Production of ultracold heteronuclear YbRb molecules by photoassociation

合集下载

来自丝状真菌的β葡聚糖[发明专利]

来自丝状真菌的β葡聚糖[发明专利]

专利名称:来自丝状真菌的β葡聚糖
专利类型:发明专利
发明人:F·费德里茨,M·佩特鲁茨奥利,P·范登布雷克,F·斯廷格勒
申请号:CN01806862.6
申请日:20010320
公开号:CN1418256A
公开日:
20030514
专利内容由知识产权出版社提供
摘要:一种生产β-葡聚糖的方法,非病原腐生丝状真菌或包含它的组合物在提供β-葡聚糖,并由此改善食品结构、构造、稳定性或其组合中的用途;非病原腐生丝状真菌在提供β-葡聚糖并由此提供营养中的用途;真菌或包含它的组合物用在制备预防或治疗免疫疾病、肿瘤或微生物感染的药物或营养组合物中的用途。

申请人:雀巢制品公司
地址:瑞士沃韦
国籍:CH
代理机构:中国专利代理(香港)有限公司
更多信息请下载全文后查看。

用于碳水化合物抗原切割的酶促组合物,与其相关的方法、用途、设

用于碳水化合物抗原切割的酶促组合物,与其相关的方法、用途、设

专利名称:用于碳水化合物抗原切割的酶促组合物,与其相关的方法、用途、设备和系统
专利类型:发明专利
发明人:斯蒂芬·G·威瑟斯,彼得·拉费尔德,加雅善德兰·基萨科达特胡
申请号:CN201980067913.6
申请日:20190816
公开号:CN112840027A
公开日:
20210525
专利内容由知识产权出版社提供
摘要:本文提供了用于碳水化合物抗原切割的酶促组合物,与其相关的方法、用途、设备和系统。

具体地,所述组合物包含两种酶GalNAc脱乙酰酶和半乳糖胺酶,并且所述组合物还可以包含拥挤剂。

此外,发现本文所述的组合物在适于细胞存活的温度和pH水平下具有活性。

申请人:不列颠哥伦比亚大学
地址:加拿大不列颠哥伦比亚省
国籍:CA
代理机构:北京英赛嘉华知识产权代理有限责任公司
更多信息请下载全文后查看。

美国克雷格·文特尔研究所利用基因工程成功培育出新型微生物

美国克雷格·文特尔研究所利用基因工程成功培育出新型微生物
及斑马鱼胚胎 中特定基因 , 现在正用 于人 体临床试验 以治疗 艾滋病 。利用此项技术成功 进行 哺乳 动物基 因编 辑 尚属首
次。
D A错拼 , N 如单核 苷酸多态 性变异 ( N S 以及基 因序 列 的 SP ) 插入和删除 。研究人员采用 多步分类检 测法 , 滤去 普通变异

他研究单 位合作 , 成功地证 明了使用外显子测 序方法确 定罕 见致病基 因的可行性 和应用价值 。他们 的相关 研究 成果 发
表 于 8月 1 6日《自然》 杂志网络版。 公告 称 , 研究人员选取 了 1 为研究对象 , 2人 对他们 的外 显 子进 行了测序 。这 1 2人 中的 8人 ( 4个 非洲 约鲁 巴人 、 2
据东方网 2 0 09年 8月 2 6日援 引《 科技 日报》 消息 , 科 < 学》 杂志 网络版上最新发表的一篇美 国克雷格 - 文特 尔研 究
所的研究报告说 , 科研人员将丝状支 原体 的基因组植入酵 母
中, 利用酵母基因工程方法改造了该支原体的遗传物质。然
后, 研究 人员将这个 改性基 因组植入 山羊霉浆 菌( 和丝状 支
线粒体 异常相关疾病 的母 亲生育健康 的后代 。不过 , 也有专
家认 为 , 不同来源的细胞核 D A和线粒体 D A不 一定 总是 N N 相容 , 存在冲突的危险。更 有伦理学 家批 评说 , 是滑向“ 这 混
合 儿童时代” 的一步 , 将玷污生命 的圣 洁。
美 法 科 学 家 利 用锌 指核 酸 酶 胚 胎 微 量 注 射 技 术 成功培育基因靶标 剔除大鼠

7 ・ 6
生 物学教 学 21 g( 3 卷) 期 0 0 g 5 第2
20 0 7年 , 该所 公布 了细菌基 因组 移植 的成果 ; 去年 该研究 所

基因工程名词解释

基因工程名词解释

基因工程:按照预先设计好的蓝图,利用现代分子生物学技术,特别是酶学技术,对遗传物质DNA直接进行体外重组操作与改造,将一种生物(供体)的基因转移到另外一种生物(受体)中去,从而实现受体生物的定向改造与改良。

遗传工程:广义:指以改变生物有机体性状为目标,采用类似工程技术手段而进行的对遗传物质的操作,以改良品质或创造新品种。

包括细胞工程、染色体工程、细胞器工程和基因工程等不同的技术层次。

狭义:基因工程。

限制性核酸内切酶:是可以识别DNA的特异序列,并在识别位点或其周围切割双链DNA的一类内切酶,简称限制酶回文结构:每条单链以任一方向阅读时都与另一条链以相同方向阅读时的序列是一致的,例如5'GGTACC3' 3'CCATGG5'.同裂酶(isoschizomer)或异源同工酶:不同来源的限制酶可切割同一靶序列(BamH I 和Bst I具有相同的识别序列G↓GATGC)同尾酶(isocaudiners):来源不同、识别序列不同,但产生相同粘性末端的酶。

两个同尾酶形成的黏性末端连接之后,一般情况下连接处不能够再被其任何一种同尾酶识别。

BamH I 识别序列: G↓GATCCBgl II 识别序列: A↓GATCT黏性末端 (cohesive terminus/sticky ends):DNA末端一条链突出的几个核苷酸能与另一个具有突出单链的DNA末端通过互补配对粘合,这样的DNA末端,称为黏性末端。

平末端(blunt ends): DNA片段的末端是平齐的。

星活性(star activity):指限制性内切酶在非标准条件下,对与识别序列相似的其它序列也进行切割反应,导致出现非特异性的DNA片段的现象。

易产生星活性的内切酶用*标记。

如:EcoR I*底物位点优势效应:酶对同一个DNA底物上的不同酶切位点的切割速率不同。

连杆/衔接物(linker):化学合成的8~12个核苷酸组成的寡核苷酸片段。

遗传育种相关名词中英文对照

遗传育种相关名词中英文对照

遗传育种相关名词中英文对照中英文对照的分子育种相关名词 3"untranslated region (3"UTR) 3"非翻译区 5"untranslated region (5; UTR) 5"非翻译区 A chromosome A 染色体 AATAAA 多腺苷酸化信号aberration 崎变 abiogenesis 非生源说 accessory chromosome 副染色体 accessory nucleus 副核 accessory protein 辅助蛋白 accident variance 偶然变异 Ac-Ds system Ac-Ds 系统 acentric chromosome 无着丝粒染色体acentric fragment 无着丝粒片段 acentric ring 无着丝粒环 achromatin 非染色质 acquired character 获得性状acrocentric chromosome 近端着丝粒染色体 acrosyndesis 端部联会 activating transcription factor 转录激活因子activator 激活剂 activator element 激活单元 activator protein( AP)激活蛋白 activator-dissociation system Ac-Ds 激活解离系统 active chromatin 活性染色质 activesite 活性部位 adaptation 适应 adaptive peak 适应高峰adaptive surface 适应面 addition 附加物 addition haploid 附加单倍体 addition line 附加系 additiveeffect 加性效应 additive gene 加性基因 additive genetic variance 加性遗传方差additive recombination 插人重组additive resistance 累加抗性 adenosine 腺昔adenosine diphosphate (ADP )腺昔二鱗酸adenosine triphosphate( ATP)腺昔三憐酸adjacent segregation 相邻分离A- form DNA A 型 DNAakinetic chromosome 无着丝粒染色体akinetic fragment 无着丝粒片断alien addition monosomic 外源单体生物alien chromosome substitution 外源染色体代换alien species 外源种 alien-addition cell hybrid 异源附加细胞杂种 alkylating agent 焼化剂 allele 等位基因allele center 等位基因中心 allele linkage analysis 等位基因连锁分析 allele specific oligonucleotide(ASO)等位基因特异的寡核苷酸 allelic complement 等位(基因)互补 allelic diversity 等位(基因)多样化 allelic exclusion 等位基因排斥 allelic inactivation 等位(基因)失活 allelic interaction 等位(基因)相互作用allelic recombination 等位(基因)重组 allelicreplacement 等位(基因)置换 allelic series 等位(基因)系列 allelic variation 等位(基因)变异 allelism 等位性 allelotype 等位(基因)型 allodiploid 异源二倍体 allohaploid 异源单倍体 allopatric speciation 异域种alloploidy 异源倍性 allopolyhaploid 异源多倍单倍体allopolyploid 异源多倍体 allosyndesis 异源联会allotetraploid 异源四倍体 alloheteroploid 异源异倍体alternation of generation 世代交替 alternative transcription 可变转录 alternative transcription initiation 可变转录起始 Alu repetitive sequence, Alu family Alu 重复序列,Alu 家族ambiguous codon 多义密码子 ambisense genome 双义基因组 ambisense RNA 双义 RNA aminoacyl-tRNA binding site 氨酰基 tRNA 接合位点 aminoacyl-tRNA synthetase 氨酰基 tRNA 连接酶 amixis 无融合amorph 无效等位基因amphidiploid 双二倍体amphipolyploid 双多倍体amplicon 扩增子amplification 扩增 amplification primer 扩增引物analysis of variance 方差分析 anaphase (分裂)后期anaphase bridge (分裂)后期桥anchor cell 锚状细胞 androgamete 雄配子aneuhaploid 非整倍单倍体aneuploid 非整倍体 animal genetics 动物遗传学annealing 复性 antibody 抗体anticoding strand 反编码链anticodon 反密码子anticodon arm 反密码子臂anticodon loop 反密码子环 antiparallel 反向平行antirepressor 抗阻抑物antisense RNA 反义 RNAantisense strand 反义链 apogamogony 无融合结实apogamy 无配子生殖apomixis 无融合生殖 arm ratio (染色体)臂比artificial gene 人工基因 artificial selection 人工选择 asexual hybridization 无性杂交 asexual propagation 无性繁殖 asexual reproduction 无性生殖assortative mating 选型交配 asynapsis 不联会 asynaptic gene 不联会基因atavism 返祖 atelocentric chromosome 非端着丝粒染色体 attached X chromosome 并连 X 染色体 attachmentsite 附着位点 attenuation 衰减 attenuator 衰减子autarchic gene 自效基因auto-alloploid 同源异源体 autoallopolyploid 同源异源多倍体 autobivalent 同源二阶染色体 auto-diploid 同源二倍体;自体融合二倍体 autodiploidization 同源二倍化autoduplication 自体复制 autogenesis 自然发生autogenomatic 同源染色体组 autoheteroploidy 同源异倍性autonomous transposable element 自主转座单元autonomously replicating sequence(ARS)自主复制序列autoparthenogenesis 自发单性生殖 autopolyhaploid 同源多倍单倍体 autopolyploid 同源多倍体 autoradiogram 放射自显影图 autosyndetic pairing 同源配对 autotetraploid 同源四倍体 autozygote 同合子 auxotroph 营养缺陷体 B chromosome B 染色体 B1,first backcross generation 回交第一代 B2,second backcross generation 回交第二代back mutation 回复突变 backcross 回交backcross hybrid 回交杂种 backcross parent 回交亲本 backcross ratio 回交比率 background genotype 背景基因型 bacterial artification chromosome( BAC )细菌人工染色体Bacterial genetics 细菌遗传学 Bacteriophage 噬菌体balanced lethal 平衡致死 balanced lethal gene 平衡致死基因 balanced linkage 平衡连锁 balanced load 平衡负荷balanced polymorphism 平衡多态现象 balanced rearrangements 平衡重组balanced tertiary trisomic 平衡三级三体balanced translocation 平衡异位balancing selection 平衡选择band analysis 谱带分析 banding pattern (染色体)带型basal transcription apparatus 基础转录装置 base analog 碱基类似物base analogue 类減基base content 减基含量base exchange 碱基交换 base pairing mistake 碱基配对错误 base pairing rules 碱基配对法则 base substitution 减基置换 base transition 减基转换 base transversion 减基颠换 base-pair region 碱基配对区base-pair substitution 碱基配对替换 basic number of chromosome 染色体基数 behavioral genetics 行为遗传学behavioral isolation 行为隔离 bidirectionalreplication 双向复制 bimodal distribution 双峰分布binary fission 二分裂binding protein 结合蛋白binding site 结合部位 binucleate phase 双核期biochemical genetics 生化遗传学 biochemical mutant 生化突变体biochemical polymorphism 生化多态性 bioethics 生物伦理学 biogenesis 生源说 bioinformatics 生物信息学biological diversity 生物多样性 biometrical genetics 生物统计遗传学(简称生统遗传学) bisexual reproduction 两性生殖 bisexuality 两性现象 bivalent 二价体 blending inheritance 混合遗传 blot transfer apparatus 印迹转移装置 blotting membrane 印迹膜 bottle neck effect 瓶颈效应 branch migration 分支迁移 breed variety 品种breeding 育种,培育;繁殖,生育 breeding by crossing 杂交育种法 breeding by separation 分隔育种法 breeding coefficient 繁殖率 breeding habit 繁殖习性 breeding migration 生殖回游,繁殖回游 breeding period 生殖期breeding place 繁殖地 breeding population 繁殖种群breeding potential 繁殖能力,育种潜能 breeding range繁殖幅度 breeding season 繁殖季节 breeding size 繁殖个体数 breeding system 繁殖系统 breeding true 纯育breeding value 育种值 broad heritability 广义遗传率bulk selection 集团选择 C0,acentric 无着丝粒的Cl,monocentric 单着丝粒 C2, dicentric 双着丝粒的C3,tricentric 三着丝粒的 candidate gene 候选基因candidate-gene approach 候选基因法 Canpbenmodel 坎贝尔模型carytype 染色体组型,核型 catabolite activator protein 分解活化蛋白catabolite repression 分解代谢产物阻遏catastrophism 灾变说 cell clone 细胞克隆 cell cycle 细胞周期 cell determination 细胞决定 cell division 细胞分裂 cell division cycle gene(CDC gene) 细胞分裂周期基因 ceU division lag 细胞分裂延迟 cell fate 细胞命运cell fusion 细胞融合 cell genetics 细胞的遗传学 cell hybridization 细胞杂交 cell sorter 细胞分类器 cell strain 细胞株 cell-cell communication 细胞间通信center of variation 变异中心 centimorgan(cM) 厘摩central dogma 中心法则 central tendency 集中趋势centromere DNA 着丝粒 DNA centromere interference 着丝粒干扰centromere 着丝粒 centromeric exchange ( CME)着丝粒交换centromeric inactivation 着丝粒失活 centromeric sequence( CEN sequence)中心粒序列 character divergence 性状趋异chemical genetics 化学遗传学chemigenomics 化学基因组学chiasma centralization 交叉中化chiasma terminalization 交叉端化chimera 异源嵌合体Chi-square (x2) test 卡方检验 chondriogene 线粒体基因 chorionic villus sampling 绒毛膜取样 chromatid abemition 染色单体畸变chromatid break 染色单体断裂chromatid bridge 染色单体桥chromatid interchange 染色单体互换 chromatid interference 染色单体干涉 chromatid segregation 染色单体分离chromatid tetrad 四分染色单体chromatid translocation 染色单体异位chromatin agglutination 染色质凝聚chromosomal aberration 染色体崎变chromosomal assignment 染色体定位chromosomal banding 染色体显带chromosomal disorder 染色体病chromosomal elimination 染色体消减 chromosomal inheritance 染色体遗传chromosomal interference 染色体干扰chromosomal location 染色体定位chromosomal locus 染色体位点 chromosomal mutation 染色体突变chromosomal pattern 染色体型chromosomal polymorphism 染色体多态性 chromosomal rearrangement 染色体质量排chromosomal reproduction 染色体增殖chromosomal RNA 染色体 RNAchromosomal shift 染色体变迁,染色体移位chromosome aberration 染色体畸变 chromosome arm 染色体臂chromosome association 染色体联合chromosome banding pattern 染色体带型chromosome behavior 染色体动态chromosome blotting 染色体印迹chromosome breakage 染色体断裂chromosome bridge 染色体桥 chromosome coiling 染色体螺旋chromosome condensation 染色体浓缩chromosome constriction 染色体缢痕chromosome cycle 染色体周期chromosome damage 染色体损伤chromosome deletion 染色体缺失chromosome disjunction 染色体分离chromosome doubling 染色体加倍chromosome duplication 染色体复制chromosome elimination 染色体丢失 chromosome engineering 染色体工程chromosome evolution 染色体进化 chromosome exchange 染色体交换chromosome fusion 染色体融合 chromosome gap 染色体间隙chromosome hopping 染色体跳移chromosome interchange 染色体交换chromosome interference 染色体干涉chromosome jumping 染色体跳查chromosome knob 染色体结 chromosome loop 染色体环chromosome lose 染色体丢失chromosome map 染色体图 chromosome mapping 染色体作图chromosome matrix 染色体基质chromosome mutation 染色体突变 chromosome non-disjunction 染色体不分离 chromosome paring 染色体配对chromosome polymorphism 染色体多态性 chromosome puff 染色体疏松 chromosome rearrangement 染色体质量排chromosome reduplication 染色体再加倍 chromosome repeat 染色体质量叠 chromosome scaffold 染色体支架chromosome segregation 染色体分离 chromosome set 染色体组chromosome stickiness 染色体粘性chromosome theory of heredity 染色体遗传学说chromosome theory of inheritance 染色体遗传学说chromosome thread 染色体丝chromosome walking 染色体步查chromosome-mediated gene transfer 染色体中介基因转移 chromosomology 染色体学 CIB method CIB 法;性连锁致死突变出现频率检测法 circular DNA 环林 DNA cis conformation 顺式构象 cis dominance 顺式显性 cis-heterogenote 顺式杂基因子 cis-regulatory element 顺式调节兀件 cis-trans test 顺反测验cladogram 进化树 cloning vector 克隆载体 C-meiosis C 减数分裂C-metaphase C 中期C-mitosis C 有丝分裂 code degeneracy 密码简并coding capacity 编码容量 coding ratio 密码比 coding recognition site 密码识别位置 coding region 编码区coding sequence 编码序列 coding site 编码位置 coding strand 密码链 coding triplet 编码三联体 codominance 共显性 codon bias 密码子偏倚 codon type 密码子型coefficient of consanguinity 近亲系数 coefficient of genetic determination 遗传决定系数 coefficient of hybridity 杂种系数 coefficient of inbreeding 近交系数coefficient of migration 迁移系数 coefficient of relationship 亲缘系数 coefficient of variability 变异系数 coevolution 协同进化 coinducer 协诱导物 cold sensitive mutant 冷敏感突变体colineartiy 共线性combining ability 配合力comparative genomics 比较基因组学competence 感受态competent cell 感受态细胞competing groups 竞争类群 competition advantage 竞争优势competitive exclusion principle 竞争排斥原理complementary DNA (cDNA)互补 DNAcomplementary gene 互补基因 complementation test 互补测验complete linkage 完全连锁 complete selection 完全选择 complotype 补体单元型 composite transposon 复合转座子 conditional gene 条件基因 conditional lethal 条件致死conditional mutation 条件突变 consanguinity 近亲consensus sequence 共有序列 conservative transposition 保守转座 constitutive heterochromatin 组成型染色质continuous variation 连续变异convergent evolution 趋同进化cooperativity 协同性 coordinately controlled genes 协同控制基因 core promoter element 核心启动子 core sequence 核心序列 co-repressor 协阻抑物correlation coefficient 相关系数 cosegregation 共分离 cosuppression 共抑制cotranfection 共转染cotranscript 共转录物 cotranscriptional processing 共转录过程 cotransduction 共转导cotransformation 共转化 cotranslational secrection 共翻译分泌counterselection 反选择coupling phase 互引相 covalently closed circular DNA(cccDNA)共价闭合环状 DNAcovariation 相关变异criss-cross inheritance 交叉遗传 cross 杂交crossability 杂交性crossbred 杂种cross-campatibility 杂交亲和性 cioss-infertility 杂交不育性 crossing over 交换crossing-over map 交换图crossing-over value 交换值crossover products 交换产物 crossover rates 交换率crossover reducer 交换抑制因子crossover suppressor 交换抑制因子crossover unit 交换单位 crossover value 值crossover-type gamete 交换型配子C-value paradox C 值悖论 cybrid 胞质杂种 cyclin 细胞周期蛋白cytidme 胞苷 cytochimera 细胞嵌合体cytogenetics 细胞遗传学 cytohet 胞质杂合子cytologic 细胞学的cytological map 细胞学图cytoplasm 细胞质cytoplasmic genome 胞质基因组 cytoplasmic heredity 细胞质遗传 cytqplasmic incompatibility 细胞质不亲和性cytoplasmic inheritance 细胞质遗传cytoplasmic male sterility 细胞质雄性不育cytoplasmic mutation 细胞质突变 cytofdasmic segregation 细胞质分离cytoskeleton 细胞骨架Darwin 达尔文 Darwinian fitness 达尔文适合度Darwinism 达尔文学说 daughter cell 子细胞 daughter chromatid 子染色体 daughter chromosome 子染色体deformylase 去甲酰酶 degenerate code 简并密码degenerate primer 简并引物 degenerate sequence 简并序列 degenerated codon 简并密码子degeneration 退化 degree of dominance 显性度delayed inheritance 延迟遗传 deletant 缺失体deletion 缺失。

作为PDE4抑制剂的[1,7]二氮杂萘[发明专利]

作为PDE4抑制剂的[1,7]二氮杂萘[发明专利]

专利名称:作为PDE4抑制剂的[1,7]二氮杂萘
专利类型:发明专利
发明人:A·德诺姆,T·H·凯勒,C·麦卡锡,N·J·普雷斯,R·J·泰勒申请号:CN200380106300.8
申请日:20031215
公开号:CN1726215A
公开日:
20060125
专利内容由知识产权出版社提供
摘要:本发明公开了游离或盐形式的式I化合物,其中R、R和R具有说明书中指定的含义,这些化合物可用于治疗4型磷酸二酯酶介导的疾病或减量调节或抑制TNF-α释放,特别是阻塞性或炎性气道疾病。

本发明还描述了含有所述化合物的药物组合物和制备所述化合物的方法。

申请人:诺瓦提斯公司
地址:瑞士巴塞尔
国籍:CH
代理机构:北京市中咨律师事务所
更多信息请下载全文后查看。

酿酒酵母合成异源单萜类化合物的研究进展

酿酒酵母合成异源单萜类化合物的研究进展

酿酒酵母合成异源单萜类化合物的研究进展孙明雪;周景文【摘要】Monoterpenes are widely used in food, medicine and industries, which have great economical values. With the development of synthetic biology, monoterpenes synthesis using microbial cell as factory have become a hot research topic. Saccharomyces cerevisiae is a model eukaryotic expression strain, mevalonate pathway provides precursors for the synthesis of monoterpenes, so it has great advantages to construct heterologous monoterpenes synthesis pathway. The construction of heterologous monoterpenes synthesis pathway in Saccharomyces cerevisiae was introduced. The research advances in heterologous expression of monoterpenes in Saccharomyces cerevisiae were reviewed from regulatory mechanisms of metabolic flux of mevalonate pathway and regulation of enzyme catalytic efficiency using fusion enzymes.%单萜类化合物在食品、医药和工业等领域有重要的应用,具有可观的经济价值.随着合成生物学的日益发展,利用微生物作为细胞工厂合成单萜类化合物成为时下的研究热点.酿酒酵母是真核生物表达的模式菌株,其甲羟戊酸途径为单萜类化合物的合成提供直接前体,因此在酿酒酵母中构建异源单萜类化合物合成途径有较大优势.本文介绍了酿酒酵母细胞中异源单萜类化合物合成途径的构建.从甲羟戊酸途径代谢通量调控机制和融合酶调控酶催化反应效率两方面概述了酿酒酵母异源合成单萜类化合物的研究进展.【期刊名称】《工业微生物》【年(卷),期】2016(046)006【总页数】5页(P54-58)【关键词】酿酒酵母;甲羟戊酸途径;单萜类化合物;代谢;融合酶【作者】孙明雪;周景文【作者单位】江南大学生物工程学院,江苏无锡214122;江南大学生物工程学院,江苏无锡214122【正文语种】中文萜类化合物是自然界中广泛存在的次级代谢产物,其种类多样且数量巨大,迄今人们已发现40 000多种[1]。

敲除OsNramp5基因创制低镉优质粳稻新材料的应用评价

敲除OsNramp5基因创制低镉优质粳稻新材料的应用评价

中国水稻科学(Chin J Rice Sci), 2023, 37(1): 16-28 16 DOI: 10.16819/j.1001-7216.2023.220503敲除OsNramp5基因创制低镉优质粳稻新材料的应用评价裴峰1, #王广达1, #高鹏1冯志明1, 2胡珂鸣1, 2陈宗祥1, 2陈红旗3崔傲4左示敏1, 2, 5, * (1扬州大学江苏省作物基因组学和分子育种重点实验室/植物功能基因组学教育部重点实验室,江苏扬州 225009;2扬州大学江苏省粮食作物现代产业技术协同创新中心/江苏省作物遗传生理重点实验室,江苏扬州 225009;3中国水稻研究所水稻生物学国家重点实验室,杭州 311400;4镇江禾下土农业科技有限公司,江苏镇江 212008;5扬州大学教育部农业与农产品安全国际合作联合实验室,江苏扬州 225009;*通信联系人,email: *************.cn)Evaluation of New japonica Rice Lines with Low Cadmium Accumulation and Good Quality Generated by Knocking Out OsNramp5PEI Feng1, #, WANG Guangda1, #, GAO Peng1, FENG Zhiming1, 2, HU Keming1, 2, CHEN Zongxiang1, 2, CHEN Hongqi3, CUI Ao4, ZUO Shimin1, 2, 5, *(1Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Key Laboratory of Plant Functional Genomics of Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China; 2Jiangsu Collaborative Innovation Center for Modern Industrial Technology of Grain Crops / Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China; 3State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; 4Zhenjiang Hexiatu Agricultural Science and Technology Co., Ltd, Zhenjiang 212008, China; 5Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; *Correspondingauthor,email:*************.cn)摘 要:【目的】探究在粳稻中敲除OsNramp5基因对镉等金属元素积累、产量和品质的影响,为科学高效地生产优质健康粳米提供新材料和理论参考。

柔嫩艾美耳球虫二氢乳清酸脱氢酶基因注释、克隆与原核表达

柔嫩艾美耳球虫二氢乳清酸脱氢酶基因注释、克隆与原核表达

策 略注 释 D HOD H 基 因序列 , 并进 行 克 隆 以及 重 组
表达 , 为 进 一 步 研 究 E. t e n e l l a DH0 DH ( E t D —
HO DH) 的功 能 , 以 及 以其 为靶 标 筛 选 新 型抗 球 虫
药 物奠 定基 础 。
1 材 料 与方 法
陈 佳 , 戚 南 山。 , 廖 申权 , 吴彩 艳 , 吕敏 娜 , 李 娟 。 , 吴玄光卜 , 孙 铭 飞
( 1 .华 南 农 业 大 学 兽 医学 院 , 广东广州 5 1 0 6 4 0 ;2 .广 东 省农 业 科 学 院 动 物 卫 生 研 究 所 , 广 东广州 5 1 0 6 4 0 )
鸡 球虫 病是 由艾 美耳 球 虫寄 生肠 道 引起 的一 种 危 害严 重 的 寄 生 虫 病 。柔 嫩 艾 美 耳 球 虫 ( Ei me致病性最强、 危 害 最 为 严 重 的球虫 , 寄 生在 小肠 绒毛 上皮 和 盲 肠 的黏 膜 下 , 引起 出血性 肠 炎 , 可 导 致 死 亡 ,特 别 对 雏 鸡 危 害 最
农科 院畜牧研 究所 ; 1 0 2全 价 肉仔鸡 饲 料 ( 不 含 任何 抗球 虫药 和抗 菌药 ) , 广 东省农 科 院 畜牧 研究 所 饲料 厂特 制 。 l _ 1 . 2 虫株 、 菌株 和 载 体 E. t e n e l l a广 东 株 、 E.
摘 要 : 二氢 乳 清酸脱 氢酶 ( D H0DH) 是催 化嘧 啶从 头合 成途 径 中的 关键 酶 , 由于顶 复 门原 虫等 低 等 生
物 与 其 宿 主 的 DH0 DH 在 分 子 结 构 上 的 差 异 , 可 以 作 为研 发 新 型 抗 顶 复 门 原 虫 药 物 的 靶 标 而 成 为 研 究 的 热

考研复试——天然药物化学常用英文词汇

考研复试——天然药物化学常用英文词汇
可水解鞣质condensed tannin
强心甾caபைடு நூலகம்denolide
缩合鞣质phlobaphene
海葱甾scillanolide
鞣酐ellagitannin
双苄基异喹啉生物碱imidazole alkaloid
鞣花鞣质gallotannin
双吲哚生物碱indole alkaloid
没食子鞣质alkaloid
呫吨酮苷xanthonoid glycoside
吡喃糖pyranose
蒽醌anthraquinone
寡糖oligosaccharide
蒽醌苷anthraquinone glycoside
黄酮类flavonoid
蒽酚anthranol
黄酮苷flavonoid glycoside
氧化蒽酚oxanthranol
树胶树脂balsamic acid
异喹啉生物碱morphinane alkaloid
香树脂glycosidal resin
大环生物碱oxindole alkaloid
香脂酸bitter principle
吗啡烷生物碱phenanthridine alkaloid
苷树脂pigment
羟吲哚生物碱phenylalkylamine alkaloid
嘌呤生物碱pyrrolidine alkaloid
阿朴啡类生物碱bisbenzylisoquinoline alkaloid
吡啶生物碱pyrrolizidine alkaloid
苄基异喹啉生物碱bisindole alkaloid
吡咯生物碱quinazoline alkaloid
碘化铋钾试剂Wagner's reagent

转基因抗虫植物生产流程

转基因抗虫植物生产流程

转基因抗虫植物生产流程英文回答:Production Process of Genetically Modified Insect-Resistant Plants.The production of genetically modified (GM) insect-resistant plants involves a series of steps that combine genetic engineering techniques with traditional plant breeding methods. Here is a general overview of the process:1. Gene Identification and Isolation: Scientistsidentify and isolate specific genes from bacteria or other organisms that confer resistance to targeted insects. These genes may encode proteins that directly kill insects upon ingestion or proteins that interfere with insect growth and development.2. Gene Transfer: The isolated genes are thentransferred into the plant genome using various techniques,such as Agrobacterium-mediated transformation or gene gun bombardment. This process ensures that the insect-resistance trait is passed on to the next generation of plants.3. Selection and Breeding: The transformed plants are grown and screened for the presence of the insect-resistance gene. Plants that successfully express the desired trait are selected and further bred to create stable and high-performing lines.4. Field Trials and Regulatory Approval: The selected plant lines are evaluated through extensive field trials to assess their effectiveness against specific insect pests, environmental safety, and potential impact on non-target organisms. Subsequently, regulatory agencies review the data from field trials and grant approval for commercial release if the plants meet safety and efficacy standards.5. Commercial Production: Once approved, the insect-resistant plants can be propagated and commercially produced through conventional plant breeding and farmingpractices. Farmers utilize these plants in their fields to protect crops from insect damage.6. Post-Release Monitoring: After commercial release, the plants are monitored to ensure their continued effectiveness against target insects and to detect any potential adverse effects on the environment or human health.中文回答:转基因抗虫植物生产流程。

猪链球菌多肽和编码其的多核苷酸以及它们在疫苗和诊断中的应用[发明专利]

猪链球菌多肽和编码其的多核苷酸以及它们在疫苗和诊断中的应用[发明专利]

专利名称:猪链球菌多肽和编码其的多核苷酸以及它们在疫苗和诊断中的应用
专利类型:发明专利
发明人:乔斯·哈雷尔,马塞洛·戈特沙尔克,李元义
申请号:CN200680038555.9
申请日:20060901
公开号:CN101313068A
公开日:
20081126
专利内容由知识产权出版社提供
摘要:本发明涉及链球菌的领域。

更具体地,本发明涉及鉴定多肽,和编码其的多核苷酸序列,其涉及猪链球菌的发病机制。

本发明还涉及将这样的多肽用于预防,治疗和诊断猪链球菌相关疾病和由猪链球菌造成的感染的组合物和方法的应用。

申请人:蒙特利尔大学
地址:加拿大蒙特利尔
国籍:CA
代理机构:中科专利商标代理有限责任公司
代理人:王旭
更多信息请下载全文后查看。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a r X i v :0807.0852v 1 [q u a n t -p h ] 5 J u l 2008Production of ultracold heteronuclear YbRb*molecules by photoassociationN.Nemitz,F.Baumer,F.M¨u nchow,S.Tassy,and A.G¨o rlitzInstitut f¨u r Experimentalphysik,Heinrich-Heine-Universit¨a t D¨u sseldorf,Universit¨a tsstraße 1,40225D¨u sseldorf,Germany(Dated:July 5,2008)We have produced ultracold heteronuclear YbRb ∗molecules in a combined magneto-optical trap by photoassociation.The formation of electronically excited molecules close to the dissociation limit was observed by trap loss spectroscopy in mixtures of 87Rb with 174Yb and 176Yb.The molecules could be prepared in a series of vibrational levels with resolved rotational structure,allowing for an experimental determination of the long-range potential in the electronically excited state.PACS numbers:33.15.-e,33.80.-b,34.20.Cf,37.10.MnUltracold polar molecules offer fascinating prospects for the realization of new forms of quantum matter [1]with possible applications to quantum information [2]and to precision measurements [3,4].While dense atomic clouds are routinely laser-cooled to µK temperatures,the complex internal structure of molecules has so far pre-vented the successful application of this direct approach.Among the various approaches currently under investiga-tion [5],the production of translationally cold molecules from mixed-species ensembles of ultracold atoms is one of the most promising.The possible routes for the con-version from atoms to molecules involve either the use of magnetically tunable Feshbach resonances [6]or light-assisted photoassociation [7].While Feshbach resonances allow for an efficient and well-controlled preparation of ultracold heteronuclear molecules in high vibrational levels of the electronic ground state,this method is not applicable to all atomic species.In particular,if one of the atomic species does not possess angular momentum in the ground state,ex-perimentally acccessible Feshbach resonances are typi-cally non-existent [6].In contrast,production of ultra-cold molecules by photoassociation is in principle possible for all combinations of atomic species.So far all experimental investigations,which have pro-duced ultracold heteronuclear molecules by photoassoci-ation [8,9,10,11,12],including the very recent demon-stration of optical trapping [13]and of state transfer of Feshbach molecules[14],have used mixtures of alkalis.In this Letter,we report on the controlled production of ul-tracold heteronuclear molecules in a mixture of the alkali rubidium (Rb)and the rare earth ytterbium (Yb)in an electronicallly excited state by single-photon photoasso-ciation.While ultimately two or more light fields with different wavelengths will have to be used to produce ul-tracold ground state molecules [8,10],this is the first decisive step towards the production of a new class of dipolar molecules.The main difference between bialkalis and YbRb is that the ground state of bialkalis is always a 1Σ0while in YbRb it is a 2Σ1/2state.This implies that ground state YbRb molecules posess a significant mag-netic dipole moment in addition to their electric dipolemoment and can thus be trapped and manipulated us-ing magnetic fields.An intriguing prospect for ultracold molecules with an unpaired electron such as YbRb is the realization of lattice spin models [15].FIG.1:Relevant level structure (not to scale)in the Rb atom and the YbRb ∗molecule close to the D1-line of Rb at 795nm.The detuning from resonance in wavenumbers is defined as ∆PA =˜νPA −12578.862cm −1.Our experiments were performed using a continuously loaded double-species magneto-optical trap (MOT).Typ-ically,1.1×109Rb atoms are trapped in a forced dark-spot MOT [16]which is loaded from a Zeeman slower.The resulting atom cloud has a diameter of 2mm (FWHM)and a temperature of T Rb =340µK,where >95%of the atoms are in the dark F =1state.The MOT for Yb operating on the 61S 0→63P 1intercombina-tion transition at 556nm is loaded from a Zeeman-slower operating on the fast 61S 0→61P 1transition at 399nm.It holds 4.3×107atoms in a 0.5mm cloud at T Yb =510µK when there is no Rb present.With the Rb MOT oper-ating,the number of Yb atoms drops to 4.9×106atoms due to Yb*-Rb collisions.The exponential loading time of the Yb MOT in this situation is typically 0.2s.2−8−7−6−5−4−3−2−10.60.70.80.911.1P f l u o r [r e l. u n i t s ]∆P A[cm −1]−12.22−12.20−12.180.70.80.91.0P f l u o r−4.92−4.90−4.880.70.80.91.0−1.36−1.34−1.320.70.80.91.0FIG.2:a)Partial photoassociation spectrum in a mixture of 176Yb and 87Rb.Numbers indicate relative vibrational quantum numbers ∆v ′=v ′−v ′max .b)-d)Resolved rotational structure for three selected vibrational levels.More tightly bound vibrational levels exhibit a larger rotational splitting and in addition a splitting of the rotational components due to angular momentum coupling.For all lines two hyperfine components corresponding to the 52P 1/2,F ′=1and F ′=2levels of 87Rb are observed.Here we concentrate on photoassociation close to the 52S 1/2→52P 1/2D1-transition of Rb at 795nm.The pho-toassociation (PA)laser beam is provided by a Ti:Saph laser stabilized to an external resonator that allows for automated scanning over a range of 4GHz.Up to 440mW of power are available at the trap position resulting in a peak intensity of I max =400W /cm 2.Molecules formed by the photoassociation process will generally be lost from the trap [7].Due to the strong imbalance in atom numbers this leaves the Rb MOT virtually unchanged,while the reduction of the number of Yb atoms can be significant.In the following,all wavenumbers are given as the de-tuning ∆PA relative to the F =1→F ′=2transition of the D1line of Rb as depicted in Fig.1.Thus,∆PA is a direct measure for the binding energy of the formed molecules.In our measurement sequence,the PA laser is superim-posed onto the two overlapped MOTs and swept over its full scanning range with a frequency of 10mHz while the power of the Yb fluorescence P fluor is recorded as a measure for the number of trapped Yb atoms.Typically,several sweeps are averaged to obtain a PA spectrum as depicted in Fig.2.Since there is no effect of the PA laser on a pure Yb cloud,any decrease of fluorescence can be attributed to Yb-Rb photoassociation [17].It is not immediately clear whether the observed pho-toassociation loss stems from the formation of singly ex-cited YbRb ∗or doubly excited Yb ∗Rb ∗,since in an Yb MOT,ground and excited state aroms are present.To rule out the formation of Yb ∗Rb ∗,we have performed tests in which the atoms were only exposed to the PA light within a periodically recurring dark phase of 50µsin which the MOT light is switched off.During this dark phase,only ground state Yb atoms are present.While the efficiency of the MOT is reduced,photoassociation is still clearly observed under this condition,demonstrating that indeed YbRb ∗molecules are formed.Fig.2a)shows a partial spectrum for 176Yb 87Rb ∗con-structed from approximately 150scans.The absolute er-ror of the wavenumber determination is ±5×10−3cm −1while the relative position of the components of a vi-brational line (Fig.2b)-d))could be determined with a resolution of 1.6×10−4cm −1which is close to the Doppler broadened linewidth for an YbRb ∗molecule at the effective temperature of 450µK.Only lines for ∆PA <−0.38cm −1could be observed since the PA laser significantly interferes with the Rb MOT performance if its frequency is too close to the atomic resonance.For ∆PA <−8cm −1,line positions have been predicted us-ing Leroy-Bernstein methods [18,19]and only the im-mediate vicinity has been investigated.We have been unable to find any of the next three lines predicted for ∆PA <−21cm −1,probably due to a too small Franck-Condon overlap.For the strong line at ∆PA ≈−4.9cm −1in 176Yb 87Rb ∗,we determine a loss rate per Yb atom of ΓPA =1.2s −1corresponding to a total production rate of excited state YbRb*molecules of 5.9·106s −1.This is similar to the results of a comparable experiment with rubidium and cesium [20],where a trap loss rate of 0.5s −1per cesium atom was measured and it is also in agreement with theoretical predictions based on [7].The majority of observed lines belongs to a vibra-tional series converging on the excited 52P 1/2Rb state.Each vibrational level shows two separate rotational pro-3∆PA∆v′rel.a B rot r′eff∆R′=1[cm−1]depth[cm−1][a0][10−3cm−1]174Yb87Rb,F′=2state:−0.425-40.150.8535.0<0.5b−0.728-50.101.1530.1<0.5b−1.149-60.181.4027.2<1.0b−2.437-80.171.6724.90.68−4.459-100.151.9523.11.08−7.384-120.112.3321.11.65µ176/µ174to account for the difference in the reducedmass.Levels for176Yb(•)are labeled with relative quantumnumbers∆v′=v′−v′max.Predicted but unobserved levelsin176Yb are marked‘x’.The solid line is afit to the dataaccording to the model of Ref.[19].(bottom)Differencebetween observed values andfit.quantum numbers in our experiment,centrifugal stretch-ing effects can be neglected and an effectivefixed-rotorradius r′eff=¯h/(2µB rot)may be defined for the excitedYbRb∗molecules,which is also listed in table I.Thefinest structure in the line structure is a split-ting of the rotational components.The observed pat-tern agrees with a Hund’s case(e)angular momentumcoupling,where the total nuclear and electronic angularmomentum F′is that of the excited Rb atom(F′=1orF′=2)with no contribution from Yb.The angular mo-mentum F′then couples to the nuclear rotation R′.AsFig.2b)and c)show,the number of observed compo-nents is compatible with the expectations for this case.The splitting∆R′between adjacent components gener-ally increases for lower,more tightly bound vibrationalstates as expected due to the stronger coupling of the ro-tation to the electronic angular momentum.Taking thewhole observed structure into account,the wavenumbersfor the individual line components are related to the ex-perimentally determined constants in table I by˜v=˜v res+∆PA+B rot R′(R′+1)+m′R′∆R′.(1)where m′R′runs from-R′to R′(or-F′to F′for R′>F′).In the near-dissociation limit,the vibrational energiesare predominantly determined by the long-range disper-sion coefficients.The improved Leroy-Bernstein method4as described in Ref.[19]has been used to assign vibra-tional quantum numbers and extract values for the dis-persion coefficients.Since the total number of vibrational levels in the potential well is unknown,table I lists quan-tum numbers ∆v ′=v ′−v ′max relative to the last vibra-tionalelvel.As Fig.3illustrates,the observed line po-sitions are reproduced by a fit to the theoretical modelof Ref.[19].The fit [22]yields v ′d (176Yb 87Rb ∗)=0.365and v ′d (174Yb 87Rb ∗)=0.991for the noninteger values of the relative vibrational quantum numbers at the dissoci-ation limit while the resulting dispersion coefficients are C ′6=6190a .u .and C ′8=403000a .u .similar to the values predicted for other heteronuclear atom pairs [23].FIG.4:Comparison of r ′effas determined from the rotationalconstants (•)to the potential curve V’(r)given by C ′6and C ′8coefficients (solid line)for 176Yb 87Rb ∗.The dashed line is the potential scaled to 85%horizontally.We have tested our interpretation of the rovibrational structure of the YbRb ∗moelcule by comparing the long-range potential V ′(r )=−C ′6/r 6−C ′8/r 8from the Leroy-Bernstein fit to the effective internuclear distances r ′effas obtained from the rotational structure.For a given vi-brational wavefunction ψv ′(r ),r ′effmay be approximated by r ′eff=( ∞−∞ψv ′(r )2r 2dr )0.5.While r ′effis always smaller than the classical outer turning point r ′max givenby ∆PA =V ′(r ′max ),the vibrational wavefunction is con-centrated near r ′max for levels close to the dissociationlimit and thus r ′effapproaches r ′max .Fig.4demonstrates that our analysis qualitatively agrees with this argument,since the values for r ′efffall on a curve corresponding to the Leroy-Bernstein potential scaled by 85%.In conclusion,we have produced ultracold electroni-cally excited YbRb ∗molecules in well defined rovibra-tional levels by photoassociation.By precise determina-tion of the position of the rovibrational levels close to the dissociation threshold,we were able to model the long-range part of the molecular potential.These results are an invaluable first step towards the production of ultra-cold ground state YbRb molecules which will involve two-color photoassociation to high-lying vibrational levels in the electronic ground state and subsequent transfer to low-lying vibrational levels as has recently been demon-strated for homonuclear molecules [24].In the next step,we will combine the photoasociative production of ultra-cold molecules with conservative trapping of the Yb-Rb mixture as we have recently demonstrated [25].We acknowledge stimulating discussions with T.Fleig.The project is supported from DFG under SPP 1116.F.B.was supported by a fellowship from the Stiftung der Deutschen Wirtschaft.[1]M.Baranov,et al.,Physica Scripta T102,74(2002).[2]D.DeMille,Phys.Rev.Lett.88,067901(2002).[3]D.DeMille,et al.,Phys.Rev.Lett.100,023003(2008).[4]E.R.Hudson,et al.,Phys.Rev.Lett.96,143004(2006).[5]J.Doyle,et al.,Eur.Phys.J.D 31,149(2004).[6]T.Kohler,K.Goral,and P.S.Julienne,Rev.Mod.Phys.78,1311(2006).[7]K.M.Jones,et al.,Rev.Mod.Phys.78,483(2006).[8]D.Wang,et al.,Phys.Rev.Lett.93,243005(2004).[9]M.W.Mancini,et al.,Phys.Rev.Lett.92,133203(2004).[10]J.M.Sage,et al.,Phys.Rev.Lett.94,203001(2005).[11]S.D.Kraft,et al.,J.Phys.B 39,S993(2006).[12]U.Schloder,et al.,Physical Review A 66,061403(R)(2002).[13]E.R.Hudson,et al.,Phys.Rev.Lett.100,203201(2008).[14]S.Ospelkaus,et al.,Nature Physics doi:10.1038/nphys997(2008).[15]A.Micheli,G.K.Brennen,and P.Zoller,Nature Physics 2,341(2006).[16]M.H.Anderson,et al.,Phys.Rev.A 50,R3597(1994).[17]Rb-Rb photoassociation only has a small effect on the Yb signal,leading to a slight increase of the Yb fluorescence due to reduced Rb-induced loss.[18]R.J.LeRoy and R.B.Bernstein,J.Chem.Phys.52,3869(1970).[19]parat,J.Chem.Phys.120,1318(2004).[20]A.J.Kerman,et al.,Phys.Rev.Lett.92,033004(2004).[21]S.Azizi,M.Aymar,and O.Dulieu,Eur.Phys.J.D 31,195(2004).[22]The parameters l and ˜γδof Ref.[19]were set to zero for the fit.[23]M.Marinescu and H.R.Sadeghpour,Phys.Rev.A 59,390(1999).[24]J.G.Danzl,arXiv:0806.2284v1(2008).[25]S.Tassy,et al.,arXiv:0709.0827(2007).。

相关文档
最新文档