杂多酸
杂多酸
摘要杂多酸(Heteropolyacid),也称多金属氧簇(Polyoxometalate),是一类由氧原子桥接金属原子形成的金属-氧簇化合物.杂多酸具有良好的催化性能,是高效的双功能催化剂,即有酸催化性能,又具有氧化还原催化性能.杂多酸结构稳定,可以用在均相或者非均相催化环境,也可作相转移催化剂,对环境无污染,是一类大有前途的绿色催化剂,它可用作以芳烃烷基化和脱烷基反应、酯化反应、脱水/化合反应、氧化还原反应以及开环、缩合、加成和醚化反应等。
因杂多酸独特的酸性、“准夜相”行为、多功能(酸、氧化、光电催化)等优点在催化研究领域中受到研究者们的广泛重视。
关键词:杂多酸;酸催化;氧化催化目录摘要 (1)1.前言 (3)1.1杂多酸催化剂的物性 (3)1.1.1初级结构和次级结构 (4)1.1.2热稳定性、含水量及比表面积 (4)1.1.3准液相性质 (5)1.2杂多酸化合物作为固体酸催化剂的主要优点 (5)2.杂多酸及其化合物在催化方面的应用 (6)2.1酸催化 (6)2.1.1酸性 (6)2.1.2均相酸催化 (6)2.1.3多相酸催化 (6)2.2氧化还原催化 (7)2.2.1氧化还原性 (7)2.2.2均相氧化催化 (7)2.2.3多相氧化催化 (7)2.3杂多酸的载体 (8)2.3.1载体的作用 (8)2.3.2载体的选择 (8)2.3.3主要的负载方法 (8)3.应用 (9)3.1在炼油技术中的应用 (9)3.2在化工中的应用 (9)3.3在精细化学品合成中的应用 (10)4.文献 (12)1.前言杂多酸(简称HPA)作为固体酸催化剂, 其强度远远高于通常的无机酸, 在过去20多年来一直受到催化领域的广泛重视。
杂多酸是由中心原子(杂原子)和配位体(多原子)通过氧原子配位桥联的一类多核配酸, 按其阴原子结构可分为Keggin、Slverton、Daw-son、WaughAnderson五种类型。
杂多酸
杂多酸催化剂的酸催化作用及 其应用研究新进展
1
杂多酸的结构
杂多酸的结构类型主要有: 1:12系列A型(Keggin结构)、1:12系列B型(Silverton) 、2:18系 列(Dawson结构)等。 其中最常用的就是1:12系列A型(Keggin结构)。 Keggin结构的通式可表示为[XM12040 ] n-(X=P,Si,Ge,As⋯⋯,M=Mo,W, V)。以磷钨酸为例:
9
问题?
杂多酸酸性的调变方法? (1)改变组成元素,不同杂多酸的酸性大小
顺序为:HPW>HSiW>HPMo>HSiMo (2)改变结构,不同结构杂多酸的酸性大小
顺序为:Keggin>Dawson>其它结构 (3)改变活化温度,调节结晶水含量
102Βιβλιοθήκη 杂多酸的一级结构,指多阴离子的结构。可表示多酸的组成元素 和个数,以及它们之间的结合方式的骨架结构。
杂多酸的二级结构,指多阴离子与反荷离子组合得到的多酸及其 盐的晶体结构。
杂多酸的三级结构,指多阴离子、反荷离子与结晶水三部分组成。 可如下表示:
3
杂多酸型催化剂制备及性质
杂多酸催化剂有三种形式: 杂多酸、杂多酸盐(酸式盐)、负载型杂多酸
(2)“准液相”行为 ,使杂多酸具有更高的活性和选择性。
5
杂多酸盐
1.制备
可由杂多酸与可溶性金属碳酸盐加热反应而制得,或者是杂多酸与离子交换树脂 通过离子交换而制得。
2.性质
杂多酸盐根据其水溶性和比表面积的大小可分为A组盐和B组盐。 A组盐包括Na+、Cu2+ 等半径较小的阳离子所形成的杂多酸盐,其性质与杂多 酸接近,比表面积小且溶于水。 B组盐包括NH4+、K+、Rb + 、Cs + 等半径较小的阳离子所形成的杂多酸盐。B 组盐的比表面积(50一200m2/g)和孔面积(0.3—0.5ml/g)较大,酸强度高(Ho<-8.2), 且不溶与水。大多数B组杂多酸盐为超细粒子,具有较大的外表面积,质子能均匀分 布在催化剂的表面,因而具有较多的表面酸中心。显然,B组盐为更理想的固体酸催 化剂。
杂多酸制备
一、浸渍法负载杂多酸:取一定量的杂多酸溶于水中,加入一定量的载体后,在一定温度搅拌数小时后,通过水浴将多余的水蒸去,最后在120摄氏度干燥一夜1.将一定量的杂多酸溶液与载体浸渍!形成悬浮液于室温下长时间搅拌,后将溶剂于一定的温度下除去而得2.根据要负载的杂多酸种类不同,浸渍溶液的pH在1一2之间"3.对于负载量小于20%(质量分数)的情况,最好用低级脂肪醇代替水以防止杂多酸分解,并且在低于333K下用旋转蒸发器蒸干4.将得到的样品在研钵中研细,于423K,0.3mmHg下焙烧1.5h,并存放在装有P2O5的干燥器中5.使用前要在较高的温度(473K一573K)下焙烧以除去痕量的水负载杂多酸艳盐催化剂的制备分两步进行,第一步将一定量可溶性铯盐溶于水中,搅拌至溶解,加入粒度为200目以上的载体,室温下长时间搅拌,使其浸渍平衡,然后将所得的悬浮液于磁力加热搅拌器上将水分蒸干,在马弗炉里773K焙烧4h。
第二步将焙烧后的样品与适量杂多酸的水溶液混合,室温下搅拌12h,然后将所得的悬浮液于磁力加热搅拌器上将水分蒸干,于室温下进一步晾干,再于383K干燥过夜,得到固载化的杂多酸艳盐催化剂吸附法:将一定量载体放入到烧杯中,然后浇入一定量的杂多酸水溶液,加热一定时间后放置隔夜,倾出液体后,并根据倾出液的含量得出杂多酸的吸附量,最后制得的样品在120e一卜燥一夜"共沉淀法:在合成载体的同时,把杂多酸加入到反应体系中,使载体的生成和杂多酸的固载同时完成"这一方法可以使杂多酸镶嵌到载体之中,因此具有很好的固载效果"二、溶胶凝胶法固载杂多酸二氧化硅固载Pw和CS2SPw催化剂可以采用溶胶凝胶技术制备"这种方法的步骤如下:先将正硅酸乙酷在313K水解lh,然后将分散或溶解在乙醇中的CS2.SPW或PW迅速加入到上述正硅酸乙酷中,在353K水解3h"将得到的含水凝胶在318K!真空(25mmHg)下缓慢脱水,然后研磨成细颗粒"如果样品中有盐类夹杂物,将干凝胶在353K的水中萃取10h以除去未结合在载体上的盐和有机物,最好在573K!真空(25mmHg)下焙烧3h"如果有酸类夹杂物,则将干凝胶先在423K!真空(25mmHg)焙烧3h,使二氧化硅结构网牢固,然后在353K的水中萃取3h,最后在真空(25mmHg)下于423K下焙烧3h"三、瓶中造船法固载杂多酸将脱铝改性的Y(或超稳Y)沸石加入适量溶剂中形成悬浮液,然后分别加入一定量的磷源和钨源(或钥源)溶液,作为杂多酸的前驱物,调节pH值,在323一432K的温度范围内(高温时用高压釜)搅拌反应,反应一定时间后进行固液分离,将得到的固体用热水反复洗涤,在适宜的温度下焙烧,即得杂多酸催化剂。
杂多酸的研究进展1108010224李轶凡
摘要杂多酸(Heteropoly Acid,简写为HPA )是由杂原子(如P、Si、Fe、Co等)和多原子(如Mo、W、V、Nb、Ta等)按一定的结构通过氧原子配位桥联组成的一类含氧多酸,具有很高的催化活性,它不但具有酸性,而且具有氧化还原性,是一种多功能的新型催化剂,杂多酸稳定性好,可作均相及非均相反应,甚至可作相转移催化剂,对环境无污染,是一类大有前途的绿色催化剂,它可用作以芳烃烷基化和脱烷基反应、酯化反应、脱水/化合反应、氧化还原反应以及开环、缩合、加成和醚化反应等。
因杂多酸独特的酸性、“准夜相”行为、多功能(酸、氧化、光电催化)等优点在催化研究领域中受到研究者们的广泛重视。
关键词:杂多酸催化多功能目录杂多酸催化剂 (3)一、定义 (3)二、制备 (4)2.1Dawson杂多酸制备 (4)2.1.1 Dawson型磷钼钒杂多酸的合成 (4)2 .2 Keggin型杂多酸的合成 (4)2.2.1 Keggin型Ni—Mo—Zr杂多酸盐的合成 (4)2.3 负载型 P—no—W 杂多酸催化剂的制备 (5)2.3.1直接负载法 (5)2.3.2接枝法 (5)2.3.3密封法 (5)三.应用 (6)3.1铈钼锆杂多酸盐的制备及超声降解性能 (6)3.2二氧化硅负载杂多酸铵催化苯液相硝化反应的研究 (6)四.负载型杂多酸催化剂的研究进展 (7)4.1活性炭负载杂多酸催化合成没食子酸甲酯的研究 (7)4.2介孔材料负载杂多酸催化剂催化乙醇脱水制乙烯 (8)4.3磷钨杂多酸季铵盐催化脂肪酸甲酯环氧化 (8)4.4纳米复合杂多酸催化合成草莓酯 (9)4.5杂多酸(盐) 掺杂TiO2 制备新型复合光催化剂的研究进展 (9)4.6杂多酸催化合成磷酸单双辛酯的研究 (10)参考文献 (11)杂多酸催化剂一、定义杂多阴离子是指由两种以上不同的含氧阴离子缩合而成的聚合态阴离子。
杂多酸化合物为杂多酸及其盐类。
如:H3PW12O40、H3SiW12O40、H3PMo12O40。
杂多酸定义及其相关概念
1.多酸的定义;多酸是由两个或两个以上的无机含氧酸酐酸化后缩合脱水得到的一类化合物,由同种酸酐酸化缩合脱水而成的多酸称为同多酸,如焦硫酸H2S2O7,焦磷酸H4P2O7,三聚磷酸H5P3O10等;由不同种酸酐酸化缩合脱水而成的多酸称为杂多酸,如钨磷酸H3PW12O40和钼磷酸H3PMo12O40等。
2. 杂多酸(盐)具有的特殊性质;杂多酸(盐)具有许多特殊的性质:组分比较简单,结构确定,兼具配合物和金属氧化物的结构特征。
杂多酸(盐)是多电子氧化剂,同时又是强质子酸,其氧化性可通过改变组成的方式来改变,这有利于催化剂设计;许多杂多酸(盐)都溶于水和含氧有机极性溶剂中,其溶液一般比较稳定;固态杂多酸(盐)对热是稳定的,这些性质可是杂多酸(盐)用作均相和多相氧化型催化剂和酸型催化剂或双功能催化剂。
3.杂多阴离子中的杂原子的结构类型在杂多酸中,杂多阴离子中的杂原子的结构类型有四面体型、八面体型、二十面体型三类。
四面体型又有1:12系列的Keggin结构和Dawson结构;八面体型的杂阴离子有1:6系列和1:9系列两个系列;二十面体型的杂阴离子主要是1:12系列。
在这几种结构中,Keggin 结构的杂多酸(盐)是最容易生成而又被广泛深入研究的杂多化合物,在Keggin结构中杂多阴离子[XM12O40]n-的结构为一级结构,是由12个MO6八面体围绕一个中心XO4四面体所构成.杂多阴离子与反荷阳离子组成二级结构。
反荷离子、杂多阴离子和结晶水在三维空间形成三级结构。
4.简述Keggin 结构、Dawson 结构和Lindqvist 结构Keggin 结构Keggin 结构的通式为[XM12O 40]n-(X=P ,Si ,Ge ,As…, M=Mo ,W)。
中心杂原子X 以XO 4四面体居中,外面是四个 共角相连的M 3O 12三金属簇,与中心四面体共角相连;每个三金属簇由三个MO 6八面体共边组成(图1-1)。
固体催化材料之酸催化材料:多金属氧酸盐、杂多酸、固体超强酸 2020
➢ Al2O3 ➢ SiO2-Al2O3、复合氧化物 ➢ 分子筛
多金属氧酸盐、杂多酸、固体超强酸
多金属氧酸盐(polyoxometalate,M)
/wiki/Polyoxometalate /view/585075.htm
精细化学品的催化合成:多 酸化合物及其催化
作 者: (俄) 伊万.科热夫尼科 著 唐培堃,李祥高,王世荣 译 出 版 社: 化学工业出版社 ISBN:9787502566661 出版时间:2005-04-01 版 次:1 页 数:228
Catalysts for Fine Chemical Synthesis, Catalysis by Polyoxometalates
元素周期表中大部分元素均可作为杂原子不前过渡元素组成杂多酸基本概念多酸具有像沸石一样的笼型结构沸石分子筛结构由四个四面体形成四元环五个四面体形成五元环依此类推还有六元环八元环和十二元环等环结构硅氧四面体或铝氧四面体通过氧桥联结成环环结构通过氧桥再相互联结形成三维空间的多面体笼结构笼结构基本结构单元以以si和al原子为中心的正四面体硅氧四面体和铝氧四面体同多酸
Toshihiro Yamase, Michael T. Pope 出版社: Kluwer Academic/Plenum P ublishers (2002年10月31日) 丛书名: Nanostructure Science and Technology
ISBN: 0306473593
Polyoxometalate Chemistry: Some Recent Trends
杂多和同多金属氧酸盐
作者:迈克尔.波普 出版时间:1983年
王恩波
➢《杂多和同多金属氧酸盐 》吉林大学出版 社,1991 ➢《配位化学进展》(王恩波写其中的“多 酸化合物” ) 高等教育出版社,1999. ➢《中国固体化学十年进展》(王恩波写其 中的“同多杂多化合物的合成结构及功能特 性” ) 高等教育出版社,1999. /
杂多酸催化剂在烷基化反应中的应用
杂多酸催化剂在反应条件下稳定,不易分 解或失活,能够多次重复使用。
适用范围广
环境友好
杂多酸催化剂可以应用于多种类型的烷基 化反应,包括芳香烃、脂肪烃等底物的烷 基化反应。
杂多酸催化剂无毒、无害,对环境友好, 符合绿色化学的发展要求。
杂多酸催化剂在烷基化反应中面临的挑战
成本较高
01
杂多酸催化剂的合成成本较高,限制了其在工业生产中的应用
低碳烷基化反应机理
杂多酸催化剂通过酸性催化机制,使低碳烷烃的碳氢键发生质子转 移,生成碳正离子中间体,进而发生亲核取代反应,生成目标产物 。
低碳烷基化反应应用
低碳烷基化反应在化工、医药、农药等领域具有广泛的应用,如生产 增塑剂、溶剂、燃料添加剂等。
杂多酸催化剂在芳烃烷基化反应中的应用
芳烃烷基化反应
杂多酸催化剂在低碳烷基化反应中表现出良好的活性和选择性,如甲醇与低碳 烯烃的烷基化反应。
工业应用案例
杂多酸催化剂在低碳烷基化反应中广泛应用于生产高辛烷值汽油、低碳烯烃等 产品,如甲醇与乙烯的烷基化反应制备丙烯。
芳烃烷基化反应的工业化反应中具有高活性和选择性,如 苯与甲醇的烷基化反应制备二甲苯。
分类
C-烷基化、N-烷基化、O-烷基化 等。
烷基化反应的机理
碳正离子机理
烷基化试剂与碳正离子结合,生成新 的碳正离子,再与底物发生亲核取代 反应。
酸催化机理
酸性催化剂通过质子化作用使底物活 化,再与烷基化试剂发生亲电取代反 应。
烷基化反应的工业应用
生产高辛烷值汽油
通过烷基化反应将低碳烯烃转化为高辛烷值的汽油组分。
杂多酸催化剂在烷基化反应 中的应用
汇报人: 2024-01-01
目录
杂多酸(盐)及其催化
3
杂多酸催化剂的应用进展
杂多酸的酸催化
目前用作催化剂的主要是分子式为HnAB12O40xH2O具 有Keggin结构的杂多酸,其酸强度是较为均一的质子酸, 其酸性可以通过下列方法加以调变。
AND APPLIED CATALYSISSCIENCE VOL 292 11 MAY 2001
4
展望
1. 随着石油化工与精细化工的发展,催化材料的多功能性成为研究的新目标。杂多酸是 一种酸碱性与氧化还原性兼具的双功能型催化剂,对于新催化过程的研究具有重要意义。
2. 随着分子“剪裁”技术的迅速兴起,新型催化材料层出不穷。 杂多酸的阴离子结构 稳定,性质却随组成元素不同而异,可以以分子设计的手段,通过改变分子组成和结构 来调变其催化性能,以满足特定催化过程要求。
Catalysis Today 60 (2000) 193–207 NATAUpRpAlLieGdASCUaTtaILlIyZsAiTsIOAN: General 256 (2003) 107–113 ANADpApPlPiLeIdEDCCaAtTaAlyLYsiSsISA: General 165 (1997) 219-226
醛及CO的氧化反应 低温下醇脱水反应 脱氢氧化及氢的氧化反应
1
杂多酸的结构和特性
杂多化酸独特的组成和结构,赋予它一系列的优点, 主要特性如下:
1
具有确定的Keggin等结构
2
具有酸性和氧化性
Tex 3 Text
4 Text
5
独立的反应场所 Concept
杂多酸催化剂-1108010220-侯宪辉
5.杂多酸的结构特点
杂 多 酸 阴 离 子 阴 离 子 水 与 有 机 分 子
6.杂多酸的前景展望
随着人类环保意识提高,环境友好型杂多酸催化剂的研究和应用 得到了更加广泛的关注,在精细化学品合成中的应用也越来越受到 人们的重视。杂多化合物的性能与其组成及其结构密切相关,通过 分子剪裁技术,从分子、原子水平上设计催化剂分子,将杂多阴离 子独立单元组装成一维、二维甚至三维空间伸展的开放有序体,以 拓宽其在化工中的应用。通过调节杂多酸催化剂的酸性和氧化还原 性的协同作用,提高其对底物的专一性也是重要的研究方向之一。 通过向传统杂多化合物上引入过渡金属、有机金属、含手性配体的 金属及有机分子可以得到特定功能的新型催化剂。另外,负载杂多 酸与传统催化剂相比,具有低温耐火性、可重复使用及易于实现连 续化生产等优点,具有很好的工业化前景,也是杂多酸催化领域最 为重要的分支之一,但实现工业化规模的应用并不多见,这有待于 结构化学、动力学、催化、有机化学、无机化学和化工界学者和企 业的共同努力,推动杂多化合物这种新兴催化材料的研究和发展, 以加速我国精细化工过程的绿色化进程。
1.杂多酸催化剂
杂多酸是由杂原子(如 P、 Si、 Fe、 Co 等)和多原子 (如 Mo、 W、 V、 Nb、 Ta 等)按一定的结构通过氧 原子配位桥联组成的一类含氧多酸。
2.杂多酸的分类
杂多酸的分类是根据分子组成中是否存在杂原子来 判断,若多酸组成元素是由杂原子构成的称为杂多 酸,钼、钨、银是杂多酸中较为常见的配原子,同时, 杂多酸中心杂原子可以由数十种元素构成,主要分 布在周期表中过渡金属元素区以及非金属区,由于 构成的杂原子通常以多种不同价态分布于多酸的阴 离子中,使得杂多酸种类极其繁多,为杂多酸的生产 应用奠定了广阔的前景。
多酸化学
多酸化学简介多酸化学是无机化学中的一个重要研究领域,至今已有一百多年的历史。
多酸是由两个或两个以上的无机含氧酸酐酸化后缩合脱水得到的一类化合物,由同种酸酐酸化缩合脱水而成的多酸称为同多酸,如焦硫酸H2S2O7,焦磷酸H4P2O7,三聚磷酸H5P3O10等;由不同种酸酐酸化缩合脱水而成的多酸称为杂多酸,如钨磷酸H3PW12O40和钼磷酸H3PMo12O40等。
杂多酸(Polyoxometalate,Heteropoly Acid 简称HPA),是一类早已为人们所熟悉的无机高分子化合物,自1826年J.Berzerius成功的合成了第一个杂多酸——12-钼磷铵((NH4)3PMo12O40·nH2O),距今已有170多年的历史了,但对它系统的研究在70年代才开始,如今多酸化学已成为无机化学中重要研究领域之一。
近年来多酸化学发展迅速,除了在理论方面有重要进展外,在应用方面也取得了突破性进展。
由于多酸结构优异,可望在功能材料方面,诸如高质子导体、非线性光学材料、磁性材料方面有所作为。
杂多酸(盐)具有许多特殊的性质:组分比较简单,结构确定,兼具配合物和金属氧化物的结构特征。
杂多酸(盐)是多电子氧化剂,同时又是强质子酸,其氧化性可通过改变组成的方式来改变,这有利于催化剂设计;许多杂多酸(盐)都溶于水和含氧有机极性溶剂中,其溶液一般比较稳定;固态杂多酸(盐)对热是稳定的,这些性质可是杂多酸(盐)用作均相和多相氧化型催化剂和酸型催化剂或双功能催化剂。
杂多酸中杂原子(如P、Si)和多原子(如W、Mo)按一定结构通过氧原子配位桥联组成一类配合化合物。
在杂多酸中,杂多阴离子中的杂原子的结构类型有四面体型、八面体型、二十面体型三类。
四面体型又有1:12系列的Keggin结构和Dawson结构;八面体型的杂阴离子有1:6系列和1:9系列两个系列;二十面体型的杂阴离子主要是1:12系列。
在这几种结构中,Keggin结构的杂多酸(盐)是最容易生成而又被广泛深入研究的杂多化合物,在Keggin结构中杂多阴离子[XM12O40]n-的结构为一级结构,是由12个MO6八面体围绕一个中心XO4四面体所构成.杂多阴离子与反荷阳离子组成二级结构。
杂多酸催化剂
杂多酸的结构
取代型杂多酸。如图( e) ( f) 是过渡金属取 代的 keggin 型和sandwcih型杂多酸。
杂多酸的结构
• Wjugh型 • Anderson型 • Silverton型
总结与展望
1 . 对杂多酸的酸性和氧化性能的进一步挖 掘,扩大应用的范围和领域。 2.把杂多酸和新材料、新研究手段相结合, 对杂多酸进行修饰,复合,杂化。发展出新 的功能型催化剂。 3.结合绿色化学的手段,发展出各种清洁环 保高效的催化体系 。
总结与展望
活性高 不腐蚀 设备 再生速 度快 结构 稳定
负载杂多酸
SnO2负载的H3PW12O40、聚合物负载杂多酸 或者杂多酸盐催化苯甲醚和苯甲醇的FriedelCrafts 烷基化应。 Nikunj 等用γ-Al2O3负载的 pw12催化苯甲醇和新丁醇的Friedel-Crafts 烷 基化。蒙脱土作为载体杂多酸催化的苯甲醇和 甲醛的羟烷基化反应。α-蒎烯在无溶剂条件下 的的异构化萜品醇异构化制备桉叶素,氧化苯 乙烯异构化为苯基乙醛等等。
杂多酸 催化
负载杂 多酸
杂多 酸盐
催化 类型
杂多酸催化类型
杂多酸催化
水合反应主要有低碳烯烃的水合和复杂不饱 和分子的水合。丙烯,正丁烯和异丁烯水合 生成丙醇正丁醇和异丁醇Radbil等研究了在 水和有机溶剂条件下杂多酸催化的莰烯的水 合,相对于简单的矿物酸,杂多酸对产物的 选择性和产率更好silva对比了杂多酸和其它 常见无机酸在莰烯水合中的作用,发现杂多 酸表现出了更高的活性,而且可以很方便的 回收并且重复使用。
杂多酸催化剂的催化影响因素及应用
杂多酸催化剂的相关问题,从最初最简单的杂多酸氧化态物种合成研究,逐渐到亚稳态化合物的研究,再到复杂的超大分子化合物的研究。
杂多酸在化工生产方面具有很多用处,因而被很多人称为是酸化学中的“分子器件”。
1.1 杂多酸的结构杂多酸是杂原子与多原子依照一定的构造,经过氧原子配位桥而组成的一类含氧多酸,它有着十分高的催化活性,同时也具备酸性与氧化还原性。
杂多酸主要有以下特点:(1)结构确定:它有着普通的配合物及金属氧化物的构造特色,也有质子以及电子转移的储藏才能;(2)不一样的元素组成能表现出它性质的差别,使它的催化功能得到控制,这也对催化剂的设计与制备有帮助;(3)容易溶于水及有机溶剂,它也能够负载在有吸附性的物质上,有着很高的催化才能以及选择性,可以用在均相及非均相的催化反应上;(4)具备较好的热稳定性。
1.2 杂多酸的性质杂多酸化合物作为质子酸,其中一个很大的优点就是酸性分散均匀。
金属含氧酸根在加热以及酸性条件下缩合而形成杂多酸化合物。
八面体[MO 6]结构和四面体[MO 4]结构以共角、共边或者共面方式在中心原子的附近连接生成的多阴离子结构即为杂多酸化合物。
杂多酸化合物的结构主要分为以下三类:第一种是Keggin 型结构,X ∶M=1∶12,通式可表示为[XM 12O 40]n -,其中X=Si ,P ,Ge 等,M=W ,Mo 等,例如PW 12O 403-,PMo 12O 403-等;第二种是Dawson 型结构,X ∶M=2∶18,通式可表示为[X 2M 18O 62]n -,其中X=Mo ,W 等,M=P ,As 等,可以把第二种看作是第一种的衍生物;第三种是缺位型杂多酸,而缺位型又分为两类,一类是单缺位型、另一类则是双缺位型,不过通常情况下过渡金属原子可以与缺位处进行配位。
杂多酸既具有酸催化性,又具有氧化还原催化性。
作为酸性催化剂,杂多酸的优点是:(1)杂多阴离子所占体积大,能够0 引言随着社会转型的加速进行,环境问题日益严重,环境污染和生态破坏将在相当长的一段时间里继续恶化,因此人们对生态环境的治理和保护越来越重视,如何在治理过程中不产生二次污染也逐渐成为大家关注的重点。
杂多酸
杂多酸催化剂综述班级:应用化学二班学号:10190208姓名:高云强杂多酸一杂多酸杂多酸是由不同的含氧酸缩合而制得的缩合含氧酸的总称。
是强度均匀的质子酸,并有氧化还原的能力。
通过改变分子组成,可调节酸强度和氧化还原性能。
水分存在时形成的拟液相,也能影响其酸性和氧化还原性能。
杂多酸(Heteropoly Acid,简写为HPA )是由杂原子(如P、Si、Fe、Co等)和多原子(如Mo、W、V、Nb、Ta等)按一定的结构通过氧原子配位桥联组成的一类含氧多酸,具有很高的催化活性,它不但具有酸性,而且具有氧化还原性,是一种多功能的新型催化剂,杂多酸稳定性好,可作均相及非均相反应,甚至可作相转移催化剂,对环境无污染,是一类大有前途的绿色催化剂,它可用作以芳烃烷基化和脱烷基反应、酯化反应、脱水/化合反应、氧化还原反应以及开环、缩合、加成和醚化反应等。
因杂多酸独特的酸性、“准液相”行为、多功能(酸、氧化、光电催化)等优点在催化研究领域中受到研究者们的广泛重视。
杂多酸(HPA) 一直是无机化学、结构化学、应用化学的重要研究课题。
它具有:(1) 结构确定,有一般配合物和金属氧化物的主要结构特征,有电子和质子转移P贮藏能力;(2) 不同的元素可表现出其酸性和氧化还原性的差别,使其催化性能可控,有利于催化剂设计;(3) 易溶于水和有机溶剂,可负载于硅凝胶或活性碳等物质,显示出很高的催化能力及选择性,可用于均相和非均相催化反应系统;(4) 具有较好的热稳定性。
因此,国内外对杂多酸化学的基础研究和应用研究非常活跃。
二杂多酸催化剂1概述杂多阴离子是由两种以上不同含氧阴离子缩合而成的聚合态阴离子(如PW12O403-)。
由同种含氧阴离子形成的聚合态阴离子称为等多聚阴离子。
杂多酸化合物是指杂多酸(游离酸形式)及其盐类。
12WO42-+HPO42-+23H+→PW12O403-+12H2O已知多种聚阴离子结构,Keggin结构的聚阴离子。
简述杂多酸的制备及应用的发展近况
简述杂多酸的制备及应用的发展近况杂多酸的制备,大多采用水热合成的方法,随着科技的进步和环境友好型社会类型的要求,杂多酸制备越发的趋近于环保,致使微型实验的产生。
又因杂多酸在催化上卓越的表现,所以杂多酸化学与多学科都有交集,比如生物质水解,精细化工合成上,有机合成等方面。
微型;光催化;降解0 前言杂多酸,是多金属氧酸盐的一种,多金属氧酸盐(Polyoxometalates),简称POMS。
因构成多阴离子的含氧酸根的不同,多金属氧酸盐被分成了同多酸与杂多酸。
顾名思义,同多酸就是由同种含氧酸根构成的多酸,而杂多酸则是由不同种含氧酸根构成的多酸,至少含有两种以上的含氧酸根[1-2]。
多酸被称为多金属氧酸盐或是金属氧簇,是因为多金属氧酸盐是由配原子Mo,W,V,si等,与几乎全部的前过渡金属原子,通过氧原子相连接,得到多阴离子簇,多金属氧酸盐因此而得名。
多酸化学的研究历史可以追溯到100多年前[3-4],由于过渡金属在配位时都会呈现出不同的价态,因此提供了多种的配位模式,这使得多酸呈现出了多种的迷人结构,另外构成多酸的结构单元主要有{MO6}八面体和{MO4}四面体,多面体通过共角,共边,共面从而形成多种结构的多阴离子。
恰恰是因为多酸多变的结构,也就使得多酸在性质上的千变万化,这些性质主要表现在催化、电化学、生物仿生学等。
针对于同多酸,杂多酸就更具有这方面的优势,因此人们对杂多酸的研究就更为深入。
对于杂多酸的研究,主要是基于6中基本类型开展的,最早出现的就是经典的Keggin结构。
Keggin结构具有高度的Td 对称性,其中中心原子也叫做杂原子(过渡金属原子),采用的是四面体配位,而配原子(Mo、W、V等)采用的则是八面体配位,形成单个的八面体,每三个八面体通过公用边而形成了三金属簇,相邻的三金属簇又通过共角连接在一起,将中心原子形成的四面体包裹起来,就形成了经典的对称Keggin结构。
Keggin结构的出现,将多酸化学的研究推到了一个新的高度上,随着Keggin结构的问世,其后,Dawson,Anderson,Wangh,Silverton,Lindqvisi结构也相继被确定了下来,成为了多酸化学的6种基本结构[5-9]。
杂多酸
• 固体H PA 盐的催化作用, 具有一般均相催化所没有的特点。在甲醇转化、 • 丁烯异构化及醉脱水反应中, 不仅H PA 的重金属盐, 碱金属盐及有机碱的中 • 性盐也显示出相当高的活性。对于这种中性盐的催化机理, 现在还没有明确 • 的解释, 但显然和晶格中的HPA 阴离子有关。
• (二) 氧化一还原催化反应 • 1.均相 • 在由H PA 组成的双组份催化体系中, H PA+Pd 11是最重要的双组份液相氧化催化剂。这 • 是以HPA 取代CuCl, 的一种新型的Wacker催化体系。以HPA 代替CuCI : 的优点是: • (l )避免了生成卤化副产物, • (2 ) 减少了对反应器的腐蚀, • (3 ) 提高了Pd11的反应活性。 • 这一体系和原来的催化体系一样可以催化一系列反应, 其中最主要的有: 通过氧化阴离子化由烯
• 因此, 认为在上述两种催化体系上的反应机理是不同的。在固体HPA 上, 氧可 能以三种不同的状态参与反应 :
• (l) 反应和吸附氧直接有关(吸附部位现在仍不清楚). • (2) 像复合氧化物中的晶格氧那样, 杂多酸阴离子的骨架氧脱离出来生成氧化产
物和水。
• (3 ) 杂多酸阴离子只和摘除H 有关, 而气 • 相氧分子只是用来再氧化还原态的HPA 阴离子。
• 一样即形成杂多酸盐, 而当酸根中含有2 种以上的配位原子时, 则形成混合杂多酸(简记H PA n, ), 可以作为杂原子的元素按族列于表1 , 能
• 作为配位原子的主要有 • Mo、w 和v , 另外还有Cr 、Nb 和Ta 等。在 • 大量发现的杂多酸阴离子结构中, Keggin 结 • 构是最有代表性的(见图l: )。除此之外, 还有 • 一些如图1 所列的阴离子结构。它们之间的 • 差别主要在于中央离子的配位状态(配位数)和
杂多酸催化剂上的酯化反应
汇报人: 日期:
contents
目录
• 杂多酸催化剂介绍 • 酯化反应原理 • 杂多酸催化剂在酯化反应中的应用 • 杂多酸催化剂的表征与优化 • 酯化反应的工艺流程与操作条件 • 研究展望与工业化前景
01
杂多酸催化剂介绍
杂多酸的组成和结构
杂多酸是一种由中心原子(P, B,Si等)和配位体(如O,S,
酯化反应的定义和化学过程
酯化反应定义
酯化反应是一种有机化学反应, 涉及羧酸与醇之间通过酯键形成 酯类化合物。
化学过程
羧酸与醇在催化剂的作用下,通 过脱水、脱醇等步骤生成酯类化 合物。这个过程需要一定的能量 ,如加热、加压等。
酯化反应的机理与动力学
机理
酯化反应的机理主要涉及亲核试剂(醇)对亲电子试剂(羧酸)的攻击,生成 酯类化合物和水。在这个过程中,催化剂可以降低反应活化能,加速反应速度 。
VS
详细描述
操作条件的优化包括温度、压力、搅拌速 度、反应时间等因素。通过实践和实验数 据的分析,可以找到最佳的操作条件,提 高催化剂活性和产物收率。
酯化反应的产物分离与后处理技术
总结词
产物分离与后处理是酯化反应的重要环节, 需要采用有效的技术手段。
详细描述
产物分离方面,通常采用蒸馏、萃取、过滤 等技术,根据产物的性质和要求选择合适的 方法。后处理方面,可以进行产品精制、提 纯、干燥等操作,以满足产品的质量要求。
元素分析
测定催化剂中各元素的含量, 如H、N、O等,以了解其化学
组成。
红外光谱
分析催化剂的官能团和化学结 构,如酸性基团、有机配体等 。
热分析
通过热重、差热分析等方法研 究催化剂的热稳定性及分解行 为。
杂多酸
摘要杂多酸(Heteropolyacid),也称多金属氧簇(Polyoxometalate),是一类由氧原子桥接金属原子形成的金属-氧簇化合物.杂多酸具有良好的催化性能,是高效的双功能催化剂,即有酸催化性能,又具有氧化还原催化性能.杂多酸结构稳定,可以用在均相或者非均相催化环境,也可作相转移催化剂,对环境无污染,是一类大有前途的绿色催化剂,它可用作以芳母烷基化和脱烷基反应、酯化反应、脱水/化合反应、氧化还原反应以及开环、缩合、加成和酰化反应等。
因杂多酸独特的酸性、“准夜相”行为、多功能(酸、氧化、光电催化)等优点在催化研究领域中受到研究者们的广泛重视。
关键词:杂多酸;酸催化;氧化催化效果最好。
B沸石负载SiW活性很差的原因,可能是其孔径太小,杂多阴离子不能进入其孔道而达不到分散作用。
其它采用杂多酸类催化剂来进行的炷化反应包括,苯与辛烯的烷基化、对二甲苯与异丁烯的烷基化、均三甲苯与环己烯的烷基化和邻二甲苯与苯乙烯的烷基化等。
烯炷水合制得的各种醇类产品也是重要的有机化工原料。
传统的烯炷水合催化剂是负载型H3P04催化剂,其活性较差,反应需要在高温、高压下进行,烯炷的单程转化率较低,且存在H3P04的流失而带来的腐蚀问题。
杂多酸浓溶液用于催化丙烯、丁烯、异丁烯的水合反应制取异丙醇、丁醇和叔丁醇的过程均已工业化。
杂多酸的活性高,因而烯姓的转化率高,但均相反应仍存在腐蚀和污染问题。
将杂多酸负载化,则腐蚀和污染问题可以避免。
英国石油化学品有限公司采用Si02负载磷鸨酸和硅钙酸催化剂,在气相下进行烯炷的水合,并和负载H3P04催化剂进行比较。
采用负载型杂多酸催化剂对合成三种醇的活性都要比负载H3P04催化剂高,且催化剂活性也更稳定。
3.3在精细化学品合成中的应用精细化学品一般相对分子质量大、官能团多、容易受热分解,因此需要在低温下进行合成。
由于孔道小和活性温度高的原因,分子筛等常规固体酸催化剂在精细化学品合成中的应用受到限制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Journal of Molecular Catalysis A:Chemical275(2007)77–83Silicotungstic acid supported zirconia:An effectivecatalyst for esterification reactionK.M.Parida∗,Sujata MallickColloids and Material Chemistry Department,Regional Research Laboratory(CSIR),Bhubaneswar751013,Orissa,IndiaReceived13March2007;received in revised form8May2007;accepted9May2007Available online21May2007AbstractA series of solid acid catalysts were synthesized by incipient wetness impregnation method by varying the wt%of silicotungstic acid on hydrous zirconia(ZSTA).The prepared catalysts were characterized by PXRD,FTIR,UV–vis DRS,EPMA,BET surface area,acid sites,etc.FTIR and UV–vis DRS studies indicate that the material retain the Keggin-type structure of silicotungstic acid up to500◦C.The suitability of the materials was studied for acid catalysed esterification reactions using formic,acetic,propionic,n-butyric acid and n-butyl alcohol(NBA),isobutyl alcohol (IBA)and sec-butyl alcohol(SBA).Material with15wt%STA on hydrous zirconia having high surface area and acid sites acts as better catalyst for esterification reactions.The esterification of acids with NBA was found to be higher than IBA and SBA.In all the cases,the selectivity for the corresponding esters is nearly100%.The straight-line plot of−ln(1−conversion)versus reaction time for the reactions carried out at98◦C supports that the esterification reaction obeysfirst order kinetics with respect to acid concentration.The reusability study justifies that the catalyst is stable and active.©2007Elsevier B.V.All rights reserved.Keywords:Silicotungstic acid;Esterification;N-butyl acetate;Isobutyl acetate;Sec-butyl acetate1.IntroductionHeteropoly acids(HPA)have attracted attention as catalysts for various industrial processes such as oxidation,hydration, esterification and etheration[1,2].These HPA are stronger acids and they have higher catalytic activity compared to homoge-neous and acid catalysts such as sulphuric acid,silica-alumina or ion exchange resins[3–5].The use of HPA as catalysts is important in the development of clean technologies,since it avoids the drawbacks of environmental pollution and corrosion of the conventional technologies.Other advantage is the ability of recovering and reusing them in liquid phase reactions com-pared to the homogeneous catalysts and the possibility of their use in continuous processes.The disadvantage of bulk HPA as catalysts is their relatively low stability and also of their low surface area(1–10m2g−1)and separation problem from reac-tion mixtures[6,7].To minimize these disadvantages the HPA are usually supported on a carrier.Heteropoly acids supported ∗Corresponding author.Tel.:+916742581636x425;fax:+916742581637.E-mail address:kmparida@(K.M.Parida).on solids with high surface area are also a useful method for improving catalytic performance.Esterification of carboxylic acids is one of the fundamental reactions in organic chemistry[8].Liquid phase esterification is an important method for producing various esters.Esteri-fication of acetic acid with n-butyl alcohol is commercially important as the product n-butyl acetate is widely used in the manufacture of lacquer,artificial perfumes,leather,flavoring extract,photographicfilms,plastics,pharmaceuticals and safety glasses[9–11].It is also used as dehydrating agent.Conventional method of esterification reaction involves the use of mineral acids such as H2SO4,HCl,HF,H3PO4and ClSO2OH,etc. These acids are corrosive and the excess acid has to be neu-tralized after the reaction leaving considerable amount of salts to be disposed off into the environment.So the replacement of these conventional hazardous and polluting corrosive liquid cat-alysts by solid acid catalysts is the demand of the day to create a cleaner technology.Reduction of environmentally unacceptable waste to minimize environmental pollution is the crucial factor for developing environmentally friendly catalyst.The study of hydrous zirconia is of interest due to its special properties,which allow their use as catalyst or support.One of1381-1169/$–see front matter©2007Elsevier B.V.All rights reserved. doi:10.1016/j.molcata.2007.05.02278K.M.Parida,S.Mallick/Journal of Molecular Catalysis A:Chemical275(2007)77–83the main reasons that have drawn great attention to the use of hydrated zirconia as a precursor of a catalyst carrier is due to its large number of surface hydroxyl groups,which can undergo chemical reaction or strong interaction with incorporated com-ponents.The present study aims at synthesis,characterization and evaluation of the catalytic activity of silicotungstic acid supported on hydrous zirconia(ZSTA)towards esterification of formic acid,acetic acid,propioinic acid and butyric acid using various alkylating agents such as n-butyl alcohol(NBA), isobutyl alcohol(IBA)and sec-butyl alcohol(SBA).Further effect of various reaction parameters such as time,temperature, molar ratio of the reactants and the amount of the catalyst on n-butyl acetate formation was evaluated to optimize the reaction conditions.2.Experimental2.1.Preparation of support,hydrous zirconiaZirconium hydroxide gel was prepared from aqueous solution of zirconium oxychloride(Fine Chemical)by drop wise addi-tion of ammonium hydroxide solution(25%ammonia)(Merck, India)till it attains pH9.5.The hydrogel was refluxed at100◦C for24h,filtered,washed with deionized water and dried in an oven at120◦C for24h(named Z herein after).2.2.Preparation of silicotungstic acid;H4SiW12O40·nH2O(STA)Ist step:Preparation of silicic acid:A small amount of sodium silicate(meta)was dissolved in minimum amount of water.Then 6N HCl was added drop wise with constant stirring till the solu-tion is neutral to litmus paper.Then it was stirred for15min and then a small amount of6N HCl was added to precipitate silicic acid.It was thenfiltered,washed with double distilled water.2nd step:About6g of sodium tungstate was dissolved in water.Then6N HCl was added drop wise with constant stirring to dissolve the white precipitate formed.The addition of HCl continues till it is neutral to the litmus paper.Then to this solution the freshly prepared sillicic acid was added.The whole solution is boiled for2h.The solution is kept acidic by adding little HCl to the solution during the above process.Then it wasfiltered and thefiltrate is evaporated to minimize the volume.The above solution is shaken with ether and HCl vigorously.A adduct was formed with ether which settled down at the bot-tom.This is separated from the aqueous solution.The adduct is white in colour.It was exposed to air to remove ether and then dried at around45◦C.The content of Si and W in STA was analyzed by ICP and found to be1.05and76.5wt%,respectively.2.3.Preparation of catalystThe catalysts were prepared by wet impregnation method.A series of catalysts having different loading ranging from 3to20wt%were synthesized by impregnating2g of neat Z with an aqueous solution of silicotungstic acid(STA) (0.06–0.30g/10–50ml of conductivity water)under constant stirring followed by heating till complete evaporation of water. Then it was dried in an oven at120◦C for24h.The catalysts will be termed:x ZSTA(x varies from3to20wt%).2.4.Physico-chemical characterizationThe X-ray powdered diffraction pattern was recorded on a Philips PW1710diffractometer with automatic control.The patterns were run with a monochromatic Cu K␣radiation with a scan rate of2◦min−1.The UV–vis DRS spectra of the samples were recorded in a Varian UV–vis spectrophotometer loaded with Carry100 software.The spectra were recorded against the boric acid back-ground.DTA analysis of samples dried at120◦C was carried out under air atmosphere using a Thermal Analyzer(Perkin-Elmer TG-DTA,Model:Diamond).The differential thermal analysis (DTA)experiments were performed in N2-using4–5mg samples at a heating of10◦C/min.The FTIR spectra were taken using Jasco FTIR5300in KBr matrix in the range of400–4000cm−1.Micrographs showing X-ray image mapping of different ele-ments of zirconia impregnated STA was taken using a Japanese Model(JXA-8100)EPMA.The ammonia-TPD of all the samples was carried out in a CHEMBET-3000(Quantachrome)instrument.About0.1g sam-ple was taken inside quartz‘U’tube and degassed at350◦C for 1h with He gasflow.The sample was then cooled to30◦C and at this temperature the gasflow was changed to ammonia.It was then heated at a heating rate of10◦C/min up to800◦C and the spectra were recorded.The surface area measurement was carried out by BET method using Quantasorb instrument(Quantachrome,USA) by nitrogen adsorption-desorption measurements.The samples were degassed at120◦C at10−3Torr vacuum.Surface acidity was determined spectrophotometrically on the basis of irreversible adsorption of organic bases such as pyridine(PY,p K b=3.5)and2,6-dimethyl pyridine(DYPY, p K b=8.7)[12].In this method,adsorption experiment was carried out in a50ml stoppered conicalflask taking10ml of each freshly prepared adsorbate(Fluka,Switzerland)solution, along with0.05g of sample preheated at393K with constant shaking.The concentration range for each adsorbate was varied from0.005to0.01M in cyclohexane(Merck).After 2h the contents werefiltered and absorbance of thefiltrate was measured at preset wavelengths.For all cases,the sorption experiments were carried out in the adsorbate concentration range where Beer–Lambert’s law was valid.The time required to reach equilibrium at room temperature was checked for all of the samples and was never more than1h.In other words,the time required for all the solute to adsorb on the active sites of the catalyst is optimum in1h.All the absorbance measurements were recorded in a spectrophotometer(Varian,Cary1E)using 10mm matched quartz cells.The chemical interaction between the adsorbate and the catalyst may be described by the linear transferred Langmuir adsorption isotherm.K.M.Parida,S.Mallick/Journal of Molecular Catalysis A:Chemical275(2007)77–8379C=1m +Cmwhere C is the concentration of organic substrate in solution inequilibrium with the adsorbate substrate,b the constant and Xis the monolayer coverage,which corresponds to the theoreticalamount of solute required to cover all the active sites for baseadsorption.2.5.Catalytic reactionThe esterification reaction was carried out taking0.025g ofthe calcined sample(dried at120◦C for6h in an oven),2mmolof acetic acid(Merck,99.8%),32mmol of alcohol(Merck,98%)and0.20mmole of n-heptane(Merck,99%)as an internal stan-dard in a100ml round-bottomedflask equipped with a refluxcondenser.The contents were then refluxed gently at98◦C.Thenthe reaction mixture wasfiltered and the products were analysedby means of gas chromatograph(GC-17A Shimadzu).3.Result and discussionThe XRD patterns of different weight percentage of silico-tungstic acid impregnated on hydrous zirconia show similarpattern to that of the support.This may be probably because,the STA impregnated on the support is highly dispersed andexhibits a non-crystalline to amorphous form and hence do notshow any additional X-ray reflection peak.Fig.1shows the background subtracted UV–vis DRS spec-tra of(a)hydrous zirconia,(b)15wt%ZSTA and(c)15wt%ZSTA calcined at500◦C.The hydrous zirconia(Fig.1a)exhibitsa strong absorption band at230nm,which may be attributedto the charge transfer from oxide species to zirconium cation(O−→Zr4+).In contrast the spectra of both15wt%ZSTA dried at120◦C and15wt%ZSTA calcined at500◦C sample,show broad band at260nm,which match well with the litera-ture value[13],suggesting thereby the presence of undegradedH3SiW12O40species.This also indicates that the Keggin phaseremains unaltered up to500◦C.The catalysts with different STA loadings dried at120◦Cwere characterized by differential thermal analysis(Fig.2).TheDTA of hydrous zirconia showed exothermic peaks at450◦CFig.1.DRS spectra of(a)Z(b)15wt%ZSTA and(c)15wt%ZSTA calcined at500◦C.Fig.2.DTA spectra of(a)Z(b)6wt%ZSTA,(c)9wt%ZSTA(d)12wt% ZSTA,(e)15wt%ZSTA and(f)20wt%ZSTA.due to the crystalliazation to zirconia.The DTA of all sam-ples show an endothermic peak at around80–135◦C associated with the loss of water molecule.The6wt%ZSTA showed an exothermic peak at460◦C,where as other catalysts such as 9,12,15wt%ZSTA showed an additional exothermic peak at around570–596◦C.The20wt%ZSTA exhibited a broad exothermic effect at around690–735◦C,which could be due to the crystallization of WO3.The FTIR spectra of hydrous zirconia and silicotungstic acid impregnated on hydrous zirconia dried at120◦C(15wt%ZSTA) are presented in Fig.3a and b.The FTIR spectrum of Z(Fig.3a) shows broadband in the region of3410cm−1due toasymmetric Fig.3.FTIR spectra of(a)Z(b)STA,(c)15wt%ZSTA and(d)15wt%ZSTA calcined at500◦C.80K.M.Parida,S.Mallick/Journal of Molecular Catalysis A:Chemical275(2007)77–83stretching of OH group and two bands at1621and1386cm−1 are due to bending vibration of–(H–O–H)–and–(O–H–O)–bond.The band at600cm−1can be attributed to the presence of Zr–O–H bond.Thefingerprint bands of the STA Keggin anion (Fig.3b)appeared at978,915,885and798cm−1,which could be assigned to the typical antisymmetric stretching vibrations of W O,Si–O,W–O c–W and W–O e–W,respectively,where c for the corner sharing oxygen atom connecting W3O13units and e for the edge sharing oxygen connecting W’s.[14].This was also observed in case of15wt%ZSTA(Fig.3c).The FTIR spectra of15wt%ZSTA sample calcined at500◦C is shown in Fig.3d.There is slight shifting of bands,indicating that the Keggin phase remains unaltered up to500◦C.Fig.4illustrates the X-ray image maps of W,P,Zr elements in a selected area(SA)showing their level of concentration through clustering of pixels.It can be seen from the maps that W is adsorbed in Zr grain more than Si.This is obvious since in original STA,tungsten content is12times more than silicon.Table1shows the BET surface area and acid sites of zirconia and different weight percentage of ZSTA samples.The pure hydrous zirconia dried at120◦C showed a surface area of 412m2g−1.With the increase in STA content from0to15wt%,Table1Surface area and acid sites of various STA impregnated hydrous zirconia Catalysts Surface area(m2g−1)Acid sites(mol g−1)PY2,6DMPYZ412.3156.558.20ZSTA-3413.8165.295.58ZSTA-6434.6192.7106.1ZSTA-9467.4211.6154.7ZSTA-12475.9238.1198.3ZSTA-15505.9285.3202.7ZSTA-20456.1247.5179.9the surface area increases from412to505m2g−1.However, from15wt%onwards,the surface area decreases gradually. This implies that the presence of STA play a role in making the material more porous up to the amount required to form monolayer.However,when the STA content increases beyond 15wt%,pore blocking takes place due to the presence of an excess amount of silicotungstic acid.In case of the surface acid sites,adsorption of pyridine (PY)measures the total acidity where as2,6-dimethyl pyri-dine(DMPY)can be adsorbed on the Brnsted acid sites.It Fig.4.Scanning electron micrograph of15wt%ZSTA sample.(A)X-ray image map of Si,(B)secondary electron image of morphological view of15wt%ZSTA, (C)X-ray image map of Zr and(D)X-ray image map of W.K.M.Parida,S.Mallick/Journal of Molecular Catalysis A:Chemical275(2007)77–8381Fig.5.Temperature programmed desorption of ammonia(a)Z(b)15wt% ZSTA.is observed that by increasing the STA loading up to15wt%the acidity gradually increases(from165to285mol g−1),there-after it decreases to247mol g−1for20wt%ZSTA.The same trend is also found for Brnsted acid sites.The increase in sur-face acidity,with an increase in STA loading may be due to the formation of patchy monolayer of STA on zirconia.The decrease in the surface acidity at high STA concentration is probably due to the formation of polylayer coverage of STA on zirconia,which decreases the number of Brnsted acid sites and consequently that of total acid sites.Temperature programmed reduction desorption(TPD)of ammonia is a common method for investigating both the strength and number of acid sites present on the surface of an acidic solid.The TPD profile of zirconia and15wt%ZSTA are shown in Fig.5.The zirconia sample showed only one maxima in the low temperature region,where as for the15wt%ZSTA samples, ammonia could still be desorbed at500◦C.This corroborates the observation that15wt%ZSTA contains highest Bronsted acids as well as total acid sites(Table1)determined by spectroscopic method.3.1.Catalytic activityThe esterification of acetic acid with various alcohols is an electrophilic substitution reaction.The reaction is relatively slow and need activation either by higher temperature or by catalyst to achieve higher conversion to a reasonable amount. Samantray and Parida[15]and Namba et al.[16]reported that the reaction of acetic acid and n-butanol in liquid phase catalysed by solid acids proceeds according to a rate equation, which arefirst order with respect to acetic acids and zero order with respect to n-butyl alcohol.Table2Catalytic activity of various catalysts for esterification of acetic acid with various alcoholsCatalysts Conversion(%)with NBAConversion(%)with IBAConversion(%)with SBAZ50.2848.538.253ZSTA65.1263.8950.546ZSTA72.5370.4264.569ZSTA79.2577.3669.8712ZSTA86.2183.6470.6315ZSTA91.4589.175.2620ZSTA88.6885.9171.24Time=4h,reaction temperature=98◦C,catalyst amount=0.025g, acid:alcohol=1:16.Such an esterification reaction can be catalysed by strong Brnsted acid sites.The reaction following the Eley–Rideal mechanism takes place between alcohol chemisorbed on the active Brnsted acid sites of the catalyst surface,forming a car-bocation.Then nucleophilic attack by acetic acid on the stable carbocation takes place resulting the formation of the n-butyl acetate or isobutyl acetate.The role of an acid catalyst here is to facilitate the formation of the carbocation,and to help remove OH−from the alcohol[17].The mechanism involved in the reaction is as follows.Table2exhibits the data on the conversion of acetic acid with various alcohol over neat and STA promoted zirconia. The product analysis by GC showed that the selectivity n-butyl acetate,iso-butyl acetate and sec-butyl acetate is100%.When the esterification reaction was carried on hydrous zirconia, 50%of conversion of acetic acid to n-butyl acetate takes place. The conversion of acetic acid increases with silicotungstic acid loading on zirconia,reaching a maximum at15wt%ZSTA and decreasing thereafter.This may be due to increase of Brnsted acid sites and surface area with STA loading over zirconia.The conversion of acetic acid with various alcohols decrease in the order NBA>IBA>SBA.The difference in conversion may be due to the degree of positive charge of the carbonium ion.Since each alcohol after chemisorption on the Brnsted acid sites give a carbonium ion for nucleophilic reaction with acetic acid.NBA can give a carbonium ion of high degree of positive charge compared to that of IBA and SBA,so the conversion for esterification of acetic acid with NBA is higher than IBA and SBA.The variation of different reaction parameters was studied on15wt%of ZSTA catalyst using n-butyl alcohol.3.1.1.Influence of reaction timeThe influence of reaction time on the acetic acid conversion was given in Fig.6using15wt%ZSTA as catalyst(0.025g) under other identical reaction conditions.A gradual rise in the82K.M.Parida,S.Mallick /Journal of Molecular Catalysis A:Chemical 275(2007)77–83Fig.6.Effect of reaction time on esterification of acetic acid using 15wt%ZSTA as catalyst,catalyst amount =0.025g,reaction temperature =98◦C,acetic acid:n -butyl alcohol =1:16.conversion was seen with increase in duration of the reaction period.As seen from Fig.6,in 4h of reaction time,91.5%of conversion is obtained,where as at the end of 5h only 92%of the reaction is complete.The selectivity towards n -butyl acetate on the other hand remains same,i.e.100%in 5h.This suggests that 4h is sufficient to optimize the reaction parameters.3.1.2.Influence of catalyst amountThe amount of catalyst was varied from 0.01to 0.03g using 15wt%ZSTA while keeping the molar ratio of acid:alcohol at 1:16and reaction temperature at 98◦C.The reaction was car-ried out for 4h and the products were analyzed.The results are represented in Fig.7.With the increase in catalyst amount from 0.01to 0.03g,the conversion of acetic acid increases from 62.5to 93.7%.This is due to the availability of large surface area and acid sites,which favors the dispersion of more active species.Therefore,the accessibility of the large number of molecules of the reactants to the catalyst surface is favored.The selectivity towards butyl acetate is nearly 100%in all cases.3.1.3.Influence of reaction temperatureFig.8illustrates the effect of reaction temperature on the esterification of acetic acid with n -butanol.The reaction was carried out in the temperature region 80–110◦C taking 15wt%ZSTA as catalyst without altering other reaction parameters.The conversion of acetic acid increases (57–93%)with increase in reaction temperature having nearly 100%selectivity.This sug-gests that increase in reaction temperature favors theformationFig.7.Effect of catalyst amount on esterification of acetic acid carried out at reaction temperature =98◦C,acetic acid:n -butyl alcohol =1:16,time =4h.Fig.8.Effect of reaction temperature on esterification of acetic acid using 15wt%of ZSTA as catalyst;catalyst amount =0.025g,acetic acid:n -butyl alco-hol =1:16,time =4h.of carbonium ion which react with acetic acid to produce n -butyl acetate.3.1.4.Influence of molar ratio of reactantsMole ratios of acetic acid to n -butanol were varied from 1:10to 1:18and the result was shown in Fig.9.In all cases and in all mole ratios of the reactants,n -butyl acetate was observed as the main product.The conversion increased from 68.7to 91.5%with a change in mole ratio of acetic acid to n -butanol from 1:10to 1:16.With further increase in mole ratio of acetic acid to n -butanol,a slightly decrease in conversion was observed.The reaction rate at different alcohol concentration increases linearly with low alcohol concentration,but it is nearly inde-pendent of alcohol concentration at high level.Decrease in conversion in higher molar ratio of acid to alcohol (1:18)may be due to the saturation of the catalytic surface with the alcohol or prevention of nucleophilic attack by shielding the protonated alcohol by its own excess.This analysis confirms that the reac-tion mechanism can be represented by Eley–Rideal mechanism,that is,the reaction takes place with chemisorption of alco-hol on the Br nsted acid sites of the catalyst.This result is very similar to Kirumakki and co-workers [18]who used zeo-lite as catalyst over esterification of benzyl alcohol with acetic acid and Jermy and Pandurangan [9],who used Al-MCM-41catalyst over esterification of acetic acid with n -butylalcohol,Fig.9.Effect of molar ratio of acid/alcohol on esterification of acetic acid using 15wt%ZSTA as catalyst,catalyst amount 0.025g,reaction temperature =98◦C,time =4h.K.M.Parida,S.Mallick/Journal of Molecular Catalysis A:Chemical275(2007)77–8383Fig.10.Plot of−ln(1−conversion)vs.reaction time for the reactions carried out at98◦C.although in both the cases the experiments were performed in a lower molar ratio of acid and alcohol compared to this present work.3.1.5.Kinetics of esterification of acetic acid with n-butanolFig.10shows thefirst order nature of the esterification reac-tion,which gives a straight-line plot of−ln(1−conversion) versus reaction time for the reactions carried out at98◦C.Namba et al.[16]showed the reaction between acetic acid and n-butanol proceeds according to a rate equation,which isfirst order with respect to acetic acid and zeroth order with respect to n-butanol.3.1.6.Reaction with other acids and alcoholFormic acid,proponoic acid and n-butyric acid were sub-jected to esterification reaction with n-butanol,iso-butanol, sec-butanol under identical condition using15wt%ZSTA as catalyst to test the generality of this method and the results are summarized in Table3.The percentage of conversion of these acids follows the following order: formic>acetic>proponoic>n-butyric which can be explained on the basis of the strength and size of the reacting acids.The strength of these aliphatic acids follows the same order as that of conversion,i.e.formic>acetic>proponoic>n-butyric.This may be due to the+I effect of the alkyl group of the acids.As the bulkiness of the acids increases the steric hindrance also decreases which results increase in acid conversion.3.2.Reusability of the catalystThe catalyst with15wt%loading was used for recycling experiments.In order to regenerate the catalyst after4h reac-tion,it was separated byfiltration,washed with conductivity Table3Esterification of different acids with various alcohols over15wt%ZSTAAcids Conversion(%)with NBA Conversion(%)with IBAConversion(%)with IBAFormic95.187.373.9Acetic91.589.175.2 Proponoic86.084.669.4n-butyric78.575.662.8Time=4h,reaction temperature=98◦C,catalyst amount=0.025g, acid:alcohol=1:16.water several times,dried and calcined at120◦C and used in the esterification reaction with a fresh reaction mixture.In the regenerated sample afterfive cycles,the yield decreases by5%.4.ConclusionSilicotungstic acid(15wt%)supported on hydrous zirconia acts as an efficient and stable solid acid catalyst for esterifica-tion of acids using alcohols.Probably the high surface area and Brnsted acid sites will play a key role in the high activity of the catalyst.FTIR spectra and UV–vis spectra confirm that the silicotungstic acid keeps its Keggin type structure even at500◦C calcination when supported on hydrous zirconia.EPMA studies support that the STA is well dispersed on the surface of hydrous zirconia.The highly dispersed STA on hydrous zirconia possibly provide active sites for the esterification of acids using alcohols. The percentage of conversion of formic,acetic,propionic,n-butyric acid with various alcohols follows the order:n-butyl alcohol>iso-butyl alcohol>sec-butyl alcohol.The esterifica-tion of different acids with the above mentioned alcohols over 15wt%ZSTA follows the order:formic>acetic>propionic>n-butyric.In all the cases the selectivity towards the formation of ester is100%.The catalyst can be regenerated easily and reused at leastfive times.AcknowledgementsThe authors are thankful to Prof.B.K.Mishra Director, Regional Research Laboratory(CSIR),Bhubaneswar for his constant encouragement and permission to publish this paper. One of the authors Mrs.Sujata Mallick is highly obliged to CSIR for SRF fellowship.References[1]R.Neumann,I.Assael,mun.(1988)1285.[2]I.Kozhevnikov,Catal.Rev.Sci.Eng.37(1995)311.[3]M.Misono,Catal.Rev.Sci.Eng.29(1987)269.[4]P.G.Vazquez,M.N.Blanco,C.V.Caceres,Catal.Lett.60(1999)205.[5]S.Swanmi,N.Shin-ichi,T.Okuhara,M.Misono,J.Catal.166(1997)263.[6]I.V.Kozhevnikon,Russ.Chem.Rev.56(1987)811.[7]Y.Izumi,K.Urabe,M.Onaka,Zeolite,Clay and Heteropoly Acids inOrganic Reaction,vol.99,Kodansha/VCH,Tokyo,1992.[8]rock,Comprehensive Organic Transformations,VCH Publishers,New York,1989(Chapter9).[9]B.R.Jermy,A.Pandurangan,J.Mol.Catal.A:Chem.237(2005)146.[10]V.R.Dhanuka,V.C.Malshe,S.B.Chandolia,Chem.Eng.Sci.32(1975)551.[11]K.Welssermel,H.J.Arpe,Industrial Organic Chemistry,third ed.,VCH,New York,1997,pp.289.[12]J.Auerbach,S.A.Weissman,T.J.Blacklock,M.R.Angeless,K.Hoogstoen,Tetrahedron Lett.34(1993)931.[13]T.Okuhura,N.Mizuno,M.Misono,Adv.Catal.41(1996)113.[14]N.Bhatt,A.Patel,J.Mol.Catal.238(2005)223.[15]S.K.Samantray,K.M.Parida,Appl.Catal.A:Gen.211(2001)175.[16]S.Namba,Y.Wakashima,T.Shimizu,H.Masumoto,T.Yashim,Catalysisby Acids and Bases,Elsevier,Amsterdam,1989.[17]A.K.Chakraborty,A.Basak,V.Grover,.Chem.64(1999)8014.[18]R.Sharath,N.Kirumakki,S.N.Nagraraju,Appl.Catal.A:Gen.273(2004)1.。