.已知曲线C的方程为.(1)求曲线C的离心率;(2)设曲线C的右焦点为F,斜率为k的动直线l过点F与曲线C交于A,B两点,线段AB的垂直平分线交x轴于点P,证明:为定值.【解答】(1)解:由可知,点(x,y)到点(﹣1,0),(1,0)的距离之和为4,且4>2,根据椭圆的定义可知,曲线C为焦点在x轴上的椭圆.设椭圆的长轴长为2a,焦距为2c,则2a=4,2c=2,所以曲线C的离心率为.(2)证明:设椭圆的短轴长为2b,由(1)可得b2=a2﹣c2=3,所以曲线C的方程为,则F(1,0).由题意可知,动直线l的方程为y=k(x﹣1),设A(x1,y1),B(x2,y2),由,得(3+4k2)x2﹣8k2x+4(k2﹣3)=0,所以.设AB的中点为Q(x0,y0),则,.当k≠0时,线段AB的垂直平分线的方程为,令y=0,得,所以,==,所以.当k=0时,l的方程为y=0,此时,.综上,为定值.21.已知函数f(x)=x+alnx,g(x)=x2e x,a∈R.(1)求函数f(x)的单调区间;(2)当a=2时,方程g(x)=mf(x)有两个实根,求实数m的取值范围.解:(1)由题意知函数f(x)的定义域为(0,+∞),因为f(x)=x+alnx,a∈R,所以,①当a≥0时,f'(x)>0在区间(0,+∞)上恒成立,所以函数f(x)的单调递增区间为(0,+∞),无单调递减区间;②当a<0时,令f'(x)>0,得x>﹣a,令f'(x)<0,得0<x<﹣a,所以函数f(x)的单调递增区间为(﹣a,+∞),单调递减区间为(0,﹣a);综上:当a≥0时,函数f(x)的单调递增区间为(0,+∞),无单调递减区间;当a<0时,函数f(x)的单调递增区间为(﹣a,+∞),单调递减区间为(0,﹣a);(2)方程g(x)=mf(x)有两个实根,即关于x的方程x2e x﹣m(x+2lnx)=0有两个实根,即函数h(x)=x2e x﹣m(x+2lnx)有两个零点,又h(x)=x2e x﹣m(x+2lnx)=e x+2lnx﹣m(x+2lnx),令t=x+2lnx,由(1)得t是关于x的单调递增函数,且t∈R,所以只需函数u(t)=e t﹣mt有两个零点,令u(t)=0,得,令,则,易知当t∈(﹣∞,1)时,φ(t)单调递增,当t∈(1,+∞)时,φ(t)单调递减,所以当t=1时,φ(t)取得最大值,又因为当t<0时,φ(t)<0,当t>0时,φ(t)>0,φ(0)=0,则函数的图象如图所示:所以当,即m∈(e,+∞)时,函数h(x)有两个零点,所以实数m的取值范围为(e,+∞).(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,曲线C1的参数方程为(α为参数)以O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为.(1)求曲线C1的普通方程及曲线C2的直角坐标方程;(2)若曲线C1上存在点P到曲线C2的距离为1,求b的取值范围.解:(1)由(α为参数),消去参数α,得曲线C1的普通方程为(x﹣1)2+(y﹣1)2=4,由,得,令x=ρcosθ,y=ρsinθ,得x﹣y=b,所以曲线C2的直角坐标方程为x﹣y﹣b=0.(2)设P(1+2cosα,1﹣2sinα),因为点P到直线x﹣y﹣b=0的距离为1,所以,化简得①.若关于α的方程①有解,则曲线C1上存在点P到曲线C2的距离为1,所以②,或③由②得,由③得,所以b的取值范围为.[选修4-5:不等式选讲]23.已知函数f(x)=|2x﹣a|+|x+b|,a,b∈R.(1)当a=4,b=1时,求不等式f(x)≤9的解集;(2)当ab>0时,f(x)的最小值为1,证明:|+|≥.【解答】(1)解:由题意得f(x)=|2x﹣4|+|x+1|,当x≥2时,原不等式可化为3x﹣3≤9,解得x≤4,故2≤x≤4;(1分)当﹣1≤x<2时,原不等式可化为5﹣x≤9,解得x≥﹣4,故﹣1≤x<2;当x<﹣1时,原不等式可化为﹣3x+3≤9,解得x≥﹣2,故﹣2≤x<﹣1.综上,不等式f(x)≤9的解集为[﹣2,4].(2)证明:因为≥=,且ab>0,高中数学资料群734924357所以,当且仅当或时等号成立,高中数学资料群734924357。

衡水中学2022年高考数学复习分项汇编 专题06 三角函数【理科】(原卷版+解析版)

衡水中学2022年高考数学复习分项汇编 专题06 三角函数【理科】(原卷版+解析版)

专题06 三角函数一、单选题1. 【2020届河北省衡水中学高三下学期第一次模拟数学(理)】若,2παπ⎛⎫∈ ⎪⎝⎭,7cos 225α=,则sin 3sin 2απα=⎛⎫+ ⎪⎝⎭( ) A .34-B .34C .43 D .43-2. 【2020届河北省衡水中学高三下学期第一次模拟数学(理)】已知函数()f x x ω=和()g x x ω=(0>ω)图象的交点中,任意连续三个交点均可作为一个等腰直角三角形的顶点.为了得到()y g x =的图象,只需把()y f x =的图象( ) A .向左平移1个单位 B .向左平移2π个单位 C .向右平移1个单位D .向右平移2π个单位3. 【河北省衡水第一中学2021届全国高三第二次联合考试(1)】已知函数()sin 2sin 213f x x x π⎛⎫=+++ ⎪⎝⎭,则( )A .()()33ππ+=-f x f xB .,012π⎛⎫- ⎪⎝⎭是函数()f x 的一个对称中心C .任取方程()1f x =的两个根1x ,2x ,则12x x -是π的整数倍D .对于任意的123,,0,4x x x π⎡⎤∈⎢⎥⎣⎦,()()()123f x f x f x +≥恒成立4. 【河北省衡水中学2021届高三上学期七调】若{},,min ,,,a a b a b b a b ≤⎧=⎨>⎩()sin cos f x x x =+,()sin cos g x x x =-,()()(){}min ,h x f x g x =,关于函数()h x 的以下结论: ①T π= ②对称轴方程为212k x π+=,k Z ∈ ③值域为⎡⎤⎣⎦ ④在区间35,44ππ⎛⎫ ⎪⎝⎭单调递减 其中正确的是( ) A .①②B .②③C .①③④D .②③④5. 【河北省衡水中学2021届高三上学期期中】在ABC 中,,,a b c 分别是角,,A B C 的对边,若2222014a b c +=,则()2tan tan tan tan tan A BC A B ⋅+的值为A .2013B .1C .0D .20146. 【河北省衡水中学2021届高三上学期四调】17世纪德国著名的天文学家开普勒曾经这样说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为36︒的等腰三角形(另一种是顶角为108︒的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金ABC 中,BC AC =根据这些信息,可得sin1674︒=( )A B .C .D .7. 【河北省衡水中学2021届高三下学期三调(新高考)】密位制是度量角的一种方法.把一周角等分为6000份,每一份叫做1密位的角.以密位作为角的度量单位,这种度量角的单位制,叫做角的密位制.在角的密位制中,采用四个数码表示角的大小,单位名称密位二字可以省去不写.密位的写法是在百位数与十位数字之间画一条短线,如密位7写成“007-”,478密位写成“478-”,1周角等于6000密位,记作1周角6000=-,1直角1500=-.如果一个半径为2的扇形,它的面积为76π,则其圆心角用密位制表示为( )A .1250-B .1750-C .2100-D .3500-8. 【河北省衡水中学2021届全国高三第一次联合考试(全国卷)】如图,A ,B ,C ,D 四点共圆,,DA DC BAD DAC ⊥∠=∠,M ,N 在线段AC 上,且AM AB =,N 是MC 的中点.设,AC d DAC α=∠=,则下列结论正确的是( )A .||sin2AB d α=⋅B .2||cos NC d α=⋅ C .2||(||)2dDC d AB =⋅- D .||cos BD d α=⋅9. 【河北省衡水中学2021届全国高三下学期第二次联合考试(II 卷)】已知sin 0,cos 0αα><,则( ) A .sin20α> B .cos20α<C .tan02α> D .sin02α<二、多选题1. 【河北省衡水中学2021届高三上学期四调】已知函数()sin cos sin cos f x x x x x =++-,下列结论不正确的是( ) A .函数图像关于4x π=对称B .函数在,44ππ⎡⎤-⎢⎥⎣⎦上单调递增C .若12()()4f x f x +=,则122()2x x k k Z ππ+=+∈D .函数f (x )的最小值为-22. 【河北省衡水中学2021届高三数学第一次联合考试】已知π3cos 55α⎛⎫+= ⎪⎝⎭,则3sin 2π5α⎛⎫-= ⎪⎝⎭( )A .2425-B .1225-C .1225D .24253. 【河北省衡水中学2021届全国高三第二次联合考试(新高考)】将函数()2cos f x x =图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,再将得到的图象向左平移π个单位长度,得到函数()g x 的图象,则下列说法正确的有( ) A .()g x 为奇函数 B .()g x 的周期为4πC .x R ∀∈,都有()()g x g x +π=π-D .()g x 在区间24,33ππ⎡⎤-⎢⎥⎣⎦上单调递增,且是小值为三、填空题1. 【2020届河北省衡水中学高三下学期第一次模拟数学(理)】ABC 的内角,,A B C 的对边分别为,,a b c ,若3cos 3cos 5sin b C c B a A +=,且A 为锐角,则当2a bc取得最小值时,a b c +的值为___________.2. 【河北省衡水中学2021届高三上学期期中】在ABC 中,,,a b c 分别是角,,A B C 的对边,已知1sin 262A π⎛⎫+= ⎪⎝⎭,1b =,ABC sin sin b c B C ++的值为_______________.3. 【河北省衡水中学2021届高三下学期三调(新高考)】已知,αβ均为锐角,且2παβ+≠,若3sin(2)sin 2αββ+=,则tan()tan αβα+=________.4. 【河北省衡水中学2021届高三下学期三调(新高考)】对任意两实数a ,b ,定义运算“*”:22,22,a b a ba b b a a b -≥⎧*=⎨-<⎩,则函数()sin *cos f x x x =的值域为______.5. 【河北省衡水中学2021届全国高三第一次联合考试(全国卷)】在ABC 中,14,6,cos 3AB BC B ===-,则ABC 的外接圆的半径等于___________. 四、解答题1. 【河北省衡水第一中学2021届全国高三第二次联合考试(1)】如图,在平面四边形ABCD 中,60ABC ∠=︒,75BAD BCD ∠=∠=︒,2BC =,CD =AC .(1)求BD ;(2)设BAC α∠=,CAD β∠=,求sin sin αβ的值. 2. 【河北省衡水中学2021届高三上学期七调】在ABC 中,内角,,A B C 所对的边分别是,,a b c ,且cos sin b c a B B +=.(1)求角A ;(2)若a =ABC 的面积的最大值.3. 【河北省衡水中学2021届高三上学期期中】在ABC 中,角,,A B C 的对边分别是,,a b c ,已知向量33cos ,sin 22A A m ⎛⎫= ⎪⎝⎭,cos ,sin 22A A n ⎛⎫= ⎪⎝⎭,且满足3m n +=.(1)求角A 的大小;(2)若b c +=,试判断ABC 的形状.4. 【河北省衡水中学2021届高三上学期四调】在①sin sin 4sin sin b A a B c A B +=,②2cos 222CC -=,③()sin sin sin a A b B c C +=,这三个条件中任选一个,补充到下面的问题中,并解决该问题.已知△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,sin sin A B =2c =,___________,求角C 及△ABC 的面积S .5. 【河北省衡水中学2021届高三数学第一次联合考试】如图,在四边形ABCD 中,AC 与BD 相交于点O ,sin sin OB ABD OD ADB ⋅∠=⋅∠,π3ABC ∠=,33AB BC ==.(1)求sin DAC ∠; (2)若2π3ADC ∠=,求四边形ABCD 的面积. 6. 【河北省衡水中学2021届高三下学期三调(新高考)】如图,在海岛A 上有一座海拔1千米的山,山顶设有一个观察站P ,上午11时,测得一轮船在岛北偏东30°,俯角为30°的B 处,到11时10分又测得该船在岛北偏西60°,俯角为60°的C 处. (1)求船的航行速度是每小时多少千米?(2)又经过一段时间后,船到达海岛的正西方向的D 处,问此时船距岛A 有多远?7. 【河北省衡水中学2021届全国高三第二次联合考试(新高考)】在①ABC 的外接圆面积为3π②ADC③BDC 的周长为5. 问题:在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,D 是AB 边上一点.已知13AD AB =,3sin sin 4A C =,cos23cos 1B B +=,若___________,求CD 的长.注:如果选择多个条件分别解答,按第一个解答计分.8. 【河北省衡水中学2021届全国高三下学期第二次联合考试(II 卷)】在四边形ABCD 中,对角线AC 与BD相交于点E ,ABD △为等边三角形,2,1BD AC BC ===. (1)求CBD ∠的大小; (2)求ADE 的面积.专题06 三角函数一、单选题1. 【2020届河北省衡水中学高三下学期第一次模拟数学(理)】若,2παπ⎛⎫∈ ⎪⎝⎭,7cos 225α=,则sin 3sin 2απα=⎛⎫+ ⎪⎝⎭( ) A .34-B .34C .43 D .43-【答案】B 【解析】由题可得22222222cos sin 1tan 7cos 2cos sin cos sin 1tan 25ααααααααα--=-===++,解得3tan 4α=±. ,2παπ⎛⎫∈ ⎪⎝⎭,3tan 4α∴=-,因此,sin sin 3tan 3cos 4sin 2αααπαα==-=-⎛⎫+ ⎪⎝⎭. 故选:B.2. 【2020届河北省衡水中学高三下学期第一次模拟数学(理)】已知函数()f x x ω=和()g x x ω=(0>ω)图象的交点中,任意连续三个交点均可作为一个等腰直角三角形的顶点.为了得到()y g x =的图象,只需把()y f x =的图象( ) A .向左平移1个单位 B .向左平移2π个单位 C .向右平移1个单位 D .向右平移2π个单位【答案】A 【解析】如图所示:()()f x x g x x ωω===,故tan 1x ω=,,4k x k Z ππωω=+∈. 取靠近原点的三个交点,3,14A πω⎛⎫-- ⎪⎝⎭,,14B πω⎛⎫ ⎪⎝⎭,5,14C πω⎛⎫- ⎪⎝⎭, ABC ∆为等腰直角三角形,故532444πππωωω+==,故2πω=,故()2f x x π=,()222g x x x πππ⎛⎫==+ ⎪⎝⎭, 故为了得到()y g x =的图象,只需把()y f x =的图象向左平移1个单位 . 故选:A .3. 【河北省衡水第一中学2021届全国高三第二次联合考试(1)】已知函数()sin 2sin 213f x x x π⎛⎫=+++ ⎪⎝⎭,则( )A .()()33ππ+=-f x f xB .,012π⎛⎫- ⎪⎝⎭是函数()f x 的一个对称中心C .任取方程()1f x =的两个根1x ,2x ,则12x x -是π的整数倍D .对于任意的123,,0,4x x x π⎡⎤∈⎢⎥⎣⎦,()()()123f x f x f x +≥恒成立【答案】D 【解析】因为()3sin 2sin 21sin 22121326f x x x x x x ππ⎛⎫⎛⎫=+++=+=++ ⎪ ⎪⎝⎭⎝⎭,所以51136f ππ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭,所以3f π⎛⎫⎪⎝⎭既不是最大值也不是最小值,所以直线3x π=不是其图象的对称轴,故A 错误;因为图象整体向上平移了一个单位长度,所以对称中心也向上平移了一个单位长度,且01112f π⎛⎫-=+= ⎪⎝⎭,所以点,112π⎛⎫- ⎪⎝⎭是其对称中心,故B 错误;任取方程()1f x =得到的两个根,即为方程sin 206π⎛⎫+= ⎪⎝⎭x 的任意两根,它们之间相差为2T 的整数倍,且22T ππ==,所以它们彼此之间相差的是2π的整数倍,故C 错误;当0,4x π⎡⎤∈⎢⎥⎣⎦时,22,663x πππ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,此时()f x 1+1,所以对于任意的123,,0,4x x x π⎡⎤∈⎢⎥⎣⎦,()()()12321f x f x f x +>≥恒成立,故D 正确.故选:D.4. 【河北省衡水中学2021届高三上学期七调】若{},,min ,,,a a b a b b a b ≤⎧=⎨>⎩()sin cos f x x x =+,()sin cos g x x x =-,()()(){}min ,h x f x g x =,关于函数()h x 的以下结论:①T π= ②对称轴方程为212k x π+=,k Z ∈ ③值域为⎡⎤⎣⎦ ④在区间35,44ππ⎛⎫ ⎪⎝⎭单调递减 其中正确的是( ) A .①② B .②③C .①③④D .②③④【答案】D 【解析】解:()()(){}sin cos ,cos 0,min ,sin cos ,cos 0,x x x h x f x g x x x x +≤⎧==⎨->⎩3,22,422,22,422x k x k x k x k ππππππππππ⎛⎫++≤≤+ ⎪⎝⎭=⎨⎛⎫⎪--<<+ ⎪⎪⎝⎭⎩()k Z ∈.因为()(),f x g x 都是周期为2π的函数,所以()h x 的周期为2π,①错误; 如下图所示(一个周期内图象):()h x 的对称轴方程为:2122k x k πππ+=+=,k Z ∈,②正确; 由图直接得知③正确;当3,(,)35,,()44442x x x f x ππππππ⎛⎛⎫++∈ ⎪⎫∈=⎝⎭ ⎪⎝⎭,()f x ∴在区间35,44ππ⎛⎫⎪⎝⎭单调递减,④正确. 故选:D.5. 【河北省衡水中学2021届高三上学期期中】在ABC 中,,,a b c 分别是角,,A B C 的对边,若2222014a b c +=,则()2tan tan tan tan tan A BC A B ⋅+的值为A .2013B .1C .0D .2014【答案】A【解析】 ∵a 2+b 2=2014c 2,∴a 2+b 2﹣c 2=2013c 2=2abcosC .∴()2tanA tanB tanC tanA tanB ⋅+=2sinA sinBcosA cosB sinC sinA sinB cosC cosA cosB ⋅⎛⎫+ ⎪⎝⎭=()2sinAsinBcosC sinCsin A B +=22abcosC c =2013. 故答案为:A6. 【河北省衡水中学2021届高三上学期四调】17世纪德国著名的天文学家开普勒曾经这样说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为36︒的等腰三角形(另一种是顶角为108︒的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金ABC中,BC AC =根据这些信息,可得sin1674︒=( )AB.C.D.【答案】C 【解析】由题意可得:72ACB ∠=︒,且12cos BCACB AC ∠=所以22cos1442cos 72121︒=︒-=⨯-=⎝⎭所以()()sin1674sin 2344360sin 234sin 14490cos144︒=︒+⨯︒=︒=︒+︒=︒= 故选:C7. 【河北省衡水中学2021届高三下学期三调(新高考)】密位制是度量角的一种方法.把一周角等分为6000份,每一份叫做1密位的角.以密位作为角的度量单位,这种度量角的单位制,叫做角的密位制.在角的密位制中,采用四个数码表示角的大小,单位名称密位二字可以省去不写.密位的写法是在百位数与十位数字之间画一条短线,如密位7写成“007-”,478密位写成“478-”,1周角等于6000密位,记作1周角6000=-,1直角1500=-.如果一个半径为2的扇形,它的面积为76π,则其圆心角用密位制表示为( )A .1250-B .1750-C .2100-D .3500-【答案】B 【解析】设扇形所对的圆心角为α,α所对的密位为n ,则217226απ⨯=,解得7π12α=,由题意可得71260002n ππ=,解得76000175024n =⨯=, 因此,该扇形圆心角用密位制表示为1750-. 故选:B.8. 【河北省衡水中学2021届全国高三第一次联合考试(全国卷)】如图,A ,B ,C ,D 四点共圆,,DA DC BAD DAC ⊥∠=∠,M ,N 在线段AC 上,且AM AB =,N 是MC 的中点.设,AC d DAC α=∠=,则下列结论正确的是( )A .||sin2AB d α=⋅ B .2||cos NC d α=⋅ C .2||(||)2dDC d AB =⋅- D .||cos BD d α=⋅【答案】C 【解析】连接BC ,如图所示,易知AC 是圆的直径.因为BAD DAC α∠=∠=,所以2BAC α∠=. 在Rt ABC 中,||cos2AB d α=⋅, 故选项A 不正确;在Rt ADC 中,||sin DC d α=⋅.又因为BAD DAC ∠=∠,所以||||sin DC BD d α==, 故选项D 不正确;211||(||)(||)(1cos2)sin 222dNC d AM d AB d αα=-=-=⋅-=⋅,故选项B 不正确;因为BAD DAC ∠=∠,所以||BD DC =.又因为AM AB =,易知ADB △与ADM △全等,所以||||BD DM =, 所以||DC DM =.又因为N 是MC 的中点,所以DN CM ⊥, 所以Rt DNC Rt ADC ∽, 所以||||||||DC NC AC DC =,所以2||||||(||)2d DC AC NC d AB =⋅=⋅-, 故选项C 正确. 故选:C9. 【河北省衡水中学2021届全国高三下学期第二次联合考试(II 卷)】已知sin 0,cos 0αα><,则( ) A .sin20α> B .cos20α<C .tan02α> D .sin02α<【答案】C 【解析】由sin 0,cos 0αα><知,α为第二象限角,所以2α为第一或第三象限角,所以tan02α>.故选:C.二、多选题1. 【河北省衡水中学2021届高三上学期四调】已知函数()sin cos sin cos f x x x x x =++-,下列结论不正确的是( ) A .函数图像关于4x π=对称B .函数在,44ππ⎡⎤-⎢⎥⎣⎦上单调递增C .若12()()4f x f x +=,则122()2x x k k Z ππ+=+∈D .函数f (x )的最小值为-2 【答案】BCD 【解析】 解:由题意可得:32cos (2,2)2cos sin cos 44()sin cos sin cos 2sin sin cos 52sin [2,2]44xx k k x x x f x x x x x x x x xx k k ππππππππ⎧∈-+⎪<⎧⎪=++-==⎨⎨⎩⎪∈++⎪⎩,函数图象如下所示故对称轴为4x k ππ=+,()k Z ∈,故A 正确;显然函数在,04π⎡⎤-⎢⎥⎣⎦上单调递增,0,4⎡⎤⎢⎥⎣⎦π上单调递减,故B 错误;当524x k ππ=+,()k Z ∈时函数取得最小值()min f x =D 错误; 要使12()()4f x f x +=,则12()()2f x f x ==,则112πx k 或1122x k ππ=+,222x k π=或2222x k ππ=+,()12,k k Z ∈所以2122x x k ππ+=+或21x x k π+=, ()k Z ∈,故C 错误.故选:BCD .2. 【河北省衡水中学2021届高三数学第一次联合考试】已知π3cos 55α⎛⎫+= ⎪⎝⎭,则3sin 2π5α⎛⎫-= ⎪⎝⎭( )A .2425-B .1225-C .1225D .2425【答案】AD 【解析】解: 因为π3cos 55α⎛⎫+= ⎪⎝⎭,所以π4sin 55α⎛⎫+=± ⎪⎝⎭,32ππsin 2πsin 2π2sin cos 5555αααα⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.所以324sin 2π525α⎛⎫-=± ⎪⎝⎭.故选: AD3. 【河北省衡水中学2021届全国高三第二次联合考试(新高考)】将函数()2cos f x x =图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,再将得到的图象向左平移π个单位长度,得到函数()g x 的图象,则下列说法正确的有( ) A .()g x 为奇函数 B .()g x 的周期为4πC .x R ∀∈,都有()()g x g x +π=π-D .()g x 在区间24,33ππ⎡⎤-⎢⎥⎣⎦上单调递增,且是小值为【答案】ABC【解析】将函数()2cos f x x =图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得y =2cos ,2x再将得到的图象向左平移π个单位长度,得()2cos 2sin 22x x g x π+⎛⎫==- ⎪⎝⎭,因为()()2sin 2sin 22x x g x g x ⎛⎫⎛⎫-=--==- ⎪ ⎪⎝⎭⎝⎭,所以()g x 为奇函数,故A 正确;由周期公式2412T ππ==,所以()g x 的周期为4π,故B 正确; 又()g x 在x π=时取得最小值2-,所以()g x 的图象关于直线x π=对称,故C 正确;令322222x k k ππππ++,解得43k x πππ++4,,k k Z π∈ 所以()g x 在区间[]4,34(k k k ππππ++∈Z )上单调递增,取0,k =得[],3,ππ 所以()g x 在区间2,3ππ⎡⎤-⎢⎥⎣⎦上单调递减,在区间4,3ππ⎡⎤⎢⎥⎣⎦上单调递增, 所以最小值为()2g π=-,故D 错误.故选:ABC. 三、填空题1. 【2020届河北省衡水中学高三下学期第一次模拟数学(理)】ABC 的内角,,A B C 的对边分别为,,a b c ,若3cos 3cos 5sin b C c B a A +=,且A 为锐角,则当2a bc取得最小值时,a b c +的值为___________.【解析】由正弦定理将3cos 3cos 5sin b C c B a A +=变形可得 23sin cos 3sin cos 5sin B C C B A +=,即23sin()5sin B C A +=, 由sin()sin 0B C A +=>可得3sin 5A =, 而A 是锐角,所以4cos 5A =, 则由余弦定理可得2222282cos 5a b c bc A b c bc =+-=+-,则222228855b c bc a b c bc bc bc +-+==-28255bc bc -=≥,当且仅当b c =时,2a bc取得最小值25,故2225ab =,故a ,所以a b c +.故答案为:2. 【河北省衡水中学2021届高三上学期期中】在ABC 中,,,a b c 分别是角,,A B C 的对边,已知1sin 262A π⎛⎫+= ⎪⎝⎭,1b =,ABC sin sin b c B C ++的值为_______________.【答案】2 【解析】∵1262sin A π⎛⎫+= ⎪⎝⎭,A ∈(0,π)∴2A+6π=56π,可得A =3π∵b=1,△ABC∴S =12112c sinA ⨯⨯⨯=c =2 由余弦定理,得a 2=b 2+c 2﹣2bc cosA=1+4﹣2×123cos π⨯=3∴a根据正弦定理,得b c sinB sinC ++=asinA3sin故答案为23. 【河北省衡水中学2021届高三下学期三调(新高考)】已知,αβ均为锐角,且2παβ+≠,若3sin(2)sin 2αββ+=,则tan()tan αβα+=________.【答案】5 【解析】由3sin(2)sin 2αββ+=,可得2sin[(α+β)+α]=3sin[(α+β)-α]所以2[sin(α+β)cos α+cos(α+β)sin α]=3[sin(α+β)cos α-cos(α+β)sin α] 从而sin(α+β)cos α=5cos(α+β)sin α,所以tan(α+β)=5tan α,所以tan()5tan αβα+=.故答案为:5.4. 【河北省衡水中学2021届高三下学期三调(新高考)】对任意两实数a ,b ,定义运算“*”:22,22,a b a b a b b a a b -≥⎧*=⎨-<⎩,则函数()sin *cos f x x x =的值域为______.【答案】[0, 【解析】由22,22,a b a ba b b a a b -≥⎧*=⎨-<⎩,则函数52sin 2cos ,2,2,44()sin cos 52cos 2sin ,2,22,2244x x x k k f x x x x x x k k k k πππππππππππ⎧⎡⎤-∈++⎪⎢⎥⎪⎣⎦=*=⎨⎛⎫⎛⎫⎪-∈+⋃++ ⎪ ⎪⎪⎝⎭⎝⎭⎩整理可得:()2sin cos |sin 4f x x x x π⎛⎫=-=- ⎪⎝⎭∣∣ 由[]sin 1,14x π⎛⎫-∈- ⎪⎝⎭,得[]|sin 0,14x π⎛⎫-∈ ⎪⎝⎭∣,即sin 0,4x π⎛⎫⎡-∈ ⎪⎣⎝⎭∣ 所以()f x的值域为[0,.故答案为:[0,5. 【河北省衡水中学2021届全国高三第一次联合考试(全国卷)】在ABC 中,14,6,cos 3AB BC B ===-,则ABC 的外接圆的半径等于___________.【解析】在ABC中,易求sin B =.又6,4BC AB ==, 由余弦定理可得2222212cos 64264683AC BC AB BC AB B ⎛⎫=+⋅=+-⨯⨯⨯-= ⎪⎝⎭-,解得AC =设ABC 外接圆的半径为r,则由正弦定理,得2sin AC r B ==,所以r =.四、解答题1. 【河北省衡水第一中学2021届全国高三第二次联合考试(1)】如图,在平面四边形ABCD 中,60ABC ∠=︒,75BAD BCD ∠=∠=︒,2BC =,CD =,连接AC .(1)求BD ;(2)设BAC α∠=,CAD β∠=,求sin sin αβ的值. 【答案】(1)2;(2【解析】解:(1)在BCD △中,由余弦定理可得2222cos BD BC CD BC CD BCD =+-⋅⋅∠222224=+-⨯⨯, 所以2BD =;(2)由题意可得360150ADC ABC BAD BCD ∠=︒-∠-∠-∠=︒, 在ACD △中,由正弦定理sin sin AC CDADC β=∠,在ABC 中,由正弦定理sin sin AC BCABC α=∠,两式相除可得:sin sin sin sin CD ABCBC ADCαβ∠⋅=∠,所以sin sin 2sin sin ABC BC ADC CD αβ∠=⋅∠所以sin sin αβ 2. 【河北省衡水中学2021届高三上学期七调】在ABC 中,内角,,A B C 所对的边分别是,,a b c ,且cos sin b c a B B +=.(1)求角A ;(2)若a =ABC 的面积的最大值.【答案】(1)3π;(2)【解析】(1)由题设及正弦定理得sin sin sin cos sin B C A B A B +=A B C π++=∴sin sin()C A B =+sin sin()sin cos sin B A B A B A B ++=化简得sin cos 1)0B A A --=sin 0B >,cos 1A A -=,可得:1sin 62A π⎛⎫-= ⎪⎝⎭0A x <<∴3A π=(2)由已知a =1),根据余弦定理得2212cos 2b c A bc+-=, 即2211222b c bc+-=, ∴2212bc b c =+-222b c bc +≥,12bc ≤(当且仅当b c =时取号)∴111sin 12222ABC S bc A bc ==⋅=△b c =时取号)3. 【河北省衡水中学2021届高三上学期期中】在ABC 中,角,,A B C 的对边分别是,,a b c ,已知向量33cos ,sin 22A A m ⎛⎫= ⎪⎝⎭,cos ,sin 22A A n ⎛⎫= ⎪⎝⎭,且满足3m n +=.(1)求角A 的大小;(2)若b c +=,试判断ABC 的形状. 【答案】(1)(2)直角三角形【解析】(1)∵()()2223m n m n ++⋅=,代入33cos ,sin 22A A m ⎛⎫= ⎪⎝⎭,cos ,sin 22A A n ⎛⎫= ⎪⎝⎭,有 33112cos cos sin sin 32222A A A A ⎛⎫+++= ⎪⎝⎭,∴331cos cos sin sin 22222A A A A ⎛⎫+= ⎪⎝⎭,即31cos 222A A ⎛⎫-= ⎪⎝⎭,∴1cos 2A =,60A =︒. (2)∵1cos 2A =,∴222122b c a bc +-=①又∵b c +=②联立①②有,222bc b c =+-,即222520b bc c --=,解得2b c =或2c b =,又∵b c +,若2b c =,则a =, ∴)2222224a c c c b +=+==,ABC 为直角三角形,同理,若2c b =,则ABC 也为直角三角形.4. 【河北省衡水中学2021届高三上学期四调】在①sin sin 4sin sin b A a B c A B +=,②2cos 222CC -=,③()sin sin sin a A b B c C +=,这三个条件中任选一个,补充到下面的问题中,并解决该问题.已知△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,sin sin A B 2c =,___________,求角C 及△ABC 的面积S .【答案】选择见解析;π6C =,1S =【解析】选①sin sin 4sin sin b A a B c A B +=, 因为sin sin 4sin sin b A a B c A B +=,所以由正弦定理得sin sin sin sin 4sin sin sin B A A B C A B +=,即2sin sin 4sin sin sin B A C A B =,所以1sin 2C =, 因为()0,πC ∈,所以π6C =或5π6C =. 若5π6C =,由sin sin A B = 而π6A <,π6B <,从而1sin sin 4A B <,矛盾,舍去.故π6C =, 接下来求△ABC 的面积S .法一:设△ABC 外接圆的半径为R ,则由正弦定理得224πsin sin 6c R C ===, 2sin 4sin a R A A ∴==,2sin 4sin b R B B ==,16sin sin 4(1ab A B ∴==,111sin 4(11222ABCSab C ∴==⨯⨯=. 法二:由(1)得cos C =,即cos cos sin sin A B A B -=sin sin A B,cos cos A B ∴=1cos()cos cos sin sin 2A B A B A B ∴-=+=, 5π5π(,)66A B -∈-,π3A B ∴-=或π3B A -=, 当π3A B -=时,又5π6A B +=,7π12A ∴=,π4B =,由正弦定理得π2sinsin 4πsin sin6c B b C ===117π1sin 2sin 122122ABC S bc A ∴==⨯==△当π3B A -=时,同理可得1ABCS =故△ABC的面积为1选②2cos 222CC -=,因为2cos 222C C -=,所以22cos 1cos )20C C --=,即22cos 30C C -=,(2cos 0C C +=,所以cos C =或cos C =, 因为()0,πC ∈,所以π6C =. 以下同解法同①,选③()sin sin sin a A b B c C +=,由()sin sin sin a A b B c C +=及正弦定理得()22a abc +=,即222a b c +-=,由余弦定理得222cos 2a b c C ab +-==0πC <<,π6C ∴=, 以下解法同①.5. 【河北省衡水中学2021届高三数学第一次联合考试】如图,在四边形ABCD 中,AC 与BD 相交于点O ,sin sin OB ABD OD ADB ⋅∠=⋅∠,π3ABC ∠=,33AB BC ==.(1)求sin DAC ∠; (2)若2π3ADC ∠=,求四边形ABCD 的面积.【答案】(1;(2. 【解析】(1)在ABC 中,π3ABC ∠=,3AB =,1BC =, 由余弦定理得2222cos AC AB BC AB BC ABC =+-⨯⨯∠ 2213123172=+-⨯⨯⨯=,所以AC = 由正弦定理得sin sin BC AC BAC ABC=∠∠,sin sin BC ABC BAC AC ⋅∠∠=== 在AOB 中,由正弦定理得sin sin OB OA BAC ABD=∠∠, 即sin sin OB ABD OA BAC ⋅∠=⋅∠,同理,在AOD △中,sin sin OD ADB OA DAC ⋅∠=⋅∠.又因为sin sin OB ABD OD ADB ⋅∠=⋅∠,所以sin sin OA BAC OA DAC ⋅∠=⋅∠.所以sin sin DAC BAC ∠=∠= (2)在ADC 中,由正弦定理得sin sin CD AC DAC ADC=∠∠,=,所以1CD =. 又由余弦定理得222cos 2AD CD AC ADC AD CD+-∠=⋅, 即211722AD AD+--=,解得2AD =. S 四边形ABCD 11sin sin 22△△=+=⨯⨯⨯∠+⨯⨯∠ADC ABC S S AD AC DAC AB AC BAC ()1sin 2AC DAC AD AB =⨯∠⨯+=. 6. 【河北省衡水中学2021届高三下学期三调(新高考)】如图,在海岛A 上有一座海拔1千米的山,山顶设有一个观察站P ,上午11时,测得一轮船在岛北偏东30°,俯角为30°的B 处,到11时10分又测得该船在岛北偏西60°,俯角为60°的C 处.(1)求船的航行速度是每小时多少千米?(2)又经过一段时间后,船到达海岛的正西方向的D 处,问此时船距岛A 有多远?【答案】(1)2【解析】(1)在Rt △PAB 中,∠APB =60°,PA =1,∴AB在Rt △PAC 中,∠APC =30°,∴AC 在△ACB 中,∠CAB =30°+60°=90°,∴BC1060(千米/时). (2)在△ACD 中,∠DAC =90°-60°=30°,sin ∠DCA=sin(180°-∠ACB)=sin ∠ACBsin ∠CDA =sin(∠ACB -30°)=sin ∠ACB·cos30°-cos ∠ACB·sin30°由正弦定理得AD 7. 【河北省衡水中学2021届全国高三第二次联合考试(新高考)】在①ABC 的外接圆面积为3π②ADC③BDC 的周长为5这三个条件中任选一个,补充在下面的问题中,并给出解答. 问题:在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,D 是AB 边上一点.已知13AD AB =,3sin sin 4A C =,cos23cos 1B B +=,若___________,求CD 的长. 注:如果选择多个条件分别解答,按第一个解答计分.【答案】条件选择见解析;CD =【解析】解:因为cos23cos 1B B +=,所以22cos 3cos 20B B +-= 解得1cos 2B =或cos 2(B =-舍去),所以在ABC 中,3B π=. 因为23sin sin sin ,4A CB ==所以2.b ac = 所以由余弦定理得22222cos b a c ac B a =+-=+2c ac -又2,b ac =所以2220,a c ac +-=即a c =,所以ABC 为等边三角形. 因为1,3AD AB = 所以在ADC 中,由余弦定理得CD== 选择条件①:由ABC 的外接圆面积为3,π得2R =所以sin 3aπ=所以 3.a =故CD =选择条件②:由ADC得ABC2=解得 3.a =故CD =选择条件③:由BDC的周长为5,得253a a += 所以 3.a =故CD =8. 【河北省衡水中学2021届全国高三下学期第二次联合考试(II 卷)】在四边形ABCD 中,对角线AC 与BD 相交于点E ,ABD △为等边三角形,2,1BD AC BC ===.(1)求CBD ∠的大小;(2)求ADE 的面积.【答案】(1)3π;(2【解析】(1)在ABC 中,2,1AB AC BC ===,由余弦定理得2221cos 22AB BC AC ABC AB BC +-∠===-⨯. 因为0ABC π<∠<,所以23ABC π∠=,从而233CBD ABD ππ∠=-∠=. (2)由3CBD ADB π∠==∠知,//BC AD ,所以BCE DAE ∽, 所以12BC BE AD DE ==,所以2DE BE =.因为2BD =,所以43DE =.所以114sin 2sin 2233ADE S AD DE ADE π=⨯⨯⨯∠=⨯⨯⨯=.。

2020-2021学年高考总复习数学(理)第二次模拟考试试题及答案解析

2020-2021学年高考总复习数学(理)第二次模拟考试试题及答案解析

最新高考模拟考试理科数学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,共5页.考试时间120分钟.满分150分.答题前,考生务必用0.5毫米的黑色签字笔将自己的姓名、座号、考号填写在答题纸规定的位置.第I 卷(选择题 共50分)注意事项:每小题选出答案后,用铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i 为虚数单位,复数12i z a i -=+的实部与虚部互为相反数,则实数a = (A)-1 (B)1 (C)3 (D)3-2.已知集合{}2230A x x x =--<,(){}ln 2B x y x ==-,定义{},A B x x R x B -=∈∉且,则A B -= (A)(-1,2) (B)[)2,3 (C)(2,3) (D)(]1,2-3.已知()()2,22a b a b a b ==+⋅-=-u u r u u r r r r r ,则a b r r 与的夹角为 (A)30° (B)45°(C)60° (D)120° 4.命题p :若22x y ≥,则11gx gy ≥;命题q :若随机变量ξ服从正态分布()()23,,60.72N P σξ≤=,则()00.28P ξ≤=.下列命题为真命题的是(A)p q ∧ (B)p q ⌝∧ (C)p q ∨⌝ (D)p q ⌝∧⌝5.右图所示的程序框图中按程序运行后输出的结果 (A)7 (B)8 (C)9(D)10 6.已知函数()()()2cos 0,0f x x ωθθπω=+<<>为奇函数,其图象与直线y=2相邻两交点的距离为π,则函数()f x(A)在,63ππ⎡⎤⎢⎥⎣⎦上单调递减 (B)在,63ππ⎡⎤⎢⎥⎣⎦上单调递增 (C)在,64ππ⎡⎤-⎢⎥⎣⎦上单调递减 (D)在,64ππ⎡⎤-⎢⎥⎣⎦上单调递增 7.若对任意实数x 使得不等式23x a x --+≤恒成立,则实数a 的取值范围是(A)[]1,5- (B)[]2,4- (C)[]1,1- (D)[]5,1- 8.已知等腰ABC ∆满足,32AB AC BC AB ==,点D 为BC 边上一点且AD=BD ,则sin ADB ∠的值为(A)36 (B)23 (C)223 (D)639.设双曲线()222210,0x y a b a b-=>>的右焦点为F ,过点F 作x 轴的垂线交两渐近线于点A ,B 两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点,若()225OP OA OB ,,8u R u λλμλ=+∈+=uu r uuu r uu u r ,则双曲线的离心率为 (A)23 (B)35 (C)32 (D)9810.已知函数()23261x ax f x x ++=+,若存在x N *∈使得()2f x ≤成立,则实数a 的取值范围为 (A)[)15,-+∞ (B)(,2122⎤-∞-⎦ (C )(],16-∞- (D)(],15-∞- 第II 卷(非选择题共100分)注意事项:1.请用0.5毫米的黑色签字笔将每题的答案填写在答题纸的指定位置.书写的答案如需改动,要先划掉原来的答案,然后再写上新答案.2.不在指定答题位置答题或超出答题区域书写的答案无效.在试题卷上答题无效.二、填空题:本大题共5小题,每小题5分,共25分.11.正四棱锥的主视图和俯视图如图所示,其中主视图为边长为1的正三角形,则该正四棱锥的表面积为__________.12.在二项式393n x x ⎛- ⎪⎝⎭的展开式中,偶数项的二项式系数之和为256,则展开式中x 的系数为___________. 13.若变量,x y 少满足约束条件32930,0x y x y y ≤+≤⎧⎪-+≥⎨⎪≥⎩则z =x +2y 的最大值为__________.14.抛物线()2:20C y px p =>的焦点为F ,O 为坐标原点,M 为C 上一点.若2,MF p MOF =∆的面积为43,则抛物线方程为____________.15.已知函数()31,1,1x f x x x x ⎧≥⎪=⎨⎪<⎩,若关于x 的方程()f x x m =+有两个不同的实根,则实数m 的取值范围为___________.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)已知()()()2cos sin cos cos 102f x x x x x πλλ⎛⎫=-+-+> ⎪⎝⎭的最大值为3. (I)求函数()f x 的对称轴;(II)在ABC ∆中,内角A ,B ,C 的对边分别为,,a b c ,且cos cos 2A a B c b =-,若不等式()f B m <恒成立,求实数m 的取值范围.17. (本小题满分12分)已知四棱锥P ABCD -,底面ABCD 为平行四边形,PD ⊥底面ABCD ,2,2AD PD DC ===,E,F 分别为PD ,PC 的中点,且BE 与平面ABCD 所成角的正切值为2. (I )求证:平面PAB ⊥平面PBD ;(II )求面PAB 与面EFB 所成二面角的余弦值.18.(本小题满分12分)2015年,威海智慧公交建设项目已经基本完成.为了解市民对该项目的满意度,分别从不同公交站点随机抽取若干市民对该项目进行评分(满分100分),绘制如下频率分布直方图,并将分数从低到高分为四个等级:已知满意度等级为基本满意的有680人.(I)若市民的满意度评分相互独立,以满意度样本估计全市市民满意度.现从全市市民中随机抽取4人,求至少有2人非常满意的概率;(II)在等级为不满意市民中,老年人占13.现从该等级市民中按年龄分层抽取15人了解不满意的原因,并从中选取3人担任整改督导员,记X 为老年督导员的人数,求X 的分布列及数学期望E (X );(III)相关部门对项目进行验收,验收的硬性指标是:市民对该项目的满意指数不低于0.8,否则该项目需进行整改,根据你所学的统计知识,判断该项目能否通过验收,并说明理由.(注:满意指数=100满意程度的平均分)19.(本小题满分12分)设单调数列{}n a 的前n 项和为n S ,2694n n S a n =+-,126,,a a a 成等比数列.(I)求数列{}n a 的通项公式;(II)设()226131n n n b n a -=+⋅,求数列{}n b 的前n 项和n T .20.(本小题满分13分)已知函数()()()ln 1,, 1.ax f x x g x a x a=+=>+ (I)若函数()()1f x x x =与g 在处切线的斜率相同,求a 的值:(II)设()()()()=,F x f x g x F x -求的单调区间:(III)讨论关于x 的方程()()f x g x =的根的个数.21.(本小题满分14分)已知椭圆()221222:10,,x y C a b F F a b+=>>是左右焦点,A ,B 是长轴两端点,点()12,,P a b F F 与围成等腰三角形,且12PF F S ∆=(I)求椭圆C 的方程;(II)设点Q 是椭圆上异于A ,B 的动点,直线4x QA QB =-与,分别交于M,N 两点.(i)当1QF MN λ=u u u r u u u u r 时,求Q 点坐标;(ii)过点M,N ,1F 三点的圆是否经过x 轴上不同于点1F 的定点?若经过,求出定点坐标,若不经过,请说明理由.。

2020-2021学年广西壮族自治区柳州市某校高三(上)8月摸底考试数学(理)试卷答案及解析

2020-2021学年广西壮族自治区柳州市某校高三(上)8月摸底考试数学(理)试卷答案及解析

2020-2021学年广西壮族自治区柳州市某校高三(上)8月摸底考试数学(理)试卷一、选择题1. 已知集合A ={−2,−1,0,1,2} ,B ={x|x 2−4<0},则A ∩B =( ) A.{−2,−1,0,1,2} B.{0,1,2} C.{−1,1} D.{−1,0,1}2. 若z (1−i )=2i ,则复数z 所对应的点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3. 下列函数中,既是偶函数,又在(0, +∞)上单调递增的函数是( ) A.y =x 3 B.y =−x 2+1C.y =log 2|x|D.y =2x4. 已知sin α=23,则cos 2α的值等于( ) A.59 B.19C.13D.−135. 在等差数列{a n }中,a 2,a 9是方程x 2−10x +16=0的两个根,则数列{a n }的前10项之和等于( ) A.100 B.80 C.50 D.406. 已知向量a →=(1,2),b →=(−1,1),且ka →+b →与b →垂直,则实数k 的值为( ) A.3 B.−3C.2D.−27. 若a =0.32 ,b =20.3,c =log 25,则a ,b ,c 的大小关系为( ) A.a <b <c B.b <a <cC.c <b <aD.b <c <a8. 执行如图所示程序框图,最后输出的S 值是( )A.15B.18C.20D.279. 若二项式(√x +1x 2)n(n ∈Z )的展开式中各项的系数之和为32,则该展开式的常数项为( ) A.12B.10C.8D.510. 用半径为2的半圆形纸片卷成一个圆锥,则这个圆锥的体积等于( ) A.√3π B.√33πC.2√3π3D.4π11. 经过原点的直线与圆C:x 2+y 2−4y +2=0相交于A ,B 两点,C 为圆心,若△ABC 为等腰直角三角形,则该直线的方程为( )A.y =√3xB.y =√33x C.y =±√3x D.y =±√33x12. 已知函数f (x )={2x +1,x <0,|sin x |,x ∈[0,2π),若函数g(x)=[f(x)]2−af (x )+b 有5个不同的零点,则2a +3b 的取值范围是( ) A.(2,12) B.[2,12] C.(3,11) D.[3,11]二、填空题函数f (x )=log 2x +1x−1的定义域是________.若实数x ,y 满足约束条件 {y ≥x,x +y ≤6,x ≥1,则Z =x +3y 的最小值是________.已知四棱锥P −ABCD 中,底面ABCD 为正方形,PA ⊥底面ABCD ,且PA =AB =2. 则该四棱锥外接球(四棱锥的所有顶点在一个球面上)的表面积为________.已知抛物线y 2=2px (p >0)与双曲线y 2−x 2=1的上支交于A ,B 两点,抛物线与双曲线的渐近线在第一象限交于点C ,F 为抛物线的焦点,且1|FA|+1|FB|=5|FC|,则抛物线的标准方程为________.三、解答题在△ABC 中, △ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =√2,b =2,B =45∘. (1)求A ;(2)求△ABC 的面积.已知数列{a n }为等差数列, a 1+a 3+a 5=12,a 2+a 4+a 6=15. (1)求数列{a n }的通项公式;(2)若数列{b n }的通项公式为b n =a n +2n ,求数列{b n }的前n 项和S n .某校学生会进行了一次关于“抗新冠肺炎知识”的调查活动,组织部分学生干部在几个大型小区随机抽取了50名居民进行问卷调查.活动结束后,学生会对问卷结果进行了统计,并将其中“是否会使用体温测试仪(会或不会)”的调查结果统计如下表:已知表中所调查的居民年龄在[10,20)的频率为110. (1)求上表中的m ,n 值;(2)在被调查的居民中,若从年龄在[20,30)的居民中随机选取两人,求这两人至少有一人会使用体温测试仪的概率;(3)在被调查的居民中,若从年龄在[10,30)会使用体温测试仪的居民中随机选取3人参加抗新冠肺炎知识讲座,记选中的3人中属于[10,20)年龄段的人数为ξ,求随机变量ξ的分布列和数学期望.如图,在三棱柱ABC −A 1B 1C 1中,AA 1⊥底面ABC ,∠BAC =120∘,AB =AC =AA 1,M 为BB 1的中点,N 为A 1C 的中点.(1)求证:直线B 1N//平面MAC ;(2)求二面角M −AC −B 的余弦值.已知动点M 到定点F (1,0)和定直线x =2的距离之比为√22,设动点M 的轨迹为曲线C . (1)求曲线C 的方程;(2)经过点F 的直线交曲线C 于P ,Q 两点,点M (−1,0),求△MPQ 面积的最大值.已知函数f(x)=e x−m −ln (2x).(1)设x =1是函数f(x)的极值点,求m 的值并讨论f(x)的单调性;(2)当m ≤2时,证明:f(x)>−ln 2.参考答案与试题解析2020-2021学年广西壮族自治区柳州市某校高三(上)8月摸底考试数学(理)试卷一、选择题1.【答案】D【考点】一元二次不等式的解法交集及其运算【解析】此题暂无解析【解答】解:已知B={x|x2−4<0},∴B={x|−2<x<2}.∵A={−2,−1,0,1,2},∴A∩B={−1,0,1}.故选D.2.【答案】B【考点】复数代数形式的混合运算复数的代数表示法及其几何意义【解析】此题暂无解析【解答】解:∵z(1−i)=2i,∴z=2i1−i =2i(1+i)(1−i)(1+i)=−1+i,则复数z所对应的点在第二象限.故选B.3.【答案】C【考点】函数奇偶性的判断函数单调性的判断与证明【解析】判断四个函数的奇偶性,排除选项,然后判断函数的单调性即可.【解答】解:易知y=x3是奇函数,故选项A不符合题意;y=−x2+1是偶函数,但是在(0, +∞)上单调递减,故选项B不符合题意;y=log2|x|是偶函数,且在(0, +∞)上单调递增,故选项C符合题意;令f(x)=2x,则f(−x)=2−x=12x,故y=2x既不是奇函数也不是偶函数,故选项D不符合题意.故选C.4.【答案】B【考点】二倍角的余弦公式【解析】直接把所求的式子利用二倍角的余弦函数公式化简得到关于sinα的式子,把sinα的值代入即可求出值.【解答】解:因为sinα=23,所以cos2α=1−2sin2α=1−2×(23)2=19.故选B.5.【答案】C【考点】等差数列的前n项和等差数列的性质【解析】此题暂无解析【解答】解:∵a2,a9是方程x2−10x+16=0的两个根,∴a2+a9=10,∴S10=a1+a102×10=a2+a92×10=5×10=50.故选C.6.【答案】D【考点】数量积判断两个平面向量的垂直关系【解析】此题暂无解析【解答】解:∵ a →=(1,2),b →=(−1,1), ∴ ka →+b →=(k −1,2k +1). ∵ ka →+b →与b →垂直, ∴ 1−k +2k +1=0, ∴ k =−2. 故选D . 7.【答案】 A【考点】指数式、对数式的综合比较 【解析】 此题暂无解析 【解答】解:∵ 0<a =0.32<0.30=1, 20=1<b =20.3<21=2, c =log 25>log 24=2, ∴ a <b <c . 故选A . 8.【答案】 C【考点】 程序框图 【解析】根据程序框图依次判定程序运行的结果,直到不满足条件k ≤5,计算S 的值. 【解答】解:由程序框图知:第一次运行S =1+0+1=2,k =2; 第二次运行S =2+2+1=5,k =3; 第三次运行S =3+5+1=9,k =4; 第四次运行S =4+9+1=14,k =5; 第五次运行S =5+14+1=20,k =6, 此时不满足条件k ≤5,输出S =20. 故选C . 9.【答案】 D【考点】二项式定理的应用 【解析】此题暂无解析 【解答】解:令x =1,则2n =32,解得n =5, ∴ (√x +1x 2) 的通项公式:T r+1=C 5r(√x)5−r (1x 2)r=C 5r x 52−5r2.令52−5r 2=0,解得r =1,∴ 该展开式中的常数项为C 51=5. 故选D . 10.【答案】 B【考点】柱体、锥体、台体的体积计算 【解析】 此题暂无解析 【解答】解:由题意知圆锥的母线长为2,设圆锥筒的底面半径等于r , 则12×2π×2=2π r ,∴ r =1,∴ 这个圆锥的体积是13×π×1×√3=√33π. 故选B . 11.【答案】 C【考点】直线和圆的方程的应用 圆的一般方程 点到直线的距离公式【解析】 此题暂无解析 【解答】解:∵ △ABC 为等腰直角三角形, ∴ 圆心到直线的距离为√22r .∵ 圆C 的标准方程是x 2+(y −2)2=2, ∴ 圆心为(0,2),半径r =√2.设经过原点的直线方程为Ax +By =0,则圆心到直线l 的距离d =√A 2+B 2,∴ d =√A 2+B 2=√22×√2=1,即A 2+B 2=4B 2, 解得AB =±√3,故直线方程为y =±√3x . 故选C . 12.【答案】 A【考点】求线性目标函数的最值 函数的零点 【解析】 此题暂无解析 【解答】解:作出函数f (x )={2x +1,x <0,|sin x |,x ∈[0,2π)的图象如图所示.∵ 函数g(x)=[f(x)]2−af (x )+b 有5个不同的零点, ∴ 方程[f(x)]2−af (x )+b =0有5个不同的实数解. 令 t =f (x ),则t 2−at +b =0 有2个不同的正实数解, 其中一个解在(0,1)上,一个解在(1,2)上.令u (t )=t 2−at +b ,则 {u (0)>0,u (1)<0,u (2)>0,即{b >0,1−a +b <0,4−2a +b >0,其表示的平面区域如图中阴影部分所示:由数形结合知,当a =3,b =2时,2a +3b =12; 当a =1,b =0时,2a +3b =2, 故2a +3b 的取值范围是(2,12). 故选A . 二、填空题【答案】(0,1)∪(1,+∞) 【考点】对数函数的定义域 【解析】 此题暂无解析 【解答】解:根据对数函数的定义域可得:x >0. ∵ 分式的分母不为零, ∴ x −1≠0,解得x ≠1,∴ f (x )=log 2x +1x−1的定义域是(0,1)∪(1,+∞).故答案为:(0,1)∪(1,+∞). 【答案】 4【考点】求线性目标函数的最值 【解析】此题暂无解析 【解答】解:作出不等式表示的平面区域如图阴影部分所示:由图可得,当Z =x +3y 经过点A(1,1)时, 取得最小值,最小值为1+3×1=4. 故答案为:4. 【答案】 12π【考点】球的表面积和体积 【解析】可以将四棱锥P −ABCD 补成球的内接长方体,其对角线PC 即为球的直径,利用勾股定理,求出球的半径,即可求球的表面积. 【解答】解:根据题意可以将四棱锥P −ABCD 补成长方体,由于边长相等故为正方体, 则其对角线PC 即为外接球的直径. ∵ PA =AB =2,∴ PC =2√3, ∴ 球的半径为√3,∴ 球的表面积为4π×3=12π. 故答案为:12π. 【答案】 y 2=4x 【考点】双曲线的渐近线 抛物线的标准方程【解析】 此题暂无解析 【解答】解:由题意知,双曲线渐近线方程为y =±x . 设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),因为双曲线y 2−x 2=1的上支交抛物线y 2=2px(p >0)于A ,B 两点,所以联立方程{y 2−x 2=1,y 2=2px,消去y 得x 2−2px +1=0, ∴ x 1+x 2=2p ,x 1x 2=1. 由抛物线定义可知|AF|=x 1+p2,|BF|=x 2+p2,|CF|=x 3+p2.又因为双曲线的渐近线在第一象限与抛物线交于点C , 所以联立方程{y =x ,y 2=2px ,消去y 得(x −2p )x =0,则x 3=2p . 又因为1|FA|+1|FB|=5|FC|,所以1x 1+p 2+1x 2+p 2=x 1+x 2+px 1x 2+p 2(x 1+x 2)+p 24=5x 3+p 2,整理得:3p1+p 2+p 24=52p+p 2,解得:p =±2. 因为p >0,所以抛物线的标准方程为y 2=4x . 故答案为:y 2=4x . 三、解答题 【答案】解:(1)由正弦定理asin A =bsin B , 得√2sin A=2sin 45∘,∴ sin A =12.又∵ A ∈(0,π),且b >a , ∴ B >A , ∴ A =30∘.(2)∵ C =180∘−A −B =105∘, ∴ sin C =sin 105∘=sin (60∘+45∘) =sin 60∘cos 45∘+cos 60∘sin 45∘ =√6+√24, ∴ S =12ab sin C =12×√2×2×√6+√24=√3+12. 【考点】两角和与差的正弦公式 正弦定理 【解析】 此题暂无解析 【解答】解:(1)由正弦定理a sin A=b sin B,得√2sin A =2sin 45, ∴ sin A =12.又∵ A ∈(0,π),且b >a , ∴ B >A , ∴ A =30∘.(2)∵ C =180∘−A −B =105∘, ∴ sin C =sin 105∘=sin (60∘+45∘) =sin 60∘cos 45∘+cos 60∘sin 45∘ =√6+√24, ∴ S =12ab sin C =1×√2×2×√6+√2=√3+12. 【答案】解:(1)由{a 1+a 3+a 5=3a 1+6d =12,a 2+a 4+a 6=3a 1+9d =15,得{a 1=2,d =1,∴ a n =a 1+(n −1)d =n +1,∴ 数列{a n }的通项公式为:a n =n +1. (2)∵ b n =a n +2n =(n +1)+2n , ∴ S n =b 1+b 2+b 3+⋯+b n=(2+21)+(3+22)+(4+23)+⋯+(n +1+2n ) =(2+3+4+⋯+n +1)+(21+22+23+⋯+2n ) =(2+n +1)×n 2+2×(1−2n)1−2=12n 2+32n +2n+1−2.【考点】数列的求和 等差数列的性质 等差数列的通项公式 【解析】 【解答】解:(1)由{a 1+a 3+a 5=3a 1+6d =12,a 2+a 4+a 6=3a 1+9d =15,得{a 1=2,d =1,∴ a n =a 1+(n −1)d =n +1,∴ 数列{a n }的通项公式为:a n =n +1. (2)∵ b n =a n +2n =(n +1)+2n , ∴ S n =b 1+b 2+b 3+⋯+b n=(2+21)+(3+22)+(4+23)+⋯+(n +1+2n ) =(2+3+4+⋯+n +1)+(21+22+23+⋯+2n ) =(2+n +1)×n 2+2×(1−2n )1−2=12n 2+32n +2n+1−2.【答案】解:(1)根据题意可得,P =m 50=110,∴ m =5,∴ n =50−5−15−10−7−3=10. 故m =5,n =10.(2)根据表中数据可得,在被调查的居民中,年龄在[20,30)的居民会使用体温测试仪的有6人, 不会使用的有4人,共10人.记从年龄在[20,30)的居民中随机选取两人,这两人至少有一人会使用体温测试仪的事件为A , ∴ P(A)=1−C 42C 102=1315.(3)在被调查的居民中,年龄在[10,30)会使用体温测试仪的居民共有10人,其中年龄在[10,20)的有4人,年龄在[20,30)的有6人,从中任意选取3人, 记3人中年龄在[10,20)的人数为ξ,则ξ可取0,1,2,3,∴ P(ξ=0)=C 63C 103=16,P(ξ=1)=C 41C 62C 103=12,P(ξ=2)=C 42C 61C 103=310,P(ξ=3)=C 43C 103=130,∴ ξ的分布列为∴ E(ξ)=0×16+1×12+2×310+3×130=65.【考点】频率分布表离散型随机变量的期望与方差离散型随机变量及其分布列古典概型及其概率计算公式【解析】此题暂无解析【解答】解:(1)根据题意可得,P=m50=110,∴m=5,∴n=50−5−15−10−7−3=10.故m=5,n=10.(2)根据表中数据可得,在被调查的居民中,年龄在[20,30)的居民会使用体温测试仪的有6人,不会使用的有4人,共10人.记从年龄在[20,30)的居民中随机选取两人,这两人至少有一人会使用体温测试仪的事件为A,∴ P(A)=1−C42C102=1315.(3)在被调查的居民中,年龄在[10,30)会使用体温测试仪的居民共有10人,其中年龄在[10,20)的有4人,年龄在[20,30)的有6人,从中任意选取3人,记3人中年龄在[10,20)的人数为ξ,则ξ可取0,1,2,3,∴P(ξ=0)=C63C103=16,P(ξ=1)=C41C62C103=12,P(ξ=2)=C42C61C103=310,P(ξ=3)=C43C103=130,∴ξ的分布列为∴ E(ξ)=0×16+1×12+2×310+3×130=65.【答案】(1)证明:取AC中点D,连接MD,ND,则ND=//12AA,B1M=//12AA1,∴ND=//B1M,∴四边形NDMB1为平行四边形,∴B1N//MD.又MD⊂平面MAC,B1N⊄平面MAC,∴B1N//平面MAC.(2)解:设BC的中点为O,B1C1的中点为E,以OA为x轴,OB为y轴,OE为z轴,建立如图所示空间直角坐标系.令AB=AC=AA1=2,则A(1,0,0),B(0,√3,0),C(0,−√3,0),M(0,√3,1),∴AM→=(−1,√3,1),AC→=(−1,−√3,0).设平面MAC的一个法向量为n→=(x,y,z),∵{n→⊥AM→,n→⊥AC→,∴{−x+√3y+z=0,−x−√3y=0,取x=√3,则y=−1,z=2√3,∴平面MAC的一个法向量为n→=(√3,−1,2√3).又平面ABC的一个法向量m→=(0,0,1),设二面角M−AC−B的平面角为θ,则cos θ=|cos ⟨n →,m →⟩|=|n →⋅m→|n →||m →||=√3√(√3)2+(−1)2+(2√3)×1=√32, ∴ 二面角M −AC −B 的余弦值为√32. 【考点】用空间向量求平面间的夹角 直线与平面平行的判定 【解析】【解答】(1)证明:取AC 中点D ,连接MD ,ND ,则ND =//12AA ,B 1M =//12AA 1,∴ ND =//B 1M ,∴ 四边形NDMB 1为平行四边形,∴ B 1N//MD .又MD ⊂平面MAC , B 1N ⊄平面MAC , ∴ B 1N//平面MAC .(2)解:设BC 的中点为O ,B 1C 1的中点为E ,以OA 为x 轴,OB 为y 轴,OE 为z 轴,建立如图所示空间直角坐标系.令AB =AC =AA 1=2,则A (1,0,0),B(0,√3,0),C(0,−√3,0),M(0,√3,1), ∴ AM →=(−1,√3,1),AC →=(−1,−√3,0). 设平面MAC 的一个法向量为n →=(x,y,z ), ∵ {n →⊥AM →,n →⊥AC →,∴ {−x +√3y +z =0,−x −√3y =0,取x =√3,则y =−1,z =2√3,∴ 平面MAC 的一个法向量为n →=(√3,−1,2√3). 又平面ABC 的一个法向量m →=(0,0,1), 设二面角M −AC −B 的平面角为θ, 则cos θ=|cos ⟨n →,m →⟩|=|n →⋅m→|n →||m →||=√3√(√3)2+(−1)2+(2√3)×1=√32, ∴ 二面角M −AC −B 的余弦值为√32. 【答案】解:(1)设M (x,y ),根据题意可得,|MF|d=√22, 即√(x −1)2+y 2=√22×|2−x|,x 2−2x +1+y 2=2−2x +12x 2, 整理得,x 22+y 2=1,∴ 所求曲线C 的方程为:x 22+y 2=1.(2)M (−1,0),F (1,0)为椭圆x 22+y 2=1的左右焦点, 当过F (1,0)的直线斜率不存在时, 则 P (1,−√22),Q (1,√22), ∴ S △MPQ =12|PQ||MF|=12×√2×2=√2. 当过F (1,0)的直线斜率存在时,设直线方程为y =k (x −1)(k ≠0),联立方程 {y =k (x −1),x 22+y 2=1,消y 得(1+2k 2)x 2−4k 2x +2k 2−2=0 . 设P (x 1,y 1),Q (x 2,y 2), 则x 1+x 2=4k 21+2k 2,x 1x 2=2k 2−21+2k 2, |PQ|=√(1212212 =√(1+k 2)[(4k 21+2k 2)2−4×2k 2−21+2k 2] =√(1+k 2)×8k 2+8(1+2k 2)2.∵ 点M (−1,0)到直线PQ 的距离d =√k 2+1=√k 2+1,∴ S △MPQ =12|PQ|⋅d=12√(1+k 2)×8k 2+8(1+2k 2)2√k 2+1=|k|√8k 2+8(1+2k 2)2=√8k 4+8k 24k 4+4k 2+1=√2−24k 4+4k 2+1<√2, 综上所述:0<S △MPQ ≤√2,∴ S △MPQ 的最大值为√2. 【考点】直线与椭圆结合的最值问题 轨迹方程 【解析】【解答】解:(1)设M (x,y ),根据题意可得,|MF|d=√22, 即√(x −1)2+y 2=√22×|2−x|,x 2−2x +1+y 2=2−2x +12x 2, 整理得,x 22+y 2=1,∴ 所求曲线C 的方程为:x 22+y 2=1. (2)M (−1,0),F (1,0)为椭圆x 22+y 2=1的左右焦点,当过F (1,0)的直线斜率不存在时, 则 P (1,−√22),Q (1,√22), ∴ S △MPQ =12|PQ||MF|=12×√2×2=√2. 当过F (1,0)的直线斜率存在时,设直线方程为y =k (x −1)(k ≠0), 联立方程 {y =k (x −1),x 22+y 2=1, 消y 得(1+2k 2)x 2−4k 2x +2k 2−2=0 .设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4k 21+2k 2,x 1x 2=2k 2−21+2k 2, |PQ|=√(1+k 2)[(x 1+x 2)2−4x 1x 2]=√(1+k 2)[(4k 21+2k 2)2−4×2k 2−21+2k 2]=√(1+k 2)×8k 2+8(1+2k 2)2.∵ 点M (−1,0)到直线PQ 的距离d =√k 2+1=√k 2+1,∴ S △MPQ =12|PQ|⋅d=1√(1+k 2)×8k 2+8(2)2|2k|√k 2+1=|k|√8k 2+8(2)2 =√8k 4+8k 24k +4k +1=√2−24k +4k +1<√2,综上所述:0<S △MPQ ≤√2, ∴ S △MPQ 的最大值为√2.【答案】(1)解:∵ f(x)=e x−m −ln (2x),∴ f ′(x)=e x−m −1x .由x =1是函数f(x)的极值点得,f ′(1)=0,即e 1−m −1=0, ∴ m =1,∴ f(x)=e x−1−ln (2x),f ′(x)=e x−1−1x ,由f ′′(x)=e x−1+1x 2>0知,f ′(x)在x ∈(0, +∞)上单调递增,且f ′(1)=0,∴ x =1是f ′(x)=0的唯一零点.∴ 当x ∈(0, 1)时,f ′(x)<0,f(x)单调递减; 当x ∈(1, +∞)时,f ′(x)>0,f(x)单调递增,∴ 函数f(x) 在(0, 1)上单调递减,在(1, +∞)上单调递增. (2)证明:当m ≤2,x ∈(0, +∞)时,e x−m ≥e x−2. 又e x ≥x +1,∴ e x−m ≥e x−2≥x −1.取函数ℎ(x)=x −1−ln (2x)(x >0),则ℎ′(x)=1−1x ,当0<x<1时,ℎ′(x)<0,ℎ(x)单调递减;当x>1时,ℎ′(x)>0,ℎ(x)单调递增,得函数ℎ(x)在x=1时取唯一的极小值,即最小值为ℎ(1)=−ln2.∴f(x)=e x−m−ln(2x)≥e x−2−ln(2x)≥x−1−ln(2x)≥−ln2,而上式三个不等号不能同时成立,故f(x)>−ln2.【考点】利用导数研究不等式恒成立问题利用导数研究函数的极值利用导数研究函数的单调性【解析】(1)求出f′(x),由题意可知f′(1)=0,由此可求m,把m值代入f′(x),由f′(x)的单调性及f′(1)=0可知其符合变化规律,从而可得单调性;(2)x∈(0, +∞)时,e x−m≥e x−2≥x−1恒成立,取函数ℎ(x)=x−1−ln(2x)(x>0),可得f(x)=e x−m−ln(2x)≥e x−2−ln(2x)≥x−1−ln(2x)≥−ln2,即可得出结论.【解答】(1)解:∵f(x)=e x−m−ln(2x),∴f′(x)=e x−m−1.x由x=1是函数f(x)的极值点得,f′(1)=0,即e1−m−1=0,∴m=1,∴f(x)=e x−1−ln(2x),f′(x)=e x−1−1,x>0知,f′(x)在x∈(0, +∞)上单调递增,且f′(1)=0,由f′′(x)=e x−1+1x2∴x=1是f′(x)=0的唯一零点.∴当x∈(0, 1)时,f′(x)<0,f(x)单调递减;当x∈(1, +∞)时,f′(x)>0,f(x)单调递增,∴函数f(x)在(0, 1)上单调递减,在(1, +∞)上单调递增.(2)证明:当m≤2,x∈(0, +∞)时,e x−m≥e x−2.又e x≥x+1,∴e x−m≥e x−2≥x−1.,取函数ℎ(x)=x−1−ln(2x)(x>0),则ℎ′(x)=1−1x当0<x<1时,ℎ′(x)<0,ℎ(x)单调递减;当x>1时,ℎ′(x)>0,ℎ(x)单调递增,得函数ℎ(x)在x=1时取唯一的极小值,即最小值为ℎ(1)=−ln2.∴f(x)=e x−m−ln(2x)≥e x−2−ln(2x)≥x−1−ln(2x)≥−ln2,而上式三个不等号不能同时成立,故f(x)>−ln2.第21页共22页◎第22页共22页。

2020-2021学年高三数学(理科)第一次高考模拟考试试题及答案解析

2020-2021学年高三数学(理科)第一次高考模拟考试试题及答案解析

2020-2021学年⾼三数学(理科)第⼀次⾼考模拟考试试题及答案解析@学⽆⽌境!@绝密★启⽤前试卷类型:A 最新第⼀次⾼考模拟考试数学试卷(理科)本试卷分选择题和⾮选择题两部分,共4页,满分150分,考试时间120分钟。

注意事项:1.答卷前,考⽣要务必填写答题卷上的有关项⽬。

2.选择题每⼩题选出答案后,⽤2B 铅笔把答案填在答题卡相应的位置上。

3.⾮选择题必须⽤⿊⾊字迹的钢笔或签字笔作答,答案必须写在答题卷各题⽬指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使⽤铅笔和涂改液. 不按以上要求作答的答案⽆效。

4.考⽣必须保持答题卷的整洁,考试结束后,将答题卷交回。

第Ⅰ卷(选择题,共60分)⼀.选择题:本⼤题共12⼩题,每⼩题5分,共60分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的. 1.复数i215-(i为虚数单位)的虚部是()A. 2iB. 2i -C. 2-D. 22. 下列函数在其定义域上既是奇函数⼜是减函数的是()A .()2x f x =B .()sin f x x x =C .1()f x x =D .()||f x x x =- 3.已知()=-παcos 12,πα-<<,则tan α=()A.B.C. D.4.设双曲线2214y x -=上的点P到点的距离为6,则P点到(0,的距离是()@学⽆⽌境!@A .2或10 B.10 C.2 D.4或85. 下列有关命题说法正确的是()A. 命题p :“sin +cos =2x x x ?∈R ,”,则?p 是真命题 B .21560x x x =---=“”是“”的必要不充分条件 C .命题2,10x x x ?∈++的否定是:“210x x x ?∈++D .“1>a ”是“()log (01)(0)a f x x a a =>≠+∞,在,上为增函数”的充要条件6. 将函数-=32sin )(πx x f 的图像向右平移3π个单位得到函数)(x g 的图像,则)(x g 的⼀条对称轴⽅程可以为() A. 43π=x B. 76x π= C. 127π=x D. 12π=x 7.2015年⾼中⽣技能⼤赛中三所学校分别有3名、2名、1名学⽣获奖,这6名学⽣要排成⼀排合影,则同校学⽣排在⼀起的概率是()A .130 B .115 C .110 D .158.执⾏如图8的程序框图,若输出S 的值是12,则a 的值可以为()A .2014B .2015C .2016D .20179.若某⼏何体的三视图(单位:cm )如图所⽰,则该⼏何体的体积()A.310cmB.320cmC.330cmD.340cm10.若nx x ??? ?-321的展开式中存在常数项,则n 可以为() A .8 9 C .10 D. 11 11.=∠=?==?C CA A B CA BC ABC 则中在,60,6,8, ()A .?60B .C .?150D .?120 12. 形如)0,0(||>>-=b c cx by 的函数因其图像类似于汉字中的“囧”字,故我们把其⽣动地称为“囧函数”.若函数()()2log 1a f x x x =++)1,0(≠>a a 有最⼩值,则当,c b 的值分别为⽅程222220x y x y +--+=中的,x y 时的“囧函数”与函数||log x y a =的图像交点个数为().A .1B .2C .4D .6第Ⅱ卷(⾮选择题,共90分)⼆.填空题:本⼤题共4⼩题,每⼩题 5分,共20分.13.⼀个长⽅体⾼为5,底⾯长⽅形对⾓线长为12,则它外接球的表⾯积为@学⽆⽌境!@14.如图,探照灯反射镜的纵截⾯是抛物线的⼀部分,光源在抛物线的焦点F 处,灯⼝直径AB 为60cm ,灯深(顶点O 到反射镜距离)40cm ,则光源F 到反射镜顶点O 的距离为15.已知点()y x P ,的坐标满⾜条件>-+≤≤02221y x y x ,那么()221y x ++的取值范围为 16.CD CB AD AC AD AB ,AB D ABC 3,,3,===?且的⼀个三等分点为中在,则B cos =三.解答题:本⼤题共5⼩题,每题12分共60分.解答应写出⽂字说明,证明过程或演算步骤.17.(本⼩题满分12分)已知{}n b 为单调递增的等差数列,168,266583==+b b b b ,设数列{}n a 满⾜n b n n a a a a 2222233221=++++(1)求数列{}n b 的通项; (2)求数列{}n a 的前n 项和n S 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新高三年级第二次统一练习数学试卷(理科)(满分150分,考试时间 120分钟)2018.5考生须知:1. 本试卷共6页,分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分。

2. 答题前考生务必将答题卡上的学校、班级、姓名、考试编号用黑色字迹的签字笔填写。

3.答题卡上第I 卷(选择题)必须用2B 铅笔作答,第II 卷(非选择题)必须用黑色字迹的签字笔作答,作图时可以使用2B 铅笔。

请按照题号顺序在各题目的答题区内作答,未在对应的答题区域内作答或超出答题区域作答的均不得分。

4. 修改时,选择题部分用塑料橡皮擦涂干净,不得使用涂改液。

保持答题卡整洁,不要折叠、折皱、破损。

不得在答题卡上做任何标记。

5. 考试结束后,考生务必将答题卡交监考老师收回,试卷自己妥善保存。

第Ⅰ卷(选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.) (1)复数i 1i=- A .1i 22+B .1i 22-+ C .1i 22--D .1i 22-(2) 已知双曲线22:1C mx ny -=的一个焦点为(5,0)F -,实轴长为6,则双曲线C 的渐近线方程为A .43y x =± B. 34y x =± C.53y x =± D.35y x =±(3) 若,x y 满足2,10,20,x x y x y ≤⎧⎪-+≥⎨⎪+-≥⎩则2z x y =-的最小值为A .4 B. 1C.0D.12-(4)设,αβ是两个不同的平面,b 是直线且.b β⊂“b α⊥”是“αβ⊥”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件E DCBAO(5)如图,过点A 和圆心O 的直线交O e 于,BC 两点(AB AC <),AD 与O e 切于点D ,DE AC ⊥于.E 35,AD =3AB =,则BE 的长度为A. 1B. 2C. 2D. 5(6)执行如图所示的程序框图, 如果输出的S 值为3,则判断框 内应填入的判断条件为A.2i <B.3i < C .4i < D .5i <(7)已知函数f (x )是定义在[3,0)(0,3]-U 上的奇函数,当(0,3]x ∈时,f (x )的图象如图所示,那么满足不等式()21x f x ≥-的x 的取值范围是A.[3,2][2,3]--UB.[3,2](0,1]--UC.[2,0)[1,3]-UD.[1,0)(0,1]-U是 0,1S i == 1i i =+ 2i S S =+输出S俯视图DCBAA(8)将一圆的八个等分点分成相间的两组,连接每组的四个点得到两个正方形.去掉两个正方形内部的八条线段后可以形成一正八角星,如图所示.设正八角星的中心为O ,并且12,.OA e OB e ==uu r u r uu u r u r若将点O 到正八角星16个顶点的向量,都写成为12,,R e e λμλμ+∈u r u r的形式,则λμ+的最大值为A B. 2C. 1+D.第Ⅱ卷(非选择题 共110分) 二、填空题(本大题共6小题,每小题5分,共30分)(9)已知n S 是等比数列}{n a (n *∈N )的前n 项和,若314S =,公比2q =,则数列}{n a 的通项公式n a =.(10)在极坐标系中,O 为极点,点A 为直线:sin cos 2l ρθρθ=+上一点,则||OA 的最小值为________.(11)如图,点D 是ABC∆的边BC 上一点,2,1,45.AB AD BD ACB ︒==∠=那么 ADB ∠=___________;AC =____________.(12) 某三棱锥的三视图如图所示,则该三棱 锥中最长棱的棱长为_________.(13)2016年3月12日,第四届北京农业嘉年华在昌平拉开帷幕.活动设置了“三馆两园一带一谷”七大板块.“三馆”即精品农业馆、创意农业馆、智慧农业馆;“两园”即主题狂欢乐园、农事体验乐园;“一带”即草莓休闲体验带;“一谷”即延寿生态观光谷.某校学生准备去参观,由于时间有限,他们准备选择其中的“一馆一园一带一谷”进行参观,那么他们参观的不同路线最多有______种. (用数字作答)(14)已知数列{}n a 中,1(01),a a a =<≤*11,1,().3,(1),2n n n n n a a a n a a +->⎧⎪=∈⎨-+≤⎪⎩N ①若31,6a =则a =_________; ②记12...,n n S a a a =+++则2016S =____________.三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.) (15)(本小题满分13分)已知函数()sin()(0,0,||)2f x A x A ωϕωϕπ=+>><的部分图象如图所示. (Ⅰ)写出函数()f x 的解析式及0x 的值; (Ⅱ)求函数()f x 在区间ππ[, ]44-上的最大值与最小值.(16)(本小题满分13分)为了解高一新生数学基础,甲、乙两校对高一新生进行了数学测试. 现从两校各随机抽取10名新生的成绩作为样本,他们的测试成绩的茎叶图如下:(I ) 比较甲、乙两校新生的(只需要写出结论) (II ) 如果将数学基础采用A 、B 、C 等级制,各等级对应的测试成绩标准如下表:(满分100分,所有学生成绩均在60分以上)甲校 乙校5 1 9 1 1 2 4 3 3 8 4 7 7 4 3 2 7 7 8 86 57 8C 1B 1A 1FEDCBA假设每个新生的测试成绩互相独立.根据所给数据,以事件发生的频率作为相应事件发生的概率.从甲、乙两校新生中各随机抽取一名新生,求甲校新生的数学基础等级高于乙校新生的数学基础等级的概率.(17)(本小题满分14分)如图,三棱柱111ABC A B C -中,BC 垂直 于正方形11A ACC 所在平面,2,1AC BC ==,D 为AC 中点,E 为线段1BC 上的一点(端点除外),平面1AB E 与BD 交于点F .(I )若E 不是1BC 的中点,求证:1//AB EF ;(II )若E 是1BC 的中点,求AE 与平面D BC 1所成角的正弦值; (III )在线段1BC 上是否存在点E ,使得1,A E CE ⊥若存在,求出1BEEC 的值,若不存在,请说明理由.(18)(本小题满分13分)已知函数()e axf x =,2()(,,)g x x bx c a b c =-++∈R ,且曲线()y f x =与曲线()y g x =在它们的交点(0,)c 处具有公共切线. 设()()()=-h x f x g x . (I )求c 的值,及,a b 的关系式; (II )求函数()h x 的单调区间;(III )设0a ≥,若对于任意12,[0,1]x x ∈,都有12()()e 1h x h x -≤-,求a 的取值范围.(19)(本小题满分13分)已知椭圆M :()222210x y a b a b+=>>的焦距为2,点(0,D 在椭圆M 上,过原点O 作直线交椭圆M 于A 、B 两点,且点A 不是椭圆M 的顶点,过点A 作x 轴的垂线,垂足为H ,点C 是线段AH 的中点,直线BC 交椭圆M 于点P ,连接AP .(Ⅰ)求椭圆M 的方程及离心率; (Ⅱ)求证:AB AP ⊥.(20)(本小题满分14分)定义{}123maxn x ,x ,x ,,x L 表示123n x ,x ,x ,,x L 中的最大值.已知数列1000=n a n ,2000=n b m,1500=n c p ,其中200++=n m p ,=m kn ,,,,∈n m p k *N .记{}max n n n n d a ,b ,c =.(I )求{}maxn n a ,b ;(II )当2=k 时,求n d 的最小值; (III )∀∈k *N ,求n d 的最小值.数学试卷参考答案及评分标准 (理科)一、选择题(本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目二、填空题(本大题共6小题,每小题5分,共30分)(9)*2(N )n n ∈ (10 (11) 120︒(12 (13)144 (14)1;15123三、解答题(本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.)(15)(本小题满分13分)解:(I )023()2sin(2),.324f x x x ππ=+=…………………7分(II )由ππππ5π[, ],2[,]44366x x ∈-+∈-, ……………………9分 当π236x π+=-时,即4x π=-,min ()()1;4f x f π=-=-当232x ππ+=时,即12x π=,max ()() 2.12f x f π==……………………13分(16)(本小题满分13分)解: (I )两校新生的数学测试样本成绩的平均值相同;甲校新生的数学测试样本成绩的方差小于乙校新生的数学测试样本成绩的方差. ……………………6分(II )设事件D =“从甲、乙两校新生中各随机抽取一名新生,甲校新生的数学基础等级高于乙校新生的数学基础等级”.设事件1E =“从甲校新生中随机抽取一名新生,其数学基础等级为A ”,11(),5P E = 设事件2E =“从甲校新生中随机抽取一名新生,其数学基础等级为B ”,27(),10P E =设事件1F =“从乙校新生中随机抽取一名新生,其数学基础等级为B ”,13(),10P F =设事件2F =“从乙校新生中随机抽取一名新生,其数学基础等级为C ”,23(),10P F =根据题意,111222,D E F E F E F =⋃⋃所以111222111222()()()()()()()()()()P D P E F P E F P E F P E P F P E P F P E P F =++=++131373335105101010100=⨯+⨯+⨯=. 因此,从甲、乙两校新生中各随机抽取一名新生,甲校新生的数学基础等级高于乙校新生的数学基础等级的概率为33.100……………………13分(17)(本小题满分14分)(I )证明:连接C B 1,交1BC 于点G ,连接GD . 在三棱柱111C B A ABC -中, G 为1B C 中点, 且D 为AC 中点, 所以1//GD AB . 因为1GD BC D ⊂平面,DBC AB 11平面⊄所以11//AB BC D 平面.………………2分由已知,平面1AB E 与BD 交于点F , 所以1F AB ∈平面,E 从而1EF AB EF ⊂平面, 又1EF BC D ⊂平面,所以11BC D AB EF EF =I 平面平面, 所以1//AB EF .……………………4分 (II) 建立空间直角坐标系11C ACB -如图所示.11(2,2,0),(2,0,0),(0,2,0),(0,0,0),1(0,2,1),(0,0,1),(0,1,),(1,2,0).2A A C CB B E D 1 111(2,1,),(0,2,1),(1,2,0)2AE C B C D =--==u u u r u u u ru u u u r .设平面1BC D 的法向量为(,,)n x y z =r由110,0,n C B n C D ==r u u u r r u u u u r g g 得20,20.y z x y +=⎧⎨+=⎩,令1,y =,得(2,1,2)n =--r.……………………6分cos ,63||||AE n AE n AE n <>==u u u r ru u u r r g u u u r r ……………………8分所以,AE 与平面1BC D 所成角的正弦值为63.……………………9分 (III) 在线段1BC 上存在点E ,使得1,A E CE ⊥且114BE EC =.理由如下: 假设在线段1BC 上存在点E ,使得1,A E CE ⊥设11(0,,)E y z ,1(0)BEEC λλ=>.则1BE EC λ=⋅u u u r u u u u r,1111(0,2,1)(0,,)y z y z λ--=--.112,11,1y z λλ⎧=⎪⎪+⎨⎪=⎪+⎩21(0,,)11E λλ++. ………………11分 121(2,,)11A E λλ=-++u u u r ,21(0,,)11CE λλλ-=++u u u r .22410(1)(1)λλλ-+=++, 解得: 14λ=. ………………13分 所以,在线段1BC 上存在点E ,使得1,A E CE ⊥且114BE EC =.………………14分 (18)(本小题满分13分)解:(I )因为函数()e axf x =,2()=-++g x x bx c ,所以函数'()e axf x a =,'()2=-+g x x b .又因为曲线()y f x =与曲线()y g x =在它们的交点(0,)c 处具有公共切线,所以(0)(0),'(0)'(0)=⎧⎨=⎩f g f g ,即1,.c a b =⎧⎨=⎩………………4分(II )由已知,2()()()e 1axh x f x g x x ax =-=+--. 所以'()e 2axh x a x a =+-.设()'()e 2axF x h x a x a ==+-,所以2'()e 2axF x a =+,∀∈a R ,'()0>F x ,所以'()h x 在(,)-∞+∞上为单调递增函数. ……………6分由(I )得,'(0)'(0),f g =所以'(0)'(0)'(0)0h f g =-=,即0是'()h x 的零点. 所以,函数()h x 的导函数'()h x 有且只有一个零点0.…………………………7分 所以'()h x 及()h x 符号变化如下,所以函数(0,)+∞.……………9分(III )由(II )知当[0,1]x ∈ 时,()h x 是增函数. 对于任意12,[0,1]x x ∈,都有12()()e 1h x h x -≤-等价于max min ()()(1)(0)e e 1a h x h x h h a -=-=-≤-,等价于当0a ≥时,()e (e 1)0aG a a =---≤,因为'()e 10aG a =-≥,所以()G a 在[0,)+∞上是增函数,又(1)0G =,所以[0,1]a ∈. ……………13分(19)(本小题满分13分) 解:(I )由题意知1,c =b =,则2224a b c =+=,所以椭圆M 的方程为22143x y +=,椭圆M 的离心率为12. ……………5分 (II )设0011(,),(,)A x y P x y ,则0000(,),(,).2y B x y C x -- 由点,A P 在椭圆上,所以2200143x y +=①2211143x y +=② 点A 不是椭圆M 的顶点,②-①得 2210221034y y x x -=-- .法一:又01001000332,,24PB BCy y y y k k x x x x +===+且点,,B C P 三点共线, 所以10010034y y y x x x +=+, 即 0100104().3()y y y x x x +=+ 所以,22010101010220101010104()4()43()1,3()3()34AB PAy y y y y y y y y k k x x x x x x x x x -+--====⨯-=--+--g g g即 AB AP ⊥. ……………13分法二:由已知AB 与AP 的斜率都存在,2210101022101010PA PB y y y y y y k k x x x x x x -+-==-+-gg 221022103()344x x x x --==-- 又003,4PB BC y k k x ==得00,PA xk y =-则0000()1AB PA y x k k x y -==-g g , 即 AB AP ⊥. ……………13分(20)(本小题满分14分)解:(I )由题意,{}10002000max max n n a ,b ,nkn ⎧⎫=⎨⎬⎩⎭, 因为1000200010002--=(k )n kn kn, 所以,当1=k 时,10002000<n kn,则{}2000max n n n a ,b b n ==,当2=k 时,10002000=n kn,则{}1000max n n n a ,b a n ==,当3≥k 时,10002000>n kn,则{}1000max n n n a ,b a n ==. ……………4分(II )当2=k 时,{}{}10001500max max max 2003n n n n n n d a ,b ,c a ,c ,n n ⎧⎫===⎨⎬-⎩⎭, 因为数列{}n a 为单调递减数列,数列{}n c 为单调递增数列,所以当100015002003=-n n时,n d 取得最小值,此时4009=n .又因为40044459<<, 而{}44444444250max 11d a ,c a ===,454530013d c ==,有4445<d d .所以n d 的最小值为25011. ……………8分(III )由(II)可知,当2=k 时,n d 的最小值为25011.当1=k 时,{}{}2000750max max max 100n n n n n n d a ,b ,c b ,c ,n n ⎧⎫===⎨⎬-⎩⎭.因为数列{}n b 为单调递减数列,数列{}n c 为单调递增数列,所以当2000750100=-n n时,n d 取得最小值,此时80011=n .又因为800727311<<, 而72722509==d b ,73732509==d c .此时n d 的最小值为2502502509911,>. ⑵当3≥k 时,150********200(1)200450≥=-+--k n n n,>n n a b ,所以{}{}1000375max max max 50n n n n n n d a ,b ,c a ,c ,n n ⎧⎫==≥⎨⎬-⎩⎭. 设1000375max 50n h ,n n ⎧⎫=⎨⎬-⎩⎭,因为数列{}n a 为单调递减数列,数列375{}50-n为单调递增数列, 所以当100037550=-n n时,n h 取得最小值,此时40011=n .又因为400363711<<, 而36362509h a ==,3737525037513913h ,=<. 此时n d 的最小值为2502502509911,>. 综上,n d 的最小值为4425011=d . ……………14分。

相关文档
最新文档