高二文科数学新课标人教A版选修1-1第三章导数与应用导学案

合集下载

人教A版高中数学选修1-1《三章 导数及其应用 3.1 变化率与导数 3.1.3 导数的几何意义》优质课教案_10

人教A版高中数学选修1-1《三章 导数及其应用  3.1 变化率与导数  3.1.3 导数的几何意义》优质课教案_10

§3.1.3导数的几何意义教学设计
一、教材内容与解析
本节课设计内容是高中数学选修1-1(人教A版P76-P78),导数的几何意义,导数是中学数学的重要内容.本节课是在学习前两节的变化率问题、导数的概念之后,从几何图形的角度来研究导数,理解一般曲线的切线定义,渗透“以直代曲”的数学思想,会简单应用导数的几何意义。

为后续的导数研究函数其他性质(如极值等)奠实基础。

因此本节内容具有承前启后的作用,地位重要.
二、教学目标
根据本课教学内容的特点以及新课标对本节课的教学要求,考虑学生已有的认知结构与心理特征,我制定以下教学目标:
(一)知识与技能 :
通过实验探求和理解导数的几何意义;
体会导数在刻画函数性质中的作用;
(二)核心素养目标
通过具体情境分析概括出切线的定义,培养学生学生数学抽象核心素养,“以直代曲”
的渗透逼近培养直观想象核心素养
三、教学的重点难点
本着新课程标准的教学理念,针对教学内容的特点,同时根据学生学习能力和旧有的知识的特点,我认为学生在定义了曲线的切线后,对于导数的几何意义为什么会与切线相关,如何相关会产生疑惑。

因此我确定以下重点和难点:
教学重点:曲线的切线的概念、切线的斜率、导数的几何意义;
教学难点:导数的几何意义.
突破了重点难点,也就解决了存在的问题
四、教学支持条件分析
本着新课程标准的教学理念,根据本章特点,重视信息技术的使用,采用多媒体辅助教学,用动画的形式演示,将抽象的理论通过直观的图形说明白,学生简单易懂
五、教学过程设计
平均变化率 瞬时变化率(导数)x
y ∆∆x y x ∆∆→∆0lim
六、目标检测设计。

人教A版高中数学选修1-1《三章 导数及其应用 3.1 变化率与导数 3.1.2 导数的概念》优质课教案_3

人教A版高中数学选修1-1《三章 导数及其应用  3.1 变化率与导数  3.1.2 导数的概念》优质课教案_3

《导数的概念》教学设计一、教学内容解析导数是微积分学的核心概念之一,不仅是数学知识,也是一种数学思想,也蕴含着函数思想和极限的思想方法,本节内容的核心是用平均变化率的极限来刻划瞬时变化率,从而引出导数的概念。

从教材的编写看,淡化了极限的形式化定义,直接通过实例来反映导数的思想和本质。

导数属于事实型知识(函数的瞬时变化率是客观存在的),导数是研究函数增减、变化快慢、最大(小)值等问题的最一般、最有效的工具。

因而也是解决诸如运动速度、物种繁殖率、效率最高、用料最省等实际问题的最有力的工具。

在天文、地理等各方面都有广泛的应用,教材中也是有实例引出导数概念,再由实际问题来巩固导数的概念。

让学生掌握从具体到抽象,特殊到一般的思维方法,领悟“无限趋近”思想,进一步体会数学的本质。

二、学生学情分析学生已较好地掌握了函数的平均变化率及高一物理中的平均速度、瞬时速度,并积累了一定量的关于函数变化率的经验;高二年级的学生思维较活跃,并具有一定归纳、概括、类比、抽象思维能力;对导数这一新鲜的概念,具有较强的求知欲和渴望探究的积极情感态度。

由于瞬时变化率就是导数,又是用平均变化率“无限接近”进行研究,而“无限”是非常抽象的,是学生首次接触,要求学生既要具备一定的直观感悟能力,又要具有较高的抽象思维能力。

从平均速度、瞬时速度到平均变化率、瞬时变化率,是将实例抽象为数学模型,是本节认识的一次飞跃,借助几何画板的动态演示学生能初步感悟,但是对“是无限趋近于0,但始终不能为0”,学生不能自主或合作顺利完成,需要教师在此充分发挥作用进行点拨.综上分析确定本节的难点是:对极限思想的感悟及用平均变化率的极限刻划瞬时变化率的科学性。

突破策略为:用几何画板动态直观演示以降低思维难度;多利用实例以降低抽象程度,强化对过程的感悟;给足时间让学生充分合作交流;教师恰当精讲点拨。

三、教学目标1、掌握导数的概念;会依据定义求简单函数在某点处的导数,能初步按定义归纳求函数在某点处导数的基本步骤。

人教版高中选修1-1第三章导数及其应用课程设计 (2)

人教版高中选修1-1第三章导数及其应用课程设计 (2)

人教版高中选修1-1第三章导数及其应用课程设计一、课程设计背景导数是高中数学中的重要内容,也是数学分析中的基础概念之一。

通过对导数的学习,可以更深入地了解函数的性质和图像的特征,也有助于我们更好地掌握微积分的相关知识。

因此,在高中数学选修课中,导数的教学是必不可少的。

本次课程设计是针对人教版高中选修1-1第三章导数及其应用这一主题进行模拟教学设计,旨在帮助学生深入理解导数的概念和应用,提高他们的数学素养和分析能力。

二、教学目标本节课的教学目标如下:•理解导数的概念及其在函数中的应用;•掌握导数的求法和计算方法;•学习导数在函数图像上的几何意义和物理意义;•培养学生的分析思维和解决问题的能力。

三、教学过程1. 导入环节(5分钟)引入导数的概念和相关概念,例如函数、极限,引出导数的计算方法和应用场景。

2. 课堂讲解(40分钟)A. 导数的概念及其计算方法讲解导数的定义及其求法,强调导数的物理意义和几何意义,并且通过例题演示求导法则。

B. 导数在函数图像上的应用通过讲解导数在函数图像上的应用,学生可以更直观地理解导数的实际意义。

做完例题后,老师可以引导学生自己思考并且提出问题,激发他们的分析思维。

C. 导数在物理学中的应用导数在物理学中的应用也是很重要的,老师可以突出讲解一些物理问题并尝试与导数联系起来。

3. 练习环节(30分钟)安排学生在课下做一些练习题,巩固所学知识,并且在下一节课讲解之前准备问题。

4. 总结环节(5分钟)让学生回答问题和分享反思,老师通过总结,强化所学知识,教育学生总结归纳能力。

四、教学方法•以问题为导向,让学生自己思考和分析,发挥其主动学习能力;•引导学生完成任务,并且通过合作完成需求;•突出案例和实例的学习,通过具体的例子强化知识的应用;•开展课堂讨论和合作式学习,激发学生的学习兴趣和思维方式。

五、教学评估针对本次课程设计,我们可以采用一下几种方式进行评估:•学生课堂表现;•作业完成情况;•课程收获反馈。

人教A版高中数学选修1-1《三章 导数及其应用 3.1 变化率与导数 3.1.2 导数的概念》优质课教案_7

人教A版高中数学选修1-1《三章 导数及其应用  3.1 变化率与导数  3.1.2 导数的概念》优质课教案_7

教案(理论教学首页)二、教学方法和手段1、通过导数概念的形成过程,让学生掌握从具体到抽象,从特殊到一般的思维方法。

2、提高类比归纳、抽象概括、联系与转化的思维能力。

3、在探索“平均变化率”的过程中,体会数学的严谨与理性,感受数学中的美感,激发学生对数学知识的热爱,养成实事求是的科学态度。

4、接受用运动变化的辩证唯物主义思想处理数学问题的积极态度。

三.教学过程1.创设情境,引入新课(1)平均速度与瞬时速度(8分钟)【创设情景,引入课题】播放一段视频林跃在2008年北京奥运会10米跳台夺冠的视频。

(1分钟)【教师提问】假如在比赛过程中,林跃相对水面的高度h(m)与起跳后的时间t(s)存在这样一个函数关系:10+6.5t +4.9t -=)t (h 2.请同学们思考一下在 0t t =时刻时林跃的瞬时速度是多少? 【学生活动】通过讨论,找到突破口:要求瞬时速度,就是通过研究0t t =时它附近的平均速度变化,如图(1)。

【教师提问】所谓的0t t =时的附近的平均速度速度又要怎么刻画呢?瞬时速度和平均速度有什么关系呢?【教师总结】先求出0t 时刻到0t t +∆时刻的平均速度00()()h t t h t v t+∆-=∆,那么瞬时速度可以用平均速度来约等于,当时间变化量t ∆越小时,平均速度就越接近于瞬时速度,于是我们得到00000()()()lim limt t h t t h t v t v t∆→∆→+∆-==∆。

(2)曲线的切线斜率(5分钟)(1)为什么求曲线的切线的历史原因,17世纪数学家遇到的三类问题。

(2)任意曲线在任意一点的切线定义:割线的极限位置即为切线位置。

【教师提问】那么00(,)M x y 点的切线斜率,按照切线的定义怎么求呢?如下图(2)。

【学生活动】学生按照上述例子瞬时速度的总结,讨论归纳出00(,)M x y 点切线斜率。

即:割线MN 的斜率为平均变化率,当自变量的该变量0x x x ∆=-趋于零时的平均变化率即为M 点的瞬时速度。

人教A版高中数学选修1-1第三章《导数及其应用》教案

人教A版高中数学选修1-1第三章《导数及其应用》教案

导数及其应用复习【知能目标】1.了解导数概念的某些实际背景(如瞬时速度,加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导数的概念。

2、熟记基本导数公式:x m(m为有理数)、sinx、cosx、e x、a x、lnx、log a x的导数;掌握两个函数和、差、积、商的求导法则和复合函数的求导法则,会求某些简单函数的导数。

3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。

[教学方法]1.采用“学案导学”方式进行教学。

2.讨论法、启发式、自主学习、合作探究式教学方法的综合运用。

[教学流程]:独立完成基础回顾,合作交流纠错,老师点评;然后通过题目落实双基,根据学生出现的问题有针对性的讲评.[教学重点和难点]教学重点:导数的概念、四则运算、常用函数的导数,导数的应用理解运动和物质的关系、教学难点:导数的定义,导数在求函数的单调区间、极值、最值、证明中的应用【综合脉络】1.知识网络2.考点综述有关导数的内容,在2000年开始的新课程试卷命题时,其考试要求都是很基本的,以后逐渐加深,考查的基本原则是重点考查导数的概念和计算,力求结合应用问题,不过多地涉及理论探讨和严格的逻辑证明。

本部分的要求一般有三个层次:第一层次是主要考查导数的概念,求导的公式和求导法则;第二层次是导数的简单应用,包括求函数的极值、单调区间、证明函数的增减性等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式和函数的单调性等有机地结合在一起,设计综合题,通过将新课程内容和传统内容相结合,加强了能力考察力度,使试题具有更广泛的实际意义,更体现了导数作为工具分析和解决一些函数性质问题的方法,这类问题用传统教材是无法解决的。

[教学过程]一、目标导航:1.复习巩固导数的概念、四则运算、常用函数的导数2.利用导数求函数的单调区间、极值、最值二、基础回顾第一步:自主复习,学生用6分钟时间利用《学案》将以下基础知识填完1、导数的概念:对于函数y=f(x),如果自变量x 在x 0处有增量△x,那么函数y 相应的有增量 = ;比值 叫做函数y=f(x)在x 0到x 0+△x 之间的 ,当△x →0时,△y△x 有极限,就说y=f(x)在点x 0处 ,并把这个极限叫做f(x) 在点x 0的导数(瞬时变化率),记作 或 ,当x 变化时,f ' (x)便是x 的一个函数,称之为f(x)的导函数(简称导数),记f ' (x)=y '= lim △x →0f(x+△x)-f(x) △x2、用定义求导数的一般步骤:(1)求函数的增量△y= (2) 求平均变化率△y△x(3)取极限,得导数f ' (x)= lim △x →0△y △x3、导数的几何意义:f ' (x 0)是曲线y=f(x)在点P (x 0,f (x 0))处的切线的 即4、几种常见函数的导数C '= (x n ) '= (sinx) '= (cosx) '=(e x ) '= (a x ) '= (lnx) '= (log a x) '=5、导数的四则运算 若y=f(x),y=g(x) 的导数存在,则[f(x) ± g(x)] '= [f(x) g(x)] '= [f(x) g(x)]'=6、复合函数y=f(g(x))(其中u= g(x))的导数y x '=7、函数的单调性与其导函数的正负如下关系:在开区间(a,b )内,如果 ,那么函数在这个区间内 ,如果 ,那么函数在这个区间内 ,反之?求可导函数y=f(x) 的单调区间的步骤:(1)求f ' (x) (2)解不等式f ' (x)>0(或f ' (x)<0)(3)确认并写出单调区间8、极值: 设函数f(x)在附近有定义,如果对x 0附近所有的x 都有 ,则称f (x 0)是f(x)的一个极大值;如果对x 0附近所有的x 都有 ,则称f (x 0)是f(x)的一个极小值。

人教A版高中数学选修1-1《三章导数及其应用3.1变化率与导数3.2导数的概念》优质课教案_24

人教A版高中数学选修1-1《三章导数及其应用3.1变化率与导数3.2导数的概念》优质课教案_24

1.1.2导数的概念(一)教材分析本节课的教学内容选自人教社普通高中课程标准实验教科书(A版)数学选修2-2第一章第一节的《变化率与导数》,《导数的概念》是第2课时.导数是微积分的核心概念之一,它是一种特殊的极限,反映了函数变化的快慢程度.导数是求函数的单调性、极值、曲线的切线以及一些优化问题的重要工具,同时对研究几何、不等式起着重要作用.导数概念是我们今后学习微积分的基础•同时,导数在物理学,经济学等领域都有广泛的应用,是开展科学研究必不可少的工具.(二)教学目标(1)在上一节学习平均变化率的基础上,了解瞬时速度、瞬时变化率的概念;(2)理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵;(3)会求函数在某点的导数及简单应用.(三)教学重点与难点重点:通过运动物体在某一时刻的瞬时速度的探求,抽象概括出函数导数的概念. 难点:使学生体会运动物体在某一时刻的平均速度的极限意义,由此得出函数在某点平均变化率的极限就是函数在该点的瞬时变化率,并由此得出导数的概念.(四)教学过程1. 复习引入(1)函数y = f(x)从x i到X2的平均变化率公式;(2)函数y = f(x)从x0到X Q L X的平均变化率公式.2. 合作探究在高台跳水运动中,运动员在不同时刻的速度是不同的. 我们把物体在某一时刻(某一位置)的速度称为瞬时速度.探究一:瞬时速度的求解从前面的学习我们知道,平均速度只能粗略地描述某段时间内物体的运动状态,不一定能反映运动员在某一时刻的瞬时速度. 如何求运动员的瞬时速度呢?设计意图:让学生产生进一步学习的需求,即有必要知道任意时刻的速度.以高台跳水运动为例,研究运动员在某一时刻的瞬时速度.在高台跳水运动中,如果运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在关系ht =-4.9t26.5t 10.探究:如何求运动员瞬时速度?比如t =2s的瞬时速度是多少?平均速度与瞬时速度有关系吗?设计意图:问题具体化,即求运动员在t=2s时的瞬时速度.针对具体的问题情境,寻求解决问题的想法.我们求t=2s的瞬时速度是多少,先察t=2s附近平均速度的情况:(2) 我们如何表示运动员在t=2s 时的瞬时速度? (3) 运动员在某一时刻t o 的瞬时速度怎样表示?设计意图:从特殊到一般,即从特殊点t=2上升到任意点t=t °瞬时速度的表示. (4) 函数f(x)在x=x 0处的瞬时变化率怎样表示?设计意图:舍弃具体变化率问题的实际意义,抽象为数学问题,定义导数. 探究二:导数的定义瞬时速度是平均速度—当览趋近于0时的极限.L t导数的定义:函数y =f(x)在x =x o 处的瞬时变化率是啊卡=|m f(xo:-f (xo),我们称它为函数y = f(x)在x=x o 处的导数,记作 f (x o ) 或 y'U 即 f(x o )pm of(x x)—f(x o )注意:(1) 函数应在点X 。

人教A版高中数学选修1-1《三章 导数及其应用 3.1 变化率与导数 3.1.2 导数的概念》优质课教案_11

人教A版高中数学选修1-1《三章 导数及其应用  3.1 变化率与导数  3.1.2 导数的概念》优质课教案_11

3.1.2导数的概念教学内容:导数的概念以及求函数在其定义域内某点处的导数的方法步骤教学目标:知识与技能目标:1.了解导数概念的实际背景,了解瞬时速度、瞬时变化率的概念;2.理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵;3.会用定义求函数在某点的导数过程与方法目标:1.通过实例分析,引导学生用平均速度去求瞬时速度,体验由已知探究未知的数学方法,让学生亲自计算,在计算过程中感受逼近的趋势,并经历观察、分析、归纳、发现规律的过程。

2.引导学生以瞬时速度为基点,从特殊到一般,经历由平均变化率到瞬时变化率的过程,理解导数就是瞬时变化率3.通过问题的探究,培养学生的探究意识和探究方法.情感、态度与价值观目标:通过了解导数产生的历史及它在实际生活、生产和科研中的广泛应用及巨大作用,认识学习导数的必要性,从而激发学生学习导数的兴趣.教学重点:导数概念的形成过程及导数概念的内涵,用定义求函数在某点的导数教学难点:对导数概念的理解.教学准备:准备学案,投影仪,计算器教学方法:引导探究法:设疑——点拨——引导——探究。

教学设计:教学环节教学内容设计思想师生活动创设情景引入新课1.复习提问平均变化率的求解步棸:函数)(xfy=从1x到2x平均变化率为21()()f x f xyx x-∆=∆∆,函数从x到x x+∆的平均变化率如何表示呢?2.在10米高台跳水运动中,运动员相对水面的高度h(单位:m)与起跳后的时间t(单位:s)存在函数关系:h(t)=-4.9t 2+6.5t+10.计算运动员在时间段[]2,2t+∆里的平均速度.教师给出:我们求出了运动员在这段时间的平均速度,但平均速度并不能反映运动员在某一时刻的速度,那么我们如何求运动员在某一时刻的速度呢?这一节课我们就来解决这样一个问题。

板书课题 3.1.2导数的概念1.让学生回忆上一节课的内容,在上一节课的基础上进入本节课的学习。

2.从实际问题出发,使学生意识到平均速度只能粗略地描述物体在某段时间内的运动状态,为了能更精确刻画物体的运动状态,有必要研究某个时刻的速度,这样能激发学生求知的欲望,从而使学生从“要我学”变成了“我要学”。

高中数学 第三章 导数及其应用 3.2.2 导数的运算法则导学案 新人教A版选修1-1

高中数学 第三章 导数及其应用 3.2.2 导数的运算法则导学案 新人教A版选修1-1
二、填空题
5.直线y=4x+b是曲线y= x3+2x(x>0)的一条切线,则实数b=________.
6.设a∈R,函数f(x)=x3+ax2+(a-3)x的导函数是f′(x),若f′(x)是偶函数,则曲线y=f(x)在原点处的切线方程为________.
三、解答题
7.已知函数f(x)=x3+bx2+cx+d 的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为6x-y+7=0,求函数f(x)的解析式.
A. B.0 C.钝角D.锐角
3.曲线y= 在点(-1,-1)处的切线 方程为()
A.y=2x+1B.y=2x-1
C.y=-2x-3D.y=-2x-2
4.(2015·山西六校联考)已知函数f(x)的导函数为f ′(x),且满足f(x)=2xf′(e)+lnx,则f′(e)()
A.e-1 B.-1 C.-e-1D.-e
(2)y=x-sin ·cos .
例2偶函数f(x)=ax4+bx3+cx2+dx+e的图象过点P(0,1),且在x=1处的切线方程为y=x-2,求y=f(x)的解析式.
练习:已知抛物线y=ax2+bx-7经过点(1,1),过点(1,1 )的切线方程为4x-y-3=0,求a、b的值.
例3已知直线l1为曲线y=x2+x-2在点(1,0)处的切线,l2为该曲线的另一条切线,且l1⊥l2.
f′(x)=3x2-2x-1,
令f′(a)=-1(0<a<1),
即3a2-2a-1=-1,
解得a= .
提高题acac
5.-
6.y=-3x
7.[解析]由f(x)的图象经过点P(0,2),知d=2,所以f(x)=x3+bx2+cx+2.f′(x)=3x2+2bx+c.因为在M(-1,f(-1))处的切线方程是6x-y+7=0,

高中数学第三章导数及其应用3.1.3导数的几何意义导学案新人教A版选修1_1

高中数学第三章导数及其应用3.1.3导数的几何意义导学案新人教A版选修1_1

导数的几何意义1.了解导函数的概念,通过函数图象直观地理解导数的几何意义.2.会求导函数,能根据导数的几何意义求曲线上某点处的切线方程.重点:理解导数的几何意义,会求曲线上某点处的切线方程.难点:对导数几何意义的理解.方法:合作探究一新知导学1.曲线的切线:过曲线y=f(x)上一点P作曲线的割线PQ,当Q点沿着曲线无限趋近于P时,若割线PQ趋近于某一确定的直线PT,则这一确定的直线PT 称为曲线y=f(x)在点P的__________.设P(x0,y0),Q(xn,yn),则割线PQ的斜率kn=2.导数的几何意义函数y=f(x)在x=x0处的导数,就是曲线y=f(x)在x=x0处的____________,即k=f′(x0)=___________________.3.函数的导数对于函数y=f(x),当x=x0时,f′(x0)是一个确定的数.当x变化时,f′(x)便是一个关于x的函数,我们称它为函数y=f(x)的导函数(简称为导数),即f′(x)=y′=________________.4.深刻理解“函数在一点处的导数”、“导函数”、“导数”的区别与联系(1)函数在一点处的导数f ′(x0)是一个__________,不是变量.(2)函数的导数,是针对某一区间内任意点x而言的.函数f(x)在区间(a,b)内每一点都可导,是指对于区间(a,b)内的每一个确定的值x0,都对应着一个确定的导数f ′(x0).根据函数的定义,在开区间(a,b)内就构成了一个新的函数,就是函数f(x)的导函数__________.(3)函数y=f(x)在点x0处的导数f ′(x0)就是导函数f ′(x)在点x=x0处的__________,即f ′(x0)=____________.5.导数的物理意义:物体的运动方程s=s(t)在点t0处的导数s′(t0),就是物体在t0时刻的__________.牛刀小试1.设f ′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( )A.不存在B.与x轴平行或重合C.与x轴垂直D.与x轴斜交课堂随笔:2.(2015·三峡名校联盟联考)曲线y=x2在点P(1,1)处的切线方程为( ) A.y=2x B.y=2x-1C.y=2x+1 D.y=-2x3.如果曲线y=f(x)在点(x0,f(x0))处的切线方程为x+2y-3=0,那么( )A.f ′(x0)>0 B.f ′(x0)<0C.f ′(x0)=0 D.f ′(x0)不存在4.函数y=f(x)=1x在x=1处的切线方程为__________.二.例题分析例1若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在区间[a,b]上的图象可能是( )练习:已知y=f(x)的图象如图所示,则f ′(xA)与f ′(xB)的大小关系是( )A.f ′(xA)>f ′(xB)B.f ′(xA)=f ′(xB)C.f ′(xA)<f ′(xB)D.f ′(xA)与f ′(xB)大小不能确定例2已知曲线C:f(x)=x3.(1)求曲线C上横坐标为1的点处的切线的方程;(2)求过点(1,1)与曲线C相切的直线方程.练习:已知曲线方程为y=x2,求:(1)过点A(2,4)且与曲线相切的直线方程;(2)过点B(3,5)且与曲线相切的直线方程. 例3 若抛物线y =4x2上的点P 到直线y =4x -5的距离最短,求点P 的坐标.练习:曲线y =-x2上的点到直线x -y +3=0的距离的最小值为__________. 例4试求过点M(1,1)且与曲线y =x3+1相切的直线方程.三.作业 一、选择题 1.函数y =f (x )在x =x 0处的导数f ′(x 0)的几何意义是( ) A .在点x 0处的斜率 B .在点(x 0,f (x 0))处的切线与x 轴所夹的锐角的正切值 C .曲线y =f (x )在点(x 0,f (x 0))处切线的斜率 D .点(x 0,f (x 0))与点(0,0)连线的斜率2.曲线y =x 3在点P 处的切线斜率为3,则点P 的坐标为( ) A .(-2,-8) B .(1,1),(-1,-1) C .(2,8) D .(-12,-18)3.曲线y =x 3-2x +1在点(1,0)处的切线方程为( ) A .y =x -1 B .y =-x +1C .y =2x -2D .y =-2x +2 4.已知曲线f (x )=12x 2+2x 的一条切线斜率是4,则切点的横坐标为( ) A .-2 B .-1 C .1 D .2 5.曲线y =13x 3-2在点(-1,-73)处切线的倾斜角为( ) A .30° B .45° C .135° D .60°后记与感悟:6.设f (x )为可导函数且满足lim x →0 f 1-f 1-2x 2x =-1,则过曲线y =f (x )上点(1,f (1))处的切线斜率为( )A .2B .-1C .1D .-2二、填空题7.已知函数f (x )=x 3+2,则f ′(2)=________.8.设函数y =f (x ),f ′(x 0)>0,则曲线y =f (x )在点(x 0,f (x 0))处切线的倾斜角的范围是________.9.若抛物线y =x 2与直线2x +y +m =0相切,则m =________.三、解答题10.直线l :y =x +a (a ≠0)和曲线C :y =x 3-x 2+1相切.(1)求切点的坐标;(2)求a 的值.答案cbadbb 7.12 8.(0,π2) 9.110[解析] (1)设直线l 与曲线C 相切于P (x 0,y 0)点.f ′(x )=lim Δx →0 f x +Δx -f xΔx=lim Δx →0 x +Δx 3-x +Δx 2+1-x 3-x 2+1Δx =3x 2-2x .由题意知,k =1,即3x 20-2x 0=1,解得x 0=-13或x 0=1.于是切点的坐标为⎝ ⎛⎭⎪⎫-13,2327或(1,1).(2)当切点为⎝ ⎛⎭⎪⎫-13,2327时,2327=-13+a ,a =3227;当切点为(1,1)时,1=1+a ,a =0(舍去).∴a 的值为3227,切点坐标为(-13,2327).。

人教A版高中数学选修1-1《三章 导数及其应用 3.1 变化率与导数 3.1.3 导数的几何意义》优质课教案_9

人教A版高中数学选修1-1《三章 导数及其应用  3.1 变化率与导数  3.1.3 导数的几何意义》优质课教案_9

《导数的几何意义》教学设计教材:人教A版选修1-1教学目标:1、知识与技能:理解导数的几何意义;熟悉应用导函数的概念,掌握几何意义的应用,定义法求导函数2、过程与方法:经历导数几何意义的学习过程,体会用导数的几何意义分析图象上点的变化情况的方法。

体会极限思想3、情感态度与价值观:体会导数与曲线的联系,极限思想的应用,初步认识数学的科学价值,发展理性思维能力,培养变化的理念。

教学重点:理解导数的几何意义;理解导函数的概念。

教学难点:1.理解函数的导数就是在某点处的切线的斜率。

2.教学过程:一、复习回顾,引入新课师:在前面的学习中,我们知道函数y=f(x)在x=x0处的导数就是函数y=f(x)在x=x0处的瞬时变化率,这是导数的物理意义,怎样去求导数值。

那么导数的几何意义是什么呢?我们本节课就来学习导数的几何意义。

板书课题:导数的几何意义二.讲授新课教师引导学生观察右图,回答下面问题:师:初中平面几何中我们是如何定义圆的切线和割线的?生:根据直线和圆的交点个数,有一个交点时,直线是圆的切线;有两个交点时,直线是圆的割线。

师补充说明1. 圆的切线在点P附近位于圆的一侧(为一般曲线的切线做准备);2. 当点Pn趋近于点P时,圆的割线PPn趋近于圆的切线PT。

当点Pn与点P重合时,割线变成了切线。

师:对于一般曲线的切线和割线,它们又具有怎样的位置关系呢?探究一:观察一般曲线y=f(x)割线的变化趋势,教师引导学生给出一般曲线的切线定义。

师:过一般曲线上任一点P,我们可以在点P附近类似圆的切线做一条直线PT,使得直线在点P附近位于曲线的一侧,并且与曲线只有一个公共点P。

师:同样的,我们可以在曲线上找另一点Pn,连接PPn,易知PPn是曲线在点P处的割线。

师:我们发现,当点Pn趋近于点P时,割线PPn趋近于确定的位置,这个确定位置的直线PT叫做曲线在点P处的切线。

探究二:割线的斜率与切线PT的斜率有什么关系?师:我们首先来看这样一个问题:你能借助图象说说割线PPn的斜率是多少吗?生:平均变化率 。

新课标人教A版选修1-1导数及其应用复习学案

新课标人教A版选修1-1导数及其应用复习学案

导数及其应用复习学案一、导数的定义及其几何意义1.一个物体的运动方程为21tts+-=其中s的单位是米,t的单位是秒,那么物体在3秒时的瞬时速度是()A.7米/秒B.6米/秒C.5米/秒D.8米/秒2、(09全国卷Ⅱ理)曲线21xyx=-在点()1,1处的切线方程为A. 20x y--= B. 20x y+-= C.450x y+-= D. 450x y--=3.求抛物线y=2x过点5,62⎛⎫⎪⎝⎭的切线方程4.求垂直于直线2610x y-+=并且与曲线3235y x x=+-相切的直线方程二、导数的计算5.求函数的导函数(1)23cossinxyx-=(2)21xxyx=-+(3)2xy x e=三、导数的应用类型一:图像题6.如果函数y=f(x)的导函数的图像如右图所示,给出下列判断:(1) 函数y=f(x)在区间(3,5)内单调递增;(2) 函数y=f(x)在区间(-1/2,3)内单调递减;(3) 函数y=f(x)在区间(-2,2)内单调递增;(4) 当x= -1/2时,函数y=f(x)有极大值;(5) 当x=2时,函数y=f(x)有极大值;则上述判断中正确的是:。

7.函数)(xf的定义域为开区间),(ba,导函数)(xf¢在),(ba内的图象如图所示,则函数)(xf在开区间),(ba内有极小值点(A 1个B 2个C 3个D 4个y=f(x)的图象如图1所示,则导函数y=f ¢(x)可能为()9.(浙江卷11)设f '(x)是函数f(x)的导函数,y=f '(x)的图象如右图所示,则y=f(x)的图象最有可能的是()班级:姓名:学号:10.(2009湖南卷文)若函数()y f x=的导函数...在区间[,]a b上是增函数,则函数()y f x=在区间[,]a b上的图象可能是()类型二:求函数的单调区间、极值、最值11.(2006安徽文)设函数()32()f x x bx cx x R=++∈,已知()()()g x f x f x¢=-是奇函数。

新人教A版数学选修1-1《3.2.2导数的运算法则》导学案

新人教A版数学选修1-1《3.2.2导数的运算法则》导学案

河北省唐山市开滦第二中学高中数学 3.2.2导数的运算法则学案新人教A 版选修1-1【学习目标】1.熟练掌握基本初等函数的导数公式;2.掌握导数的四则运算法则;3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数。

【重点难点】 基本初等函数的导数公式和导数的四则运算法则的应用 【学习内容】 1.复习:基本初等函数的导数公式表基本初等函数的导数公式c x f =)(αx x f =)((*Q ∈α)x x f sin )(=x x f cos )(=x a x f =)(x e x f =)(()x x f a log =()x x f ln =(二)导数的运算法则 导数运算法则推论:[]''()()cf x cf x = (常数与函数的积的导数,等于常数乘函数的导数)3.典例分析例1.根据基本初等函数的导数公式和导数运算法则,求下列函数的导数.(1)323y x x =-+(2)y =x x 4;(3)y =xx ln 1ln 1+-.(4)y =(2 x 2-5 x +1)ex(5) y =xx x x x x sin cos cos sin +-例 2.(2010年高考全国卷Ⅱ文科7)若曲线2y x ax b =++在点(0,)b 处的切线方程是10x y -+=,则( )(A )1,1a b == (B) 1,1a b =-=(C) 1,1a b ==- (D) 1,1a b =-=-例3.假设某国家在20年期间的年均通货膨胀率为5%,物价p (单位:元)与时间t (单位:年)有如下函数关系0()(15%)t p t p =+,其中0p 为0t =时的物价.假定某种商品的01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?分析:商品的价格上涨的速度就是:1.[]'''()()()()f x g x f x g x ±=±2.[]'''()()()()()()f x g x f x g x f x g x ⋅=± 3.[]'''2()()()()()(()0()()f x f x g x f x g x g x g x g x ⎡⎤-=≠⎢⎥⎣⎦变式训练1:如果上式中某种商品的05p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?例 4.日常生活中的饮水通常是经过净化的.随着水纯净度的提高,所需净化费用不断增加.已知将1吨水净化到纯净度为%x 时所需费用(单位:元)为5284()(80100)100c x x x=<<- 求净化到下列纯净度时,所需净化费用的瞬时变化率:(1)90% (2)98%分析:净化费用的瞬时变化率就是:比较上述运算结果,你有什么发现?四、课堂练习1求下列函数的导数(1)2log y x = (2)2x y e =(3)32234y x x =-- (4)3cos 4sin y x x =-(5)ln y x x = (6)ln x y x =(7)sin x y x=2. 求过曲线y =2e x 上点P (1,2e)且与曲线在该点处的切线垂直的直线方程.3. (2010年高考江西卷文科4)若函数42()f x ax bx c =++满足'(1)2f =,则'(1)f -=( )A .1-B .2-C .2D .0【课堂小结与反思】【课后作业与练习】1. 函数1y x x=+的导数是( ) A .211x - B .11x - C .211x + D .11x+ 2. 函数sin (cos 1)y x x =+的导数是( )A .cos 2cos x x -B .cos 2sin x x +C .cos 2cos x x +D .2cos cos x x + 3. cos x y x=的导数是( ) A .2sin x x- B .sin x - C .2sin cos x x x x +- D .2cos cos x x x x +- 4.已知函数()f x 在1x =处的导数为3,则()f x 的解析式可能为:A ()2(1)f x x =-B 2()2(1)f x x =-C 2()(1)3(1)f x x x =-+-D ()1f x x =-5.函数21y ax =+的图像与直线y x =相切,则a =( ) A 18 B 14 C 12D 1 6. (2011年高考江西卷文科4)曲线x y e =在点A (0,1)处的切线斜率为( ) A.1 B.2C.eD.1e7. (2012年高考新课标全国卷文科13)曲线y =x (3ln x +1)在点)1,1(处的切线方程为________8. 函数2()1382f x x x =-+,且0()4f x '=,则0x =9.曲线sin x y x=在点(,0)M π处的切线方程为 10.在平面直角坐标系中,点P 在曲线3103y x x =-+上,且在第二象限内,已知曲线在点P 处的切线的斜率为2,则P 点的坐标为11. (2010年高考宁夏卷文科4)曲线2y 21x x =-+在点(1,0)处的切线方程为( )A.1y x =-B.1y x =-+C.22y x =-D.22y x =-+12(2010年高考全国卷Ⅱ文科7)若曲线2y x ax b =++在点(0,)b 处的切线方程是10x y -+=,则( )(A )1,1a b == (B) 1,1a b =-=(C) 1,1a b ==- (D) 1,1a b =-=-13.已知函数32()f x x bx ax d =+++的图像过点P (0,2),且在点(1,(1))M f --处的切线方程为670x y -+=,求函数的解析式.。

高二数学人教A版选修1-1第三章3.3.2函数的极值与导数导学案(含答案)

高二数学人教A版选修1-1第三章3.3.2函数的极值与导数导学案(含答案)

内 容 标 准学 科素 养 1.了解函数极值的概念,会从几何方面直观理解函数的极值与导数的关系,并会灵活应用. 2.掌握函数极值的判定及求法. 3.掌握函数在某一点取得极值的条件.利用直观想象 提升逻辑推理 及数学运算[基础认识]知识点一 极值点与极值的概念 预习教材P 93-95,思考并完成以下问题 (1)观察函数f (x )=13x 3-2x 的图象.f ′(-2)的值是多少?在x =-2左、右两侧的f ′(x )有什么变化? f ′(2)的值是多少,在x =2左、右两侧的f ′(x )又有什么变化?提示:f ′(-2)=0,在x =-2的左侧f ′(x )>0,在x =-2的右侧f ′(x )<0;f ′(2)=0,在x =2的左侧f ′(x )<0,在x =2的右侧f ′(x )>0.(2)如图,函数f (x )在a ,b 点的函数值与它附近的函数值有什么关系?y =f (x )在a ,b 点的导数值是多少?在a ,b 附近,y =f (x )的导数的符号是什么?提示:可以发现,函数y =f (x )在点x =a 的函数值f (a )比它在点x =a 附近其他点的函数值都小,f ′(a )=0;而且在点x =a 附近的左侧f ′(x )<0,右侧f ′(x )>0.类似地,函数y =f (x )在点x =b 的函数值f (b )比它在点x =b 附近其他点的函数值都大,f ′(b )=0;而且在点x =b 附近的左侧f ′(x )>0,右侧f ′(x )<0.知识梳理 极值点与极值的概念(1)极小值点与极小值如图,函数y =f (x )在点x =a 的函数值f (a )比它在点x =a 附近其他点的函数值都小,f ′(a )=0;而且在点x =a 附近的左侧f ′(x )<0,右侧f ′(x )>0,则把点a 叫做函数y =f (x )的极小值点,f (a )叫做函数y =f (x )的极小值.(2)极大值点与极大值如(1)中图,函数y =f (x )在点x =b 的函数值f (b )比它在点x =b 附近其他点的函数值都大,f ′(b )=0;而且在点x =b 的左侧f ′(x )>0,右侧f ′(x )<0,则把点b 叫做函数y =f (x )的极大值点,f (b )叫做函数y =f (x )的极大值.极大值点、极小值点统称为极值点,极大值和极小值统称为极值.知识点二 求函数y =f (x )的极值的方法 知识梳理 解方程f ′(x )=0,当f ′(x 0)=0时:(1)如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是________. (2)如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是________. 提示:(1)极大值 (2)极小值[自我检测]1.函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( )A .无极大值点,有四个极小值点B .有三个极大值点,两个极小值点C .有两个极大值点,两个极小值点D .有四个极大值点,无极小值点 答案:C2.已知函数f (x )=x +1x ,则f (x )( )A .有极大值2,极小值-2B .有极大值-2,极小值2C .无极大值,但有极小值-2D .有极大值2,无极小值 答案:B探究一极值与极值点的判断与求解[教材P98习题3.3A组4题]如图是导函数y=f′(x)的图象,在标记的点中,在哪一点处:(1)导函数y=f′(x)有极大值?(2)导函数y=f′(x)有极小值?(3)函数y=f(x)有极大值?(4)函数y=f(x)有极小值?解析:(1)点x2处f′(x)有极大值.(2)点x1、x4处f′(x)有极小值.(3)点x3处f(x)有极大值.(4)点x5处f(x)有极小值.[例1](1)已知函数y=f(x),其导函数y=f′(x)的图象如图所示,则y=f(x)()A.在(-∞,0)上为减函数B.在x=0处取极小值C.在(4,+∞)上为减函数D.在x=2处取极大值[解析]由导函数的图象可知:当x∈(-∞,0)∪(2,4)时,f′(x)>0,当x∈(0,2)∪(4,+∞)时,f′(x)<0,因此f(x)在(-∞,0),(2,4)上为增函数,在(0,2),(4,+∞)上为减函数,所以在x=0处取得极大值,在x =2处取得极小值,在x=4处取得极大值,故选C.[答案] C(2)求下列函数的极值:①f(x)=2x3+3x2-12x+1;②f(x)=x2-2ln x.[解析]①函数f(x)=2x3+3x2-12x+1的定义域为R,f′(x)=6x2+6x-12=6(x+2)(x-1),解方程6(x+2)(x-1)=0,得x1=-2,x2=1.当x变化时,f′(x)与f(x)的变化情况如下表:x (-∞,-2)-2 (-2,1) 1 (1,+∞)f ′(x ) +0 - 0 + f (x )极大值21极小值-6所以当x 当x =1时,f (x )取极小值-6.②函数f (x )=x 2-2ln x 的定义域为(0,+∞), f ′(x )=2x -2x =2(x +1)(x -1)x ,解方程2(x +1)(x -1)x =0,得x 1=1,x 2=-1(舍去).当x 变化时,f ′(x )与f (x )的变化情况如下表:x (0,1) 1 (1,+∞)f ′(x ) -0 + f (x )极小值1因此当x =1时,f (方法技巧 1.通过导函数值的正负确定函数单调性,然后进一步明确导函数图象与x 轴交点的横坐标是极大值点还是极小值点.2.求可导函数f (x )的极值的步骤 (1)确定函数的定义域,求导数f ′(x ). (2)求f (x )的拐点,即求方程f ′(x )=0的根.(3)利用f ′(x )与f (x )随x 的变化情况表,根据极值点左右两侧单调性的变化情况求极值.特别提醒:在判断f ′(x )的符号时,借助图象也可判断f ′(x )各因式的符号,还可用特殊值法判断. 跟踪探究 1.如图为y =f (x )的导函数的图象,则下列判断正确的是( )①f (x )在(-3,-1)上为增函数;②x =-1是f (x )的极小值点;③f (x )在(2,4)上为减函数,在(-1,2)上为增函数;④x =2是f (x )的极小值点.A .①②③B .②③C .③④D .①③④解析:由f ′(x )的图象知,-3<x <-1时,f ′(x )<0;f ′(-1)=0; -1<x <2时,f ′(x )>0;f ′(2)=0;2<x <4时,f ′(x )<0故f (x )在(-3,-1)和(2,4)上是减函数,在(-1,2)上是增函数,f (-1)是极小值,f (2)是极大值,所以②③正确,故选B.答案:B2.判断下列函数有无极值,如果有极值,请求出极值;如果没有极值,请说明理由. (1)y =13x 3+4;(2)y =e xx (x >0).解析:(1)f ′(x )=x 2. 令f ′(x )=0,解得x =0.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,0)0 (0,+∞)f ′(x ) + 0 + f (x )单调递增无极值单调递增(2)y ′=e x ·x -e x x 2=e x (x -1)x 2,令y ′=0,得x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (0,1) 1 (1,+∞)f ′(x ) - 0 + f (x )单调递减极小值单调递增探究二 利用函数极值确定参数的值[教材P 110复习参考题A 组7题]已知函数f (x )=x (x -c )2在x =2处有极大值,求c 的值.解析:∵f (x )=x 3-2cx 2+c 2x , ∴f ′(x )=3x 2-4cx +c 2.∴f ′(2)=0,即3×4-8c +c 2=0,得c =2,或c =6. 但c =2时,f (2)是极小值,不合题意,舍去,所以c =6.[例2] (1)已知函数f (x )=x 3+3ax 2+bx +a 2在x =-1处有极值0,则a =________,b =________. (2)若函数f (x )=13x 3-x 2+ax -1有极值点,则a 的取值范围为________.[解析] (1)∵f ′(x )=3x 2+6ax +b ,且函数f (x )在x =-1处有极值0,∴⎩⎪⎨⎪⎧f ′(-1)=0,f (-1)=0, 即⎩⎪⎨⎪⎧3-6a +b =0,-1+3a -b +a 2=0,解得⎩⎪⎨⎪⎧ a =1,b =3或⎩⎪⎨⎪⎧a =2,b =9.当a =1,b =3时,f ′(x )=3x 2+6x +3=3(x +1)2≥0,此时函数f (x )在R 上为增函数,无极值,故舍去.当a =2,b =9时,f ′(x )=3x 2+12x +9=3(x +1)(x +3). 当x ∈(-∞,-3)时,f ′(x )>0, 此时f (x )为增函数;当x ∈(-3,-1)时,f ′(x )<0, 此时f (x )为减函数;当x ∈(-1,+∞)时,f ′(x )>0, 此时f (x )为增函数.故f (x )在x =-1处取得极小值, ∴a =2,b =9.(2)∵f ′(x )=x 2-2x +a ,由题意得方程x 2-2x +a =0有两个不同的实数根, ∴Δ=4-4a >0,解得a <1. [答案] (1)2 9 (2)(-∞,1)方法技巧 已知函数极值的情况,逆向应用确定函数的解析式时,应注意以下两点: (1)根据极值点处导数为0和极值两个条件列方程组,利用待定系数法求解.(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.跟踪探究 3.已知函数f (x )=ax 3+bx 2+cx (a ≠0)在x =±1处取得极值,且f (1)=-1. (1)求常数a ,b ,c 的值;(2)判断x =±1是函数的极大值点还是极小值点,试说明理由,并求出极值. 解析:(1)f ′(x )=3ax 2+2bx +c , ∵x =±1是函数f (x )的极值点,∴x =±1是方程f ′(x )=3ax 2+2bx +c =0的两根, 由根与系数的关系,得⎩⎨⎧-2b3a=0, ①c3a =-1, ②又f (1)=-1,∴a +b +c =-1.③ 由①②③解得a =12,b =0,c =-32.(2)由(1)知f (x )=12x 3-32x ,∴f ′(x )=32x 2-32=32(x -1)(x +1),当x <-1或x >1时,f ′(x )>0, 当-1<x <1时,f ′(x )<0,∴函数f (x )在(-∞,-1)和(1,+∞)上是增函数, 在(-1,1)上是减函数,∴当x =-1时,函数取得极大值f (-1)=1, 当x =1时,函数取得极小值f (1)=-1. 探究三 函数极值的综合应用[例3] 已知函数f (x )=x 3-3ax -1(a ≠0).若函数f (x )在x =-1处取得极值,直线y =m 与y =f (x )的图象有三个不同的交点,求m 的取值范围.[解析] 因为f (x )在x =-1处取得极值且f ′(x )=3x 2-3a , 所以f ′(-1)=3×(-1)2-3a =0, 所以a =1,所以f (x )=x 3-3x -1,f ′(x )=3x 2-3, 由f ′(x )=0,解得x 1=-1,x 2=1. 当x <-1时,f ′(x )>0; 当-1<x <1时,f ′(x )<0; 当x >1时,f ′(x )>0.所以f (x )的单调增区间为(-∞,-1),(1,+∞);单调减区间为(-1,1), f (x )在x =-1处取得极大值f (-1)=1, 在x =1处取得极小值f (1)=-3. 作出f (x )的大致图象如图所示.因为直线y =m 与函数y =f (x )的图象有三个不同的交点,结合f (x )的图象可知,m 的取值范围是(-3,1). 方法技巧 利用导数可以判断函数的单调性,研究函数的极值情况,并能在此基础上画出函数的大致图象,从直观上判断函数图象与x 轴的交点或两个函数图象的交点的个数,从而为研究方程根的个数问题提供了方便.延伸探究 若本例“三个不同的交点”改为“两个不同的交点”,结果如何?改为“一个交点”呢? 解析:由本例解析可知当m =-3或m =1时,直线y =m 与y =f (x )的图象有两个不同的交点;当m <-3或m >1时,直线y =m 与y =f (x )的图象只有一个交点.跟踪探究 4.已知函数f (x )=x 3-6x 2+9x +3,若函数y =f (x )的图象与y =13f ′(x )+5x +m 的图象有三个不同的交点,求实数m 的取值范围.解析:由f (x )=x 3-6x 2+9x +3, 可得f ′(x )=3x 2-12x +9,∴13f ′(x )+5x +m =13(3x 2-12x +9)+5x +m =x 2+x +3+m ,则由题意可得x 3-6x 2+9x +3=x 2+x +3+m 有三个不相等的实根,即g (x )=x 3-7x 2+8x -m 的图象与x 轴有三个不同的交点.∵g ′(x )=3x 2-14x +8 =(3x -2)(x -4),∴令g ′(x )=0,得x =23或x =4.当x 变化时,g (x ),g ′(x )的变化情况如下表:则函数g (x )的极大值为g ⎝⎛⎭⎫23=6827-m ,极小值为g (4)=-16-m . ∵由y =f (x )的图象与y =13f ′(x )+5x +m 的图象有三个不同交点,得⎩⎪⎨⎪⎧g ⎝⎛⎭⎫23=6827-m >0,g (4)=-16-m <0, 解得-16<m <6827.即m 的取值范围为⎝⎛⎭⎫-16,6827.[课后小结](1)在极值的定义中,取得极值的点称为极值点,极值点指的是自变量的值,极值指的是函数值. (2)函数的极值是函数的局部性质.可导函数f (x )在点x =x 0处取得极值的充要条件是f ′(x 0)=0且在x =x 0两侧f ′(x )符号相反.(3)利用函数的极值可以确定参数的值,解决一些方程的解和图象的交点问题.[素养培优]1.误把导函数的零点当作函数的极值点求函数f (x )=x 4-x 3的极值,并说明是极小值还是极大值.易错分析 本题易错将导数为零的点都认为是极值点,其实不然,导数为零仅是零点是极值点的必要不充分条件,错解中还有一个误区就是认为极大值一定大于极小值.事实上,极值仅描述函数在该点附近的局部特征,极大值未必一定大于极小值.考查逻辑推理及数学运算.自我纠正 f ′(x )=4x 3-3x 2,令f ′(x )=0, 即4x 3-3x 2=0时,得x 1=0,x 2=34.当x 变化时,f (x ),f ′(x )的变化情况如下表:由上表可知函数f (x )在区间(-∞,0)上是减函数,在区间⎝⎛⎭⎫0,34上还是减函数,所以x =0不是函数的极值点,而函数f (x )在区间⎝⎛⎭⎫0,34上是减函数,在区间⎝⎛⎭⎫34,+∞上是增函数,所以函数f (x )在x =34处取得极小值,极小值为-27256.2.误把切点当作函数的极值点已知函数f (x )=ax 4+bx 2+c 的图象经过点(0,1),且在x =1处的切线方程是y =x -2,求f (x )的解析式. 易错分析 本题错在将切点当做极值点,得到f ′(1)=0的错误结论.其实,虽然切点和极值点都与导数有关,但它们却是两个完全不同的概念,不能混为一谈.考查逻辑推理及数学运算的学科素养.自我纠正 f ′(1)表示函数f (x )的图象在点(1,-1)处的切线斜率,应有f ′(1)=1,再联立f (0)=1,f (1)=-1便可得到正确答案:a =52,b =-92,c =1,因此f (x )=52x 4-92x 2+1.。

人教A版高中数学选修1-1《三章 导数及其应用 牛顿法──用导数方法求方程的近似解》优质课教案_3

人教A版高中数学选修1-1《三章 导数及其应用   牛顿法──用导数方法求方程的近似解》优质课教案_3

探究与发现牛顿法—用导数方法求方程的近似解一. 教材分析本节课选自人教A版高中数学选修1-1第三章《导数及其应用》探究与发现“牛顿法—用导数方法求方程的近似解”。

属于拓展学生知识宽度和思维活跃的课程。

在必修一中,我们学习了方程的根与零点的关系,以及第一次接触到了利用零点找方程近似解的二分法,学生初次有了利用数值去逼近方程的解的思想。

在必修三中,教材安排了大量的案例让学生体会计算机在现代社会的强大功能。

在数学选修1-1,教材安排了导数的几何意义和求切线方程,体会以直代曲的思想,为牛顿法球方程的近似解提供了理论依据。

因此本节课为学生的思维发展提供了很好的空间和平台,作为一堂探究与发现的课,教师要注意引导学生用观察、联想、对比、化归等方法分析问题,寻找解决问题的思路.二.学情分析学生已经掌握了函数的零点,也学习了二分法求方程的近似解,理解了导数的几何意义,并能用导数求切线方程,具有一定的推理能力、运算能力的能力,但以直代曲的微积分思想不太熟稔,学生在探求牛顿法原理的过程中容易产生障碍,教学时需要引导学生用切线去逼近零点这个过程。

同时由于教学条件的问题,大部分的计算机工作须由教师实现,确也算遗憾。

三. 教学目标1. 知识与技能:通过让学生探索、猜想、发现并推导“牛顿法的公式”,通过公式的简单应用,使学生初步理解公式的结构及其功能.2. 过程与方法:通过牛顿法的探究过程,体会近似代替精确。

逐步培养学生学会分析问题、解决问题、合作交流的能力;3. 情感态度:通过课题的设计,增强学生的探究、应用意识,了解更多数学文化,激发学生的学习积极性. 体会数学在其他领域的价值.四.教学重、难点1. 重点:牛顿迭代的迭代思想和原理,用牛顿法求方程的近似解的初步应用.2. 难点:探究过程的组织和适当引导.五. 教法、学法(一)忆古观今,引发兴趣由于生产生活的需要,人们在很早以前就开始探索高次方程的数值求解问题。

而在17世纪牛顿就给出了高次方程的一种数值求解办法——牛顿法。

人教A版高中数学选修1-1《三章 导数及其应用 3.1 变化率与导数 3.1.3 导数的几何意义》优质课教案_17

人教A版高中数学选修1-1《三章 导数及其应用  3.1 变化率与导数  3.1.3 导数的几何意义》优质课教案_17

教学设计导数的几何意义(第二课时)一、教材分析微积分是人类思维的伟大成果之一,是人类经历了2500多年震撼人心的智力奋斗的结果,它开创了向近代数学过渡的新时期.它为研究变量与函数提供了重要的方法和手段。

导数的概念是微积分核心概念之一,它有极其丰富的实际背景和广泛的应用。

本节教材选自人教A版数学选修1-1第3章“导数及其应用”3.1.3“导数的几何意义”的第二课时,是学生在学习了导数几何意义内容之后,对切线问题的深入探讨。

二、学情分析由于要涉及各种类型函数求导求切线问题,所以对教材内容进行了微调,将第二节“导数的计算”提前至导数几何意义之前。

因此学生已经掌握了基本初等函数的导数公式和导数的运算法则。

通过前面的学习,学生已经了解了导数的相关知识,知道了导数作为数学中的一种工具,将它融入到函数、解析几何等问题中,能够有效简单的解决一些传统的数学问题。

导数也是解决实际问题最有力的工具。

三、教学目标1、知识与技能:(1)进一步深刻理解导数的几何意义。

(3)能利用导数的几何意义求曲线的切线方程。

2、过程与方法:(1)学生通过观察感知、动手探究等方法培养学生的动手和动脑的能力。

(2)学生可以凭借自己的知识能力独立解决问题。

(3)学生通过思考探究的2个问题,深化对切线定义的认知,小结形成求切线的步骤。

3、情感态度与价值观:(1)在探究过程中渗透极限思想,体验数形结合思想。

(2)采用示范剖析、学生自主实践的方式,让学生理解和掌握基本数学技能、思想方法。

四、教学重点难点1、重点:能利用导数的几何意义求切线方程。

2、难点:理解在点处的切线方程与过点处的切线方程的区别。

五、学法与教法1、学法(1)探究学习:引导学生发挥主观能动性,主动探索新知。

(2)自主学习:引导学生从简单问题出发,发散到已学过的知识中去。

(3)合作学习:引导学生分组讨论,合作交流,共同探讨问题。

2、教法(1)为了培养学生自主学习的能力以及使得不同层次的学生都获得相应的满足,本节课采用探究性研究教学、互动式讨论、反馈式评论和启发式小结。

选修1-1第三章-导数及其应用导学案

选修1-1第三章-导数及其应用导学案

沈丘三高高二数学导学案编写人:楚志勇审稿人:高二数学组§3.1.1 变化率问题【使用课时】:1课时【学习目标】:1.感受平均变化率广泛存在于日常生活之中,经历运用数学描述和刻画现实世界的过程. 体会数学的博大精深以及学习数学的意义;2.理解平均变化率的意义,为后续建立瞬时变化率和导数的数学模型提供丰富的背景.【学习重点】:平均变化率的概念、函数在某点处附近的平均变化率.【学习方法】:分组讨论学习法、探究式.【学习过程】:一、课前准备(预习教材P72~ P74,找出疑惑之处)问题1 气球膨胀率我们都吹过气球,回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?实用文档实用文档气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是334)(r r V π=如果将半径r 表示为体积V 的函数,那么343)(πV V r = 在吹气球问题中,当空气容量V 从0增加到1L 时,气球的平均膨胀率为__________当空气容量V 从1L 增加到2L 时,气球的平均膨胀率为__________________当空气容量从V 1增加到V 2时,气球的平均膨胀率为_____________ 问题2 高台跳水在高台跳水运动中,,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系h (t )= -4.9t 2+6.5t +10. 如何用运动员在某些时间段内的平均速度v 粗略地描述其运动状态?在5.00≤≤t 这段时间里,v =_________________ 在21≤≤t 这段时间里,v =_________________t实用文档问题3 平均变化率 已知函数()x f ,则变化率可用式子_____________,此式称之为函数()x f 从1x 到2x ___________.习惯上用x ∆表示12x x -,即x ∆=___________,可把x ∆看做是相对于1x 的一个“增量”,可用+1x x ∆代替2x ,类似有=∆)(x f __________________,于是,平均变化率可以表示为_______________________提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点 疑惑内容实用文档二、新课导学 学习探究 探究任务一:问题1:气球膨胀率,求平均膨胀率吹气球时,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度如何描述这种现象?问题2:高台跳水,求平均速度新知:平均变化率:2121()()f x f x fx x x-∆=-∆试试:设()y f x =,1x 是数轴上的一个定点,在数轴x 上另取一点2x ,1x 与2x 的实用文档差记为x ∆,即x ∆= 或者2x = ,x ∆就表示从1x 到2x 的变化量或增量,相应地,函数的变化量或增量记为y ∆,即y ∆= ;如果它们的比值y x∆∆,则上式就表示为 ,此比值就称为平均变化率.反思:所谓平均变化率也就是 的增量与 的增量的比值. 典型例题 例1 过曲线3()y f x x ==上两点(1,1)P 和(1,1)Q x y +∆+∆作曲线的割线,求出当0.1x ∆=时割线的斜率.变式:已知函数2()f x x x =-+的图象上一点(1,2)--及邻近一点(1,2)x y -+∆-+∆,则y x∆∆=例2 已知函数2()f x x =,分别计算()f x 在下列区间上的平均变化率: (1)[1,3];(2)[1,2];(3)[1,1.1];(4)[1,1.001]实用文档沈丘三高高二数学导学案编写人:周方审稿人:高二数学组§3.1.2 导数的概念【使用课时】:1课时【学习目标】:1.掌握用极限给瞬时速度下的精确的定义;2.会运用瞬时速度的定义,求物体在某一时刻的瞬时速度.【学习重点】:导数概念的形成,导数内涵的理解【学习方法】:分组讨论学习法、探究式.【学习过程】:一、课前准备(预习教材P74~ P76,找出疑惑之处)复习1:气球的体积V与半径r之间的关系是()r V=V从0增加到1时,气球的平均膨胀率.复习2:高台跳水运动中,运动员相对于水面的高度h与起跳后的时间t的实用文档实用文档关系为:2() 4.9 6.510h t t t =-++. 求在12t ≤≤这段时间里,运动员的平均速度.二、新课导学 学习探究探究任务一:瞬时速度问题1:我们把物体在某一时刻的速度称为________.一般地,若物体的运动规律为)(t f s =,则物体在时刻t 的瞬时速度v 就是物体在t 到t t ∆+这段时间内,当_________时平均速度的极限,即tsv x ∆∆=→∆0lim=___________________()105.69.42++-=t t t h0<∆t 时,在[]2,2t ∆+这段时间内0>∆t 时,在[]t ∆+2,2这段时间内实用文档问题2: 瞬时速度是平均速度ts∆∆当t ∆趋近于0时的 得导数的定义:函数()y f x =在x x =处的瞬时变化率是0000()()limlim x x f x x f x fxx ∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y ='即000()()()limx f x x f x f x x∆→+∆-'=∆注意:(1)函数应在点0x 的附近有定义,否则导数不存在(2)在定义导数的极限式中,x ∆趋近于0可正、可负、但不为0,而y ∆可以为0(3)xy∆∆是函数)(x f y =对自变量x 在x ∆范围内的平均变化率,它的几何意义是过曲线)(x f y =上点()(,00x f x )及点)(,(00x x f x x ∆+∆+)的割线斜率(4)导数xx f x x f x f x ∆-∆+=→∆)()(lim )(0000/是函数)(x f y =在点0x 的处瞬时变实用文档化率,它反映的函数)(x f y =在点0x 处变化的快慢程度.小结:由导数定义,高度h 关于时间t 的导数就是运动员的瞬时速度,气球半径关于体积V 的导数就是气球的瞬时膨胀率. 典型例题例1 将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热. 如果在第xh 时,原油的温度(单位:0c )为2()715(08)f x x x x =-+≤≤. 计算第2h 和第6h 时,原油温度的瞬时变化率,并说明它们的意义.总结:函数平均变化率的符号刻画的是函数值的增减;它的绝对值反映函数值变化的快慢.例2 已知质点M 按规律s =2t 2+3做直线运动(位移单位:cm ,时间单位:s),(1)当t =2,Δt =0.01时,求ts ∆∆.实用文档(2)当t =2,Δt =0.001时,求ts ∆∆. (3)求质点M 在t =2时的瞬时速度小结:利用导数的定义求导,步骤为: 第一步,求函数的增量00()()y f x x f x ∆=+∆-;第二步:求平均变化率0()f x x y xx+∆∆=∆∆;第三步:取极限得导数00()limx yf x x∆→∆'=∆.沈丘三高高二数学导学案编写人:楚士东审稿人:高二数学组§3.1.3 导数的几何意义【使用课时】:1课时【学习目标】:通过导数的图形变换理解导数的几何意义就是曲线在该点的切线的斜率,理解导数的概念并会运用概念求导数.【学习重点】:曲线的切线的概念、切线的斜率、导数的几何意义.【学习方法】:分组讨论学习法、探究式.【学习过程】:一、课前准备(预习教材P76~ P79,找出疑惑之处)1.曲线的切线及切线的斜率实用文档实用文档(1)如图3.1-2,当(,())(1,2,3,4)n n n P x f x n =沿着曲线()f x 趋近于点00(,())P x f x 时,即0→∆x 时,割线n PP 趋近于确定的位置,这个确定位置的直线PT 称为 . (2)割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 沿着曲线无限接近点P 时,n k 无限趋近于切线PT 的斜率k ,即k = =2.导数的几何意义函数)(x f y =在0x x =处的导数等于在该点00(,())x f x 处的切线的斜率,实用文档即0()f x '=. 二、新课导学 学习探究探究任务:导数的几何意义1.曲线的切线及切线的斜率(1)如图3.1-2,当(,())(1,2,3,4)n n n P x f x n =沿着曲线()f x 趋近于点00(,())P x f x 时,割线n PP 的变化趋势是什么?(2)如何定义曲线在点P 处的切线?图3.1-2实用文档(3)割线n PP 的斜率n k 与切线PT 的斜率k 有什么关系?(4)切线PT 的斜率k 为多少?说明: (1)当0→∆x 时,割线PQ 的斜率,称为曲线在点P 处的切线的斜率. 这个概念: ①提供了求曲线上某点切线的斜率的一种方法; ②切线斜率的本质—函数在0x x =处的导数. (2)曲线在某点处的切线:实用文档1)与该点的位置有关;2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多. 2.导数的几何意义(1)函数)(x f y =在0x x =处的导数的几何意义是什么?(2)将上述意义用数学式表达出来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.感受平均变化率广泛存在于日常生活之中,经历运用数学描述和刻画现实世界的过程. 会数学的博大精深以及学习数学的意义;2.理解平均变化率的意义,为后续建立瞬时变化.7274复习1:曲线221259x y +=与曲线221(9)259x yk k k+=<--的( ) A .长、短轴长相等 B .焦距相等 C .离心率相等 D .准线相同 复习2::将a 3-b 3 分解因式=_____二、新课导学 ※ 学习探究 探究任务一:问题1:气球膨胀率,求平均膨胀率吹气球时,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度如何描述这种现象?问题2:高台跳水,求平均速度新知:平均变化率:2121()()f x f x fx x x-∆=-∆试试:设()y f x =,1x 是数轴上的一个定点,在数轴x 上另取一点2x ,1x 与2x 的差记为x ∆,即 x ∆= 或者2x = ,x ∆就表示从1x 到2x 的变化量或增量,相应地,函数的变化量或增量记为y ∆,即y ∆= ;如果它们的比值yx∆∆,则上式就表示为 ,此比值就称为平均变化率.反思:所谓平均变化率也就是 的增量与 的增量的比值.※ 典型例题例 1 过曲线3()y f x x ==上两点(1,1P 和(1,1)Q x y +∆+∆作曲线的割线,求出当0.1x ∆=时割线的斜率.变式:已知函数2()f x x x =-+的图象上一点(1,2)--及邻近一点(1,2)x y -+∆-+∆,则yx∆∆=例 2 已知函数2()f x x =,分别计算()f x 在下列区间上的平均变化率: (1)[1,3]; (2)[1,2]; (3)[1,1.1]; (4)[1,1.001]小结:※ 动手试试练1. 某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率.练2. 已知函数()21f x x =+,()2g x x =-,分别计算在区间[-3,-1],[0,5]上()f x 及()g x 的平均变化率.(发现:y kx b =+在区间[m ,n]上的平均变化率有什么特点?三、总结提升 ※ 学习小结1.函数()f x 的平均变化率是2.求函数()f x 的平均变化率的步骤:(1)求函数值的增量 (2)计算平均变化率※ 知识拓展平均变化率是曲线陡峭程度的“数量化”,曲线“视觉化”.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 21y x =+在(1,2)内的平均变化率为( )A .3B .2C .1D .0 2. 设函数()y f x =,当自变量x 由0x 改变到0x x +∆时,函数的改变量y ∆为( ) A .0()f x x +∆ B .0()f x x +∆ C .0()f x x ∆ D .00()()f x x f x +∆- 3. 质点运动动规律23s t =+,则在时间(3,3)t +∆中,相应的平均速度为( )A .6t +∆B .96t t+∆+∆C .3t +∆D .9t +∆4.已知212s gt =,从3s 到3.1s 的平均速度是_______5. 223y x x =-+在2x =附近的平均变化率是____课后作业1. 国家环保局对长期超标排污,污染严重而未进行治理的单位,规定出一定期限,强令在此期限内完成排污治理. 下图是国家环保局在规定的排污达标日期前,对甲、乙两家企业连续检测的结果(W 表示排污量),哪个企业治理得比较好?为什么?2. 水经过虹吸管从容器甲中流向容器乙,t s 后容器 甲中水的体积0.1()52t V t -=⨯(单位:3cm ), 计算第一个10s 内V 率.1.掌握用极限给瞬时速度下的精确的定义;2.会运用瞬时速度的定义,求物体在某一时刻的瞬时速度.T(月)39 127476复习1:气球的体积V 与半径r 之间的关系是()r V =V 从0增加到1时,气球的平均膨胀率.复习2:高台跳水运动中,运动员相对于水面的高度h 与起跳后的时间t 的关系为:2() 4.9 6.510h t t t =-++. 求在12t ≤≤这段时间里,运动员的平均速度.二、新课导学 ※ 学习探究探究任务一:瞬时速度问题1:在高台跳水运动中,运动员在不同时刻的速度是 新知:1. 瞬时速度定义:物体在某一时刻(某一位置)的速度,叫做瞬时速度.探究任务二:导数问题2: 瞬时速度是平均速度ts∆∆当t ∆趋近于0时的得导数的定义:函数()y f x =在0x x =处的瞬时变化率是0000()()lim limx x f x x f x fxx ∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y ='即000()()()limx f x x f x f x x∆→+∆-'=∆注意:(1)函数应在点0x 的附近有定义,否则导数不存在(2)在定义导数的极限式中,x ∆趋近于0可正、可负、但不为0,而y ∆可以为0(3)xy ∆∆是函数)(x f y =对自变量x 在x ∆范围内的平均变化率,它的几何意义是过曲线)(x f y =上点()(,00x f x )及点)(,(00x x f x x ∆+∆+)的割线斜率(4)导数xx f x x f x f x ∆-∆+=→∆)()(lim )(0000/是函数)(x f y =在点0x 的处瞬时变化率,它反映的函数)(x f y =在点0x 处变化的快慢程度.小结:由导数定义,高度h 关于时间t 的导数就是运动员的瞬时速度,气球半径关于体积V 的导数就是气球的瞬时膨胀率.※ 典型例题例1 将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热. 如果在第xh 时,原油的温度(单位:0c )为2()715(08)f x x x x =-+≤≤. 计算第2h 和第6h 时,原油温度的瞬时变化率,并说明它们的意义.总结:函数平均变化率的符号刻画的是函数值的增减;它的绝对值反映函数值变化的快慢.例2 已知质点M 按规律s =2t 2+3做直线运动(位移单位:cm ,时间单位:s),(1)当t =2,Δt =0.01时,求t s ∆∆. (2)当t =2,Δt =0.001时,求ts∆∆.(3)求质点M 在t =2时的瞬时速度小结: 利用导数的定义求导,步骤为:第一步,求函数的增量00()()y f x x f x ∆=+∆-;第二步:求平均变化率0()f x x y x x+∆∆=∆∆;第三步:取极限得导数00()limx y f x x∆→∆'=∆.※ 动手试试练1. 在例1中,计算第3h 和第5h 时原油温度的瞬时变化率,并说明它们的意义.练 2. 一球沿一斜面自由滚下,其运动方程是2()s t t =(位移单位:m ,时间单位:s),求小球在5t =时的瞬时速度三、总结提升 ※ 学习小结这节课主要学习了物体运动的瞬时速度的概念,它是用平均速度的极限来定义的,主要记住公式:瞬时速度v =tt ∆→∆※ 知识拓展※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 一直线运动的物体,从时间t 到t t +∆时,物体的位移为s ∆,那么0lim t s t∆→∆∆为( )A.从时间t 到t t +∆时,物体的平均速度; B.在t 时刻时该物体的瞬时速度;C.当时间为t ∆时物体的速度; D.从时间t 到t t +∆时物体的平均速度2. 2y x =在 x =1处的导数为( )A .2xB .2C .2x +∆D .1 3. 在0000()()()limx f x x f x f x x∆→+∆-'=∆中,x ∆不可能( )A .大于0B .小于0C .等于0D .大于0或小于0 4.如果质点A 按规律23s t =运动,则在3t =时的瞬时速度为5. 若0()2f x '=-,则0001[]()2lim k f x k f x k→--等于1. 高台跳水运动中,ts 时运动员相对于水面的高度是:2() 4.9 6.510h t t t =-++(单位: m),求运动员在1t s =时的瞬时速度,并解释此时的运动状况.2. 一质量为3kg 的物体作直线运动,设运动距离s(单位:cm)与时间(单位:s )的关系可用函数2()1s t t =+表示,并且物体的动能212U mv =. 求物体开始运动后第5s 时的动能.导数的几何意义通过导数的图形变换理解导数的几何意义就是曲线在该点的切线的斜率,理解导数的概念并会运用概念求导数.7679 复习1:曲线上向上11111(,),(,)P x y P x x y y +∆+∆的连线称为曲线的割线,斜率yk x∆==∆复习2:设函数()y f x =在0x 附近有定义当自变量在0x x =附近改变x ∆时,函数值也相应地改变y ∆= ,如果当x ∆ 时,平均变化率趋近于一个常数l ,则数l 称为函数()f x 在点0x 的瞬时变化率.记作:当x ∆ 时, →l二、新课导学 ※ 学习探究探究任务:导数的几何意义问题1:当点(,())(1,2,3,4)n n n P x f x n =,沿着曲线()f x 趋近于点00(,())P x f x 时,割线的变化趋是什么?新知:当割线P n P 无限地趋近于某一极限位置PT 我们就把极限位置上的直线PT ,叫做曲线C 在点P 处的切线割线的斜率是:n k =当点n P 无限趋近于点P 时,n k 无限趋近于切线PT 的斜率. 因此,函数()f x 在0x x =处的导数就是切线PT 的斜率k ,即0000()()lim ()x f x x f x k f x x ∆→+∆-'==∆新知:函数()y f x =在0x 处的导数的几何意义是曲线()y f x =在00(,())P x f x 处切线的斜率.即k =000()()()lim x f x x f x f x x∆→+∆-'=∆※ 典型例题例1 如图,它表示跳水运动中高度随时间变化的函数2() 4.9 6.510h t t t =-++的图象.根据图象,请描述、比较曲线()h t 在012,,t t t 附近的变化情况.小结:例2 如图,它表示人体血管中药物浓度()c f t =(单位:/mg mL )随时间t (单位:min)变化的函数图象.根据图象,估计t=0.2,0.4,0.6,0.8时,血管中药物浓度的瞬时变化率(精确到0.1)※ 动手试试 练1. 求双曲线1y x =在点1(,2)2处的切线的斜率,并写出切线方程.练2. 求2y x =在点1x =处的导数.三、总结提升 ※ 学习小结函数()y f x =在0x 处的导数的几何意义是曲线()y f x =在00(,())P x f x 处切线的斜率. 即k =000()()()lim x f x x f x f x x∆→+∆-'=∆ 其切线方程为 ※ 知识拓展导数的物理意义:如果把函数()y f x =看做是物体的运动方程(也叫做位移公式,自变量x 表示时间),那么导数0()f x '表示运动物体在时刻o x 的速度,,即在o x 的瞬时速度.即000()lim x t yv f x x∆→∆'==∆而运动物体的速度()v t 对时间t 的导数,即0()lim t vv t∆→∆'=称为物体运动时的瞬时加速度. ※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 已知曲线22y x =上一点,则点(2,8)A 处的切线斜率为( )A. 4B. 16C. 8D. 22. 曲线221y x =+在点(1,3)P -处的切线方程为( )A .41y x =--B .47y x =--C .41y x =-D .47y x =+3. ()f x 在0x x =可导,则000()()limh f x h f x h→+-( )A .与0x 、h 都有关B .仅与0x 有关而与h 无关C .仅与h 有关而与0x 无关D .与0x 、h 都无关 4. 若函数()f x 在0x 处的导数存在,则它所对应的曲线在点00(,())x f x 的切线方程为 5. 已知函数()y f x =在0x x =处的导数为11,则000()()limx f x x f x x ∆→-∆-∆=1. 如图,试描述函数()f x 在x =5,4,2,0,1---附近的变化情况.2.已知函数()f x 的图象,试画出其导函数()f x '图象的大致形状.§3.2.1几个常用函数导数1.掌握四个公式,理解公式的证明过程;2.学会利用公式,求一些函数的导数;3.理解变化率的概念,解决一些物理上的简单问题.一、课前准备(预习教材P 81~ P 82,找出疑惑之处)复习1:导数的几何意义是:曲线)(x f y =上点()(,00x f x )处的切线的斜率.因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为 复习2:求函数)(x f y =的导数的一般方法: (1)求函数的改变量y ∆= (2)求平均变化率yx ∆=∆(3)取极限,得导数/y =()f x '=xyx ∆∆→∆0lim =二、新课导学 ※ 学习探究 探究任务一:函数()y f x c ==的导数. 问题:如何求函数()y f x c ==的导数新知:0y '=表示函数y c =图象上每一点处的切线斜率为 .若y c =表示路程关于时间的函数,则y '= ,可以解释为 即一直处于静止状态. 试试: 求函数()y f x x ==的导数反思:1y '=表示函数y x =图象上每一点处的切线斜率为 . 若y x =表示路程关于时间的函数,则y '= ,可以解释为 探究任务二:在同一平面直角坐标系中,画出函数2,3,4y x y x y x ===的图象,并根据导数定义,求它们的导数.(1)从图象上看,它们的导数分别表示什么? (2)这三个函数中,哪一个增加得最快?哪一个增加得最慢? (3)函数(0)y kx k =≠增(减)的快慢与什么有关?※ 典型例题 例1 求函数1()y f x x ==的导数变式: 求函数2()y f x x ==的导数小结:利用定义求导法是最基本的方法,必须熟记求导的三个步骤:作差,求商,取极限. 例2 画出函数1y x =的图象.根据图象,描述它的变化情况,并求出曲线在点(1,1)处的切线方程.变式1:求出曲线在点(1,2)处的切线方程.变式2:求过曲线上点(1,1)且与过这点的切线垂直的直线方程.小结:利用导数求切线方程时,一定要判断所给点是否为切点,它们的求法是不同的.※ 动手试试练1. 求曲线221y x =-的斜率等于4的切线方程.(理科用)练2.求函数()y f x ==三、总结提升 ※ 学习小结1. 利用定义求导法是最基本的方法,必须熟记求导的三个步骤: , , .2. 利用导数求切线方程时,一定要判断所给点是否为切点,一定要记住它们的求法是不同的.※ 知识拓展微积分的诞生具有划时代的意义,是数学史上的分水岭和转折点.关于微积分的地位,恩格斯是这样评价的:“在一切理论成就中,未必再有什么像17世纪下半叶微积分的发现那样被看作人类精神.”※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分: 1.()0f x =的导数是( )A .0B .1C .不存在D .不确定 2.已知2()f x x =,则(3)f '=( ) A .0 B .2x C .6 D .93. 在曲线2y x =上的切线的倾斜角为4π的点为( )A .(0,0)B .(2,4)C .11(,)416D .11(,)244. 过曲线1y x=上点(1,1)且与过这点的切线平行的直线方程是5. 物体的运动方程为3s t =,则物体在1t =时的速度为 ,在4t =时的速度为. 1. 已知圆面积2S r π=,根据导数定义求()S r '.2. 氡气是一种由地表自然散发的无味的放射性气体.如果最初有500克氡气,那么t 天后,氡气的剩余量为()5000.834t A t =⨯,问氡气的散发速度是多少?§3.2.2基本初等函数的导数公式及导数的运算法则1.理解两个函数的和(或差)的导数法则,学会用法则求一些函数的导数;2.理解两个函数的积的导数法则,学会用法则求乘积形式的函数的导数.(预习教材P 83~ P 85,找出疑惑之处)复习1:常见函数的导数公式:0'=C ;1)'(-=n n nx x ;x x cos )'(sin =;x x sin )'(cos -=; ()ln (0)x x a a a a '=>;()x xe e '=; 1()(0,ln log a x a x a '=>且1)a ≠;1(ln )x x'=.复习2:根据常见函数的导数公式计算下列导数(1)6y x = (2)y = (3)21y x =(4)y =二、新课导学※ 学习探究探究任务:两个函数的和(或差)积商的导数新知:[()()]()()f x g x f x g x '''±=±[()()]()()()()f x g x f x g x f x g x '''=+ 2()()()()()[]()[()]f x f xg x f x g x g x g x ''-'=试试:根据基本初等函数的导数公式和导数运算法则,求函数323y x x =-+的导数. ※ 典型例题例1 假设某国家在20年期间的年均通贷膨胀率为5%,物价p (单位:元)与时间t (单位:年)有如下函数关系0()(15%)tp t p =+,其中0p 为0t =时的物价.假定某种商品的01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?变式:如果上式中某种商品的05p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少?例2 日常生活中的饮用水通常是经过净化的. 随着水纯净度的提高,所需净化费用不断增加. 已知将1吨水净化到纯净度为%x 时所需费用(单位:元)为5284()(80100)100c x x x =<<-. 求净化到下列纯净度时,所需净化费用的瞬时变化率: (1)90%; (2)98%.小结:函数在某点处导数的大小表示函数在此点附近变化的快慢. ※ 动手试试 练1. 求下列函数的导数:(1)2log y x =; (2)2x y e =;(3)522354y x x x =-+-; (4)3cos 4sin y x x =-.练2. 求下列函数的导数: (1)32log y x x =+;(2)n xy x e =;(3)31sin x y x-=三、总结提升 ※ 学习小结1.由常数函数、幂函数及正、余弦函数经加、减、乘运算得到的简单的函数均可利用求导法则与导数公式求导,而不需要回到导数的定义去求此类简单函数的导数.2.对于函数求导,一般要遵循先化简,再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用.在实施化简时,首先要注意化简的等价性,避免不必要的运算失误.※ 知识拓展1.复合函数的导数:设函数()u g x =在点x 处有导数()xu g x ''=,函数y =f (u )在点x 的对应点u 处有导数()uy f u ''=,则复合函数(())y f g x =在点x 处也有导数,且x u x u y y '''⋅=2.复合函数求导的基本步骤是:分解——求导—※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 函数1y x x =+的导数是( )A .211x -B .11x -C .211x +D .11x+2. 函数sin (cos 1)y x x =+的导数是( ) A .cos 2cos x x - B .cos 2sin x x + C .cos 2cos x x + D .2cos cos x x +3. cos xy x=的导数是( )A .2sin xx -B .sin x -C .2sin cos x xx x +- D .2cos cos x x x x +-4. 函数2()138f x x =-+,且0()4f x '=, 则0x =5.曲线sin xy x=在点(,0)M π处的切线方程为1. 求描述气球膨胀状态的函数()r V =.2. 已知函数ln y x x =. (1)求这个函数的导数; (2)求这个函数在点1x =处的切线方程.理: §3.2.2复合函数求导复合函数的分解,求复合函数的导数.1617 复习1:求)4(23-=x x y 的导数复习2:求函数2(23)y x =+的导数二、新课导学 ※ 学习探究探究任务一:复合函数的求导法则 问题:求(sin 2)x '=?解答:由于(sin )cos x x '=,故(sin 2)cos 2x x '= 这个解答正确吗?新知:一般地,对于两个函数()y f u =和()u g x =,如果通过变量u ,y 可以表示成x 的函数,那么称这个函数为函数()y f u =和()u g x =的复合函数,记作:(())y f g x = 复合函数的求导法则:两个可导函数复合而成的复合函数的导数等于函数对中间变量的导数乘上中间变量对自变量的导数.用公式表示为:x u x y y u '''=,其中u 为中间变量.即: y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.试试:(sin 2)x '=反思:求复合函数的导数,关键在于分析清楚函数的复合关系,选好中间变量。

相关文档
最新文档