合蕊五味子中两个新的三萜内酯及其在生物合成途径中的意义(英文)
五味子
五味子挥发油中含量最为丰富的就是倍半萜类,而挥发油又在其果实以及种子里广泛存在。
三萜主要源自于角鲨烯的生物源萜类化合物,以碳骨架作为基本骨架,母核包含了30个碳原子,绝大多数的三萜化合物均是通过六类异戊二烯单体相互连接所得,存在30个碳原子。
基于结构层面上来进行分析,能够了解到在对三萜进行划分之时能以碳环数量为标准,五环三萜延长四环三萜在三萜中相对常见,而链、单环以及三环结构的三萜相对较少。
这之中羊毛脂、环阿屯、达玛烷型等构成了四环三萜;,何帕烷、齐墩果烷、羽扇豆烷、乌苏烷等构成了五环三萜。
含有三萜的物质不在少数,蕨类植物、真菌、海洋生物、动物、植物等皆有存在。
一般情况下,生物体之中,三萜就是以糖苷、醚、酯或游离而存在。
若是三萜为游离状态,其溶水性叫啥,不过部分组成可以溶于有机溶剂。
水溶液能够溶解大部分的三萜苷类。
这之中三萜皂苷现象较为典型,即为三萜皂苷水溶液,受到摇动作用后,能够产生很多皂状泡沫。
植物界中,含有三萜类化合物的植物叶不在少数,这之中单子叶以及双子叶植物最具代表性。
不少学者将多种类别植物中的三萜作为研究对象展开深入分析,结果显示,双子叶植物纲中的在六个亚纲存在三萜,各自是石菊亚纲、竹亚纲、五桠果亚纲、金缕梅亚纲、蔷薇亚纲、木兰亚纲覆盖了超过两百种植物,而单子叶植物纲中的三个亚纲存在三萜,具体有五十多种。
而动物之中也存在大量的三萜类化合物,比如分离羊毛脂而获取到的羊毛脂醇。
除此以外,三萜类化合物在部分海洋生物以及真菌中也有所体现。
由于结构复杂程度较高,想要对三萜类化合物加以分离以及解析在技术层面上难度较大,始终是自然产物化学领域的研究要点。
而上世纪八十年代之后,有关于三萜化合物结构方面的研究日趋深入,加之分离纯化以及波普技术的持续完善发展,众多全新三萜类化合物被发现,研究也迈入了全新的阶段。
有关于新三萜类化合物的结构研究,重点聚焦于氧化、降解、重排等而产生的存在复杂结构的高度氧化的新骨架类三萜化合物。
五味子科植物三萜类化学成分研究进展
16 17 18
19
HP"唧|iIaja咖ne HetrfocIital卵咖e
Ⅳ.触f删所(茎) 尼kk删fJf(茎)
耳.肚If,p印n研,“(茎)
5 s 10 11 12 1z 13 13 13 13 9 9 9 9 9 14 15 15 7 16 16 16 16 17 17 1B 19 19 20 20 2l 2l 2l 8 8 8 8 2z 22 2z 22 22 22 23 23 23 23 23 23 23 船 ∞ Z3
丘眦r栅(茎)
尼mm胧(茎) 尼∞“i删(茎) 尼吖fj枷(茎)
wu-出止Ia㈣e H
wuw枥击kcIo肿G
Hm耐dacto眦D
07
S击I概琊(茎)
S^册州锄rtk^加栅止(茎) S腑甩山(茎) S腑,n‘^口(茎) S麻叫h(茎)
S丘盯,向舶(茎) S血耵Ⅳ拍口(茎)
K蜘h咖肥0
C30 H38 07
C30地。研
c30 H40()8
五味子科植物中三萜类化学成分
-基金项目:国家I={然科学基金(30800835)
万方数据
壹墨堑皇:Q坐丝!!竺型生丝!墨丝!!丝旦2丝!:丝:型!:卫
生号
15
・675・
化台物名称
KadoDcciIac∞ne R
分子量
486 D E 522 538 48z 522 482 480 508
494
分子直
S詹”啊硼,’钿月加册_厶(茎)
S册c甩』缸(茎)
KadJon画lacIo眦B
Kadbnobcto耻C
C30 H36‰ C31
H40仉
S血雕m“d(茎)
煳b叩lac£oncD
三萜类化合物详解.ppt
glc-glc-o
罗汉果甜素V
中药罗汉果中的成分,味甜,0.02 %的溶液比蔗糖甜256倍。可作调 味剂。
15
五、原萜烷型(protostane)
HO
H O
H
OH OH
OH
结构特点:
①10β-CH3 ,14β-CH3,8αCH3。
② C-20 为S构型。
HO
H O
H
O OH
泽泻萜醇A、B具有降低血 清总胆固醇的作用。
③ 17-а侧链,C-20 为S构型。
19 1
H
10 H
4
H6
29
28
21
20 18
23
17
14
30
euphane
26 25
27
11
三、达玛烷型 (dammarane)
达玛烷型四环三萜是由环氧鲨烯全椅式构象形成,其结构特点: ① 8位有角甲基,且为β-构型 ② 13位连有β-H,10位有β-CH3 ③ 17位有β-侧链 ④ C-20构型为R或S
羊毛脂烷型四环三萜是环氧鲨烯经椅-船-椅构象式环合而成。 其结构特点: ① A/B,B/C,C/D环均为反式 ② 17-β侧链,C-20为R构型 ③10,13,14位分别连有β,β,α-CH3
21
18 20
23
12
17
1 19
H
10 H
4
H6
29
28
13
15 30
26 25
27
lanostane
16
六、楝烷型 (meliacane)
楝科楝属植物苦楝果实及树皮中含多种三萜成分,具苦味,总 称为楝苦素类成分(meliacins),其由26个碳构成,属于楝烷型。
华中五味子抗氧化和细胞毒活性研究_英文_
天然产物研究与开发Nat Prod Res Dev 2006,18:85287文章编号:100126880(2006)0120085203 Received M arch 31,2005;Accepted June 21,2005 Fundation Item :National Natural Science F oundation of China (N o.3001161940)3C orresponding author E 2mail :dugh @华中五味子抗氧化和细胞毒活性研究黄 锋1,2,许利嘉1,杜冠华23,肖培根1(1.中国协和医科大学中国医学科学院药用植物研究所,北京100094;2.中国协和医科大学中国医学科学院药物研究所,北京100050)摘 要:我们研究了华中五味子的根、茎、叶、果实乙醇提取物对脂性自由基DPPH 及超氧阴离子的清除作用,同时观察了四种不同提取物在体外对肿瘤细胞株的细胞毒作用。
我们发现,华中五味子根的乙醇提取物清除自由基活性和对肿瘤细胞杀伤作用比茎、叶和果实的提取物都强,研究结果提示华中五味子的根可以作为抗氧化剂的新来源。
关键词:华中五味子;抗氧化;细胞毒作用中图分类号:R285;Q946.91文献标识码:AIn vitro Antioxidative and Cytotoxic Activities of Schisandrasphenanthera R ehd.et WilsH UANG Feng 1,2,X U Li 2jia 1,DU G uan 2hua 23,XI AO Pei 2gen 1(1.Institute o f Medicinal Plant Development ,Chinese Academy o f Medical Sciences and Peking Union Medical College ,Beijing 100094,China ;2.Institute o f Materia Medica ,Chinese Academy o f Medical Sciences and Peking Union Medical College ,Beijing 100050,China )Abstract :The in vitro antioxidative and cytotoxic activities of the ethanol extracts of Schisandra sphenanthera Rehd.et Wils leaves ,stems ,roots ,and fruits were evaluated.The antioxidative activity of the extracts was assessed by means of tw o tests :bleaching of DPPH free radical and superoxide anions scavenging assay.The cytotoxic activities were tested by MTT assay.In both tests root extract showed a significant antioxidative effect.The extract of roots als o dem onstrated cytotoxic activity against tum or cell lines.K ey w ords :Schisandra sphenanthera Rehd.et Wils.;antioxidative ;cytotoxicityI ntroductionThe fruits of Schisandra sphenanthera Rehd.et Wils (S.sphenanthera )and S.chinensis Baill (Schisandraceae )have long been used as an antitussive ,tonic and sedative agent in China under the name of Wuweizi [1].It has been shown they are effective in reducing the level of G PT (glu 2tamic pyruvic transaminase ),and used for the treatment of chronic hepatitis and liver cirrhosis [2].Its antioxidative activities against oxygen free radicals w ould be of im por 2tance in the protection and repair of the injured liver cells [3].T o our knowledge ,no previous studies on the an 2tioxidative and cytotoxic effects of ethanol extracts from different organs of S.sphenanthera have been carried out.This study intended to investigate the antioxidative and cytotoxic activities of ethanol extracts from the fruits ,stems ,leaves and roots of S.sphenanthera .Materials and MethodsP lant m aterialThe stems ,roots ,fruits and leaves of S.sphenanthera were collected (July ,2002)in Shennongjia district ,Hubei Province ,the People ’s Republic of China ,and authenti 2cated by Profess or Peigen X iao.A v oucher specimen (200207)was deposited in the Herbarium of the Institute of Medicinal Plant Development ,Chinese Academy of Medical Sciences and Peking Union Medical C ollege ,Chi 2na.ExtractionThe air 2dried fruits (200g ),stems (100g ),roots (80g )and leaves (50g )of S.sphenanthera were finely ground and extracted with 95%E tOH under reflux at 100℃for three times (2h each time )to yield corresponding extract :25.3g from fruits (12.7%);11.9g from stems (1119%);9.1g from roots (11.4%)and 5.2g from leaves (10.4%).DPPH radical 2scavenging activity assayThe DPPH (1,12diphenyl 222picrylhydrazyl )radical 2scav 2enging assay was carried out according to the procedure described previously with a slight m odification[4]. Methanol s olution of DPPH has an abs orbance at517nm, which disappears upon reduction by an antiradical com2 pound.An aliquot(10μL)of the MeOH s olution contain2 ing different am ount of the extracts was added into190μL of freshly prepared DPPH s olution(6.5×1025m ol/L,in MeOH),and Salvianolic acid A was used as positive con2 trol.Abs orbance of DPPH at517nm was measured on a Z enyth200UV2Vis spectrophotometer at30min after starting the reaction.The percentage of scavenging DPPH was calculated as follows:Percentage of scavenging(%)=(A blank-A sam ple)/A blank×100% Superoxide anions scavenging assayT o prove the free radical scavenging effect of the extracts, the chemiluminescence intensity of the superoxide anions was measured.The superoxide anions were generated in the non2enzymatic system phenazine methosulfate/reduced beta2nicotinamide adenine dinucleotide(PMS/NADH)[5]. Using luminol chemiluminescence system[6],under the optimum luminance conditions of pH8.91,the superoxide anion free radicals were measured.The production and measurement of superoxide anions by PMS/NADH/Lumi2 nol system was performed according to the reported proce2 dures[7],with slight m odifications:PMS(10μm ol/L)was added into the reaction mixture containing NADH(78μm ol/L),luminol(100μm ol/L),extracts investigated and dis odium tetraborate decahydrate(borax)/HC L bu ffer (0105m ol/L,pH8.91)to initiate the reaction.The chemiluminescence intensity(count per second,CPS)was immediately measured on T opcount microplate scintillation and luminescence counter at19.1℃.Cytotoxic activities by MTT assayThis assay was performed according to the procedure re2 ported by Carmichael[8]with a slight m odification.The cells were maintained in RPMI21640medium with10% fetal bovine serum,100U/m L penicillin and100μg/m L streptomycin in a C O2incubator in humidified atm osphere with5%C O2at37℃.Cells in exponential growth phase were harvested,seeded at a cell density of1×104cells/ well in962well plate and incubated to allow for cell at2 tachment.A fter24h the cells were treated with the serial concentrations of the extracts,with52fluoro22,4(1H,3H) pyrimidinedione(52FU)as positive control.A fter72h of treatment,the medium containing0.5mg/m L of MTT [3′2(4,52dimethylthiazol222yl)22,52diphenyl tetrazolium bromide]was added into each well,and further incubated for4h.The cells from each well were diss olved with150μL DMS O for optical density measurement at540nm.R esultsDPPH scavenging activityThe four extracts showed a significant free radical scav2 enging effect at30min with a concentration2dependent manner.The free radical scavenging effect of the root ex2 tracts is significant than those of other extracts(T able1). T able1 In vitro DPPHand superoxide anion scavenging activ2 ity of four extracts3ExtractsAntioxidative activities(IC50)DPPH Superoxide anion R oots56.17±0.3011.39±0.36S tems73.74±4.9156.01±1.13Fruits203.95±22.4278.65±4.37Leaves140.72±16.3086.11±4.32 Salvianolic acid A112.20±0.31110.22±0.01 3Values are presented as mean IC50(μg/m L)of five independent exper2 iments±standard deviation.Superoxide anions scavenging activityThe influences of the four extracts on chemiluminescence kinetics were observed in PMS/NADH/Luminol system. The four extracts showed superoxide anion scavenging ac2 tivities in a dose dependent manner,and root extracts show m ore potent scavenging effect than other extracts(T able 1).Cytotoxic activityAll extracts could inhibit the proliferation of the tested cell lines in a concentration2dependent manner.The root extract possesses stranger cytotoxic effect on the cancer cell lines than other extracts(T able2).T able2 In vitro cytotoxic activity of four extracts on tumor cell lines3ExtractsCytotoxic activities(IC50)Hep G2BE L27402HCT28R oots78.66±4.8669.36±5.8819.11±2.20S tems343.16±9.59702.38±55.74333.12±7.67 Fruits249.13±11.86288.12±8.92188.07±22.34 Leaves272.58±25.46345.12±26.95159.38±10.64 52FU 0.63±0.05 0.51±0.07 0.83±0.09 3Data shown are the mean IC50(μg/m L)of five independent experi2 ments±S D.Discussion and ConclusionsFree radicals have aroused significant interest am ong sci2 entists in the past decade.Their broad range of effects in biological systems has drawn on the attention of many ex2 perimental w orks.Different synthetic antioxidants have shown side effects.Thus the attention was shifted onto the naturally occurring antioxidants.S.sphenanthera has been used formally as an efficient herbal drug in China.The ex268Nat Prod Res Dev V ol118tracts of different parts of this plant showed radical scav2 enger effects on DPPH and superoxide anion.The root ex2 tract showed higher activity in all experiments than those of the fruits,stems,and leaves extract.The extract from roots of S.sphenanthera has antioxida2 tive activity,indicating its effectiveness in diseases caused by overproduction of radicals.Therefore it could be a new s ource of natural antioxidants.R eferences1 Ikeya Y,Sugama K,Okada M,et al.The constituents of Schisandra species.Part17l.T w o lignans from Schisandra sphenanthera.Phytochemistry,1991,30:9752980.2 Liu JS,Fang S D,Huang MF,et al.S tudies on the active princi2 ples of Schisandra sphenanthera Rehd.et Wils.The structures of schisantherin A,B,C,D,E,and the related com pounds.Sci Sin,1978,21:4832502.3 Liu G T.Pharmacological actions and clinical use of fructus schizandrae.Chin Med J(Engl),1989,102:7402749.4 Aquino R,M orelli S,Lauro MR,et al.Phenolic constituents and antioxidant activity of an extract of Anthurium ver sicolor leaves.J Nat Prod,2001,64:101921023.5 P onti V,Dianzani M U,Cheeseman K,et al.S tudies on the re2 duction of nitroblue tetrazolium chloride mediated through the action of NADH and phenazine methosulphate.Chem Biol In2 teract,1978,23:2812291.6 Y ang XY,Wang Y R,Chen J Z,et al.E ffects of potassium s or2 bate on scavenging O22・free radical.Acta Sci Nat Univ Nei Mongol,1998,29:3302333.7 K ang J H,Zhang Y L,Wang Q.E ffects of oxaphenamidi on oxy2 gen free radical and the oxidative hem olytic in erythrocytes.Mod Appl Pharm,1997,14(1):8210.8 Carmichael J,DeG raff WC,G azdar AF L.Evaluation of a tetra2 zolium2based semiautomated colorimetric assay:assessment of chem osensitivity.Cancer Res,1987,47:9362942.(上接第64页)4 Schoeneborn R,Mues R.Flav one di2C2glycosides from Pla2 giochila jamesonii and Plagiochasma rupestre.Phytochemistry, 1993,34:114321145.5 Leitao SG,K applan M AC,Phenylpropanoid glucosides from Aegiphila obducta.J Nat Prod,1994,57:170321707.6 Calis I,Lahloub MF,R ogenm oser E,et al.Is omartynoside,a phenylpropanoid glycoside from Galeopsis pubescens.Phyto2 chemistry,1984,23:231322315.7 Calis I,H osny M,K halifa T,et al.Phenylpropanoid glycosidesfrom Marrubium alsson.Phytochemistry,1992,31:362423626. 8 M iyase T,K oizumi A,Ueno A,et al.S tudies on the acyl glyco2 sides from Leucoseptrum japonicum(M iq.)K itamura et Mura2 ta.Chem Pharm Bull,1982,30:273222737.9 Endo K,T akahashi K,Abe T,et al.S tructure of forsythoside B, an antibacterial principle of For sythia koreana stems.Heterocy2 cles,1982,19:261.10 Y u DQ(于德泉),Y ang JS(杨峻山).Handbook of Analytical Chemistry,Ed.2,N o.7:NMR S pectroscopy Analysis.Beijing: Chemical Industry Press,1999.69,591.78V ol118HUANG Feng et al.;In vitro Antioxidative and Cytotoxic Activities of Schisandra sphenanthera Rehd.et W ils 。
三萜皂苷生物合成机制
三萜皂苷生物合成机制三萜皂苷是一类重要的天然产物,具有广泛的生物活性和药理作用。
它们在植物中广泛存在,尤其是在一些草药中含量较高。
三萜皂苷的生物合成机制一直是科学家们关注的研究领域之一。
三萜皂苷的生物合成机制可以分为两个主要步骤:前体合成和后期修饰。
前体合成是指通过一系列酶催化反应将简单的原料转化为三萜骨架结构的过程。
后期修饰则是在三萜骨架形成后,通过一系列酶催化反应对其进行修饰,形成最终的三萜皂苷产物。
在前体合成过程中,最关键的步骤是通过异戊二烯脱氢酶催化反应将异戊二烯转化为萜烯骨架。
这个步骤由多个酶参与,其中最重要的是异戊二烯脱氢酶。
该酶能够催化异戊二烯的脱氢反应,生成萜烯骨架的中间产物。
这个中间产物随后会经过一系列的酶催化反应,最终形成三萜骨架结构。
在后期修饰过程中,最关键的步骤是通过糖基转移酶催化反应将糖基添加到三萜骨架上。
这个步骤由多个酶参与,其中最重要的是糖基转移酶。
该酶能够催化糖基的转移反应,将糖基添加到三萜骨架上的特定位置。
这个糖基的添加可以改变三萜皂苷的生物活性和药理作用。
除了前体合成和后期修饰,三萜皂苷的生物合成还受到一系列调控因子的影响。
这些调控因子包括基因表达调控、信号转导通路和环境因素等。
通过调控这些因子,可以调节三萜皂苷的合成量和种类,从而实现对植物的适应和保护。
总的来说,三萜皂苷的生物合成机制是一个复杂而精细的过程。
通过研究这个机制,可以深入了解三萜皂苷的生物活性和药理作用,为药物研发和植物保护提供理论基础。
未来的研究还需要进一步揭示三萜皂苷生物合成的分子机制,以及如何通过调控这个机制来提高三萜皂苷的产量和质量。
黄棉木中两个新的三萜类化合物
张玉梅,(中国科学院昆明植物研究所植物化学与西部植物资源持续利用国家重点实验室,云南昆明650204)摘要:从黄棉木(M etadina trichotoma(Zoll .et.Mor .)Bakn .)树皮中分离得到2个新的三萜类化合物:3-oxo -29-hydroxy -urs -12-en -27,28-dioic acid (黄棉木素A ,和3-oxo -21β-hydroxy -urs -12-en -27,28-dioic acid (黄棉木素B ,。
其结构主要通过MS ,1D 以及2D N MR 等波谱方法鉴定。
关键词:黄棉木;茜草科;三萜;黄棉木素A ;黄棉木素B中图分类号:Q 946 文献标识码:A 文章编号:0253-2700(2006)06-673-03ZHANG Yu -Mei ,TAN Ning -Hua**(State Key Laboratory of Phytochemistry and Plant Resources in West China ,Kunming Institute of Botany ,Chinese Academy of Sciences ,Kunming 650204,China )T wo new triterpenes ,3-oxo -29-hydroxy -urs -12-en -27,28-dioic acid (Metatrichosin A ,)and 3-oxo -21β-hydroxy -urs -12-en -27,28-dioic acid (Metatrichosin B ,,were isolated fro m the barks of Metadina trichotoma (Zoll .et .Mor .)Bakn .Their structures were mainly determined by MS ,1D and 2D N MR spectroscopic methods .Metadina trichotoma ;Rubiaceae ;Triterpenes ;Metatrichosin A ;Metatrichosin B Metadina trichotoma (Zoll .et .M or .)Bakn .belongs to the Rubiaceae and is a unique species in the genus Metadina ,which is distributed in Southwest of China ,Vietnam ,and India etc .(Delectis Florae Reipublicae Popularis Sinicae Agendae Academiae Sin -icae Edita ,1999).Up to now ,there is no any report on its chemical constituents .We found its methanol extracts showed inhibitory activity on cathepsin B (IC 50=0.77in our random screening on the crude extracts of some plants in Yunnan province .In order to seek more novel bioactive compounds ,we carried out extensive chemical and biological studies on the barks of M .trichotoma .In this paper ,we described the isolation and structural elucidation of two new trit -erpenes (Figure 1)from this plant .Fig .1 Structures of and 云南植物研究 2006,28(6):673~675Acta Botanica YunnanicaTo whom correspondence should be addressed .Tel :+86-871-5223800,Fax :+86-871-5223800. E -mail :nhtan @mail .kib .ac .cnReceived date :2006-06-20,Accepted date :2006-09-18作者简介:张玉梅(1973-)女,博士,主要从事植物化学与活性成分研究。
倍半萜与三萜
倍半萜与三萜倍半萜与三萜是一类重要的天然有机化合物,广泛存在于植物界中。
它们具有丰富的化学结构和多样的生物活性,对人类健康和药物研发具有重要意义。
本文将详细介绍倍半萜与三萜的定义、分类、生物合成途径、生物活性以及在药物研发中的应用等方面的知识。
倍半萜(Diterpenes)是由四个异戊二烯单元组成的天然有机化合物。
根据其碳骨架的不同,倍半萜可分为环倍半萜和链倍半萜两大类。
环倍半萜具有环状结构,如紫杉醇等;链倍半萜则是由直链或支链组成,如毛果芸香素等。
倍半萜在植物中起到了抗菌、抗真菌、抗肿瘤等多种生物活性作用。
三萜(Triterpenes)是由六个异戊二烯单元组成的天然有机化合物。
根据其碳骨架的不同,三萜可分为五环三萜和六环三萜两大类。
五环三萜具有环状结构,如甾醇类化合物;六环三萜则是由直链或支链组成,如皂苷类化合物。
三萜在植物中具有降血脂、抗炎、抗氧化等多种生物活性作用。
倍半萜和三萜的生物合成途径有所不同。
倍半萜的生物合成途径主要包括异戊二烯单元的合成和倍半萜骨架的构建两个步骤。
异戊二烯单元的合成涉及到异戊二烯酸的合成和异戊二烯酸的转化等过程;倍半萜骨架的构建则通过酶催化反应完成。
而三萜的生物合成途径主要包括异戊二烯单元的合成和三萜骨架的构建两个步骤。
异戊二烯单元的合成与倍半萜相似,而三萜骨架的构建则通过多次氧化和还原反应完成。
倍半萜和三萜在植物中具有丰富的生物活性。
倍半萜在抗菌、抗真菌、抗肿瘤等方面表现出较强的活性。
其中,紫杉醇是一种重要的倍半萜类化合物,具有抗肿瘤活性,已经被广泛应用于临床治疗。
而三萜在降血脂、抗炎、抗氧化等方面表现出较强的活性。
其中,皂苷类化合物是一类重要的三萜类化合物,具有降血脂活性,被广泛应用于心血管药物研发。
倍半萜和三萜在药物研发中具有广阔的应用前景。
倍半萜类化合物作为抗肿瘤药物已经取得了很大的成功,紫杉醇是其中最具代表性的一种。
此外,倍半萜类化合物还具有抗菌、抗真菌等多种活性,可以应用于抗感染药物的研发。
三萜皂苷合成途径
三萜皂苷合成途径
三萜皂苷是一类天然产物,具有广泛的生物活性和药理作用。
它们被广泛应用于医药、化妆品和食品等领域。
本文将介绍三萜皂苷的合成途径,包括植物提取法、化学合成法和生物转化法。
一、植物提取法
植物提取法是最常用的三萜皂苷合成途径之一。
许多植物含有丰富的三萜皂苷,如人参、甘草、当归等。
通过对这些植物进行提取和分离纯化,可以得到高纯度的三萜皂苷。
植物提取法的优点是原料来源广泛,但存在提取效率低、成本高等问题。
二、化学合成法
化学合成法是一种人工合成三萜皂苷的方法。
根据三萜皂苷的结构特点,可以通过化学反应在实验室中合成目标化合物。
化学合成法的优点是可以得到高纯度的产物,但合成步骤繁多、操作复杂,且合成成本较高。
三、生物转化法
生物转化法是利用微生物或酶的代谢活性合成三萜皂苷。
通过对合适的微生物进行培养和发酵,可以利用其代谢途径合成目标化合物。
生物转化法的优点是反应选择性高、操作简单,但需要对微生物的培养条件和代谢途径进行深入研究。
三萜皂苷的合成途径包括植物提取法、化学合成法和生物转化法。
每种方法都有其优缺点,选择合适的合成途径取决于具体的需求和条件。
随着科学技术的不断进步,相信未来会有更多高效、低成本的三萜皂苷合成方法被开发出来,为三萜皂苷的研究和应用提供更多的可能性。
甘草中2个新三萜皂苷
n ・ b u t a n o l s u c c e s s i v e l y . T h e — b u t a n o l ra f c t i o n wa s i s o l a t e d b y s i l i c a g e l a n d ODS c o l u mn c h r o ma t o g r a p h y a n d p r e p a r a t i v e HP LC. T h e
・ 1 5 7 6・
中草焉 C h i n e s e T r a d i t i o n a l a n d He r b a l D r u g s 第4 6 卷 第l 1 期 2 0 1 5 年6 月
●
化 学成分 ●
甘草 中 2个新三萜皂苷
冷 晶 ,朱云祥 ,陈璐 琳 ,王 书芳
a n d r h i z o me o f G u r a l e n s  ̄ we r e e x t r a c t e d wi t h 9 5 % E t OH. T h e n t h e e x t r a c t wa s p a r t i t i o n e d wi t h p e t r o l e u m e t h e r , e t h y l a c e t a t e . a n d
DoI : 1 0 . 7 5 0 1 / j . i s s n . 0 2 5 3 - 2 6 7 0 . 2 0 1 5 . 1 1 . 0 0 2
Two ne w t r i t e r pe n o i d s a po ni ns f r o m r o o t s a nd r h i z o me s o f Gl yc y r r hi z a u r a l, Z HU Yu n - x i a n g , CHE N L u - l i n , W ANG S h u — f a n g
灵芝三萜合成途径
灵芝三萜合成途径灵芝是一种珍贵的药材,被誉为“神草”,在中医中有着广泛的应用。
其中,灵芝三萜是其主要有效成分之一,具有多种生物活性和药理作用。
本文将介绍灵芝三萜的合成途径。
灵芝三萜是一类具有特殊结构的三萜类化合物,其合成途径主要包括两个方面:生物合成和化学合成。
1. 生物合成灵芝三萜的生物合成途径主要通过植物体内酶促反应完成。
首先,从甘油磷酸途径中产生异戊二烯二磷酸(IPP)和二异戊烷基二磷酸(DMAPP),然后通过异戊烯基丙酮酸(MEP)途径转化为色氨酸。
接着,色氨酸通过苯丙氨酸途径转化为叶绿素,并在叶绿素环上发生氧化、羟基化、重排等反应形成多种前体物质。
最后,在多种酶催化下完成环加成、羟基化、去水等反应形成灵芝三萜。
2. 化学合成灵芝三萜的化学合成途径主要通过有机合成方法完成。
目前已经发展出多种不同的化学合成方法,包括环加成、羟基化、氧化等反应。
其中,最常用的是环加成反应,通过多种催化剂催化下,将烯烃与芳香环加成形成灵芝三萜。
此外,还可以通过羟基化反应和氧化反应等方法形成灵芝三萜。
总体来说,生物合成是灵芝三萜的主要合成途径,但由于其生产周期长、产量低等问题,目前仍然无法满足大规模生产需求。
因此,化学合成途径在近年来得到了广泛关注和研究,并取得了一定进展。
未来随着技术的不断发展和创新,相信会有更多高效、经济、环保的灵芝三萜合成方法被开发出来。
总之,灵芝三萜作为一种重要的药用活性物质,在医药领域有着广泛的应用前景。
对其合成途径进行深入研究和探索,将有助于提高其产量和质量,并为其在临床上的应用提供更加可靠的保障。
surfactin合成途径
surfactin合成途径Surfactin是一种高效、多功能的生物表面活性剂,具有广泛的应用领域。
它是由一种称为枯草杆菌(Bacillus subtilis)的细菌分泌的一类环肽类化合物。
Surfactin具有优异的表面活性、抗菌、抗氧化、抗肿瘤和降低血脂等多种生物活性。
由于这些独特的特性,Surfactin被广泛应用于农业、食品、医药和化妆品等领域。
Surfactin的合成途径主要包括两个步骤:蛋白质合成和丙酸酰载体的利用。
第一步是蛋白质合成。
Surfactin的合成起点是在细菌内部的蛋白质合成。
在摄取特定营养条件下,细菌将开始合成一种称为NRPS(非核糖体多肽合成酶)的酶复合物。
NRPS由多个域组成,每个域负责特定的功能。
在Surfactin的合成路径中,NRPS酶复合物由三个域组成,分别是脱氧谷氨酸酰化酶(DhaA)、乙酸载体(AcpP)和决定肽背骨的残基的氨基酸酰化酶(ThrS)。
第二步是丙酸酰载体的利用。
Surfactin的合成需要依赖一种称为ACP(acyl carrier protein)的载体分子。
这种载体分子可以承载丙酸酰基,并将其与NRPS酶复合物中的乙酸载体(AcpP)结合,在合成Surfactin的过程中起到媒介的作用。
具体而言,Surfactin的合成过程中,细菌首先将乙酸与丙酮酸进行反应,生成丙酸酰-ACP中间体。
然后在NRPS酶复合物的催化下,丙酰基与谷氨酸、鸟氨酸和谷氨酰-AMP(蛋氨酸酸化后与腺苷酸结合形成的中间体)进行酯化反应,最终得到Surfactin。
Surfactin的合成不仅受到蛋白质合成和丙酸酰载体的调控,还会受到一系列其他因素的影响。
例如,培养基成分的选择、温度、pH和氧气浓度等都会影响Surfactin的合成效率。
此外,利用基因工程技术也可以对Surfactin的合成途径进行改造,以增强其合成能力。
比如通过对NRPS酶复合物的基因进行改变,可以增加其对底物的亲和力,提高Surfactin的产量。
中药化学第八章 三萜类化合物
11 1
13 18
22
10
9
8
15
3
7
4
环的变化
取代基位置、构 型
齐墩果烷型 乌苏烷型 羽扇豆烷型 木栓烷型 羊齿烷型和异羊齿烷型 何帕烷型和异何帕烷型 其他类型
六、五环三萜
1. 齐墩果烷型(oleanane)
又称β-香树脂烷型(β-amyrane) ,在植物界分布极为广泛(豆科、五加 科、桔梗科、远志科、桑寄生科、木通科等)。 具有多氢蒎的基本母核; A/B , B/C, C/D环均为反式,D/E环为顺式; 母 型核 ;上C1有4上8的个甲甲基基为:C型4、;C20各有2个甲基;C8、C10、C17上的甲基均为 C基3多多在有C羟1基1;(羧多基为多在型C,28也、有C30型或)C2;4。双键多在C11(Δ11,12)/ C12(Δ12,13); 羰
四、三环三萜
lansioside A R=N-acetyl-β-D-glucosamine lansioside B R=β-D-glucose lansioside C R=β-D-xylose
五、四环三萜
多具有环戊烷骈多氢菲的基本母核 C17上有C8侧链 母核一般有5个甲基,分别位于C4、C10、C14、C8或C13
(S) ;14()-H。
21
22
18 12
20
23
11
19 1
C 9 13
17 D
15
3
A 4
10 H
B
8H
7
30
H
28 29
O
O OMe
H
O
O
OAc
H
1-methoxy-1,2dihydroepoxyazadione
天然产物化学全套 - 三萜类化合物的生物合成
第七章 三萜及其苷类
Natural Products Chemistry
30
11 1 25 9 5
H
30
19
H
29 20 17 16 22 28
18 14
H
26 10H 6 8
3 24
27
23
乌苏烷型(ursane)亦称a香树脂烷型
第七章 三萜及其苷类
Natural Products Chemistry
(2) 五环三萜
齐墩果烷型(oleanane) 乌苏烷型(ursane) 羽扇豆烷型(lupane) 木栓烷型(friedelane)
第七章 三萜及其苷类
Natural Products Chemistry
30 19
H
29 20 17 16 22 28
11 1 25 9 5 24 23 10 H
H
22
24 25 27
26
13 14 30
19 9 5
18
15
7
29
28
达玛烷型(dammarane) C8b -CH3 C13b -H ,C10β-CH3,C14 a-CH3, C17为b 侧链,C20为R或S构型
第七章 三萜及其苷类
Natural Products Chemistry
第七章 三萜及其苷类
21 18 11 1 3
HO
20 17
22
24 25 27
26
19 9 5 7
14 30
15
29
28
羊毛脂烷型(lanostane) A/B, B/C, C/D均反式构型, C10,13b -CH3,C14 a-CH3,C17为b 侧链,C20为 R构型
三萜类化合物详解.ppt
A HO
C B
蓍醇 B achilleol B
6
四环三萜
存在于天然界较多的四环三萜(tetracyclic triterpenoids) 或其皂苷苷元主要有:
达玛烷型 羊毛脂烷型 大戟烷型 葫芦烷型 原萜烷型 楝烷型 环菠萝蜜烷型(环阿屯烷)型
7
结构共同特点
1、具有环戊烷骈多氢菲的基本母核(17个碳原子)。
9
一、Lanostane
O O
COOH
灵芝为多孔菌科真菌赤芝的 干燥子实体。
O 具有补中益气、扶正固本、 延年益寿的作用
Lucidenic acid A
10
二、大戟烷型(euphane)
其结构特点: ① A/B,B/C,C/D环均为反式 ② 13,14位连的CH3与羊毛脂烷相反分别为α,β-CH3
30
二、化学性质
1、颜色反应 条件:三萜化合物在无水条件下。 试剂:
• 强酸(硫酸、磷酸、高氯酸) • 中等强酸(三氯乙酸) • Lewis酸(氯化锌,三氯化铝,三氯化锑)。 现象:会产生颜色变化或荧光。
31
原理
主要是使羟基脱水,增加双键结构,再经双键移位、 双分子缩合等反应生成共轭双烯系统,又在酸作用 下形成阳碳离子盐而呈色。
人参总皂苷 (无溶血现象)
反应常在蒸发皿中进行。
样品 浓H2SO4-醋酐 (醋酐) (1:20)
黄
红
紫
蓝
褪色
33
2、 五氯化锑反应(Kahlenberg反应)
将样品氯仿或醇溶液点于滤纸上,喷以20%五氯化锑的氯仿溶 液,该反应试剂也可选用三氯化锑饱和的氯仿溶液代替(不应 含乙醇和水),干燥后60~70℃加热,显蓝色、灰蓝色,灰紫 色等多种颜色斑点
Triterpenoidsandtriterpenoidsaponins
四、提取分离
(二)分离 4. 色谱法 a. 吸附色谱:固定相为中性氧化铝、硅胶,洗脱
剂为有机溶媒(极性较小、或中等极性皂苷)
b. 分配色谱,如反相HPLC、MPLC、ODS、纸 色谱(极性较大皂苷)、DCCC、HSCCC。
tirucallane
二、分 类(四环三萜)
从藤桔属植物 Paramignya monophylla 分得的成分如下
二、分 类(四环三萜)
d 环阿屯烷(环阿尔廷,cycloartane) 基本骨架与羊毛脂烷相似,差别:环阿屯
烷19位甲基与9位脱氢形成三元环。
cycloartane
二、分 类(四环三萜)
3. 掌握三萜类化合物的MS和NMR谱的特征。
本章内容
一、概 述 二、分 类 三、理化性质 四、提取分离 五、结构鉴定
一、概 述
1、三萜的定义:三萜(triterpenoids)是由6个
异戊二烯单位组成的 30个碳原子的萜类化合物。可以 游离状态或与糖结合成苷的形式存在,其苷类化合物 多数可溶于水,水溶液振摇后产生似肥皂水溶液样泡 沫,故被称为三萜皂苷(triterpenoid saponins)
20%五氯化锑
醇
Or三氯化锑/ CHCl3
60-70
蓝色、 灰蓝色、 灰紫色
三、理化性质
(二)、显色反应 3、三氯醋酸反应(Rosen-Heimer)
TLC 25%三氯醋酸/EtOH 由红变紫 PC
4、氯仿-浓硫酸反应(Salkowski ) 样品/CHCl3 浓H2SO4 CHCl3层(红、蓝色或 绿色荧光)
29 30
第七、八章 三萜和甾体091108
24 23
Oleananes
C3-β–OH, A/B,B/C,C/D均为反方式,D/E为顺式
三、五环三萜
油橄榄(Olea europaea):齐墩果酸
H
COOH
H
HO
H
Oleanolic acid
对肝损伤有一定的保护作用 可治疗肝炎
三、五环三萜
甘草(Glycyrrhiza uralensis):甘草次酸
子组成的萜类化合物,由6个异戊二烯缩合而成的, 该类化合物在自然界广泛存在,该苷类化合物多 数可溶于水,水溶液振摇后产生似肥皂水溶液样 泡 沫 , 故 被 称 为 三 萜 皂 苷 ( triterpenoid saponins),该类皂苷多具有羧基,所以有时又 称之为酸性皂苷。
一、 概述
三萜及其皂苷广泛存在于自然界、菌类、蕨类、 单子叶、双子叶植物、动物及海洋生物中均有分布, 尤以双子叶植物中分布最多。
从灵芝中分离得到的四环三萜化合物:
21
22
24
23
O
19 11 9
12 1820
H 13
17 14
16 O
2
1 3
5
10
H
8 7
O
4
6
H
15
O
30
OH
26
25 C O 2 H
27
29 28
Ganodenic acid C
扶正固本、延年益寿
三萜类的灵芝酸: 降低胆固醇,避免血 管硬化;强化肝脏、脾脏及肠胃功能、 健全消化器官的运作。
游离三萜主要来源于菊科、豆科、大戟科、楝科、 卫茅科、茜草科、橄榄科、唇形科等植物;
三萜皂苷在豆科、五加科、葫芦科、毛莨科、石 竹科、伞形科、鼠李科、报春花科等植物分布较多。
南五味子属植物三萜类化合物及其药理作用研究进展
南五味子属植物三萜类化合物及其药理作用研究进展
刘永蓓; 杨玉佩; 袁汉文; 李明姣; 邱伊星; Muhammad Iqbal CHOUDHARY; 王炜
【期刊名称】《《数字中医药(英文)》》
【年(卷),期】2018(001)003
【摘要】五味子科南五味子属植物在民间治疗类风湿性关节炎和胃肠疾病具有悠久历史,研究表明其主要活性成分为木脂素和三萜类化合物。
三萜类化合物是五味子科五味子属和南五味子属植物的主要差异性化学成分。
本文对近三十年(1987-2017年)南五味子属植物中的214种三萜类化合物的结构分类及其药理活性的研究进展进行了系统综述,以期为进一步的研究提供理论参考。
【总页数】12页(P247-258)
【作者】刘永蓓; 杨玉佩; 袁汉文; 李明姣; 邱伊星; Muhammad Iqbal CHOUDHARY; 王炜
【作者单位】中药民族药物创新发展实验室创新药物研究所湖南中医药大学药学院湖南长沙 410208 中国; H.E.J. Research Institute of Chemistry International Center for Chemical and Biological Sciences University of Karachi Karachi 75270 Pakistan
【正文语种】中文
因版权原因,仅展示原文概要,查看原文内容请购买。
灵芝三萜合成途径
灵芝三萜合成途径灵芝三萜是一类在灵芝中广泛存在的生物活性成分,具有多种药用价值。
灵芝三萜合成途径是指灵芝体内产生这些化合物的生物合成途径。
本文将围绕灵芝三萜合成途径展开讨论。
一、灵芝三萜的分类与生物活性灵芝三萜是指灵芝中具有三环结构的化合物,包括酸灵芝酮、灵芝醇等。
这些化合物具有广泛的生物活性,包括抗炎、抗肿瘤、抗氧化等作用。
其中,酸灵芝酮是灵芝中最具活性的成分之一,具有抗肿瘤、抗炎等多种生物活性。
二、灵芝三萜的生物合成途径灵芝三萜的生物合成途径是一个复杂的过程,涉及多个酶的催化作用。
根据研究,灵芝三萜的生物合成途径主要包括以下几个步骤:1. 异戊二烯酸的合成:灵芝体内首先通过异戊二烯酸合成途径合成异戊二烯酸,这是灵芝三萜合成的关键步骤之一。
2. 异戊二烯酸的转位反应:异戊二烯酸经过转位反应,生成枯草芽孢杆菌酮。
这个步骤是灵芝三萜合成途径中的另一个关键步骤。
3. 枯草芽孢杆菌酮的转化:枯草芽孢杆菌酮可以通过一系列酶的作用,转化为灵芝三萜的前体物质。
4. 灵芝三萜的后续合成:灵芝三萜的前体物质经过多个酶的作用,最终合成成灵芝三萜。
三、灵芝三萜合成途径的调控灵芝三萜合成途径的调控是灵芝体内合成这些化合物的关键。
研究表明,灵芝三萜的合成受到多个因素的调控,包括信号分子、基因表达等。
1. 信号分子的调控:灵芝体内的信号分子可以调控灵芝三萜的合成途径。
例如,一些激素和外源性物质可以通过调控相关酶的表达,影响灵芝三萜的合成。
2. 基因表达调控:灵芝三萜的合成还受到基因表达的调控。
研究表明,一些基因的表达水平与灵芝三萜的合成呈正相关。
四、灵芝三萜合成途径的应用灵芝三萜具有广泛的应用前景。
目前,人们已经成功地通过基因工程技术改造灵芝,提高了灵芝三萜的产量和品质。
这为灵芝三萜的工业生产提供了新的途径。
灵芝三萜还可以用于药物研发。
研究表明,灵芝三萜具有抗肿瘤、抗炎、抗氧化等多种生物活性,可以用于开发新的药物。
结语灵芝三萜合成途径是一个复杂而有趣的研究领域。
药用植物三七三萜合成途径功能酶特征与植物三萜合成通路分子进化
药用植物三七三萜合成途径功能酶特征与植物三萜合成通路分子进化三萜类物质是植物界一大类次生代谢产物, 广泛分布于各种植物中。
自然界中的菌类、蕨类、单子叶、双子叶植物和动物及海洋生物中皆有发现, 尤以双子叶植物中分布最多, 其中菊科、大戟科、楝科、卫矛科、茜草科、橄榄科、唇形科等植物中更为普遍, 具有重要的生物学意义。
药用植物中以五加科、豆科、桔梗科、远志科、伞形科、毛茛科三萜皂苷种类、含量十分丰富。
三萜皂甙呈现结构多变性及生物活性的多样性, 在植物中不仅可参与防御病原体和害虫的生理过程, 而且具有广泛的药理作用。
一些常用的中草药含丰富的三萜皂甙并作为这些中草药的主要有效成分。
这些中草药植物中的皂甙有些具有抗肿瘤、抗病毒、降低胆固醇、提高机体免疫能力等多种生物活性,有些则对心血管系统以及神经系统有重要药理作用, 均具有重要的药用商业价值。
植物三萜皂苷主要通过MVA的合成,经异戊二烯途径生成鲨烯,2,3氧化鲨烯的环化, 产生五环或四环三萜的骨架, 再经历各种修饰如氧化、取代和糖苷化, 受细胞色素P<sub>450</sub%赖的单加氧酶、糖苷转移酶及其他酶的催化。
随着模式植物拟南芥基因组、水稻基因组研究项目的完成, 对植物的功能基因的注释日益增多, 涉及植物三萜皂苷生物合成通路的各种酶基因克隆研究逐渐增加。
三七( Panax notoginseng )为五加科人参属多年生草本植物, 曾为广西特产药用植物之一。
目前已从三七分离出20 多种达玛烷型三萜皂苷, 其中主要成分与人参一致。
国内外对三七皂苷已作了广泛的药理研究, 证实三七皂苷是三七的主要有效成分, 具有很大的开发利用前景。
本研究主要目的是对广西特产药用植物三七的三萜生物合成通路做较系统研究, 对这一通路所涉及关键酶进行克隆分析, 认识其基本特征, 从而有利于对一些药用植物有效成分三萜生物合成进行调控, 促进三萜有效成分的合成与积累; 另一方面通过对植物三萜生物合成通路酶分子聚类分析, 从分子水平上为研究植物亲缘关系提供理论依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1Chinese Journal of Natural Medicines 2010, 8(1): 0001−0005doi: 10.3724/SP.J.1009.2010.00001ChineseJournal ofNaturalMedicines ·Original papers·Propinic Lactones A and B, Two New Triterpenoids from Schisandra propinqua var. propinqua and the Significance inBiosythesis PathwayLEI Chun, PU Jian-Xin, XIAO Wei-Lie, YANG Li-Bin, LIU Jing-Ping,CHEN Ji-Jun, SUN Han-Dong *State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, ChinaAvailable online 20 Jan 2010[ABSTRACT]AIM: To study the chemical constituents of the aerial parts of Schisandra propinqua var. propinqua. METHOD: Silica gel, C18 reversed phase silica gel and HPLC were used. The structures were elucidated by extensive spectroscopic methods. RESULT: Two new triterpenoids, propinic lactone A (1) with 3, 4-seco-cycloartane skeleton, and propinic lactone B (2) possessing 3, 4:9, 10-seco-cycloartane skeleton, together with a known typical cycloartane triterpenoid, schizandronic acid (3), have been isolated and identified. CONCLUSION: These two new triterpenoids serve as two important bridge intermediates from cycloartane triterpenoids to Schisandra nortriterpenoids biogenetically.[KEY WORDS] Schisandraceae;Schisandra; Schisandra propinqua var. propinqua; Triterpenoids[CLC Number]R284.1 [Document code] A [Article ID] 1672-3651(2010)01-0001-051 IntroductionSchisandra nortriterpenoids are a group of structurallyintriguing triterpenoids with promising bioactivities producedby the medicinally important genus schisandra in Schi-sandraceae family. They mainly consist of schiartane[1],18(13→14)-abeo-schiartane[2], 18-nor-schiartane[3], pre-schisanartane[4], schisanartane[5], and wuweiziartane skele-tons[6]. Compounds with these skeletons were theoreticallyconsidered to be biogenetically related and all derived fromcycloartane backbone precursors[2, 4, 7]. However, there wasno obvious evidence to prove this biological pathway due tothe lack of convincible intermediates discovered to co-existwith cycloartane and those nortriterpenoids[8]. From our re-cent investigations, a new 3, 4-seco-cycloartane triterpenoid,propinic lactone A (1), and a new 3, 4:9, 10-seco-cycloartane[Received on] 02-May-2009[Research Funding]This project was supported by the NationalNatural Science Foundation (No. 30830115 and 20802082), theMajor State Basic Research Development Program of China (No.2009CB522300 and 2009CB940900).[*Corresponding author] SUN Han-Dong: Prof., Tel: 86-871-5223251, Fax: 86-871-5216343, E-mail: hdsun@triterpenoid, propinic lactone B (2), were isolated togetherwith a known cycloartane triterpenoid, schizandronic acid(3)[9] and many Schisandra nortriterpenoids from the stems ofSchisandra propinqua var. propinqua[9-12]. The discovery ofthese two new triterpenoids could fill the biosynthesis gapsfrom cycloartane to schiartane (3, 4:9, 10-seco-28-norcycloartane) skeleton through 3,4-seco-and 3, 4:9, 10-seco-cycloartane triterpenoid as key intermediates in the ge-nus Schisandra.Herein, we report the identification of thenew compounds, and discuss the putative biosynthetic path-ways from cycloartane to schiartane skeleton.2 Materials and Methods2.1 GeneralPetroleum ether (PE, 60-90°C), EtOAc, CHCl3, acetone,methanol, and i-prOH were analytical grade and produced bySinopharm Chemical Reagent Co. Ltd., China. Silica gel(200-300 mesh and 10-40 μm; Qingdao Marine Chemical,Inc., China) and sephadex (General Electric Company, USA)for column separation. Fractions were monitored by thinlayer chromatography (TLC), and spots were visualized byspraying with 8% H2SO4 in EtOH, followed by heating. Op-tical rotations: Horiba SEP A-300 spectropolarimeter. IRspectra: BioRad FTS-135 spectrophotometer, KBr discs; in2 Chin J NatMed Jan. 2010 V ol. 8 No.12010年1月 第8卷 第1期cm -1. 1D- and 2D-NMR Spectra: DRX-500 instruments; J in Hz. HR-ESI-MS: VG AutoSpec-3000 spectrometers; in m/z . 2.2 Plant MaterialStems of S. propinqua var. propinqua were collected in Tengchong Country, Yunnan Province, China, in July 2006, and were identified by Prof. LI Xi-Wen, Kunming Institue of Botany, Chinese Academy of Sciences. A voucher specimen (No.20050823) was deposited at the State Key Laboratory of Phytochemistry and Plant Resources in West China, Kun-ming Institute of Botany, Chinese Academy of Sciences, China.2.3 Extraction and IsolationThe air-dried stems of S. propinqua var. propinqua (8 kg) were extracted with 70% aqueous acetone (4 × 15 L, 3d each) at room temperature. The solvent was removed in vacuo to afford a crude extract (560 g), which was dissolved in H 2O, and then extracted successively with petroleum ether and EtOAc. The EtOAc-soluble part (250 g) was purified by CC (on SiO 2 with CHCl 3/acetone 1 → 0) to obtain six main frac-tions (Fr. A–F). Fr.B was placed in acetone to crystallize compound 3 (5 g). Fr.C (CHCl 3/acetone 9: 1-8: 2, 29 g) was purified by repeated CC, first on Sephadex LH-20 eluted with MeOH, then on silica gel eluted by PE/i-prOH in gradient system and followed by recrystallization in acetone to afford 1 (30 mg). Fr.D (CHCl 3/acetone 8: 2-2: 1, 45 g) was purified first by CC on silica gel with CHCl 3/acetone 4:1 to obtain small fractions of D1, D2 and D3. D2 was then subjected to RP-18 in 30%-60% aqueous MeOH gradient system after purified on Sephadex LH-20 eluted with MeOH to afford five mixtures (D2-1-D2-5). D2-3 (40% aqueous MeOH) was pu-rified on silica gel with PE/i-PrOH 5: 1 and followed by semi-prep. HPLC (40% aqueous MeOH) to yield 2 (3 mg).Propinic lactone A (1). Colorless needles. mp 172–173°C. [α]22.9 D+ 86.73 (c 2.13, CH 3OH/CHCl 3 2:1); CD (MeOH) λmax nm (Δε): 260.0 (+6.00), 247.5 (+5.20). IR (KBr) νmax : 3 550, 2 970, 2 953, 1 736, 1 715, 1 446, 1 380, 1 359, 1 194, 1 130 cm –1. 1H and 13C NMR data, see Table 1, OCH 3: 3.60 (s ), 51.3 (q ); HR-ESI-MS (neg.): 499.3413 ([M-H]–, C 31H 47O 5–, calc. 499.342 3).Propinic lactone B (2). Colorless solid. [α]19.8 D +28.90 (c 0.15, MeOH); CD (MeOH) λmax nm (Δε): 220.0 (– 10.2). IR (KBr) νmax : 3468, 2927, 1757, 1684, 1456, 1385, 1260, 1205, 1103, 1063, 1034, 914, 801 cm –1; 1H and 13C NMR data, see Table 1. HR-ESI-MS (neg.): 531.296 6 ([M-H]–, C 30H 43O 8–, calcd. 531.295 7).3 Results and Discussion3.1 Structure elucidationCompounds 1–3 (Fig.1) were isolated from 70% aqueous acetone extract of the stems of S. propinqua var. propinqua . Compound 3 was identified to be schizandronic acid, a typi-cal cycloartane triterpenoid in genus schisandra , by compar-ing its 13C NMR and DEPT spectra with the literature [9]. Compounds 1 and 2 are new triterpenoids related to cycloar-tane as determined by comprehensive spectroscopic meansincluding 1D and 2D NMR.Propinic lactone A (1) was obtained as colorless needles. Its formula was established as C 31H 48O 5 from HR-ESI-MS (m/z 499.341 3 ([M-H]–, calcd. 499.342 3)) and 13C NMR spectroscopic data (Table 1), requiring eight degrees of un-saturation. The 1H NMR spectrum of 1 (Table 1) exhibited signals of one typical AB coupled system at δH 0.58 (ABd, J = 5.5 Hz, H-19α), 0.79 (ABd, J = 5.5 Hz, H-19β), and seven methyl signals including one oxygenated singlet at δH 3.60 (s, H 3-OCH 3), five aliphatic singlets at δH 1.94, 1.42, 1.40, 0.95, 0.92 and a doublet at δH 0.97 (d, J = 8.5 Hz, H 3-21). The 13C NMR (Table 1) and DEPT spectra showed the presence of two ester carbons (δC 174.8,s; 166.3, s), one trisubstituent double bond (δC 140.2, d) and 128.1(s), and seven methyl groups including an oxygenated one at δC 51.3. All these signals, plus eight degrees of unsaturation, suggested that compound 1 was a methylated triterpenoid with five rings including a three-member ring, as that of 3 possessing cyc-loartane skeleton.However, the 13C NMR data of 1 differed greatly from those of compound 3. Three spin systems, H-24/H 2-23/ H-22/H-20/H-17,21/H 2-16/H 2-15, H 2-12/H 2-11, and H-8/H 2- 7/H 2-6/H-5 in 1H,1H-COSY spectrum of 1 (Fig. 2 ), together with five groups of HMBC correlations (Fig. 2 ) from H 3-27 to C-24, C-25 and C-26, from H-22 to C-17, C-20, C-21, C-23, C-24 and C-26, from H 3-18 to C-12, C-13 and C-17, from H 3-28 to C-8, C-13, C-14 and C-15, and from H 2-19 to C-5, C-8, C-9, C-10 and C-11 building up the five rings of 1 as shown. This partial structure was almost the same as that of kadsudilactone [13] with A ring cracked and a six-member α-methyl-α, β-unsaturated-δ-lactone ring in the side chain which was remarkably distinct from that of 3. In the HMBC experiment (Fig. 2), correlations from H 2-19 to C-1, from both H 2-1, H 2-2 and H 3-OCH 3 to C-3, and from H-5 to C-4, C-29 and C-30 indicated that the bond of C-3/C-4 in 1 broke down followed by a methyl esterification at C-3. Thus, the planar structure of compound 1 was established as a 3, 4-seco cycloartane derivative.The relative stereochemistry of compound 1 was deter-mined to be the same as that of 3 and kadsudilactone on the biosynthetic consideration, which was proved by ROESY experiment. C-22 of 1 was assigned to be R configuration as the CD spectrum showed a positive Cotton effect near 260 nm (Δε + 6.0), similar to that of kadsulactone.Propinic lactone B (2) was analyzed to be C 30H 44O 8 from HR-ESI-MS (m/z 531.296 6 [M-H] –, calcd. 531.295 7) and it required nine degrees of unsaturation. The 1H NMR spectrum (Table 1) of 2 displayed five tertiary methyls (δH 1.80, 1.62, and 1.24, 1.08, 0.99), a secondary methyl (δH 1.36, d, J = 6.0 Hz) and a characteristic ABX spin system ( δ 4.27 (d, J = 4.5 Hz, H(1)), 2.74 (d, J = 18.0 Hz, H α(2)), and 2.99 (dd, J = 4.5, 18.0 Hz, H β(2)). The 13C NMR spectrum (Table 1) showed signals for 30 carbons including six methyl groups, seven3 Table 1 1H and 13C NMR data of 1 and 2 (recorded with a Bruker DRX-500 MHz in C5D5N; J in Hz.) Position 1 2 δH (mult, J in Hz) δC (mult) δH (mult, J in Hz) δC (mult)1 1.60–1.64 (m, H a) 31.1(t) 4.27 (d, J = 4.5, Hβ) 81.9 (d)3.20–3.28 (m, H b)2 3.07 – 3.11 (m, H a) 32.6(t) 2.74 (d, J =18.0, Hα) 36.6 (t)2.43 – 2.47 (m, H b) 2.99 (dd, J = 4.5, 18.0, Hβ)3 174.8 (s) 175.3 (s)4 75.1 (s) 84.9 (s)5 2.10 (dd, J = 7.5, 17.5, Hα) 45.9 (d) 2.55 (dd, J = 4.0, 13.5, Hα ) 60.0 (d)6 1.72 – 1.79 (overlapped, Hα) 25.5 (t) 1.26 – 1.32 (m, Hα ) 28.8 (t)0.72 – 0.76 (m, Hβ) 1.59 – 1.65 (overlapped, Hβ)7 1.00 – 1.04 (m, Hα) 26.2 (t) 2.80 – 2.85 (overlapped, Hα) 24.7 (t)1.23 – 1.41 (overlapped, Hβ)2.02 – 2.12 (overlapped, Hβ)8 1.30 – 1.36 (overlapped, Hβ) 48.8 (d) 1.82 – 1.87 (overlapped, Hβ) 54.0 (d)9 22.6 (s) 73.8 (s)10 27.3 (s) 100.3 (s)11 2.17 – 2.26 (overlapped, Hα) 26.7 (t) 1.79 – 1.86 (overlapped, Hα) 39.5 (t)1.20 – 1.28 (overlapped, Hβ) 1.69 – 1.72 (overlapped, Hβ)12 1.51 – 1.59 (overlapped, 2H) 33.2 (t) 2.28 – 2.34 (overlapped, Hα) 30.8 (t)1.55 – 1.61 (overlapped, Hβ)13 45.6 (s) 47.3 (s)14 48.8 (s) 51.0 (s)15 1.27 – 1.35 (overlapped, 2H) 36.3 (t) 4.30 – 4.36 (m, Hβ ) 77.1 (d)16 1.68 – 1.75 (overlapped, Hα ) 27.1 (t) 2.28 – 2.34 (overlapped, Hα ) 40.4 (t)1.29 – 1.34 (overlapped, Hβ )2.14 – 2.24 (overlapped, Hβ )17 1.51 – 1.58 (overlapped, Hα ) 48.4 (d) 2.17 – 2.26 (overlapped, Hα ) 46.0 (d)18 0.95 (s) 18.5 (q) 0.99 (s) 15.7 (q)19 0.58 (ABd, J = 5.5, Hα) 31.5 (t) 1.98 – 2.07 (overlapped, 2H ) 48.1 (t)0.79 (ABd, J = 5.5, Hβ )20 1.95 – 2.01 (m) 39.5 (d) 2.14 – 2.24 (overlapped) 42.3 (d)21 0.97(d,J = 8.5) 13.1 (q) 1.36 (d, J = 6.0) 15.6 (q)22 4.45(ddd,J = 4.0, 4.5, 16.5) 80.5 (d) 4.10 (br. s) 73.9 (d)23 2.20 – 2.27 (overlapped, H a) 23.6 (t) 5.27 (br. s) 82.6 (d)2.00 – 2.08 (m, H b)24 6.53(d,J = 8.0) 140.2 (d) 7.19 (br. s) 148.7 (d)25 128.1 (s) 130.2 (s)26 166.3 (s) 174.9 (s)27 1.94 (s)17.3 (q) 1.80 (s) 10.7 (q)28 0.92 (s) 19.8 (q) 1.62 (s) 13.1 (q)29 1.42 (s) 32.0 (q) 1.08 (s) 23.0 (q)30 1.40 (s) 26.7 (q) 1.24 (s) 29.5 (q)OCH3 3.60 (s) 51.3 (q)Fig. 1 Structures of 1–34 Chin J NatMed Jan. 2010 V ol. 8 No.12010年1月 第8卷 第1期Fig. 2 1H-1H COSY and selected HMBC correlations of 1 and 2methylene carbons, eight methine carbons, two ester groups, a tri-attributed double bond, three oxygenated tertiary car-bons and two aliphatic tertiary carbons. Comparing these signals with those of micrandilactone B [1,10] with the schiar-tane carbon skeleton, it was found that signals of rings A-C, the side chain, as well as that of ring F in 2 were almost the same in the case of micrandilactone B, which was further confirmed by the key 1H,1H-COSY and HMBC data as shown in Fig. 2.Detailed comparisons of 1D-NMR (Table 1) indicated the main difference restricted in rings D and E. As an oxy- genated tertiary carbon in micrandilactone B replaced by an aliphatic one in 2 and one more methyl group appearing in 2, there could be a methyl attributed at C-14 or C-15. Two key HMBC correlations (Fig. 2) from H 3-18 to C-12, C-13 and C-17 and from H 3-28 to C-8, C-13, C-14 and C-15 proved that the methyl was attributed at C-14. Thus, compound 2 was actually a 3, 4: 9, 10-seco -cycloartane triterpenoid.The configuration of CH 3-18 was biogenetically β direc- tion while H-17 was α direction. Thus CH 3-28 was α oriented, which was established by the key ROESY correlation of H 3-28/H-7α/H-16α /H-17α (Fig. 3). The H-15 was assignedto be β orientation by the cross-peak of H 3-18/H-8/H-11β/H- 15β in the ROESY experiment (Fig. 3). And the other con-figuration was the same as that of micrandilactone B, which was deduced by the similar proton coupling constants and ROESY correlation data, as well as CD experiment.3.2 Putative biogenetic pathway from cycloartane to schiartane skeletonAs the oxidation degree deepening, cycloartane back- bone was presumed to be oxygenated into schiartane skeletonFig. 3 SelectedROESY correlations of 2Scheme 1 Proposed biosynthetic pathway from 3 to micrandilactone B5 through ring A opened at bond of C-3/C-4, three-member ringcleavage occurred at C-9/C-10, and then oxidative de-carboxylation occurred of CH3-28. Compounds 3, 1, 2, andmicrandilactone B were representive compound possessingcycloartane, 3,4-seco-cycloartane, 3, 4:9, 10-seco-cycloartaneand schiartane (3, 4:9, 10-seco-28-norcycloartane) skeleton,respectively. Their co-existence in S. propinqua var. propin-qua brought obvious evidence to fill in the gap between theputative biosynthetic sequences from cycloartane to schiar-tane skeleton (Fig. 3). First, compound 3 may be hydroxyl-ized at C-22 followed by dehydration, producing thesix-member α-methyl-α, β-unsaturated-δ-lactone ring in theside chain to produce kadsulactone[13]. Then, ring A of kad-sulactone disconnected at the bonds of C-3/C-4 followed bymethyl esterified at COOH-3 and hydroxylized at C-4 toproduce compound 1. After a few hydroxylation modifica-tions happened on 1 (intermediate A), the three-member ringwas broken at C-9/C-10 to build the seven-member ring C(intermediate B). Ester-exchange reaction formed twofive-member lactone rings A and F, and a Michael additionreaction (intermediate C) was finished to form the furan ringB; compound 2 was thus obtained. Micrandilactone B wasfinally produced through an oxidative decarboxylation ofCH3-28 (intermediate D). It’s the first time to discover com-pounds with 3, 4-seco-cycloartane and 3, 4: 9,10-seco-cycloartane skeletons co-existing with cycloartaneand schiartane backbones in the same source.References[1] Li RT, Han QB, Zheng YT, et al.Structure and anti-HIV ac-tivity of micrandilactones B and C, new nortriterpenoidspossessing a unique skeleton from Schisandra micrantha [J].Chem Commun, 2005, 23: 2936-2938.[2] Huang SX, Yang LB, Xiao WL, et al. WuweizidilactonesA-F: novel highly oxygenated nortriterpenoids with unusualskeletons isolated from Schisandra chinensis [J]. Chem EurJ,2007, 13(17): 4816-4822.[3] Li RT, Li SH, Zhao QS, et al. Lancifodilactone A, a novelbisnortriterpenoid from Schisandra lancifolia [J]. Tetrahe-dron Lett, 2003, 44(17): 3531-3534.[4] Huang SX, Li RT, Liu JP, Lu Y, et al. Isolation and charac-terization of biogenetically related highly oxygenated nor-triterpenoids from Schisandra chinensis [J]. Org Lett,2007,9(11): 2079-2082.[5] Li RT, Zhao QS, Li SH, et al. Micrandilactone A: a noveltriterpene from Schisandra micrantha [J]. Org Lett, 2003,5(7): 1023-1026.[6] Huang SX, Yang J, Huang H, et al. Structural characteriza-tion of schintrilactone, a new class of nortriterpenoids fromSchisandra chinensis [J]. Org Lett, 2007, 9(21): 4175-4178.[7] Li RT, Xiao WL, Shen YH, et al. Structure characterizationand possible bioggenesis of three new families of nortriter-penoids: Schisanartane, schiartane, and 18-norschiartane[J].Chem Eur J, 2005, 11(10): 2989-2996.[8] Huang SX, Han QB, Lei C, et al. Isolation and characteriza-tion of miscellaneous terpenoids of Schisandra chinensis [J].Tetrahedron, 2008, 64(19): 4260-4267.[9] Takahashi K, Tasako M. Studies on constituents of medicinalplants.XIV. constituents of Schisandra nigra Max. [J]. ChemPharm Bull, 1975, 23(3): 538-542.[10] Lei C, Huang SX, Chen JJ, et al. Propindilactones E–J,schiartane nortriterpenoids from Schisandra propinqua var.propinqua [J]. J Nat Prod, 2008, 71(7): 1228-1232.[11] Lei C, Pu JX, Huang SX, et al. A class of 18(13→14)-abeo-schiartane skeleton nortriterpenoids from Schisandrapropinqua var. propinqua [J]. Tetrahedron,2009, 65(1):164-170.[12] Lei C, Huang SX, Chen JJ, et al. Four new schisanartane-type nortriterpenoids from Schisandra propinqua var.propinqua [J]. Helv Chim Acta, 2007,90(7): 1399-1405.[13] Tan R, Xue H, Li LN. Kadsulactone and kadsudilactone, twonew triterpenoid lactones from Kadsura species [J]. PlantaMedica, 1991, 57(1): 87-88.合蕊五味子中两个新的三萜内酯及其在生物合成途径中的意义雷春, 普建新, 肖伟烈, 杨黎彬, 刘靖平, 陈纪军, 孙汉董*中国科学院昆明植物研究所植物化学与西部植物资源持续利用国家重点实验室, 昆明 650204【摘要】 目的:研究合蕊五味子(Schisandra propinqua var. propinqua) 地上部分化学成分。