2015-2016年四川省成都市大邑县初三上学期期末数学试卷及答案
(完整word版)2015-2016学年度上学期期末质量检测九年级数学试卷
2015-2016学年度上学期期末质量检测九年级数学试卷说 明:1.本卷共六大题,全卷共 24题,满分120分,考试时间为120分钟2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答, 否则不给分c +d b c B . cCD.—221.下列各数中,为有理数的是( ▲ )A . nB . \ 3C.3.14D .—、32.已知5个正数a , b , c , d , e ,且 a v b v c v dv e ,则新一组数据 的中位数是(▲)、选择题(本大题共 6小题,每小题3分,共18分)每题只有一个正确的选项0,a ,b , c , d ,e3.某几何体的主视图和左视图完全一样如图所示, 则该几何体的俯视图不可能是(▲)A .4.关于x 的一元 A . 1Z I C.次不等式 x — b v 0恰有两个正整数解,则 B . 2.5C. 2D. 5.如图,△ ABC 中, BD=5, DC=2,AE 交BC 于点D ,DE 的长等于(▲AD=3,10 3b 的值可能是(3.56. 如图是二次函数 ①二次三项式 ax ③ 一元二次方程④ 使y<3成立的x 的取值范围是x 淘. 2y 二ax bx c 的图象,下列结论:2■ bx ' c 的最大值为 4 :②4a + 2b + c v 0;2ax bx 1的两根之和为一2;其中正确的个数有( A . 1 个 B▲) .2个 C8个小题,每小题.3个 D . 4个 3分,共24分) 8•点A (m,m - 3)在第一象限,则实数m 的取值范围为 ____ ▲9.已知:二均为锐角,且sin 。
-1 2(tan -1)^0,则: 二 ▲:B.O D. ▲)10.如图,直线a // b,直线l与a相交于点P,与直线b相交于点Q,且PM垂直于I,若/仁58°则/ 2= ▲;11. 从—1, 0, 2,这三个数中,任取两个数分别作为系数a, b代入ax2•bx::;,2 = 0中.在所有可能的结果中,任取一个方程为有实数解的一元二次方程的概率是▲; 12. 如图在平面直角坐标系中,点A在抛物线y = x2 - 4x • 6上运动.过点A作AC丄x轴于点C,以AC为对角线作矩形ABCD,则对角线BD的最小值为▲;613. 如图,已知点A在双曲线y 上,过点A作AC丄x轴于点C, OC=3,线段0A的x垂直平分线交0C于点8,则厶ABC的周长为▲;14. 菱形ABCD的对角线AC=6 cm,BD=4 cm,以AC为边作正方形ACEF,贝U BF长为三、解答题(本大题共4小题,每小题各6分,共24分)15.计算:(—73 $ +(J2015 — J2016 X J2016 + J2015 )—2誓—tan”45.16. ( 1)如图,六边形ABCDEF满足:AB£EF,AF丄CD.仅用无刻度的直尺画出一条直线I,使得直线l能将六边形ABCDEF的面积给平分;(2)假设你所画的这条直线l与六边形ABCDEF的AF边与CD边(或所在的直线)分别交于点G与点H,则下列结论:①直线I还能平分六边形ABCDEF的周长;②点G与点H恰为AF边与CD边中点;③AG=CH ,FG=DH ;④AG=DH,FG=CH .其中,正确命题的序号为▲.217.已知关于x的一元二次方程x -(k-2)x,2k=0 .(1 )若x=1是这个方程的一个根,求k的值和它的另一根;2(2)当k=—1时,求X j -3X2的值.18.在不透明的袋子中有四张标着数字1, 2, 3,4的卡片,这些卡片除数字外都相同•甲同学按照一定的规则抽出两张卡片,并把卡片上的数字相加•如图是他所画的树状图的一部分.(1 )帮甲同学完成树状图;(2)求甲同学两次抽到的数字之和为偶数的概率.第18题图四、(本大题共4小题,每小题各 8分,共32分) 19.如图,四边形 ABCD 为菱形,M 为BC 上一点, 且/ABM=2/ BAM . (1) 求证:AG=BG ;(2) 若点M 为BC 的中点,且S B MG =1 , 试求△ ADG的面积.20.据报道,历经一百天的调查研究,景德镇 PM 2.5源解析已经通过专家论证.各种调查显示,机动车成为 PM 2.5的最大来源,一辆车每行驶 20千米平均向大气里排放 0.035 千克污染物.校环保志愿小分队从环保局了解到景德镇 100天的空气质量等级情况,并制成统计图和表:空气质量等级优 良轻度污染 中度污染 重度污染 严重污染 天数(天)10a 12 825 b(2)彤彤是环保志愿者,她和同学们调查了 机动车每天的行驶路程,了解到每辆车 每天平均出行25千米.已知景德镇市 2016年机动车保有量已突破 50万辆, 请你通过计算,估计 2016年景德镇市 一天中出行的机动车至少要向大气里 排放多少千克污染物?21.如图ABCD 为正方形,点 A 坐标为(0, 1),点B 坐标为(k y的图象经过点 C , 一次函数y=ax + b 的图象经过 A 、x开始第一次 1234 /N 第二次2 3 4第19题图2016年景德镇市100天空气质量等级天数统计表(1)表中a= ▲, b= ▲ ,图中严重污染部分对应的圆心角n= ▲2016年景德镇市100天空气质量等级天数统计图第20题图(1) 求反比例函数与一次函数的解析式;(2) 若点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.22.小敏将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°,感觉最舒适(如图1),侧面示意图为图2.使用时为了散热,她在底板下垫入散热架ACO 后,电脑转到AO B位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C丄OA 于点C, O' C=2cm.(1)求/ CAO的度数;(2)显示屏的顶部B'比原来升高了多少?第22题图五、(本大题共1小题,每小题10分,共10分)23.如图,抛物线y = -x2• bx • c交x轴于点A (- 3, 0)和点B,交y轴于点C (0, 3).(1) 求抛物线的函数表达式;(2) 若点P在抛物线上,且S AOP =4S.BOC,求点P的坐标;(3) 如图b,设点Q是线段AC上的一动点,作DQ丄x轴,交抛物线于点D, 求线段DQ长度的最大值.六、(本大题共1小题,每小题12分,共12分)M , N分别是AD , CD的中点,连接24.如图,在Rt△ ABC中,/ ACB=90°, AC=6, BC=8,点D以每秒1个单位长度的速度由点A向点B匀速运动,到达B点即停止运动, MN,设点D运动的时间为t.(1) 判断MN与AC的位置关系;(2) 求点D由点A向点B匀速运动的过程中,线段MN所扫过区域的面积;(3 )若厶DMN是等腰三角形,求t的值.2016学年第一次质量检测试卷九年级数学答案、选择题(本大题共 6小题,每小题3分,共18分)• x f - 3x 2 = -3x 4 2 - 3x 2 二-3(x 1 x 2) 2=11.(1 )补全树状图如图所示:.一…第一次 1 2/N z1\第二次 2 3 41 3 4(2)由树状图得:共有12种情况,两次抽到的数字之和为偶数的有四、(本大题共4小题,每小题各 8分,共32分) 19. (1)证明:•••四边形 ABCD 是菱形, •••/ABD = / CBD ,•••/ ABM =2 / BAM , ABD =Z BAM ,• AG=BG ;(2)解:T AD // BC ,ADG MBG ,•••点M 为BC 的中点, •竺=2,BM故P (两次抽到的数字之和为偶数)4 = 112 3ii.12. ____ 2 13.5 ____ 14.4小题,每小题各6分,共24分)15解原=2 .16解: (1) 如图;(2) ③. 17解: (1)k=-3,另一根为-6;(2) 当k= - 1时,方程变形为x 2 3x 2 =0 ,_3 X i18.解: 4种,• AG ADGM " BM32° 、解答2二 X i• BMG =1, 二 S A ADG =4.20.解:(1) a=25, b=20, c=72;答:2016年景德镇市一天中出行的机动车至少要向大气里排放21.解:(1 )•••点A 的坐标为(0, 1),点B 的坐标为(0,— 2),••• AB=1 + 2=3.即正方形 ABCD 边长为 3,二 C (3,— 2). 将C 点坐标代入反比例函数可得:k= — 6.丁八6•反比例函数解析式: y 二-丄.x(a ~ -1 将 C( 3, — 2), A ( 0, 1)代入 y=ax + b 解得:2 = 1• 一次函数解析式为 y=— x + 1.111•••—X 1 X | t |= 3 X 3,解得 t =± 18. • P 点坐标为(18, )或(-18,).23 322.解:(1 )• O' C 丄 OA 于 C , OA=OB=24cm ,OC OC 1 • sin / CAO = -------- = -------- = — ,•/ CAO=30OA OA2(2)过点B 作BD 丄AO 交AO 的延长线于 D .• O' C 丄 OA , / CAO=30°, •/ AO C=60° • / AO B' 120°, •/ AO B'+/ AO C = 180° .• O B + O' C — BD= 24 + 12— 12 3 =36 - 12上 3 . •显示屏的顶部 B'比原来升高(2)根据题意得:50 X 0.035 X 10000X=21875 (千克)20(2)设P(t, -• △ OAP 的面积恰好等于正方形 ABCD 的面积,21875千克污染物•/ sin / BOD =电OB '• BD=OB • sin / BOD ,• / AOB=120°, •/ BOD= 60• BD=OB • sin / BOD= 24 X了(36 —12、刁)cm.五、(本大题共1小题,每小题10分,共10分)2 223.解:(1 )将A (- 3, 0)、C (0, 3)代入y = —X +bx + c ,解得:y = —X — 2x + 3 .(2)由(1 )知,该抛物线的解析式为y = _x2_2x3,则易得B( 1, 0). 设P(x,-x2 -2x • 3 ),1 2 1•/ S^O^4S^OC,二{汇3汇一x _2x+3 = 4X[X1><3 . 解得:x - -1 或x - -1 二2'、2 .则符号条件的点P的坐标为(-1, 4)或(-1 2,2 , - 4)或(-1 -2、. 2 , - 4).(3)易知直线AC的解析式为y=x+ 3.设Q点坐标为(x, x+ 3) (- 3< x w 0),则D点坐标为(x, _ x^ 2x 3 ),2 23 2 9QD= ( -x - 2x 3 ) -( x + 3) =-x -3x=-(x )2 4•••当x =「3时,QD有最大值-.2 4六、(本大题共1小题,每小题12分,共12分)24. ( 1)v在厶ADC中,M是AD的中点,N是DC的中点,• MN // AC ;(2)如图1,分别取△ ABC三边AC, AB, BC的中点E, F , G,并连接EG, FG ,根据题意可得线段MN扫过区域的面积就是平行四边AFGE的面积,•/ AC=6, BC=8, • AE=3, GC=4,•••/ ACB=90 °二S 四边形AFGE=AE?GC=3 X 4=12.•线段MN所扫过区域的面积为12.1 1 1(3)据题意可知:MD=—AD , DN= —DC, MN = — AC=3 ,2 2 2①当MD=MN=3时,△ DMN为等腰三角形,此时AD=AC=6 , • t=6 ,1②当MD=DN时,AD=DC ,如图2,过点D作DH丄AC交AC于H ,则AH = — AC=32 ,-cosA= AD 爲• 3 6AD 一10 '解得AD=5 ,••• AD=t=5 .③如图3,当DN=MN=3时,AC=DC,连接MC,贝U CM丄AD , •/ coA=如一竺,即刎」,AC AB 6 1018 36AM= , • AD=t=2AM=^ ,5 5综上所述,当t=5或6或36时,△ DMN为等腰三角形.5DG。
2015-2016学年九年级上学期数学期末检测试卷
word版数学⌒⌒D OBCE A 10题九年级上学期数学期末检测试卷时间:2小时满分:120分一、选择题,把各题正确答案的序号填在答题卡内(每题3分,共36分)序号 1 2 3 4 5 6 7 8 9 10 11 12 答案1.下列图形中既是轴对称图形,又是中心对称图形的是()A .等边三角形B.平行四边形C.正方形D.正五边形2.方程x2-2x=0的解为()A、x1=1,x2=2 B、x1=0,x2=1 C、x1=0,x2=2 D、x1=0.5,x2=23.用配方法解一元二次方程x2-4x=5的过程中,配方正确的是()A.(x+2)2=1 B.(x-2)2=1C.(x+2)2=9 D.(x-2)2=94.关于x的一元二次方程(a-5)x2-4x-1=0有实数根,则a满足( )A.a≥1B.a>1且a≠5C.a≥1且a≠5D.a≠55.已知二次函数y=-2(x﹣3)2 +1,下列说法:①其图象的开口向下;②其图象的对称轴为直线x=3;③其图象顶点坐标为(-3,1);④当x<3时,y随x 的增大而增大.则其中说法正确的有()A.1个B.2个 C.3个 D.4个6.将二次函数y=x²的图象向右平移2个单位,再向上平移1个单位,所得图象的表达式是()A.y=(x-2)² +1B.y=(x+2)² +1C.y=(x-2)² -1D.y=(x+2)² -17.已知二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①abc>O,②2a+b=O,③b2-4ac<O,④4a+2b+c>O,其中正确的是()A、①③B、只有②C、②④D、③④8.已知⊙O的半径为6,A为线段PO的中点,当OP=10时,点A与⊙O的位置关系为( )A.在圆上B.在圆外C.在圆内D.不确定9.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于( )(第7题)(第9题)(第11题)10.如图,AB为⊙O的直径,弦CD⊥AB,垂足为E,下列结论中错误..的是()A.CE = DE B.AC=EDC.∠BAC=∠BAD D. BC=BD11.如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么AB的值为()A、3B、C、D、212.在一个不透明的塑料袋中装有红色、白色球共40个,除颜色外其它都相同,小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有()A、4个B、6个C、34个D、36个二、填空题(每题3分,共15分)13.若关于x的方程(m-2)x|m|+2x-1=0是一元二次方程,则m=________.14.已知点A(x1,y1)、B(x2,y2)在二次函数y=(x1)2+1的图象上,若x1>x2>1,则y1 y2(填“>”“=”或“<”)15.如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP/ 重合,如果AP=3,那么PP/的长等于(第15题)16.已知点与点关于原点对称,则的值是_______.17.已知圆锥的母线长5,底面半径为3,则圆锥的侧面积为三、解答题(共69分)18.(本题8分)解方程:(1)x2-2x-2=0 (2)7x(5x-2)=3(5x-2)19.(本题5分)已知方程x 2-4x+m=0的一个根为-2,求方程的另一根及m 的值.20.(本题6分)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2014年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?21.(本题6分)“一方有难,八方支援”.非洲埃博拉病毒感染疫情牵动着中国人民的心,北京市某医院准备从甲、乙、丙三位医生和A、B两名护士中选取一位医生和一名护士支援非洲医疗工作.(1)若随机选一位医生和一名护士,用列表法表示所有可能出现的结果;(2)求恰好选中医生甲和护士A的概率.22.(本题6分)如图,点A 、B 的坐标分别为(0,0)、(4,0),将△ABC 绕点A 按逆时针方向旋转90º得到△AB ′C ′.(1)在所给的平面直角坐标系中画出旋转后的△AB ′C ′; (2)求点B 旋转到点B ′所经过的圆弧的长。
2016年九年级数学试卷答案(5版)
2015—2016学年度九年级第一学期数学期末试卷参考答案一、 选择题1、D2、B3、A4、B5、C6、A7、D8、C9、B 10、B 二、 填空题(第14题和第16题,填对一个答案不得分)11、-1 12、122-=x y 13、235cm 14、o o 12060或 15、-4 16、o o 12060或 三、解答题17、(1)x 1=-1,x 2=23 (2)x 1=3,x 2=118、(1)∵△=ac 4-b 2=1-2c <0...................................................................2分 ∴c>21............................................................................................4分(2)∵k=c >21 b=1>0........................................................................5分 ∴图像经过第一、二、三象限.....................................................7分19、(1)∵△=ac 4-b 2...............................................3分∵022≥-)(m ∴422+-)(m >0∴方程总有两个不相等的实数根...4分 (2)当x=1时,解得m=2∴ 此三角形的周长为4+10,4+22..............................7分20、(1)过点D 作DF ⊥BC 与F ,连接OE.......................1分 ∵AD,DC,BC 是⊙O 的切线,设FC=x∴AD=DE=4,EC=BC=4+x4)2(84)12(444222+-=+-=--++=m m m m m m 分另一个根为5............................33,1034212∴===+-x x x x∴DC=x+8在Rt △DFC 中,122+x 2=(x+8)2解得:x=5∴BC=x+4=9.................................................2分(2)由题意得,在Rt △DFC 中,DC=x+y 122+(y-x )2=(x+y )2xy=36,y=x36................................................4分 (3)∵梯形面积为78 ∴7812y36x 21=⨯+)(............................................6分 解得x=4或9................................................7分 21、(1)∵A(-1,2)在反比例函数上,∴-2=1-k.................................................2分 解得:k=3,..............................................3分 ∴x 3=y ..................................................4分(2)当k=11时,∴x10-=y ∵S OPM ∆=21OM ·MP=21y x =21k =5..............................7分 22、(1)设一次函数的解析式为y=kx+b..................................1分 ⎩⎨⎧=+=+30b k 6040b k 50 解得:k=-1,b=90.........................................3分 ∴y=-x+90...............................................4分(2)w=xy =x(-x+90)...................................5分=-x2+90x=-(x-45)2+2025.........................................6分∵x=45在40≦x≦50之间,.....................................7分∴当x=45元时,w取得最大值2025元..........................8分23、证明:∵AC是直径∴∠ANC=90°∵AB=AC∴∠ACN=∠ABN∴∠ABN+∠BAN=90°∴∠ACN+∠PCB=90°∴∠PCB=∠BAN..............................................3分(2)∵AB=AC ∠ANC=90°∴∠CAN=∠BAN∴CN=NM=BN∴∠NMB=∠NBM∴∠AMC=∠CBP∵∠PCB=∠BAN∴△AMN∽△CBP∴=..............................................................7分24、(1)25人............................................................1分(2)a=75 b=10 c=3 ..............................................4分(3)43.2°............................................................5分(4)(树形图略).....................................................7分P (一男一女)=32................................................8分 25、(1)∵ y=ax 2+bx+6经过A(-3,0),B(2,0)∴9a-3b+6=0 4a+2b+6=0解得:a=-1,b=-1∴ y=-x 2-x+6................................................2分(2)∵当x=0时,y=6∴C(0,6) B(2,0)∴设经过点B 和点C 的直线的解析式为y=mx+n∴2m+n=0n=6∴m=-3,n=6∴直线BC 的解析式为y=-3x+6................................3分 ∵点E 在直线y=h 上,∴E(0,h)∵点D 在直线y=h 上,∴D 点的纵坐标为h ,把D 点代入y=-3x+6,解得:X=3h -6 ∴D(3h -6,h)..............................................4分 ∴DE=3h -6 ∴S △BDE=233-h 61-3h -6h 21212+=⋅=⋅)(DE OE .......................5分 ∵61-<0∴当h=23时,△BDE 的面积最大,最大值为23...................6分(3)存在符合题意的直线∵A(-3,0),C(0,6)∴设直线AC 的解析式为y=px+q代入,解得:p=2,q=6∴y=2x+6......................................................7分 把y=h 代入y=2x+6,得x=26-h ∴F (26-h ,h ) 在△OFM 中,OM=2,OF=22h )26h (+- MF=2h )226-h (2++...............8分 若OM=MF,则22h )226h (++-=2.....................................9分 解得:h 1=2,h 2=-56(不合题意,舍去)把y=h 1=2代入 y=-x 2-x+6得x 1=217-1-,x 2=2171-+ ∵点G 在第二象限∴G (217-1-,2)..............................10分 综上所述,存在这样的直线y=2使得OM=MF ;当h=2时,点G (217-1-,2),...................................11分。
2015—2016学年第一学期九年级期末考试数学试卷附答案
2015一如16学年第一学期九年级期末考试数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.—2、0、2、-3这四个数中最小数的是1]A.2B.0C.—2D.—32.如果我们都能改掉餐桌上的陋习,珍惜每一粒粮食,合肥市每年就能避免浪费30.1亿元,将30.1亿用科学计数法表示为【】A.30.1父108B,3.01父108C,3.01父109D.0.301^10103.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是【】A.x—6=*B,x—6=4C,x+6=4D,x+6=M4.设a=2j3—1,a在两个相邻整数之间,则这两个整数是1]A.1和2B.2和3C.3和4D.4和55.直尺与三角尺按如图所示的方式叠放在一起,在图中所标记的角中,与/I互余的角有几个A.2个B.3个C.4个D.5个第5题图第7题图第8题图6.某选手在青歌赛中的得分如下(单位:分):99.60,99.45,99.60,99.70,98.80,99.60,99.83,则这位选手得分的众数和中位数分别是1】A.99.60,99.60B,99.60,99.70C.99.60,98.80D,99.70,99.607.如图为抛物线y=ax2+bx+c的图像,A、RC为抛物线与坐标轴的交点,且OAOG1,则下列关系中正确的是1]A.ac<0B.a—b=1C.a+b=—1D.b>2a8.如图,过DABCM对角线BD上一点M分别作平行四边形两边的平行线EF与GH那么图中的口AEMGJ面积&与口HCFM勺面积S2的大小关系是【】A.s1s2B.S1:二S2C.S1=S2D.2s l=颔9.如果三角形的两条边分别为4和6,那么连结该三角形三边中点所得的周长可能是下列数据中的1]A.6B.8C.10D.12为E,设DP=x,AE=y,则能反映y与X之间函数关系的大致图象是第10题图10.如图,在矩形ABCD43,AB=3,BC=4,点P在BC边上运动,连结DP过点A作AHDP垂足A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(_3)2的平方根是。
【初三数学】成都市九年级数学上期末考试检测试题及答案
九年级上册数学期末考试题(含答案)一、选择题(每题2分,共24分)下列各题的四个选项中,只有一个答案是正确的,请将正确答案的代号填涂在机读卡上.1.(2分)有一实物如图,那么它的主视图是()A.B.C.D.2.(2分)关于x的方程x2﹣2x﹣2=0的根的情况是()A.有两个不等实根B.有两个相等实根C.没有实数根D.无法判断根的情况3.(2分)若函数y=(2m﹣1)x是反比例函数,则m的值是()A.﹣1或1B.小于的任意实数C.﹣1D.14.(2分)下列四边形中,对角线一定相等的是()A.菱形B.矩形C.平行四边形D.梯形5.(2分)下列式子从左到右变形一定正确的是()A.=B.=C.=D.=6.(2分)关于x的一元二次方程2x(x+1)=(x+1)的根是()A.x=0B.x=﹣1C.x1=0,x2=﹣1D.7.(2分)下列说法中的错误的是()A.一组邻边相等的矩形是正方形B.一组邻边相等的平行四边形是菱形C.一组对边相等且有一个角是直角的四边形是矩形D.一组对边平行且相等的四边形是平行四边形8.(2分)某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志.从而估计该地区有黄羊()A.200只B.400只C.800只D.1000只9.(2分)如图,在△ABC中,已知∠ADE=∠B,则下列等式成立的是()A.B.C.D.10.(2分)在同一直角坐标系中,一次函数y=kx﹣k与反比例函数y=(k≠0)的图象大致是()A.B.C.D.11.(2分)若m,n满足m2+5m﹣3=0,n2+5n﹣3=0,且m≠n.则的值为()A.B.﹣C.﹣D.12.(2分)两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形P AOB的面积不会发生变化;③P A与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是()A.①②③B.②③④C.①②④D.①③④二、填空题(每小题3分,共15分)将答案填在答题卡相应的横线上.13.(3分)菱形的两条对角线长分别是6和8,则菱形的边长为.14.(3分)对于实数a,b,定义运算“※”:a※b=a2+b,则方程x※(x﹣2)=0的根为.15.(3分)已知A(x1,y1),B(x2,y2)都在反比例函数y=的图象上.若x1x2=﹣4,则y1y2的值为.16.(3分)将矩形纸片ABCD按如图所示的方式折叠,AE、EF为折痕,∠BAE=30°,AB =,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处,则BC 的长为.九年级上学期期末考试数学试题【答案】一、选择题(每题3分,共30分)1.下列平面图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.下列事件是必然事件的是()A.明天太阳从西边升起B.掷出一枚硬币,正面朝上C.打开电视机,正在播放2018俄罗斯世界杯足球赛D.任意画一个三角形,它的内角和为180°3.(3分)关于x的一元二次方程x2+5x+m2﹣2m=0的常数项为0,则m的值为()A.1 B.0或2 C.1或2 D.04.函数y=﹣2x2先向右平移1个单位,再向下平移2个单位,所得函数解析式是()A.y=﹣2(x﹣1)2+2 B.y=﹣2(x﹣1)2﹣2C.y=﹣2(x+1)2+2 D.y=﹣2(x+1)2﹣25.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.x(x﹣1)=2106.如图,直线c与直线a相交于点A,与直线b相交于点B,∠1=130°,∠2=60°,若要使直线a∥b,则将直线a绕点A按如图所示的方向至少旋转()A.10°B.20°C.60°D.130°7.如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于A、B两点,P是优弧AB上任意一点(与A、B不重合),则∠APB的度数为()A.60°B.45°C.30°D.25°8.对于二次函数y=(x﹣2)2+3的图象,下列说法正确的是()A.开口向下B.对称轴是直线x=﹣2C.顶点坐标是(2,3)D.与x轴有两个交点9.已知x=a是方程x2﹣3x﹣5=0的根,代数式a2﹣3a+4的值为()A.6 B.9 C.14 D.﹣610.如图,AB是⊙O的弦,AB=10,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是BC、AB的中点,则MN长的最大值是()A.10 B.5C.10D.20二、填空题(每题4分,共24分11.方程x2﹣16=0的解为.12.如图,转动的转盘停止转动后,指针指向白色区域的概率是.13.如果点P(4,5)和点Q(a,b)关于原点对称,则点Q的坐标为.14.请任意写出一个图象开口向下且顶点坐标为(﹣2,1)的二次函数解析式:.15.已知在直角坐标平面内,以点P(﹣2,3)为圆心,2为半径的圆P与x轴的位置关系是.16.如图,将半径为4,圆心角为90°的扇形BAC绕A点逆时针旋转60°,点B、C的对应点分别为点D、E且点D刚好在上,则阴影部分的面积为.三、解答题(-)(本大题3小题,每题6分,共18分)17.(6分)解方程:2x2﹣3x=﹣1.18.(6分)如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(﹣1,0),B(﹣2,﹣2),C(﹣4,﹣1).(1)将△ABC绕点O逆时针旋转90°得到△A1B1C1,请画出△A1B1C1;(2)点C1的坐标为.19.(6分)如图,在△OAB中OA=OB,⊙O交AB于点C、D,求证:AC=BD.四、解答题(二)(本大题3小题,每题7分,共21分)20.(7分)关于x的一元二次方程x2+2x+2k﹣4=0有两个不相等的实数根.(1)求k的取值范围;(2)若方程的一个根为2,求另一个根.21.(7分)凤城中学九年级(3)班的班主任让同学们为班会活动设计一个摸球方案,这些球除颜色外都相同,拟使中奖概率为50%.(1)小明的设计方案:在一个不透明的盒子中,放入黄、白两种颜色的球共6个,搅匀后从中任意摸出1个球,摸到黄球则表示中奖,否则不中奖.如果小明的设计符合老师要求,则盒子中黄球应有个,白球应有个;(2)小兵的设计方案:在一个不透明的盒子中,放入2个黄球和1个白球,搅匀后从中任意摸出2个球,摸到的2个球都是黄球则表示中奖,否则不中奖,该设计方案是否符合老师的要求?试说明理由.22.(7分)如图,在Rt△ABC中,∠ACB=90°,点D、E分别在AB、AC上,且CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得到CF,连接EF.(1)求证:△BDC≌△EFC;(2)若EF∥CD,求证:∠BDC=90°.五、解答题(三)(本大题3小题,每题9分,共27分)23.(9分)凤城商场经销一种高档水果,售价为每千克50元(1)连续两次降价后售价为每千克32元,若每次下降的百分率相同.求平均下降的百分率;(2)已知这种水果的进价为每千克40元,每天可售出500千克,经市场调查发现,若每千克涨价1元,日销售量将减少20千克,每千克应涨价多少元才能使每天获得的利润最大?24.(9分)如图,O为菱形ABCD对角线上一点,以点O为圆心,OA长为半径的⊙O与BC相切于点M.(1)求证:CD与⊙O相切;(2)若菱形ABC D的边长为2,∠ABC=60°,求⊙O的半径.25.(9分)如图,在平面直角坐标系中,二次函数y=ax2+bx﹣3交x轴于点A(﹣3,0)、B(1,0),在y轴上有一点E(0,1),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴下方的一个动点,求△ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P 点的坐标;若不存在,请说明理由.参考答案一、选择题1.下列平面图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据中心对称图形,轴对称图形的定义进行判断.解:A、不是中心对称图形,也不是轴对称图形,故本选项错误;B、是中心对称图形,也是轴对称图形,故本选项正确;C、不是中心对称图形,是轴对称图形,故本选项错误;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:B.【点评】本题考查了中心对称图形,轴对称图形的判断.关键是根据图形自身的对称性进行判断.2.下列事件是必然事件的是()A.明天太阳从西边升起B.掷出一枚硬币,正面朝上C.打开电视机,正在播放2018俄罗斯世界杯足球赛D.任意画一个三角形,它的内角和为180°【分析】必然事件就是一定发生的事件,依据定义即可作出判断.解:A、明天太阳从西边升起,是不可能事件;B、抛掷一枚硬币,正面朝上是随机事件;C、打开电视机,正在播放2018俄罗斯世界杯足球赛,是随机事件;D、任意画一个三角形,它的内角和为180°,是必然事件;故选:D.【点评】本题主要考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.3.关于x的一元二次方程x2+5x+m2﹣2m=0的常数项为0,则m的值为()A.1 B.0或2 C.1或2 D.0【分析】根据常数项为0,即可得到m2﹣2m=0,列出方程求解即可.解:根据题意得,m2﹣2m=0,解得:m=0,或m=2,故选:B.【点评】此题考查了一元二次方程的定义.判断一个方程是否是一元二次方程必须具备以下3个条件:(1)是整式方程,(2)只含有一个未知数,(3)方程中未知数的最高次数是2.这三个条件缺一不可,尤其要注意二次项系数a≠0这个最容易被忽略的条件.4.函数y=﹣2x2先向右平移1个单位,再向下平移2个单位,所得函数解析式是()A.y=﹣2(x﹣1)2+2 B.y=﹣2(x﹣1)2﹣2C.y=﹣2(x+1)2+2 D.y=﹣2(x+1)2﹣2【分析】先确定物线y=﹣2x2的顶点坐标为(0,0),再把点(0,0)平移所得对应点的坐标为(1,﹣2),然后根据顶点式写出平移后的抛物线解析式.解:抛物线y=﹣2x2的顶点坐标为(0,0),把(0,0)先向右平移1个单位,再向下平移2个单位所得对应点的坐标为(1,﹣2),所以平移后的抛物线解析式为y=﹣2(x﹣1)2﹣2.故选:B.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.5.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.x(x﹣1)=210【分析】根据题意列出一元二次方程即可.解:由题意得,x(x﹣1)=210,故选:B.【点评】本题考查的是一元二次方程的应用,在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系.6.如图,直线c与直线a相交于点A,与直线b相交于点B,∠1=130°,∠2=60°,若要使直线a∥b,则将直线a绕点A按如图所示的方向至少旋转()A.10°B.20°C.60°D.130°【分析】根据平行线的判定可得,当c与a的夹角为60°时,存在b∥a,由此得到直线a 绕点A顺时针旋转60°﹣50°=10°.解:∵∠2=60°,∴若要使直线a∥b,则∠3应该为60°,又∵∠1=130°,∴∠3=50°,∴直线a绕点A按顺时针方向至少旋转:60°﹣50°=10°,故选:A.【点评】本题主要考查了旋转的性质以及平行线的判定,解题时注意:同位角相等,两直线平行.7.如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于A、B两点,P是优弧AB上任意一点(与A、B不重合),则∠APB的度数为()A.60°B.45°C.30°D.25°【分析】根据在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,即可得出答案.解:由题意得,∠AOB=60°,则∠APB=∠AOB=30°.故选:C.【点评】本题考查了圆周角定理的知识,解答本题的关键是熟练掌握圆周角定理的内容.8.对于二次函数y=(x﹣2)2+3的图象,下列说法正确的是()A.开口向下B.对称轴是直线x=﹣2C.顶点坐标是(2,3)D.与x轴有两个交点【分析】直接利用二次函数的性质分别判断得出答案.解:A、二次函数y=(x﹣2)2+3的图象,开口向上,故此选项错误;B、对称轴是直线x=2,故此选项错误;C、顶点坐标是(2,3),故此选项正确;D、与x轴没有交点,故此选项错误;故选:C.【点评】此题主要考查了二次函数的性质,正确结合二次函数解析式分析是解题关键.9.已知x=a是方程x2﹣3x﹣5=0的根,代数式a2﹣3a+4的值为()A.6 B.9 C.14 D.﹣6【分析】利用一元二次方程根的定义得到a2﹣3a=5,然后利用整体代入的方法计算代数式的值.解:∵x=a是方程x2﹣3x﹣5=0的根,∴a2﹣3a﹣5=0,∴a2﹣3a=5,∴a2﹣3a+4=5+4=9.故选:B.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.10.如图,AB是⊙O的弦,AB=10,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是BC、AB的中点,则MN长的最大值是()A.10 B.5C.10D.20【分析】根据中位线定理得到MN的最大时,AC最大,当AC最大时是直径,从而求得直径后就可以求得最大值.解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC是直径时,最大,如图,∵∠ACB=∠D=45°,AB=10,∴AD=20,∴MN=AD=10,故选:A.【点评】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大.二、填空题(本大题6小题,每题4分,共24分11.方程x2﹣16=0的解为x=±4 .【分析】移项,再直接开平方求解.解:方程x2﹣16=0,移项,得x2=16,开平方,得x=±4,故答案为:x=±4.【点评】本题考查了直接开方法解一元二次方程.用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.12.如图,转动的转盘停止转动后,指针指向白色区域的概率是.【分析】用白色区域的面积除以圆的面积得到指针指向白色区域的概率.解:指针指向白色区域的概率==.故答案为.【点评】本题考查了几何概率:某事件的概率=相应的面积与总面积之比.13.如果点P(4,5)和点Q(a,b)关于原点对称,则点Q的坐标为(﹣4,﹣5).【分析】关于原点对称的点,横坐标与纵坐标都互为相反数,记忆方法是结合平面直角坐标系的图形记忆.解:平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),所以点Q的坐标为(﹣4,﹣5).【点评】关于原点对称的点坐标的关系,是需要识记的基本问题.14.请任意写出一个图象开口向下且顶点坐标为(﹣2,1)的二次函数解析式:y=﹣(x+2)2+1(答案不唯一).【分析】写出一个抛物线开口向下,顶点为已知点坐标即可.解:抛物线y=﹣(x+2)2+1的开口向下、顶点坐标为(﹣2,1),故答案为:y=﹣(x+2)2+1(答案不唯一).【点评】此题考查了待定系数法求二次函数解析式,熟练掌握待定系数法是解本题的关键.15.已知在直角坐标平面内,以点P(﹣2,3)为圆心,2为半径的圆P与x轴的位置关系是相离.【分析】先求出点P到x轴的距离,再根据直线与圆的位置关系得出即可.解:∵点P的坐标为(﹣2,3),∴点P到x轴的距离是3,∵2<3,∴以点P(﹣2,3)为圆心,2为半径的圆P与x轴的位置关系是相离,故答案为:相离.【点评】本题考查了坐标与图形的性质和直线与圆的位置关系等知识点,能熟记直线与圆的位置关系的内容是解此题的关键.16.如图,将半径为4,圆心角为90°的扇形BAC绕A点逆时针旋转60°,点B、C的对应点分别为点D、E且点D刚好在上,则阴影部分的面积为.【分析】直接利用旋转的性质结合扇形面积求法以及等边三角形的判定与性质得出S阴影=S﹣S弓形AD=S扇形ABC﹣S弓形AD,进而得出答案.扇形ADE解:连接BD,过点B作BN⊥AD于点N,∵将半径为4,圆心角为90°的扇形BAC绕A点逆时针旋转60°,∴∠BAD=60°,AB=AD,∴△ABD是等边三角形,∴∠ABD=60°,则∠ABN=30°,故AN=2,BN=2,S=S扇形ADE﹣S弓形AD=S扇形ABC﹣S弓形AD阴影=﹣(﹣×4×)=.故答案为:.【点评】此题主要考查了扇形面积求法以及等边三角形的判定与性质,正确得出△ABD是等边三角形是解题关键.三、解答题(-)(本大题3小题,每题6分,共18分)17.(6分)解方程:2x2﹣3x=﹣1.【分析】利用因式分解法解方程即可.解:2x2﹣3x=﹣1,2x2﹣3x+1=0,(2x﹣1)(x﹣1)=0,∴2x﹣1=0或x﹣1=0,∴x1=,x2=1.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据题目要求的方法求解.18.(6分)如图,在平面直角坐标系xOy 中,△ABC 的三个顶点坐标分别为A (﹣1,0),B (﹣2,﹣2),C (﹣4,﹣1).(1)将△ABC 绕点O 逆时针旋转90°得到△A 1B 1C 1,请画出△A 1B 1C 1;(2)点C 1的坐标为 (1,﹣4) .【分析】(1)利用网格特点和旋转的性质画出A 、B 、C 的对应点A 1、B 1、C 1,从而得到△A 1B 1C 1;(2)利用(1)所画图形写出点C 1的坐标.解:(1)如图,△A 1B 1C 1即为所求;(2)C 1的坐标为 (1,﹣4).故答案为(1,﹣4).【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.19.(6分)如图,在△OAB中OA=OB,⊙O交AB于点C、D,求证:AC=BD.【分析】过点O作OE⊥AB于点E,根据垂径定理得到CE=DE,根据等腰三角形的性质得到AE=BE,计算即可.证明:过点O作OE⊥AB于点E,∵在⊙O中,OE⊥CD,∴CE=DE,∵OA=OB,OE⊥AB,∴AE=BE,∴AE﹣CE=BE﹣DE,∴AC=BD.【点评】本题考查的是垂径定理、等腰三角形的性质,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.四、解答题(二)(本大题3小题,每题7分,共21分)20.(7分)关于x的一元二次方程x2+2x+2k﹣4=0有两个不相等的实数根.(1)求k的取值范围;(2)若方程的一个根为2,求另一个根.【分析】(1)根据方程有两个不相等的实数根可得△=4﹣4(2k﹣4)>0,解不等式求出k 的取值范围;(2)根据方程有一个根是2,再设方程的另一根为x2,利用根与系数的关系列式计算即可.解:(1)∵关于x的一元二次方程x2+2x+2k﹣4=0有两个不相等的实数根,∴△=4﹣4(2k﹣4)>0,解得:k<;(2)若方程的一个根为2,设方程的另一根为x2,则2+x2=﹣2,解得x2=﹣4.所以方程的另一根为﹣4.【点评】此题考查了一元二次方程ax2+bx+c=0根的判别式和根与系数的关系的应用,(1)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根;(4)x1+x2=﹣,x1•x2=.21.(7分)凤城中学九年级(3)班的班主任让同学们为班会活动设计一个摸球方案,这些球除颜色外都相同,拟使中奖概率为50%.(1)小明的设计方案:在一个不透明的盒子中,放入黄、白两种颜色的球共6个,搅匀后从中任意摸出1个球,摸到黄球则表示中奖,否则不中奖.如果小明的设计符合老师要求,则盒子中黄球应有 3 个,白球应有 3 个;(2)小兵的设计方案:在一个不透明的盒子中,放入2个黄球和1个白球,搅匀后从中任意摸出2个球,摸到的2个球都是黄球则表示中奖,否则不中奖,该设计方案是否符合老师的要求?试说明理由.【分析】(1)根据中奖概率为50%和摸到黄球则表示中奖,可以得到袋子中的黄球数量和白球数量;(2)画树状图求出摸到的2个球都是黄球的概率,从而可以解答本题.解:(1)根据题意知如果小明的设计符合老师要求,则盒子中黄球应有3个,白球应有3个,故答案为:3,3;(2)画树状图如下:∵共有6种等可能的结果,其中摸到的2个球都是黄球的有2种可能,∴P(2个球都是黄球)==≠50%,∴该设计方案不符合老师的要求.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(7分)如图,在Rt△ABC中,∠ACB=90°,点D、E分别在AB、AC上,且CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得到CF,连接EF.(1)求证:△BDC≌△EFC;(2)若EF∥CD,求证:∠BDC=90°.【分析】(1)根据旋转的性质可得CD=CF,∠DCF=90°,然后根据同角的余角相等求出∠BCD=∠ECF,再利用“边角边”证明即可;(2)根据两直线平行,同旁内角互补求出∠F=90°,再根据全等三角形对应角相等可得∠BDC=∠F.【解答】证明:(1)由旋转的性质得,CD=CF,∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠BCD+∠DCE=90°,∴∠BCD=∠ECF,在△BDC和△EFC中,,∴△BDC≌△EFC(SAS);(2)∵EF∥CD,∴∠F+∠DCF=180°,∵∠DCF=90°,∴∠F=90°,∵△BDC≌△EFC,∴∠BDC=∠F=90°.【点评】本题考查了旋转的性质,全等三角形的判定与性质,平行线的性质,旋转前后对应边相等,此类题目难点在于利用同角的余角相等求出相等的角.五、解答题(三)(本大题3小题,每题9分,共27分)23.(9分)凤城商场经销一种高档水果,售价为每千克50元(1)连续两次降价后售价为每千克32元,若每次下降的百分率相同.求平均下降的百分率;(2)已知这种水果的进价为每千克40元,每天可售出500千克,经市场调查发现,若每千克涨价1元,日销售量将减少20千克,每千克应涨价多少元才能使每天获得的利润最大?【分析】(1)设每次降价的百分率为x,(1﹣x)2为两次降价的百分率,50降至32就是方程的平衡条件,列出方程求解即可;(2)根据题意列出关于上涨价格m的二次函数解析式,然后将其配方成顶点式,最后根据二次函数的性质可得其最值情况.解:(1)设每次下降的百分率为x,根据题意得:50(1﹣x)2=32,解得:x1=0.2,x2=1.8(不合题意舍去),答:平均下降的百分率为20%.(2)设每千克应涨价m元,每天的利润为W元,W=(50﹣40+m)(500﹣20m)=﹣20m2+300m+5000,则对称轴为m=﹣=7.5,∵a=﹣20<0,∴当m=7.5时函数有最大值,答:每千克应涨价7.5元才能使每天盈利最大.【点评】此题主要考查了二次函数的应用,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法求解比较简单.24.(9分)如图,O为菱形ABCD对角线上一点,以点O为圆心,OA长为半径的⊙O与BC相切于点M.(1)求证:CD与⊙O相切;(2)若菱形ABCD的边长为2,∠ABC=60°,求⊙O的半径.【分析】(1)连接OM,过点O作ON⊥CD于N.只要证明OM=ON即可解决问题;(2)设半径为r.则OC=2﹣r,OM=r,利用勾股定理构建方程即可解决问题;解:(1)连接OM,过点O作ON⊥CD于N.∵⊙O与BC相切于点M,∴OM⊥BC,OM是⊙O的半径,∵AC是菱形ABCD的对角线,∴AC平分∠BCD,∵ON⊥CD,OM⊥BC,∴ON=OM=r,∴CD与⊙O相切;(2)∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ACB是等边三角形,∴AC=AB=2,设半径为r.则OC=2﹣r,OM=r,∵∠ACB=60°,∠OMC=90°,∴∠COM=30°,MC=,在Rt△OMC中,∠OMC=90°∵OM2+CM2=OC2∴r2+()2=(2﹣r)2,解得r=﹣6+4或﹣6﹣4(舍弃),∴⊙O的半径为﹣6+4.【点评】本题考查切线的判定,菱形的性质等知识,解题的关键是熟练掌握基本知识,学会利用参数构建方程解决问题,属于中考常考题型.25.(9分)如图,在平面直角坐标系中,二次函数y=ax2+bx﹣3交x轴于点A(﹣3,0)、B(1,0),在y轴上有一点E(0,1),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴下方的一个动点,求△ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P 点的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法求解可得;(2)先求出直线AE的解析式为y=x+1,作DG⊥x轴,延长DG交AE于点F,设D(m,m2+2m﹣3),则F(m,m+1),DF=﹣m2﹣m+4,根据S=S△ADF+S△DEF可得△ADE函数解析式,利用二次函数性质求解可得答案;(3)先根据抛物线解析式得出对称轴为直线x=﹣1,据此设P(﹣1,n),由A(﹣3,0),E(0,1)知AP2=4+n2,AE2=10,PE2=(n﹣1)2+1,再分AP=AE,AP=PE及AE =PE三种情况分别求解可得.解:(1)∵二次函数y=ax2+bx﹣3经过点A(﹣3,0)、B(1,0),∴,解得:,∴二次函数解析式为y=x2+2x﹣3;(2)设直线AE的解析式为y=kx+b,∵过点A(﹣3,0),E(0,1),∴,解得:,∴直线AE解析式为y=x+1,如图,过点D作DG⊥x轴于点G,延长DG交AE于点F,设D(m,m2+2m﹣3),则F(m,m+1),∴DF=﹣m2﹣2m+3+m+1=﹣m2﹣m+4,∴S△ADE=S△ADF+S△DEF=×DF×AG+DF×OG=×DF×(AG+OG)=×3×DF=(﹣m2﹣m+4)=﹣m2﹣m+6=﹣(m+)2+,∴当m=﹣时,△ADE的面积取得最大值为.(3)∵y=x2+2x﹣3=(x+1)2﹣4,∴抛物线对称轴为直线x=﹣1,设P(﹣1,n),∵A(﹣3,0),E(0,1),∴AP2=(﹣1+3)2+(n﹣0)2=4+n2,AE2=(0+3)2+(1﹣0)2=10,PE2=(0+1)2+(1﹣n)2=(n﹣1)2+1,①若AP=AE,则AP2=AE2,即4+n2=10,解得n=±,∴点P(﹣1,)或(﹣1,﹣);②若AP=PE,则AP2=PE2,即4+n2=(n﹣1)2+1,解得n=﹣1,∴P(﹣1,﹣1);③若AE=PE,则AE2=PE2,即10=(n﹣1)2+1,解得n=﹣2或n=4,∴P(﹣1,﹣2)或(﹣1,4);综上,点P的坐标为(﹣1,)或(﹣1,﹣)或(﹣1,﹣1)或(﹣1,﹣2)或(﹣1,4).【点评】本题是二次函数的综合问题,解题的关键是熟练掌握待定系数法求函数解析式,割补法求三角形的面积,二次函数的性质及等腰三角形的判定和分类讨论思想的运用等知识点.九年级上册数学期末考试题及答案一、选择题(每小题2分,共20分)1.下列物体的左视图是圆的是()A.足球B.水杯C.圣诞帽D.鱼缸2.用配方法解方程:x2﹣4x+2=0,下列配方正确的是()A.(x﹣2)2=2B.(x+2)2=2C.(x﹣2)2=﹣2D.(x﹣2)2=6 3.关于x的一元二次方程kx2+3x﹣1=0有实数根,则k的取值范围是()A.k≤﹣B.k≥﹣且k≠0C.k≥﹣D.k>﹣且k≠04.下列命题正确的是()A.一组对边相等,另一组对边平行的四边形是平行四边形B.对角线相互垂直的四边形是菱形C .对角线相等的四边形是矩形D .对角线相互垂直平分且相等的四边形是正方形5.如图所示,在正方形ABCD 中,E 是AC 上的一点,且AB =AE ,则∠EBC 的度数是( )A .45度B .30度C .22.5度D .20度6.在同一天的四个不同时刻,某学校旗杆的影子如图所示,按时间先后顺序排列的是( )A .①②③④B .②③④①C .③④①②D .④③①② 7.在同一直角坐标系中,函数y =﹣与y =ax +1(a ≠0)的图象可能是( ) A . B .C .D .8.如图,在平行四边形ABCD 中,E 为CD 上一点,连接AE 、BE 、BD ,且AE 、BD 交于点F ,S △DEF :S △ABF =4:25,则DE :EC =( )A .2:3B .2:5C .3:5D .3:29.如图,四边形ABCD 是轴对称图形,且直线AC 是否对称轴,AB ∥CD ,则下列结论:①AC⊥BD;②AD∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中结论正确的序号是()A.①②③B.①②③④C.②③④D.①③④10.如图,菱形ABCD的边AD与x轴平行,A、B两点的横坐标分别为1和3,反比例函数y=的图象经过A、B两点,则菱形ABCD的面积是()A.4B.4C.2D.2二、填空题(每小题2分,共16分)11.一元二次方程x2﹣4x+1=0的两根是x1,x2,则x1•x2的值是.12.已知:==,且3a﹣2b+c=9,则2a+4b﹣3c=.13.如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF 的面积之比为.14.如图,为测量学校旗杆的高度,小东用长为3.2m的竹竿做测量工具.移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8m,与旗杆相距22m,则旗杆的高为m.15.相邻两边长的比值是黄金分割数的矩形,叫做黄金矩形,从外形看,它最具美感.现在想要制作一张“黄金矩形”的贺年卡,如果较长的一条边长等于20厘米,那么相邻一条边的边长等于厘米.16.如图,点A(3,n)在双曲线y=上,过点A作AC⊥x轴,垂足为C.线段OA的垂直平分线交OC于点M,则△AMC周长的值是.17.分解因式:xy2﹣4x=.18.如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…M n分别为边B1B2,B2B3,B3B4,…,B n B n+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△B n∁n M n的面积为S n,则S n=.(用含n的式子表示)三、解答题(每小题5分,共10分)19.(5分)先化简,再求值:(1﹣x+)÷,其中x=tan45°+()﹣1.20.(5分)解方程:(2x﹣1)2=x(3x+2)﹣7.四、解答题(共8分)21.(8分)贵阳市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.。
2015-2016年九年级数学期末考试题及答案
)10(题第xy OABC2015-2016年九年级数学期末考试题及答案一、选择题1.下列是二次函数的是( ) A .2y ax bx c =++ B.21y x x=+ C.()227y x x =-+ D.()()121y x x =+-2.剪纸是我国最古老民间艺术之一,被列入第四批《人类非物质文化遗产代表作名录》,下列剪纸作品中,是中心对称图形但不是轴对称图形的是( )A .B .C .D .3.将抛物线265y x x =-+向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是( )A .()246y x =--B .()242y x =--C .()222y x =--D .()213y x =--4.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点D (5,3)在边AB 上,以C 为中心,把△CDB 旋转90°,则旋转后点D 的对应点D '的坐标是( ) A .(2,10) B .(-2,0) C .(2,10)或(-2,0) D .(10,2)或(-2,0)5.某服装店进价为30元的内衣,以50元售出,平均每月能售出300件,经试销发现每件内衣每涨价10元,其月销售量就减少10件,为实现每月利润8700元,设定价为x 元,则可得方程( )A .300(30)8700x -=B .()508700x x -=C .()()30300508700x x ---=⎡⎤⎣⎦D .()()303008700x x --=6.如图,在Rt △ABC 中∠A CB=90°,AC=6,AB=10,CD 是斜边AB上的中线,以AC 为直径作⊙O ,设线段CD 的中点为P ,则点P 与⊙O 的位置关系是( ) A.点P 在⊙O 内 B.点P 在⊙O 上 C.点P 在⊙O 外 D.无法确定7.如果关于x 的方程()222110k x k x -++=有实数根,则k 的取值范围是( ) A.14k ≥-且0k ≠ B.14k ≤- C. 14k ≥- D. 14k ->且0k ≠8.点O 是△ABC 的外心,若∠BOC=80°,则∠BAC 的度数为( )A .40°B .100°C .40°或140°D .40°或100°9.若函数()21212y mx m x m =++++的图象与x 轴只有一个交点,那么m 的值为( )A . 0B .0或2C .2或﹣2D .0,2或﹣210.如图,二次函数()20y ax bx c a =++≠的图象与x 轴交于A ,B 两点,与y 轴交于点C ,且OA=OC .则下列结论:①0abc >②2404b ac a->;③10ac b -+=;④c OA OB a ⋅=-.其中正确结论的个数是( )A .4 B .3 C .2 D .1二、填空题11.方程2870x x ++=的根为12.关于x 的一元二次方程()221340a x x a a -+++-=有一个实数根是0x =,则a 的值为 13.若点()12,24P a a ---关于原点对称的点在第一象限内,则a 的整数解有 个 14.已知点())()1234,,,2,A y By C y -都在二次函数()22y x k =--+的图象上,则123,,y y y 的大小关系是15.16.三、解答题(1)213602x x --+= (2)()()7333x x x -=-18.请在同一坐标系中画出二次函数①221xy =;②2)2(21-=x y 的图象。
2015-2016年四川省成都市大邑县初三上学期期末数学试卷及参考答案
23. (4 分)从﹣3,﹣2,﹣1,0,3 这五个数中任意取出一个数记作 m,则能使 函数 y=(5﹣m2)x 的图象经过第一、第三象限,而且关于 x 的一元二次方程 x2+mx+m+1=0 有实数根的概率 .
24. (4 分)如图①,将矩形 ABCD 沿 DE 折叠,使顶点 A 落在 DC 上的点 A′处, 然后将矩形展平,沿 EF 折叠,使顶点 A 落在折痕 DE 上的点 G 处,再将矩形 ABCD 沿 CE 折叠,此时顶点 B 恰好落在 DE 上的点 H 处,如图②,若 AF= 则 AD= ,AB= . ,
4. (3 分)点(﹣3,y1) , (﹣2,y2)在反比例函数 y= 的图象上,则下列正确 的是( A.y1<y2 ) B.y1≤y2 C.y1>y2 D.y1=y2 )
5. (3 分)将二次函数 y=x2+2x+2 化成顶点式,变形正确的是(
A.y=x(x+2)+2 B.y=(x﹣1)2+3 C.y=(x+1)2﹣1 D.y=(x+1)2+1 6. (3 分)如图是由四个相同的小正方体组成的立体图形,它的俯视图为( )
第 4 页(共 25 页)
四、填空题(每小题 4 分,共 20 分) 21. (4 分)已知 x1,x2 是方程 2x2﹣5x+3=0 的两根,则 x1+x2﹣x1•x2= .
22. (4 分)如图,一次函数 y=﹣ x+6 的图象与 x,y 轴分别交于点 A,B,线段 AB 的中点 P 在 y= 的图象上,则 k= .
14. (4 分)在二次函数 y=ax2+bx+c(a≠0)中,函数值 y 与自变量 x 的部分对应 值如下表: x y … … ﹣2 8 ﹣1 3 0 0 1 ﹣1 2 0 3 3 . … …
(完整word版)成都市九年级上学期期末数学试卷(含答案)
九年级上册期末数学测试卷(时间:120分钟,总分:150分)A 卷(共100分)一 、选择题(每题3分,共30分) 1、3--的倒数是( )A .3B .3-C .31 D .31- 2、已知12-=-b a ,则124+-b a 的值为( )A .1-B .0C .1D .33、如图,桌子上放着一个长方体的茶叶盒和一个圆柱形的水杯,则其主视图是( )4、在正方形网格中,ABC △的位置如图所示,则cos B ∠的值为( ) A .12B .22C .32 D .335、某商店购进一种商品,单价为30元.试销中发现这种商品每天的销售量P (件)与每件的销售价x (元)满足关系:1002P x =-.若商店在试销期间每天销售这种商品获得200元的利润,根据题意,下面所列方程正确的是( ).A . (x -30)(100-2x)=200B .x(100-2x)=200C . (30-x)(100-2x)=200D . (x -30)(2x -100)=200 6、反比例函数ky x=在第二象限的图象如图所示,过函数图象上一点P 作PA ⊥x 轴交x 轴于点A, 已知PAO ∆的面积为3,则k 的值为( ) A .6 B .6- C .3 D .3-7、如图,在一块形状为直角梯形的草坪中,修建了一条由A .B .C .D .正面A →M →N →C 的小路(M 、N 分别是AB 、CD 中点).极少数同学 为了走“捷径”,沿线段AC 行走,破坏了草坪,实际上他们 仅少走了( )A .7米B .6米C .5米D .4米8、将抛物线23y x =先向左平移2个单位,再向下平移1个单位后得到新的抛物线,则新抛物线的解析式是( )A .23(2)1y x =++B .23(2)1y x =-+C . 23(2)1y x =+-D .23(2)1y x =-- 9、已知二次函数c bx ax y ++=2)0(≠a 的图象如图所示, 给出以下结论:①0<abc ;②当1x =时,函数有最大值; ③当13x x =-=或时,函数y 的值都等于0; ④024<++c b a 其中正确结论的个数是( )A .1个B .2个C .3个D .4个10、下列四个图象表示的函数中,当x <0时,函数值y 随自变量x 的增大而减小的是( )二、填空题(每空4分,共16分) 11、化简.12、如图,在□ABCD 中,AB =5,AD =8,DE 平分∠ADC , 则B E = .13、若关于x 一元二次方程02)2(2=++-a x a x 的两个实数根分别是3、b ,则=b .14、如图,矩形ABCD 的边AB 与y 轴平行,顶点A 的坐标为(1,2),点B 、xxxxy yy y O O O O A .B .C .D .D 在反比例函数xy 6=(x >0)的图象上,则点C 的坐标为 . 三、计算题(15题6分,16题每小题6分,共18分)15、计算:245sin 2201221801-︒++⎪⎭⎫ ⎝⎛--;16、解方程:(1)x x 232-=; (2)1213122+=--+-x x x x四、解答题(每小题8分,共16分)17、放风筝是大家喜爱的一种运动.星期天的上午小明在万达广场上放风筝.如图他在A 处时不小心让风筝挂在了一棵树的树梢上,风筝固定在了D 处.此时风筝线AD 与水平线的夹角为30°.为了便于观察,小明迅速向前边移动边收线到达了离A 处10米的B 处,此时风筝线BD 与水平线的夹角为45°.已知点A 、B 、C 在同一条直线上,∠ACD=90°.请你求出小明此吋的风筝线的长度是多少米?(本题中风筝线均视为线段,结果保留根号)18、今只有一张欢乐谷门票,而小明和小华都想要去,于是他们两人分别提出一个方案:小明的方案是:转动如图所示的转盘,当转盘停止转动后,如果指针停在阴影区域,则小明获得门票;如果指针停在白色区域,则小华获得门票(转盘被等分成6个扇形,若指针停在边界处,则重新转动转盘).小华的方案是:有三张卡片,上面分别标有数字1,2,3,将它们背面朝上洗匀后,从中摸出一张,记录下卡片上的数字后放回,重新洗匀后再摸出一张.若摸出两张卡片上的数字之和为奇数,则小明获得门票;若摸出两张卡片上的数字之和为偶数,则小华获得门票.(1)在小明的方案中,计算小明获得门票的概率,并说明小明的方案是否公平?(2)用树状图或列表法列举小华设计方案中可能出现的所有结果,计算小华获得门票的概率,并说明小华的方案是否公平?五、解答题(每小题10分,共20分)19、如图,已知一次函数y=kx+b的图象交反比例函数y=错误! (x>0)的图象于点A、B,交x轴于点C.(1)求m的取值范围;(2)若点A的坐标是(2,-4),且BCAB=13,求m的值和一次函数的解析式.20、在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2BC=2CD,对角线AC与BD相交于点O,线段OA,OB的中点分别为点E,F.(1)求证:△FOE≌ △DOC;(2)求sin∠OEF的值;(3)若直线EF与线段AD,BC分别相交于点G,H,求AB CDGH的值.①②③……B 卷(共50分)一、填空题。
2015~2016学年度第一学期期末教学质量检测九年级数学试卷附答案
2015~2016学年度第一学期期末教学质量检测九年级数学试卷说明:1、全卷共4页,五道大题。
2、考试时间100分钟,满分120分。
一、单项选择题(共10小题,每小题3分,共30分)1、在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A B C D2、下列事件是必然事件的是()A、明天太阳从西边升起B、掷出一枚硬币,正面朝上C、打开电视机,正在播放“新闻联播”D、任意画一个三角形,它的内角和等于180°3、一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋里随机摸出一个球,摸出的球是红色的概率是()A 、B 、 C、D 、4、在半径为6的⊙O中,60°圆心角所对的弧长是()A、 B、2 C、4 D、65、用配方法解方程x2+10x+9=0,配方后可得()A、(x+5)2=16B、(x+5)1=1C、(x+10)2=91D、(x+10)2=1096、若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为()A、-1B、-2C、-3D、-47、如图,∠O =30°,C为OB上的一点,且OC=6,以点C为圆心、半径为3的圆与OA的位置关系是()A、相离B、相交C、相切D、以上三种情况均有可能8、如图,在⊙O中直径垂直于弦AB,若∠C=25°则∠BOD的度数是()A、25°B、30°C、40°D、50°9、某校准备修建一个面积为180平方米的矩形活动场所,它的长比宽多11米,设场地的宽为x米,则可列出的方程为()A、x(x-11)=180B、2x+2(x-11)=180C、x(x+11)=180D、2x+2(x+11)=18010、二次函数y=ax2+bx+c(a≠0)的大致图像见如图,关于该函数的说法错误的是()A、函数有最小值第7题图第8B 、对称轴是直线x=1/2C 、当x ﹤1/2,y 随x 增大而减小D 、当-1﹤x ﹤2时,y ﹥0二、填空题(共6小题,每小题4分,共24分)11、如图,将△ABC 绕点A 按顺时针方向旋转60°,得△ADE ,则∠BAD= 度。
人教版2015-2016学年上学期九年级数学期末联考试卷及答案
2015-2016学年上学期十五所中学期末联考九年级数学试卷考试时间:120分钟满分:120分一、选一选(本大题共10小题,每小题3分,共30分)1.二次函数y=(x﹣1)2﹣2的顶点坐标是()A. (﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(1,2)2.判断一元二次方程x2﹣2x+1=0的根的情况是( )A.只有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根3.用配方法解方程x2﹣4x﹣3=0,下列配方结果正确的是( )A.(x﹣4)2=19 B.(x﹣2)2=7 C.(x+2)2=7 D.(x+4)2=194.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是( )A.100(1+x)=121 B.100(1﹣x)=121C.100(1﹣x)2 =121 D.100(1+x)2 =1215.如图,小正方形的边长均为1,则下列图形中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.6.已知:点A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3)是函数3y x=﹣图象上的三点,且x 1<0<x 2<x 3则y 1、y 2、y 3的大小关系是( ) A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 2<y 3<y 1D .无法确定7.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉40只黄羊,发现其中两只有标志.从而估计该地区有黄羊( ) A .200只B .400只C .800只D .1000只8.如图,圆锥的侧面展开图是半径为3,圆心角为90°的扇形,则该圆锥的底面周长为( )A .34π B .32π C .34 D .329. 如图,线段AB 是⊙O 的直径,弦CD 丄AB ,∠CAB =20°,则∠AOD 等于( )A. 120°B. 140°C. 150°D. 160°第9题图 第10题图10.如图,在平行四边形ABCD 中,点E 是边AD 的中点,连接EC 交对角线BD 于点F ,则:DEF BCF S S V V 等于( ) A. 1:2 B .1:4C .1:9D .4:9二、填一填(本大题共8个小题,每小题3分,共24分)11.已知反比例函数(k 是常数,且0k ≠)的图象在第二、四象限,请写出一个符合条件的反比例函数表达式 .12.一个扇形的圆心角为120°,半径为3,则这个扇形的面积为 (结果保留π). 13.方程x 2﹣3x =0的根为 . 直于x 轴,14.如图,A 是反比例函数(0)ky x x=>图象上的一点,AB 垂垂足为B ,AC 垂直于y 轴,垂足为C ,若矩形ABOC 的面积为7,则k 的值为 .15.已知x=﹣1是关于x 的一元二次方程220x mx --=的一个解,则m 的值是______. 16.布袋中装有2个白球,4个黑球,它们除颜色外其余均相同,则随机从袋中摸出 一个球是白球的概率是__________.17.已知Rt △ABC 的两直角边的长分别为6cm 和8cm ,则它的外接圆的半径为 cm . 18.为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把一面很小的镜子放在离树底(B )8.4米的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE=2.4米,观察者目高CD=1.6米,则树(AB )的高度为 米.三、解答题(本题共7个大题,共66分)19. (本题8分)如图,在平面直角坐标系中,O为原点,一次函数与反比例函数的图象相交于A(2,1)、B(﹣1,﹣2)两点,与x轴交于点C.(1)分别求反比例函数和一次函数的解析式;(2)连接OA,求△AOC的面积.20.(本题8分)如图,在边长为1的正方形组成的网格中建立直角坐标系,△AOB的顶点均在格点上,点O为原点,点A、B的坐标分别是A(3,2)、B(1,3).(1)将△AOB向下平移3个单位后得到△A1O1B1,则点B1的坐标为;(2)将△AOB绕点O逆时针旋转90°后得到△A2OB2,请在图中作出△A2OB2,并求出这时点A2的坐标为;(3)在(2)中的旋转过程中,线段OA扫过的图形的面积为.21.(本题10分)已知:如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D作DE⊥AC于点E,交BC的延长线于点F.求证:(1)AD=BD;(2)DF是⊙O的切线.22.(本题8分)在一个不透明的盒子中,装有三张卡片,卡片上分别标有数字“1”,“2”和“3”,它们除了数字不同外,其余都相同.(1)随机地从盒中抽出一张卡片,则抽出数字为“2”的卡片的概率是多少?(2)若第一次从这三张卡片中随机抽取一张,设记下的数字为x,此卡片不放回盒中,第二次再从余下的两张卡片中随机抽取一张,设记下的数字为y,请用画树状图或列表法表示出上述情况的所有等可能结果,并求出x+y<4的概率.23.(本题10分) 某商场要经营一种新上市的文具,进价为20元/件,试营销阶段发现;当销售单价为25元/件时,每天的销售量是250件,销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w (元)与销售单价x (元)之间的函数关系式;(2)当销售单价为多少时,该文具每天的销售利润最大?最大利润是多少?24.(本题10分)如图,⊙O 中,弦AB 、CD 相交于AB 的中点E ,连接AD 并延长至点F ,使DF=AD ,连接BC 、BF . (1)求证:△CBE ∽△AFB ; (2)当85=FB BE 时,求ADCB的值.25.(本题12分)已知二次函数22y x 2mx m 1=-+-.(1)当二次函数的图象经过坐标原点O (0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y 轴交于点C ,顶点为D ,求C 、D 两点的坐标; (3)在(2)的条件下,x 轴上是否存在一点P ,使得PC+PD最短?若P 点存在,求出P 点的坐标;若P 点不存在,请说明理由。
2015-2016学年第一学期期末考试九年级数学附答案
15.如图,四边形ABCD内接于⊙O,若⊙O的半径为6,∠A=130°,则扇形OBAD的面积为▲.
16.某数学兴趣小组研究二次函数y=mx2-2mx+1(m≠0)的图像时发现:无论m如何变化,该图像总经过两个定点(0,1)和(▲,▲).
三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)
17.(8分)(1)解方程:3x(x-2)=x-2(2)x2-4x-1=0
18.(6分)如图,利用标杆BE测量建筑物的高度,如果标杆BE长1.2m,测得AB=1.6m,BC=8.4m,楼高CD是多少?
25.(8分)如图,要设计一本画册的封面,封面长40cm,宽30cm,正中央是一个与整个封面长宽比例相同的矩形画.如果要使四周的边衬所占面积是封面面积的,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(结果保留小数点后一位,参考数据:≈2.236).
26.(10分)如图①,A、B、C、D四点共圆,过点C的切线CE∥BD,与AB的延长线交于点E.
2015-2016学年第一学期期末考试九年级数学
(满分:120分考试时间:120分钟)
一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)
1.方程x(x+2) =0的解是(▲)
A.-2
B.0,-2
C.0,2
D.无实数根
2.两个相似三角形的相似比是2:3,则这两个三角形的面积比是(▲)
2015-2016学年度第一学期期末考试九年级数学试题附答案
2015-2016学年度第一学期期末考试九年级数学试题本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为36分;第Ⅱ卷共4页,满分为84分.本试题共6页,满分为120分.考试时间为120分钟.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的考点、姓名、准考证号、座号填写在答题卡上和试卷规定的位置上.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I 卷(选择题 共36分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一元二次方程x 2﹣9=0的解是( )A . x=3B . x=﹣3C . x 1=3,x 2=﹣3D . x 1=9,x 2=﹣9 2.如图,下列几何体的左视图不是矩形的是( )3.下列函数中,图象经过点(2,﹣3)的反比例函数关系式是 ( )A.3y x =- B.2y x = C.6y x = D.6y x=-4.如图,四边形ABCD 内接于⊙O ,已知∠A BC =35°,则∠AOC 的大小是( ) A.80° B.70° C. 60° D.50°5.在正方形网格中,ABC △的位置如图所示,则cos B ∠的值为( )A .12B .22C .32D .336.下列命题正确的是( )A .对角线互相垂直的四边形是菱形B .一组对边相等,另一组对边平形的四边形是平行四边形C .对角线相等的四边形是矩形D .对角线互相垂直平分且相等的四边形是正方形7.三角形两边长分别为3和6,第三边是方程x 2-13x+36=0的根,则三角形的周长为( ) A .13 B .15 C .18 D .13或188.如图,点P 在△ABC 的边AC 上,要判断△ABP ∽△ACB ,添加一个条件,不正确的是( )A .∠ABP =∠CB .∠APB =∠ABC C .AP AB AB AC = D .AB ACBP CB=9. 二次函数y= -x 2+2x+4的最大值为( )A .3B .4C .5D .610.经过某十字路口的汽车,可能直行,也可能左转或者右转。
初中数学成都市大邑县九年级上期末数学考试卷含答案解析
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:下列是一元二次方程的是()A.2x+1=0 B.y2+x=1 C.x2﹣1=0 D. +x2=1试题2:如图,在△ABC中,E、F分别在边AB、AC上,EF∥BC,EF=3,BC=4,则=()A. B. C. D.试题3:关于x的一元二次方程x2+2x+1=0的根的判断说法正确的是()A.有两个不等的实根 B.有两个相等的实数根C.方程没有实数根 D.无法判断评卷人得分试题4:点(﹣3,y1),(﹣2,y2)在反比例函数y=﹣的图象上,则下列正确的是()A.y1<y2 B.y1≤y2 C.y1>y2 D.y1=y2试题5:将二次函数y=x2﹣4x+6化成顶点式,变形正确的是()A.y=(x﹣2)2+2 B.y=(x+2)2+2 C.y=(x+2)2﹣2 D.y=(x﹣2)2﹣2试题6:如图所示的几何体的主视图是()A. B. C. D.试题7:不透明的口袋内装有红球和白球共12个,这些球除颜色外其它都相同,将口袋内的球充分搅拌均匀,从袋中随机摸出一个球,记下颜色后放回,不断重复该摸球过程,共摸取2016次球,发现有504次摸到白球,则口袋中红球的个数是()A.3 B.4 C.6 D.9试题8:点D是线段AB的黄金分割点(AD>BD),若AB=2,则BD=()A. B. C.﹣1 D.3﹣试题9:如图,正方形ABCD的对角线AC、BD相交于点O,E是BC的中点,DE交AC于点F,若DE=12,则DF等于()A.3 B.4 C.6 D.8试题10:下列四个函数图象中,当x<0时,函数值y随自变量x的减小而增大的是()A. B. C. D.试题11:二次函数y=﹣(x+1)2+4的图象的对称轴为.试题12:已知Rt△ABC中,∠C=90°,AC=3,BC=4,则tan∠B= .某一时刻,小明发现学校电杆AB与木棒CD都垂直于地面,且相距4米,电杆的影子BE与木棒的影子CE的顶端重合于点E,现测得木棒CD长1.2米,它的影长CE为1米,则电杆AB的高度是.试题14:在二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如下表:x …﹣2 ﹣1 0 1 2 …y …0 ﹣2 ﹣2 0 4 …则关于x的方程ax2+bx+c=0(a≠0)的根为.试题15:×(﹣1)2017﹣()﹣1+|1﹣2cos45°|试题16:解方程:x2﹣x﹣6=0.试题17:如果关于x的一元二次方程k2x2+2(k﹣1)x+1=0有两个不相等的实数根.(1)求k的取值范围;(2)若方程的一个实数根是1,求k的值.有甲乙两个不透明的布袋,甲布袋装有2个形状和重量完全相同的小球,分别标有数字1和2;乙布袋装有3个形状和重量完全相同的小球,分别标有数字﹣3,﹣1和0.先从甲布袋中随机取出一个小球,将小球上标有的数字记作x;再从乙布袋中随机取出一个小球,再将小球标有的数字记作y.(1)用画树状图或列表法写出两次摸球的数字可能出现的所有结果;(2)若从甲、乙两布袋中取出的小球上面的数记作点的坐标(x,y),求点(x,y)在一次函数y=﹣2x+1图象上的概率是多少?试题19:如图,在△ABC中,BA=BC,点E在BC上,且AE⊥BC,cos∠B=,EC=3.(1)分别求AB和AE;(2)若点P在AB边上,且BP=4,求△BPE的面积.试题20:如图,一次函数y=ax+图象与x轴,y轴分别相交于A、B两点,与反比例函数y=(k≠0)的图象相交于点E、F,过F 作y轴的垂线,垂足为点C,已知点A(﹣3,0),点F(3,t).(1)求一次函数和反比例函数的表达式;(2)求点E的坐标并求△EOF的面积;(3)结合该图象写出满足不等式﹣ax≤的解集.试题21:(1)如图①所示,∠ACB=∠POQ=∠XOB=90°.①∠POA=∠XOQ;②判断△PAO和△QXO是否相似,如两个三角形相似请给出证明,如不相似,说明理由;(2)如图②,在△ABC中,∠ACB=90°,∠CBA=30°,AO=BO,点P在AC上,点Q在BC上,且∠POQ=90°,XO⊥AB交BC于X,AC=4cm,AP=x(0<x<4),设△PCQ的面积为y,求y与x的函数关系式;试题22:已知x1、x2是方程x2﹣5x﹣6=0的两个根,则x12+5x2﹣6= .试题23:某校“我爱数学”课题学习小组的活动主题是“测量学校旗杆的高度”以下是该课题小组研究报告的部分内容:课题《测量学校旗杆的高度》图示发言记录小明(EG):我站在远处G处从E看旗杆顶端A,测得仰角为30°小颖(DF):我从小明的位置G向旗杆方向前进12m到F,从D看旗杆顶端A,测得仰角为60°小明:我和小颖的目高都是1.6m根据表中的内容计算出学校旗杆AC的高度为.试题24:从3,﹣1,0,1,﹣2这五个数中任意取出一个数记作b,则既能使函数y=(b2﹣4)x的图象经过第二、第四象限,又能使关于x的一元二次方程x2﹣bx+b+1=0的根的判别式小于零的概率为.试题25:如图,点A(﹣7,8),B(﹣5,4)连接AB并延长交反比例函数y=(x<0)的图象于点C,若=,则k= .试题26:已知二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,则下列结论:①关于x的一元二次方程ax2+bx+c=0的根是﹣1,3;②abc>0;③a+b=c﹣b;④y c;⑤a+4b=3c中正确的有(填写正确的序号)试题27:利民商店经销甲、乙两种商品.现有如下信息:请根据以上信息,解答下列问题:(1)甲、乙两种商品的进货单价各多少元?(2)该商店平均每天卖出甲商品500件和乙商品300件.经调查发现,甲、乙两种商品零售单价分别每降0.1元,这两种商品每天可各多销售100件.为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m元.在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?试题28:操作:如图①,点O为线段MN的中点,直线PQ与MN相交于点O,请利用图①画出一对以点O为对称中心的全等三角形.根据上述操作得到的经验完成下列探究活动:如图②,在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F.试探究线段AB与AF、CF之间的等量关系,并证明你的结论;如图③,DE、BC相交于点E,BA交DE于点A,且BE:EC=1:2,∠BAE=∠EDF,CF∥AB.若AB=5,CF=1,求DF的长度.试题29:在平面直角坐标系中,抛物线y=mx2﹣2x+n与x轴的两个交点分别为A(﹣3,0)、B(1,0),过顶点C作CH⊥x轴于点H.(1)求m、n的值和顶点C的纵坐标.(2)在y轴上是否存在点D,使得△ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;(3)若点P为x轴上方的抛物线上一动点(点P与顶点C不重合),P Q⊥AC于点Q,当△PCQ与△ACH相似时,求点P 的坐标.试题1答案:C.试题2答案:C.试题3答案:B.试题4答案:A.试题5答案:A.试题6答案:D.试题7答案:D.试题8答案:D.试题9答案:D.试题10答案:D.试题11答案:x=﹣1 .【解答】解:∵二次函数y=﹣(x+1)2+4,是顶点式,∴对称轴为:x=﹣1故答案为:x=﹣1.试题12答案:.【解答】解:tan∠B==.故答案为:.试题13答案:7米.【解答】解:由题意知AB⊥BE、CD⊥BE,∴AB∥CD,则△ABE∽△DCE,∴=,即=,解得:AB=7,即电杆AB的高度为7米,试题14答案:x1=﹣2,x2=1 .【解答】解:从表中可知:抛物线y=ax2+bx+c和x轴的交点坐标是(﹣2,0)和(1,0),所以关于x的方程ax2+bx+c=0(a≠0)的根是x1=﹣2,x2=1,试题15答案:原式=×(﹣1)﹣2+|1﹣2×|=﹣﹣2+﹣1=﹣3;试题16答案:x2﹣x﹣6=0,(x﹣3)(x+2)=0,x﹣3=0,x+2=0,x1=3,x2=﹣2.试题17答案:【解答】解:(1)∵关于x的一元二次方程k2x2+2(k﹣1)x+1=0有两个不相等的实数根,∴△>0且k2≠0,即4(k﹣1)2﹣4k2>0,解得k<且k≠0,∴k的取值范围为k<且k≠0;(2)∵方程的一个实数根为1,∴k2+2(k﹣1)+1=0,解得k=﹣1±,即k的值为﹣1±.试题18答案:【解答】解:(1)画树状图得:则点可能出现的所有坐标:(1,﹣1),(1,0),(1,﹣3),(2,﹣1),(2,0),(2,﹣3);(2)∵在所有的6种等可能结果中,落在y=﹣2x+1图象上的有(1,﹣1)、(2,﹣3)两种结果,∴点(x,y)在一次函数y=﹣2x+1图象上的概率是.试题19答案:【解答】解:(1)∵AE⊥BC,cos∠B=,∴设AB=5x,BE=4x,∵BA=BC,∴BC=5x,∵EC=3,CE=BC﹣BE,∴5x﹣4x=3,解得x=3,∴AB=5×3=15,BE=4×3=12,在Rt△ABE中,根据勾股定理得,AE===9;(2)△ABE的面积=BE•AE=×12×9=54,∵BP=4,∴△BPE的面积=×54=14.4.试题20答案:【解答】解:(1)把A(﹣3,0)代入一次函数解析式得:0=﹣3a+,解得:a=,即一次函数解析式为y=x+,把F(3,t)代入一次函数解析式得:t=3,则反比例解析式为y=;(2)联立得:,解得:或,∴点E(﹣6,﹣),则S△EOF=S△AOE+S△AOB+S△BOF=×3×+××3+××3=;(3)根据图象得:不等式﹣ax≤的解集为﹣6≤x<0或x≥3.试题21答案:【解答】(1)①证明:∵∠POQ=∠XOB=∠XOA=90°,∴∠AOP+∠POX=∠XOQ+∠POX=90°,∴∠POA=∠XOQ.②结论:△PAO∽△QOX.理由:∵∠ACB=∠XOB=90°,∴∠A+∠B=90°,∠OXB+∠B=90°,∴∠A=∠OXB,∵∠AOP=∠XOQ,∴△PAO∽△QOX.(2)①如图当0<x<≤2时,作OM⊥AC于M,ON⊥BC于N.在Rt△ACB中,∵∠B=30°,AC=4,∴AB=2AC=8,BC=4,∵∠C=∠ONB=90°,∴ON∥AC,∵OA=OB,∴CN=BN,∴ON=AC=2,同理可得:AM=CM,OM=BC=2,∵∠POQ=∠MON=90°,∴∠POM=∠QON,∵∠OMP=∠ONQ,∴△POM∽△QON,∴==,∴QN=(2﹣x),∴CQ=2﹣(2﹣x)=+x,∴y=S△CPQ=•CP•CQ=(4﹣x)•(+x)=﹣x2+.②当2<x<4时,同法可得:y=(4﹣x)(﹣x)=x2﹣2x+.综上所述,y=.试题22答案:25 .【解答】解:∵x1方程x2﹣5x﹣6=0的根,∴x12﹣5x1﹣6=0,∴x12=5x1+6,∴x12+5x2﹣6=5x1+6+5x2﹣6=5(x1+x2),∵x1、x2是方程x2﹣5x﹣6=0的两个根,∴x1+x2=5,∴x12+5x2﹣6=5×5=25.故答案为25.试题23答案:12m .【解答】解:如图所示:∵∠ADB=60°,∠AEB=30°,∴∠DAE=60°﹣30°=30°=∠AEB,∴AD=DE=FG=12m,在Rt△ABD中sin60°==,解得:AB=6,AC=6+1.6≈6×1.7+1.6≈12(m),答:计算旗杆AG的高度是12m.故答案为:12.试题24答案:.【解答】解:∵函数y=(b2﹣4)x的图象经过第二、四象限,∴b2﹣4<0,解得:﹣2<b<2∵关于x的一元二次方程x2﹣bx+b+1=0的根的判别式小于零,∴(﹣b)2﹣4(b+1)<0,∴2﹣2<b<2+2,∴使函数的图象经过第二、四象限,且使方程的根的判别式小于零的b的值有为0、1,∴此事件的概率为,故答案为:.试题25答案:﹣8 .【解答】解:作AD⊥x轴于D,BE⊥x轴于E,CF⊥x轴于F,则AD∥BE∥CF,∴=,∵=,∴=,∴=,∵点A(﹣7,8),B(﹣5,4),∴DE=2,∴EF=1,∴OF=4,即点C的横坐标为﹣4,同理,点C的纵坐标为2,即点C的坐标为(﹣4,2),∵点C在反比例函数y=(x<0)的图象上,∴k=﹣4×2=﹣8,故答案为:﹣8.试题26答案:①③④【解答】解:①∵抛物线与x轴一个交点为(3,0),且对称轴为x=1,∴抛物线与x轴另一个交点为(﹣1,0),即关于x的一元二次方程ax2+bx+c=0的解为﹣1,3,选项①正确;②∵二次函数图象开口向下,对称轴在y轴右侧,与y轴交点在正半轴,∴ab<0,c>0,即abc<0,选项②错误;③由对称轴是:x=1=﹣,得b=﹣2a,∴a+b=a﹣2a=﹣a,∵抛物线与x轴另一个交点为(﹣1,0),∴a﹣b+c=0,∴c﹣b=﹣a,∴a+b=c﹣b,选项③正确;④由a﹣b+c=0和b=﹣2a得:a=﹣c,∴y最大值==c﹣=c﹣=c﹣(﹣c)=,选项④正确;⑤∵a+4b=a﹣8a=﹣7a=﹣7×=,选项⑤错误;综上所述,本题正确的结论有:①③④;故答案为:①③④.试题27答案:【解答】解:(1)假设甲、乙两种商品的进货单价各为x,y元,根据题意得:,解得:;答:甲、乙两种商品的进货单价各为2元、3元;(2)∵商店平均每天卖出甲商品500件和乙商品300件.经调查发现,甲、乙两种商品零售单价分别每降0.1元,这两种商品每天可各多销售100件.∴甲、乙两种商品的零售单价都下降m元时,甲乙每天分别卖出:(500+100)件,(300+100)件,∵销售甲、乙两种商品获取的利润是:甲乙每件的利润分别为:3﹣2=1元,5﹣3=2元,每件降价后每件利润分别为:(1﹣m)元,(2﹣m)元;[来源:]w=(1﹣m)×(500+100)+(2﹣m)×(300+100),=﹣2000m2+2200m+1100,当m=﹣=﹣=0.55元,故降价0.55元时,w最大,最大值为: 1705元,∴当m定为0.55元时,才能使商店每天销售甲、乙两种商品获取的利润最大,每天的最大利润是1705元.试题28答案:【解答】解:(1)如图1,(2)结论:AB=AF+CF.证明:如图2,分别延长AE、DF交于点M.∵E为BC的中点,∴BE=CE,∵AB∥CD,∴∠BAE=∠M,在△ABE与△MCE中,∵,∴△ABE≌△MCE(AAS),∴AB=MC,又∵∠BAE=∠EAF,∴∠M=∠EAF,∴MF=AF,又∵MC=MF+CF,∴AB=AF+CF;(3)如图3,分别延长DE、CF交于点G.∵AB∥CF,∴∠B=∠C,∠BAE=∠G,∴△ABE∽△GCE,∴,又∵,∴,∵AB=5,∴GC=10,∵FC=1,∴GF=9,∵AB∥CF,∴∠BAE=∠G,又∵∠BAE=∠EDF,∴∠G=∠EDF,∴GF=DF,∴DF=9.试题29答案:【解答】解:(1)把A(﹣3,0)、B(1,0)分别代入y=mx2﹣2x+n,,解得:m=﹣1,n=3,则该抛物线的解析式为:y=﹣x2﹣2x+3,因为y=﹣x2﹣2x+3=﹣(x+1)2+4,所以顶点C的坐标为(﹣1,4);(2)如图1,过点C作CE⊥y轴于点E,设D(0,c),则OD=c,∵A(﹣3,0),C(﹣1,4),∴CE=1,OA=3,OE=4,假设在y轴上存在满足条件的点D,由∠CDA=90°得∠1+∠2=90°,又∵∠2+∠3=90°,∴∠3=∠1,又∵∠CED=∠DOA=90°,∴△CED∽△DOA,∴=,设D(0,c),则=,变形,得c2﹣4c+3=0,解得c1=3,c2=1,综合上述:在y轴上存在点D(0,3)或(0,1),使△ACD是以AC为斜边的直角三角形;(3)①若点P在对称轴右侧(如图2),只能是△PCQ∽△CAH,得∠QCP=∠CAH,延长CP交x轴于M,∴AM=CM,∴AM2=CM2.设M(m,0),则(m+3)2=42+(m+1)2,∴m=2,即M(2,0),设直线CM的解析式为y=k1x+b1,则,解之得:k1=﹣,b1=,联立,解得:或(舍去),∴P(,);②若点P在对称轴左侧(如图3),只能是△PCQ∽△ACH,得∠PCQ=∠ACH.过A作CA的垂线交PC于点F,作FN⊥x轴于点N,由△CFA∽△CAH得: ==2,由△FNA∽△AHC得: ===,∴AN=2,FN=1,CH=4,HO=1,则AH=2,∴点F坐标为(﹣5,1).设直线CF的解析式为y=k2x+b2,则,解得:k2=,b2=,联立,解得或(舍去),∴P(﹣,),∴满足条件的点P坐标为(,)或(﹣,).。
2015-2016学年度人教版九年级上期末考试数学试题及答案
2015-2016学年度第一学期期末质量评价九年级数学参考答案及评分标准一、选择题(每小题3分,共30分)BABBD ,DCBBA二、填空题(每小题3分,共30分) 11.74 12.21- a 13.(2,-3)14.10 15.21y y 16.(0,8) 17.175)1(50)1(50502=++++x x 18.5 19.10 20. -10三、解答题(本题共8个小题,共60分)21.解:原式=5-3+232⨯+1+2 ..................................................................................4分 =8 .......................................................................................................................6分22.解:(1)正确,(2)错误. …………………………………………………………..2分改正:整理,得01022=--x x ,配方,得11)1(2=-x ,111±=-x1111+=x ,1112-=x ………………………………………………….6分23.解:设每件童装降价x 元. ……………………………………………………………1分1200)40)(220(=-+x x , ……………………………………………………4分整理,得0200302=+-x x解得101=x ,202=x . …………………………………………………………………6分要想最大限度地降低库存,应取20=x .答:每件童装应降价20元. ……………………………………………..………………8分24.解:小亮选择B 方案,使他获胜的可能性较大............................................................1分 方案A :∵四张扑克牌的牌面是5的有2种情况,不是5的也有2种情况,∴P (小亮获胜)==; ...................................................................................................4分 方案B :画树状图得:................................................6分∵共有12种等可能的结果,两张牌面数字之和为偶数的有4种情况,不是偶数的有8种情况,∴P (小亮获胜)==;......................................................7分 ∴小亮选择B 方案,使他获胜的可能性较大......................................................................8分25. 解:(1)∵平行四边形ABCD ,∴AD ∥BC ,AD =BC ,OB =OD ,∴∠DMN =∠BCN ,∠MDN =∠NBC ,∴△MND ∽△CNB ,…………………………2分 ∴BNDN BC MD =,…………………………………………………………………………4分 ∵M 为AD 中点,∴BC AD MD 2121==,即21=BC MD , ∴21=BN DN ,即BN =2DN , 设OB =OD =x ,则有BD =2x ,BN =OB +ON =x +1,DN =x ﹣1,∴x +1=2(x ﹣1), ………………………………………………………………………5分 解得:x =3,∴BD =2x =6;………………………………………………………………………………7分(2)HOG ∆即为所求.……………………………………………………..10分26.解:(1)∵二次函数的图象与x 轴交于A (﹣3,0)和B (1,0)两点,∴对称轴是x =﹣1. ..............................................................................................................2分 又点C (0,3),点C 、D 是二次函数图象上的一对对称点,∴D (﹣2,3);.....................................................................................................................3分(2)设二次函数的解析式为y =ax 2+bx +c (a ≠0,a 、b 、c 常数),根据题意得, ...........................................................................................4分 解得,......................................................................................................................6分 所以二次函数的解析式为y =﹣x 2﹣2x +3;...........................................................................8分(3)如图,一次函数值大于二次函数值的x 的取值范围是x <﹣2或x >1................10分27.解 :(1)证明:连结OC ,如图,∵AC ⊥OB ,∴AM =CM ,∴OB 为线段AC 的垂直平分线,∴BA =BC ,在△OAB 和△OCB 中⎪⎩⎪⎨⎧===BC BA OB OB OC OA ,∴△OAB ≌△OCB , …………………………4分∴∠OAB =∠OCB ,∵OA ⊥AB ,∴∠OAB =90°,∴∠OCB =90°,∴BC 是⊙O 的切线; ……………………………………………………………………6分(2)解:在Rt △OAB 中,OA =1,AB =3,∴OB =22OA AB +=2,……………7分 ∴∠ABO =30°,∠AOB =60°,∵PB ⊥OB ,∴∠PBO =90°,……………………………8分 在Rt △PBO 中,OB =2,∠BPO =30°,∴323==OB PB ,………………………10分 在Rt △PBD 中,BD =OB ﹣OD =2﹣1=1,PB =32,∴PD =1322=+BD PB ,…11分∴sin ∠BPD =1313131==PD BD . ……………………………………………………….12分。
2015-2016学年度第一学期九年级数学期末试卷
2015-2016学年度第一学期九年级数学期末试卷一、选择题:(每小题3分,共36分) 1.方程2x =x 的解是( )A .x=1B .x=0C . x 1=1 x 2=0D .x 1=﹣1 x 2=0 2.下列图形中,既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个3. 下列事件:①在足球赛中,弱队战胜强队;②抛掷一枚硬币,落地后正面朝上;③任取两个正整数,其和大于1;④长分别为3、5、9厘米的三条线段能围成一个三角形.其中确定事件的个数是( ) A .B .C .D .4.如图,E 、F 分别是正方形ABCD 的边BC 、CD 上的点,BE =CF ,连接AE 、BF .将△ABE 绕正方形的对角线的交点O 按顺时针方向旋转到△BCF ,则旋转角是( ) A .45º B .120º C .60º D .90º5.如图,无法..保证△ADE 与△ABC 相似的条件是( ) A .∠1=∠C B .∠A=∠CC .∠2=∠BD .AD AEAC AB=6.已知两点111()P x y ,、222()P x y ,在反比例函数3y x=的图象上,当120x x >>时,下列结论正确的是( )A .210y y <<B .120y y <<C .210y y <<D .120y y << 7.一条排水管的截面如图所示,已知排水管的截面圆半径10=OB , 截面圆圆心O 到水面的距离OC 是6,则水面宽AB 是( ) A .8 B .10 C .12 D .168.向某一目标发射一枚炮弹,经x 秒后的高度为y 米,且高度与时间的关系式为y=ax 2+bx.若此炮弹在第6秒与第13秒时的高度相等,则在下列4个时间点中炮弹高度最高的是( ) A . 第6秒 B 第8秒 C . 第10秒 D . 第13秒1234OABCAD BCE 12(第5题)9.关于x 的一元二次方程0122=-+x kx 有两个不相等实数根,则k 的取值范围是( ) A.1->k B.1-≥k C.0≠k D.1->k 且0≠k 10.边长为3,4,5的三角形的内切圆半径是( ) A .1B .32C .2D .5211.对于二次函数y=﹣x 2+2x .有下列四个结论:①它的对称轴是直线x=1;②设y 1=﹣x 12+2x 1,y 2=﹣x 22+2x 2,则当x 2>x 1时,有y 2>y 1;③它的图象与x 轴的两个交点是(0,0)和(2,0);④当0<x <2时,y >0.其中正确的结论的个数为( )A .1B .2C. 3D. 412.方程0132=-+x x 的根可看作是函数3+=x y 的图象与函数xy 1=的图象交点的横坐标,那么用此方法可推断出方程013=--x x 的实数根0x 所在的范围是( ) A .010<<-x B .100<<x C .210<<x D .320<<x 二、填空题:(每小题4分,共24分)13.若y =1x2n -5是反比例函数,则n =________.14.从分别标有1到9序号的9张卡片中任意抽取一张,抽到序号是4的倍数的概率是______.15.某企业今年5月份产值为%)151%)(101(+-a 万元,比4月份增加了15%,4月份比3月份减少了10%,则3月份的产值是___________万元. 16.如图,直线233+-=x y 与x 轴、y 轴分别交于A 、B 两点, 把△AOB 绕点A 顺时针旋转︒60后得到B '的坐标是.17.已知1-=x 是一元二次方程02=++n mx x的一个根,则222n mn m +-的值为____________.18.设△ABC 的面积为1,如图①将边BC 、AC 分别2等份,、相交于点O ,△AOB的面积记为;如图②将边BC 、AC 分别3等份,、相交于点O ,△AOB 的面积记为;……,依此类推,则可表示为.(用含的代数式表示,其中为正整数)1BE 1AD 1S 1BE 1AD 2S n S n n yxOB AO 'B '三、解答题:(共90分)19.(7分)解方程: ()22(2)0x x x -+-=.20.(9分)如图,正方形网格中,△ABC 为格点三角形(顶点都在格点上),将△ABC 绕点A 按逆时针方向旋转90°得到. (1)在正方形网格中,画出;(不要求写作法)(2)设网格小正方形的边长为1cm ,用阴影表示出旋转过程中线段AB 所扫过的图形,然后求出它的面积及点B 所经过的路径长.(结果保留)21. (9分) 如图所示的转盘,分成四个相同的扇形,指针位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置,并相应得到一个数(指针指向两个扇形的交线时,当作指向右边的扇形)。
四川省成都市九年级(上)期末数学试卷(含解析)
四川省成都市九年级(上)期末数学试卷一、选择題(每小题3分,共30分)1.在Rt△ABC中,∠C=90°,若AC=3,BC=2,则tan A的值是()A.B.C.D.2.方程x(x+2)=0的解是()A.x=0B.x=2C.x=0或x=2D.x=0或x=﹣23.如图是由5个相同的小正方体搭成的一个几何体,它的俯视图是()A.B.C.D.4.如图,随机闭合开关S1、S2、S3中的两个,则能让灯泡⊗发光的概率是()A.B.C.D.5.若反比例函数(k≠0)的图象过点(﹣2,1),则这个函数的图象一定过()A.(2,﹣1)B.(2,1)C.(﹣2,﹣1)D.(1,2)6.某种品牌运动服经过两次降价,每件零售价由460元降为215,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.460(1+x)2=215B.460(1﹣x)2=215C.460(1﹣2x)2=215D.460(1﹣x2)=2157.如图,利用标杆BE测量建筑物的高度.已知标杆BE高1.2m,AB:AC=1:9,则建筑物CD的高是()A.96m B.10.8m C.12m D.14m8.如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A.24°B.28°C.33°D.48°9.如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则菱形ABCD 的边长为()A.5B.6C.7D.810.对于抛物线y=﹣2(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1:③顶点坐标为(﹣1,3);④x>﹣1时,y随x的增大而减小,其中正确结论的个数为()A.1B.2C.3D.4二、填空题(每小题4分,共16分)11.(4分)如果,那么=12.(4分)若x=﹣2是一元二次方程x2+3x+k=0的一个根,则k的值为13.(4分)已知A(x1,y1),B(x2,y2)都在反比例函数的图象y=﹣上,且x1<0<x2,则y1与y2大小关系是.14.(4分)如图,△ABC内接于圆O,AB为圆O直径,∠CAB=60°,弦AD平分∠CAB,若AD =3,则BD=.三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算:﹣2sin60°+|1﹣tan60°|+(2019﹣π)0(2)解方程:4x(x+3)=x2﹣916.(6分)若关于x的一元二次方程(m﹣2)x2+2x+1=0有两个实根,求m的取值范围.17.(8分)《基础教育课程改革纲要》要求每位学生每学年都要参加社会实践活动.某学校组织了一次户外攀岩活动,如图,攀岩墙体近似看作垂直于地面,一学生攀到D点时,距离地面B 点3.6米,该学生继续向上很快就攀到顶点E.在A处站立的带队老师拉着安全绳,分别在点D 和点E测得点C的俯角是45°和60°,带队老师的手C点距离地面1.6米,请求出攀岩的顶点E距离地面的高度为多少米?(结果可保留根号)18.(8分)我区正在进行《中学学科核心素养理念下渗透数学美育教育的研究为了了解我区课堂教学中渗透数学美育的情况,在200名学生中随机抽取了部分学生进行调查调查,调查结果分为非常了解、了解”、了解较少、“不了解四类,并将调查结果绘制出以下两幅不完整的统计图,请根据统计图回答下列问题(1)本次抽取调查的学生共有人,估计该校200名学生中不了解的人数约有人;(2)“非常了解”的4人中有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人去参加中心数学知识竞赛,请用树状图或列表的方法,求恰好抽到2名同学一男一女的概率.19.(10分)如图,正比例函数y=kx与反比例函数y=(x>0)的图象有个交点A,AB⊥x轴于点B.平移正比例函数y=kx的图象,使其经过点B(2,0),得到直线l,直线l与y轴交于点C(0,﹣3)(1)求k和m的值;(2)点M是直线OA上一点过点M作MN∥AB,交反比例函数y=(x>0)的图象于点N,若线段MN=3,求点M的坐标.20.(10分)如图,已知Rt△ACE中,∠AEC=90°,CB平分∠ACE交AE于点B,AC边上一点O,⊙O经过点B、C,与AC交于点D,与CE交于点F,连结BF.(1)求证:AE是⊙O的切线;(2)若cos∠CBF=,AE=8,求⊙O的半径;(3)在(2)条件下,求BF的长.一、填空题(每小题4分,共20分)21.(4分)关于x的方程(m﹣1)x|m|+1+3x﹣2=0是一元二次方程,则m的值为.22.(4分)现有三张分别标有数字2、3、4的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a(不放回);从剩下的卡片中再任意抽取一张,将上面的数字记为b,则点(a,b)在直线y=图象上的概率为.23.(4分)如图,矩形ABCD的对角线AC、BD交于点O,点E是BC边上的一动点,连结OE,将△BOC分成了两个三角形,若BE=OB,且OC2=CE•BC,则∠BOC的度数为.24.(4分)如图,在△ABC中,AB=AC,以AC为直径的⊙O与边BC相交于点E,过点E作EF ⊥AB于点F,延长FE、AC相交于点D,若CD=4,AF=6,则BF的长为.25.(4分)平面直角坐标系中,点A在反比例函数y1=(x>0)的图象上,点A'与点A关于点O对称,直线AA'的解析式为y2=mx,将直线AA'绕点A′顺时针旋转,与反比例函数图象交于点B,直线A′B的解析式为y3=x+n,若△AA'B的面积为3,则k的值为.二、解答题(本大题共3小题,共30分)26.(8分)经过市场调查得知,某种商品的销售期为100天,设该商品销量单价为y(万元/kg),y与时间t(天)函数关系如图所示,其中线段AB表示前50天销售单价y万元/kg与时间t天的函数关系;线段BC的函数关系式为y=t+m该商品在销售期内的销量如下表时间(t)0<t≤5050<t≤100销量(kg)200t+150(1)分别求出当0<t≤50和50<t≤100时y与t的函数关系式;(2)设每天的销售收入为w(万元),则当t为何值时,w的值最大?求出最大值;27.(10分)在矩形ABCD中,E是AD的中点,以点E为直角顶点的直角三角形EFG的两边EF、EG始终与矩形AB、BC两边相交,AB=2,FG=8,(1)如图1,当EF、EG分别过点B、C时,求∠EBC的大小;(2)在(1)的条件下,如图2,将△FFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF、EG分别与AB、BC相交于点M、N,①在△EFG旋转过程中,四边形BMEN的面积是否发生变化?若不变,求四边形BMEN的面积;若要变,请说明理由.②如图3,设点O为FG的中点,连结OB、OE,若∠F=30°,当OB的长度最小时,求tan∠EBG的值.28.(12分)在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(﹣3,0)、B(1,0),与y轴交于点D(0,3),过顶点C作CH⊥x轴于点H(1)求抛物线的解析式和顶点C的坐标;(2)连结AD、CD,若点E为抛物线上一动点(点E与顶点C不重合),当△ADE与△ACD面积相等时,求点E的坐标;(3)若点P为抛物线上一动点(点P与顶点C不重合),过点P向CD所在的直线作垂线,垂足为点Q,以P、C、Q为顶点的三角形与△ACH相似时,求点P的坐标.参考答案与试题解析一、选择題(每小题3分,共30分)1.在Rt△ABC中,∠C=90°,若AC=3,BC=2,则tan A的值是()A.B.C.D.【分析】根据正切的定义计算即可.【解答】解:tan A==,故选:B.【点评】本题考查的是锐角三角函数的定义,锐角A的对边a与邻边b的比叫做∠A的正切.2.方程x(x+2)=0的解是()A.x=0B.x=2C.x=0或x=2D.x=0或x=﹣2【分析】利用因式分解的方法得到x=0或x+2=0,然后解两个一次方程即可.【解答】解:x=0或x+2=0,所以x1=0,x2=﹣2.故选:D.【点评】本题考查了解一元二次方程﹣因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).3.如图是由5个相同的小正方体搭成的一个几何体,它的俯视图是()A.B.C.D.【分析】根据俯视图是从上面看到的图形结合几何体判定则可.【解答】解:从上面看,左边是2个正方形,中间和右上角都是1个正方形.故选:D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.如图,随机闭合开关S1、S2、S3中的两个,则能让灯泡⊗发光的概率是()A.B.C.D.【分析】采用列表法列出所有情况,再根据能让灯泡发光的情况利用概率公式进行计算即可求解.【解答】解:列表如下:共有6种情况,必须闭合开关S3灯泡才亮,即能让灯泡发光的概率是=.故选:C.【点评】本题考查了列表法与画树状图求概率,用到的知识点为:概率=所求情况数与总情况数之比.5.若反比例函数(k≠0)的图象过点(﹣2,1),则这个函数的图象一定过()A.(2,﹣1)B.(2,1)C.(﹣2,﹣1)D.(1,2)【分析】先把点(﹣2,1)代入反比例函数y=(k≠0),求出k的值,再对各选项进行逐一判断即可.【解答】解:∵反比例函数y=(k≠0)的图象过点(﹣2,1),∴k=﹣2×1=﹣2.A、∵2×(﹣1)=﹣2,∴此点在函数图象上,故本选项符合题意;B、∵2×1=2≠﹣2,∴此点不在函数图象上,故本选项不合题意;C、∵(﹣2)×(﹣1)=2,∴此点不在函数图象上,故本选项不合题意;D、∵1×2=2≠﹣2,∴此点不在函数图象上,故本选项不合题意.故选:A.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.6.某种品牌运动服经过两次降价,每件零售价由460元降为215,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.460(1+x)2=215B.460(1﹣x)2=215C.460(1﹣2x)2=215D.460(1﹣x2)=215【分析】设每次降价的百分率为x,根据该运动服的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,此题得解.【解答】解:设每次降价的百分率为x,根据题意得:460(1﹣x)2=215.故选:B.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7.如图,利用标杆BE测量建筑物的高度.已知标杆BE高1.2m,AB:AC=1:9,则建筑物CD的高是()A.96m B.10.8m C.12m D.14m【分析】先证明△ABE∽△ACD,则利用相似三角形的性质进行解答即可.【解答】解:∵EB∥CD,∴△ABE∽△ACD,∴,即,解得:CD=10.8m,故选:B.【点评】本题考查了相似三角形的应用:借助标杆或直尺测量物体的高度.利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.8.如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A.24°B.28°C.33°D.48°【分析】首先利用圆周角定理可得∠COB的度数,再根据等边对等角可得∠OCB=∠OBC,进而可得答案.【解答】解:∵∠A=66°,∴∠COB=132°,∵CO=BO,∴∠OCB=∠OBC=(180°﹣132°)=24°,故选:A.【点评】此题主要考查了圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则菱形ABCD 的边长为()A.5B.6C.7D.8【分析】根据菱形的性质求出BO=4,AC⊥BD,解直角三角形求出AO,根据勾股定理求出AB 即可.【解答】解:∵四边形ABCD是菱形,BD=8,∴AC⊥BD,BO=DO,∴∠AOB=90°,OB=OD=4,∵tan∠ABD==,∴AO=3,由勾股定理得:AB==5,即菱形ABCD的边长为5,故选:A.【点评】本题考查了菱形的性质和解直角三角形,能熟记菱形的性质是解此题的关键,注意:菱形的对角线互相平分且垂直.10.对于抛物线y=﹣2(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1:③顶点坐标为(﹣1,3);④x>﹣1时,y随x的增大而减小,其中正确结论的个数为()A.1B.2C.3D.4【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个小题中的结论是否正确.【解答】解:∵抛物线y=﹣2(x+1)2+3,a=﹣2<0,∴抛物线的开口向下,故①正确,对称轴是直线x=﹣1,故②错误,顶点坐标为(﹣1,3),故③正确,x>﹣1时,y随x的增大而减小,故④正确,故选:C.【点评】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题(每小题4分,共16分)11.(4分)如果,那么=【分析】依据比例的性质,即可得到4a=7b,进而得出=.【解答】解:∵,∴4a﹣4b=3b,∴4a=7b,∴=,故答案为:.【点评】本题主要考查了比例的性质,解题时注意:内项之积等于外项之积.12.(4分)若x=﹣2是一元二次方程x2+3x+k=0的一个根,则k的值为2【分析】把x=﹣2代入方程x2+3x+k=0得4﹣6+k=0,然后解关于k的方程即可.【解答】解:把x=﹣2代入方程x2+3x+k=0得4﹣6+k=0,解得k=2.故答案为2.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.13.(4分)已知A(x1,y1),B(x2,y2)都在反比例函数的图象y=﹣上,且x1<0<x2,则y1与y2大小关系是y1>y2.【分析】将点A,点B坐标代入解析式,可求y1,y2,由x1<0<x2,可得y1>0,y2<0,即可得y1与y2大小关系.【解答】解:∵A(x1,y1),B(x2,y2)都在反比例函数的图象y=﹣上,∴y1=,y2=,∵x1<0<x2,∴y1>0>y2,故答案为:y1>y2【点评】本题考查了反比例函数图象上点的坐标特征,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.(4分)如图,△ABC内接于圆O,AB为圆O直径,∠CAB=60°,弦AD平分∠CAB,若AD =3,则BD=.【分析】解:连接BD,如图,先计算出∠BAD=30°,再根据圆周角定理得到∠ADB=90°,然后利用含30度的直角三角形三边的关系计算BD的长.【解答】解:如图,∵AD平分∠CAB,∴∠BAD=×60°=30°,∵AB为圆O直径,∴∠ADB=90°,∴BD=AD=.故答案为:.【点评】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算:﹣2sin60°+|1﹣tan60°|+(2019﹣π)0(2)解方程:4x(x+3)=x2﹣9【分析】(1)先计算负整数指数幂和零指数幂并代入特殊锐角的三角函数值,再计算乘法、取绝对值符号,继而计算加减可得;(2)先将方程整理成一般式,再利用因式分解法求解可得.【解答】解:(1)原式=2﹣2×+|1﹣|+1=2﹣+﹣1+1=2;(2)4x2+12x=x2﹣9,4x2+12x﹣x2+9=0,3x2+12x+9=0,x2+4x+3=0,(x+1)(x+3)=0,则x+1=0或x+3=0,解得x1=﹣1,x2=﹣3.【点评】本题主要考查解一元二次方程和实数的混合运算,能选择适当的方法解一元二次方程并熟练掌握实数的混合运算是解此题的关键.16.(6分)若关于x的一元二次方程(m﹣2)x2+2x+1=0有两个实根,求m的取值范围.【分析】首先根据题意可知△=b2﹣4ac≥0,然后,即可推出4﹣4(m﹣2)≥0,通过解不等式即可推出结果,注意m≠2.【解答】解:∵(m﹣2)x2+2x+1=0有两个实数根,∴△=b2﹣4ac≥0,∴4﹣4(m﹣2)≥0,∴m≤3,又知(m﹣2)x2+2x+1=0是一元二次方程,即m﹣2≠0,解得m≠2,故m≤3且m≠2.【点评】本题主要考查根的判别式,关键在于推出△≥0,注意一元二次方程二次系数不能为0,此题基础题,比较简单.17.(8分)《基础教育课程改革纲要》要求每位学生每学年都要参加社会实践活动.某学校组织了一次户外攀岩活动,如图,攀岩墙体近似看作垂直于地面,一学生攀到D点时,距离地面B 点3.6米,该学生继续向上很快就攀到顶点E.在A处站立的带队老师拉着安全绳,分别在点D 和点E测得点C的俯角是45°和60°,带队老师的手C点距离地面1.6米,请求出攀岩的顶点E距离地面的高度为多少米?(结果可保留根号)【分析】作CF⊥BE于F,根据矩形的性质求出BF,根据正切的概念计算即可.【解答】解:作CF⊥BE于F,则四边形ABFC为矩形,∴BF=AC=1.6,∴DF=DB﹣FB=2,由题意得,∠DCF=45°,∠ECF=60°,∴CF=DF=2,在Rt△ECF中,EF=CF×tan∠ECF=2,∴EB=EF+BF=2+1.6,答:攀岩的顶点E距离地面的高度为(2+1.6)米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握锐角三角函数的定义,仰角俯角的概念是解题的关键.18.(8分)我区正在进行《中学学科核心素养理念下渗透数学美育教育的研究为了了解我区课堂教学中渗透数学美育的情况,在200名学生中随机抽取了部分学生进行调查调查,调查结果分为非常了解、了解”、了解较少、“不了解四类,并将调查结果绘制出以下两幅不完整的统计图,请根据统计图回答下列问题(1)本次抽取调查的学生共有50人,估计该校200名学生中不了解的人数约有60人;(2)“非常了解”的4人中有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人去参加中心数学知识竞赛,请用树状图或列表的方法,求恰好抽到2名同学一男一女的概率.【分析】(1)由“非常了解”的人数及其所占百分比求得总人数,根据各了解程度的百分比之和等于1求得“不了解”的百分比,再用总人数乘以样本中“不了解”人数所占比例可得;(2)分别用树状图或列表的方法表示出所有等可能结果,从中找到恰好抽到2名同学一男一女的结果数,利用概率公式计算可得.【解答】解:(1)本次抽取调查的学生共有4÷8%=50(人),∵“不了解”对应的百分比为1﹣(40%+22%+8%)=30%,∴估计该校200名学生中不了解的人数约有200×30%=60(人),故答案为:50,60;(2)列表如下:A1A2B1B2A1(A2,A1)(B1,A1)(B2,A1)A2(A1,A2)(B1,A2)(B2,A2)B1(A1,B1)(A2,B1)(B2,B1)B2(A1,B2)(A2,B2)(B1,B2)由表可知共有12种可能的结果,恰好抽到2名同学一男一女的结果有8个,所以恰好抽到2名同学一男一女的概率为=.【点评】本题考查了列表法与树状图法、扇形统计图、条形统计图;通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.19.(10分)如图,正比例函数y=kx与反比例函数y=(x>0)的图象有个交点A,AB⊥x轴于点B.平移正比例函数y=kx的图象,使其经过点B(2,0),得到直线l,直线l与y轴交于点C(0,﹣3)(1)求k和m的值;(2)点M是直线OA上一点过点M作MN∥AB,交反比例函数y=(x>0)的图象于点N,若线段MN=3,求点M的坐标.【分析】(1)由直线l与y轴交于点C(0,﹣3)知直线l的解析式为y=kx﹣3,根据点B坐标可得k的值,再根据平移知AB=OC=3,从而得出点A坐标,从而得出m的值;(2)先得出正比例函数和反比例函数解析式,再设点M(a,a),则N(a,),由MN=3得出关于a的方程,解之可得答案.【解答】解:(1)∵平移正比例函数y=kx的图象,得到直线l,直线l与y轴交于点C(0,﹣3),∴直线l的解析式为y=kx﹣3,∵点B(2,0)在直线l上,∴2k﹣3=0,解得k=,由题意知AB=OC=3,则点A(2,3),∴m=2×3=6;(2)由题意知直线OA解析式为y=x,反比例函数解析式为y=,设点M(a,a),则N(a,),∴|a﹣|=3,解得:a=1+或a=﹣1(负值舍去),则点M坐标为(1+,)或(﹣1,).【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法求函数的解析式,函数图象上点的坐标特征,体现了数形结合的思想.20.(10分)如图,已知Rt△ACE中,∠AEC=90°,CB平分∠ACE交AE于点B,AC边上一点O,⊙O经过点B、C,与AC交于点D,与CE交于点F,连结BF.(1)求证:AE是⊙O的切线;(2)若cos∠CBF=,AE=8,求⊙O的半径;(3)在(2)条件下,求BF的长.【分析】(1)连接OB,根据等腰三角形的性质得到∠OCB=∠OBC,根据角平分线的定义得到∠OCB=∠BCF,得到∠OBC=∠BCF,求得∠ABO=∠AEC=90°,于是得到结论;(2)连接DF交OB于G,根据圆周角定理得到∠CFD=90°,得到∠CFD=∠CEA,推出cos ∠CBF=cos∠CEF=,设BE=2x,则DF=4x,CD=5x,得到OC=OB=2.5x,根据勾股定理得到x=(负值舍去),于是得到⊙O的半径=;(3)由(2)知BE=2x=3,根据切线的性质得到∠BCE=∠EBF,根据相似三角形的性质得到EF=,根据勾股定理得到BF==.【解答】(1)证明:连接OB,∵OB=OC,∴∠OCB=∠OBC,∵CB平分∠ACE,∴∠OCB=∠BCF,∴∠OBC=∠BCF,∴∠ABO=∠AEC=90°,∴OB⊥AE,∴AE是⊙O的切线;(2)解:连接DF交OB于G,∵CD是⊙O的直径,∴∠CFD=90°,∴∠CFD=∠CEA,∴DF∥AE,∴∠CDF=∠CAB,∵∠CDF=∠CBF,∴∠A=∠CBF,∴cos∠CBF=cos∠CEF=,∵AE=8,∴AC=10,∴CE=6,∵DF∥AE,∴DF⊥OB,∴DG=GF=BE,设BE=2x,则DF=4x,CD=5x,∴OC=OB=2.5x,∴AO=10﹣2.5x,AB=8﹣2x,∵AO2=AB2+OB2,∴(10﹣2.5x)2=(8﹣2x)2+(2.5x)2,解得:x=(负值舍去),∴⊙O的半径=;(3)解:由(2)知BE=2x=3,∵AE是⊙O的切线;∴∠BCE=∠EBF,∵∠E=∠E,∴△BEF∽△CEB,∴,∴=,∴EF=,∴BF==.【点评】本题考查了切线的性质和判定,勾股定理,平行线的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.一、填空题(每小题4分,共20分)21.(4分)关于x的方程(m﹣1)x|m|+1+3x﹣2=0是一元二次方程,则m的值为﹣1.【分析】利用一元二次方程的定义判断即可确定出m的值.【解答】解:∵关于x的方程(m﹣1)x|m|+1+3x﹣2=0是一元二次方程,∴|m|+1=2,且m﹣1≠0,解得:m=﹣1,故答案为:﹣1【点评】此题考查了一元二次方程的定义,以及绝对值,熟练掌握一元二次方程的定义是解本题的关键.22.(4分)现有三张分别标有数字2、3、4的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a(不放回);从剩下的卡片中再任意抽取一张,将上面的数字记为b,则点(a,b)在直线y=图象上的概率为.【分析】列表得出所有等可能的情况数,找出点(a,b)在直线y=图象上的情况数,即可求出所求的概率.【解答】解:列表得:2342(3,2)(4,2)3(2,3)(4,3)4(2,4)(3,4)得到所有等可能的情况有6种,其中点(a,b)在直线y=图象上的只有(3,2)这1种情况,所以点(a,b)在直线y=图象上的概率为,故答案为:.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.23.(4分)如图,矩形ABCD的对角线AC、BD交于点O,点E是BC边上的一动点,连结OE,将△BOC分成了两个三角形,若BE=OB,且OC2=CE•BC,则∠BOC的度数为108°.【分析】由△OCE∽△BCO,推出∠COE=∠CBO,由四边形ABCD是矩形,推出OB=OC,推出∠OBC=∠OCB=∠COE,设∠OBC=∠OCB=∠COE=x,构建方程即可解决问题.【解答】解:∵OC2=CE•BC,∴=,∵∠OCE=∠OCB,∴△OCE∽△BCO,∴∠COE=∠CBO,∵四边形ABCD是矩形,∴OB=OC,∴∠OBC=∠OCB=∠COE,设∠OBC=∠OCB=∠COE=x,∵BE=BO,∴∠BOE=∠BEO=∠COE+∠ECO=2x,∵∠OBC+∠OCB+∠BOC=180°,∴x+x+3x=180°,∴x=36°,∴∠BOC=3x=108°,故答案为108°【点评】本题考查相似三角形的判定和性质,矩形的性质,三角形内角和定理等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数解决问题,属于中考常考题型.24.(4分)如图,在△ABC中,AB=AC,以AC为直径的⊙O与边BC相交于点E,过点E作EF ⊥AB于点F,延长FE、AC相交于点D,若CD=4,AF=6,则BF的长为2.【分析】如图,连接AE,OE.设BF=x.首先证明OE∥AB,可得=,由此构建方程即可解决问题;【解答】解:如图,连接AE,OE.设BF=x.∵AC是直径,∴∠AEC=90°,∴AE⊥BC,∵AB=AC,∴∠EAB=∠EAC,∵OA=OE,∴∠OAE=∠OEA,∴∠EAB=∠AEO,∴OE∥AB,∴=,∴AF=6,CD=4,BF=x,∴AC=AB=x+6,∴OE=OA=OD=,∴=,整理得:x2+10x﹣24=0,解得x=2或﹣12(舍弃),经检验x=2是分式方程的解,∴BF=2.故答案为2.【点评】本题考查圆周角定理,等腰三角形的性质,平行线分线段成比例定理等知识,解题的关键是学会利用参数,构建方程解决问题.25.(4分)平面直角坐标系中,点A在反比例函数y1=(x>0)的图象上,点A'与点A关于点O 对称,直线AA '的解析式为y 2=mx ,将直线AA '绕点A ′顺时针旋转,与反比例函数图象交于点B ,直线A ′B 的解析式为y 3=x +n ,若△AA 'B 的面积为3,则k 的值为 ±2 .【分析】设点A (a ,),根据对称性以及直线上点的坐标特点分别用含有k 的代数式表示出点A '、B 的坐标,然后根据三角形的面积公式解答即可. 【解答】解:∵设点A (a ,). ∵A 和点A '关于原点对称, ∴点A '的坐标为(﹣a ,﹣), ∵点A '在y 2=mx 的图象上, ∴点A '的坐标为(﹣a ,﹣am ). ∴﹣=﹣am , a 2m =k .∵直线AA '绕点A ′顺时针旋转,与反比例函数图象交与点B ,∴,∴点B 的坐标为(2a ,),过点A 作AD ⊥x 轴,交A 'B 于点D ,连BO ,∵O 为AA ′中点 S △AOB =S △ABA ′=, ∵点A 、B 在双曲线上, ∴S △AOC =S △BOD ,∴S △AOB =S 四边形ACDB =,由已知点A 、B 坐标都表示(a ,)、(2a ,),∴,∴k =2.当双曲线在二、四象限时,k =﹣2. 故答案为:±2【点评】本题综合考查反比例函数、一次函数图象及其性质,解答过程中,涉及到了面积转化方法、待定系数法和数形结合思想. 二、解答题(本大题共3小题,共30分)26.(8分)经过市场调查得知,某种商品的销售期为100天,设该商品销量单价为y (万元/kg ),y 与时间t (天)函数关系如图所示,其中线段AB 表示前50天销售单价y 万元/kg 与时间t 天的函数关系;线段BC 的函数关系式为y =t +m 该商品在销售期内的销量如下表 时间(t ) 0<t ≤50 50<t ≤100 销量(kg )200t +150(1)分别求出当0<t ≤50和50<t ≤100时y 与t 的函数关系式;(2)设每天的销售收入为w (万元),则当t 为何值时,w 的值最大?求出最大值;【分析】(1)设y =kt +b ,利用待定系数法即可解决问题;(2)日利润=日销售量×每公斤利润,据此分别表示当0<t ≤50和50<t ≤100时,根据函数性质求最大值后比较得结论.【解答】解:(1)当0<t ≤50时,设y 与t 的函数关系式为y =kt +b , ∴,解得:k =,b =15, ∴y =t +15;当50<t≤100时,把(100,20)代入y=t+m得,20=﹣×100+m,∴m=30,∴线段BC的函数关系式为y=t+30;(2)当0<t≤50时,w=200(t+15)=40t+3000,∴当t=50时,w最大=5000(万元),当50<t≤100时,w=(t+150)(t+30)=﹣t2+15t+4500,∵w=﹣t2+15t+4500=﹣(t﹣75)2+5062.5,∴当t=75时,w最大=5062.5(万元),∴当t=75时,w的值最大,w最大=5062.5万元.【点评】此题主要考查了二次函数的应用,熟练掌握各函数的性质和图象特征,针对所给条件作出初步判断后需验证其正确性,最值问题需由函数的性质求解时,正确表达关系式是关键.27.(10分)在矩形ABCD中,E是AD的中点,以点E为直角顶点的直角三角形EFG的两边EF、EG始终与矩形AB、BC两边相交,AB=2,FG=8,(1)如图1,当EF、EG分别过点B、C时,求∠EBC的大小;(2)在(1)的条件下,如图2,将△FFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF、EG分别与AB、BC相交于点M、N,①在△EFG旋转过程中,四边形BMEN的面积是否发生变化?若不变,求四边形BMEN的面积;若要变,请说明理由.②如图3,设点O为FG的中点,连结OB、OE,若∠F=30°,当OB的长度最小时,求tan∠EBG的值.【分析】(1)证明△AEB≌△DEC(SAS),可得EB=EC,根据等腰直角三角形的性质即可解决问题.(2)①四边形BMEN的面积不变.证明△MEB≌△NEC(ASA),推出S△MEB =S△ENC,可得S四边形EMBN=S △EBC .②如图当E ,B ,O 共线时,OB 的值最小,作GH ⊥OE 于H .想办法求出BH ,GH 即可解决问题.【解答】解:(1)如图1中,∵四边形ABCD 是矩形, ∴AB =DC ,∠A =∠D =90°, ∵AE =DE ,∴△AEB ≌△DEC (SAS ), ∴EB =EC , ∵∠BEC =90°, ∴∠EBC =45°.(2)①结论:四边形BMEN 的面积不变.理由:由(1)可知:∠EBM =∠ECN =45°, ∵∠MEN =∠BEC =90°, ∴∠BEM =∠CEN , ∵EB =EC ,∴△MEB ≌△NEC (ASA ), ∴S △MEB =S △ENC ,∴S 四边形EMBN =S △EBC =×4×2=4.②如图当E,B,O共线时,OB的值最小,作GH⊥OE于H.∵OF=OG,∠FEG=90°,∴OE=OF=OG=4,∵∠F=30°,∴∠EGF=60°,∴△EOG是等边三角形,∵GH⊥OE,∴GH=2,OH=EH=2,∵BE=2,∴OB=4﹣2,∴BH=2﹣(4﹣2)=2﹣2,∴tan∠EBG===+.【点评】本题属于四边形综合题,考查了矩形的性质,旋转变换,全等三角形的判定和性质,等边三角形的判定和性质,锐角三角函数等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.28.(12分)在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(﹣3,0)、B(1,0),与y轴交于点D(0,3),过顶点C作CH⊥x轴于点H(1)求抛物线的解析式和顶点C的坐标;(2)连结AD、CD,若点E为抛物线上一动点(点E与顶点C不重合),当△ADE与△ACD面积相等时,求点E的坐标;(3)若点P为抛物线上一动点(点P与顶点C不重合),过点P向CD所在的直线作垂线,垂足为点Q,以P、C、Q为顶点的三角形与△ACH相似时,求点P的坐标.【分析】(1)把点A、B、D的坐标代入二次函数表达式,即可求解;(2)①过点C作CE∥AD交抛物线于点E,则△ADE与△ACD面积相等;②过点H′作直线E′E″∥AD,则△ADE′、△ADE′′与△ACD面积相等,分别求解即可.(3)分△ACH∽△CPQ、△ACH∽△PCQ两种情况,求解即可.【解答】解:(1)把点A、B、D的坐标代入二次函数表达式得:,解得:,则抛物线的表达式为:y=﹣x2﹣2x+3…①,函数的对称轴为:x=﹣=﹣1,则点C的坐标为(﹣1,4);(2)过点C作CE∥AD交抛物线于点E,交y轴于点H,则△ADE与△ACD面积相等,直线AD过点D,则其表达式为:y=mx+3,将点A的坐标代入上式得:0=﹣3m+3,解得:m=1,则直线AD的表达式为:y=x+3,CE∥AD,则直线CE表达式的k值为1,设直线CE的表达式为:y=x+n,。
2015-2016学年第一学期期末测试卷初三数学附答案
E DCBA2015-2016学年第一学期期末测试卷初三数学一、选择题(本题共30分,每小题3分)1.⊙O 的半径为R ,点P 到圆心O 的距离为d ,并且d ≥ R ,则P 点 A.在⊙O 内或圆周上 B.在⊙O 外C.在圆周上D.在⊙O 外或圆周上2. 把10cm 长的线段进行黄金分割,则较长线段的长(236.25≈, 精确到0.01)是A .3.09cmB .3.82cmC .6.18cmD .7.00cm 3.如图,在△ABC 中,DE ∥BC ,DE 分别与AB 、AC 相交于点D 、E ,若AD =4,DB =2,则AE ︰EC 的值为 A . 0.5 B . 2 C . 32 D . 23 4. 反比例函数xky =的图象如图所示,则K 的值可能是 A .21B . 1C . 2D . -1 5. 在Rt △ABC 中,∠C =90°,BC =1,那么AB 的长为A .sin AB .cos AC .1cos AD . 1sin A6.如图,正三角形ABC 内接于⊙O ,动点P 在圆周的劣弧AB 上, 且不与A,B 重合,则∠BPC 等于A .30︒B .60︒ C. 90︒ D. 45︒ 7.抛物线y=21x 2的图象向左平移2个单位,在向下平移1个单位,得到的函数表达式为A . y =21x 2+ 2x + 1B .y =21x 2+ 2x - 2C . y =21x 2 - 2x - 1 D. y =21x 2- 2x + 18. 已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论: ① 0>abc ;② c a b +<;③ 024>++c b a ; ④ b c 32<; ⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有A. 2个B. 3个C. 4个D. 5个9. 如图所示,在正方形ABCD 中,E 是BC 的中点,F 是CD 上的一点,AE ⊥EF ,下列结论:①∠BAE =30°;②CE 2=AB·CF ;③CF =31FD ;④△ABE ∽△AEF .其中正确的有A. 1个B. 2个C. 3个 D . 4个10.如图,已知△ABC 中,BC =8,BC 边上的高h =4,D 为BC 边上一个动点,EF ∥BC ,交AB 于点E ,交AC 于点F ,设E 到BC 的距离为x ,△DEF 的面积为y ,则y 关于x 的函数图象大致为A. B. C. D.二、填空题(本题共18分, 每小题3分) 11.若5127==b a ,则32ba -= . 12. 两个相似多边形相似比为1:2,且它们的周长和为90,则这两个相似多边形的周长分别 是 , . 13.已知扇形的面积为15πcm 2,半径长为5cm ,则扇形周长为 cm .14. 在Rt △ABC 中,∠C =90°,AC =4, BC =3,则以2.5为半径的⊙C 与直线AB 的位置关系 是 .15. 请选择一组你喜欢的a,b,c 的值,使二次函数)0(2≠++=a c bx ax y 的图象同时满足下列条件:①开口向下,②当2<x 时,y 随x 的增大而增大;当2>x 时,y 随x 的增大而减小.这样的二次函数的表达式可以是 .16. 如图,正方形OABC ,点F 在AB 上,点B 、若阴影部分的面积为是 . 三、解答题(本题共7229题8分)17. 4sin3018.如图:在Rt △ABC 19. 已知反比例函数x1k y -=图象的两个分支分别位于第一、第三象限.(1)求k 的取值范围;(2)取一个你认为符合条件的K 值,写出反比例函数的表达式,并求出当x =﹣6时反比例函数y 的值;20. 已知圆内接正三角形边心距为2cm ,求它的边长.23. 如图,AB 是⊙O 的直径,CB 是弦,OD ⊥CB 于E ,交劣弧CB 于D ,连接AC . (1)请写出两个不同的正确结论; (2)若CB =8,ED =2,求⊙O 的半径.24. 密苏里州圣路易斯拱门是座雄伟壮观的抛物线形的建筑物,是美国最高的独自挺立的纪念碑,如图.拱门的地面宽度为200米,两侧距地面高150米处各有一个观光窗,两窗的水平距离为100米,求拱门的最大高度.25. 如图,已知⊙O 是△ABC 的外接圆,AB 是⊙O 的直径, D 是AB 的延长线上的一点,AE ⊥DC 交DC 的延长线 于点E ,且AC 平分∠EAB . 求证:DE 是⊙O 的切线.26. 已知:抛物线y=x 2+bx+c 经过点(2,-3)和(4,5)(1)求抛物线的表达式及顶点坐标; (2)将抛物线沿x 轴翻折,得到图象G ,求图象G 的表达式;(3)在(2)的条件下,当-2<x <2时, 直线y =m 与该图象有一个公共点,()求m 的值或取值范围.27. 如图,已知矩形ABCD 的边长3cm 6cmAB BC ==,.某一时刻,动点M 从A 点出发沿AB 方向以1c m /s 的速度向B 点匀速运动;同时,动点N 从D 点出发沿DA 方 向以2c m /s 的速度向A 点匀速运动,问: (1)经过多少时间,AMN △的面积等于矩形ABCD 面积的19? (2)是否存在时刻t ,使以A,M,N 为顶点的三角形与ACD △相似?若存在,求t 的 值;若不存在,请说明理由.28.(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置 关系,并说明理由.(2)结论应用:① 如图2,点M ,N 在反比例函数xky =(k >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F .试证明:MN ∥EF .② 若①中的其他条件不变,只改变点M ,N 的位置如图3所示,请判断 MN 与 EF 是否平行?请说明理由.图 3D29. 设a ,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数是闭区间[m .n ]上的―闭函数‖.如函数4y x =-+,当x =1时,y =3;当x =3时,y =1,即当13x ≤≤时,有13y ≤≤,所以说函数4y x =-+是闭区间[1,3]上的―闭函数‖.(1)反比例函数y =x2016是闭区间[1,2016]上的―闭函数‖吗?请判断并说明理由; (2)若二次函数y =22x x k --是闭区间[1,2]上的―闭函数‖,求k 的值;(3)若一次函数y =kx +b (k ≠0)是闭区间[m ,n ]上的―闭函数‖,求此函数的表达式(用含 m ,n 的代数式表示).参考答案初三数学 2016.1阅卷说明:本试卷72分及格,102分优秀. 一、选择题:(本题共30分,每小题3分)二、填空题(本题共18分, 每小题3分)三、计算题:(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分, 第29题8分)17. 4sin3060︒.解:原式=33222214⨯+⨯-⨯--------------------- 4分 =2-1+3 =4--------------------- 5分18. 解:∵在Rt △ABC 中,∠C =90°,∠B =60°∵∠A=90°-∠B =30°--------------------- 1分∴AB==16--------------------- 3分∴AC=BCtanB=8.--------------------- 5分19. 解:(1)∵反比例函数图象两支分别位于第一、三象限,∴k ﹣1>0,解得:k >1;---------------- 2分(2)取k=3,∴反比例函数表达式为x2y = ---------------- 4分当x=﹣6时,3162x 2y -=-==;--------------------- 5分 (答案不唯一)20. 解: 如图:连接OB,过O 点作OD ⊥BC 于点D ---------------- 1分在Rt △OBD 中,∵∠BOD =︒︒=606360---------------- 2分 ∵ BD=OD ·tan60°---------------- 3分 =23---------------- 4分B∴BC=2BD=43∴三角形的边长为43 cm ---------------- 5分 21.证明∵△ABC ∽△ADE ,∴∠BAC =∠DAE ,∠C =∠E ,---------------- 1分 ∴∠BAC -∠DAC =∠DAE -∠DAC ,∴∠1=∠3, ------------------------------ 2分 又∵∠C =∠E ,∠DOC =∠AOE ,∴△DOC ∽△AOE ,----------------------------3分 ∴∠2=∠3 , ----------------------------4分 ∴∠1=∠2=∠3. ----------------------------5分22. 解:过P 作PD ⊥AB 于D ,---------------- 1分在Rt △PBD 中,∠BDP =90°,∠B =45°, ∴BD =PD . ---------------- 2分在Rt △P AD 中,∠ADP =90°,∠A =30°, ∴AD =PD =PD=3PD ,--------------------3分 ∴PD =13100+≈36.6>35, 故计划修筑的高速公路不会穿过保护区.----------------------------5分23.解:(1)不同类型的正确结论有:①BE=CE ;②BD=CD ;③∠BED=90°;④∠BOD=∠A ;⑤AC//OD ;⑥AC ⊥BC ;⑦222OE +BE =OB ;⑧OE BC S A BC ∙=∆;⑨△BOD 是等腰三角形;⑩ΔBOE ΔBAC ~;等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年四川省成都市大邑县初三上学期期末数学试卷一、选择题(每小题3分,共30分。
下列各小题给出的四个选项中,只有一个符合题目要求,请将正确选项前的字母填在答题卷上对应的表格内)1.(3分)已知反比例函数y=的图象如图所示,则k的取值范围是()A.k<0B.k≤0C.k>0D.k≥02.(3分)如图,在△ABC中,E,F分别在边AB,AC上,EF∥BC,=,EF=4,则BC=()A.9B.8C.7D.63.(3分)关于x的一元二次方程x2+x+1=0的根的情况是()A.两个不等的实数根B.两个相等的实数根C.没有实数根D.无法确定4.(3分)点(﹣3,y1),(﹣2,y2)在反比例函数y=的图象上,则下列正确的是()A.y1<y2B.y1≤y2C.y1>y2D.y1=y25.(3分)将二次函数y=x2+2x+2化成顶点式,变形正确的是()A.y=x(x+2)+2B.y=(x﹣1)2+3C.y=(x+1)2﹣1D.y=(x+1)2+1 6.(3分)如图是由四个相同的小正方体组成的立体图形,它的俯视图为()A.B.C.D.7.(3分)口袋中有红球白球共10个,这些球除颜色外其他都相同,将口袋中的球搅拌均匀,从中随机摸出一个球,记下颜色后放回,不断重复该过程,共摸取50次球,发现20次摸到红球,则口袋中红球的个数是()A.6B.4C.3D.28.(3分)根据下列条件,一定可以判定四边形为菱形的是()A.对角线互相平分B.对角线互相垂直C.对角线互相垂直平分D.对角线互相平分且相等9.(3分)如图,在大小为4×4的正方形网格中,是相似三角形的是()A.①和②B.②和③C.①和③D.②和④10.(3分)在同一个坐标系中的一次函数y=kx+b与二次函数y=kx2+b的图象可能是()A.B.C.D.二、填空题(本大题共4小题,共16分)11.(4分)二次函数y=(x﹣1)2+2的顶点坐标是,对称轴为.12.(4分)已知矩形ABCD中,AB=6,BC=8,则sin∠BCA=.13.(4分)某一时刻,小明发现学校旗杆AN与木棒CD都垂直于地面,且相距4米,旗杆的影子BE与木棒的影子CE的顶端重合于点E,现测得木棒CD长2米,它的影子CE为1米,则旗杆AN的高度是米.14.(4分)在二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如下表:x…﹣2﹣10123…y…830﹣103…则关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别是.三、简答题(共54分)15.(12分)计算(1)×(﹣1)2015﹣()﹣1+|1﹣2sin60°|(2)解关于x的方程:(x﹣1)2+3x=7.16.(6分)在△ABC中,∠A=45°,CD⊥AB垂足为D,BC=10,cosB=,分别求BD和AB的长.17.(8分)有甲乙两个黑色布袋,甲中装有两个完全相同的小球,分别标有数字1和2;乙中装有三个完全相同的小球,分别标有数字﹣2,﹣1和0.从甲布袋中随机取出一个小球,记下标有的数字为b,再从乙布袋中随机取出一个小球,记其标有的数字为k.(1)画树状图或列表法写出两次摸球的数字可能出现的所有结果;(2)如果将两次取出的小球上记录的数字k,b构造一次函数y=kx+b,求两次取出的球上的编号数字能构造成一次函数的概率.18.(8分)如图,要设计一座高为2米的人体雕像AB,使雕像的上部AC(腰点C以上)与下部(腰点C以下)的高度之比等于下部BC与全部AB(身高)的高度之比,雕像的下部BC的长应设计为多少米?19.(10分)如图,在正方形ABCD中,点Q在BC上,且BQ=BC,点M是CD 边的中点.(1)求证:△MCQ∽△ADM.(2)计算tan∠MAQ的值.20.(10分)如图,已知反比例函数y=(k≠0)的图象与一次函数y=k′x+b(k′≠0)的图象相交于A和B两点.(1)求反比例函数和一次函数的表达式;(2)观察两函数在同一坐标系中的图象,直接写出关于x的不等式<k′x+b的解集.(3)求△AOB的面积.(其中O为坐标原点)四、填空题(每小题4分,共20分)21.(4分)已知x1,x2是方程2x2﹣5x+3=0的两根,则x1+x2﹣x1•x2=.22.(4分)如图,一次函数y=﹣x+6的图象与x,y轴分别交于点A,B,线段AB的中点P在y=的图象上,则k=.23.(4分)从﹣3,﹣2,﹣1,0,3这五个数中任意取出一个数记作m,则能使函数y=(5﹣m2)x的图象经过第一、第三象限,而且关于x的一元二次方程x2+mx+m+1=0有实数根的概率.24.(4分)如图①,将矩形ABCD沿DE折叠,使顶点A落在DC上的点A′处,然后将矩形展平,沿EF折叠,使顶点A落在折痕DE上的点G处,再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处,如图②,若AF=,则AD=,AB=.25.(4分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b=0;③当m≠1时,am2+bm<a+b;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2且x1≠x2,则x1+x2=2.上述结论中所有正确是.(填序号)五、解答题(共30分)26.(8分)提高城市内过江(河)大桥的车辆通行能力可改善整个城市的交通情况,一般情况下,桥上汽车的车速是v(单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度大于200辆/千米,造成堵塞,车流速度为0;当车流密度不超过20辆/千米,车速度为60千米/小时.经研究表明:当桥上车流速度x满足20≤x≤200时,v是x的一次函数,当0≤x ≤200,v与x的函数关系如图所示.(1)求当0≤x≤200时,v与x之间的函数关系式;(2)车流量是指单位时间内通过某观察点的车辆数,计算公式为:车流量=车速度×车流密度,现设车流量为y,写出y与x之间的函数关系式,并求当x为多大时,y的值取到最大?27.(10分)在△ABC中,点D在BC上,满足∠CAD=30°,AD=2,BD=2DC.(1)如图1.若∠BAD=75°,过点C作AB的平行线交AD的延长线于点E,①∠ACE的度数是:(直接写出结果)②求AC的长.(2)如图2,点E在AD的延长线上,连接CE,若∠BAD=90°,∠ACE=75°,求BE的长.28.(12分)如图,二次函数y=ax2+bx+4的图象与x轴交于点A,B,(点A在x轴的负半轴,点B在x轴的正半轴),与y轴交于点C,∠ACB=90°,tan∠BAC=.(1)求点C的坐标;(2)求二次函数的表达式;(3)若点P是抛物线在第二象限的部分上的一个动点,问是否存在这样的点P,使得四边形PABC的面积最大?若存在,求出点P的坐标并求出此时四边形PABC的面积,若不存在,请说明理由.2015-2016学年四川省成都市大邑县初三上学期期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分。
下列各小题给出的四个选项中,只有一个符合题目要求,请将正确选项前的字母填在答题卷上对应的表格内)1.(3分)已知反比例函数y=的图象如图所示,则k的取值范围是()A.k<0B.k≤0C.k>0D.k≥0【解答】解:如图所示,反比例函数y=的图象位于第二、四象限,则k<0.故选:A.2.(3分)如图,在△ABC中,E,F分别在边AB,AC上,EF∥BC,=,EF=4,则BC=()A.9B.8C.7D.6【解答】解:∵EF∥AB,∴△AEF∽△ABC,∴,∵=,EF=4,∴,解得,BC=6,故选:D.3.(3分)关于x的一元二次方程x2+x+1=0的根的情况是()A.两个不等的实数根B.两个相等的实数根C.没有实数根D.无法确定【解答】解:∵x2+x+1=0,∴△=12﹣4×1×1=﹣3<0,∴该方程无实数根,故选:C.4.(3分)点(﹣3,y1),(﹣2,y2)在反比例函数y=的图象上,则下列正确的是()A.y1<y2B.y1≤y2C.y1>y2D.y1=y2【解答】解:∵点(﹣3,y1),(﹣2,y2)在反比例函数y=的图象上,∴﹣3y1=1,﹣2y2=1,解得:y1=﹣,y2=﹣,∴y1>y2,故选:C.5.(3分)将二次函数y=x2+2x+2化成顶点式,变形正确的是()A.y=x(x+2)+2B.y=(x﹣1)2+3C.y=(x+1)2﹣1D.y=(x+1)2+1【解答】解:y=x2+2x+2=x2+2x+1+1=(x+1)2+1.故选:D.6.(3分)如图是由四个相同的小正方体组成的立体图形,它的俯视图为()A.B.C.D.【解答】解:从上边看从上边看第一层是一个小正方形,第二层是第一层正上一个小正方形,右边一个小正方形,故选:D.7.(3分)口袋中有红球白球共10个,这些球除颜色外其他都相同,将口袋中的球搅拌均匀,从中随机摸出一个球,记下颜色后放回,不断重复该过程,共摸取50次球,发现20次摸到红球,则口袋中红球的个数是()A.6B.4C.3D.2【解答】解:设口袋中红球有x个,根据题意可得:=,解得:x=4,即口袋中红球有4个,故选:B.8.(3分)根据下列条件,一定可以判定四边形为菱形的是()A.对角线互相平分B.对角线互相垂直C.对角线互相垂直平分D.对角线互相平分且相等【解答】解:菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.只有C能判定为是菱形,故选:C.9.(3分)如图,在大小为4×4的正方形网格中,是相似三角形的是()A.①和②B.②和③C.①和③D.②和④【解答】解:①和③相似,∵由勾股定理求出①的三角形的各边长分别为2、、;由勾股定理求出③的各边长分别为2、2、2,∴=,=,即==,∴两三角形的三边对应边成比例,∴①③相似.故选:C.10.(3分)在同一个坐标系中的一次函数y=kx+b与二次函数y=kx2+b的图象可能是()A.B.C.D.【解答】解:A、由抛物线可知,k>0,b>0,由直线可知,k>0,b>0,正确;B、由抛物线可知,k=0,b>0,由直线可知,k>0,b>0,错误;C、由抛物线可知,k>0,b=0,由直线可知,k<0,b<0,错误;D、由抛物线可知,k<0,b>0,由直线可知,k>0,b=0,错误;故选:A.二、填空题(本大题共4小题,共16分)11.(4分)二次函数y=(x﹣1)2+2的顶点坐标是(1,2),对称轴为直线x=1.【解答】解:∵y=(x﹣1)2+2,∴该函数的顶点坐标为(1,2),对称轴是直线x=1,故答案为:(1,2),直线x=1.12.(4分)已知矩形ABCD中,AB=6,BC=8,则sin∠BCA=.【解答】解:∵四边形ABCD是矩形,∴∠B=90°,∵AB=6,BC=8,∴AC==10,∴sin∠BCA===,故答案为:.13.(4分)某一时刻,小明发现学校旗杆AN与木棒CD都垂直于地面,且相距4米,旗杆的影子BE与木棒的影子CE的顶端重合于点E,现测得木棒CD长2米,它的影子CE为1米,则旗杆AN的高度是8米.【解答】解:∵AN⊥NE,CD⊥NE,∴△CDE∽△ANE,∴,∵NE=4m,CE=1m,CD=2m,∴,解得:AN=8,故答案为:814.(4分)在二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如下表:x…﹣2﹣10123…y…830﹣103…则关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别是0或2.【解答】解:观察表格可知,二次函数y=ax2+bx+c(a≠0)时,x=0或2,∴一元二次方程ax2+bx+c=0的根是0或2.故答案为:0或2.三、简答题(共54分)15.(12分)计算(1)×(﹣1)2015﹣()﹣1+|1﹣2sin60°|(2)解关于x的方程:(x﹣1)2+3x=7.【解答】解:(1)原式=×(﹣1)﹣3+|1﹣|=﹣﹣3+﹣1=2﹣4;(2)原方程整理可得:x2+x﹣6=0,∴(x﹣2)(x+3)=0,则x﹣2=0或x+3=0,解得:x=2或x=﹣3.16.(6分)在△ABC中,∠A=45°,CD⊥AB垂足为D,BC=10,cosB=,分别求BD和AB的长.【解答】解:∵CD⊥AB,∴cosB=,∵cosB=,∴=,解得BD=8,根据勾股定理得,CD===6,∵∠A=45°,CD⊥AB,∴△ACD是等腰直角三角形,∴AD=CD=6,∴AB=AD+BD=6+8=14.17.(8分)有甲乙两个黑色布袋,甲中装有两个完全相同的小球,分别标有数字1和2;乙中装有三个完全相同的小球,分别标有数字﹣2,﹣1和0.从甲布袋中随机取出一个小球,记下标有的数字为b,再从乙布袋中随机取出一个小球,记其标有的数字为k.(1)画树状图或列表法写出两次摸球的数字可能出现的所有结果;(2)如果将两次取出的小球上记录的数字k,b构造一次函数y=kx+b,求两次取出的球上的编号数字能构造成一次函数的概率.【解答】解:(1)画树状图得:则点可能出现的所有坐标:(1,﹣1),(1,0),(1,﹣2),(2,﹣1),(2,0),(2,﹣2);(2)∵如果将两次取出的小球上记录的数字k,b构造一次函数y=kx+b,则共6种可能情况,其中两次取出的球上的编号数字能构造成一次函数的有4种,∴两次取出的球上的编号数字能构造成一次函数的概率==.18.(8分)如图,要设计一座高为2米的人体雕像AB,使雕像的上部AC(腰点C以上)与下部(腰点C以下)的高度之比等于下部BC与全部AB(身高)的高度之比,雕像的下部BC的长应设计为多少米?【解答】解:设下部应设计为x米,则上部的长度为(2﹣x)米,根据题意得,,整理得,x2+2x﹣4=0,解得,x1=﹣1+,x2=﹣1﹣(舍去),所以,雕像的下部应设计为(﹣1+)米.19.(10分)如图,在正方形ABCD中,点Q在BC上,且BQ=BC,点M是CD 边的中点.(1)求证:△MCQ∽△ADM.(2)计算tan∠MAQ的值.【解答】(1)证明:∵BQ=BC,点M是CD边的中点,四边形ABCD为正方形,∴CQ=BC,CM=DM=BC,∴==.∵∠C=∠D=90°,∴△MCQ∽△ADM.(2)解:设正方形ABCD的边长为a.∴MQ==a,AQ==a,AM==a.∵(a)2+(a)2=(a)2,即MQ2+AM2=AQ2,∴∠AMQ=90°,∴tan∠MAQ==.20.(10分)如图,已知反比例函数y=(k≠0)的图象与一次函数y=k′x+b(k′≠0)的图象相交于A和B两点.(1)求反比例函数和一次函数的表达式;(2)观察两函数在同一坐标系中的图象,直接写出关于x的不等式<k′x+b的解集.(3)求△AOB的面积.(其中O为坐标原点)【解答】解:(1)把A(2,2)代入反比例函数y=(k≠0),kdk=2×2=4,∴反比例函数的表达式为y=;把A(2,2),B(4,1)代入一次函数y=k′x+b(k′≠0),可得,解得,∴一次函数的表达式为y=﹣x+3;(2)由图可得,不等式<k′x+b的解集为x<0或2<x<4.(3)在y=﹣x+3中,令y=0,则0=﹣x+3,解得x=6,∴C(6,0),=S△AOC﹣S△BOC∴S△AOB=×6×2﹣×6×1=6﹣3=3.四、填空题(每小题4分,共20分)21.(4分)已知x1,x2是方程2x2﹣5x+3=0的两根,则x1+x2﹣x1•x2=1.【解答】解:∵x1,x2是方程2x2﹣5x+3=0的两根,∴x1+x2=,x1•x2=,∴x1+x2﹣x1•x2=﹣=1,故答案为:1.22.(4分)如图,一次函数y=﹣x+6的图象与x,y轴分别交于点A,B,线段AB的中点P在y=的图象上,则k=6.【解答】解:对于一次函数y=﹣x+6,当x=0时,y=6,则有B(0,6),OB=6;当y=0时,﹣x+6=0,解得x=4,则有A(4,0),OA=4.∴线段AB的中点P坐标为(,)即(2,3).∵P在反比例函数y=的图象上,∴k=xy=2×3=6,∴k的值为6;故答案为6.23.(4分)从﹣3,﹣2,﹣1,0,3这五个数中任意取出一个数记作m,则能使函数y=(5﹣m2)x的图象经过第一、第三象限,而且关于x的一元二次方程x2+mx+m+1=0有实数根的概率.【解答】解:这5个数中能使函数y=(5﹣m2)x的图象经过第一、第三象限的有﹣2、﹣1、0这3个数,∵关于x的一元二次方程x2+mx+m+1=0有实数根,∴m2﹣4(m+1)≥0,能满足这一条件的有﹣3、﹣2、﹣1这3个,∴能同时满足这两个条件的只有﹣2、﹣1这2个数,∴此概率为,故答案为:24.(4分)如图①,将矩形ABCD沿DE折叠,使顶点A落在DC上的点A′处,然后将矩形展平,沿EF折叠,使顶点A落在折痕DE上的点G处,再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处,如图②,若AF=,则AD=+2,AB=2+2.【解答】解:∵∠ADE=45°,∠FGE=∠A=90°,AF=,∴DG=,DF=2,∴AD=AF+DF=+2;由折叠知∠AEF=∠GEF,∠BEC=∠HEC,∴∠GEF+∠HEC=90°,∠AEF+∠BEC=90°,∵∠AEF+∠AFE=90°,∴∠BEC=∠AFE,在△AEF与△BCE中,,∴△AEF≌△BCE(AAS),∴AF=BE,∴AB=AE+BE=+2+=2+2.故答案为:+2;2+2.25.(4分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b=0;③当m≠1时,am2+bm<a+b;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2且x1≠x2,则x1+x2=2.上述结论中所有正确是②③⑤.(填序号)【解答】解:∵抛物线开口向下,∴a<0,∵抛物线对称轴为直线x=﹣=1,∴b=﹣2a>0,即2a+b=0,所以②正确;∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵抛物线对称轴为直线x=1,∴函数的最大值为a+b+c,∴当m≠1时,a+b+c>am2+bm+c,即a+b>am2+bm,所以③正确;∵抛物线与x轴的一个交点在(3,0)的左侧,而对称轴为直线x=1,∴抛物线与x轴的另一个交点在(﹣1,0)的右侧∴当x=﹣1时,y<0,∴a﹣b+c<0,所以④错误;∵ax12+bx1=ax22+bx2,∴ax12+bx1﹣ax22﹣bx2=0,∴a(x1+x2)(x1﹣x2)+b(x1﹣x2)=0,∴(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,∴a(x1+x2)+b=0,即x1+x2=﹣,∵b=﹣2a,∴x1+x2=2,所以⑤正确.综上所述,正确的有②③⑤.故答案为:②③⑤.五、解答题(共30分)26.(8分)提高城市内过江(河)大桥的车辆通行能力可改善整个城市的交通情况,一般情况下,桥上汽车的车速是v(单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度大于200辆/千米,造成堵塞,车流速度为0;当车流密度不超过20辆/千米,车速度为60千米/小时.经研究表明:当桥上车流速度x满足20≤x≤200时,v是x的一次函数,当0≤x ≤200,v与x的函数关系如图所示.(1)求当0≤x≤200时,v与x之间的函数关系式;(2)车流量是指单位时间内通过某观察点的车辆数,计算公式为:车流量=车速度×车流密度,现设车流量为y,写出y与x之间的函数关系式,并求当x为多大时,y的值取到最大?【解答】解:(1)当0≤x<20时,v=60,当20≤x≤200时,设v=kx+b,把(20,60)(200,0)代入得:,解得.当20≤x≤200时,大桥上的车流速度v与车流密度x的函数关系式为:v=﹣x+;(2)当0≤x≤20时y=60x 当x=20时y最大为1200辆;当20<x≤200时y=x•v=﹣x2+x=﹣(x﹣100)2+,当x=100时,y最大为3333辆.因为3333>1200,所以当x=100时,y最大为3333辆.27.(10分)在△ABC中,点D在BC上,满足∠CAD=30°,AD=2,BD=2DC.(1)如图1.若∠BAD=75°,过点C作AB的平行线交AD的延长线于点E,①∠ACE的度数是75°:(直接写出结果)②求AC的长.(2)如图2,点E在AD的延长线上,连接CE,若∠BAD=90°,∠ACE=75°,求BE的长.【解答】解:(1)①∵CE∥AB,∴∠E=∠BAD=75°,∴∠ACE=180°﹣∠CAD﹣∠E=180°﹣75°﹣30°=75°,故答案为:75;②∵∠E=75°,∴∠ACE=∠E,∴AC=AE,∵CE∥AB,BD=2DC,∴AD=2DE,∴DE=1,∴AE=3,∴AC=3;∴AD=2DE,∴AE=AD+DE=3,∴AC=AE=3;(2)过点C作CF⊥DE于点F.∵∠BAD=∠CFD=90°,∴AB∥CF,∴△ADB∽△FDC,∴===2,∵AD=2,∴DF=1,AF=3,在Rt△ACF中,∵∠CAF=30°,∴CF=,AC=2CF=2,∵∠ACE=75°,∴∠AEC=180°﹣30°﹣75°=75°,∴∠ACE=∠AEC,∴AE=AC=2,∵AB=2CF=2,在Rt△ABE中,BE=2.28.(12分)如图,二次函数y=ax2+bx+4的图象与x轴交于点A,B,(点A在x轴的负半轴,点B在x轴的正半轴),与y轴交于点C,∠ACB=90°,tan∠BAC=.(1)求点C的坐标;(2)求二次函数的表达式;(3)若点P是抛物线在第二象限的部分上的一个动点,问是否存在这样的点P,使得四边形PABC的面积最大?若存在,求出点P的坐标并求出此时四边形PABC的面积,若不存在,请说明理由.【解答】解:(1)在y=ax2+bx+4中,令x=0可得y=4,∴C(0,4);(2)∵∠ACB=90°,∴∠ACO+∠BCO=∠ACO+∠CAO=90°,∴∠BAC=∠BCO,∴tan∠BAC=tan∠BCO=,∴==,解得OA=8,OB=2,∴A(﹣8,0),B(2,0),代入二次函数解析式可得,解得=,∴二次函数解析式为y=﹣x2﹣x+4;(3)存在.理由如下:过P作PD垂直x轴,交AC于点D,设直线AC解析式为y=kx+b′,把A、C两点坐标代入可得,解得,∴直线AC解析式为y=x+4,∵点P是抛物线在第二象限的部分上的一个动点,∴可设P(t,﹣t2﹣t+4),其中﹣8<t<0,则D(t,t+4),∴PD=﹣t2﹣t+4﹣(t+4)=﹣t2﹣2t,=PD•OA=×8(﹣t2﹣2t)=﹣t2﹣8t,∴S△APC∵AB=2+8=10,OC=4,=×10×4=20,∴S△ABC=S△APC+S△ABC=﹣t2﹣8t+20=﹣(t+4)2+36,∴S四边形ABCP∵﹣1<0,∴当t=﹣4时,S有最大值,最大值为36,此时P点坐标为(﹣4,6),四边形ABCP即存在使四边形ABCP面积最大的点P,P点坐标为(﹣4,6),四边形ABCP的面积最大值为36.。