2018年春南安三中高二年理科数学期中考试卷
最新-南安二中2018学年度第一学期期中测试高二数学 精品
2018——2018学年度第一学期期中测试高 二 数 学时间:120分钟 分值:100分第Ⅰ卷一、选择题(每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案填在本大题后的表格中.) 1、点P(2 , 5)关于直线x + y=0对称点的坐标是( )A .(5,2)B .(2,-5)C .(-5,-2)D .(-2,-5)2、若a , b 是任意实数且a > b,则( )A 、22b a >B 、1<abC 、0)lg(>-b aD 、ba ⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛21213、直线0543=+-y x 关于y 轴对称的直线方程是( ) A. 0543=-+y x B. 0543=++y xC. 0543=-+-y xD. 0543=++-y x4、方程052422=+-++m y mx y x 表示圆的充要条件是( )A. 141<<mB. 1>mC. 41<mD. 41<m 或1>m5、已知:1log 21<x,那么x 的取值范围是( )A. 11≠>x x 且B. 1>xC. 121≠>x x 且D. 1210><<x x 或 6、ba 112+,ab ,2b a +,222b a +()),0(,+∞∈b a 的关系是( )(A )ab ≤222b a +≤2b a +≤b a 112+ (B )222b a +≤ab ≤ba 112+≤2ba + (C )b a 112+≤ab ≤2ba +≤222b a + (D )ba 112+≤ab ≤222b a +≤2ba +7、若不等式022>++bx ax 的解集是⎭⎬⎫⎩⎨⎧<<-3121|x x 则a -b 的值为( )A. -10B. -14C. 10D. 148、直线143:=+yx l 的倾斜角是( )(A ) arctan 34 (B )-πarctan 43(C )+π arctan(34-) (D )-π arctan(34-)9、不等式2131||<>x x 与同时成立,那么x 满足( )A 、2131<<-xB 、3121-<>x x 或C 、21>x D 、3131-<>x x 或10、若),0(,+∞∈b a ,不等式a xb <<-1的解集是( )A. {x|a x x b 1001<<<<-或}B. {x|b x x a 1001<<<<-或}C. {x|a x b x 11>-<或}D. {x|bx a 11<<- }11、圆122=+y x 上的点到直线02543=-+y x 的最小值是( ) A 、6 B 、5 C 、4 D 、312、甲、乙两人同时同地沿同一路线走到同一地点,甲有一半路程以速度1v 行走,另一半路程以2v 行走;乙有一半时间以1v 行走,另一半时间以2v 行走。
南安市三中2018-2019学年高二上学期第二次月考试卷数学
南安市三中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 设i 是虚数单位,若z=cos θ+isin θ且对应的点位于复平面的第二象限,则θ位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2. 数列{a n }满足a 1=,=﹣1(n ∈N *),则a 10=( )A. B.C.D.3. 设a是函数x 的零点,若x 0>a ,则f (x 0)的值满足( )A .f (x 0)=0B .f (x 0)<0C .f (x 0)>0D .f (x 0)的符号不确定4. (2011辽宁)设sin(+θ)=,则sin2θ=( )A.﹣ B.﹣ C. D.5. 利用计算机在区间(0,1)上产生随机数a ,则不等式ln (3a ﹣1)<0成立的概率是( ) A.B.C.D.6. 为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法........从该地区调查了500位老年人,结果如由2()()()()()n ad bc K a b c d a c b d -=++++算得22500(4027030160)9.96720030070430K ⨯⨯-⨯==⨯⨯⨯ 附表:参照附表,则下列结论正确的是( )3.841 6.635 10.828k 2() 0.050 0.010 0.001P K k ≥①有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无.关”;②有99%以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有.关”;③采用系统抽样方法比采用简单随机抽样方法更好;④采用分层抽样方法比采用简单随机抽样方法更好;A.①③B.①④C.②③D.②④7.如果过点M(﹣2,0)的直线l与椭圆有公共点,那么直线l的斜率k的取值范围是()A.B.C.D.8.函数y=a x+1(a>0且a≠1)图象恒过定点()A.(0,1)B.(2,1)C.(2,0)D.(0,2)9.设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为()A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x10.由两个1,两个2,两个3组成的6位数的个数为()A.45 B.90 C.120 D.36011.直线l过点P(2,﹣2),且与直线x+2y﹣3=0垂直,则直线l的方程为()A.2x+y﹣2=0 B.2x﹣y﹣6=0 C.x﹣2y﹣6=0 D.x﹣2y+5=012.已知函数f(x)的定义域为R,其导函数f′(x)的图象如图所示,则对于任意x1,x2∈R(x1≠x2),下列结论正确的是()①f(x)<0恒成立;②(x1﹣x2)[f(x1)﹣f(x2)]<0;③(x1﹣x2)[f(x1)﹣f(x2)]>0;④;⑤.A .①③B .①③④C .②④D .②⑤二、填空题13.某高中共有学生1000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全 校学生中抽取1名学生,抽到高二年级女生的概率为19.0,先采用分层抽样(按年级分层)在全校抽取 100人,则应在高三年级中抽取的人数等于 .14.设x ,y 满足约束条件,则目标函数z=2x ﹣3y 的最小值是 .15.计算sin43°cos13°﹣cos43°sin13°的值为 .16.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为( )A .B .C .D .17.下列命题:①函数y=sinx 和y=tanx 在第一象限都是增函数;②若函数f (x )在[a ,b]上满足f (a )f (b )<0,函数f (x )在(a ,b )上至少有一个零点; ③数列{a n }为等差数列,设数列{a n }的前n 项和为S n ,S 10>0,S 11<0,S n 最大值为S 5; ④在△ABC 中,A >B 的充要条件是cos2A <cos2B ;⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强. 其中正确命题的序号是 (把所有正确命题的序号都写上).18.直角坐标P (﹣1,1)的极坐标为(ρ>0,0<θ<π) .三、解答题19.(本小题满分10分)选修4-1:几何证明选讲选修41-:几何证明选讲 如图,,,A B C 为O 上的三个点,AD 是BAC ∠的平分线,交O 于点D ,过B 作O 的切线交AD 的延长线于点E .∠;(Ⅰ)证明:BD平分EBC⨯=⨯.(Ⅱ)证明:AE DC AB BE20.已知函数f(x)=|2x﹣a|+|x﹣1|.(1)当a=3时,求不等式f(x)≥2的解集;(2)若f(x)≥5﹣x对∀x∈R恒成立,求实数a的取值范围.21.如图,三棱柱ABC﹣A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,且AB⊥BC,O 为AC中点.(Ⅰ)证明:A1O⊥平面ABC;(Ⅱ)求直线A1C与平面A1AB所成角的正弦值;(Ⅲ)在BC1上是否存在一点E,使得OE∥平面A1AB,若不存在,说明理由;若存在,确定点E的位置.22.【常州市2018届高三上武进区高中数学期中】已知函数()()221ln f x ax a x x =+--,R a ∈.⑴若曲线()y f x =在点()()1,1f 处的切线经过点()2,11,求实数a 的值; ⑵若函数()f x 在区间()2,3上单调,求实数a 的取值范围; ⑶设()1sin 8g x x =,若对()10,x ∀∈+∞,[]20,πx ∃∈,使得()()122f x g x +≥成立,求整数a 的最小值.23.(本题满分15分)若数列{}n x 满足:111n nd x x +-=(d 为常数, *n N ∈),则称{}n x 为调和数列,已知数列{}n a 为调和数列,且11a =,123451111115a a a a a ++++=.(1)求数列{}n a 的通项n a ;(2)数列2{}nna 的前n 项和为n S ,是否存在正整数n ,使得2015n S ≥?若存在,求出n 的取值集合;若不存在,请说明理由.【命题意图】本题考查数列的通项公式以及数列求和基础知识,意在考查运算求解能力.24.已知a>0,a≠1,设p:函数y=log a(x+3)在(0,+∞)上单调递减,q:函数y=x2+(2a﹣3)x+1的图象与x轴交于不同的两点.如果p∨q真,p∧q假,求实数a的取值范围.南安市三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:∵z=cosθ+isinθ对应的点坐标为(cosθ,sinθ),且点(cosθ,sinθ)位于复平面的第二象限,∴,∴θ为第二象限角,故选:B.【点评】本题考查复数的几何意义,考查三角函数值的符号,注意解题方法的积累,属于中档题.2.【答案】C【解析】解:∵=﹣1(n∈N*),∴﹣=﹣1,∴数列是等差数列,首项为=﹣2,公差为﹣1.∴=﹣2﹣(n﹣1)=﹣n﹣1,∴a n=1﹣=.∴a10=.故选:C.【点评】本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于基础题.3.【答案】C【解析】解:作出y=2x和y=log x的函数图象,如图:由图象可知当x0>a时,2>log x0,∴f(x0)=2﹣log x0>0.故选:C.4.【答案】A【解析】解:由sin(+θ)=sin cosθ+cos sinθ=(sinθ+cosθ)=,两边平方得:1+2sinθcosθ=,即2sinθcosθ=﹣,则sin2θ=2sinθcosθ=﹣.故选A【点评】此题考查学生灵活运用二倍角的正弦函数公式、两角和与差的正弦函数公式及特殊角的三角函数值化简求值,是一道基础题.5.【答案】C【解析】解:由ln(3a﹣1)<0得<a<,则用计算机在区间(0,1)上产生随机数a,不等式ln(3a﹣1)<0成立的概率是P=,故选:C.6.【答案】D【解析】解析:本题考查独立性检验与统计抽样调查方法.,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关,②正确;该地区老年由于9.967 6.635人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好,④正确,选D.7.【答案】D【解析】解:设过点M(﹣2,0)的直线l的方程为y=k(x+2),联立,得(2k2+1)x2+8k2x+8k2﹣2=0,∵过点M(﹣2,0)的直线l与椭圆有公共点,∴△=64k4﹣4(2k2+1)(8k2﹣2)≥0,整理,得k2,解得﹣≤k≤.∴直线l的斜率k的取值范围是[﹣,].故选:D.【点评】本题考查直线的斜率的取值范围的求法,是基础题,解题时要认真审题,注意根的判别式的合理运用.8.【答案】D【解析】解:令x=0,则函数f(0)=a0+3=1+1=2.∴函数f(x)=a x+1的图象必过定点(0,2).故选:D.【点评】本题考查了指数函数的性质和a0=1(a>0且a≠1),属于基础题.9.【答案】C【解析】解:∵抛物线C方程为y2=2px(p>0),∴焦点F坐标为(,0),可得|OF|=,∵以MF为直径的圆过点(0,2),∴设A(0,2),可得AF⊥AM,Rt△AOF中,|AF|==,∴sin∠OAF==,∵根据抛物线的定义,得直线AO切以MF为直径的圆于A点,∴∠OAF=∠AMF,可得Rt△AMF中,sin∠AMF==,∵|MF|=5,|AF|=∴=,整理得4+=,解之可得p=2或p=8因此,抛物线C的方程为y2=4x或y2=16x.故选:C.方法二:∵抛物线C方程为y2=2px(p>0),∴焦点F(,0),设M(x,y),由抛物线性质|MF|=x+=5,可得x=5﹣,因为圆心是MF的中点,所以根据中点坐标公式可得,圆心横坐标为=,由已知圆半径也为,据此可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则M点纵坐标为4,即M(5﹣,4),代入抛物线方程得p2﹣10p+16=0,所以p=2或p=8.所以抛物线C的方程为y2=4x或y2=16x.故答案C.【点评】本题给出抛物线一条长度为5的焦半径MF,以MF为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题.10.【答案】B【解析】解:问题等价于从6个位置中各选出2个位置填上相同的1,2,3,所以由分步计数原理有:C62C42C22=90个不同的六位数,故选:B.【点评】本题考查了分步计数原理,关键是转化,属于中档题.11.【答案】B【解析】解:∵直线x+2y﹣3=0的斜率为﹣,∴与直线x+2y﹣3=0垂直的直线斜率为2,故直线l的方程为y﹣(﹣2)=2(x﹣2),化为一般式可得2x﹣y﹣6=0故选:B【点评】本题考查直线的一般式方程和垂直关系,属基础题.12.【答案】D【解析】解:由导函数的图象可知,导函数f′(x)的图象在x轴下方,即f′(x)<0,故原函数为减函数,并且是,递减的速度是先快后慢.所以f(x)的图象如图所示.f(x)<0恒成立,没有依据,故①不正确;②表示(x1﹣x2)与[f(x1)﹣f(x2)]异号,即f(x)为减函数.故②正确;③表示(x1﹣x2)与[f(x1)﹣f(x2)]同号,即f(x)为增函数.故③不正确,④⑤左边边的式子意义为x1,x2中点对应的函数值,即图中点B的纵坐标值,右边式子代表的是函数值得平均值,即图中点A的纵坐标值,显然有左边小于右边,故④不正确,⑤正确,综上,正确的结论为②⑤.故选D.二、填空题13.【答案】25【解析】考点:分层抽样方法.14.【答案】﹣6.【解析】解:由约束条件,得可行域如图,使目标函数z=2x﹣3y取得最小值的最优解为A(3,4),∴目标函数z=2x﹣3y的最小值为z=2×3﹣3×4=﹣6.故答案为:﹣6.15.【答案】.【解析】解:sin43°cos13°﹣cos43°sin13°=sin(43°﹣13°)=sin30°=,故答案为.16.【答案】【解析】解:法1:取A1C1的中点D,连接DM,则DM∥C1B1,在在直三棱柱中,∠ACB=90°,∴DM⊥平面AA1C1C,则∠MAD是AM与平面AA1C1C所的成角,则DM=,AD===,则tan∠MAD=.法2:以C1点坐标原点,C1A1,C1B1,C1C分别为X,Y,Z轴正方向建立空间坐标系,则∵AC=BC=1,侧棱AA=,M为A1B1的中点,1∴=(﹣,,﹣),=(0,﹣1,0)为平面AA1C1C的一个法向量设AM与平面AA1C1C所成角为θ,则sinθ=||=则tanθ=故选:A【点评】本题考查的知识点是直线与平面所成的角,其中利用定义法以及建立坐标系,求出直线的方向向量和平面的法向量,将线面夹角问题转化为向量夹角问题是解答本题的关键.17.【答案】②③④⑤【解析】解:①函数y=sinx和y=tanx在第一象限都是增函数,不正确,取x=,,但是,,因此不是单调递增函数;②若函数f(x)在[a,b]上满足f(a)f(b)<0,函数f(x)在(a,b)上至少有一个零点,正确;③数列{a n}为等差数列,设数列{a n}的前n项和为S n,S10>0,S11<0,∴=5(a6+a5)>0,=11a6<0,∴a5+a6>0,a6<0,∴a5>0.因此S n最大值为S5,正确;④在△ABC中,cos2A﹣cos2B=﹣2sin(A+B)sin(A﹣B)=2sin(A+B)sin(B﹣A)<0⇔A>B,因此正确;⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强,正确.其中正确命题的序号是②③④⑤.【点评】本题综合考查了三角函数的单调性、函数零点存在判定定理、等差数列的性质、两角和差化积公式、线性回归分析,考查了推理能力与计算能力,属于难题.18.【答案】 .【解析】解:ρ==,tan θ==﹣1,且0<θ<π,∴θ=.∴点P 的极坐标为.故答案为:.三、解答题19.【答案】【解析】【解析】(Ⅰ)因为BE 是⊙O 的切线,所以BAD EBD ∠=∠…………2分 又因为CAD BAD CAD CBD ∠=∠∠=∠,………………4分 所以CBD EBD ∠=∠,即BD 平分EBC ∠.………………5分 (Ⅱ)由⑴可知BAD EBD ∠=∠,且BED BED ∠=∠,BDE ∆∽ABE ∆,所以ABBDAE BE =,……………………7分 又因为DBC DBE BAE BCD ∠=∠=∠=∠,所以DBC BCD ∠=∠,CD BD =.……………………8分所以ABCDAB BD AE BE ==,……………………9分 所以BE AB DC AE ⋅=⋅.……………………10分20.【答案】【解析】解:(1)a=3时,即求解|2x ﹣3|+|x ﹣1|≥2,①当x ≥时,不等式即2x ﹣3+x ﹣1≥2,解得x ≥2,②当1<x <时,不等式即3﹣2x+x ﹣1≥2,解得x <0.③当x ≤1时,3﹣2x+1﹣x ≥2,解得2x ≤2,即x ≤.∴综上,原不等式解集为{x|x ≤或x ≥2}. (2)即|2x ﹣a|≥5﹣x ﹣|x ﹣1|恒成立令g (x )=5﹣x ﹣|x ﹣1|=,则由函数g(x)的图象可得它的最大值为4,故函数y=|2x﹣a|的图象应该恒在函数g(x)的图象的上方,数形结合可得≥3,∴a≥6,即a的范围是[6,+∞).【点评】本题考查了绝对值不等式问题,考查函数的最值问题,是一道中档题.21.【答案】【解析】解:(Ⅰ)证明:因为A1A=A1C,且O为AC的中点,所以A1O⊥AC.又由题意可知,平面AA1C1C⊥平面ABC,交线为AC,且A1O⊂平面AA1C1C,所以A1O⊥平面ABC.(Ⅱ)如图,以O为原点,OB,OC,OA1所在直线分别为x,y,z轴建立空间直角坐标系.由题意可知,A1A=A1C=AC=2,又AB=BC,AB⊥BC,∴,所以得:则有:.设平面AA1B的一个法向量为n=(x,y,z),则有,令y=1,得所以..因为直线A1C与平面A1AB所成角θ和向量n与所成锐角互余,所以.(Ⅲ)设,即,得所以,得,令OE ∥平面A 1AB ,得, 即﹣1+λ+2λ﹣λ=0,得,即存在这样的点E ,E 为BC 1的中点.【点评】本小题主要考查空间线面关系、直线与平面所成的角、三角函数等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力22.【答案】⑴2a =⑵11,,64⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝⎦⎣⎭⑶2【解析】试题分析:(1)根据题意,对函数f x ()求导,由导数的几何意义分析可得曲线y f x =()在点11f (,())处的切线方程,代入点211(,),计算可得答案; (2)由函数的导数与函数单调性的关系,分函数在(23,)上单调增与单调减两种情况讨论,综合即可得答案;(3)由题意得,2min max f x g x +≥()(),分析可得必有()()215218f x ax a x lnx +--≥= ,对f x ()求导,对a 分类讨论即可得答案. 试题解析:⑵()()()211'ax x f x x-+=,∴若函数()f x 在区间()2,3上单调递增,则210y ax =-≥在()2,3恒成立,410{610a a -≥∴-≥,得14a ≥;若函数()f x 在区间()2,3上单调递减,则210y ax =-≤在()2,3恒成立,410{610a a -≤∴-≤,得16a ≤,综上,实数a 的取值范围为11,,64⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝⎦⎣⎭;⑶由题意得,()()min max 2f x g x +≥,()max 128g x g π⎛⎫== ⎪⎝⎭,()min 158f x ∴≥,即()()21521ln 8f x ax a x x =+--≥,由()()()()()222112111'221ax a x ax x f x ax a x x x+---+=+--==, 当0a ≤时,()10f <,则不合题意;当0a >时,由()'0f x =,得12x a=或1x =-(舍去), 当102x a<<时,()'0f x <,()f x 单调递减, 当12x a>时,()'0f x >,()f x 单调递增. ()min 11528f x f a ⎛⎫∴=≥ ⎪⎝⎭,即117ln 428a a --≥, 整理得,()117ln 2228a a -⋅≥, 设()1ln 2h x x x =-,()21102h x x x∴=+>',()h x ∴单调递增,a Z ∈,2a ∴为偶数,又()172ln248h =-<,()174ln488h =->,24a ∴≥,故整数a 的最小值为2。
2018年高二下学期期中考试数学(理科)试卷及答案
高二下学期期中考试数学(理)一、 选择题:(每小题5分,共60分)1. 椭圆2212x y +=上的一点P 到焦点1F 的距离等于1,则点P 到另一个焦点2F 的距离是() A .1 B .3 C 1 D .12. 若方程22125x y k k-=+-表示双曲线,则k 的取值范围是( ) A .(,2)-∞- B .(2,5)- C.[)(,2)5,-∞-+∞ D.(5,)+∞3. 设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则双曲线的离心率为( ) A .5 B C .2 D .544. 设椭圆22221x y m n +=(0m >,0n >)的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为( )A.2211216x y +=B.2211612x y += C.2214864x y += D.2216448x y += 5. x y =与2x y =围成的封闭图形的面积为( )A. 31B. 41C. 61D. 21 6.函数32()32f x ax x =++,若4)1(=-'f ,则a 的值等于( )A .193B .163C .133D .1037. 曲线123+-=x x y 在点(1,0)处的切线方程为( )A.1-=x yB.1+-=x yC. 22-=x yD. 22+-=x y8.把长度为16的线段分成两段,各围成一个正方形,它们的面积和的最小值为( )A. 2B. 4C. 6D.89. dx x ⎰421等于( )A.2ln 2-B. 2ln 2C. 2ln -D. 2ln 10. 设)(x f '是函数f (x )的导函数,=y )(x f '的图象如左下图所示,则y =f (x )的图象最有可能的是( )(=y )(x f '的图象) A B C D11. 方程0333=--x x 的实数根的个数为( )A. 3B. 2C. 1D.012. 设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点,若FC FB FA ++=0,则|FA|+|FB|+|FC|=( )A .9 B. 6 C. 4 D. 3 二、填空题(每小题5分,共20分)13. 曲线x x y 43-=在点(1,3)- 处的切线的倾斜角为___________________; . 14. 函数5523--+=x x x y 的单调递增区间是_________________________ 15. 设点P 是双曲线x 2-23y =1上一点,焦点F (2,0),点A (3,2),使|P A |+21|PF |有最小值时,则点P 的坐标是 .16. 已知)2,4(P 是直线l 被椭圆193622=+y x 所截得的线段的中点,则直线l 的 方程为______________________ .三、解答题(共70分) 17. 已知函数23)(bx ax x f +=,当1x =时,有极大值3;(1)求,a b 的值;(2)求函数)(x f 的极小值 18. 若双曲线与椭圆1162522=+y x 有相同的焦点,与双曲线1222=-y x 有相同渐近线,求双曲线方程.19. 已知长轴长为22,短轴长为2,焦点在x 轴上的椭圆,过它的左焦点1F 作倾斜角为4π的直线交椭圆于A ,B 两点,求弦AB 的长.20. 已知a 为实数,()()2()4f x x x a =--。
2018届高三数学上学期期中试题理word版本
2018届高三上学期数学(理科)期中考试(本试卷共4页,21小题,满分150分。
考试用时120分钟)注意事项:非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
一、选择题(每小题5分,总50分)1.已知集合,,则()....2.已知命题P是:“对任意的,”,那么是()A.不存在,B.存在,C.存在, D.对任意的,3.是()A. 最小正周期为的奇函数B. 最小正周期为的偶函数C. 最小正周期为的奇函数D. 最小正周期为的偶函数4.设则“且”是“”的( ) A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.即不充分也不必要条件5若,则的定义域为( )A. B. C. D.6.函数f(x)=A sin(ωx+φ)( A>0,ω>0,)的部分图象如图所示,则f(0)的值是()A. B. C. D.7.在平面直角坐标系中,不等式组表示的平面区域面积是().A.B. C.D.8.已知,则的值等于( )A .B .C .D .9. 已知函数(,且)的图象恒过定点A,若点A 在函数的图象上,其中,则的最小值为A.1 B.4 C. D.210. ,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)二、填空题(每小题5分,总20分,其中14、15题为选做题)11.已知函数, 则= _____________.12. 的值等于________.13.一个空间几何体的三视图及部分数据如图所示,则这个几何体的体积是14.(坐标系与参数方程选做题)过点且平行于极轴的直线的极坐标方程为__.15.(几何证明选讲选做题)已知是圆的切线,切点为,直线交圆于两点,,,则圆的面积为.PABO C三、解答题(共80分)16.(本小题满分12分)已知函数,(1)求函数的最小正周期;(2)求的最大值和最小值;(3)若,求的值17.(本小题满分12分)一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.(1)若一次从中随机抽取3张卡片,求3张卡片上数字之和大于或等于7的概率;(2)若第一次随机抽1张卡片,放回后再随机抽取1张卡片,求两次抽取中至少一次抽到数字2的概率.18.(14分)如图,四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,PA=2,∠PDA=45°,点E、F分别为棱AB、PD的中点.(1)求证:AF∥平面PCE;(2)求证:平面PCE⊥平面PCD;19.(本小题满分14分)已知函数f(x) =x2—lnx.(1)求曲线f(x)在点(1,f(1))处的切线方程;(2)求函数f(x)的单调递减区间:(3)设函数g(x)=f(x)-x2+ax, a>0,若x∈ (O,e]时,g(x)的最小值是3,求实数a的值. (e是为自然对数的底数)20.(本小题满分14分)在经济学中,函数的边际函数定义为,某公司每月生产台某种产品的收入为元,成本为元,且,,现已知该公司每月生产该产品不超过100台,(利润=收入-成本)(1)求利润函数以及它的边际利润函数;(2)求利润函数的最大值与边际利润函数的最大值之差。
福建省南安一中2018-2018学年高二上学期期中考试理科数学试卷
南安一中高二年上学期数学期中考试卷<理科)第Ⅰ卷 选择题<共50分)一、选择题<本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)b5E2RGbCAP 1.已知为非零实数,且,则下列命题成立的是(>A .B .C .D .2.椭圆的离心率为(>.A .翰林汇3.设是等差数列的前n 项和,已知,,则等于(>.A .13B .35C .49D . 63p1EanqFDPw 4.命题“若,则”的逆否命题是(>. A .若,则且 B. 若,则C. 若或,则D. 若或,则5.方程=1表示焦点在y 轴上的椭圆,则m 的取值范围是(>.A .-16<m<25B .-16<m<C .<m<25D .m>6.已知等比数列的公比为正数,且·=2,=1,则=(>.A. B. C. D.27.已知不等式的解集为,则不等式的解集为(>.A. B. C. D.8.已知均为正数,则使恒成立的的取值范围是(>.A.B.C.D.9.设数列的前项之和为,若(>,则( >A.是等差数列,但不是等比数列; B.是等比数列,但不是等差数列;C.是等差数列,或是等比数列; D.可以既不是等比数列,也不是等差数列.10.记实数…中的最大数为{…},最小数为min{…}.已知的三边边长为、、<),定义它的倾斜度为则“t=1”是“为等边三解形”的(>.A.充分而不必要的条件B.必要而不充分的条件C.充要条件D.既不充分也不必要的条件第Ⅱ卷非选择题<共100分)二、填空题<本大题共5小题,每小题4分,满分20分)11.过椭圆的左焦点的直线交椭圆于A、B两点,椭圆的右焦点为,则△的周长等于___.12.若满足约束条件,则的取值范围是.13.等比数列前项和,则常数的值为.14.已知则的最小值为.15.设是公比为的等比数列,,令,若数列有连续四项在集合中,则=.三、解答题<本部分共计6小题,满分80分,解答应写出文字说明,证明过程或演算步骤,请在指定区域内作答,否则该题计为零分.)DXDiTa9E3d16、<本小题满分13分)如果有穷数列<为正整数)满足条件,,…,,即<),我们称其为“对称数列”.例如,数列与数列都是“对称数列”.<Ⅰ)设是7项的“对称数列”,其中是等差数列,且,.依次写出的每一项;<Ⅱ)设是项的“对称数列”,其中是首项为,公比为的等比数列,求各项的和.17.<本小题满分13分)本公司计划2018年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为元/分钟和200元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告,能给公司事来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?RTCrpUDGiT18.<本小题满分13分)在平面直角坐标系中,经过点且斜率为的直线与椭圆有两个不同的交点和,求的取值范围.5PCzVD7HxA19.<本小题满分13分)已知设P:函数在内单调递减;Q:曲线与轴交于不同的两点,如果P或Q为真,P且Q为假,求的取值范围.jLBHrnAILg 20.<本小题满分14分)已知椭圆C:=1(a>b>0>的离心率为,短轴一个端点到右焦点的距离为.(Ⅰ>求椭圆C的方程;(Ⅱ>设直线与椭圆C交于A、B两点,坐标原点O到直线的距离为,求△AOB面积的最大值.21.<本小题满分14分)已知数列中,,,.<Ⅰ)求证:是等差数列,并求数列的通项公式;<Ⅱ)假设对于任意的正整数、,都有,则称该数列为“域收敛数列”. 试判断: 数列,是否为一个“域收敛数列”,请说明你的理由.xHAQX74J0X南安一中高二年上学期数学期中考试卷参考答案<理科)第Ⅰ卷选择题<共50分) 2017-11-12一、选择题<本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)LDAYtRyKfE4.命题“若,则”的逆否命题是<D)A.若,则且 B. 若,则C. 若或,则D. 若或,则5.方程=1表示焦点在y轴上的椭圆,则m的取值范围是 ( C >A.-16<m<25B.-16<m<C.<m<25D.m>6.已知等比数列的公比为正数,且·=2,=1,则=(B >A. B. C. D.27.已知不等式的解集为,则不等式的解集为<D)A. B.C. D.8.已知均为正数,则使恒成立的的取值范围是<B)A.B.C.D.9.设数列的前项之和为,若(>,则( C >A.是等差数列,但不是等比数列; B.是等比数列,但不是等差数列;C.是等差数列,或是等比数列; D.可以既不是等比数列,也不是等差数列.10.记实数…中的最大数为{…},最小数为min{…}.已知的三边边长为、、<),定义它的倾斜度为则“t=1”是“为等边三解形”的(B >A.充分而不必要的条件B.必要而不充分的条件C.充要条件D.既不充分也不必要的条件第Ⅱ卷非选择题<共100分)二、填空题<本大题共5小题,每小题4分,满分20分)11.过椭圆的左焦点的直线交椭圆于A、B两点,椭圆的右焦点为,则△的周长等于__8__.12.若满足约束条件,则的取值范围是13.等比数列前项和,则常数的值为.14.已知则的最小值为__4__.15.设是公比为的等比数列,,令,若数列有连续四项在集合中,则=-9.三、解答题<本部分共计6小题,满分80分,解答应写出文字说明,证明过程或演算步骤,请在指定区域内作答,否则该题计为零分.)Zzz6ZB2Ltk16、<本小题满分13分)如果有穷数列<为正整数)满足条件,,…,,即<),我们称其为“对称数列”.dvzfvkwMI1例如,数列与数列都是“对称数列”.<Ⅰ)设是7项的“对称数列”,其中是等差数列,且,.依次写出的每一项;<Ⅱ)设是项的“对称数列”,其中是首项为,公比为的等比数列,求各项的和.解:<1)设数列的公差为,则,解得,…4分数列为.…………6分<2)<67108861.可以不算出这个值)…13分17.<本小题满分13分)本公司计划2018年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为元/分钟和200元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告,能给公司事来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?rqyn14ZNXI<元)……………………12分答:该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70万元.…………13分EmxvxOtOco18.<本小题满分13分)在平面直角坐标系中,经过点且斜率为的直线与椭圆有两个不同的交点和,求的取值范围.SixE2yXPq5解:由已知条件,直线的方程为,…………2分代入椭圆方程得.整理得①………………6分直线与椭圆有两个不同的交点和等价于,………………8分解得或.即的取值范围为.………………13分19.<本小题满分13分)已知设P:函数在内单调递减;Q:曲线与轴交于不同的两点,如果P或Q为真,P且Q为假,求的取值范围.6ewMyirQFL解:函数在内单调递减可知,P真则的取值范围是<0,1),P假时的取值范围是<1,);………3分<只有P真的范围也可得分)曲线与轴交于不同的两点可知,Q真则满足,又,Q假时………………6分<只有Q真的范围也可得分)由“P或Q为真,P且Q为假”得到P真Q假,或者P假Q 真…………8分当P真Q假时,<)即……10分当P 假Q真时,<)即……12分综上,…………13分20.<本小题满分14分)已知椭圆C:=1(a>b>0>的离心率为,短轴一个端点到右焦点的距离为.(Ⅰ>求椭圆C的方程;(Ⅱ>设直线与椭圆C交于A、B两点,坐标原点O到直线的距离为,求△AOB面积的最大值.解:<Ⅰ)设椭圆的半焦距为,依题意,所求椭圆方程为.<Ⅱ)设,.<1)当轴时,.<2)当与轴不垂直时,设直线的方程为.由已知,得.把代入椭圆方程,整理得,,..当且仅当,即时等号成立.当时,,综上所述.当最大时,面积取最大值.21.<本小题满分14分)已知数列中,,,.<Ⅰ)求证:是等差数列,并求数列的通项公式;<Ⅱ)假设对于任意的正整数、,都有,则称该数列为“域收敛数列”.试判断: 数列,是否为一个“域收敛数列”,请说明你的理由.kavU42VRUs解:<Ⅰ)证明:因为,所以,;故是等差数列 (4)分由此可得,,…………6分所以,.…………7分<Ⅱ)由条件,可知当,;当时,,.令,则所以,当时,;同理可得,当时,;…………10分即数列在时递增;时递减;即是数列的最大项.然而因为的奇数项均为,故为数列的最小项;而,,所以,故是数列的最大项.………………12分因此,对任意的正整数、,所以数列,是一个“域收敛数列” (14)分500y申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
【精品】2018最新学年福建省泉州市南安一中高二上学期期中数学试卷和解析理科
2018学年福建省泉州市南安一中高二(上)期中数学试卷(理科)
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求的.
1.(5分)命题“若a>b,则a﹣1>b﹣1”的否命题是()
A.若a>b,则a﹣1≤b﹣1 B.若a>b,则a﹣1<b﹣1
C.若a≤b,则a﹣1≤b﹣1 D.若a<b,则a﹣1<b﹣1
2.(5分)已知点A(﹣3,1,﹣4),则点A关于x轴的对称点的坐标为()
A.(﹣3,﹣1,4) B.(﹣3,﹣1,﹣4)C.(3,1,4)D.(3,﹣1,﹣4)
3.(5分)若椭圆经过点P(2,3),且焦点为F1(﹣2,0),F2(2,0),则这个椭圆的离心率等于()
A.B.C.D.
4.(5分)“p或q是假命题”是“非p为真命题”的()
A.充分不必要条件 B.必要不充分条件
C.充要条件D.既不充分又不必要条件
5.(5分)在正方体ABCD﹣A1B1C1D1中,M、N为棱AB与AD的中点,则异面直线MN与BD1所成角的余弦值是()
A.B.C.D.
6.(5分)设双曲线﹣=1(a>0,b>0)的左、右焦点分别是F1、F2,过点F2的直线交双曲线右支于不同的两点M、N.若△MNF1为正三角形,则该双曲线的离心率为()A.B.C.D.
7.(5分)如图,在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D所成角的余弦值为()。
最新-南安三中2018学年第二学期高二期中考试[原创][特
南安三中2018年春高一年数学期中试卷( 时间 120分钟,总分150分)注:本卷分为Ⅰ、Ⅱ卷,请把答案写在Ⅱ卷一、选择题(每题5分,共60分)1.若点)sin sin (tan ααα,-P 在第三象限,则角α的终边必在 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限2、已知的值是3、已知的值是4.函数)0(tan )(>=ωωx x f 图象的相邻两支截直线4π=y 所得线段长为4π,则)4(πf 的值是 (A )0 (B )1 (C )-1 (D )335.在ABC ∆中,2π>C ,若函数)(x f y =在[0,1]上为单调递减函数,则下列命题正确的是(A ))(cos )(cos B f A f > (B ))(sin )(sin B f A f > (C ))(cos )(sin B f A f > (D ))(cos )(sin B f A f <6、 若 是奇函数,则等于7.给出四个函数,则同时具有以下两个性质的函数是:①最小正周期是π;②图象关于点(6π,0)对称 (A ))62cos(π-=x y (B ))62sin(π+=x y (C ))62sin(π+=x y (D ))3tan(π+=x y8.若把一个函数的图象按=a (3π-,-2)平移后得到函数x y cos =的图象,则原图象的函数解析式是(A )2)3cos(-+=πx y (B )2)3cos(--=πx y (C )2)3cos(++=πx y (D )2)3cos(+-=πx y9.设βα,是一个钝角三角形的两个锐角,则下列四个不等式中不正确的是(A )1tan tan <βα (B )2sin sin <+βα (C )1cos cos >+βα (D )2tan)tan(21βαβα+<+10.某人朝正东方走x km 后,向左转1500,然后朝新方向走3km ,结果它离出发点恰好3km ,那么x 等于(A )3 (B )32 (C )3或 32 (D )3 11.以下命题正确的是(A )βα,都是第一象限角,若βαcos cos >,则βαsin sin > (B )βα,都是第二象限角,若βαsin sin >,则βαtan tan > (C )βα,都是第三象限角,若βαcos cos >,则βαsin sin > (D )βα,都是第四象限角,若βαsin sin >,则βαtan tan > 12.若ππ43<<x ,则2cos 12cos 1xx -++等于 (A ))24cos(2x -π(B ))24cos(2x--π(C ))24sin(2x -π(D ))24sin(2x --π二、填空题(本大题共4小题,每小题4分,共16分)13、已知 ,则函数的值域是____________。
福建省南安市高二数学上学期期中试题 理
2017-2018学年高二上期中考试数学试卷(理)考试内容:必修五、常用逻辑用语、椭圆、双曲线 考试时间:120分钟第Ⅰ卷(选择题共60分)一.选择题(共12小题,每小题5分,只有一个选项正确,请把答案填在答题卡上): 1.等差数列{}n a 的前项和为nS ,若===1074,8,5S a a 则( )A .65B .66C .67D .68 2.若集合{}{}|21|3,(21)(3)0,A x xB x x x =->=+-<则A ∩B 是( )A .11232x x x ⎧⎫-<<-<<⎨⎬⎩⎭或B .{}23x x << C .112x x ⎧⎫-<<-⎨⎬⎩⎭ D .122x x ⎧⎫-<<⎨⎬⎩⎭ 3. 已知01a b <<-,,则下列不等式成立的是( ) A .2a a a b b >> B .2a a a b b >> C .2a a a b b >> D .2a a a b b>> 4.“b a>”是“22a b ab +⎛⎫> ⎪⎝⎭”成立的( )A .充要条件B .既不充分也不必要条件C .必要不充分条件D .充分不必要条件5. 已知双曲线2222:1(0,0)y x C a b a b-=>>的离心率为5,则C 的渐近线方程为( )A .14y x =±B .12y x =± C .4y x =± D .2y x =± 6. 在ΔABC 中1cos 2A -= (,,2c ba b c c-分别为角,,A B C 的对应边),则ΔABC 的形状为( )A .正三角形B .等腰直角三角形C .直角三角形D .等腰三角形 7.下列选项中说法正确的是( )A .若22bm am ≥,则b a ≥B .命题“q p ∨为真”是命题“q p ∧为真” 的必要条件C .若向量,a b r r 满足0a b ⋅<r r ,则a r与b r 的夹角为钝角D .“0,2≥-∈∀x x R x ”的否定是“0,0200≤-∈∃x x R x ” 8. 已知变量,x y 满足约束条件10,230,x y x y --≤⎧⎨--≥⎩若目标函数4(0,0)z ax by a b =+>>在该约束条件下的最小值为2,则18a b+的最小值为 ( )A .25B .26C .27D .不存在9.已知点F 是双曲线22221(0,0)x y a b a b-=>>的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于,A B 两点,若ABE ∆是锐角三角形,则该双曲线的离心率e 的取值范围是( )A .()1,2B .()1,+∞C .()1,12+ D .()2,+∞10.数列}{n a 满足11201712,032,,1521,12n n n n n a a a a a a a +⎧≤≤⎪⎪===⎨⎪-<<⎪⎩若则( ) A .54 B .53 C .52 D .5111. 已知222241a a x x x++≤+-对于任意的()1,x ∈+∞恒成立,则 ( )A .a 的最大值为2B .a 的最大值为4C .a 的最小值为3-D .a 的最小值为4- 12.已知数列{}{},n n a b 满足11111,2,n n n n n n a b a a b b a b ++===+=+,则下列结论正确的是( )A.只有有限个正整数n 使得2n n a b <B.只有有限个正整数n 使得2n n a b >C.数列{}2n n a b -是递增数列 D.数列2n n a b ⎧⎫⎪⎪-⎨⎬⎪⎪⎩⎭是递减数列 第Ⅱ卷(非选择题共90分)二.填空题(共4小题,每小题5分,请把答案写在答题卡上..........): 13.“若a M P ∉I ,则a M ∉或a P ∉”的逆否命题是 .14.已知数列}{n a 的前n 项和1322++-=n n S n ,则通项=n a _________________.15.已知1F 、2F 是椭圆1:2222=+b y a x C (a >b >)的两个焦点,P 为椭圆C 上一点,且21PF PF ⊥.若21F PF ∆的面积为8,则b =____________.16. 已知动点(),P x y 满足()()22240111x y x x x y y ⎧+≤⎪⎪≥⎨⎪+-++≥⎪⎩,则228x y x +-的最小值为__________.三.解答题(共6题,要求写出解答过程或者推理步骤):17.(本题满分10分)已知命题p :函数()f x x a x =-+在)22,a ⎡-+∞⎣上单调递增;命题q :关于x 的方程24x x -+80a =有解.若p q ∨为真命题,p q ∧为假命题,求实数a 的取值范围.18.(本题满分12分)在ABC ∆中,,a b c ,分别是角,,A B C 的对边,且()2cos cosC tan tan 11A A C -=.(I )求B 的大小;(II )若D 为AC 的中点,且1BD =,求ABC ∆面积最大值. 19.(本题满分12分)已知数列{}n a 中, ()*1211,.21n n n a a a n N n +==∈- (I )证明数列21n a n ⎧⎫⎨⎬-⎩⎭是等比数列,并求数列{}n a 的通项公式; (II )求证:122311111+2n n a a a a a a +++⋅⋅⋅<.20.(本题满分12分)如图,椭圆经过点,离心率,直线l 的方程为.(1)求椭圆C 的方程; (2)是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记、、的斜率分别为、、.问:是否存在常数,使得? 若存在,求的值; 若不存在,请说明理由.21.(本题满分12分)设各项均为正数的数列{}n a 的前n 项和为n S ,满足12441n n S a n +=--,且11a =,公比大于1的等比数列{}n b 满足23b =, 1310b b +=. (1)求证数列{}n a 是等差数列,并求其通项公式; (2)若3nn na cb =,求数列{}n c 的前n 项和n T ; (3)在(2)的条件下,若2423n c t t ≤+-对一切正整数n 恒成立,求实数t 的取值范围.22.(本题满分12分)设椭圆22:143x y C +=的左、右焦点分别为1F 、2F ,过右焦点2F 的直线1l 与椭圆相交于,A B 两点.(Ⅰ)设直线1AF , 1BF 的斜率分别是1k , 2k ,当12920k k =时,求直线1l 的方程; (Ⅱ)过右焦点2F 作与直线1l 垂直的直线2l ,直线2l 与椭圆相交于,D E 两点,求四边形ADBE 的面积S 的取值范围.2017-2018学年高二上期中考试数学试卷(理)参考答案一.选择题:(每小题5分,计60分)1.A2.B3.C4.D5.D6.C7.B8.A9.A 10.B 11.C 12.D 二.填空题:(每小题5分,计20分)13. 若a M ∈且a P ∈,则a M P ∈I 14. 21452n n a n n =⎧=⎨-+≥⎩ 15.22 16.649-三.解答题:17.解:由已知得()2,,x a x af x a x a-≥⎧=⎨<⎩, ()f x ∴在[),a +∞上单调递增. ………2分若p 为真命题,则)22,a ⎡-+∞⎣ [),a ⊆+∞, 22a a -≥, 1a ≤-或2a ≥; ………4分若q 为真命题,24480a ∆=-⨯≥, 84a ≤, 23a ≤. ……………………6分 p q ∨Q 为真命题, p q ∧为假命题, p ∴、q 一真一假, ……………………7分当p 真q 假时, 1223a a a ≤-≥⎧⎪⎨>⎪⎩或,即2a ≥; ……………………8分 当p 假q 真时, 1223a a -<<≤⎧⎪⎨⎪⎩,即213a -<≤. …………………… 9分 故21,3a ⎛⎤∈- ⎥⎝⎦U [)2,+∞. ……………………10分18.解:(I )由()2cos cosC tan tan 11A A C -=,得sin sin 2cos cos 11cos cos A C A C A C ⎛⎫-=⎪⎝⎭,()2sin sin cos cos 1A C A C ∴-=, ()1cos 2A C ∴+=-, ……………………2分1cos 2B ∴=, 又0,3B B ππ<<∴=. ……………………4分(II )在ABD ∆中,由余弦定理得22121cos 22b b c ADB ⎛⎫=+-⋅⋅∠ ⎪⎝⎭. ……………… 6分在CBD ∆中,由余弦定理得22121cos 22b b a CDB ⎛⎫=+-⋅⋅∠ ⎪⎝⎭, …………………… 8分二式相加得222222cos 2222b ac ac Ba c +-+=+=+, ……………………9分 整理得224a c ac +=- , ……………………10分222,a c ac +≥Q 43ac ∴≤, 所以ABC ∆的面积11433sin 223S ac B =≤⋅⋅=, ……………………11分 当且仅当23a c ==时“=”成立. ABC ∴∆的面积的最大值为33. ……………………12分 19.解:(I )由题设知n 1n 1a a a,102n 12n 11+==≠+-且 ……………………2分 ∴数列na {}2n 1-是首项为1,公比为1的等比数列, ……………………4分 11112121n nn a a n n -∴=⨯=∴=--;……………………6分 (II )()()111111=212122121n n a a n n n n +⎛⎫=- ⎪-+-+⎝⎭Q……………………8分 12231111111111+=123352121111111.2212422n n a a a a a a n n n n +⎡⎤⎛⎫⎛⎫⎛⎫∴++⋅⋅⋅-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦⎛⎫=-=-< ⎪++⎝⎭………12分20.解:(1)由在椭圆上,得①. ……………………1分又得②由①②,得……………………3分故椭圆C的方程为……………………4分(2)设直线的方程为,由……………………5分……………………6分……………………9分又将代入得,……………………11分故存在常数符合题意.……………………12分21.解:(1)当时,,∴,即,∵,∴.……………………2分∴当时,是公差的等差数列,又,,……………………3分则是首项,公差的等差数列,所以数列的通项公式为. ……………………4分(2)由题意得13n n b -=, 2133n n n n a n c b -==; ……………………5分 则前n 项和;;相减可得;化简可得前n 项和; ……………………8分(3)2423n c t t ≤+-对一切正整数n 恒成立, 由1n n c c +-=可得数列{}n c 单调递减,即有最大值为113c =, ……………………10分 则214233t t ≤+- 解得1t ≥或73t ≤-. 即实数t 的取值范围为][7,1,3⎛⎫-∞-⋃+∞ ⎪⎝⎭. ……………………12分 22. 解:(Ⅰ)设,当直线的斜率不存在时,可得,此时,,不合题意. ……………………1分当直线的斜率存在时,设直线的斜率为,则直线的方程为, 把代入椭圆方程中消去,整理得,则有. ……………………3分则,即有,……………………5分由,得,故直线的方程为.………………6分(Ⅱ)当直线的斜率不存在时,可得,此时,则. ……………………7分当直线的斜率存在,且不为零时,设直线的斜率为.由(Ⅰ)知,即. ……………………8分又直线的斜率为,则. ……………9分从而,设,则有,…………………10分,则,综合有.所以四边形的面积的取值范围为.……………………12分。
南安市第三中学2018-2019学年高二上学期第二次月考试卷数学
南安市第三中学2018-2019学年高二上学期第二次月考试卷数学班级__________姓名__________ 分数__________一、选择题1. 设集合M={x|x ≥﹣1},N={x|x ≤k},若M ∩N ≠¢,则k 的取值范围是( )A .(﹣∞,﹣1]B .[﹣1,+∞)C .(﹣1,+∞)D .(﹣∞,﹣1)2. 已知函数,若存在常数使得方程有两个不等的实根211,[0,22()13,[,1]2x x f x x x ⎧+∈⎪⎪=⎨⎪∈⎪⎩()f x t =12,x x (),那么的取值范围为( )12x x <12()x f x ∙A .B .C .D .3[,1)41[831[,)1623[,3)83. 已知奇函数是上的增函数,且,则的取值范围是( )()f x [1,1]-1(3)()(0)3f t f t f +->t A 、 B 、 C 、 D 、1163t t ⎧⎫-<≤⎨⎬⎩⎭2433t t ⎧⎫-≤≤⎨⎬⎩⎭16t t ⎧⎫>-⎨⎬⎩⎭2133t t ⎧⎫-≤≤⎨⎬⎩⎭4. 某几何体的三视图如图所示,则该几何体为()A .四棱柱B .四棱锥C .三棱台D .三棱柱 5. 半径R 的半圆卷成一个圆锥,则它的体积为( )A .πR 3B .πR 3C .πR 3D .πR 36. 现准备将7台型号相同的健身设备全部分配给5个不同的社区,其中甲、乙两个社区每个社区至少2台,其它社区允许1台也没有,则不同的分配方案共有( )A .27种B .35种C .29种D .125种7. 冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示.杂质高杂质低旧设备37121新设备22202根据以上数据,则()A .含杂质的高低与设备改造有关B .含杂质的高低与设备改造无关C .设备是否改造决定含杂质的高低D .以上答案都不对8. 若cos (﹣α)=,则cos (+α)的值是()A .B .﹣C .D .﹣9. 一个多面体的直观图和三视图如图所示,点是边上的动点,记四面体的体M AB FMC E -积为,多面体的体积为,则( )1111]1V BCE ADF -2V =21V V A .B .C .D .不是定值,随点的变化而变化413121M10.若定义在R 上的函数f (x )满足f (0)=﹣1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A .B .C .D .11.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为()A .B .C .D .612.为得到函数的图象,只需将函数y=sin2x 的图象()A .向左平移个长度单位B .向右平移个长度单位C .向左平移个长度单位D .向右平移个长度单位二、填空题13.如图所示,圆中,弦的长度为,则的值为_______.C AB 4AB AC ×【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想.14.已知函数f (x )=x 2+x ﹣b+(a ,b 为正实数)只有一个零点,则+的最小值为 .15.等差数列中,,公差,则使前项和取得最大值的自然数是________.{}n a 39||||a a =0d <n S 16.已知一个动圆与圆C :(x+4)2+y 2=100相内切,且过点A (4,0),则动圆圆心的轨迹方程 .17.已知直线5x+12y+m=0与圆x 2﹣2x+y 2=0相切,则m= .18.将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a ,第二次朝上一面的点数为b ,则函数y=ax 2﹣2bx+1在(﹣∞,2]上为减函数的概率是 .三、解答题19.设命题p :实数x 满足x 2﹣4ax+3a 2<0,其中a >0;命题q :实数x 满足x 2﹣5x+6≤0(1)若a=1,且q ∧p 为真,求实数x 的取值范围;(2)若p 是q 必要不充分条件,求实数a 的取值范围.20.已知函数f (x )=x 2﹣mx 在[1,+∞)上是单调函数.(1)求实数m 的取值范围;(2)设向量,求满足不等式的α的取值范围.21.已知等比数列{a n}的前n项和为S n,a n>0,a1=,且﹣,,成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n}满足b n•log3(1﹣S n+1)=1,求适合方程b1b2+b2b3+…+b n b n+1=的正整数n的值.22.为了培养中学生良好的课外阅读习惯,教育局拟向全市中学生建议一周课外阅读时间不少于t0小时.为此,教育局组织有关专家到某“基地校”随机抽取100名学生进行调研,获得他们一周课外阅读时间的数据,整理得到如图频率分布直方图:(Ⅰ)求任选2人中,恰有1人一周课外阅读时间在[2,4)(单位:小时)的概率(Ⅱ)专家调研决定:以该校80%的学生都达到的一周课外阅读时间为t0,试确定t0的取值范围23.有编号为A1,A2,…A10的10个零件,测量其直径(单位:cm),得到下面数据:编号A1A2A3A4A5A6A7A8A9A10直径 1.51 1.49 1.49 1.51 1.49 1.51 1.47 1.46 1.53 1.47其中直径在区间[1.48,1.52]内的零件为一等品.(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;(Ⅱ)从一等品零件中,随机抽取2个.(ⅰ)用零件的编号列出所有可能的抽取结果;(ⅱ)求这2个零件直径相等的概率.24.如图所示,在菱形ABCD中,对角线AC,BD交于E点,F,G分别为AD,BC的中点,AB=2,∠DAB=60°,沿对角线BD将△ABD折起,使得AC=.(1)求证:平面ABD⊥平面BCD;(2)求二面角F﹣DG﹣C的余弦值.南安市第三中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】B【解析】解:∵M={x|x ≥﹣1},N={x|x ≤k},若M ∩N ≠¢,则k ≥﹣1.∴k 的取值范围是[﹣1,+∞).故选:B .【点评】本题考查了交集及其运算,考查了集合间的关系,是基础题. 2. 【答案】C 【解析】试题分析:由图可知存在常数,使得方程有两上不等的实根,则,由,可得()f x t =314t <<1324x +=,由,可得,即,则14x =213x =x =12111,422x x ≤<≤≤221143x ≤≤.故本题答案选C.()212123133,162x f x x x ⎡⎫=⋅∈⎪⎢⎣⎭考点:数形结合.【规律点睛】本题主要考查函数的图象与性质,及数形结合的数学思想方法.方程解的个数问题一般转化为两个常见的函数图象的交点个数问题来解决.要能熟练掌握几种基本函数图象,如二次函数,反比例函数,指数函数,对数函数,幂函数等.掌握平移变换,伸缩变换,对称变换,翻折变换,周期变换等常用的方法技巧来快速处理图象.3. 【答案】A 【解析】考点:函数的性质。
福建省南安高二下学期期中考试理科数学试题 有答案
南安下学期期中考试卷高二数学(理)科考试范围:必修3(第二、三章)、选修2-3;考试时间:120分钟。
第I 卷(选择题 共60分)一.选择题:本大题共12小题,每小题5,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
1. 从实验小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图由图中数据可知身高在[120,130]内的学生人数为( )A.3B. 25C.30D.35 2. 在521⎪⎭⎫⎝⎛+x x 的展开式中x 的系数为( )A. 5B. 10C. 20D. 403.从5名男生和5名女生中选3人组队参加某集体项目的比赛,其中至少有一名女生入选的组队方案数为( )A.100B.110C.120D.1804.将5本不同的书全发给4名同学,每名同学至少有一本书的概率是( )A.6415B. 12815C. 12524D. 125485.已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 ,据此估计,该运动员三次投篮恰有两次命中的概率为( )A.0.35B.0.25C.0.20D.0.15 6. 某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程a x b y ˆˆˆ+=中的b ˆ为9.4,据此模型预报广告费用为6万元时销售额为( )A. 63.6万元B. 65.5万元C. 67.7万元D. 72.0万元 7.下面茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损(表格中◆处),则甲的平均成绩超过乙的平均成绩的概率为( ) A.52 B.107C.54 D.1098.已知随机变量X 服从正态分布),(2σμN ,且9544.0)22(=+≤<-σμσμX P ,6826.0)(=+≤<-σμσμX P ,若1,4==σμ, 则=<<)65(X P ( )A. 0.1358B. 0.1359C. 0.2716D. 0.27189. 从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a ,b ,共可得到b a lg lg -的不同值的个数是( )A.9B.10C.18D.20 10.5)12)((xx x a x -+ 的展开式中各项系数的和为2,则该展开式中常数项为( )A. -40B. -20C. 20D. 4011.某校数学学科中有4门选修课程,3名学生选课,若每个学生必须选其中2门,则每门课程都有学生选的不同的选课方法数为( )A.88B.102C.114D.11812.已知O 点为ABC ∆所在平面内一点,且满足32=++,现将一粒质点随机撒在ABC ∆内,若质点落在AOC ∆的概率为A.41B.31C.43D.21第II 卷(非选择题,共90分)二.填空题:本大题共4小题,每小题4分,共16分。
精选福建省泉州市南安2018-2019学年高二数学下学期期中测试卷(文)(含参考答案参考答案)
2018-2019学年福建省泉州市南安一中高二(下)期中数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.函数的定义域是()A.[0,+∞)B.[1,+∞)C.(0,+∞) D.(1,+∞)2.已知集合A={x|x≥0},且A∩B=B,则集合B可能是()A.{x|x≥0}B.{x|x≤1}C.{﹣1,0,1} D.R3.下列各组表示同一函数的是()A.y=与y=()2B.y=lgx2与y=2lgxC.y=1+与y=1+D.y=x2﹣1(x∈R)与y=x2﹣1(x∈N)4.已知函数f(x)=,则f(f(﹣1))=()A.B.C.﹣D.25.全称命题:∀x∈R,x2>0的否定是()A.∀x∈R,x2≤0B.∃x∈R,x2>0 C.∃x∈R,x2<0 D.∃x∈R,x2≤06.若a>b,则下列不等式正确的是()A.B.a3>b3C.a2>b2D.a>|b|7.函数y=﹣lnx(1≤x≤e2)的值域是()A.[0,2] B.[﹣2,0] C.[﹣,0] D.[0,]8.设函数,则有()A.f(x)是奇函数,B.f(x)是奇函数, y=b xC.f(x)是偶函数D.f(x)是偶函数,9.已知函数f(x)的定义域为[a,b],函数y=f(x)的图象如下图所示,则函数f(|x|)的图象是()A.B.C.D.10.若函数f(x)=﹣a(x﹣x3)的递减区间为(,),则a的取值范围是()A.a>0 B.﹣1<a<0 C.a>1 D.0<a<111.若函数则“a=1”是“函数y=f(x)在R上单调递减”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件12.设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为()A.1 B.C.D.二、填空题:每小题4分,共16分,请将答案填在横线上.13.不等式的解为.14.函数f(x)=log a(x﹣1)+2(a>0且a≠1)过定点A,则点A的坐标为.15.函数y=f(x)的图象在点M(1,f(1))处的切线方程是y=3x﹣2,则f(1)+f′(1)= .16.已知函数f(x)的定义域为[﹣1,5],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图示.①函数f(x)的极大值点为0,4;②函数f(x)在[0,2]上是减函数;③如果当x∈[﹣1,t]时,f(x)的最大值是2,那么t的最大值为4;④当1<a<2时,函数y=f(x)﹣a有4个零点;⑤函数y=f(x)﹣a的零点个数可能为0、1、2、3、4个.其中正确命题的序号是.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.已知全集U=R,集合A={x|x2﹣4x﹣5≤0},B={x|x<4},C={x|x≥a}.(Ⅰ)求A∩(∁U B);(Ⅱ)若A⊆C,求a的取值范围.18.已知函数f(x)=log a(1+x)﹣log a(1﹣x)(a>0,a≠1).(Ⅰ)判断f(x)奇偶性,并证明;(Ⅱ)当0<a<1时,解不等式f(x)>0.19.已知奇函数f(x)=(c∈R).(Ⅰ)求c的值;(Ⅱ)当x∈[2,+∞)时,求f(x)的最小值.20.已知函数f(x)=x3﹣x2+cx+d有极值.(Ⅰ)求c的取值范围;(Ⅱ)若f(x)在x=2处取得极值,且当x<0时,f(x)<d2+2d恒成立,求d的取值范围.21.2008年奥运会在中国举行,某商场预计2008年从1日起前x个月,顾客对某种奥运商品的需求总量p(x)件与月份x的近似关系是且x≤12),该商品的进价q (x)元与月份x的近似关系是q(x)=150+2x,(x∈N*且x≤12).(1)写出今年第x月的需求量f(x)件与月份x的函数关系式;(2)该商品每件的售价为185元,若不计其他费用且每月都能满足市场需求,则此商场今年销售该商品的月利润预计最大是多少元?22.已知函数f(x)=ax2+lnx(a∈R).(1)当a=时,求f(x)在区间[1,e]上的最大值和最小值;(2)如果函数g(x),f1(x),f2(x),在公共定义域D上,满足f1(x)<g(x)<f2(x),那么就称g(x)为f1(x),f2(x)的“活动函数”.已知函数+2ax.若在区间(1,+∞)上,函数f (x)是f1(x),f2(x)的“活动函数”,求a的取值范围.2018-2019学年福建省泉州市南安一中高二(下)期中数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.函数的定义域是()A.[0,+∞)B.[1,+∞)C.(0,+∞) D.(1,+∞)【考点】函数的定义域及其求法.【专题】计算题.【分析】根据负数没有平方根得到2x﹣1大于等于0,然后根据指数函数的增减性得到x的范围即可.【解答】解:由题意得:2x﹣1≥0,即2x≥1=20,因为2>1,所以指数函数y=2x为增函数,则x≥0.所以函数的定义域为[0,+∞)故选A【点评】本题为一道基础题,要求学生会根据二次根式的定义及指数函数的增减性求函数的定义域.2.已知集合A={x|x≥0},且A∩B=B,则集合B可能是()A.{x|x≥0}B.{x|x≤1} C.{﹣1,0,1} D.R【考点】集合的包含关系判断及应用.【专题】集合.【分析】由题意可知B⊆A,然后化简四个选项中的集合,逐一核对后即可得到答案.【解答】解:由A={x|x≥0},且A∩B=B,所以B⊆A.A、{x|x≥0}={x|x≥0}=A,故本选项正确;B、{x|x≤1,x∈R}=(﹣∞,1]⊊[0,+∞),故本选项错误;C、若B={﹣1,0,1},则A∩B={0,1}≠B,故本选项错误;D、给出的集合是R,不合题意,故本选项错误.故选:A.【点评】本题考查了交集及其运算,考查了基本初等函数值域的求法,是基础题.3.下列各组表示同一函数的是()A.y=与y=()2B.y=lgx2与y=2lgxC.y=1+与y=1+D.y=x2﹣1(x∈R)与y=x2﹣1(x∈N)【考点】判断两个函数是否为同一函数.【专题】函数的性质及应用.【分析】分别判断两个函数的定义域和对应法则是否一致,否则不是同一函数.【解答】解:A.y=|x|,定义域为R,y=()2=x,定义域为{x|x≥0},定义域不同,不能表示同一函数.B.y=lgx2,的定义域为{x|x≠0},y=2lgx的定义域为{x|x>0},所以两个函数的定义域不同,所以不能表示同一函数.C.两个函数的定义域都为{x|x≠0},对应法则相同,能表示同一函数.D.两个函数的定义域不同,不能表示同一函数.故选:C.【点评】本题主要考查判断两个函数是否为同一函数,判断的标准就是判断两个函数的定义域和对应法则是否一致,否则不是同一函数.4.已知函数f(x)=,则f(f(﹣1))=()A.B.C.﹣D.2【考点】函数的值.【专题】计算题;函数的性质及应用.【分析】运用分段函数,可得f(﹣1)=1,再求f(f(﹣1))=f(1)=2.【解答】解:函数f(x)=,则f(﹣1)=(﹣1)2=1,f(f(﹣1))=f(1)=21=2.故选D.【点评】本题考查分段函数和运用:求函数值,考查运算能力,属于基础题.5.全称命题:∀x∈R,x2>0的否定是()A.∀x∈R,x2≤0B.∃x∈R,x2>0 C.∃x∈R,x2<0 D.∃x∈R,x2≤0【考点】命题的否定.【专题】阅读型.【分析】欲写出命题的否定,必须同时改变两个地方:①:“∀”;②:“>”即可,据此分析选项可得答案.【解答】解:命题:∀x∈R,x2>0的否定是:∃x∈R,x2≤0.故选D.【点评】这类问题的常见错误是没有把全称量词改为存在量词,或者对于“>”的否定用“<”了.这里就有注意量词的否定形式.如“都是”的否定是“不都是”,而不是“都不是”.特称命题的否定是全称命题,“存在”对应“任意”.6.若a>b,则下列不等式正确的是()A.B.a3>b3C.a2>b2D.a>|b|【考点】不等关系与不等式.【专题】证明题.【分析】用特殊值法,令a=﹣1,b=﹣2,代入各个选项检验可得即可得答案.【解答】解:∵a>b,令 a=﹣1,b=﹣2,代入各个选项检验可得:=﹣1, =﹣,显然A不正确.a3=﹣1,b3=﹣6,显然 B正确.a2 =1,b2=4,显然C不正确.a=﹣1,|b|=2,显然D 不正确.故选 B.【点评】通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法.7.函数y=﹣lnx(1≤x≤e2)的值域是()A.[0,2] B.[﹣2,0] C.[﹣,0] D.[0,]【考点】对数函数的值域与最值.【专题】函数的性质及应用.【分析】由已知中函数的解析式,分析出函数的单调性,进而分析出函数的最值,可得函数的值域.【解答】解:∵函数y=lnx在(0,+∞)上为增函数,故函数y=﹣lnx在(0,+∞)上为减函数,当1≤x≤e2时,若x=1,函数取最大值0,x=e2,函数取最小值﹣2,故函数y=﹣lnx(1≤x≤e2)的值域是[﹣2,0],故选:B【点评】本题考查的知识点是对数函数的值域与最值,熟练掌握对数函数的图象和性质,是解答的关键.8.设函数,则有()A.f(x)是奇函数,B.f(x)是奇函数, y=b xC.f(x)是偶函数D.f(x)是偶函数,【考点】函数奇偶性的判断.【专题】函数的性质及应用.【分析】先用定义判断函数的奇偶性,再求f(),找出其与f(x)的关系即可得到答案.【解答】解:函数f(x)的定义域为R,关于原点对称.又f(﹣x)===f(x),所以f(x)为偶函数.而f()===﹣=﹣f(x),故选C.【点评】本题考查函数的奇偶性,属基础题,定义是解决该类问题的基本方法.9.已知函数f(x)的定义域为[a,b],函数y=f(x)的图象如下图所示,则函数f(|x|)的图象是()A.B.C.D.【考点】函数的图象与图象变化.【专题】作图题;压轴题;数形结合;运动思想.【分析】由函数y=f(x)的图象和函数f(|x|)的图象之间的关系,y=f(|x|)的图象是由y=f(x)把x >0的图象保留,x<0部分的图象关于y轴对称而得到的.【解答】解:∵y=f(|x|)是偶函数,∴y=f(|x|)的图象是由y=f(x)把x>0的图象保留,x<0部分的图象关于y轴对称而得到的.故选B.【点评】考查函数图象的对称变换和识图能力,注意区别函数y=f(x)的图象和函数f(|x|)的图象之间的关系,函数y=f(x)的图象和函数|f(x)|的图象之间的关系;体现了数形结合和运动变化的思想,属基础题.10.若函数f(x)=﹣a(x﹣x3)的递减区间为(,),则a的取值范围是()A.a>0 B.﹣1<a<0 C.a>1 D.0<a<1【考点】利用导数研究函数的单调性.【专题】计算题.【分析】由“函数f(x)=﹣a(x﹣x3)的递减区间为(,)”,则有“f′(x)≤0,x∈(,)恒成立”求解即可.【解答】解:∵函数f(x)=﹣a(x﹣x3)的递减区间为(,)∴f′(x)≤0,x∈(,)恒成立即:﹣a(1﹣3x2)≤0,,x∈(,)恒成立∵1﹣3x2≥0成立∴a>0故选A【点评】本题主要考查函数单调性的应用,一般来讲已知单调性,则往往转化为恒成立问题去解决.11.若函数则“a=1”是“函数y=f(x)在R上单调递减”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】计算题.【分析】若a=1时,y=﹣x+a单调递减,且h(x)<h(0)=1,符合函数y=f(x)在R上单调递减;若函数y=f(x)在R上单调递减,则g(0)≤h(0)可求a的范围【解答】解:设g(x)=,h(x)=﹣x+a,则g(x),h(x)都是单调递减∵y=在(﹣∞,0]上单调递减且h(x)≥h(0)=1若a=1时,y=﹣x+a单调递减,且h(x)<h(0)=1∴,即函数y=f(x)在R上单调递减若函数y=f(x)在R上单调递减,则g(0)≤h(0)∴a≤1则“a=1”是“函数y=f(x)在R上单调递减”的充分不必要条件故选A【点评】本题以充分必要条件的判断为载体,主要考查了分段函数的单调性的判断,解题中要注意分段函数的端点处的函数值的处理12.设直线x=t与函数f(x)=x2,g(x)=lnx的图象分别交于点M,N,则当|MN|达到最小时t的值为()A.1 B.C.D.【考点】导数在最大值、最小值问题中的应用.【专题】计算题;压轴题;转化思想.【分析】将两个函数作差,得到函数y=f(x)﹣g(x),再求此函数的最小值对应的自变量x的值.【解答】解:设函数y=f(x)﹣g(x)=x2﹣lnx,求导数得=当时,y′<0,函数在上为单调减函数,当时,y′>0,函数在上为单调增函数所以当时,所设函数的最小值为所求t的值为故选D【点评】可以结合两个函数的草图,发现在(0,+∞)上x2>lnx恒成立,问题转化为求两个函数差的最小值对应的自变量x的值.二、填空题:每小题4分,共16分,请将答案填在横线上.13.不等式的解为{x|x>1或x<0} .【考点】其他不等式的解法.【专题】计算题.【分析】通过移项、通分;利用两个数的商小于0等价于它们的积小于0;转化为二次不等式,通过解二次不等式求出解集.【解答】解:即即x(x﹣1)>0解得x>1或x<0故答案为{x|x>1或x<0}【点评】本题考查将分式不等式通过移项、通分转化为整式不等式、考查二次不等式的解法.注意不等式的解以解集形式写出14.函数f(x)=log a(x﹣1)+2(a>0且a≠1)过定点A,则点A的坐标为(2,2).【考点】对数函数的图象与性质.【专题】函数的性质及应用.【分析】由log a1=0得x﹣1=1,求出x的值以及y的值,即求出定点的坐标.【解答】解:∵log a1=0,∴当x﹣1=1,即x=2时,y=2,则函数y=log a(x﹣1)+2的图象恒过定点(2,2).故答案为:(2,2).【点评】本题考查对数函数的性质和特殊点,主要利用log a1=0,属于基础题.15.函数y=f(x)的图象在点M(1,f(1))处的切线方程是y=3x﹣2,则f(1)+f′(1)= 4 .【考点】导数的几何意义.【专题】计算题.【分析】由导数的几何意义知,函数y=f(x)的图象在x=a处的切线斜率是f′(a);并且点P(a,f(a))是切点,该点既在函数y=f(x)的图象上,又在切线上,f(a)是当x=a时的函数值,依此问题易于解决.【解答】解:由题意得f′(1)=3,且f(1)=3×1﹣2=1所以f(1)+f′(1)=3+1=4.故答案为4.【点评】本题主要考查导数的几何意义,要注意分清f(a)与f′(a)....16.已知函数f(x)的定义域为[﹣1,5],部分对应值如下表,f(x)的导函数y=f′(x)的图象如图示.①函数f(x)的极大值点为0,4;②函数f(x)在[0,2]上是减函数;③如果当x∈[﹣1,t]时,f(x)的最大值是2,那么t的最大值为4;④当1<a<2时,函数y=f(x)﹣a有4个零点;⑤函数y=f(x)﹣a的零点个数可能为0、1、2、3、4个.其中正确命题的序号是①②⑤.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的极值.【专题】综合题;压轴题;导数的综合应用.【分析】由导数图象可知,函数的单调性,从而可得函数的极值,故可得①,②正确;因为在当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,要使当x∈[﹣1,t]函数f(x)的最大值是4,当2≤t≤5,所以t 的最大值为5,所以③不正确;由f(x)=a知,因为极小值f(2)未知,所以无法判断函数y=f(x)﹣a 有几个零点,所以④不正确,根据函数的单调性和极值,做出函数的图象如图,即可求得结论.【解答】解:由导数图象可知,当﹣1<x<0或2<x<4时,f'(x)>0,函数单调递增,当0<x<2或4<x<5,f'(x)<0,函数单调递减,当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,当x=2时,函数取得极小值f(2),所以①正确;②正确;因为在当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,要使当x∈[﹣1,t]函数f(x)的最大值是4,当2≤t≤5,所以t的最大值为5,所以③不正确;由f(x)=a知,因为极小值f(2)未知,所以无法判断函数y=f(x)﹣a有几个零点,所以④不正确,根据函数的单调性和极值,做出函数的图象如图,(线段只代表单调性),根据题意函数的极小值不确定,分f(2)<1或1≤f(2)<2两种情况,由图象知,函数y=f(x)和y=a的交点个数有0,1,2,3,4等不同情形,所以⑤正确,综上正确的命题序号为①②⑤.故答案为:①②⑤.......【点评】本题考查导数知识的运用,考查导函数与原函数图象之间的关系,正确运用导函数图象是关键.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.已知全集U=R ,集合A={x|x 2﹣4x ﹣5≤0},B={x|x <4},C={x|x≥a}.(Ⅰ)求A∩(∁U B ); (Ⅱ)若A ⊆C ,求a 的取值范围.【考点】交、并、补集的混合运算;集合的包含关系判断及应用.【专题】集合.【分析】(Ⅰ)求出A 中不等式的解集确定出A ,由全集U=R ,及B 求出B 的补集,求出A 与B 补集的交集即可;(Ⅱ)根据A ,C ,以及A 为C 的子集,确定出a 的范围即可. 【解答】解:(Ⅰ)∵全集U=R ,B={x|x <4},∴∁U B={x|x≥4},又∵A={x|x 2﹣4x ﹣5≤0}={x|﹣1≤x≤5}, ∴A∩(∁U B )={x|4≤x≤5};(Ⅱ)∵A={x|﹣1≤x≤5},C={x|x≥a},且A ⊆C ,∴a 的范围为a≤﹣1.【点评】此题考查了交、并、补集的混合运算,以及集合的包含关系判断及应用,熟练掌握各自的定义是解本题的关键.18.已知函数f (x )=log a (1+x )﹣log a (1﹣x )(a >0,a≠1).(Ⅰ)判断f (x )奇偶性,并证明;(Ⅱ)当0<a <1时,解不等式f (x )>0. 【考点】函数奇偶性的判断;其他不等式的解法. 【专题】函数的性质及应用.【分析】(Ⅰ)求函数的定义域,根据函数奇偶性的定义即可判断f (x )奇偶性;(Ⅱ)当0<a <1时,根据对数函数的单调性即可解不等式f (x )>0.【解答】解:(Ⅰ)由,得,即﹣1<x <1,即定义域为(﹣1,1),则f(﹣x)=log a(1﹣x)﹣log a(1+x)=﹣[log a(1+x)﹣log a(1﹣x)]=﹣f(x),则f(x)为奇函数.(Ⅱ)当0<a<1时,由f(x)>0,即log a(1+x)﹣log a(1﹣x)>0,即log a(1+x)>log a(1﹣x),则1+x<1﹣x,解得﹣1<x<0,则不等式解集为:(﹣1,0).【点评】本题主要考查函数奇偶性的判断以及对数不等式的求解,利用定义法以及对数函数的单调性是解决本题的关键.19.已知奇函数f(x)=(c∈R).(Ⅰ)求c的值;(Ⅱ)当x∈[2,+∞)时,求f(x)的最小值.【考点】函数的最值及其几何意义;函数奇偶性的性质.【专题】函数的性质及应用.【分析】(Ⅰ)根据函数的奇偶性,得到=﹣=,比较系数求出c的值即可;(Ⅱ)先求出函数f(x)的导数,得到函数的单调区间,从而求出函数的最小值.【解答】解:(Ⅰ)∵f(x)是奇函数,∴f(﹣x)=﹣f(x),∴=﹣=,比较系数得:c=﹣c,∴c=0,∴f(x)==x+;(Ⅱ)∵f(x)=x+,∴f′(x)=1﹣,当x∈[2,+∞)时,1﹣>0,∴函数f(x)在[2,+∞)上单调递增,∴f(x)min=f(2)=.【点评】本题考查了函数的奇偶性问题,考查了函数的单调性、最值问题,是一道中档题.20.已知函数f(x)=x3﹣x2+cx+d有极值....(Ⅰ)求c的取值范围;(Ⅱ)若f(x)在x=2处取得极值,且当x<0时,f(x)<d2+2d恒成立,求d的取值范围.【考点】函数在某点取得极值的条件;导数在最大值、最小值问题中的应用.【专题】计算题.【分析】(I)由已知中函数解析式f(x)=x3﹣x2+cx+d,我们易求出导函数f′(x)的解析式,然后根据函数f(x)=x3﹣x2+cx+d有极值,方程f′(x)=x2﹣x+c=0有两个实数解,构造关于c的不等式,解不等式即可得到c的取值范围;(Ⅱ)若f(x)在x=2处取得极值,则f′(2)=0,求出满足条件的c值后,可以分析出函数f(x)=x3﹣x2+cx+d的单调性,进而分析出当x<0时,函数的最大值,又由当x<0时,f(x)<d2+2d恒成立,可以构造出一个关于d的不等式,解不等式即可得到d的取值范围.【解答】解(Ⅰ)∵f(x)=x3﹣x2+cx+d,∴f′(x)=x2﹣x+c,要使f(x)有极值,则方程f′(x)=x2﹣x+c=0有两个实数解,从而△=1﹣4c>0,∴c<.(Ⅱ)∵f(x)在x=2处取得极值,∴f′(2)=4﹣2+c=0,∴c=﹣2.∴f(x)=x3﹣x2﹣2x+d,∵f′(x)=x2﹣x﹣2=(x﹣2)(x+1),∴当x∈(﹣∞,﹣1]时,f′(x)>0,函数单调递增,当x∈(﹣1,2]时,f′(x)<0,函数单调递减.∴x<0时,f(x)在x=﹣1处取得最大值,∵x<0时,f(x)<恒成立,∴<,即(d+7)(d﹣1)>0,∴d<﹣7或d>1,即d的取值范围是(﹣∞,﹣7)∪(1,+∞).【点评】本题考查的知识点是函数在某点取得极值的条件,导数在最大值,最小值问题中的应用,其中根据已知中函数的解析式,求出函数的导函数的解析式,是解答本题的关键.......21.2008年奥运会在中国举行,某商场预计2008年从1日起前x 个月,顾客对某种奥运商品的需求总量p (x )件与月份x的近似关系是且x≤12),该商品的进价q (x )元与月份x 的近似关系是q (x )=150+2x ,(x ∈N*且x≤12).(1)写出今年第x 月的需求量f (x )件与月份x 的函数关系式;(2)该商品每件的售价为185元,若不计其他费用且每月都能满足市场需求,则此商场今年销售该商品的月利润预计最大是多少元?【考点】根据实际问题选择函数类型.【专题】应用题.【分析】(1)由题意可得,第x 个月的需求量等于第x 个月的需求总量减去第x ﹣1个月的需求总量,故当x=1时,f (1)=p (1),当2≤x≤12时,f (x )=p (x )﹣P (x ﹣1);(2)根据月利润=该商品每件的利润×月销售量,列出关系式,再利用导数求最值求解即可.【解答】解:(1)当x=1时,f (1)=p (1)=37.(2分)当2≤x≤12时,且x≤12)(5分)验证x=1符合f (x )=﹣3x 2+40x ,∴f(x )=﹣3x 2+40x (x ∈N*且x≤12).该商场预计销售该商品的月利润为g (x )=(﹣3x 2+40x )(185﹣150﹣2x )=6x 3﹣185x 2+1400x ,(x ∈N*且x≤12),令h (x )=6x 3﹣185x 2+1400x (1≤x≤12),h'(x )=18x 2﹣370x+1400,令h'(x )=0,解得(舍去).>0;当5<x≤12时,h'(x )<0.∴当x=5时,h (x )取最大值h (5)=3125.max =g (5)=3125(元).综上,5月份的月利润最大是3125元.(14分)【点评】本题考查利用函数知识解决应用题的有关知识.新高考中的重要的理念就是把数学知识运用到实际生活中,如何建模是解决这类问题的关键.同时要熟练地利用导数的知识解决函数的求最值问题.22.已知函数f (x )=ax 2+lnx (a ∈R ).(1)当a=时,求f (x )在区间[1,e]上的最大值和最小值;(2)如果函数g (x ),f 1(x ),f 2(x ),在公共定义域D 上,满足f 1(x )<g (x )<f 2(x ),那么就称g (x )为f 1(x ),f 2(x)的“活动函数”.已知函数+2ax .若在区间(1,+∞)上,函数f(x )是f 1(x ),f 2(x )的“活动函数”,求a 的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【专题】计算题;压轴题.【分析】(1)由题意得,>0,∴f(x)在区间[1,e]上为增函数,即可求出函数的最值.(2)由题意得:令<0,对x∈(1,+∞)恒成立,且h(x)=f1(x)﹣f(x)=<0对x∈(1,+∞)恒成立,分类讨论当或时两种情况求函数的最大值,可得到a 的范围.又因为h′(x)=﹣x+2a﹣=<0,h(x)在(1,+∞)上为减函数,可得到a的另一个范围,综合可得a的范围.【解答】解:(1)当时,,;对于x∈[1,e],有f'(x)>0,∴f(x)在区间[1,e]上为增函数,∴,.(2)在区间(1,+∞)上,函数f(x)是f1(x),f2(x)的“活动函数”,则f1(x)<f(x)<f2(x)令<0,对x∈(1,+∞)恒成立,且h(x)=f1(x)﹣f(x)=<0对x∈(1,+∞)恒成立,∵1)若,令p′(x)=0,得极值点x1=1,,当x2>x1=1,即时,在(x2,+∞)上有p′(x)>0,此时p(x)在区间(x2,+∞)上是增函数,并且在该区间上有p(x)∈(p(x2),+∞),不合题意;当x2<x1=1,即a≥1时,同理可知,p(x)在区间(1,+∞)上,有p(x)∈(p(1),+∞),也不合题意;2)若,则有2a﹣1≤0,此时在区间(1,+∞)上恒有p′(x)<0,从而p(x)在区间(1,+∞)上是减函数;要使p(x)<0在此区间上恒成立,只须满足,所以≤a≤....又因为h′(x)=﹣x+2a﹣=<0,h(x)在(1,+∞)上为减函数,h(x)<h(1)=+2a≤0,所以a≤综合可知a的范围是[,].【点评】本题考查的知识点是利用导数求函数的最值,利用最值解决恒成立问题,二对于新定义题型关键是弄清新概念与旧知识点之间的联系即可,结合着我们已学的知识解决问题,这是高考考查的热点之一....。
南安市第三中学2018-2019学年高二上学期第二次月考试卷数学
南安市第三中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 设集合M={x|x ≥﹣1},N={x|x ≤k},若M ∩N ≠¢,则k 的取值范围是( )A .(﹣∞,﹣1]B .[﹣1,+∞)C .(﹣1,+∞)D .(﹣∞,﹣1)2. 已知函数211,[0,)22()13,[,1]2x x f x x x ⎧+∈⎪⎪=⎨⎪∈⎪⎩,若存在常数使得方程()f x t =有两个不等的实根12,x x(12x x <),那么12()x f x ∙的取值范围为( )A .3[,1)4B.1[,86C .31[,)162D .3[,3)83. 已知奇函数()f x 是[1,1]-上的增函数,且1(3)()(0)3f t f t f +->,则t 的取值范围是( )A 、1163t t ⎧⎫-<≤⎨⎬⎩⎭B 、2433t t ⎧⎫-≤≤⎨⎬⎩⎭C 、16t t ⎧⎫>-⎨⎬⎩⎭D 、2133t t ⎧⎫-≤≤⎨⎬⎩⎭4. 某几何体的三视图如图所示,则该几何体为( )A .四棱柱B .四棱锥C .三棱台D .三棱柱 5. 半径R 的半圆卷成一个圆锥,则它的体积为( ) A.πR 3B.πR 3C.πR 3D.πR 36. 现准备将7台型号相同的健身设备全部分配给5个不同的社区,其中甲、乙两个社区每个社区至少2台,其它社区允许1台也没有,则不同的分配方案共有( )A .27种B .35种C .29种D .125种 7. 冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示.杂质高 杂质低 旧设备37121新设备 22 202根据以上数据,则( ) A .含杂质的高低与设备改造有关 B .含杂质的高低与设备改造无关 C .设备是否改造决定含杂质的高低D .以上答案都不对8. 若cos (﹣α)=,则cos (+α)的值是( )A .B .﹣C .D .﹣9. 一个多面体的直观图和三视图如图所示,点M 是边AB 上的动点,记四面体FMC E -的体积为1V ,多面体BCE ADF -的体积为2V ,则=21V V ( )1111] A .41 B .31 C .21D .不是定值,随点M 的变化而变化10.若定义在R 上的函数f (x )满足f (0)=﹣1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A .B .C .D .11.若一个底面为正三角形、侧棱与底面垂直的棱柱的三视图如下图所示,则这个棱柱的体积为( )A .B .C .D .612.为得到函数的图象,只需将函数y=sin2x 的图象( )A .向左平移个长度单位B .向右平移个长度单位C .向左平移个长度单位D .向右平移个长度单位二、填空题13.如图所示,圆C 中,弦AB 的长度为4,则AB AC ×的值为_______.【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想.14.已知函数f (x )=x 2+x ﹣b+(a ,b 为正实数)只有一个零点,则+的最小值为 .15.等差数列{}n a 中,39||||a a =,公差0d <,则使前项和n S 取得最大值的自然数是________.16.已知一个动圆与圆C :(x+4)2+y 2=100相内切,且过点A (4,0),则动圆圆心的轨迹方程 .17.已知直线5x+12y+m=0与圆x 2﹣2x+y 2=0相切,则m= .18.将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a ,第二次朝上一面的点数为b ,则函数y=ax 2﹣2bx+1在(﹣∞,2]上为减函数的概率是 .三、解答题19.设命题p :实数x 满足x 2﹣4ax+3a 2<0,其中a >0;命题q :实数x 满足x 2﹣5x+6≤0(1)若a=1,且q ∧p 为真,求实数x 的取值范围; (2)若p 是q 必要不充分条件,求实数a 的取值范围.20.已知函数f (x )=x 2﹣mx 在[1,+∞)上是单调函数.(1)求实数m 的取值范围;(2)设向量,求满足不等式的α的取值范围.21.已知等比数列{a n}的前n项和为S n,a n>0,a1=,且﹣,,成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n}满足b n•log3(1﹣S n+1)=1,求适合方程b1b2+b2b3+…+b n b n+1=的正整数n的值.22.为了培养中学生良好的课外阅读习惯,教育局拟向全市中学生建议一周课外阅读时间不少于t0小时.为此,教育局组织有关专家到某“基地校”随机抽取100名学生进行调研,获得他们一周课外阅读时间的数据,整理得到如图频率分布直方图:(Ⅰ)求任选2人中,恰有1人一周课外阅读时间在[2,4)(单位:小时)的概率(Ⅱ)专家调研决定:以该校80%的学生都达到的一周课外阅读时间为t0,试确定t0的取值范围23.有编号为A1,A2,…A10的10个零件,测量其直径(单位:cm),得到下面数据:编号A1A2A3A4A5A6A7A8A9A10直径 1.51 1.49 1.49 1.51 1.49 1.51 1.47 1.46 1.53 1.47其中直径在区间[1.48,1.52]内的零件为一等品.(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;(Ⅱ)从一等品零件中,随机抽取2个.(ⅰ)用零件的编号列出所有可能的抽取结果;(ⅱ)求这2个零件直径相等的概率.24.如图所示,在菱形ABCD中,对角线AC,BD交于E点,F,G分别为AD,BC的中点,AB=2,∠DAB=60°,沿对角线BD将△ABD折起,使得AC=.(1)求证:平面ABD⊥平面BCD;(2)求二面角F﹣DG﹣C的余弦值.南安市第三中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】B【解析】解:∵M={x|x ≥﹣1},N={x|x ≤k},若M ∩N ≠¢, 则k ≥﹣1. ∴k 的取值范围是[﹣1,+∞).故选:B .【点评】本题考查了交集及其运算,考查了集合间的关系,是基础题.2. 【答案】C 【解析】试题分析:由图可知存在常数,使得方程()f x t =有两上不等的实根,则314t <<,由1324x +=,可得14x =,由213x =,可得3x =(负舍),即有12111,4223x x ≤<≤≤,即221143x ≤≤,则()212123133,162x f x x x ⎡⎫=⋅∈⎪⎢⎣⎭.故本题答案选C.考点:数形结合.【规律点睛】本题主要考查函数的图象与性质,及数形结合的数学思想方法.方程解的个数问题一般转化为两个常见的函数图象的交点个数问题来解决.要能熟练掌握几种基本函数图象,如二次函数,反比例函数,指数函数,对数函数,幂函数等.掌握平移变换,伸缩变换,对称变换,翻折变换,周期变换等常用的方法技巧来快速处理图象.3. 【答案】A 【解析】考点:函数的性质。
南安市三中2018-2019学年上学期高二数学12月月考试题含解析
南安市三中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 某工厂生产某种产品的产量x (吨)与相应的生产能耗y (吨标准煤)有如表几组样本数据:0.7,则这组样本数据的回归直线方程是( )A . =0.7x+0.35B . =0.7x+1C . =0.7x+2.05D . =0.7x+0.452. 设函数y=x 3与y=()x 的图象的交点为(x 0,y 0),则x 0所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)3. 已知全集为R ,集合{}|23A x x x =<->或,{}2,0,2,4B =-,则()R A B =ð( )A .{}2,0,2-B .{}2,2,4-C .{}2,0,3-D .{}0,2,44. 若a >b ,则下列不等式正确的是( )A .B .a 3>b 3C .a 2>b 2D .a >|b|5. 如图,在正方体1111ABCD A B C D -中,P 是侧面11BB C C 内一动点,若P 到直线BC 与直线11C D 的距离相等,则动点P 的轨迹所在的曲线是( )A 1CA.直线B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力. 6. 一个多面体的直观图和三视图如图所示,点M 是边AB 上的动点,记四面体FMC E -的体 积为1V ,多面体BCE ADF -的体积为2V ,则=21V V ( )1111]A .41 B .31 C .21D .不是定值,随点M 的变化而变化7. 《九章算术》是我国古代的数学巨著,其卷第五“商功”有如下的问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈。
问积几何?”意思为:“今有底面为矩形的屋脊形状的多面体(如图)”,下底面宽AD =3丈,长AB =4丈,上棱EF =2丈,EF ∥平面ABCD .EF 与平面ABCD 的距离为1丈,问它的体积是( ) A .4立方丈B .5立方丈C .6立方丈D .8立方丈8. 定义集合运算:A*B={z|z=xy ,x ∈A ,y ∈B}.设A={1,2},B={0,2},则集合A*B 的所有元素之和为( ) A .0B .2C .3D .69. 自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则点P 轨迹方程为( )A .86210x y --=B .86210x y +-=C .68210x y +-=D .68210x y --=【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力.10.函数y=(x 2﹣5x+6)的单调减区间为( )A .(,+∞)B .(3,+∞)C .(﹣∞,)D .(﹣∞,2)11.把“二进制”数101101(2)化为“八进制”数是( ) A .40(8)B .45(8)C .50(8)D .55(8)12.函数()f x 在定义域R 上的导函数是'()f x ,若()(2)f x f x =-,且当(,1)x ∈-∞时,'(1)()0x f x -<,设(0)a f =,b f =,2(log 8)c f =,则( )A .a b c <<B .a b c >>C .c a b <<D .a c b <<二、填空题13.若函数f (x )=x 2﹣(2a ﹣1)x+a+1是区间(1,2)上的单调函数,则实数a 的取值范围是 .14.若等比数列{a n }的前n 项和为S n ,且,则= .15.-23311+log 6-log 42()= . 16.当a >0,a ≠1时,函数f (x )=log a (x ﹣1)+1的图象恒过定点A ,若点A 在直线mx ﹣y+n=0上,则4m +2n 的最小值是 .17.已知随机变量ξ﹣N (2,σ2),若P (ξ>4)=0.4,则P (ξ>0)= .18.若tan θ+=4,则sin2θ= .三、解答题19.(1)求与椭圆有相同的焦点,且经过点(4,3)的椭圆的标准方程.(2)求与双曲线有相同的渐近线,且焦距为的双曲线的标准方程.20.计算下列各式的值:(1)(2)(lg5)2+2lg2﹣(lg2)2.21.某港口的水深y (米)是时间t (0≤t ≤24,单位:小时)的函数,下面是每天时间与水深的关系表: t 0 3 6 9 12 15 18 21 24 y 10 13 9.9 7 10 13 10.1 7 10经过长期观测,y=f (t )可近似的看成是函数y=Asin ωt+b (1)根据以上数据,求出y=f (t )的解析式;(2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?22.【无锡市2018届高三上期中基础性检测】已知函数()()2ln 1.f x x mx m R =--∈ (1)当1m =时,求()f x 的单调区间;(2)令()()g x xf x =,区间1522,D e e -⎛⎫= ⎪⎝⎭,e 为自然对数的底数。
南安市第三中学校2018-2019学年高二上学期第二次月考试卷数学
南安市第三中学校2018-2019学年高二上学期第二次月考试卷数学班级__________姓名__________ 分数__________一、选择题1. 已知f (x )=x 3﹣3x+m ,在区间[0,2]上任取三个数a ,b ,c ,均存在以f (a ),f (b ),f (c )为边长的三角形,则m 的取值范围是( )A .m >2B .m >4C .m >6D .m >82. 定义在R 上的偶函数在[0,7]上是增函数,在[7,+∞)上是减函数,又f (7)=6,则f (x )( )A .在[﹣7,0]上是增函数,且最大值是6B .在[﹣7,0]上是增函数,且最小值是6C .在[﹣7,0]上是减函数,且最小值是6D .在[﹣7,0]上是减函数,且最大值是63. 给出以下四个说法:①绘制频率分布直方图时,各小长方形的面积等于相应各组的组距;②线性回归直线一定经过样本中心点,;③设随机变量ξ服从正态分布N (1,32)则p (ξ<1)=;④对分类变量X 与Y 它们的随机变量K 2的观测值k 越大,则判断“与X 与Y 有关系”的把握程度越小.其中正确的说法的个数是( )A .1B .2C .3D .44. 若x ,y 满足且z=y ﹣x 的最小值为﹣2,则k 的值为()A .1B .﹣1C .2D .﹣25. 已知全集,集合,集合,则集合为R U ={|||1,}A x x x R =≤∈{|21,}xB x x R =≤∈U AC B ( ) A.B.C.D.]1,1[-]1,0[]1,0()0,1[-【命题意图】本题考查集合的运算等基础知识,意在考查运算求解能力.6. 将函数的图象上所有的点向左平移个单位长度,再把图象上各点的横坐标扩大到原来的2倍,则所得的图象的解析式为( )A .B .C .D .7. 若复数(2+ai )2(a ∈R )是实数(i 是虚数单位),则实数a 的值为( )A .﹣2B .±2C .0D .28. 已知点M (﹣6,5)在双曲线C :﹣=1(a >0,b >0)上,双曲线C 的焦距为12,则它的渐近线方程为( )A .y=±x B .y=±x C .y=±xD .y=±x9. 常用以下方法求函数y=[f (x )]g (x )的导数:先两边同取以e 为底的对数(e ≈2.71828…,为自然对数的底数)得lny=g (x )lnf (x ),再两边同时求导,得•y ′=g ′(x )lnf (x )+g (x )•[lnf (x )]′,即y ′=[f (x )]g (x ){g ′(x )lnf (x )+g (x )•[lnf (x )]′}.运用此方法可以求函数h (x )=x x (x >0)的导函数.据此可以判断下列各函数值中最小的是( )A .h ()B .h ()C .h ()D .h ()10.设函数F (x )=是定义在R 上的函数,其中f (x )的导函数为f ′(x ),满足f ′(x )<f (x )对于x∈R 恒成立,则()A .f (2)>e 2f (0),fB .f (2)<e 2f (0),fC .f (2)>e 2f (0),fD .f (2)<e 2f (0),f11.若函数y=|x|(1﹣x )在区间A 上是增函数,那么区间A 最大为( )A .(﹣∞,0)B .C .[0,+∞)D . 12.图1是由哪个平面图形旋转得到的()A .B .C .D .二、填空题13.过抛物线y 2=4x 的焦点作一条直线交抛物线于A ,B 两点,若线段AB 的中点M 的横坐标为2,则|AB|等于 .14.已知正整数的3次幂有如下分解规律:m ;;;;…113=5323+=119733++=1917151343+++=若的分解中最小的数为,则的值为.)(3+∈N m m 91m【命题意图】本题考查了归纳、数列等知识,问题的给出比较新颖,对逻辑推理及化归能力有较高要求,难度中等.15.曲线在点(3,3)处的切线与轴x的交点的坐标为 .16.设函数f(x)=,①若a=1,则f(x)的最小值为 ;②若f(x)恰有2个零点,则实数a的取值范围是 .17.若函数f(x)=3sinx﹣4cosx,则f′()= .18.已知点A(2,0),点B(0,3),点C在圆x2+y2=1上,当△ABC的面积最小时,点C的坐标为 . 三、解答题19.已知函数f(x)=|2x﹣a|+|x﹣1|.(1)当a=3时,求不等式f(x)≥2的解集;(2)若f(x)≥5﹣x对∀x∈R恒成立,求实数a的取值范围.20.在直角坐标系xOy中,曲线C1的参数方程为C1:为参数),曲线C2:=1.(Ⅰ)在以O为极点,x轴的正半轴为极轴的极坐标系中,求C1,C2的极坐标方程;(Ⅱ)射线θ=(ρ≥0)与C1的异于极点的交点为A,与C2的交点为B,求|AB|.21.(本小题满分12分)如图,在四棱锥中,底面为菱形,分别是棱的中点,且ABCD S -ABCD Q P E 、、AB SC AD 、、⊥SE 平面.ABCD(1)求证:平面;//PQ SAD (2)求证:平面平面.⊥SAC SEQ 22.如图,在四棱锥P ﹣ABCD 中,底面ABCD 为等腰梯形,AD ∥BC ,PA=AB=BC=CD=2,PD=2,PA ⊥PD ,Q 为PD 的中点.(Ⅰ)证明:CQ ∥平面PAB ;(Ⅱ)若平面PAD ⊥底面ABCD ,求直线PD 与平面AQC 所成角的正弦值.23.全集U=R ,若集合A={x|3≤x <10},B={x|2<x ≤7},(1)求A ∪B ,(∁U A )∩(∁U B );(2)若集合C={x|x >a},A ⊆C ,求a 的取值范围.24.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数,()()3231312f x x k x kx =-+++其中.k R ∈(1)当时,求函数在上的值域;3k =()f x []0,5(2)若函数在上的最小值为3,求实数的取值范围.()f x []1,2k南安市第三中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:由f′(x)=3x2﹣3=3(x+1)(x﹣1)=0得到x1=1,x2=﹣1(舍去)∵函数的定义域为[0,2]∴函数在(0,1)上f′(x)<0,(1,2)上f′(x)>0,∴函数f(x)在区间(0,1)单调递减,在区间(1,2)单调递增,则f(x)min=f(1)=m﹣2,f(x)max=f(2)=m+2,f(0)=m由题意知,f(1)=m﹣2>0 ①;f(1)+f(1)>f(2),即﹣4+2m>2+m②由①②得到m>6为所求.故选C【点评】本题以函数为载体,考查构成三角形的条件,解题的关键是求出函数在区间[0,2]上的最小值与最大值2.【答案】D【解析】解:∵函数在[0,7]上是增函数,在[7,+∞)上是减函数,∴函数f(x)在x=7时,函数取得最大值f(7)=6,∵函数f(x)是偶函数,∴在[﹣7,0]上是减函数,且最大值是6,故选:D3.【答案】B【解析】解:①绘制频率分布直方图时,各小长方形的面积等于相应各组的频率,故①错;②线性回归直线一定经过样本中心点(,),故②正确;③设随机变量ξ服从正态分布N(1,32)则p(ξ<1)=,正确;④对分类变量X与Y,它们的随机变量K2的观测值k来说,k越大,“X与Y有关系”的把握程度越大,故④不正确.故选:B.【点评】本题考查统计的基础知识:频率分布直方图和线性回归及分类变量X,Y的关系,属于基础题.4.【答案】B【解析】解:由z=y ﹣x 得y=x+z ,作出不等式组对应的平面区域如图:平移直线y=x+z 由图象可知当直线y=x+z 经过点A 时,直线y=x+z 的截距最小,此时最小值为﹣2,即y ﹣x=﹣2,则x ﹣y ﹣2=0,当y=0时,x=2,即A (2,0),同时A 也在直线kx ﹣y+2=0上,代入解得k=﹣1,故选:B【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划问题中的基本方法.本题主要考查的难点在于对应的区域为线段. 5. 【答案】C.【解析】由题意得,,,∴,故选C.[11]A =-,(,0]B =-∞(0,1]U AC B = 6. 【答案】B 【解析】解:将函数的图象上所有的点向左平移个单位长度,得到函数,再把图象上各点的横坐标扩大到原来的2倍,得到函数.故选B .【点评】本题是基础题,考查函数的图象的平移与图象的伸缩变换,注意先平移后伸缩时,初相不变化,考查计算能力.7. 【答案】C【解析】解:∵复数(2+ai )2=4﹣a 2+4ai 是实数,∴4a=0,解得a=0.故选:C.【点评】本题考查了复数的运算法则、复数为实数的充要条件,属于基础题. 8.【答案】A【解析】解:∵点M(﹣6,5)在双曲线C:﹣=1(a>0,b>0)上,∴,①又∵双曲线C的焦距为12,∴12=2,即a2+b2=36,②联立①、②,可得a2=16,b2=20,∴渐近线方程为:y=±x=±x,故选:A.【点评】本题考查求双曲线的渐近线,注意解题方法的积累,属于基础题. 9.【答案】B【解析】解:(h(x))′=x x[x′lnx+x(lnx)′]=x x(lnx+1),令h(x)′>0,解得:x>,令h(x)′<0,解得:0<x<,∴h(x)在(0,)递减,在(,+∞)递增,∴h()最小,故选:B.【点评】本题考查函数的导数的应用,极值的求法,基本知识的考查.10.【答案】B【解析】解:∵F(x)=,∴函数的导数F′(x)==,∵f′(x)<f(x),∴F′(x)<0,即函数F(x)是减函数,则F(0)>F(2),F(0)>F<e2f(0),f,故选:B11.【答案】B【解析】解:y=|x|(1﹣x)=,再结合二次函数图象可知函数y=|x|(1﹣x)的单调递增区间是:.故选:B.12.【答案】A【解析】试题分析:由题意得,根据旋转体的概念,可知该几何体是由A选项的平面图形旋转一周得到的几何体故选A.考点:旋转体的概念.二、填空题13.【答案】 6 .【解析】解:由抛物线y2=4x可得p=2.设A(x1,y1),B(x2,y2).∵线段AB的中点M的横坐标为2,∴x1+x2=2×2=4.∵直线AB 过焦点F ,∴|AB|=x 1+x 2+p=4+2=6.故答案为:6.【点评】本题考查了抛物线的过焦点的弦长公式、中点坐标公式,属于基础题. 14.【答案】10【解析】的分解规律恰好为数列1,3,5,7,9,…中若干连续项之和,为连续两项和,为接下来三3m 3233项和,故的首个数为.3m 12+-m m ∵的分解中最小的数为91,∴,解得.)(3+∈N m m 9112=+-m m 10=m 15.【答案】 (,0) .【解析】解:y ′=﹣,∴斜率k=y ′|x=3=﹣2,∴切线方程是:y ﹣3=﹣2(x ﹣3),整理得:y=﹣2x+9,令y=0,解得:x=,故答案为:.【点评】本题考查了曲线的切线方程问题,考查导数的应用,是一道基础题. 16.【答案】 ≤a <1或a ≥2 .【解析】解:①当a=1时,f (x )=,当x <1时,f (x )=2x ﹣1为增函数,f (x )>﹣1,当x >1时,f (x )=4(x ﹣1)(x ﹣2)=4(x 2﹣3x+2)=4(x ﹣)2﹣1,当1<x <时,函数单调递减,当x >时,函数单调递增,故当x=时,f (x )min =f ()=﹣1,②设h (x )=2x ﹣a ,g (x )=4(x ﹣a )(x ﹣2a )若在x <1时,h (x )=与x 轴有一个交点,所以a >0,并且当x=1时,h (1)=2﹣a >0,所以0<a <2,而函数g (x )=4(x ﹣a )(x ﹣2a )有一个交点,所以2a ≥1,且a <1,所以≤a<1,若函数h(x)=2x﹣a在x<1时,与x轴没有交点,则函数g(x)=4(x﹣a)(x﹣2a)有两个交点,当a≤0时,h(x)与x轴无交点,g(x)无交点,所以不满足题意(舍去),当h(1)=2﹣a≤0时,即a≥2时,g(x)的两个交点满足x1=a,x2=2a,都是满足题意的,综上所述a的取值范围是≤a<1,或a≥2.17.【答案】 4 .【解析】解:∵f′(x)=3cosx+4sinx,∴f′()=3cos+4sin=4.故答案为:4.【点评】本题考查了导数的运算法则,掌握求导公式是关键,属于基础题.18.【答案】 (,) .【解析】解:设C(a,b).则a2+b2=1,①∵点A(2,0),点B(0,3),∴直线AB的解析式为:3x+2y﹣6=0.如图,过点C作CF⊥AB于点F,欲使△ABC的面积最小,只需线段CF最短.则CF=≥,当且仅当2a=3b时,取“=”,∴a=,②联立①②求得:a=,b=,故点C的坐标为(,).故答案是:(,).【点评】本题考查了圆的标准方程、点到直线的距离公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.三、解答题19.【答案】【解析】解:(1)a=3时,即求解|2x﹣3|+|x﹣1|≥2,①当x≥时,不等式即2x﹣3+x﹣1≥2,解得x≥2,②当1<x<时,不等式即3﹣2x+x﹣1≥2,解得x<0.③当x≤1时,3﹣2x+1﹣x≥2,解得2x≤2,即x≤.∴综上,原不等式解集为{x|x≤或x≥2}.(2)即|2x﹣a|≥5﹣x﹣|x﹣1|恒成立令g(x)=5﹣x﹣|x﹣1|=,则由函数g(x)的图象可得它的最大值为4,故函数y=|2x﹣a|的图象应该恒在函数g(x)的图象的上方,数形结合可得≥3,∴a≥6,即a的范围是[6,+∞).【点评】本题考查了绝对值不等式问题,考查函数的最值问题,是一道中档题.20.【答案】【解析】解:(Ⅰ)曲线为参数)可化为普通方程:(x ﹣1)2+y 2=1,由可得曲线C 1的极坐标方程为ρ=2cos θ,曲线C 2的极坐标方程为ρ2(1+sin 2θ)=2.(Ⅱ)射线与曲线C 1的交点A 的极径为,射线与曲线C 2的交点B 的极径满足,解得,所以.21.【答案】(1)详见解析;(2)详见解析.【解析】试题分析:(1)根据线面平行的判定定理,可先证明PQ 与平面内的直线平行,则线面平行,所以取中SD 点,连结,可证明,那就满足了线面平行的判定定理了;(2)要证明面面垂直,可先F PF AF ,AF PQ //证明线面垂直,根据所给的条件证明平面,即平面平面.⊥AC SEQ ⊥SAC SEQ 试题解析:证明:(1)取中点,连结.SD F PF AF ,∵分别是棱的中点,∴,且.F P 、SD SC 、CD FP //CD FP 21=∵在菱形中,是的中点,ABCD Q AB ∴,且,即且.CD AQ //CD AQ 21=AQ FP //AQ FP =∴为平行四边形,则.AQPF AF PQ //∵平面,平面,∴平面.⊄PQ SAD ⊂AF SAD //PQ SAD考点:1.线线,线面平行关系;2.线线,线面,面面垂直关系.【易错点睛】本题考查了立体几何中的线与面的关系,属于基础题型,重点说说垂直关系,当证明线线垂直时,一般要转化为线面垂直,证明线与面垂直时,即证明线与平面内的两条相交直线垂直,证明面面垂直时,转化为证明线面垂直,所以线与线的证明是基础,这里经常会搞错两个问题,一是,线与平面内的两条相交直线垂直,线与平面垂直,很多同学会记成一条,二是,面面垂直时,平面内的线与交线垂直,才与平面垂直,很多同学会理解为两个平面垂直,平面内的线都与另一个平面垂直,需熟练掌握判定定理以及性质定理. 22.【答案】【解析】(Ⅰ)证明:取PA的中点N,连接QN,BN.∵Q,N是PD,PA的中点,∴QN∥AD,且QN=AD.∵PA=2,PD=2,PA⊥PD,∴AD=4,∴BC=AD.又BC∥AD,∴QN∥BC,且QN=BC,∴四边形BCQN为平行四边形,∴BN∥CQ.又BN⊂平面PAB,且CQ⊄平面PAB,∴CQ∥平面PAB.(Ⅱ)解:取AD的中点M,连接BM;取BM的中点O,连接BO、PO.由(Ⅰ)知PA=AM=PM=2,∴△APM为等边三角形,∴PO⊥AM.同理:BO⊥AM.∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PO⊂平面PAD,∴PO ⊥平面ABCD .以O 为坐标原点,分别以OB ,OD ,OP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则D (0,3,0),A (0,﹣1,0),P (0,0,),C (,2,0),Q (0,,).∴=(,3,0),=(0,3,﹣),=(0,,).设平面AQC 的法向量为=(x ,y ,z ),∴,令y=﹣得=(3,﹣,5).∴cos <,>==﹣.∴直线PD 与平面AQC 所成角正弦值为.23.【答案】【解析】解:(1)∵A={x|3≤x <10},B={x|2<x ≤7},∴A ∩B=[3,7];A ∪B=(2,10);(C U A )∩(C U B )=(﹣∞,3)∪[10,+∞);(2)∵集合C={x|x >a},∴若A ⊆C ,则a <3,即a 的取值范围是{a|a <3}. 24.【答案】(1);(2).[]1,212k ≥【解析】试题分析:(1)求导,再利用导数工具即可求得正解;(2)求导得,再()'f x =()()31x x k --分和两种情况进行讨论;1k ≤1k >试题解析:(1)解: 时,3k =()32691f x x x x =-++则()()()23129313f x x x x x =-+=--'令得列表()0f x '=121,3x x ==x 0()0,11()1,33()3,53()f x '+0 -0+()f x 1单调递增5单调递减1单调递增21由上表知函数的值域为()f x []1,21(2)方法一:()()()()2331331f x x k x k x x k =-++=--'①当时,,函数在区间单调递增1k ≤[]()1,2,'0x f x ∀∈≥()f x []1,2所以()()()min 31113132f x f k k ==-+++= 即(舍) 53k =②当时,,函数在区间单调递减2k ≥[]()1,2,'0x f x ∀∈≤()f x []1,2 所以()()()min 28613213f x f k k ==-++⋅+= 符合题意③当时,12k <<当时,区间在单调递减[)1,x k ∈()'0f x <()f x [)1,k 当时,区间在单调递增(],2x k ∈()'0f x >()f x (],2k 所以()()()322min 313132f x f k k k k k ==-+++=化简得:32340k k -+=即()()2120k k +-=所以或(舍)1k =-2k =注:也可令()3234g k k k =-+则()()23632g k k k k k =='--对()()1,2,0k g k ∀∈'≤在单调递减()3234g k k k =-+()1,2k ∈所以不符合题意()02g k <<综上所述:实数取值范围为k 2k ≥方法二:()()()()2331331f x x k x k x x k =-++=--'①当时,,函数在区间单调递减2k ≥[]()1,2,'0x f x ∀∈≤()f x []1,2 所以()()()min 28613213f x f k k ==-++⋅+= 符合题意 …………8分②当时,,函数在区间单调递增1k ≤[]()1,2,'0x f x ∀∈≥()f x []1,2所以不符合题意()()min 23f x f <=③当时,12k <<当时,区间在单调递减[)1,x k ∈()'0f x <()f x [)1,k 当时,区间在单调递增(],2x k ∈()'0f x >()f x (],2k 所以不符合题意()()()min 23f x f k f =<=综上所述:实数取值范围为k 2k ≥。
南安市第三中学校2018-2019学年上学期高二数学12月月考试题含解析
南安市第三中学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 在等比数列{a n }中,已知a 1=3,公比q=2,则a 2和a 8的等比中项为( ) A .48B .±48C .96D .±962. 有一学校高中部有学生2000人,其中高一学生800人,高二学生600人,高三学生600人,现采用分层抽样的方法抽取容量为50的样本,那么高一、高二、高三年级抽取的人数分别为( ) A .15,10,25 B .20,15,15 C .10,10,30 D .10,20,203. 若复数(m 2﹣1)+(m+1)i 为实数(i 为虚数单位),则实数m 的值为( ) A .﹣1 B .0C .1D .﹣1或14. 若函数f (x )=﹣2x 3+ax 2+1存在唯一的零点,则实数a 的取值范围为( )A .[0,+∞)B .[0,3]C .(﹣3,0]D .(﹣3,+∞) 5. 长方体ABCD ﹣A 1B 1C 1D 1中,AA 1=2AB=2AD ,G 为CC 1中点,则直线A 1C 1与BG 所成角的大小是( )A .30°B .45°C .60°D .120°6. 如图甲所示, 三棱锥P ABC - 的高8,3,30PO AC BC ACB ===∠= ,,M N 分别在BC 和PO 上,且(),203CM x PN x x ==∈(,,图乙的四个图象大致描绘了三棱锥N AMC -的体积y 与 的变化关系,其中正确的是( )A .B . C. D .1111] 7. 关于函数2()ln f x x x=+,下列说法错误的是( ) (A )2x =是()f x 的极小值点( B ) 函数()y f x x =-有且只有1个零点 (C )存在正实数k ,使得()f x kx >恒成立(D )对任意两个正实数12,x x ,且21x x >,若12()()f x f x =,则124x x +>8. “m=1”是“直线(m ﹣2)x ﹣3my ﹣1=0与直线(m+2)x+(m ﹣2)y+3=0相互垂直”的( )A .必要而不充分条件B .充分而不必要条件C .充分必要条件D .既不充分也不必要条件9. 设m 、n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n ∥α,则m ⊥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ; ③若m ⊥α,n ⊥α,则m ∥n ;④若α⊥β,m ⊥β,则m ∥α; 其中正确命题的序号是( ) A .①②③④ B .①②③ C .②④ D .①③10.设函数的集合,平面上点的集合,则在同一直角坐标系中,P 中函数的图象恰好经过Q 中两个点的函数的个数是 A4 B6 C8 D1011.如图,AB 是半圆O 的直径,AB =2,点P 从A 点沿半圆弧运动至B 点,设∠AOP =x ,将动点P 到A ,B 两点的距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )12.若复数2b ii++的实部与虚部相等,则实数b 等于( )(C )13 (D ) 12- (A ) 3 ( B ) 1二、填空题13.已知||2=a ,||1=b ,2-a 与13b 的夹角为3π,则|2|+=a b . 14.阅读如图所示的程序框图,则输出结果S 的值为 .【命题意图】本题考查程序框图功能的识别,并且与数列的前n 项和相互联系,突出对逻辑判断及基本运算能力的综合考查,难度中等.15.长方体ABCD ﹣A 1B 1C 1D 1的8个顶点都在球O 的表面上,E 为AB 的中点,CE=3,异面直线A 1C 1与CE所成角的余弦值为,且四边形ABB 1A 1为正方形,则球O 的直径为 .16.已知曲线y=(a ﹣3)x 3+lnx 存在垂直于y 轴的切线,函数f (x )=x 3﹣ax 2﹣3x+1在[1,2]上单调递减,则a 的范围为 .17.设变量x ,y满足约束条件,则的最小值为 .18.定积分sintcostdt= .三、解答题19.(本小题满分13分)在四棱锥P ABCD -中,底面ABCD 是直角梯形,//AB DC ,2ABC π∠=,AD =33AB DC ==.(Ⅰ)在棱PB 上确定一点E ,使得//CE 平面PAD ;(Ⅱ)若PA PD ==PB PC =,求直线PA 与平面PBC 所成角的大小.20.已知椭圆,过其右焦点F 且垂直于x 轴的弦MN 的长度为b .(Ⅰ)求该椭圆的离心率;(Ⅱ)已知点A 的坐标为(0,b ),椭圆上存在点P ,Q ,使得圆x 2+y 2=4内切于△APQ ,求该椭圆的方程.ABCDP21.已知函数f (x )=alnx+x 2+bx+1在点(1,f (1))处的切线方程为4x ﹣y ﹣12=0. (1)求函数f (x )的解析式; (2)求f (x )的单调区间和极值.22.(本小题满分12分)两个人在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中 放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设,,x y z 分别表示甲,乙,丙3个 盒中的球数.(1)求0x =,1y =,2z =的概率;(2)记x y ξ=+,求随机变量ξ的概率分布列和数学期望.【命题意图】本题考查频离散型随机变量及其分布列等基础知识,意在考查学生的统计思想和基本的运算能力.23.已知函数y=x+有如下性质:如果常数t >0,那么该函数在(0,]上是减函数,在[,+∞)上是增函数.(1)已知函数f(x)=x+,x∈[1,3],利用上述性质,求函数f(x)的单调区间和值域;(2)已知函数g(x)=和函数h(x)=﹣x﹣2a,若对任意x1∈[0,1],总存在x2∈[0,1],使得h(x2)=g(x1)成立,求实数a的值.24.已知曲线C的参数方程为(y为参数),过点A(2,1)作平行于θ=的直线l 与曲线C分别交于B,C两点(极坐标系的极点、极轴分别与直角坐标系的原点、x轴的正半轴重合).(Ⅰ)写出曲线C的普通方程;(Ⅱ)求B、C两点间的距离.南安市第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】解:∵在等比数列{a n}中,a1=3,公比q=2,∴a2=3×2=6,=384,∴a和a8的等比中项为=±48.2故选:B.2.【答案】B【解析】解:每个个体被抽到的概率等于=,则高一、高二、高三年级抽取的人数分别为800×=20,600×=15,600×=15,故选B.【点评】本题主要考查分层抽样的定义和方法,用每层的个体数乘以每个个体被抽到的概率等于该层应抽取的个体数,属于基础题.3.【答案】A【解析】解:∵(m2﹣1)+(m+1)i为实数,∴m+1=0,解得m=﹣1,故选A.4.【答案】D【解析】解:令f(x)=﹣2x3+ax2+1=0,易知当x=0时上式不成立;故a==2x﹣,令g(x)=2x﹣,则g′(x)=2+=2,故g(x)在(﹣∞,﹣1)上是增函数,在(﹣1,0)上是减函数,在(0,+∞)上是增函数;故作g(x)=2x﹣的图象如下,,g(﹣1)=﹣2﹣1=﹣3,故结合图象可知,a>﹣3时,方程a=2x﹣有且只有一个解,即函数f(x)=﹣2x3+ax2+1存在唯一的零点,故选:D.5.【答案】C【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设AA1=2AB=2AD=2,A1(1,0,2),C1(0,1,2),=(﹣1,1,0),B(1,1,0),G(0,1,1),=(﹣1,0,1),设直线A1C1与BG所成角为θ,cosθ===,∴θ=60°.故选:C .【点评】本题考查空间点、线、面的位置关系及学生的空间想象能力、求异面直线角的能力,解题时要注意向量法的合理运用.6. 【答案】A 【解析】考点:几何体的体积与函数的图象.【方法点晴】本题主要考查了空间几何体的体积与函数的图象之间的关系,其中解答中涉及到三棱锥的体积公式、一元二次函数的图象与性质等知识点的考查,本题解答的关键是通过三棱锥的体积公式得出二次函数的解析式,利用二次函数的图象与性质得到函数的图象,着重考查了学生分析问题和解答问题的能力,是一道好题,题目新颖,属于中档试题.7. 【答案】 C【解析】22212'()x f x x x x-=-+=,'(2)0f =,且当02x <<时,'()0f x <,函数递减,当2x >时,'()0f x >,函数递增,因此2x =是()f x 的极小值点,A 正确;()()g x f x x =-,221'()1g x x x =-+-2217()24x x -+=-,所以当0x >时,'()0g x <恒成立,即()g x 单调递减,又11()210g e e e =+->,2222()20g e e e =+-<,所以()g x 有零点且只有一个零点,B 正确;设2()2ln ()f x xh x x x x==+,易知当2x >时,222ln 21112()x h x x x x x x x x =+<+<+=,对任意的正实数k ,显然当2x k >时,2k x <,即()f x k x<,()f x kx <,所以()f x kx >不成立,C 错误;作为选择题这时可得结论,选C ,下面对D 研究,画出函数草图可看出(0,2)的时候递减的更快,所以124x x +>8. 【答案】B【解析】解:当m=0时,两条直线方程分别化为:﹣2x ﹣1=0,2x ﹣2y+3=0,此时两条直线不垂直,舍去;当m=2时,两条直线方程分别化为:﹣6y ﹣1=0,4x+3=0,此时两条直线相互垂直;当m ≠0,2时,两条直线相互垂直,则×=﹣1,解得m=1.综上可得:两条直线相互垂直的充要条件是:m=1,2.∴“m=1”是“直线(m ﹣2)x ﹣3my ﹣1=0与直线(m+2)x+(m ﹣2)y+3=0相互垂直”的充分不必要条件.故选:B .【点评】本题考查了直线相互垂直的充要条件、充要条件的判定,考查了分类讨论方法、推理能力与计算能力,属于中档题.9. 【答案】B【解析】解:由m 、n 是两条不同的直线,α,β,γ是三个不同的平面: 在①中:若m ⊥α,n ∥α,则由直线与平面垂直得m ⊥n ,故①正确; 在②中:若α∥β,β∥γ,则α∥γ,∵m ⊥α,∴由直线垂直于平面的性质定理得m ⊥γ,故②正确;在③中:若m ⊥α,n ⊥α,则由直线与平面垂直的性质定理得m ∥n ,故③正确;在④中:若α⊥β,m ⊥β,则m ∥α或m ⊂α,故④错误. 故选:B .10.【答案】B【解析】本题考查了对数的计算、列举思想a =-时,不符;a =0时,y =log 2x 过点(,-1),(1,0),此时b =0,b =1符合; a =时,y =log 2(x +)过点(0,-1),(,0),此时b =0,b =1符合;a =1时,y =log 2(x +1)过点(-,-1),(0,0),(1,1),此时b =-1,b =1符合;共6个 11.【答案】【解析】选B.取AP 的中点M , 则P A =2AM =2OA sin ∠AOM=2sin x2,PB =2OM =2OA ·cos ∠AOM =2cos x2,∴y =f (x )=P A +PB =2sin x 2+2cos x 2=22sin (x 2+π4),x ∈[0,π],根据解析式可知,只有B 选项符合要求,故选B.12.【答案】C【解析】b +i 2+i =(b +i)(2-i)(2+i)(2-i)=2b +15+2-b 5i ,因为实部与虚部相等,所以2b +1=2-b ,即b =13.故选C.二、填空题13.【答案】2【解析】解析:本题考查向量夹角与向量数量积的应用.a 与b 的夹角为23π,1⋅=-a b ,∴|2|+=a b 2=.14.【答案】20172016【解析】根据程序框图可知,其功能是求数列})12)(12(2{+-n n 的前1008项的和,即 +⨯+⨯=532312S =-++-+-=⨯+)2017120151()5131()311(201720152 20172016.15.【答案】 4或.【解析】解:设AB=2x,则AE=x,BC=,∴AC=,由余弦定理可得x2=9+3x2+9﹣2×3××,∴x=1或,∴AB=2,BC=2,球O的直径为=4,或AB=2,BC=,球O的直径为=.故答案为:4或.16.【答案】.【解析】解:因为y=(a﹣3)x3+lnx存在垂直于y轴的切线,即y'=0有解,即y'=在x>0时有解,所以3(a﹣3)x3+1=0,即a﹣3<0,所以此时a<3.函数f(x)=x3﹣ax2﹣3x+1在[1,2]上单调递减,则f'(x)≤0恒成立,即f'(x)=3x2﹣2ax﹣3≤0恒成立,即,因为函数在[1,2]上单调递增,所以函数的最大值为,所以,所以.综上.故答案为:.【点评】本题主要考查导数的基本运算和导数的应用,要求熟练掌握利用导数在研究函数的基本应用.17.【答案】 4 .【解析】解:作出不等式组对应的平面区域, 则的几何意义为区域内的点到原点的斜率, 由图象可知,OC 的斜率最小,由,解得,即C (4,1),此时=4, 故的最小值为4, 故答案为:4【点评】本题主要考查线性规划的应用,利用直线斜率的定义以及数形结合是解决本题的关键.18.【答案】 .【解析】解: 0sintcostdt=0sin2td (2t )=(﹣cos2t )|=×(1+1)=.故答案为:三、解答题19.【答案】【解析】解: (Ⅰ)当13PE PB =时,//CE 平面PAD . 设F 为PA 上一点,且13PF PA =,连结EF 、DF 、EC ,那么//EF AB ,13EF AB =. ∵//DC AB ,13DC AB =,∴//EF DC ,EF DC =,∴//EC FD .又∵CE ⊄平面PAD , FD ⊂平面PAD ,∴//CE 平面PAD . (5分)(Ⅱ)设O 、G 分别为AD 、BC 的中点,连结OP 、OG 、PG ,∵PB PC =,∴PG BC ⊥,易知OG BC ⊥,∴BC ⊥平面POG ,∴BC OP ⊥. 又∵PA PD =,∴OP AD ⊥,∴OP ⊥平面ABCD . (8分)建立空间直角坐标系O xyz -(如图),其中x 轴//BC ,y 轴//AB ,则有(1,1,0)A -,(1,2,0)B ,(1,2,0)C -.由(6)(2PO ==-=知(0,0,2)P . (9分)设平面PBC 的法向量为(,,)n x y z =,(1,2,2)PB =-,(2,0,0)CB =u r则00n PB n CB ⎧⋅=⎪⎨⋅=⎪⎩ 即22020x y z x +-=⎧⎨=⎩,取(0,1,1)n =.设直线PA 与平面PBC 所成角为θ,(1,1,2)AP =-u u u r ,则||3sin |cos ,|||||AP n AP n AP n θ⋅=<>==⋅ ∴πθ=,∴直线PB 与平面PAD 所成角为3π. (13分)20.【答案】【解析】解:(Ⅰ)设F (c ,0),M (c ,y 1),N (c ,y 2),则,得y 1=﹣,y 2=,MN=|y 1﹣y 2|==b ,得a=2b ,椭圆的离心率为: ==.(Ⅱ)由条件,直线AP 、AQ 斜率必然存在,设过点A 且与圆x 2+y 2=4相切的直线方程为y=kx+b ,转化为一般方程kx ﹣y+b=0,由于圆x 2+y 2=4内切于△APQ ,所以r=2=,得k=±(b >2),即切线AP 、AQ 关于y 轴对称,则直线PQ 平行于x 轴, ∴y Q =y P =﹣2,不妨设点Q 在y 轴左侧,可得x Q =﹣x P =﹣2,则=,解得b=3,则a=6,∴椭圆方程为:.【点评】本题考查了椭圆的离心率公式,点到直线方程的距离公式,内切圆的性质.21.【答案】【解析】解:(1)求导f ′(x )=+2x+b ,由题意得: f ′(1)=4,f (1)=﹣8,则,解得,所以f (x )=12lnx+x 2﹣10x+1;(2)f (x )定义域为(0,+∞),f ′(x )=,令f ′(x )>0,解得:x <2或x >3,所以f (x )在(0,2)递增,在(2,3)递减,在(3,+∞)递增, 故f (x )极大值=f (2)=12ln2﹣15, f (x )极小值=f (3)=12ln3﹣20.22.【答案】【解析】(1)由0x =,1y =,2z =知,甲、乙、丙3个盒中的球数分别为0,1,2,此时的概率213111324P C ⎛⎫=⨯⨯= ⎪⎝⎭.(4分)23.【答案】【解析】解:(1)由已知可以知道,函数f(x)在x∈[1,2]上单调递减,在x∈[2,3]上单调递增,f(x)min=f(2)=2+2=4,又f(1)=1+4=5,f(3)=3+=;f(1)>f(3)所以f(x)max=f(1)=5所以f(x)在x∈[1,3]的值域为[4,5].(2)y=g(x)==2x+1+﹣8设μ=2x+1,x∈[0,1],1≤μ≤3,则y=﹣8,由已知性质得,当1≤u≤2,即0≤x≤时,g(x)单调递减,所以递减区间为[0,];当2≤u≤3,即≤x≤1时,g(x)单调递增,所以递增区间为[,1];由g(0)=﹣3,g()=﹣4,g(1)=﹣,得g(x)的值域为[﹣4,﹣3].因为h(x)=﹣x﹣2a为减函数,故h(x)∈[﹣1﹣2a,﹣2a],x∈[0,1].根据题意,g(x)的值域为h(x)的值域的子集,从而有,所以a=.24.【答案】【解析】解:(Ⅰ)由曲线C的参数方程为(y为参数),消去参数t得,y2=4x.(Ⅱ)依题意,直线l的参数方程为(t为参数),代入抛物线方程得可得,∴,t1t2=14.∴|BC|=|t1﹣t2|===8.【点评】本题考查了参数方程化为普通方程、参数的意义、弦长公式,考查了计算能力,属于基础题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年春南安三中高二年理科数学期中考试卷(命题人:洪振川 满分150分 时间:120分钟)一、选择题(每题5分,共60分)1.设复数z 满足(1i)2i z -=,则z =( )A .1i -B .1i --C .1i +D .1i -+2. 下列函数中,x =0是其极值点的函数是( )A .f (x )=-x 3B .f (x )=sin x -xC .f (x )=-cos xD .f (x )=1x 3.用反证法证明数学命题时,首先应该做出与命题结论相反的假设,否定“自然数,,a b c 中恰有一个偶数”时正确的反设为 ( )A. 自然数,,a b c 都是奇数B. 自然数,,a b c 至少有两个偶数或都是奇数C. 自然数,,a b c 都是偶数D. 自然数,,a b c 至少有两个偶数 4.下面使用类比推理,得到的结论正确的是 ( )A.直线a,b,c ,若a //b,b //c ,则a //c 。
类比推出:向量,,a b c ,若//,//a b b c,则//a cB.同一平面内,直线a,b,c ,若a ⊥c,b ⊥c ,则a //b .类比推出:空间中,直线a,b,c ,若a ⊥c,b ⊥c ,则a //b .C.以点(0,0)为圆心,r 为半径的圆的方程为222x y r +=.类比推出:以点(0,0,0)为球心,r 为半径的球面的方程为2222x y z r ++=.D.实数,a b ,若方程20x ax b ++=有实数根,则24a b ≥.类比推出:复数,a b ,若方程20x ax b ++=有实数根,则24a b ≥.5. 下面是一段演绎推理:大前提:如果直线平行于平面,则这条直线平行于平面内的所有直线; 小前提:已知直线b ∥平面α,直线a ⊂平面α;结论:所以直线b ∥直线a . 在这个推理中( )A .大前提错误,结论错误B .小前提与结论都是错误的C .大、小前提正确,只有结论错误D .大前提正确,结论错误6.下列各函数的导数:①2121)(-='x x ;②(a x )′=a 2ln x ;③(sin2x )′=2cos2x ;④⎝⎛⎭⎫x x +1′=1x +1.其中正确的有( ) A .0个 B .1个 C .2个 D .3个(7)已知函数y =f(x)的图象是下列四个图象之一,且其导函数y =f′(x)的图象如图所示,则该函数的图象是( )8.由直线12x =,2x =,曲线1y x=及x 轴所围成的图形的面积是( ) A . 2ln 2 B . 1ln 22 C . 174 D .1549. 已知函数f (x )=cos x +e -x +x 2016,令f 1(x )=f ′(x ),f 2(x )=f 1′(x ),f 3(x )= f 2′(x ),…,f n +1=f n ′(x ),则f 2017(x )=( )A .-sin x +e -xB .cos x -e -xC .-sin x -e -xD .-cos x +e -x10.在平面内,一条抛物线把平面分成两部分,两条抛物线最多把平面分成七个部分,设n 条抛物线至多把平面分成)(n f 个部分,则=-+)()1(n f n f ( ) A. 32+n B. 14+n C. 23+n D. 12+n 11.设x x x x f sin cos )(-⋅=,则( )A. 0)2()3(<+-f fB. 0)2()3(>+-f fC.0)2()3(=+-f fD.0)2()3(<--f f 12.已知定义在),0(+∞上的函数)(x f y =满足x x f x f ]1)('[)(-=,且0)1(=f .则函数)(x f y =的最小值为( ) A.0 B. 1- C. e - D. e1-二、填空题:本大题共4小题,每小题5分.13.设O 是原点,向量,对应的复数分别为那么向量对应的复数是_______14. =---⎰dx x x )2)1(1(102.15. 设函数f (x )=sin(3x+φ)(0<φ<π),如果f (x )+f'(x )为奇函数,则φ= .16.设函数()2ln(1)f x x m x =++有两个极值点,则实数m 的取值范围是 .23,32,i i --+三、解答题:解答应写出文字说明,证明过程或演算步骤. 17(本小题满分10分)已知复数,试求为何值时, (1)为实数?(2)所对应的点落在第三象限?18.(本小题满分12分)已知二次函数2()3f x ax bx =+-在1x =处取得极值,且在(0,3)-点处的切线与 直线20x y +=平行.(Ⅰ)求()f x 的解析式;(Ⅱ)求函数()()4g x xf x x =+的单调递增区间.19(本小题满分12分)统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/时)的函数解析式可以表示为y =1128 000x 3-380x +8(0<x ≤120).已知甲、乙两地相距100千米.(1)当汽车以40千米/时的速度匀速行驶时,从甲地到乙地要耗油多少升?(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?)()152()65(22R m i m m m m z ∈--+++=m z z20.(本小题满分12分)已知:当*n N ∈时,有1111111111,2342121232n n S T n n n n n n=-+-++-=+++-+++ ; (Ⅰ)求1212,,,;S S T T(Ⅱ)猜想n S 与n T 的大小关系,并用数学归纳法证明.21.(本小题满分12分)已知函数2()ln ,().f x x g x x ==(Ⅰ)求函数()()1h x f x x =-+的最大值;(Ⅱ)对于任意12,(0,)x x ∈+∞,且12x x <,是否存在实数m 使得122211()()()()mg x mg x x f x x f x --+恒为正数?若存在,求m 的取值范围,若不存在,说明理由.22.(本小题满分12分)设函数()1,.xf x ae x a R =--∈(Ⅰ)当(0,)x ∈+∞时,()0f x >恒成立,求a 的取值范围;(Ⅱ)求证:当(0,)x ∈+∞时,1ln 2x e xx ->.2018年春南安三中高二年理科数学期中考试卷参考答案一选择题:1-6 DCBCAC 7-12 BACBBD13. 5-5i 14.14-π15. 2π316.1(0,)2 17.解:(1)Z 为实数,则虚部为0,即,解得或……5分(2)………………………………7分解得:…………………9分故…………………………………10分18.解:(Ⅰ)由2()3f x ax bx =+-,可得'()2f x ax b =+.由题设有''(1)0,(0) 2.f f ⎧=⎪⎨=-⎪⎩ 即20,2.a b b +=⎧⎨=-⎩ 解得1a =,2b =-.所以2()23f x x x =--.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6分 (Ⅱ)由题意得32()()42g x xf x x x x x =+=-+,所以2()341(31)(1)g x x x x x '=-+=--.令()0g x '=,得11x =,21x =. 所以函数()g x 的单调递增区间为(,)3-∞,(1,)+∞.┄┄┄┄┄┄┄┄┄┄12分19.解:(1)当x =40时,汽车从甲地到乙地行驶了10040=2.5小时,要耗油⎝⎛⎭⎫1128 000×403-380×40+8×2.5=17.5(升).即当汽车以40千米/时的速度匀速行驶时,从甲地到乙地耗油17.5升. ………………… 4分(2)当速度为x 千米/时,汽车从甲地到乙地行驶了100x 小时,设耗油量为h(x)升,依题意得: h(x)=⎝⎛⎭⎫1128 000x3-380x +8·100x =11 280x 2+800x -154(0<x ≤120),…………………7分22150m m --=3-=m 5=m ⎪⎩⎪⎨⎧<--<++015206522m m m m ⎩⎨⎧<<--<<-5323m m )2,3(--∈mh ′(x)=x 640-800x2=x3-803640x2(0<x ≤120). …………………8分令h ′(x)=0,得x =80. 当x ∈(0,80)时,h ′(x)<0,h(x)是减函数; 当x ∈(80,120)时,h ′(x)>0,h(x)是增函数. …………………10分 ∴当x =80时,h(x)取到极小值h(80)=11.25. ∵h(x)在(0,120]上只有一个极值,∴它是最小值.即当汽车以80千米/时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升. …………………12分 20.解: (Ⅰ)121111171,1,2223412S S =-==-+-= 1211117,;112212212T T ===+=++⨯……………………………4分(Ⅱ)由(Ⅰ)可以猜想n n S T =,…………………………………………5分下面用数学归纳法进行证明:①1n =时, 由(Ⅰ)知等式显然成立;…………………………………………6分 ②假设当(*)n k k N =∈时等式成立,即k k S T =,………………………………7分1111112(1)12(1)212(1)1111111111111232212(1)2322112(1)11111232212(1).k k k k S S T k k k k k k k k k k k k k k k k T k k k k k ++=+-=+-+-+++=+++++-=+++++-++++++++++=+∴++++=++++ 这就是说,当1n k =+时等式成立. …………………………………………11分综合①②可知,猜想n n S T =成立. …………………………………………12分 21.解: (Ⅰ)由题设知:()ln 1(0)h x x x x =-+>,11'()1xh x x x-=-=………2分 当(0,1)x ∈时'()0h x >,当(1,)x ∈+∞时'()0h x <;∴()h x 在(0,1)上为增函数,在(1,)+∞上为减函数;……………………4分 ∴max [()](1)0h x h ==……………………5分(Ⅱ)由题设知:122211()()()()0mg x mg x x f x x f x --+>恒成立,即111222()()()()mg x x f x mg x x f x +>+恒成立,设()()()x mg x xf x ϕ=+,则有12()()x x ϕϕ>恒成立,即()()()x mg x xf x ϕ=+在(0,)+∞为减函数;……………………7分 ∴'()'()()'()2ln 10x mg x f x xf x mx x ϕ=++=++≤在(0,)+∞恒成立, ∴ln 12x m x+≤-在(0,)+∞恒成立,……………………9分 设ln 1()2x u x x +=-,得2ln '()2xu x x= ∴当(0,1)x ∈时'()0u x <,当(1,)x ∈+∞时'()0u x >;∴()u x 在(0,1)上为减函数,在(1,)+∞上为增函数; 得min 1[()](1)2u x u ==-……………………11分 ∴12m ≤-……………………12分 22. (Ⅰ)解:由题设知1x x a e +>在(0,)+∞上恒成立,设1()x x g x e+=…………2分则当0x ≥时,'()0x xg x e=-≤ 即()g x 在[0,)+∞上为减函数∴当(0,)x ∈+∞时,()(0)1g x g <=,……………………4分 ∴1a ≥……………………6分(Ⅱ)证明:由题设知21ln 1(0)2xx xe x e xe x x ->⇔->>,设2()1x x h x e xe =-- 由(Ⅰ)知:当1a =时,()10xf x e x =-->即10(0)xe x x -->>恒成立,∴当x ∈(0,+∞)时,222222'()(1)0xx x x xxxh x e e e e e =--=-->即()h x 在(0,)+∞上为增函数,此时有()(0)0h x h >=,即210xxe xe -->∴当x ∈(0,+∞)时,1ln 2x e xx ->……………………12分。