初中数学竞赛培训讲义-第五讲-全等三角形

合集下载

《全等三角形》教学PPT课件 初中数学公开课课件

《全等三角形》教学PPT课件   初中数学公开课课件
12.1 全等三角形
第一课时
一 导入新授
同一张底片冲洗出来的两张照片
二 探究新知
全等三角形的定义:能够完全重合的两个三角形,叫做全等三角形.
重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做 对应角.
A
D
B
CE
F
如上图,对应顶点: 点A和点D,点B和点E, 点C和点F 对应边: AB和DE, BC和EF, AC和DF 对应角: ∠A和∠D, ∠B 和∠E, ∠C和∠F
解: ∵ △ADE是由△ABC旋转而得到的 ∴ △ADE ≌ △ABC ∴ ∠DAE= ∠BAC=85 ° ∵ ∠BAD=35° ∴ ∠BAE= ∠DAE —∠BAD =85°—35° =50°
四 夯实基础
1.已知, △ABC ≌ △DEF,∠A=50°, ∠B=65°,DE=18cm, 则∠F=__6_5_°_,AB=_1_8_c_m 2.如图, △ABC中,∠ACB=90 °,沿CD折叠△CBD,使点B恰好
对应角.
解:对应顶点:点A和点A,点B和点D,点C和点E 对应边:AB与AD, BC与DE,AC与AE 对应角:∠BAC与∠DAE, ∠B与∠D, ∠C与∠E
如图所示: △ABC≌ △DCB,写出其对应顶点,对应边和 对应角.
A
D
E
1
B
2 C
解:对应顶点:点A和点D,点B和点C,点C和点B
对应边:AB与DC, BC与CB,AC与DB
全等三角形的表示:
全等用符号“≌”来表示,读作“全等于”
A
D
B
CE
F
如图,△ABC 和△DEF全等,记作: △ABC ≌ △DEF
读作: △ ABC全等于△ DEF

2014初中数学基础知识讲义—全等三角形

2014初中数学基础知识讲义—全等三角形

1.全等形的概念:能够完全重合的两个图形叫做全等形. 2.全等形的性质:(1)形状相同.(2)大小相等.3.全等三角形的概念:能够完全重合的两个三角形叫做全等三角形. 4.全等三角形的表示:(1)两个全等的三角形重合时:重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角. (2)如图,和全等,记作.通常对应顶点字母写在对应位置上.【例题】如图,已知图中的两个三角形全等,填空:(1)AB 与 是对应边,BC 与 是对应边, CA 与 是对应边;(2)∠A 与 是对应角,∠ABC 与 是对应角, ∠BAC 与 是对应角【方法总结】在两个全等三角形中找对应边和对应角的方法。

(1)有公共边的,公 共边一定是对应边;(2)有公共角的,公共角一定是对应角;(3)有对顶角的,对顶角是对应角;(4)在两个全等三角形中,最长的边对最长的边,最短的边对最短的边,最大的角对最大的角,最小的角对最小的角。

5.全等三角形的性质:(1)全等三角形的对应边相等;对应角相等. (2)全等三角形的周长、面积相等.6.全等变换:只改变位置,不改变形状和大小的图形变换.平移、翻折(对称)、旋转变换都是全等变换. 7.全等三角形基本图形:翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素初中数学基础知识讲义—全等三角形⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理DABC旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素8.全等三角形的判定方法判别两个三角形全等:(1)已知两边 •(2)已知一边一角 •(3)已知两角9.角平分线的性质及判定(1)性质:角平分线上的点到这个角的两边的距离相等 ∵OP 平分∠AOB ,PM ⊥OA 于M ,PN ⊥OB 于N , ∴PM=PN (2)判定:到一个角的两边距离相等的点在这个角平分线上 ∵PM ⊥OA 于M ,PN ⊥OB 于N ,PM=PN ∴OP 平分∠AOB专题一 全等三角形的性质【例题1】 (海南省中考) 已知图2中的两个三角形全等,则∠α度数是( ) A.72° B.60° C.58° D.50°【例题2】(2012柳州)如图,小强利用全等三角形的知识测量池塘两端M 、N 的距离,如果△PQO≌△NMO,则只需测出其长度的线段是【 】A .POB .PQC .MOD .MQ 【例题3】如图,若111ABC A B C △≌△,且11040A B ∠=∠=°,°,则1C ∠= .A BC PMNOAA 1【例题4】(2013年广西玉林市)如图,两块相同的三角形完全重合在一起,∠A=30°,AC=10,把上面一块绕直角顶点B 逆时针旋转到△A ′B ′C ′的位置,点C ′在AC 上,A ′C ′与AB 相交于点D ,则C ′D= . 专题二 全等三角形的判定【例题1】如图,AB=AD ,BC=CD 求证:∠BAC=∠DAC 。

《初中数学》5全等三角形的判定

《初中数学》5全等三角形的判定

全等三角形的判定知识集结知识元SSS 法证明三角形全等知识讲解1.1、SSS判定方法的语言描述•边对应相等的两个三角形全等(可以简写成“边边边”或“SSS”).2.2、SSS判定方法的证明结构若利用SSS来证明△ABC和全等,则标准表述如下:在△ABC和中,,∴.例题精讲SSS 法证明三角形全等例1.'如图,AB=AE,AC=AD,BD=CE,△ABC≌△AED吗?试说明.'例2.'已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.'例3.'如图,AD=CB,AB=CD,求证:△ACB≌△CAD.'全等性质和判定的综合应用-SSS知识讲解在证明边、角相等的题目中,常会用到的方法就是证明三角形全等,得到全等后,再利用全等三角形的性质得到对应边相等、对应角相等.在证明三角形全等的方法选择上,也要根据已知条件来决定,当已知条件多集中在边的时候,常会用到SSS法来证明.例题精讲全等性质和判定的综合应用-SSS例1.'已知:如图,AD=BC,AC=BD.猜想AE与BE的数量关系并证明.'例2.'已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.'SAS 法证明三角形全等知识讲解例题精讲SAS 法证明三角形全等例1.如图所示,全等的三角形是()A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ例2.'如图所示,CD=CA,∠1=∠2,EC=BC,求证:△ABC≌△DEC.'例3.'如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:EC=BF.'全等性质和判定的综合应用-SAS知识讲解在证明边、角相等时,要首选利用三角形全等来证明,同时要注意:证明两直线平行等价于证明对应角相等.例题精讲全等性质和判定的综合应用-SAS例1.'如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.'例2.'如图,△ABC中,过点B作射线BF∥AC,已知E点为BC边上一点,D点为射线BF上一点,且AC=BE,BC=BD.求证:AB=ED.'例3.'如图,BC⊥CA,BC=CA,DC⊥CE,DC=CE,直线BD与AE交于点F,交AC于点G,连接CF,求证:BF⊥AE.'ASA 法证明三角形全等知识讲解例题精讲ASA 法证明三角形全等例1.'已知:点A、F、E、C在同一条直线上,AF=CE,BE∥DF,∠A=∠C.求证:△ABE≌△CDF.'例2.'在△ABC中,AB=AC,点D是BC的中点,点E在AD上,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°.求证:△AEF≌△BCF.'例3.'如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC≌△DEC.'全等性质和判定的综合应用-ASA知识讲解在证明边、角相等时,要首选利用三角形全等来证明,同时要注意:证明两直线平行等价于证明对应角相等.例题精讲全等性质和判定的综合应用-ASA例1.如图,某人把一块三角形的玻璃打碎成了三块,现在他要到玻璃店去配一块完全一样的玻璃,则他带的是第三块玻璃去,依据是()A.SSS B.SAS C.ASA D.AAS例2.'如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O,若∠1=42°,求∠BDE的度数.'例3.'如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.'AAS 法证明三角形全等知识讲解例题精讲AAS 法证明三角形全等例1.如图,点B、F、C、E在一条直线上,已知FB=CE,AC∥DF,请你添加一个适当的条件使得△ABC≌△DEF.例2.'已知:如图AC,BD相交于点O,∠A=∠D,AB=CD,求证:△AOB≌△DOC.'例3.'如图,已知AB⊥AC,AB=AC,DE过点A,且CD⊥DE,BE⊥DE,垂足分别为点D,E.求证:△ADC≌△BEA.'全等性质和判定的综合应用-AAS知识讲解在证明边、角相等时,要首选利用三角形全等来证明,同时要注意:证明两直线平行等价于证明对应角相等.例题精讲全等性质和判定的综合应用-AAS例1.如图,∠ACB=90°,AC=BC,AE⊥CE于E,BD⊥CE于D,AE=5cm,BD=2cm,则DE的长是()A.8B.5C.3D.2例2.'如图,已知点B、E、C、F在同一条直线上,AB=DE,∠A=∠D,AC∥DF.求证:BE=CF.'例3.'(1)如图1,△ABC中,∠BAC=90°,AB=AC,AE是过A点的一条直线,且B、C在AE的异侧,BD⊥AE于D,CE⊥AE于E,求证:BD=DE+CE.(2)若直线AE绕点A旋转到图2的位置时(BD<CE),其余条件不变,问BD与DE、CE 的关系如何?请予以证明.'HL 法证明三角形全等知识讲解1、HL判定方法的语言描述斜边和一条直角边应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).2、HL判定方法的证明结构若利用HL来证明Rt△ABC和全等,假设,则标准表述如下:在Rt△ABC和中,∴.例题精讲HL 法证明三角形全等例1.使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.斜边及一条直角边对应相等例2.'如图所示,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.求证:Rt△ABE≌Rt△CBF.'例3.'如图,已知点A,B,C,D在同一条直线上,EA⊥AB,FD⊥AD,AB=CD,若用“HL”证明Rt△AEC≌Rt△DFB,需添加什么条件?并写出你的证明过程.'全等性质和判定的综合应用-HL知识讲解在直角三角形中证明边、角相等时,首先要考虑利用直角三角形全等来证明.例题精讲全等性质和判定的综合应用-HL例1.'如图,在△ABC中,AC=BC,直线l经过顶点C,过A,B两点分别作l的垂线AE,BF,E,F为垂足.AE=CF,求证:∠ACB=90°.'例2.'如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.'选择合适的方法证明三角形全等-分析型知识讲解根据已知条件分析具体可以使用哪种判定方法是非常重要的一种能力,例题精讲同时对几种判定方法的熟练掌握是掌握全等判定的基础.例题精讲选择合适的方法证明三角形全等-分析型例1.如图,在△ADO和△BCO中,下列给出的条件能使△ADO≌△BCO的是()A.OD=OC,BC=AD B.OA=OB,OC=ODC.OB=OA,AD=BC D.BD=AC,BC=AD例2.利用尺规作图,通过下面所示的条件,不能作出唯一三角形的是()A.已知三角形三条边的长度B.已知三角形两条边的长度和这两条边其中一边所对的角C.已知三角形两条边的长度及其夹角D.已知三角形的两个角及其夹边例3.'已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE、BD交于点O.AE与DC交于点M,BD与AC交于点N.(1)如图1,求证:AE=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.'选择合适的方法证明三角形全等-证明型知识讲解根据已知条件分析具体可以使用哪种判定方法是非常重要的一种能力,同时对几种判定方法的熟练掌握是掌握全等判定的基础.规范证明过程的书写格式也是本章需要重点关注的内容.例题精讲选择合适的方法证明三角形全等-证明型例1.如图,点D,E分别在AB,AC上,AD=AE,BE与CD交于点O,下列条件不能判定△ABE≌△ACD的是()A.∠B=∠C B.BE=CDC.AB=AC D.∠CEB=∠BDC例2.'如图,已知∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,CE与AB相交于F.求证:△CEB≌△ADC.'全等三角形判定的多次应用知识讲解两个三角形全等可以得到相应的对应边相等、对应角相等,而对应边相等、对应角相等也可以通过几种判定方法来证明三角形全等,所以比较复杂的综合问题就需要对这两个过程不断地循环使用,此类问题对综合分析能力要求较高.例题精讲全等三角形判定的多次应用例1.'已知:如图,OA=OB,OC=OD,∠AOB=∠BOC=∠COD,线段AC交线段OB于点M,线段BD交线段OC于点N,请说明OM=ON的理由.'例2.'如图,CD⊥AB于D点,BE⊥AC于E点,BE,CD交于O点,且AO平分∠BAC.求证:OB=OC.'例3.'如图,已知AB∥CD,CF∥BE,OB=OC,求证:AE=DF.'利用三角形全等处理动点问题知识讲解全等三角形主要的特点就是对应边、对应角相等,所以常会利用全等三角形的性质来处理动点问题中的三角形全等,此时需要注意的是分类讨论思想的应用,具体哪条边是对应边是一个典型的分类讨论的点.例题精讲利用三角形全等处理动点问题例1.'如图,在Rt△ABC中,∠C=90°,AC=10cm,BC=5cm.一条线段PQ=AB,并且P、Q两点分别在线段AC和过A点且垂直于AC的射线AM上运动.问当P点位于AC的什么位置时由P、Q、A点构成的三角形与△ABC全等?并说明理由.'例2.'如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?'当堂练习单选题练习1.如图,点D,E分别在AB,AC上,AD=AE,BE与CD交于点O,下列条件不能判定△ABE≌△ACD的是()A.∠B=∠C B.BE=CDC.AB=AC D.∠CEB=∠BDC练习2.利用尺规作图,通过下面所示的条件,不能作出唯一三角形的是()A.已知三角形三条边的长度B.已知三角形两条边的长度和这两条边其中一边所对的角C.已知三角形两条边的长度及其夹角D.已知三角形的两个角及其夹边练习3.如图,某人把一块三角形的玻璃打碎成了三块,现在他要到玻璃店去配一块完全一样的玻璃,则他带的是第三块玻璃去,依据是()A.SSS B.SAS C.ASA D.AAS练习1.'已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.'练习2.'已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.'练习3.'如图,在△ABC中,AB=AC,点D是△ABC内一点,AD=BD,且AD⊥BD,连接CD.过点C作CE⊥BC交AD的延长线于点E,连接BE.过点D作DF⊥CD交BC于点F.若BD=DE,求证:BF=CF.'练习4.'如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC≌△DEC.'练习5.'如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.求证:AF=CD.'练习6.'如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△ABC≌△BAD.'练习7.'如图,在△ABC中,AC=BC,直线l经过顶点C,过A,B两点分别作l的垂线AE,BF,E,F为垂足.AE=CF,求证:∠ACB=90°.'练习8.'如图,AB∥CD,AD∥BC,点E、F分别在AC、CD上,且AE=CF,求证:DE=BF.'练习9.'如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?'练习10.'如图,已知四边形ABCD中,AB=10厘米,BC=8厘米,CD=12厘米,∠B=∠C,点E为AB 的中点.如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CD 上由C点向D点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPE与△CQP是否全等?请说明理由.(2)当点Q的运动速度为多少时,能够使△BPE与△CQP全等.'练习11.'在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P.求证:△EBC≌△FCB.'练习12.'图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.'练习13.'如图,△ABC中,过点B作射线BF∥AC,已知E点为BC边上一点,D点为射线BF上一点,且AC=BE,BC=BD.求证:AB=ED.'练习14.'如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:EC=BF.'。

初中数学全等三角形综合复习讲义-全面完整版

初中数学全等三角形综合复习讲义-全面完整版

初中数学全等三角形综合复习讲义-全面完整版初中数学全等三角形综合复讲义——全面完整版一、基础知识1.全等图形的有关概念1)全等图形的定义:两个图形能够完全重合,就是全等图形。

例如,图13-1和图13-2就是全等图形。

2)全等多边形的定义:两个多边形是全等图形,则称为全等多边形。

例如,图13-3和图13-4中的两对多边形就是全等多边形。

3)全等多边形的对应顶点、对应角、对应边:两个全等的多边形,经过运动而重合,相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角。

4)全等多边形的表示:例如,图13-5中的两个五边形是全等的,记作五边形ABCDE≌五边形A’B’C’D’E’(这里符号“≌”表示全等,读作“全等于”)。

表示图形的全等时,要把对应顶点写在对应的位置。

5)全等多边形的性质:全等多边形的对应边、对应角分别相等。

6)全等多边形的识别:对边形相等、对应角相等的两个多边形全等。

2.全等三角形的识别1)根据定义:若两个三角形的边、角分别对应相等,则这两个三角形全等。

2)根据SSS:如果两个三角形的三条边分别对应相等,那么这两个三角形全等。

相似三角形的识别法中有一个与(SSS)全等识别法相类似,即三条边对应成比例的两个三角形相似,而相似比为1时,就成为全等三角形。

3)根据SAS:如果两个三角形有两边及夹角分别对应相等,那么这两个三角形全等。

相似三角形的识别法中同样有一个是与(SAS)全等识别法相类似,即一角对应相等而夹这个角的两边对应成比例的两个三角形相似,当相似比为1时,即为全等三角形。

4)根据ASA:如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。

5)根据AAS:如果两个三角形有两个角及其中一角的对边分别对应相等,那么这两个三角形全等。

3.直角三角形全等的识别1)根据HL:如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等。

2)SSS、SAS、ASA、AAS对于直角三角形同样适用。

全等三角形培优竞赛讲义(全集)

全等三角形培优竞赛讲义(全集)

全等三角形培优竞赛讲义(一)知识点全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法:(1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等.(4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线. 拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.例题精讲板块一、截长补短【例1】 (06年北京中考题)已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.DOEC B A4321FDOE CB A【解析】 BE CD BC +=,理由是:在BC 上截取BF BE =,连结OF , 利用SAS 证得BEO ∆≌BFO ∆,∴12∠=∠,∵60A ∠=︒,∴1901202BOC A ∠=+∠=,∴120DOE ∠=,∴180A DOE ∠+∠=,∴180AEO ADO ∠+∠=,∴13180∠+∠=, ∵24180∠+∠=,∴12∠=∠,∴34∠=∠,利用AAS 证得CDO ∆≌CFO ∆,∴CD CF =,∴BC BF CF BE CD =+=+.【例2】 如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?N E B M A DGNEB M A D【解析】 猜测DM MN =.过点M 作MG BD ∥交AD 于点G ,AG AM =,∴GD MB =又∵120ADM DMA +∠=∠,120DMA NMB +=∠∠ ∴ADM NMB =∠∠,而120DGM MBN ==∠∠, ∴DGM MBN ∆∆≌,∴DM MN =.【变式拓展训练】如图,点M 为正方形ABCD 的边AB 上任意一点,MN DM ⊥且与ABC∠外角的平分线交于点N ,MD 与MN 有怎样的数量关系?N CDE B M A NCDEB M A【解析】 猜测DM MN =.在AD 上截取AG AM =,∴DG MB =,∴45AGM =∠∴135DGM MBN ==︒∠∠,∴ADM NMB =∠∠, ∴DGM MBN ∆∆≌,∴DM MN =.【例3】 已知:如图,ABCD 是正方形,∠FAD =∠FAE . 求证:BE +DF =AE .FE DCBAM F EDCB A【解析】 延长CB 至M ,使得BM =DF ,连接AM .∵AB =AD ,AD ⊥CD ,AB ⊥BM ,BM =DF ∴△ABM ≌△ADF∴∠AFD =∠AMB ,∠DAF =∠BAM ∵AB ∥CD∴∠AFD =∠BAF =∠EAF +∠BAE =∠BAE +∠BAM =∠EAM ∴∠AMB =∠EAM∴AE =EM =BE +BM =BE +DF .【例4】 以ABC ∆的AB 、AC 为边向三角形外作等边ABD ∆、ACE ∆,连结CD 、BE 相交于点O .求证:OA 平分DOE ∠.FABCDEOOEDCBA【解析】 因为ABD ∆、ACE ∆是等边三角形,所以AB AD =,AE AC =,CAE ∠=60BAD ∠=,则BAE DAC ∠=∠,所以BAE DAC ∆∆≌,则有ABE ADC ∠=∠,AEB ACD ∠=∠,BE DC =.在DC 上截取DF BO =,连结AF ,容易证得ADF ABO ∆∆≌,ACF AEO ∆∆≌. 进而由AF AO =.得AFO AOF ∠=∠;由AOE AFO ∠=∠可得AOF ∠=AOE ∠,即OA 平分DOE ∠.【例5】 (北京市、天津市数学竞赛试题)如图所示,ABC ∆是边长为1的正三角形,BDC∆是顶角为120︒的等腰三角形,以D 为顶点作一个60︒的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.NM DCBAEABC DM N【解析】 如图所示,延长AC 到E 使CE BM =.在BDM ∆与CDE ∆中,因为BD CD =,90MBD ECD ∠=∠=,BM CE =, 所以BDM CDE ∆∆≌,故MD ED =.因为120BDC ∠=,60MDN ∠=,所以60BDM NDC ∠+∠=. 又因为BDM CDE ∠=∠,所以60MDN EDN ∠=∠=.在MND ∆与END ∆中,DN DN =,60MDN EDN ∠=∠=,DM DE =, 所以MND END ∆∆≌,则NE MN =,所以AMN ∆的周长为2.【例6】 五边形ABCDE 中,AB =AE ,BC +DE =CD ,∠ABC +∠AED =180°,求证:AD 平分∠CDECE DB AABDEFC【解析】 延长DE 至F ,使得EF =BC ,连接AC .∵∠ABC +∠AED =180°,∠AEF +∠AED =180° ∴∠ABC =∠AEF∵AB =AE ,BC =EF ∴△ABC ≌△AEF∴EF =BC ,AC =AF∵BC +DE =CD ∴CD =DE +EF =DF ∴△ADC ≌△ADF ∴∠ADC =∠ADF 即AD 平分∠CDE .板块二、全等与角度 【例7】如图,在ABC ∆中,60BAC ∠=︒,AD 是BAC ∠的平分线,且AC AB BD =+,求ABC ∠的度数.【解析】 如图所示,延长AB 至E 使BE BD =,连接ED 、EC .由AC AB BD =+知AE AC =,而60BAC ∠=,则AEC ∆为等边三角形.注意到EAD CAD ∠=∠,AD AD =,AE AC =, 故AED ACD ∆∆≌. 从而有DE DC =,DEC DCE ∠=∠,故2BED BDE DCE DEC DEC ∠=∠=∠+∠=∠.所以20DEC DCE ∠=∠=,602080ABC BEC BCE ∠=∠+∠=+=.【另解】在AC 上取点E ,使得AE AB =,则由题意可知CE BD =.在ABD ∆和AED ∆中,AB AE =,BAD EAD ∠=∠,AD AD =, 则ABD AED ∆∆≌,从而BD DE =,进而有DE CE =,ECD EDC ∠=∠,AED ECD EDC ∠=∠+∠=2ECD ∠. 注意到ABD AED ∠=∠,则: 1318012022ABC ACB ABC ABC ABC BAC ∠+∠=∠+∠=∠=-∠=,故80ABC ∠=︒.【点评】由已知条件可以想到将折线ABD “拉直”成AE ,利用角平分线AD 可以构造全等三角形.同样地,将AC 拆分成两段,之后再利用三角形全等亦可,此思路也是十分自然的.需要说明的是,无论采取哪种方法,都体现出关于角平分线“对称”的思想.上述方法我们分别称之为“补短法”和“截长法”,它们是证明等量关系时优先考 虑的方法.【例8】在等腰ABC ∆中,AB AC =,顶角20A ∠=︒,在边AB 上取点D ,使AD BC =,求BDC ∠.E D C BAED C B AD C BA D A【解析】 以AC 为边向ABC ∆外作正ACE ∆,连接DE .在ABC ∆和EAD ∆中,AD BC =,AB EA =,2060EAD BAC CAE ∠=∠+∠=+= 80ABC =∠, 则ABC EAD ∆∆≌.由此可得ED EA EC ==,所以EDC ∆是等腰三角形. 由于20AED BAC ∠=∠=,则602040CED AEC AED ∠=∠-∠=-=,从而70DCE ∠=,706010DCA DCE ACE ∠=∠-∠=-=, 则201030BDC DAC DCA ∠=∠+∠=+=.【另解1】以AD 为边在ABC ∆外作等边三角形ADE ∆,连接EC .在ACB ∆和CAE ∆中,6020CAE ACB ︒︒∠=+=∠,AE AD CB ==,AC CA =, 因此ACB CAE ∆∆≌,从而CAB ACE ∠=∠,CE AB AC ==.在CAD ∆和CED ∆中,AD ED =,CE CA =,CD CD =, 故CAD CED ∆∆≌,从而ACD ECD ∠=∠,2CAB ACE ACD ∠=∠=∠, 故10ACD ︒∠=,因此30BDC ︒∠=.【另解2】如图所示,以BC 为边向ABC ∆内部作等边BCN ∆,连接NA 、ND .在CDA ∆和ANC ∆中,CN BC AD ==,20CAD ∠=, ACN ACB BCN ∠=∠-∠=806020-=, 故CAD ACN ∠=∠,而AC CA =,进而有CDA ANC ∆∆≌. 则10ACD CAN ∠=∠=,故30BDC DAC DCA ∠=∠+∠=.【点评】上述三种解法均是向三边作正三角形,然后再由三角形全等得到边长、角度之间的关系.【例9】(“勤奋杯”数学邀请赛试题) 如图所示,在ABC ∆中,AC BC =,20C ∠=︒,又M 在AC 上,N 在BC 上,且满足50BAN ∠=︒,60ABM ∠=︒,求NMB ∠.【解析】 过M 作AB 的平行线交BC 于K ,连接KA 交MB 于P .连接PN ,易知APB ∆、MKP ∆均为正三角形.因为50BAN ∠=︒,AC BC =,20C ∠=︒,所以50ANB ∠=︒,BN AB BP ==,80BPN BNP ∠=∠=︒,则40PKN ∠=︒,180608040KPN ∠=︒-︒-︒=︒,故PN KN =. 从而MPN MKN ∆∆≌. 进而有PMN KMN ∠=∠,1302NMB KMP ∠=∠=︒.【另解】如图所示,在AC 上取点D ,使得20ABD ∠=︒,由20C ∠=︒、AC BC =可知80BAC ∠=︒. 而20ABD ∠=︒,故80ADB ∠=︒,BA BD =. 在ABN ∆中,50BAN ︒∠=,80ABN ∠=︒,故50ANB ∠=︒,从而BA BN =,进而可得BN BD =. 而802060DBN ABC ABD ∠=∠-∠=︒-︒=︒,E DCB A ND CB APA B C M N K NMCBA NMC所以BDN ∆为等边三角形.在ABM ∆中,180180806040AMB ABM BAM ∠=︒-∠-∠=︒-︒-︒=︒, 804040DBM ADB AMB ∠=∠-∠=︒-︒=︒, 故DMB DBM ∠=∠,从而DM DB =.我们已经得到DM DN DB ==,故D 是BMN ∆的外心,从而1302NMB NDB ∠=∠=︒.【点评】本题是一道平面几何名题,加拿大滑铁卢大学的几何大师Ross Honsberger 将其喻为“平面几何中的一颗明珠”.本题的大多数解法不是纯几何的,即使利用三角函数也不是那么容易.【例10】在四边形ABCD 中,已知AB AC =,60ABD ︒∠=,76ADB ︒∠=,28BDC ︒∠=,求DBC ∠的度数.【解析】 如图所示,延长BD 至E ,使DE DC =,由已知可得:180********ADE ADB ︒︒︒︒∠=-∠=-=, 7628104ADC ADB BDC ︒︒︒∠=∠+∠=+=, 故ADE ADC ∠=∠. 又因为AD AD =,DE DC =,故ADE ADC ∆∆≌,因此AE AC =,E ACD ∠=∠,EAD CAD ∠=∠.又因为AB AC =,故AE AB =,ABC ACB ∠=∠.而已知60ABD ︒∠=,所以ABE ∆为等边三角形.于是60ACD E EAB ∠=∠=∠=︒,故18016CAD ADC ACD ∠=︒-∠-∠=︒, 则28CAB EAB CAD EAD ∠=∠-∠-∠=︒,从而1(180)762ABC CAB ∠=︒-∠=︒,所以16DBC ABC ABD ∠=∠-∠=︒.【例11】 (日本算术奥林匹克试题) 如图所示,在四边形ABCD 中,12DAC ︒∠=,36CAB ︒∠=,48ABD ︒∠=,24DBC ︒∠=,求ACD ∠的度数.【解析】 仔细观察,发现已知角的度数都是12︒的倍数,这使我们想到构造60︒角,从而利用正三角形.在四边形ABCD 外取一点P ,使12PAD ︒∠=且AP AC =,连接PB 、PD . 在ADP ∆和ADC ∆中,12PAD CAD ︒∠=∠=,AP AC =,AD AD =,故ADP ADC ∆∆≌. 从而APD ACD ∠=∠.在ABC ∆中,36CAB ∠=︒,72ABC ∠=︒,故72ACB ︒∠=,AC AB =, 从而AP AB =. 而12123660PAB PAD DAC CAB ∠=∠+∠+∠=︒+︒+︒=︒, 故PAB ∆是正三角形,60APB ︒∠=,PA PB =. C DB A DC BAE C DB AP DC在DAB ∆中,123648DAB DAC CAB DBA ︒︒︒∠=∠+∠=+==∠, 故DA DB =.在PDA ∆和PDB ∆中,PA PB =,PD PD =,DA DB =, 故PDA PDB ∆∆≌,从而1302APD BPD APB ︒∠=∠=∠=,则30ACD ︒∠=.【例12】 (河南省数学竞赛试题) 在正ABC ∆内取一点D ,使DA DB =, 在ABC ∆外取一点E ,使DBE DBC ∠=∠,且BE BA =,求BED ∠.【解析】 如图所示,连接DC .因为AD BD =,AC BC =,CD CD =,则ADC BDC ∆∆≌,故30BCD ∠=.而DBE DBC ∠=∠,BE AB BC ==,BD BD =, 因此BDE BDC ∆∆≌,故30BED BCD ∠=∠=.【例13】 (北京市数学竞赛试题) 如图所示,在ABC ∆中,44BAC BCA ︒∠=∠=,M 为ABC∆内一点,使得30MCA ︒∠=,16MAC ︒∠=,求BMC ∠的度数.【解析】 在ABC ∆中,由44BAC BCA ︒∠=∠=可得AB AC =,92ABC ︒∠=.如图所示,作BD AC ⊥于D 点,延长CM 交BD 于O 点,连接OA , 则有30OAC MCA ︒∠=∠=,443014BAO BAC OAC ︒︒︒∠=∠-∠=-=,301614OAM OAC MAC ︒︒︒∠=∠-∠=-=,所以BAO MAO ∠=∠.又因为90903060AOD OAD COD ︒︒︒︒∠=-∠=-==∠,所以120AOM AOB ∠=︒=∠.120BOM ∠=︒而AO AO =,因此ABO AMO ∆∆≌,DECB ADE C B AO D MCA BMC A B故OB OM =.由于120BOM ︒∠=,则180302BOMOMB OBM ︒-∠∠=∠==︒,故180150BMC OMB ︒︒∠=-∠=.全等三角形培优竞赛讲义(二)【知识点精读】1. 全等三角形的定义:能够完全重合的两个三角形叫全等三角形;两个全等三角形中,互相重合的顶点叫做对应顶点。

全等三角形讲义

全等三角形讲义

全等三角形复习全等图形的定义:能完全重合的图形叫全等图形全等三角形的定义:能完全重合的三角形是全等三角形.全等三角形的性质: 全等三角形的对应边、对应角相等一般三角形全等的判定:SAS、ASA、AAS、SSS直角三角形全等的判定: SAS、ASA、AAS、SSS(1)三个角对应相等两个三角形一定全等吗?(2)一般的两个三角形中如果有两条边和其中一条边的对角对应相等的这两个三角形一定全等吗?一.添条件判全等2、如图,已知AD平分∠BAC,要使△ABD≌△ACD,•根据“SAS”需要添加条件;•根据“ASA”需要添加条件;•根据“AAS”需要添加条件;3、已知:∠B=∠DEF,BC=EF,现要证明△ABC≌△DEF,•若要以“SAS”为依据,还缺条件______•若要以“ASA”为依据,还缺条件_______;•若要以“AAS”为依据,还缺条件_______,•并说明理由.二、挖掘“隐含条件”判全等1.如图(1),AB=CD,AC=BD,则△ABC≌△DCB吗?说说理由2.如图(2),点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC.若∠B=20°,CD=5cm,则∠C= ,BE= .说说理由.3.如图(3),AC与BD相交于O,若OB=OD,∠A=∠C,若AB=3cm,则CD= . 说说理由.友情提示:公共边,公共角,对顶角这些都是隐含的边,角相等的条件!三、熟练转化“间接条件”判全4.如图,AE=CF,∠AFD=∠CEB,DF=BE,△AFD与△CEB全等吗?为什么?5.如图(5)∠CAE=∠BAD,∠B=∠D,AC=AE,△ABC与△ADE全等吗?为什么?6.“三月三,放风筝”如图(6)是小东同学自己做的风筝,他根据AB=AD,BC=DC,不用度量,就知道∠ABC=∠ADC。

请用所学的知识给予说明。

实际运用3. 测量如图河的宽度,某人在河的对岸找到一参照物树木A,视线AB与河岸垂直,然后该人沿河岸步行10步(每步约0.75M)到O处,进行标记,再向前步行10步到D处,最后背对河岸向前步行20步,此时树木A,标记O,恰好在同一视线上,则河的宽度为米。

八年级数学竞赛讲座 全等三角形

八年级数学竞赛讲座 全等三角形

八年级数学竞赛讲座 全等三角形一、知识要点:1、全等形,全等三角形,对应顶点,对应角,对应边等概念; 2、全等三角形的性质; 3、全等三角形的判定; 4、 直角三角形全等的判定;二、典型例题:1、如图,在△ABC 中,AB=AC 。

直线l 过点A 且l ∥BC ,∠B 的平分线与AC 和l 分别交于点D 、E ,∠C 的平分线与AB 和l 分别交于点F 、G ,求证:DE=FG2、已知:如图,△ABC 中,AB AC 31,AE 平分∠BAC ,交BC 于D ,BE ⊥AE 于E ,求证:BC 平分AE 。

3、已知:如图,AD 为△ABC 的中线,BE 交AC 于E ,交AD 于F ,且AE=EF , 求证:AC=BF 4、已知,AB ∥CD ,BE 、CE 分别是∠ABC 、∠BCD 的平分线, 点E 在AD 上,求证:BC=AB+CD 。

EDl G A E AA5、已知:BD 、CE 是△ABC 的高,点P 在BD 的延长线上,BP=AC ,点Q 在CE 上,CQ=AB ,求证:(1)AP=AQ ;(2)AP ⊥AQ 6、证明:如果两个三角形各有两边及其第三边上的中线对应相等,那么这两个三角形全等;7、已知:BF 是∠DBC 的平分线,CF 是∠ECB 的平分线, 求证:点F 在∠BAC 的平分线上; 8、如图:已知在△ABC 中,∠B=60°,△ABC 的角平分线 AD 、CE 相交于点O ,求证:AE+CD=AC ; 9、已知:在△ABC 中,BC=2AB ,AD 是BC 边上的中线, AE 是△ABD 的中线,求证:AC=2AE ; 10、已知:AD 为△ABC 的中线,∠ABD 和∠ADC 的平分线分别交AB 、AC 于E 、F ,求证:BE+CF >EF ; 11、在△ABC 中,∠BAC=5.25°,AD 是∠BAC 的平分线,过A 作DA 的垂线交直线BC 于点M ,若BM=BA+AC ,试求∠ABC 和∠ACB 的度数; 12、如图:D 为等边三角形ABC 内一点,DB=DA ,BP=AB , ∠DBP=∠DBC ,求∠BPD 的度数;作业题:D B FAEAB E DA E FA PD PA D1、设P 为等腰直角△ABC 斜边AB 上一点PE ⊥AC 于E ,PF ⊥BC 于F ,PG ⊥EF 于G ,延长GP 并在延长线上取一点D ,使PD=PC ,如图, 求证:BC ⊥BD 且BC=BD2、如图,△ABC 中,∠ABC=100°,∠C 的平分线交AB 边于E ,在AC 边上取点D ,使得∠CBD=20°,连结DE ,求∠CED 的度数。

2020年初中数学竞赛专题全等三角形(含答案)

2020年初中数学竞赛专题全等三角形(含答案)

2020年初中数学竞赛专题全等三角形(含答案)1. 如图,ABC △为边长是1的等边三角形,BDC △为顶角()BDC ∠是120︒的等腰三角形,以D 为顶点作一个60︒角,角的两边分别交AB 、AC 于M 、N ,连结MN ,形成一个AMN △.求AMN △的周长.解析:延长AC 到E ,使CE BM =,连结DE .易知在BMD △与CED △中有BD DC =,90MBD ECD ∠=∠=︒,BM CE =,从而MBD ECD △△≌.所以MD DE =,MDB EDC ∠=∠. 于是在DMN △与DEN △中有DN DN =,MD DE =,60MDN MDB CDN EDC CDN EDN ∠=︒=∠+∠=∠+∠=∠.从而MDN EDN △△≌,故NE MN =. 所以AM MN AN AM NE AN AM NC CE AN AM MB NC AN ++=++=+++=+++=2AB AC +=.2. ABC △为等腰直角三角形,90C ∠=︒,点M 、N 分别为边AC 和BC 的中点,点D 在射线BM 上,且2BD BM =,点E 在射线NA 上,且2NE NA =,求证:BD DE ⊥.3. 已知等腰直角三角形ABC ,BC 是斜边.B ∠的角平分线交AC 于D ,过C 作CE 与BD 垂直且交BD 延长线于E ,求证:2BD CE =.AMN BC D EEADFMB N C解析:如图,延长CE 、BA ,设交于F .则FBE ACF ∠=∠,AB AC =,得ABD ACF △△≌,CF BD =. 又BE CF ⊥,BE 平分FBC ∠,故BE 平分CF ,E 为CF 中点,所以2CE FC BD ==.4. 在ABC △中,已知60A ∠=︒,E 、F 、G 分别为AB 、AC 、BC 的中点,P 、Q 为ABC △形外两点,使PE AB ⊥,2AB PE =,QF AC ⊥,2AC QF =,若1GP =,求PQ 的长.5. 在梯形ABCD 的底边AD 上有一点E ,若ABE △、BCE △、CDE △的周长相等,求BC AD.6. ABC △内,60BAC ∠=︒,40ACB ∠=︒,P 、Q 分别在边BC 、CA 上,并且AP 、BQ 分别是BAC ∠、ABC∠的角平分线.求证:BQ AQ AB BP +=+. FAEDB CAB CG QP EF B CE DAA'。

初中数学竞赛全等三角形(含答案)

初中数学竞赛全等三角形(含答案)

全等三角形你见过两片完全相同的树叶吗?你见过两个完全相同的事物吗?也许你从未意识到这世界上还有完全相同。

在这里我们将引导你的思路,给你解题技巧:完全相同--全等三角形。

三解形是平面几何中最重要的图形,它的有关知识是今后我们学习四边形、多边形乃至立体几何的重要基础。

三角形全等的判定和性质是证明有关三角形问题的基础,必须熟练掌握。

判定两个三角形全等的方法有:SAS,ASA,AAS,SSS。

全等三角形的性质:全等三角形的对应边、对应角及其它对应元素相等。

例1:如图2-7-1,△ABC和△DCE均是等边三角形,B、C、E三点共线,AE交CD于G,BD交AC于F。

求证:① AE=BD;② CF=CG.思路① 证明△ACE≌△BCD。

证明① ∵ △ABC和△DCE都是等边三角形,∴ CB=CA, CD=CE,∠BCA=∠ECD=,∴∠BCD=∠ACE=,∴△BCD≌△ACE,∴ AE=BD。

思路② 证明△FCD≌△GCE。

证明② 由△BCD≌△DCE都是等边三角形可知∴ CD=CE,∠BCA=∠ECD=∴∠ACD=-∠BCA-∠ECD=∴△FCD≌△GCE,∴ CF=CG说明:证明两条线段相等的重要方法之一就是证明它们所在的两个三角形全等。

例2:如图2-7-2,在正方形ABCD中,M是AB的中点,MN⊥MD,BN平分∠CBE。

求证:MD=MN。

思路:取AD的中点P,连结PM,证明△DMP≌△MNB。

证明:取AD的中点P,连结PM,则有DP=MB。

∵DM⊥MN,∴∠DMA+∠BMN=,又由正方形ABCD 知∠A=,∴∠DMA+∠MDA=,∴∠BMN=∠MDA又∵BN平分∠CBE,∴∠MBN=又由P、M分别为AD、AB的中点,ABCD是正方形,得△PAM是等腰直角三角形,故∠DPM=。

∴∠DPM=∠MBN,∴△DPM≌△MBN,∴ DM=MN。

说明:本题中DM和MN所在的三角形不全等,这时就要考虑作出它们所在的新三角形,证明这两个新三角形全等。

初中数学《全等三角形》优质课件

初中数学《全等三角形》优质课件

所以AB=DE,AC=DF,BC=EF.
F
它们的对应角分别相等,所以
∠A=∠D,∠B=∠E
∠ACB=∠DFE.
C E
D
试一试4:
先写出全等式,再指出它们的对应边 和对应角
∵△ABC≌△DEC
∴AB=DE,AC=DC, BC=EC
∴∠A=∠D, ∠B=∠E, ∠ACB= ∠DCE.
A
C D
规律四:一对最长的边是对应边 一对最短的边是对应边
E B
试一试5:
先写出全等式,再指出它们的对应边 和对应角
FF FFFFFFA
∵△ABC≌△FDE
∴AB=FD,AC=FE, BC=DE
C EEEEEEEEE ∴∠A=∠F,
∠B=∠D, ∠ACB= ∠FED.
DDDDDDDDD
B
规律五:一对最大的角是对应角 一对最小的角是对应角
1、请指出下列全等三角形的对应边和对应角
形吗?你能把它分成三个全等三角形吗?四个呢?
总结:寻找对应元素的规律
(1)有公共边的,公共边是对应边; (2)有公共角的,公共角是对应角; (3)有对顶角的,对顶角是对应角; (4)两个全等三角形最大的边是对应边,
最小的边是对应边; (5)两个全等三角形最大的角是对应角,
最小的角是对应角;
作业:
1.习题1.1
2.思考: 下图是一个等边三角形,你能把它分成两个全等三角
所以BC=DE.
4、如图,已知ΔABE≌ΔACD,且∠1=∠2, ∠B=∠C,请指出其余的对应边和对应角.
A
分析:由ΔABE≌ΔACD以及
∠1=∠2, ∠B=∠C知:
B
2
D
∠ BAE与∠CAD是对应角,

全等三角形讲义整理讲义

全等三角形讲义整理讲义

全等三角形讲义整理讲义一、全等三角形的定义与判定条件1.1 定义全等三角形是指两个三角形的三边分别相等,三个角度也是完全相等的三角形。

1.2 判定条件两个三角形全等的条件有以下几点: - SSS(边边边):若两个三角形各边分别相等,则两个三角形全等。

- SAS(边角边):若两个三角形两边和夹角都相等,则两个三角形全等。

- ASA(角边角):若两个三角形的两角和一边相等,则两个三角形全等。

- RHS(直角斜边边):若两个直角三角形的斜边和一条直角边相等,则两个三角形全等。

二、全等三角形的性质2.1 全等三角形的对应角度和对应边长相等对于全等三角形,它的三个角度分别对应,三个边长也对应,也就是说:在全等三角形中,任意两个角度应相等,边长也是相等的。

2.2 全等三角形的任意一对对应边和对应角都相等对于全等三角形,若两个三角形是全等的,那么它们对应的任意一个角度和边长都是相等的。

2.3 全等三角形的对边平行对于全等三角形来说,如果我们将两个全等三角形重合,那么对应边就会重合,此时,它们的对边将会互相平行。

三、全等三角形的应用3.1 计算两个全等三角形之间的比例关系通过全等三角形的性质,我们可以计算出两个全等三角形之间的比例关系,这在解决一些类似于“影子问题”等数学题目时非常实用。

3.2 解决几何题目在解决几何题目时,有些问题常常需要使用到全等三角形的性质,例如,通过证明两个三角形全等,来计算出未知的边长或角度等。

四、常见误区4.1 认为两个形状相同的图形就是全等三角形形状相同的图形不一定是全等三角形,两个三角形只有在三边或者两边一角相等的情况下才能被认定为全等的。

4.2 认为两个三角形的相似一定就是全等的两个相似的三角形不一定是全等的三角形,相似三角形只是其中的边长成比例。

五、全等三角形是一种非常重要的基础概念,它的应用十分广泛,对于许多与求解边长、角度有关的几何题目都有很大的帮助,也对于对称性的研究、空间几何、画图以及设计等领域有着重要的意义。

《全等三角形》 讲义

《全等三角形》 讲义

《全等三角形》讲义一、全等三角形的定义能够完全重合的两个三角形叫做全等三角形。

全等用符号“≌”表示,读作“全等于”。

例如,在三角形 ABC 和三角形 A'B'C'中,如果将三角形 ABC 平移、旋转或翻转后,能够与三角形 A'B'C'完全重合,那么我们就说三角形ABC ≌三角形 A'B'C'。

二、全等三角形的性质1、全等三角形的对应边相等也就是说,如果三角形 ABC ≌三角形 A'B'C',那么 AB = A'B',BC = B'C',AC = A'C'。

2、全等三角形的对应角相等比如,在上述全等的两个三角形中,∠A =∠A',∠B =∠B',∠C =∠C'。

3、全等三角形的周长相等因为对应边相等,所以三角形的三条边相加的和也相等,即周长相等。

4、全等三角形的面积相等由于两个三角形能够完全重合,所以它们所覆盖的面积是一样的。

三、全等三角形的判定1、 SSS(边边边)如果两个三角形的三条边分别对应相等,那么这两个三角形全等。

例如,在三角形 ABC 和三角形 DEF 中,AB = DE,BC = EF,AC = DF,那么三角形 ABC ≌三角形 DEF。

2、 SAS(边角边)如果两个三角形的两条边及其夹角分别对应相等,那么这两个三角形全等。

比如,三角形 ABC 和三角形 A'B'C'中,AB = A'B',AC = A'C',∠A =∠A',则三角形 ABC ≌三角形 A'B'C'。

3、 ASA(角边角)如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。

举例来说,在三角形 MNP 和三角形 QRS 中,∠M =∠Q,∠N =∠R,MN = QR,那么三角形 MNP ≌三角形 QRS。

初中数学竞赛讲解教材 第五讲 三角形的五心

初中数学竞赛讲解教材   第五讲  三角形的五心

第五讲 三角形的五心三角形的外心、重心、垂心、内心及旁心,统称为三角形的五心.一、外心.三角形外接圆的圆心,简称外心.与外心关系密切的有圆心角定理和圆周角定理.例1.过等腰△ABC 底边BC 上一点P 引PM ∥CA 交AB 于M ;引PN ∥BA 交AC 于N .作点P 关于MN 的对称点P ′.试证:P ′点在△ABC 外接圆上.(杭州大学《中学数学竞赛习题》) 分析:由已知可得MP ′=MP =MB ,NP ′=NP =NC ,故点M 是△P ′BP 的外心,点N 是△P ′PC 的外心.有 ∠BP ′P =21∠BMP =21∠BAC , ∠PP ′C =21∠PNC =21∠BAC . ∴∠BP ′C =∠BP ′P +∠P ′PC =∠BAC .从而,P ′点与A ,B ,C 共圆、即P ′在△ABC 外接圆上. 由于P ′P 平分∠BP ′C ,显然还有P ′B :P ′C =BP :PC .例2.在△ABC 的边AB ,BC ,CA 上分别取点P ,Q ,S .证明以△APS ,△BQP ,△CSQ 的外心为顶点的三角形与△ABC 相似.(B ·波拉索洛夫《中学数学奥林匹克》)分析:设O 1,O 2,O 3是△APS ,△BQP ,△CSQ 的外心,作出六边形 O 1PO 2QO 3S 后再由外心性质可知 ∠PO 1S =2∠A , ∠QO 2P =2∠B ,∠SO 3Q =2∠C .∴∠PO 1S +∠QO 2P +∠SO 3Q =360°.从而又知∠O 1PO 2+∠O 2QO 3+∠O 3SO 1=360°将△O 2QO 3绕着O 3点旋转到△KSO 3,易判断△KSO 1≌△A B C P P M N 'A B C QK P O O O ....S 123O 2PO 1,同时可得△O 1O 2O 3≌△O 1KO 3.∴∠O 2O 1O 3=∠KO 1O 3=21∠O 2O 1K =21(∠O 2O 1S +∠SO 1K ) =21(∠O 2O 1S +∠PO 1O 2) =21∠PO 1S =∠A ; 同理有∠O 1O 2O 3=∠B .故△O 1O 2O 3∽△ABC .二、重心三角形三条中线的交点,叫做三角形的重心.掌握重心将每 条中线都分成定比2:1及中线长度公式,便于解题.例3.AD ,BE ,CF 是△ABC 的三条中线,P 是任意一点.证明:在△P AD ,△PBE ,△PCF 中,其中一个面积等于另外两个面积的和. (第26届莫斯科数学奥林匹克) 分析:设G 为△ABC 重心,直线PG 与AB ,BC 相交.从A ,C ,D ,E ,F 分别 作该直线的垂线,垂足为A ′,C ′, D ′,E ′,F ′.易证AA ′=2DD ′,CC ′=2FF ′,2EE ′=AA ′+CC ′, ∴EE ′=DD ′+FF ′.有S △PGE =S △PGD +S △PGF .两边各扩大3倍,有S △PBE =S △P AD +S △PCF .例4.如果三角形三边的平方成等差数列,那么该三角形和由它的三条中线围成的新三角形相似.其逆亦真.分析:将△ABC 简记为△,由三中线AD ,BE ,CF 围成的三角形简记为△′.G 为重心,连DE 到H ,使EH =DE ,连HC ,HF ,则△′就是△HCF .(1)a 2,b 2,c 2成等差数列⇒△∽△′.若△ABC 为正三角形,易证△∽△′.不妨设a ≥b ≥c ,有CF =2222221c b a -+, BE =2222221b a c -+, A A 'F F 'G E E 'D 'C 'P C B DAD =2222221a c b -+. 将a 2+c 2=2b 2,分别代入以上三式,得 CF =a 23,BE =b 23,AD =c 23. ∴CF :BE :AD =a 23:b 23:c 23 =a :b :c .故有△∽△′.(2)△∽△′⇒a 2,b 2,c 2成等差数列.当△中a ≥b ≥c 时,△′中CF ≥BE ≥AD .∵△∽△′,∴∆∆S S '=(a CF )2. 据“三角形的三条中线围成的新三角形面积等于原三角形面积的43”,有∆∆S S '=43. ∴22aCF =43⇒3a 2=4CF 2=2a 2+b 2-c 2 ⇒a 2+c 2=2b 2.三、垂心三角形三条高的交战,称为三角形的垂心.由三角形的垂心造成的四个等(外接)圆三角形,给我们解题提供了极大的便利. 例5.设A 1A 2A 3A 4为⊙O 内接四边形,H 1,H 2,H 3,H 4依次为△A 2A 3A 4,△A 3A 4A 1,△A 4A 1A 2,△A 1A 2A 3的垂心.求证:H 1,H 2,H 3,H 4四点共圆,并确定出该圆的圆心位置. (1992,全国高中联赛) 分析:连接A 2H 1,A 1H 2,H 1H 2,记圆半径为R .由△A 2A 3A 4知 .O A A A A 1234H H 1213212sin H A A H A ∠=2R ⇒A 2H 1=2R cos ∠A 3A 2A 4; 由△A 1A 3A 4得A 1H 2=2R cos ∠A 3A 1A 4.但∠A 3A 2A 4=∠A 3A 1A 4,故A 2H 1=A 1H 2.易证A 2H 1∥A 1A 2,于是,A 2H 1 A 1H 2, 故得H 1H 2 A 2A 1.设H 1A 1与H 2A 2的交点为M ,故H 1H 2与A 1A 2关于M 点成中心对称.同理,H 2H 3与A 2A 3,H 3H 4与A 3A 4,H 4H 1与A 4A 1都关于M点成中心对称.故四边形H 1H 2H 3H 4与四边形A 1A 2A 3A 4关于M 点成中心对称,两者是全等四边形,H 1,H 2,H 3,H 4在同一个圆上.后者的圆心设为Q ,Q 与O 也关于M 成中心对称.由O ,M 两点,Q 点就不难确定了.例6.H 为△ABC 的垂心,D ,E ,F 分别是BC ,CA ,AB 的中心.一个以H 为圆心的⊙H 交直线EF ,FD ,DE 于A 1,A 2,B 1,B 2,C 1,C 2.求证:AA 1=AA 2=BB 1=BB 2=CC 1=CC 2.(1989,加拿大数学奥林匹克训练题) 分析:只须证明AA 1=BB 1=CC 1即可.设 BC =a , CA =b ,AB =c ,△ABC 外 接圆半径为R ,⊙H 的半径为r . 连HA 1,AH 交EF 于M . A 21A =AM 2+A 1M 2=AM 2+r 2-MH 2=r 2+(AM 2-MH 2), ①又AM 2-HM 2=(21AH 1)2-(AH -21AH 1)2 =AH ·AH 1-AH 2=AH 2·AB -AH 2=cos A ·bc -AH 2, ② 而ABHAH ∠sin =2R ⇒AH 2=4R 2cos 2A , Aa sin =2R ⇒a 2=4R 2sin 2A . ∴AH 2+a 2=4R 2,AH 2=4R 2-a 2. ③ 由①、②、③有∥=∥=H H H M A B B A A B C C C F 12111222DEA 21A =r 2+bc a c b 2222-+·bc -(4R 2-a 2) =21(a 2+b 2+c 2)-4R 2+r 2. 同理,21BB =21(a 2+b 2+c 2)-4R 2+r 2, 21CC =21(a 2+b 2+c 2)-4R 2+r 2. 故有AA 1=BB 1=CC 1.四、内心三角形内切圆的圆心,简称为内心.对于内心,要掌握张角公式,还要记住下面一个极为有用的等量关系:设I 为△ABC 的内心,射线AI 交△ABC 外接圆于A ′,则有A ′I =A ′B =A ′C .换言之,点A ′必是△IBC 之外心(内心的等量关系之逆同样有用).例7.ABCD 为圆内接凸四边形,取 △DAB ,△ABC ,△BCD ,△CDA 的内心O 1, O 2,O 3, O 4.求证:O 1O 2O 3O 4为矩形.(1986,中国数学奥林匹克集训题)证明见《中等数学》1992;4例8.已知⊙O 内接△ABC ,⊙Q 切AB ,AC 于E ,F 且与⊙O 内切.试证:EF 中点P 是△ABC 之内心.(B ·波拉索洛夫《中学数学奥林匹克》)分析:在第20届IMO 中,美国提供的一道题实际上是例8的一种特例,但它增加了条件AB =AC .当AB ≠AC ,怎样证明呢? 如图,显然EF 中点P 、圆心Q ,BC 中点K 都在∠BAC 平分线上.易知AQ =αsin r . ∵QK ·AQ =MQ ·QN , ∴QK =AQQN MQ ⋅ =αsin /)2(r r r R ⋅-=)2(sin r R -⋅α. 由Rt △EPQ 知PQ =r ⋅αsin . A B CD O O O 234O 1A ααMB C KN ER O Q F r P∴PK =PQ +QK =r ⋅αsin +)2(sin r R -⋅α=R 2sin ⋅α. ∴PK =BK .α利用内心等量关系之逆定理,即知P 是△ABC 这内心.五、旁心三角形的一条内角平分线与另两个内角的外角平分线相交于 一点,是旁切圆的圆心,称为旁心.旁心常常与内心联系在一起, 旁心还与三角形的半周长关系密切.例9.在直角三角形中,求证:r +r a +r b +r c =2p .式中r ,r a ,r b ,r c 分别表示内切圆半径及与a ,b ,c 相切的旁切圆半径,p 表示半周.(杭州大学《中学数学竞赛习题》)分析:设Rt △ABC 中,c 为斜边,先来证明一个特性:p (p -c )=(p -a )(p -b ).∵p (p -c )=21(a +b +c )·21(a +b -c ) =41[(a +b )2-c 2] =21ab ; (p -a )(p -b )=21(-a +b +c )·21(a -b +c ) =41[c 2-(a -b )2]=21ab . ∴p (p -c )=(p -a )(p -b ). ① 观察图形,可得r a =AF -AC =p -b ,r b =BG -BC =p -a ,r c =CK =p .而r =21(a +b -c ) =p -c .∴r +r a +r b +r c=(p -c )+(p -b )+(p -a )+p=4p -(a +b +c )=2p .由①及图形易证.K r r r r O O O 213A OE C B a b c例10.M 是△ABC 边AB 上的任意一点.r 1,r 2,r 分别是△AMC ,△BMC ,△ABC 内切圆的半径,q 1,q 2,q 分别是上述三角形在∠ACB 内部的旁切圆半径.证明:11q r ·22q r =q r . (IMO -12)分析:对任意△A ′B ′C ′,由正弦定理可知OD =OA ′·2'sin A =A ′B ′·'''sin 2'sin B O A B ∠·2'sin A =A ′B ′·2''sin 2'sin 2'sin B A B A +⋅, O ′E = A ′B ′·2''sin 2'cos 2'cos B A B A +. ∴2'2''B tg A tg E O OD =. 亦即有 11q r ·22q r =2222B tg CNB tg CMA tg A tg ∠∠ =22B tg A tg =qr . 六、众心共圆这有两种情况:(1)同一点却是不同三角形的不同的心;(2)同一图形出现了同一三角形的几个心.例11.设在圆内接凸六边形ABCDFE 中,AB =BC ,CD =DE ,EF =F A .试证:(1)AD ,BE ,CF 三条对角线交于一点;(2)AB +BC +CD +DE +EF +F A ≥AK +BE +CF . (1991,国家教委数学试验班招生试题)分析:连接AC ,CE ,EA ,由已知可证AD ,CF ,EB 是△ACEA ...'B 'C 'O O 'E D的三条内角平分线,I 为△ACE 的内心.从而有ID =CD =DE , IF =EF =F A ,IB =AB =BC .再由△BDF ,易证BP ,DQ ,FS 是它的三条高,I 是它的垂心,利用 不等式有: BI +DI +FI ≥2·(IP +IQ +IS ).不难证明IE =2IP ,IA =2IQ ,IC =2IS . ∴BI +DI +FI ≥IA +IE +IC .∴AB +BC +CD +DE +EF +F A =2(BI +DI +FI ) ≥(IA +IE +IC )+(BI +DI +FI ) =AD +BE +CF .I 就是一点两心.例12.△ABC 的外心为O ,AB =AC ,D 是AB 中点,E 是△ACD的重心.证明OE 丄CD .(加拿大数学奥林匹克训练题)分析:设AM 为高亦为中线,取AC 中点F ,E 必在DF 上且DE :EF =2:1.设CD 交AM 于G ,G 必为△ABC 重心. 连GE ,MF ,MF 交DC 于K .易证: DG :GK =31DC :(3121-)DC =2:1. ∴DG :GK =DE :EF ⇒GE ∥MF .∵OD 丄AB ,MF ∥AB ,∴OD 丄MF ⇒OD 丄GE .但OG 丄DE ⇒G 又是△ODE之垂心.易证OE 丄CD .例13.△ABC 中∠C =30°,O 是外心,I 是内心,边AC 上的D点与边BC 上的E 点使得AD =BE =AB .求证:OI 丄DE ,OI =DE .(1988,中国数学奥林匹克集训题)分析:辅助线如图所示,作∠DAO 平分线交BC 于K . 易证△AID ≌△AIB ≌△EIB ,∠AID =∠AIB =∠EIB . 利用内心张角公式,有∠AIB =90°+21∠C =105°, Erdos ..I P A B C D E F Q SA B C D E F O K G O A BC D E F I K 30°∴∠DIE =360°-105°×3=45°.∵∠AKB =30°+21∠DAO =30°+21(∠BAC -∠BAO ) =30°+21(∠BAC -60°) =21∠BAC =∠BAI =∠BEI . ∴AK ∥IE .由等腰△AOD 可知DO 丄AK ,∴DO 丄IE ,即DF 是△DIE 的一条高.同理EO 是△DIE 之垂心,OI 丄DE .由∠DIE =∠IDO ,易知OI =DE .例14.锐角△ABC 中,O ,G ,H 分别是外心、重心、垂心.设外心到三边距离和为d 外,重心到三边距 离和为d 重,垂心到三边距离和为d 垂.求证:1·d 垂+2·d 外=3·d 重. 分析:这里用三角法.设△ABC 外接圆 半径为1,三个内角记为A ,B , C . 易知d 外=OO 1+OO 2+OO 3 =cos A +co sB +cos C ,∴2d 外=2(cos A +cos B +cos C ). ①∵AH 1=sin B ·AB =sin B ·(2sin C )=2sin B ·sin C ,同样可得BH 2·CH 3.∴3d 重=△ABC 三条高的和=2·(sin B ·sin C +sin C ·sin A +sin A ·sin B ) ②∴BCHBH sin =2, ∴HH 1=cos C ·BH =2·cos B ·cos C .同样可得HH 2,HH 3.∴d 垂=HH 1+HH 2+HH 3=2(cos B ·cos C +cos C ·cos A +cos A ·cos B ) ③欲证结论,观察①、②、③,须证(cos B ·cos C +cos C ·cos A +cos A ·cos B )+( cos A + cos B + cos C )=sin B ·sin C +sin C ·sin A +sin A ·sin B .即可.B C O IAO G H O G H G O G H 123112233练 习 题1.I 为△ABC 之内心,射线AI ,BI ,CI 交△ABC 外接圆于A ′, B ′,C ′.则AA ′+BB ′+CC ′>△ABC 周长.(1982,澳大利 亚数学奥林匹克)2.△T ′的三边分别等于△T 的三条中线,且两个三角形有一组角相等.求证这两个三角形相似.(1989,捷克数学奥林匹克)3.I 为△ABC 的内心.取△IBC ,△ICA ,△IAB 的外心O 1,O 2,O 3.求证:△O 1O 2O 3与△ABC 有公共的外心.(1988,美国数学奥林匹克)4.AD 为△ABC 内角平分线.取△ABC ,△ABD ,△ADC 的外心O ,O 1,O 2.则△OO 1O 2是等腰三角形.5.△ABC 中∠C <90°,从AB 上M 点作CA ,CB 的垂线MP ,MQ .H 是△CPQ 的垂心.当M 是AB 上动点时,求H 的轨迹.(IMO -7)6.△ABC 的边BC =21(AB +AC ),取AB ,AC 中点M ,N ,G 为重心,I 为内心.试证:过A ,M ,N 三点的圆与直线GI 相切.(第27届莫斯科数学奥林匹克)7.锐角△ABC 的垂心关于三边的对称点分别是H 1,H 2,H 3.已知:H 1,H 2,H 3,求作△ABC .(第7届莫斯科数学奥林匹克)8.已知△ABC 的三个旁心为I 1,I 2,I 3.求证:△I 1I 2I 3是锐角三角形.9.AB ,AC 切⊙O 于B ,C ,过OA 与BC 的交点M 任作⊙O 的弦EF .求证:(1)△AEF 与△ABC 有公共的内心;(2)△AEF 与△ABC 有一个旁心重合.。

初中数学竞赛培训讲义-第五讲-全等三角形

初中数学竞赛培训讲义-第五讲-全等三角形

ODCBA21FEDCBAFEDCBA初中数学竞赛培训讲义第四讲 三角形及全等三角形二 赛题精讲 1 三角形中的边角关系例1 周长为30,各边长互不相等且都是整数的三角形有几个?练习 在ABC D 中,5AC =,4AD =中线,求边AB 的取值范围.2 全等三角形的性质例 2 在ABC D 中和ABD D 中,,AC BD 交于点O ,90ACBADB ?? ,请再添加一个条件使ABC D ≌ABD D ,并证明你所提出的命题.练习 如图, 90,,,EF B C AE AF ?靶=?给出下列结论:①12? ,②BE CF =,③ACN D ≌ABM D ,④CD DN =,其中正确的结论是 (把你认为所有正确的结论的序号填上)3 构造全等证明几何问题 (1)直接连线添加辅助线例3 如图,点C 在线段AB 上,,,,DA AB EB AB FC AB ^^^且DA BC =,EB AC =,FC AB =,51AFB? ,求DFE Ð的度数.321EDC B A GNM EDC B AQPF EDCBA练习 1、如图,A 在DE 上,F 在AB 上,且AC CE =,123??,求DE 的长等于( ).....A D C B B C C A B D A E A C+2、如图,点C 在线段AB 上,分别以AC 和BC 为边向线段AB 同侧作等边三角形ACD D 和BCE D ,,,M N G 分别是,;,;,AE BD BD CE AE CD 的交点.(1) 找出图中的所有全等三角形,并予以证明. (2) 求AMB Ð的度数. (3) 判断CNG D 的形状.3、如图,,BD CE 分别是ABC D 的边,AC AB 上的高,点P 在BD 的延长线上,BP AC =,点Q 在CE 上,CQ AB =.求证:(1)AP AQ =,(2)AP AQ ^.(2)与中点有关的辅助线构造例 4 如图,在ABC D 和A B C ⅱD 中,,AB A B AC A C ⅱⅱ==,AM 和A M ⅱ分别是ABC D 和DCBAM /C /B /A /MCBAFEDCBABA B C ⅱ D 的中线,且AM =A M ⅱ,求证: ABC D ≌A B C ⅱD .练习 ABC D 中,D 是BC 的中点,DE DF ^,判断BE CF +与EF 的大小关系,并证明你的结论.(2)与角平分线有关的辅助线构造例5 如图,在四边形ABCD 中,BC BA >,AD CD =,BD 平分ABC Ð, 求证 180A C ??例6 ABC D 中,60ABC ? ,,AD CE 分别平分,BAC ACB 行,求证:AC AE CD =+.DCB AE DCBADCBAFDA练习 1、如图,在ABC D 中,AD 平分BAC Ð,BD CD =,求证:AB AC =2、 如图,在ABC D 中,90BAC ? ,AB AC =,BE 平分ABC Ð,CE BE ^,求证:12CE BD =.3、 如图,在ABC D 中,,100AB AC A =? ,ABC Ð的平分线交AC 于D .求证:AD BD BC +=(3)截长不短法+旋转式全等的构造例7 如图,正方形ABCD 中,,E F 分别是边,BC CD 上的点,若BE DF EF +=, 求EAF Ð的度数.QPDC BAEDCBA MDCBADCBA练习 1、 在正方形ABCD 中,P 是上一点,AQ 平分PAD Ð交DC 于Q . 求证:PA PB QD =+2、如图,90,,C AC BC AD ?是BAC Ð的角平分线,求证:AC CD AB +=.3、如图,已知2,90AB CD AE BC DE ABCAED===+=?? ,求五边形ABCDE 的面积.练习题 (每道20分)1、如图,90BC ? ,M 是BC 的中点,DM 平分ADC Ð,求证:AM 平分DAB Ð.NMCBAD CBAFECBAD FEADCB2 如图,ABC D 中,过点A 分别作,ABC ACB 行 外角的平分线的垂线,垂足分别为,M N 设ABC D 的三边长,,BC CA AB 分别为,,a b c ,求线段MN 的长.3 如图,四边形ABCD 中,,60,120AB AD BAD BCD =?靶= ,求证:BC CD AC +=4 在ABC D 中,45ABC? ,AD 是BAC Ð的平分线,EF 的垂直平分线AD 交BC 的延长线于F ,试求CAF Ð的大小.5 如图,D 是ABC D 的BC 边的中点,分别以,AB AC 为斜边向ABC D 外作直角三角形ABE D 和ACF D ,若ABEACF ? ,求证:DE DF =1. 上帝对人说道:“我医治你,所以要伤害你;我爱你,所以要惩罚你。

初中数学全等三角形精讲共9页

初中数学全等三角形精讲共9页

七年级数学三角形精讲[知识点归纳总结]1. 三角形的三边之间的关系三角形任意两边之和大于第三边,三角形任意两边之差小于第三边。

2. 三角形的内角和三角形三个内角的和等于180°。

3. 三角形全等的条件(1)三边对应相等的两个三角形相等,简写为“SSS”。

(2)两角和它们的夹边对应相等的两个三角形全等,简写成“ASA”。

(3)两角和其中一角的对边对应相等的两个三角形全等,简写成“AAS”。

(4)两边和它们的夹角对应相等的两个三角形全等,简写成“SAS”。

(5)斜边和一条直角边对应相等的两个直角三角形全等,简写成“HL”。

4. 全等三角形的性质全等三角形的对应角相等,对应边相等。

5. 三角形的外角性质三角形的一个外角等于和它不相邻的两个内角的和。

专题总复习(一)全等三角形、轴对称一、复习目标:1、理解全等三角形概念及全等多边形的概念.2、掌握并会运用三角形全等的判定和性质,能应用三角形的全等解决一些实际问题.3、通过复习,能够应用所学知识解决一些实际问题,提高学生对空间构造的思考能力.二、重难点分析:1、全等三角形的性质与判定;2、全等三角形的性质、判定与解决实际生活问题.三、知识点梳理:知识点一:全等三角形的概念——能够完全重合的两个三角形叫全等三角形.知识点二:全等三角形的性质.(1)全等三角形的对应边相等. (2)全等三角形的对应角相等.知识点三:判定两个三角形全等的方法.(1)SSS (2)SAS (3)ASA (4)AAS (5)HL(只对直角三形来说)知识点四:寻找全等三形对应边、对应角的规律.①全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.②全等三角形对应边所对的角是对应角,两个对应边所夹的角是对应角.③有公共边的,公共边一定是对应边.④有公共角的,公共角一定是对应角.⑤有对顶角的,对顶角是对应角.⑥全等三角形中的最大边(角)是对应边(角),最小边(角)是对应边(角).知识点五:找全等三角形的方法.(1)一般来说,要证明相等的两条线段(或两个角),可以从结论出发,看它们分别落在哪两具可能的全等三角形中.(常用的办法)(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等.(3)可以从已知条件和结论综合考虑,看它们能否一同确定哪两个三角形全等.(4)如无法证证明全等时,可考虑作辅助线的方法,构造成全等三角形.知识点六:角平分线的性质及判定.(1)角平分线的性质:角平分线上的点到角两边的距离相等.(2)角平分线的判定:在角的内部到角的两边距离相等的点在角平分线上.(3)三角形三个内角平分线的性质:三角形三条角平分线交于一点,且到三角形三边距离相等.知识点七:证明线段相等的方法.(重点)(1)中点性质(中位线、中线、垂直平分线)(2)证明两个三角形全等,则对应边相等(3)借助中间线段相等.知识点八:证明角相等的方法.(重点)(1)对顶角相等;(2)同角或等角的余角(或补角)相等;(3)两直线平行,内错角相等、同位角相等;(4)角平分线的定义;(5)垂直的定义;(6)全等三角形的对应角相等;(7)三角形的外角等于与它不相邻的两内角和.知识点九:全等三角形中几个重要的结论.(1)全等三角形对应角的平分线相等;(2)全等三角形对应边上的中线相等;(3)全等三角形对应边上的高相等.知识点十:三角形中常见辅助线的作法.(重难点)(1)延长中线构造全等三角形(倍长线段法);(2)引平行线构造全等三角形;(3)作垂直线段(或高);(4)取长补短法(截取法).【典型例题】例1. 已知:如图,△ABC中,AB=AC,D、E、F分别在AB、BC、CA上,且BD=CE,∠DEF=∠B,图中是否存在和△BDE全等的三角形?说明理由。

[初二数学 第5讲 全等三角形]讲义教师版

[初二数学 第5讲 全等三角形]讲义教师版

全等三角形1.正确理解全等的概念,能够识别全等图形;2.能够准确找到全等的对应边、对应角,会进行全等三角形的表示;3.能够利用全等三角形的性质进行相关的计算.1.全等三角形对应边、对应角的识别;2.全等三角形的性质及其相关计算.全等的概念及其表示1、全等形的概念:能够完全重合的两个图形叫做全等形.2、全等三角形的概念:能够完全重合的两个三角形叫做全等三角形.3、全等的符号表示:“全等”用符号“≌”表示.注意:在记两个三角形全等时,通常把对应顶点写在对应位置上.4、全等的对应顶点、对应边、对应角(1)把两个全等三角形重合到一起,重合的顶点叫做对应顶点;(2)把两个全等三角形重合到一起,重合的边叫做对应边;(3)把两个全等三角形重合到一起,重合的角叫做对应角.例1.下列图形中与已知图形全等的是()A.B.C.D.【答案】B【解析】解:A、圆里面的正方形与已知图形不能重合,错;B、与已知图形能完全重合,正确;C、中间是长方形,与已知图形不重合,错;D、中间是长方形,与已知图形不重合,错.故选B练习1.下列选项中,和如图全等的图形是()A.B.C.D.【答案】D【解析】解:如图全等的图形只有D选项符合,故选D.练习2.下列图形中,是由多个全等图形组成的图案的是()A.B.C.D.【答案】C【解析】解:A、组成图形的三个图形不全等,故本选项错误;B、组成图形的两个图形不全等,故本选项错误;C、是由10个全等的图形组成,故本选项正确;D、组成图形的几个图形不全等,故本选项错误.故选C.根据全等的定义识别全等的图形,图形全等的本质就是经过移动后能够完全重合.例2.下列说法正确的是()A.面积相等的两个长方形全等B.周长相等的两个长方形全等C.形状相同的两个长方形全等D.能够完全重合的两个长方形全等【答案】D【解析】解:根据能够完全重合的两个图形是全等图形可知,能够完全重合的两个长方形全等,面积相等,周长相等,形状相同,都不一定能够完全重合.所以A、B、C选项不一定正确,D选项一定正确.故选D.练习1.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【答案】C【解析】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.利用语言描述图形的特征,再根据特征进行全等的判别,此类问题较直接看图辨别的类型难度要稍大一些,需要学生对所描述的图形的几何性质要相对熟悉一些,并能够根据几何性质去判断图形的具体形状是否可以固,从而判断是否全等.例3.用两个全等的直角三角形拼成凸四边形,拼法共有()A.3种B.4种C.5种D.6种【答案】B【解析】解:如图,可拼成如上图所示的四种凸四边形.故选B.练习1.用两个全等的三角形一定不能拼出的图形是()A.等腰三角形B.直角梯形C.菱形D.矩形【答案】B【解析】解:用两个全等的直角三角形就能拼出等腰三角形,A可以;如图两个全等的正三角形就可以拼出菱形,C可以;两个全等的直角三角形时就可以拼出矩形,D可以;不管用什么形状的两个全等的三角形不管怎样也拼不出直角梯形.故选B.利用全等形进行新图形的拼接,需要注意分类讨论思想的应用,将不同的边拼接在一起,得到的新图形的形状是不同的.例4.把下列各图分成若干个全等图形,请在原图上用虚线标出来.【答案】解:如图所示:【解析】根据能够完全重合的图形叫做全等形,将第一个图分割成5个正方形,将第二个图分割成3个直角三角形即可.练习1.你能把如图所示的(a)长方形分成2个全等图形?把如图所示的(b)能分成3个全等三角形吗?把如图所示的(c)分成4个全等三角形吗?【答案】解:如图所示.【解析】根据长方形的性质以及全等图形的概念,作出一条对角线即可分成两个全等三角形;根据等边三角形的轴对称性,中心与三个顶点的连线将三角形分成三个全等三角形;先将长方形分成两个全等长方形,再分别作出一条对角线即可分成四个全等三角形.在将已知图形分割成全等的新图形时,需要注意全等的特点是什么,要从全等的特点出发进行分割.例 5.已知A与A′,B与B′是对应点,则≌ABC和≌A′B′C′全等用符号语言表示为:.【答案】≌ABC≌≌A′B′C′【解析】解:≌A与A′,B与B′是对应点,≌≌ABC≌≌A′B′C′,故答案为:≌ABC≌≌A′B′C′.练习1.如图,≌ABC≌≌DEF,≌A和≌D是对应角,AB和DE是对应边,那么还有对应角是,,对应边是,.【答案】≌B=≌E,≌C=≌F;BC=EF,AC=DF【解析】解:≌≌ABC≌≌DEF,≌A和≌D是对应角,AB和DE是对应边,≌相等的边有:AB=DE,BC=EF,AC=DF;相等的角有:≌A=≌D,≌B=≌E,≌C=≌F.故答案为≌B=≌E,≌C=≌F;BC=EF,AC=DF.练习2.在≌ABC中,≌B=≌C,与≌ABC全等的三角形有一个角是100°,那么在≌ABC中与这100°角对应相等的角是()A.≌A B.≌B C.≌C D.≌B或≌C【答案】A【解析】解:在≌ABC中,≌≌B=≌C,≌≌B、≌C不能等于100°,≌与≌ABC全等的三角形的100°的角的对应角是≌A.故选:A.在用全等符号表示两三角形全等时,一定要注意将对应的点写在对应的位置上,这样方便找到对应边和对应角.在最开始学的时候就养成这样的好习惯,是非常有必要的.全等的性质及其相关计算1、全等三角形的性质性质1:全等三角形的对应边相等性质2:全等三角形的对应角相等注意:(1)全等三角形的对应边上的高、中线以及对应角的平分线相等;(2)全等三角形的周长相等,面积相等;(3)平移、翻折、旋转前后的图形全等.2、关于全等三角形的性质应注意(1)全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边;(2)要正确区分对应边与对边,对应角与对角的概念对应边、对应角是对两个三角形而言,而对边、对角是对同一个三角形的边和角而言的,对边是指同一个三角形中角的对边,对角是指同一个三角形中边的对角.例1.如图,已知≌ABC≌≌DEB,点E在AB上,若DE=8,BC=5,线AE的长为()A.3B.5C.6D.4【答案】A【解析】解:≌≌ABC≌≌DEB,≌AB=DE=8,BE=BC=5,≌AE=AB﹣BE=3,故选:A.练习1.如图,已知≌ABC≌≌DAE,BC=2,DE=5,则CE的长为()A.2B.2.5C.3D.3.5【答案】C【解析】解:≌≌ABC≌≌DAE,≌AC=DE=5,BC=AE=2,≌CE=5﹣2=3.故选C.练习2.下列说法错误的是()A.全等三角形对应边上的中线相等B.面积相等的两个三角形是全等三角形C.全等三角形对应边上的高相等D.全等三角形对应角平分线相等【答案】B【解析】解:A、全等三角形对应边上的中线相等,正确不合题意;B、面积相等的两个三角形不一定是全等三角形,故原式错误符合题意;C、全等三角形对应边上的高相等,正确不合题意;D、全等三角形对应角平分线相等,正确不合题意.故选B.全等的一个典型性质就是对应边相等,所以在有全等形的求线段长度的题目中,一定要注意对全等对应边相等这一性质的应用.同时对于两个全等的三角形来说,不仅对应边相等,对应的角平分线、中线、高线也分别是相等的,这就为全等形中计算线段的长度提供了又一个理论依据.例2.如图,在≌ABC中,D、E分别是AC、BC上的点,若≌ADB≌≌EDB≌≌EDC,则≌C的度数是()A.15°B.20°C.25°D.30°【答案】D【解析】解:≌≌ADB≌≌EDB≌≌EDC,≌AB=BE=EC,≌ABD=≌DBE=≌C,≌≌A=90°,≌≌C=30°,故选:D.练习1.如图,两个三角形为全等三角形,则≌α的度数是()A.72°B.60°C.58°D.50°【答案】A【解析】解:根据三角形内角和可得≌1=180°﹣50°﹣58°=72°,因为两个全等三角形,所以≌α=≌1=72°,故选A.全等的另一个典型性质是对应角相等,在全等形存在的题目中进行角度计算时,一定要注意对这一性质的应用.全等性质中常见模型的识别在利用全等三角形的性质进行相关的边、角计算时,除了直接利用性质外,还需要对一些常见的几何结构能够准确识别,从而逐步建立几何感知能力.如:(1)平移型:(2)旋转型(3)翻折型(4)对调性型(5)共角型(6)共边型——其本质也是翻折型(7)一线三等角之三垂直模型例1.如图,已知≌ABC≌≌DEF,≌A=85°,≌B=60°,AB=8,EH=2.(1)求角F的度数与DH的长;(2)求证:AB≌DE.【答案】解:(1)≌≌A=85°,≌B=60°,≌≌ACB=180°﹣≌A﹣≌B=35°,≌≌ABC≌≌DEF,AB=8,≌≌F=≌ACB=35°,DE=AB=8,≌EH=2,≌DH=8﹣2=6;(2)证明:≌≌ABC≌≌DEF,≌≌DEF=≌B,≌AB≌DE.【解析】(1)根据三角形内角和定理求出≌ACB,根据全等三角形的性质得出AB=DE,≌F=≌ACB,即可得出答案;(2)根据全等三角形的性质得出≌B=≌DEF,根据平行线的判定得出即可.练习1.如图,≌ABC≌≌DEF,AC≌DF,则≌C的对应角为()A.≌F B.≌AGE C.≌AEF D.≌D【答案】A【解析】解:≌AC≌DF,≌≌D=≌BAC;≌≌ABC≌≌DEF,≌≌ABC与≌DEF的对应角相等;又≌C是≌ABC的一个内角,≌≌C的对应角应≌DEF的一个内角;A、≌AGE不是≌DEF的一个内角,不符合题意;B、≌AEF不是≌DEF的一个内角,不符合题意;C、≌D与≌BAC是对应角,不符合题意;故选A.注意平移型全等形的识别,平移的距离可以有多种情况,两个图形可以没有公共的部分,这也是平移型的一种典型情况,在授课过程中注意帮助学生建立这种模型意识.例 2.已知:如图,≌ABC≌≌AEF,AB=AE,≌B=≌E,则对于结论≌AC=AF,≌≌FAB=≌EAB,≌EF=BC,≌≌EAB=≌FAC,其中正确结论的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】解:≌≌ABC≌≌AEF,≌AC=AF,故≌正确;≌EAF=≌BAC,≌≌FAC=≌EAB≠≌FAB,故≌错误;EF=BC,故≌正确;≌EAB=≌FAC,故≌正确;综上所述,结论正确的是≌≌≌共3个.故选C.练习1.如图,≌ABC≌≌DBE,≌DBC=150°,≌ABD=40°,则≌ABE的度数是()A.70°B.65°C.60°D.55°【答案】A【解析】解:≌≌DBC=150°,≌ABD=40°,≌≌ABC=110°,≌≌ABC≌≌DBE,≌≌DBE=≌ABC=110°,≌≌ABE=≌DBE﹣≌ABD=70°,故选:A.注意旋转型全等形的识别,旋转的角度也可以有很多中,两个图形可以没有公共的部分,这也是旋转的一种典型情况,在授课过程中注意帮助学生建立这种模型意识.例3.如图,已知≌ABC≌≌DCB,AB=10,≌A=60°,≌ABC=80°,那么下列结论中错误的是()A.≌D=60°B.≌DBC=40°C.AC=DB D.BE=10【答案】D【解析】解:≌≌A=60°,≌ABC=80°,≌≌ACB=40°,≌≌ABC≌≌DCB,≌≌D=≌A=60°,≌DBC=≌ACB=40°,AC=BD,故A,B,C正确,故选D.练习1.如图,点E,F在线段BC上,≌ABF与≌DEC全等,其中点A与点D,点B与点C 是对应顶点,AF与DE交于点M,则≌DEC等于()A.≌B B.≌A C.≌EMF D.≌AFB【答案】D【解析】解:≌≌ABF与≌DEC全等,点A与点D,点B与点C是对应顶点,≌≌ABF≌≌DCE,≌≌DEC=≌AFB,故选:D.注意翻折型全等形的识别,翻折的本质是轴对称,其中轴对称的知识会在下一章中学到,其中对称轴的位置决定了翻折前后形成的两个图形的位置关系,建议老师在讲解旋转、翻折、平移这三个模型时,要以动态的思想来分析、帮助学生理解不同的形式产生的原因,在授课过程中注意帮助学生建立这种模型意识.例4.如图,≌ABD≌≌CDB,下面四个结论中不正确的是()A.≌ABD和≌CDB的面积相等B.≌ABD和≌CDB的周长相等C.≌A+≌ABD=≌C+≌CBD D.AD≌BC,且AD=BC【答案】C【解析】解:≌≌ABD≌≌CDB,≌≌ADB=≌CBD,AD=BC,≌ABD和≌CDB的面积相等,≌ABD和≌CDB的周长相等,≌AD≌BC,则选项A,B,D一定正确.由≌ABD≌≌CDB不一定能得到≌ABD=≌CBD,因而≌A+≌ABD=≌C+≌CBD不一定成立.故选C.练习1.如图,≌ABC≌≌BAD,若AB=6、AC=4、BC=5,则≌BAD的周长为.【答案】15【解析】解:≌≌ABC≌≌BAD,≌AD=CB=5,BD=AC=4,≌AB=6,≌≌BAD的周长为:5+4+6=15,故答案为:15.对调型的全等也有不同的位置、不同的情况,其中有一条边完全重合的情况构成的是平行四边形(在人教版初二下学期的课本中会学到),对于这种类型的全等,一定要注意区分其对应点和对应边分别是什么.例5.如图:若≌ABE≌≌ACF,且AB=5,AE=2,则EC的长为()A.2B.3C.5D.2.5【答案】B【解析】解:≌≌ABE≌≌ACF,AB=5,≌AC=AB=5,≌AE=2,≌EC=AC﹣AE=5﹣2=3,故选B.练习1.如图,≌ABE≌≌ACF.若AB=5,AE=2,BE=4,则CF的长度是()A.2B.5C.4D.3【答案】C【解析】解:≌≌ABE≌≌ACF,≌CF=BE=4,故选:C.练习2.已知如图,≌OAD≌≌OBC,且≌O=70°,≌C=25°,则≌OAD=()A.95°B.85°C.75°D.65°【答案】B【解析】解:≌≌OAD≌≌OBC,≌≌D=≌C=25°,≌≌O=70°,≌≌OAD=180°﹣25°﹣70°=85°,故选:B.共角模型其本质也是翻折的一种,由于它有一个公共角,其情况比较特殊,所以单独拿出来分析,此种模型在下一节的全等判定中出现的频率很高,其中蕴藏着两组全等三角形,两者之间的转化很经典.例6.如图,≌ABC≌≌DCB,若AC=7,BE=5,则DE的长为()A.2B.3C.4D.5【答案】A【解析】解:≌≌ABC≌≌DCB,≌BD=AC=7,≌BE=5,≌DE=BD﹣BE=2,故选A.练习1.如图,已知≌ABC≌≌BAD,A和B,C和D分别是对应顶点,且≌C=60°,≌ABD=35°,则≌BAD的度数是()A.60°B.35°C.85°D.不能确定【答案】C【解析】解:≌≌ABC≌≌BAD,≌C=60°,≌≌D=≌C=60°,≌≌ABD=35°,≌≌BAD=180°﹣≌D﹣≌ABD=180°﹣60°﹣35°=85°,故选C.共边型全等其本质也是翻折型,是翻折的一个特殊情况.例7.如图,E为线段AB上一点,AC≌AB,DB≌AB,≌ACE≌≌BED.(1)试猜想线段CE与DE的位置关系,并证明你的结论;(2)求证:AB=AC+BD.【答案】(1)CE≌DE,证明:≌AC≌AB,DB≌AB,≌≌A=≌B=90°,≌≌C+≌CEA=90°,≌≌ACE≌≌BED,≌≌C=≌DEB,≌≌CEA+≌DEB=90°,≌≌CED=180°﹣90°=90°,≌CE≌DE;(2)证明:≌≌ACE≌≌BED,≌AC=BE,BD=AE,≌AB=AE+BE=AC+BD.【解析】(1)求出≌A=≌B=90°,推出≌C+≌CEA=90°,根据全等得出≌C=≌DEB,推出≌CEA+≌DEB=90°即可;(2)根据全等三角形的性质得出AC=BE,BD=AE,即可得出答案.练习1.如图,已知Rt≌ABC≌Rt≌CDE,≌B=≌D=90°,且B,C,D三点共线.试说明≌ACE=90°.【答案】证明:≌Rt≌ABC≌Rt≌CDE,≌≌BCA=≌CED,≌≌DCE是直角三角形,≌≌CED+≌ECD=90°,≌≌BCA+≌ECD=90°,≌≌ACE=180°-90°=90°.【解析】根据Rt≌ABC≌Rt≌CDE可得≌BCA=≌CED,再根据直角三角形两锐角互余可得≌CED+≌ECD=90°,进而得到≌BCA+≌ECD=90°,再根据角之间的关系可得≌ACE=90°.三垂直模型其本质也是一种旋转,由于其旋转中心不容易确定,所以将此类情况单独拿出来分析,而三垂直的更一般的情况是一线三等角,它是初三相似中非常重要的一个模型.本次课重点讲解三角形全等的性质及其相关计算,其中需要学生特别关注的就是一些常见的全等的模型,这也为下一节讲解三角形全等的判定作铺垫,在学习全等三角形章节一定要着重关注常见的全等模型,这对计算和证明都有很好的帮助.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

O
D
C
B
A
2
1F
E
D
C
B
A
F
E
D
C
B
A
初中数学竞赛培训讲义
第四讲 三角形及全等三角形
二 赛题精讲 1 三角形中的边角关系
例1 周长为30,各边长互不相等且都是整数的三角形有几个?
练习 在ABC D 中,5AC =,4AD =中线,求边AB 的取值范围.
2 全等三角形的性质
例 2 在ABC D 中和ABD D 中,,AC BD 交于点O ,90ACB
ADB ?? ,请再添加一个条件使
ABC D ≌ABD D ,并证明你所提出的命题.
练习 如图, 90,,,E
F B C AE AF ??靶=?给出下列结论:①12? ,②BE CF =,③
ACN D ≌ABM D ,④CD DN =,其中正确的结论是 (把你认为所有正确的结论的序号
填上)
3 构造全等证明几何问题 (1)直接连线添加辅助线
例3 如图,点C 在线段AB 上,,,,DA AB EB AB FC AB ^^^且DA BC =,
EB AC =,FC AB =,51AFB
? ,求DFE Ð的度数.
321
E
D
B A G
N
M E
D
C B A
Q
P
F E
D
C
B
A
练习 1、如图,A 在DE 上,F 在AB 上,且AC CE =,123??,求DE 的长等于( ).
....A D C B B C C A B D A E A C
+
2、如图,点C 在线段AB 上,分别以AC 和BC 为边向线段AB 同侧作等边三角形ACD D 和
BCE D ,,,M N G 分别是,;,;,AE BD BD CE AE CD 的交点.
(1) 找出图中的所有全等三角形,并予以证明. (2) 求AMB Ð的度数. (3) 判断CNG D 的形状.
3、如图,,BD CE 分别是ABC D 的边,AC AB 上的高,点P 在BD 的延长线上,BP AC =,点Q 在
CE 上,CQ AB =.求证:(1)AP AQ =,(2)AP AQ ^.
(2)与中点有关的辅助线构造
例 4 如图,在ABC D 和A B C ⅱ
D 中,,AB A B AC A C ⅱⅱ==,AM 和A M ⅱ分别是ABC D 和
D
C
B
A
M /
C /
B /
A /
M
C
B
A
F
E
D
C
B
A
D
B
A B C ⅱ D 的中线,且AM =A M ⅱ,求证: ABC D ≌A B C ⅱ D .
练习 ABC D 中,D 是BC 的中点,DE DF ^,判断BE CF +与EF 的大小关系,并证明你的结论.
(2)与角平分线有关的辅助线构造
例5 如图,在四边形ABCD 中,BC BA >,AD CD =,BD 平分ABC Ð, 求证 180A C ??
例6 ABC D 中,60ABC ? ,,AD CE 分别平分,BAC ACB 行,求证:AC AE CD =+.
D
C
B A
E D
C
B
A
D
C
B
A
F
D
A
练习 1、如图,在ABC D 中,AD 平分BAC Ð,BD CD =,求证:AB AC =
2、 如图,在ABC D 中,90BAC ? ,AB AC =,BE 平分ABC Ð,CE BE ^,
求证:1
2
CE BD =.
3、 如图,在ABC D 中,,100AB AC A =? ,ABC Ð的平分线交AC 于D .
求证:AD BD BC +=
(3)截长不短法+旋转式全等的构造
例7 如图,正方形ABCD 中,,E F 分别是边,BC CD 上的点,若BE DF EF +=, 求EAF Ð的度数.
Q
P
D
B
A
E
D
C
B
A M
D
C
B
A
D
C
B
A
练习 1、 在正方形ABCD 中,P 是上一点,AQ 平分PAD Ð交DC 于Q . 求证:PA PB QD =+
2、如图,90,,C AC BC AD ??是BAC Ð的角平分线,求证:AC CD AB +=.
3、如图,已知2,90AB CD AE BC DE ABC
AED
===+=?? ,求五边形
ABCDE 的面积.
练习题 (每道20分)
1、如图,90B
C ?? ,M 是BC 的中点,
DM 平分ADC Ð,求证:AM 平分DAB Ð.
N
M
C
B
A
D C
B
A
F
E
C
B
A
D F
E
A
D
C
B
2 如图,ABC D 中,过点A 分别作,ABC ACB 行 外角的平分线的垂线,垂足分别为,M N 设ABC D 的三
边长,,BC CA AB 分别为,,a b c ,求线段MN 的长.
3 如图,四边形ABCD 中,,60,120AB AD BAD BCD =?靶= ,
求证:BC CD AC +=
4 在ABC D 中,45ABC
? ,AD 是BAC Ð的平分线,
EF 的垂直平分线AD 交BC 的延长线于F ,试求CAF Ð的大小.
5 如图,D 是ABC D 的BC 边的中点,分别以,AB AC 为斜边向ABC D 外作直角三角形ABE D 和
ACF D ,若ABE
ACF ? ,求证:DE DF =。

相关文档
最新文档