备战2017高考数学真题集锦:《三视图》
高考三视图(含解析)理试题汇总(精编文档).doc
【最新整理,下载后即可编辑】专题21 三视图1.某几何体的三视图如图所示,则其表面积为()A.2π B.3π C.4π D.5π【答案】B点睛:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.2.已知三棱锥的正视图与俯视图如图所示,俯视图是边长为2的正三角形,则该三棱锥的侧视图可能为( )A.B.C.D.【答案】B【解析】由正视图和俯视图还原几何体如图所示,由正视图和俯视图对应线段可得2⊥平面时,BC=2,===,当BC ABDAB BD AD∆的边AB上的高为3,只有B选项符合,当BC不垂直平面ABD ABD时,没有符合条件的选项,故选B.点睛:1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据3.某个长方体被一个平面所截,得到几何体的三视图如图所示,则这个几何体的体积为( )A . 4B . 22C .203 D . 8【答案】D4.如图,正三棱柱111ABC A B C 的主视图是边长为4的正方形,则此正三棱柱的左视图的面积为( )A . 16B . 23C . 43D . 83【答案】D点睛:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合. (3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.5.某几何体的三视图如图所示,则该几何体的体积为 ( )(A) 168π+ (B) 88π+ (C) 1616π+(D) 816π+【答案】A【解析】将三视图还原为原来的几何体,再利用体积公式求解.原几何体为组合体;上面是长方体,下面是圆柱的一半(如图所示), 其体积为21422241682V ππ=⨯⨯+⨯⨯=+.故选A;6.如图5,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的几条棱中,最长的棱的长度为( )(A) 62 (B) 42 (C) 6 (D)4【答案】C【解析】如图所示点睛:对于小方格中的三视图,可以放到长方体,或者正方体里面去找到原图,这样比较好找;7.某几何体的三视图如图所示,则该几何体的表面积为( )A.24π-B.24π+C.20π-D.20π+【答案】A8.已知某空间几何体的三视图如图所示,则该几何体的表面积是()A.B.C.D.【答案】A【解析】由三视图知:几何体为四棱锥,且四棱锥的一条侧棱与底面垂直,如图,平面,,,,,经计算,,,,∴,∴, ,,,∴,故选A .9.一个几何体由多面体和旋转体的整体或一部分组合而成,其三视图如图所示,则该几何体的体积是( )A .1π+B .2π+C .21π+D .3522π++【答案】A【解析】考点:由三视图求体积.10.如图是一个由两个半圆锥与一个长方体组合而成的几何体的三视图,则该几何体的体积为( )A .263π+B .83π+ C .243π+ D .43π+ 【答案】C【解析】试题分析:相当于一个圆锥和一个长方体,故体积为122221433ππ⋅+⋅⋅=+.考点:三视图.11.一个几何体的三视图如图所示,则该几何体的体积为( )A . 143B . 5C . 163D .6【答案】A【解析】考点:三视图.12.一个几何体的三视图如图所示,则该几何体的体积为____.【答案】13【解析】本题考查三视图、四棱锥的体积计算等知识,难度中等.由三视图可知该几何体是底面为长和高均为1的平行四边形,高为1的四棱锥,故其体积为11111V=⨯⨯⨯=.33。
数学(文)三视图高考真题试题解析
1.【2017课标II,文6】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为【答案】B【考点】三视图【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.2.【2017北京,文6】某三棱锥的三视图如图所示,则该三棱锥的体积为(A)60 (B)30(C)20 (D)10【答案】D【解析】试题分析:该几何体是三棱锥,如图:故选D.【考点】1.三视图;2.几何体的体积.【名师点睛】本题考查了空间想象能力,由三视图还原几何体的方法:如果我们死记硬背,不会具体问题具体分析,就会选错,实际上,这个题的俯视图不是几何体的底面,因为顶点在底面的射影落在了底面的外面,否则中间的那条线就不会是虚线.@网3.【2015高考陕西,文5】一个几何体的三视图如图所示,则该几何体的表面积为()A B C D【考点定位】1.空间几何体的三视图;2.空间几何体的表面积.【名师点睛】1.本题考查空间几何体的三视图及几何体的表面积,意在考查考生的识图能力、空间想象能力以及技术能力;2.先根据三视图判断几何体的结构特征,再计算出几何体各个面的面积即可;3.本题属于基础题,是高考常考题型.4.【2016高考天津文数】将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()【答案】B考点:三视图【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.5.【2015北京文7】某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.B C D.【答案】C【考点定位】三视图.【名师点晴】本题主要考查的是三视图,属于容易题.解题时一定要抓住三视图的特点,否则很容易出现错误.本题先根据三视图判断几何体的结构特征,再计算出几何体中最长棱的棱长即可.6.【2015新课标2文6】一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为()【答案】D【解析】试题分析:如图所示,截去部分是正方体的一个角,剩余部分体积是,故选D.【考点定位】本题主要考查三视图及几何体体积的计算.【名师点睛】由于三视图能有效的考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.学#7. (2014课标全国Ⅰ,文8)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是().A.三棱锥B.三棱柱C.四棱锥D.四棱柱答案:B名师点睛:本题考查根据三视图判断原几何体的形状,考查空间想象能力,容易题. 三视图的长度特征:“长对正,宽相等,高平齐”,即主视图和左视图一样高,主视图和俯视图一样长,左视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.8.【2015高考安徽,文9】一个四面体的三视图如图所示,则该四面体的表面积是()(A(B(C(D【答案】C【解析】由该几何体的三视图可知,该几何体的直观图,如下图所示:其中侧面PAC⊥底面ABCC.【考点定位】本题主要考查空间几何体的三视图、锥体表面积公式.【名师点睛】在利用空间几何体的三视图求几何体的体积或者表面积时,一定要正确还原几何体的直观图,然后再利用体积或表面积公式求之;本题主要考查了考生的空间想象力和基本运算能力.9.【2014年普通高等学校招生全国统一考试湖北卷7】一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C. ④和③D.④和②【答案】D考点:空间由已知条件,在空间坐标系中作出几何体的形状,正视图与俯视图的面积,容易题.【名师点睛】将空间几何体的三视图与空间直角坐标系融合在一起,凸显了数学内知识间的内在联系,充分体现了数学特点和知识间的内在联系,能较好的考查学生的综合知识运用能力.其解题突破口是正确地在空间直角坐标系中画出该几何体的原始图像.10.【2015高考重庆,文5】某几何体的三视图如图所示,则该几何体的体积为()(A)(B) (C) (D)【答案】B【考点定位】三视图及柱体与锥体的体积.【名师点睛】本题考查三视图的概念和组合体体积的计算,采用三视图还原成直观图,再利用简单几何体的体积公式进行求解.本题属于基础题,注意运算的准确性.11.【2015高考浙江,文2,则该几何体的体积是()A.B CD【答案】C【解析】由三视图可知,该几何体是一个棱长为的正方体与一个底面边长为,高为的正四棱锥故选C.【考点定位】1.三视图;2.空间几何体的体积. 学¥【名师点睛】本题主要考查空间几何体的体积.解答本题时要能够根据三视图确定该几何体的结构特征,并准确利用几何体的体积计算方法计算求得体积.本题属于中等题,重点考查空间想象能力和基本的运算能力.12.【2016高考山东文数】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()(A B(C D【答案】C考点:1.三视图;2.几何体的体积.【名师点睛】本题主要考查三视图及几何体的体积计算,本题涉及正四棱锥及球的体积计算,综合性较强,较全面的考查考生的视图用图能力、空间想象能力、数学基本计算能力等. 13. 【2014四川,文4】某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是()A、B、C D、【答案】D【考点定位】空间几何体的三视图和体积.【名师点睛】本题主要考查空间几何体的体积.解答本题时要能够根据三视图确定该几何体的结构特征,并准确利用几何体的体积计算方法计算求得体积.本题属于中等题,重点考查空间想象能力和基本的运算能力.14. 2016高考新课标Ⅲ文数]如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )(A (B (C )90 (D )81【答案】B【解析】试题分析:由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积B .考点:空间几何体的三视图及表面积.【技巧点拨】求解多面体的表面积及体积问题,关键是找到其中的特征图形,如棱柱中的矩形,棱锥中的直角三角形,棱台中的直角梯形等,通过这些图形,找到几何元素间的关系,建立未知量与已知量间的关系,进行求解.&网15.【2015高考湖南,文10】某工作的三视图如图3所示,现将该工作通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工作的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积/原工件的体积)( )A B C D 【答案】A【考点定位】三视图、基本不等式求最值、圆锥的内接长方体【名师点睛】运用基本不等式求最值要紧紧抓住“一正二定三相等”条件,本题“和为定”是解决问题的关键.空间想象能力是解决三视图的关键,可从长方体三个侧面进行想象几何体.求组合体的体积,关键是确定组合体的组成形式及各部分几何体的特征,再结合分割法、补体法、转化法等方法求体积.16.【2016高考新课标1文数】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是( )(A )17π (B )18π (C )20π (D )28π【答案】A考点:三视图及球的表面积与体积【名师点睛】由于三视图能有效的考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.17.【2015高考北京,文7】某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )A .BCD .【答案】C【考点定位】三视图.【名师点晴】本题主要考查的是三视图,属于容易题.解题时一定要抓住三视图的特点,否则很容易出现错误.本题先根据三视图判断几何体的结构特征,再计算出几何体中最长棱的棱长即可.18.【2017山东,文13】圆柱构成的几何体的三视图如图,则该几何体的体积为.【解析】试题分析:由三视图可知,长方体的长宽高分别为2,1,1,圆柱的高为1,底面圆半径为1,所以【考点】三视图及几何体体积的计算.【名师点睛】(1)由实物图画三视图或判断、选择三视图,此时需要注意“长对正、高平齐、宽相等”的原则.(2)由三视图还原实物图,解题时首先对柱、锥、台、球的三视图要熟悉,再复杂的几何体也是由这些简单的几何体组合而成的;其次,要遵循以下三步:①看视图,明关系;②分部分,想整体;③综合起来,定整体.19.【2014高考北京文第11题】某三棱锥的三视图如图所示,则该三棱锥的最长棱的棱长为.考点:本小题主要考查立体几何中的三视图,考查同学们的空间想象能力,考查分析问题与解决问题的能力.20.【2016高考四川文科】已知某三菱锥的三视图如图所示,则该三菱锥的体积.【解析】1,考点:1.三视图;2.几何体的体积.【名师点睛】本题考查三视图,考查几何体体积,考查学生的识图能力.解题时要求我们根据三视图想象出几何体的形状,由三视图得出几何体的尺寸,为此我们必须掌握基本几何体(柱、锥、台、球)的三视图以及各种组合体的三视图.~网21.【2015高考天津,文10】一个几何体的三视图如图所示(单位:m),则该几何体的体积为.【考点定位】本题主要考查三视图及几何体体积的计算.【名师点睛】由于三视图能有效的考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.22.【2014天津文10,则该几何体的考点:三视图考点定位:本题考点为利用三视图还原几何体及求组合体的体积【名师点睛】本题考查三视图及求组合体的体积,本题属于基础题,正确利用三视图还原为原几何体,特别是有关数据的还原,本题中的几何体为一个圆锥与一个圆柱的组合体,借助三视图中的数据,求出圆锥和圆柱的体积,两体积相加得出组合体的体积,三视图问题为今年高考热点,是必考题,是高考备考的重点,近几年出题难度逐年增加.。
2017高考数学三视图汇编
V = V - V = π ⋅ 32 ⋅10 - ⋅ π ⋅ 32 ⋅ 6 = 63π2 上 2由图中数据可得该几何体的体积为V = ⨯ ⨯ 5 ⨯ 3 ⨯ 4 = 104 高考立体几何三视图1(2017 全国卷二理数)如图,网格纸上小正方形的边长为 1,粗实线画出的是某几何体 的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A . 90πB . 63πC . 42πD . 36π【答案】B 【解析】该几何体可视为一个完整的圆柱减去一个高为 6 的圆柱的一半.1 1总2(2017 北京文数) 某三棱锥的三视图如图所示,则该三棱锥的体积为A 60B 30C 20D 10【答案】D 【解析】该几何体是如图所示的三棱锥 P-ABC ,1 1 3 23(2017 北京理数)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为A 3 2B 2 3C 2 2D2【答案】B【解析】如下图所示,在四棱锥 P - ABCD 中,最长的棱为 P A ,所以 P A = PC 2 + AC 2 = 22 + (2 2) 2 = 2 3 ,故选 B .(2017 理数) 山 东 由 一2【解析】由三视图可知,长方体的长、宽、高分别是2、1、1,圆柱的高为1,底面半径4⨯1=2+体积为V=11232322个长方体和两个14圆柱构成的几何体的三视图如图,则该几何体的体积为。
【答案】2+π为1,所以V=2⨯1⨯1+2⨯π⨯12π25(2017全国卷一理数)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10B.12C.14D.16【答案】B【解析】由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为2⨯(2+4)⨯2⨯12=12,故选B.6(2017浙江文数)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.π2π+1 B.+32C.3π3π+1 D.+3 22【答案】A【解析】由三视图可知该几何体由一个三棱锥和半个圆锥组合而成,圆锥的π111⨯⨯π⨯12⨯3=,三棱锥的体积为V=⨯⨯2⨯1⨯3=,12所以它的体积为V=V+V=12π1 + 227.(2016全国卷1文数)如图所示,某几何体的三视图是三个半径相等的圆8 3 3 8 4 2 (B及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是( ).A .17 πB . 18πC . 20πD . 28π【答案】 B 【解析】由三视图可知该几何体是78个 球 ( 如 图 所 示 ), 设 球 的 半 径 为 R , 则7 4π 28π 7 3V = ⨯ R 3 = 得 R=2,所以它的表面积是 S = ⨯ 4π ⨯ 22 + ⨯ π ⨯ 22 = 17π表8. 2016 全国卷 2 文数)右图是圆柱与圆锥组合而成的几何体的三视图,则该几何 体的表面积为( ).A. 20πB. 24πC. 28πD. 32π【答案】C【解析】由题意可知,圆柱的侧面积为 S = 2π ⨯ 2 ⨯ 4 = 16π1圆锥的侧面积为 S = 1⨯ 2π ⨯ 2 ⨯ 4 = 8π2圆柱的底面积为 S = π ⨯ 22 = 4π3该几何体的表面积为 S = S +S +S = 28π1 239.(2016 全国卷 3 文数)如图所示,网格纸上小正方形的边长为 1 ,粗实线画出的是某多面体的三视图,则该多面体的表面积为( ).A.18 + 36 5B. 54 + 18 5C. 90D. 81【答案】 【解析】 (1)由题意知,几何体为平行六面体,边长分别为 3,3,45,几何体的表面积 S =3×6×2+3×3×2+3× 45×2=54+18 5.棱柱的底面积为S=⨯(1+2)⨯1=半球的体积为π()3=π10.(2016北京文数)某四棱柱的三视图如图所示,则该四棱柱的体积为___________.【答案】32【解析】由已知中的三视图可知,该几何体是一个以俯视图为底面的四棱柱,133棱柱的高为1,故体积为22211.(2016山东文数)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为().1A.1212+πB.+3333π1正(主)视图俯视图1侧(左)视图C.122+πD.1+π366【答案】C【解析】由题意可知,该几何体上部是一个半球,下部是一个四棱锥,半球的直径为棱锥的底面对角线,由棱锥底面棱长为1,可得2R=2,故R=22222,326棱锥的面积为1,高为1,故体积为1312故几何体的体积为+36π12.(2016天津文数3)将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为().2 3 1= (A.B. C. D.【答案】B 【解析】由正视图和俯视图可知该几何体的直观图如图所示,故该几何体的侧视图为选项B.13(2016 四川文数)已知某三棱锥的三视图如图所示,则该三棱锥的体积等于.11 331 正视图 侧视图331俯视图【答案】C【解析】由题意可知,该几何体为三棱锥,底面为俯视图所示的三角形,底面积 S = 1 1 1⨯ 2 3 ⨯1 = 3 ,高为 h = 1 棱锥的体积为V = Sh =3 3 3 314. 2016 浙江文数)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是______cm 2,体积是______cm 3.【答案】C【解析】由题意可知,该几何体为长方体上面放置一个小的正方体,其表面积为 S = 6 ⨯ 22 + 2 ⨯ 42 + 4 ⨯ 2 ⨯ 4 - 2 ⨯ 22 = 80其体积为V = 23 + 4 ⨯ 4 ⨯ 2 = 40。
2017年高考数学第02期小题精练系列专题21三视图理含解析
专题21 三视图1. 如图,是某几何体的三视图,其中矩形的高为圆的半径,若该几何体的体积是352π,则此几何体的表面积为( )A .π33B .π34C .π36D .π42【答案】A 【解析】考点:几何体的三视图及表面积与体积.2. 某四面体的三视图如图所示,则该四面体的四个面中,直角三角形的面积和是( )A .2B .4C .2+D .4+【答案】C【解析】考点:几何体的三视图及其面积的计算.3. 有一个几何体的正视图、侧视图、俯视图如图所示,则该几何体的表面积为( )A .48πB .36πC .24πD .12π【答案】C 【解析】试题分析:由题意得,根据给定的三视图可知,该几何体表示一个底面半径为3r =,母线长5l = 的一个圆锥,所以该圆锥的表面积为2233524S r rl πππππ=+=⨯+⨯⨯=,故选C .考点:几何体的三视图及表面积的求解.4. 一个三棱锥的正视图和俯视图如右图所示,则该三棱锥的侧视图可能为( )【答案】D 【解析】考点:空间几何体的三视图.5. 已知三棱锥的三视图如图所示,则它的外接球表面积为( )A .π16B .π4 C. π D .π2 【答案】B 【解析】试题分析:由图中的三视图分析可知,三棱锥的直观图如下图所示,M 为Rt ACB ∆斜边的中点,1MA MB MC ===,又PM ⊥底面ABC ,根据主视图的高为1,所以1MP =,则点M 到三棱锥四个顶点,,,P A B C 的距离都相等,所以M 为三棱锥外接球的球心,外接球半径1R =,所以表面积为244S R ππ==,故选B.考点:三棱锥的外接球.6. 若某多面体的三视图如图所示(单位:cm ),则此多面体的体积是 2cm .【答案】56【解析】考点:三视图.7. 一个几何体的三视图如图所示,則此几何体的体积是_________.【答案】80 【解析】考点:几何体的三视图及体积的计算.8. 某空间几何体的三视图如图所示,则该几何体的体积为( ) A .73B .83π- C .83D .73π-【答案】B 【解析】试题分析:由三视图可知,该几何体是一个四棱锥挖掉半个圆锥所得,所以体积为21118222123233ππ-⋅⋅⋅-⋅⋅⋅=. 考点:三视图.9. 一个几何体的三视图如图所示,其中俯视图是一个腰长为2的等腰直角三角形,则该几何体外接球的体积是( ) A .36πB .9πC .92πD .275π【答案】C【解析】考点:球的外接几何体.10. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为()A.823π+B.83π+C.42π+D.4π+【答案】D 【解析】试题分析:由三视图可知,该几何体由三棱柱和半个圆柱组成,故体积为112222422ππ⋅⋅⋅+⋅=+. 考点:三视图.11. “牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它 由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的 方形伞(方盖).其直观图如左图,图中四边形是为体现其直观性所作的辅助线.当其主视图和侧视图完 全相同时,它的俯视图可能是( )【答案】B 【解析】考点:1、阅读能力及空间想象能力;2、几何体的三视图. 12. 某几何体的三视图如图所示,该几何体的体积为( )A .24B .703 C.20 D .683【答案】D 【解析】试题分析:由三视图可知,该几何体由一个直四棱柱(底面为直角梯形)截去一个三棱锥而得,它的直观图如图所示,故其体积为()2111682424222323V V V =-=⨯+⨯⨯-⨯⨯⨯=四棱柱三棱锥,故选D.考点:1、几何体的三视图;2、棱柱及棱锥的体积公式.13. 某椎体的三视图如图所示,则该棱锥的最长棱的棱长为( )A BC D【答案】C 【解析】考点:简单几何体的三视图.14. 如图1,已知正方体1111ABCD A B C D -的棱长为a ,动点M N Q 、、分别在线段上1AD ,1B C ,11C D 上,当三棱锥Q BMN -的俯视图如图2所示时,三棱锥Q BMN -的正视图面积等于( )A.212a B .214a C.24a D .24a 【答案】B 【解析】考点:三视图.15. 已知某几何体的三视图如图所示,俯视图中正方形的边长为2,正视图中直角梯形的两底长为1和2,则此几何体的体积为( )A .3B .103 C. 113D .4 【答案】B 【解析】试题分析:几何体是由正方体截掉两个四棱锥得到.310323142318V V 21=⨯⨯-⨯⨯-=--=V V 正方体. 考点:三视图及体积求法.16. 某几何体的三视图如图所示,则该几何体的体积为( )A . . C. .【答案】A 【解析】考点:三视图求体积.17. 已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一直角边为2的直角三角形,则该三棱锥的正视图可能为( )A .B . C. D . 【答案】C 【解析】试题分析:由俯视图可知三棱锥的底面是个边长为2的正三角形,由侧视图可知三棱锥的一条侧棱垂直于底面,且其长度为2,故其主视图为直角边长为2的等腰直角三角形,且中间有一虚线,故选C .考点:三视图.18. 某几何体的三视图如图所示,则该几何体的表面积为()A.50 B.50.5 C.51.5 D.60【答案】D【解析】考点:由三视图求面积、体积.19. 已知某棱锥的三视图如图所示,俯视图为正方形及一条对角线,根据图中所给的数据,该棱锥外接球的体积是_____.【解析】考点:由三视图求面积、体积.20. 正方体1111ABCD A B C D -中E 为棱1BB 的中点(如图),用过点A ,E ,1C 的平面截去该正方体的上半部分,则剩余几何体的左视图为( )【答案】C【解析】试题分析:由已知可得剩余几何体的左视图应是选项C.考点:1、组合体;2、几何体的三视图.。
2017年高考数学第01期小题精练系列专题21三视图理含解析
专题21 三视图1.如图,网格纸上小正方形的边长为1,粗线或虚线画出某几何体的三视图,该几何体的体积为()A.8B.12C.18D.24【答案】B【解析】考点:几何体的三视图及几何体的体积.2.某几何体的三视图如图所示,则该几何体的体积为()A.1136B.3 C.533D.433【答案】B 【解析】试题分析:由三视图可知,该几何体是由正三棱柱截取一部分所得,故体积为2113223224V =⋅⋅⋅=. 考点:三视图.3.“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如下左图,图中四边形是为体现其直观性所作的辅助线.当其主视图和侧视图完全相同时,它的俯视图可能是( )A .B .C .D . 【答案】B 【解析】试题分析:俯视图恰好是“图中四边形”,外加四条线的投影,故选B. 考点:三视图.4.一个几何体按比例绘制的三视图如右图所示(单位:m ),则该几何体的体积为( )A .373m B .392m C .372m D .394m 【答案】C 【解析】考点:三视图.5.一个几何体由多面体和旋转体的整体或一部分组合而成,其三视图如图所示,则该几何体的体积是( )A .1π+B .2π+ C.21π+ D .3522π++ 【答案】A 【解析】考点:由三视图求体积.6.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器———商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(立方寸),则图中的x 为( )A .1.2B .1.6C .1.8D .2.4 【答案】B 【解析】试题分析:这是一个圆柱和一个长方体,体积为()15.43116.4 2.2512.6, 1.64x x x x π⋅+-⋅⋅=-==. 考点:三视图.7.如图是一个由两个半圆锥与一个长方体组合而成的几何体的三视图,则该几何体的体积为( )A .263π+B .83π+C .243π+D .43π+ 【答案】C 【解析】试题分析:相当于一个圆锥和一个长方体,故体积为122221433ππ⋅+⋅⋅=+. 考点:三视图.8.如图为某几何体的三视图,則该几何体的表面积为( )A . 105+B . 102+C .6226++D .626++ 【答案】C 【解析】ABC ED考点:三视图.9.一个几何体的三视图如图所示,则该几何体的体积为()A.143B. 5 C.163D.6【答案】A【解析】考点:三视图.10.已知某几何体的三视图的侧视图是一个正三角形,如图所示,则该几何体的体积等于()A.123 B.163 C.203 D.323【答案】C【解析】考点:三视图.11.某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为()(A 2(B5(C6(D)3【答案】B【解析】试题分析:由三视图可知,几何体的是底面为边长为1的正方形,高为1的四棱锥,直观图如下,其中平面ADE 平面BCDE,四个侧面面积分别为1225,2225,故选B.考点:1、几何体的三视图;2、棱锥的侧面积及三角形面积公式.12.如图是某四面体ABCD水平放置时的三视图(图中网格纸的小正方形的边长为1,则四面体ABCD外接球的表面积为()俯视图侧视图主视图A.20πB.1256π C.25π D.100π【答案】C【解析】考点:1、几何体的三视图; 2、空间想象能力和抽象思维能力以及多面体外接球的性质.欢迎您的下载,资料仅供参考!。
2017年高考试题分类汇编(立体几何)
2017年高考试题分类汇编(立体几何)考点1 三视图1.(2017·全国卷Ⅰ理科)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为 A.10 B.12 C.14 D.162.(2017·全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为A .90πB .63πC .42πD .36π3.(2017·北京理科)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为正(主)视图侧(左)视图俯视图4.(2017·北京文科)某三棱锥的三视图如图所示,则该三棱锥的体积为 A.60 B.30 C.20 D.105.(2017·山东理科)由一个长方体和两个14圆柱体构成的几何体的三视图如右图,则该几何体的体积为 .6.(2017·浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是A. 13π+ B. 33π+C. 312π+D. 332π+俯视图正视图(主视图)侧视图(左视图) 正(主)视图侧(左)视图俯视图 主视图 侧视图俯视图考点2 位置关系1. (2017·全国卷Ⅰ文科)如图,在下列四个正方体中,,A B 为正方体的两个顶点,,,M N Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是2.(2017·全国卷Ⅲ文科)在正方体1111ABCD A BC D -中,E 为棱CD 的中点,则A.11A E DC ⊥B.1A E BD ⊥C.11A E BC ⊥D.1A E AC ⊥ 考点3 体积1.(2017·全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A .πB .3π4C .π2D .π42.(2017·天津)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 . 考点4 位置关系与度量关系(解答题)(理科)1.(2017·全国卷Ⅰ理科)如图,在四棱锥P ABCD -中,AB //CD , 且90BAP CDP ∠=∠= .(Ⅰ)证明:平面PAB ⊥平面PAD ; (Ⅱ)若PA PD AB DC ===,90APD ∠= , 求二面角A PB C --的余弦值.2.(2017·全国卷Ⅱ理科)如图,四棱锥P ABCD -中,侧面PAD 为等比三角形且垂直于底面ABCD ,PABCD01,90,2AB BC AD BAD ABC ==∠=∠= E 是PD 的中点. (Ⅰ)证明:直线//CE 平面PAB ;(Ⅱ)点M 在棱PC 上,且直线BM 与底面ABCD 所成锐角为045,求二面角M AB D --的余弦值.3.(2017·全国卷Ⅲ理科)如图,四面体ABCD 中,ABC ∆是正三角形,ACD ∆是直角三角形,ABD CBD ∠=∠,AB BD =. (Ⅰ)证明:平面ACD ⊥平面ABC ;(Ⅱ)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D AE C --的余弦值.4.(2017·北京理科)如图,在四棱锥P ABCD -中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,PD //平面MAC,PA PD =,4AB =.(Ⅰ)求证:M 为PB 的中点; (Ⅱ)求二面角B PD A --的大小;(Ⅲ)求直线MC 与平面BDP 所成角的正弦值.5.(2017·天津理科)如图,在三棱锥P ABC -中,PA ⊥底面ABC ,90BAC ∠=︒.点,,D E N 分别为棱PA ,PC ,BC 的中点,M 是线段AD 的中点,4PA AC ==,ABCDPEMABCDEABDMP2AB =.(Ⅰ)求证:MN ∥平面BDE ; (Ⅱ)求二面角C EM N --的正弦值;(Ⅲ)已知点H 在棱PA 上,且直线NH 与直线BE所成角的余弦值为21,求线段AH 的长.6.(2017·山东理科)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120 得到的,G 是 DF的中点. (Ⅰ)设P 是 CE上一点,且AP BE ⊥,求CBP ∠的大小; (Ⅱ)当3AB =,2AD =时,求二面角E AG C --的大小.7.(2017·浙江)如图,已知四棱锥P ABCD -,PAD ∆是以AD 为斜边的等腰直角三角形,BC ∥AD ,CD AD ⊥,22PC AD DC CB ===,E 为PD 的中点. (Ⅰ)证明:CE ∥平面PAB ;(Ⅱ)求直线CE 与平面PBC 所成角的正弦值. 考点5 位置关系与度量关系(解答题)(文科)1.(2017·全国卷Ⅰ文科)求二面角A PB C --的余弦值. 如图,在四棱锥P ABCD -中,AB //CD ,且90BAP CDP ∠=∠=PABCDABCNEM D PABCDEFPGABCDEP(Ⅰ)证明:平面PAB ⊥平面PAD ; (Ⅱ)若PA PD AB DC ===,90APD ∠= ,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.2.(2017·全国卷Ⅱ文科)如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,090BAD ABC ∠=∠=.(Ⅰ)证明:直线BC ∥平面PAD ;(Ⅱ)若PCD ∆面积为P ABCD -的体积.3.(2017·全国卷Ⅲ文科)如图,四面体ABCD 中,ABC ∆是正三角形,AD CD =.(Ⅰ)证明:AC ⊥BD ;(Ⅱ)已知ACD ∆是直角三角形,AB BD =.若E 为棱BD 上与D 不重合的点,且AE EC ⊥,求四面体ABCE 与四面体ACDE 的体积比.4.(2017北京文科)如图,在三棱锥P ABC -中,PA AB ⊥,PA BC ⊥,AB BC ⊥,2PA AB BC ===,D 为线段AC 的中点,E 为线段PC 上一点.(Ⅰ)求证:PA BD ⊥;(Ⅱ)求证:平面BDE ⊥平面PAC ;(Ⅲ)当PA ∥平面BDE 时,求三棱锥E BCD -的体积.ABCDPABCDE5.(2017·天津文科)如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD BC ∥,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(Ⅰ)求异面直线AP 与BC 所成角的余弦值; (Ⅱ)求证:PD ⊥平面PBC ;(Ⅲ)求直线AB 与平面PBC 所成角的正弦值.6.(2017·山东文科)由四棱柱1111ABCD A BC D -截去三棱锥111C B CD -后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,1A E ⊥平面ABCD .(Ⅰ)证明:1AO ∥平面11B CD ; (Ⅱ)设M 是OD 的中点,证明: 平面1A EM ⊥平面11B CD .ABCDEPA BCDPABCDOE M B 1A 1D 1。
三视图与几何体体积、表面积-2017年高考数学(理)母题题源系列(新课标1专版)含解析
母题五三视图与几何体体积、表面积【母题原题1】【2017新课标1,理7】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形。
该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.16【答案】B【考点】简单几何体的三视图【名师点睛】三视图往往与几何体的体积、表面积以及空间线面关系、角、距离等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征并且熟悉常见几何体的三视图。
【母题原题2】【2016新课标1,理6】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π,则它的表面积是3(A)17π (B)18π (C)20π (D)28π【答案】A【考点】三视图及球的表面积与体积【名师点睛】由于三视图能有效地考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般与几何体的表面积与体积相结合.由三视图还原出原几何体是解决此类问题的关键。
【母题原题3】【2015新课标1,理11】圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。
若该几何体的表面积为16 + 20 ,则r=()(A)1 (B)2 (C)4 (D)8【答案】B【考点】简单几何体的三视图;球的表面积公式、圆柱的测面积公式【名师点睛】本题考查简单组合体的三视图的识别,是常规提,对简单组合体三三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状,再根据“长对正,宽相等,高平齐”的法则组合体中的各个量。
【命题意图】本类题主要以三视图为载体,通过还原几何体考查空间想象能力,通过体积和表面积的运算考查运算求解能力.【命题规律】高考对三视图的考查注意以以下几个方面为主:1、已知部分三视图,考查还原为原来立体图形的直观图;2、已知三视图,考查还原为立体图形的直观图并能计算表面积或体积;3、已知三视图,需要还原立体图形后求空间角或空间距离以及相关元素的位置关系4、以三视图为载体,考查还原后几何体的外接球或内切球问题。
2017年高考数学(考点解读+命题热点突破)专题12空间几何体的三视图﹑表面积及体积理
专题12 空间几何体的三视图﹑表面积及体积【命题热点突破一】三视图与直观图1.一个物体的三视图的排列规则俯视图放在正(主)视图的下面,长度与正(主)视图的长度一样,侧(左)视图放在正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽度一样.即“长对正、高平齐、宽相等”.2.由三视图还原几何体的步骤一般先从俯视图确定底面再利用正视图与侧视图确定几何体.例1、【2016高考新课标2理数】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()(A)20π(B)24π(C)28π(D)32π【答案】C【方法技巧】空间几何体的三视图是从空间几何体的正面、左面、上面用平行投影的方法得到的三个平面投影图,因此在分析空间几何体的三视图问题时,先根据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置,再确定几何体的形状,即可得到结果.【变式探究】(1)一个几何体的三视图如图所示,则该几何体的直观图可以是( )(2)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为( )答案 (1)D (2)D解析(1)由俯视图,易知答案为D.(2)如图所示,点D1的投影为C1,点D的投影为C,点A的投影为B,故选D.【命题热点突破二】几何体的表面积与体积空间几何体的表面积和体积计算是高考中常见的一个考点,解决这类问题,首先要熟练掌握各类空间几何体的表面积和体积计算公式,其次要掌握一定的技巧,如把不规则几何体分割成几个规则几何体的技巧,把一个空间几何体纳入一个更大的几何体中的补形技巧.例2、【2016高考新课标1卷】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( ) (A )17π (B )18π (C )20π (D )28π【答案】A【解析】该几何体直观图如图所示:是一个球被切掉左上角的18,设球的半径为R ,则37428V R 833ππ=⨯=,解得R 2=,所以它的表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S πππ⨯⨯⨯⨯故选A . 【方法技巧】(1)求多面体的表面积的基本方法就是逐个计算各个面的面积,然后求和.(2)求体积时可以把空间几何体进行分解,把复杂的空间几何体的体积分解为一些简单几何体体积的和或差.求解时注意不要多算也不要少算.【变式探究】在三棱柱ABC -A 1B 1C 1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B 1C 1的中点,则三棱锥PA 1MN 的体积是________. 答案 124解析 由题意知还原后的几何体是一个直放的三棱柱,三棱柱的底面是直角边长为1的等腰直角三角形,高为1的直三棱柱, ∵11P A MN A PMNV V --=,又∵AA 1∥平面PMN , ∴1A PMNV -=V A-PMN ,∴V A-PMN =13×12×1×12×12=124,故1P A MNV -=124. 【命题热点突破三】 多面体与球与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径. 例3、【2016高考新课标1卷】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( ) (A )17π (B )18π (C )20π (D )28π【答案】A【解析】该几何体直观图如图所示:是一个球被切掉左上角的18,设球的半径为R ,则37428V R 833ππ=⨯=,解得R 2=,所以它的表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S πππ⨯⨯⨯⨯故选A . 【方法技巧】三棱锥P -ABC 可通过补形为长方体求解外接球问题的两种情形: (1)P 可作为长方体上底面的一个顶点,A 、B 、C 可作为下底面的三个顶点; (2)P -ABC 为正四面体,则正四面体的棱都可作为一个正方体的面对角线. 【变式探究】在三棱锥A -BCD 中,侧棱AB ,AC ,AD 两两垂直,△ABC ,△ACD ,△ABD 的面积分别为22,32,62,则三棱锥A -BCD 的外接球体积为________. 答案 6π解析 如图,以AB ,AC ,AD 为棱把该三棱锥扩充成长方体,则该长方体的外接球恰为三棱锥的外接球,∴三棱锥的外接球的直径是长方体的对角线长.据题意⎩⎨⎧AB ·AC =2,AC ·AD =3,AB ·AD =6,解得⎩⎨⎧AB =2,AC =1,AD =3,∴长方体的对角线长为AB 2+AC 2+AD 2=6, ∴三棱锥外接球的半径为62. ∴三棱锥外接球的体积为V =43π·(62)3=6π.【高考真题解读】1、【2016高考新课标1卷】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( ) (A )17π (B )18π (C )20π (D )28π【答案】A【解析】该几何体直观图如图所示:是一个球被切掉左上角的18,设球的半径为R ,则37428V R 833ππ=⨯=,解得R 2=,所以它的表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S πππ⨯⨯⨯⨯故选A . 2.【2016高考新课标2理数】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )(A )20π (B )24π (C )28π (D )32π 【答案】C3.【2016年高考北京理数】某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16 B.13 C.12D.1 【答案】A【解析】分析三视图可知,该几何体为一三棱锥P ABC -,其体积111111326V =⋅⋅⋅⋅=,故选A.4.【2016高考新课标3理数】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )(A )18+(B )54+(C )90 (D )81 【答案】B【解析】由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积2362332354S =⨯⨯+⨯⨯+⨯⨯=+B .5.【2016高考山东理数】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )(A )1233+π (B )133+π (C )136+π (D )16+π 【答案】C6.【2016高考浙江理数】已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足,m n αβ∥⊥, 则( ) A .m ∥l B .m ∥n C .n ⊥l D .m ⊥n 【答案】C 【解析】由题意知,l l αββ=∴⊂,,n n l β⊥∴⊥.故选C .7.【2016年高考四川理数】已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是.正视图33【解析】由三棱锥的正视图知,三棱锥的高为1,底面边长为2,2,所以,该三棱锥的体积为1122132V =⨯⨯⨯=.8.【2016高考浙江理数】某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 cm 2,体积是 cm 3.【答案】72 32【解析】几何体为两个相同长方体组合,长方体的长宽高分别为4,2,2,所以体积为2(224)32⨯⨯⨯=,由于两个长方体重叠部分为一个边长为2的正方形,所以表面积为2(222244)2(22)72⨯⨯+⨯⨯-⨯= 1.(2015·广东,8)若空间中n 个不同的点两两距离都相等,则正整数n 的取值( ) A .大于5B .等于5C .至多等于4D .至多等于3解析 当n =3时显然成立,故排除A ,B ;由正四面体的四个顶点,两两距离相等,得n =4时成立,故选C. 答案 C2.(2015·浙江,2)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A .8 cm 3B .12 cm 3C.323 cm 3 D.403cm 33.(2015·新课标全国Ⅰ,11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .8解析 由题意知,2r ·2r +12·2πr ·2r +12πr 2+12πr 2+12·4πr 2=4r 2+5πr 2=16+20π,解得r =2.答案 B4.(2015·天津,10)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.解析 由三视图可知,该几何体由相同底面的两圆锥和圆柱组成,底面半径为1,圆锥的高为1,圆柱的高为2,所以该几何体的体积V =2×13π×12×1+π×12×2=83π m 3. 答案 83π 5.(2015·陕西,5)一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .2π+4D .3π+46.(2015·安徽,7)一个四面体的三视图如图所示,则该四面体的表面积是( )A .1+ 3B .2+ 3C .1+2 2D .2 2解析 由空间几何体的三视图可得该空间几何体的直观图,如图,∴该四面体的表面积为S 表=2×12×2×1+2×34×(2)2=2+3,故选B.答案 B7.(2015·新课标全国Ⅱ,9)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点,若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π答案 C8.(2015·山东,7)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3D .2π 解析 如图,由题意,得BC =2,AD =AB =1.绕AD 所在直线旋转一周后所得几何体为一个圆柱挖去一个圆锥的组合体.所求体积V =π×12×2-13π×12×1=53π.答案 C9.(2015·重庆,5)某几何体的三视图如图所示,则该几何体的体积为()A.13+πB.23+πC.13+2πD.23+2π 解析 这是一个三棱锥与半个圆柱的组合体,V =12π×12×2+13×⎝ ⎛⎭⎪⎫12×1×2×1=π+13,选A. 答案 A10.(2015·新课标全国Ⅱ,6)一个正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则截去部分体积与剩余部分体积的比值为()A.18B.17C.16D.15解析 如图,由题意知,该几何体是正方体ABCD -A 1B 1C 1D 1被过三点A 、B 1、D 1的平面所截剩余部分,截去的部分为三棱锥A -A 1B 1D 1,设正方体的棱长为1,则截去部分体积与剩余部分体积的比值为111111A A B D B C D ABCD V V --=1111111111A A B D A B C D ABCD A A B D V V V ----=13×12×12×113-13×12×12×1=15,选D.答案 D11.(2015·湖南,10)某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)()A.89πB.169πC.4(2-1)3πD.12(2-1)3π∴V长方体V1=16272π3=89π.故选A.答案 A。
2017届高考数学(文科)-空间几何体的三视图、表面积与体积-专题练习-答案
2017届高考数学(文科)专题练习空间几何体的三视图、表面积与体积答案一、选择题1~5.CDABB 6~10.CBBCC二、填空题11;12.40π;13..14.132017届高考数学(文科)专题练习空间几何体的三视图、表面积与体积解析一、选择题1.解析:该几何体的侧视图即为其在面BCC1B1上的射影,又A点射影为点B,E点射影为线段CC1的中点,故选C.2.解析:由正视图和侧视图可知,这是一个横放的正三棱柱,一个侧面水平放置,则俯视图应为D.3.解析:四面体的直观图如图A-BCD,所以V=×(×1×2)×2=。
4.解析:由已知中的三视图可得SC⊥平面ABC,且底面△ABC为等腰三角形,在△ABC中AC=4,AC 边上的高为2,故BC=4,在Rt△SBC中,由SC=4,可得SB=4,故选B.5.解析:由三视图知此多面体是一个斜四棱柱,其表面积S=2×(3×3+3×6+3×3)=54+18。
故选B.6.解析:由三视图可知,该几何体是一个底面是梯形的直四棱柱,所以V=×(2+3)×1×1=。
故选C.7.解析:由三视图可知,该几何体是由圆锥(上方)与圆柱(下方)构成的组合体,其中圆锥与圆柱的底面半径r=1,圆锥的母线长l=2,圆柱的高H=2.则圆锥的侧面积S1=πrl=π×1×2=2π;圆柱的侧面积S2=2πrH=2π×1×2=4π;圆柱的底面积S3=πr2=π×12=π。
故该组合体的表面积S=S1+S2+S3=2π+4π+π=7π。
8.解析:设圆锥底面半径为r,因为米堆底部弧长为8尺,所以r=8,r=≈(尺),所以米堆的体积为V=××π×()2×5≈(立方尺),又1斛米的体积约为1.62立方尺,所以该米堆有÷1.62≈22(斛),选B.9.解析:由三视图可知该零件是一个底面半径为2.高为4的圆柱和一个底面半径为3.高为2的圆柱的组合体,所以该组合体的体积V1=π×22×4+π×32×2=34π,原来的圆柱体毛坯的体积为V=π×32×6=54π,则切削掉部分的体积为V2=54π-34π=20π,所以切削掉部分的体积与原来毛坯体积的比值为=。
2017年高考数学(深化复习+命题热点提分)专题12 空间几何体的三视图﹑表面积及体积 文
专题12 空间几何体的三视图﹑表面积及体积文1.一个侧面积为4π的圆柱,其正视图、俯视图是如图所示的两个边长相等的正方形,则与这个圆柱具有相同的正视图、俯视图的三棱柱的相应的侧视图可以为( )【答案】:C【解析】:三棱柱一定有两个侧面垂直,故只能是选项C中的图形.2.一个锥体的主视图和左视图如图所示,下面选项中,不可能是该锥体的俯视图的是( )【答案】 C3.一个正方体截去两个角后所得几何体的正(主)视图、侧(左)视图如图所示,则其俯视图为( )【答案】 C【解析】由题意得正方体截去的两个角如图所示,故其俯视图应选C.4.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的左视图为( )【答案】 C5.如图,用斜二测画法得到四边形ABCD 是下底角为45°的等腰梯形,其下底长为5,一腰长为2,则原四边形的面积是________.【答案】 8 2【解析】:作DE ⊥AB 于E ,CF ⊥AB 于F ,则AE =BF =AD cos 45°=1,∴CD =EF =3.将原图复原(如图),则原四边形应为直角梯形,∠A ′=90°,A ′B ′=5,C ′D ′=3,A ′D ′=22,∴S 四边形A ′B ′C ′D ′=12×(5+3)×22=8 2.6.如图是一个几何体的正视图、侧视图、俯视图,则该几何体的体积是( )A .24B .12C .8D .4【答案】 B7.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则其侧视图的面积是( )A.12B.32 C .1 D.3 【答案】 B【解析】 有三视图可以得到原几何体是以1为半径,母线长为2的半个圆锥,故侧视图的面积是32,故选B.8.已知某几何体的三视图如图所示,其中,正视图、侧视图均是由三角形与半圆构成的,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为( )A.2π3+16B.4π3+16C.2π6+16D.2π3+12【答案】 C【解析】 据三视图可知,该几何体是一个半球(下部)与一个四面体(上部)的组合体,其直观图如图所示,其中BA ,BC ,BP 两两垂直,且BA =BC =BP =1,∴(半)球的直径长为AC =2,∴该几何体的体积为V =V 半球+V P ABC=12×43π⎝ ⎛⎭⎪⎫AC 23+13×12×BA · BC ·PB =2π6+16. 9.某个几何体的三视图如图所示(其中正视图中的圆弧是半径为2的半圆),则该几何体的表面积为( )A .92+24πB .82+24πC .92+14πD .82+14π 【答案】 C10.四棱锥P ABCD 的三视图如图所示,四棱锥P ABCD 的五个顶点都在一个球面上,E ,F 分别是棱AB ,CD 的中点,直线EF 被球面所截得的线段长为22,则该球的表面积为( )A .12πB .24πC .36πD .48π 【答案】 A11.用6根木棒围成一个棱锥,已知其中有两根的长度为 3 cm 和 2 cm ,其余四根的长度均为1 cm ,则这样的三棱锥的体积为________cm 3.【答案】212【解析】 由题意知该几何体如图所示,SA =SB =SC =BC =1,AB =2,AC =3,则∠ABC =90°,取AC 的中点O ,连接SO 、OB ,则SO ⊥AC ,所以SO =SA 2-AO 2=12,OB =12AC =32,又SB =1,所以SO 2+OB 2=SB 2,所以∠SOB =90°,又SO ⊥AC ,所以SO ⊥底面ABC ,故所求三棱锥的体积V =13×22×12=212.12.如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6,O ′C ′=2,则原图形OABC 的面积为________.【答案】 24 2【解析】 由题意知原图形OABC 是平行四边形,且OA =BC =6,设平行四边形OABC 的高为OE ,则OE ×12×22=O ′C ′,∵O ′C ′=2,∴OE =42,∴S ▱OABC =6×42=24 2.13.如图所示,E,F分别是正方体的面ADD1A1,面BCC1B1的中心,则四边形BFD1E在该正方体的面上的正投影可能是________.(要求:把可能的图的序号都填上)【答案】②③【解析】由正投影的定义,四边形BFD1E在面AA1D1D与面BB1C1C上的正投影是图③;其在面ABB1A1与面DCC1D1上的正投影是图②;其在面ABCD与面A1B1C1D1上的正投影也是②,故①④错误.14.用一个平行于圆锥底面的平面截这个圆锥,截得圆台的上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm,求圆台的母线长.15.如图是一个几何体的正视图和俯视图.(1)试判断该几何体是什么几何体;(2)画出其侧视图,并求该平面图形的面积;(3)求出该几何体的体积.16.已知某几何体的俯视图是如右图所示的矩形,正视图(或称主视图)是一个底边长为8,高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V ; (2)求该几何体的侧面积S .【解析】由题设可知,几何体是一个高为4的四棱锥,其底面是长、宽分别为8和6的矩形,正侧面及其相对侧面均为底边长为8,高为h 1的等腰三角形,左、右侧面均为底边长为6,高为h 2的等腰三角形,如图所示.(1)几何体的体积为:V =13·S 矩形·h =13×6×8×4=64.(2)正侧面及相对侧面底边上的高为h 1=42+32=5.左、右侧面的底边上的高为h 2=42+42=4 2. 故几何体的侧面面积为:S =2×(12×8×5+12×6×42)=40+24 2.17.正三棱锥的高为1,底面边长为26,内有一个球与它的四个面都相切(如图).求:(1)这个正三棱锥的表面积;(2)这个正三棱锥内切球的表面积与体积.(2)设正三棱锥P ABC 的内切球球心为O ,连接OP ,OA ,OB ,OC ,而O 点到三棱锥的四个面的距离都为球的半径r .∴V P ABC =V O PAB +V O PBC +V O PAC +V O ABC =13S 侧·r +13S △ABC ·r =13S 表·r =(32+23)r .又V P ABC =13×12×32×(26)2×1=23,∴(32+23)r =23,得r =2332+23=23(32-23)18-12=6-2.∴S 内切球=4π(6-2)2=(40-166)π.V 内切球=43π(6-2)3=83(96-22)π.。
数学(文)三视图高考真题试题解析
1.【2017课标II,文6】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为【答案】B【考点】三视图【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.2.【2017北京,文6】某三棱锥的三视图如图所示,则该三棱锥的体积为(A)60 (B)30(C)20 (D)10【答案】D【解析】试题分析:该几何体是三棱锥,如图:故选D.【考点】1.三视图;2.几何体的体积.【名师点睛】本题考查了空间想象能力,由三视图还原几何体的方法:如果我们死记硬背,不会具体问题具体分析,就会选错,实际上,这个题的俯视图不是几何体的底面,因为顶点在底面的射影落在了底面的外面,否则中间的那条线就不会是虚线.@网3.【2015高考陕西,文5】一个几何体的三视图如图所示,则该几何体的表面积为()A B C D【答案】D【考点定位】1.空间几何体的三视图;2.空间几何体的表面积.【名师点睛】1.本题考查空间几何体的三视图及几何体的表面积,意在考查考生的识图能力、空间想象能力以及技术能力;2.先根据三视图判断几何体的结构特征,再计算出几何体各个面的面积即可;3.本题属于基础题,是高考常考题型.4.【2016高考天津文数】将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()【答案】B考点:三视图【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.5.【2015北京文7】某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.B C D.【答案】C【考点定位】三视图.【名师点晴】本题主要考查的是三视图,属于容易题.解题时一定要抓住三视图的特点,否则很容易出现错误.本题先根据三视图判断几何体的结构特征,再计算出几何体中最长棱的棱长即可.6.【2015新课标2文6】一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为()【答案】D【解析】试题分析:如图所示,截去部分是正方体的一个角,剩余部分体积是,故选D.【考点定位】本题主要考查三视图及几何体体积的计算.【名师点睛】由于三视图能有效的考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.学#7. (2014课标全国Ⅰ,文8)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是().A.三棱锥B.三棱柱C.四棱锥D.四棱柱答案:B名师点睛:本题考查根据三视图判断原几何体的形状,考查空间想象能力,容易题. 三视图的长度特征:“长对正,宽相等,高平齐”,即主视图和左视图一样高,主视图和俯视图一样长,左视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.8.【2015高考安徽,文9】一个四面体的三视图如图所示,则该四面体的表面积是()+(B)1(C(D(A)13【答案】C【解析】由该几何体的三视图可知,该几何体的直观图,如下图所示:其中侧面PAC⊥底面ABCABPCPA=BC==C.【考点定位】本题主要考查空间几何体的三视图、锥体表面积公式.【名师点睛】在利用空间几何体的三视图求几何体的体积或者表面积时,一定要正确还原几何体的直观图,然后再利用体积或表面积公式求之;本题主要考查了考生的空间想象力和基本运算能力.9.【2014年普通高等学校招生全国统一考试湖北卷7】一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C. ④和③D.④和②【答案】D考点:空间由已知条件,在空间坐标系中作出几何体的形状,正视图与俯视图的面积,容易题.【名师点睛】将空间几何体的三视图与空间直角坐标系融合在一起,凸显了数学内知识间的内在联系,充分体现了数学特点和知识间的内在联系,能较好的考查学生的综合知识运用能力.其解题突破口是正确地在空间直角坐标系中画出该几何体的原始图像.10.【2015高考重庆,文5】某几何体的三视图如图所示,则该几何体的体积为()(D)【答案】B【考点定位】三视图及柱体与锥体的体积.【名师点睛】本题考查三视图的概念和组合体体积的计算,采用三视图还原成直观图,再利用简单几何体的体积公式进行求解.本题属于基础题,注意运算的准确性.11.【2015高考浙江,文2,则该几何体的体积是()A.B CD【答案】C【解析】由三视图可知,该几何体是一个棱长为的正方体与一个底面边长为,高为的正四棱锥的组合体,故其体积为故选C.【考点定位】1.三视图;2.空间几何体的体积. 学¥【名师点睛】本题主要考查空间几何体的体积.解答本题时要能够根据三视图确定该几何体的结构特征,并准确利用几何体的体积计算方法计算求得体积.本题属于中等题,重点考查空间想象能力和基本的运算能力.12.【2016高考山东文数】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()(A)12+π33(B)12+π33(C)12+π36(D)21+π6【答案】C考点:1.三视图;2.几何体的体积.【名师点睛】本题主要考查三视图及几何体的体积计算,本题涉及正四棱锥及球的体积计算,综合性较强,较全面的考查考生的视图用图能力、空间想象能力、数学基本计算能力等. 13. 【2014四川,文4】某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是()A、B、CD、【答案】D【考点定位】空间几何体的三视图和体积.【名师点睛】本题主要考查空间几何体的体积.解答本题时要能够根据三视图确定该几何体的结构特征,并准确利用几何体的体积计算方法计算求得体积.本题属于中等题,重点考查空间想象能力和基本的运算能力.14. 2016高考新课标Ⅲ文数]如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为()(A(B(C)90 (D)81【答案】B【解析】试题分析:由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积B.考点:空间几何体的三视图及表面积.【技巧点拨】求解多面体的表面积及体积问题,关键是找到其中的特征图形,如棱柱中的矩形,棱锥中的直角三角形,棱台中的直角梯形等,通过这些图形,找到几何元素间的关系,建立未知量与已知量间的关系,进行求解.&网15.【2015高考湖南,文10】某工作的三视图如图3所示,现将该工作通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工作的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积/原工件的体积)()A B C D【答案】A【考点定位】三视图、基本不等式求最值、圆锥的内接长方体【名师点睛】运用基本不等式求最值要紧紧抓住“一正二定三相等”条件,本题“和为定”是解决问题的关键.空间想象能力是解决三视图的关键,可从长方体三个侧面进行想象几何体.求组合体的体积,关键是确定组合体的组成形式及各部分几何体的特征,再结合分割法、补体法、转化法等方法求体积.16.【2016高考新课标1文数】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是( )(A )17π (B )18π (C )20π (D )28π【答案】A考点:三视图及球的表面积与体积【名师点睛】由于三视图能有效的考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.17.【2015高考北京,文7】某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.B C D.【答案】C【考点定位】三视图.【名师点晴】本题主要考查的是三视图,属于容易题.解题时一定要抓住三视图的特点,否则很容易出现错误.本题先根据三视图判断几何体的结构特征,再计算出几何体中最长棱的棱长即可.18.【2017山东,文13】圆柱构成的几何体的三视图如图,则该几何体的体积为.【解析】试题分析:由三视图可知,长方体的长宽高分别为2,1,1,圆柱的高为1,底面圆半径为1,所以【考点】三视图及几何体体积的计算.【名师点睛】(1)由实物图画三视图或判断、选择三视图,此时需要注意“长对正、高平齐、宽相等”的原则.(2)由三视图还原实物图,解题时首先对柱、锥、台、球的三视图要熟悉,再复杂的几何体也是由这些简单的几何体组合而成的;其次,要遵循以下三步:①看视图,明关系;②分部分,想整体;③综合起来,定整体.19.【2014高考北京文第11题】某三棱锥的三视图如图所示,则该三棱锥的最长棱的棱长为.考点:本小题主要考查立体几何中的三视图,考查同学们的空间想象能力,考查分析问题与解决问题的能力..20.【2016高考四川文科】已知某三菱锥的三视图如图所示,则该三菱锥的体积【解析】1,考点:1.三视图;2.几何体的体积.【名师点睛】本题考查三视图,考查几何体体积,考查学生的识图能力.解题时要求我们根据三视图想象出几何体的形状,由三视图得出几何体的尺寸,为此我们必须掌握基本几何体(柱、锥、台、球)的三视图以及各种组合体的三视图.~网21.【2015高考天津,文10】一个几何体的三视图如图所示(单位:m),则该几何体的体积为.【答案】8π3【考点定位】本题主要考查三视图及几何体体积的计算.【名师点睛】由于三视图能有效的考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.22.【2014天津文10,则该几何体的【答案】20. 3考点:三视图考点定位:本题考点为利用三视图还原几何体及求组合体的体积【名师点睛】本题考查三视图及求组合体的体积,本题属于基础题,正确利用三视图还原为原几何体,特别是有关数据的还原,本题中的几何体为一个圆锥与一个圆柱的组合体,借助三视图中的数据,求出圆锥和圆柱的体积,两体积相加得出组合体的体积,三视图问题为今年高考热点,是必考题,是高考备考的重点,近几年出题难度逐年增加.。
专题04 三视图-2017年高考数学理母题题源系列北京专版 含解析 精品
【母题原题1】【2017北京,理7】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为(A)(B)(C)(D)2【答案】B【解析】红色线为三视图还原后的几何体,最长的棱长为正方体的对角线,l=,故选B.【考点】三视图【名师点睛】本题考查了空间想象能力,由三视图还原几何体的方法:或者也可根据三视图的形状,将几何体的顶点放在正方体或长方体里面,便于分析问题.【母题原题2】【2016北京,理6】某三棱锥的三视图如图所示,则该三棱锥的体积为(A )16 (B )13 (C )12(D )1 【答案】A【考点】三视图【名师点睛】解决此类问题的关键是根据几何体的三视图判断几何体的结构特征.常见的有以下几类:①三视图为三个三角形,对应的几何体为三棱锥;②三视图为两个三角形,一个四边形,对应的几何体为四棱锥;③三视图为两个三角形,一个圆,对应的几何体为圆锥;④三视图为一个三角形,两个四边形,对应的几何体为三棱柱;⑤三视图为三个四边形,对应的几何体为四棱柱;⑥三视图为两个四边形,一个圆,对应的几何体为圆柱.【母题原题3】【2015北京,理5】某三棱锥的三视图如图所示,则该三棱锥的表面积是俯视图侧(左)视图A.2 B.4.2+.5【答案】C考点定位:本题考点为利用三视图还原几何体及求三棱锥的表面积,考查空间线线、线面的位置关系及有关线段长度及三角形面积数据的计算.【名师点睛】本题考查三视图及多面体的表面积,本题属于基础题,正确利用三视图还原为原几何体,特别是有关数据的还原,另外要利用线面垂直的性质,判断三角形的形状,特别是侧面PAB的形状为等腰三角形,正确求出三个侧面的面积和底面的面积.【命题意图】 主要考察空间几何体的三视图还原几何体,求几何体的体积和表面积,意在考查学生的空间想象能力,和计算能力.【命题规律】高考对三视图的考查注意以以下几个方面为主:1、已知部分三视图,考查还原为原来立体图形的直观图;2、已知三视图,考查还原为立体图形的直观图并能计算表面积或体积;3、已知三视图,需要还原立体图形后求空间角或空间距离以及相关元素的位置关系4、以三视图为载体,考查还原后几何体的外接球或内切球问题。
高考经典三视图习题(含答案)
源-于-网-络-收-集几何体的三视图练习题1、若某空间几何体的三视图如图所示,则该几何体的体积是 ( b )(A )2 (B )1 (C )23(D )135、若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积...等于 ( b ) A .3 B .2 C .23 D .6 10、一空间几何体的三视图如图所示,则该几何体 的体积为( c ). A.223π+ B. 423π+C. 2323π+D. 2343π+11、上图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( d ) A .9πB .10πC .11πD .12π16、一个几何体的三视图如上图所示,其中正视图与侧视图都是边长为2的正三角形,则这个几何体的侧面积为( )b A.33π B .2π C .3π D .4π第1题第5题2 2侧(左)视图2 22正(主)视俯视图第10题俯视图 正(主)视图 侧(左)视图2 32 2第11题第2题2020正视图 20侧视图 1010 20俯视图第15题第16题源-于-网-络-收-集18、下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是d A.9π B.10π C.11π D .12π19、右图是一个多面体的三视图,则其全面积为( c )A .3 B .362+C .36+D .34+20、如图所示,一个空间几何体的正视图和侧视图都是底为1,高为2的矩形,俯视图是一个圆,那么这个几何体的表面积为( b ) A .2π B .52πC .4πD .5π21、一个几何体的三视图及其尺寸(单位:cm)如图所示,则该几何体的侧面积为_80______cm 2.22、如果一个几何体的三视图如图所示(单位长度: cm),则此几何体的表面积是( a )A. 2(2042)cm +B.212cmC. 2(2442)cm +D. 242cm24、已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离均为2π,则2俯视图主视图左视图2 12 第18题第19题 第20题 俯视图85 5 8 8 5 5 第21题源-于-网-络-收-集球心O 到平面ABC 的距离为 ( b ) A. 31 B.33 C. 32 D.36。
2017届高考数学年(文科)空间几何体的三视图、表面积与体积专题练习答案
)(10,+∞⎫⎪⎭平面向量、框图与合情推理解析一、选择题1.解析:根据已知可得b<a<0,故选项A,B,C中的结论正确。
2.解析:依题意有作出可行域,易求得x-y的最大值和最小值分别为2和-2,选D.3.解析:设该容器的总造价为y元,长方体的底面矩形的长为x m,因为无盖长方体的容积为4m3,高为1m,所以长方体的底面矩形的宽为m,依题意,得y=20×4+10(2x+)=80+20(x+)≥80+20×2=160(当且仅当x=,即x=2时取等号)。
所以该容器的最低总造价为160元。
故选C.4.解析:已知不等式组表示的平面区域如图中的阴影部分OAB,其中A(-2,-2),B(3,-2),该区域的面积为×5×2=5.5.解析:lo a=-log 2a,f(log 2a)+f(lo a)≤2f(1),f(x)是偶函数,所以2f(log2a)≤2f(1),所以|log2a|≤1,解得≤a≤2,所以a的最小值是。
故选C.6.解析:因为a>0,当x>0时,y=x++2≥2+2,当x<0时,y=x++2≤-2+2,由已知得所以a=1.故选C.7.解析:已知不等式组表示的平面区域如图中的阴影部分,其中A(0,1),B(2,0),C(,3),所以0≤x≤2,0≤y≤3,所以目标函数即为z=3x-y+3,根据目标函数的几何意义,可知在点B,C处目标函数分别取得最大值和最小值,故z max=9,z min=,所以目标函数的取值范围是[,9]。
8.解析:画出约束条件表示的可行域由得(2,)为最优解。
则2-2×=2.所以a=2,故选D.9.解析:因为直线ax+by=1经过点(1,2),所以a+2b=1.则2a+4b≥2=2=2,当且仅当a=2b=时取等号。
故选B.10.解析:因为a,b都是正数,则(1+)(1+)=5++≥5+2=9,当且仅当b=2a>0时取等号,故选C.11.解析:因f(x)=x3+ax2+bx+c有两个极值点x1,x2,所以函数f(x)的导函数f′(x)=3x2+2ax+b的图象与x轴有两个交点,所以当x∈(-∞,x1),(x2,+∞)时f′(x)>0,这时y=f(x)是增函数,x∈(x1,x2)时,f′(x)<0,这时y=f(x)是减函数,所以f(x1)>f(x2),又因f(x1)=x1<x2,所以函数f(x)的示意图如图所示。
高考数学三视图汇编.doc
高考立体几何三视图1( 2017 全国卷二理数)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A .90B.63C.42D.36【答案】 B【解析】该几何体可视为一个完整的圆柱减去一个高为 6 的圆柱的一半.2( 2017 北京文数)某三棱锥的三视图如图所示,则该三棱锥的体积为A 60B 30C 20D 10【答案】 D【解析】该几何体是如图所示的三棱锥P-ABC ,由图中数据可得该几何体的体积为V 115 3 4 10 3 23( 2017 北京理数)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为A 3 2B 2 3C 2 2D 2【答案】 B【解析】如下图所示,在四棱锥P ABCD 中,最长的棱为PA,所以 PA= PC2AC 222(2 2) 2 2 3 ,故选B.4( 2017 山东理数)由一个长方体和两个何体的三视图如图,则该几何体的体积为1圆柱构成的几4。
【答案】2+ 【解析】由三视图可知,长方体的长、宽、2高分别是2、 1、 1,圆柱的高为1,底面半径为1,所以V 2 1 1 2 121=2+4 25( 2017 全国卷一理数)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C.14 D .16【答案】 B【解析】由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为2(2 4) 2 112 ,故选 B. 26( 2017 浙江文数)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A. π+1 πB. +32 2C. 3 3π+1 D. +3 2 2【答案】 A 【解析】由三视图可知该几何体由一个三棱锥和半个圆锥组合而成,圆锥的体积为 V1 1 1 12 3 π,三棱锥的体积为 V2 112 13 1 ,2 3 2 3 2 2所以它的体积为V V1 V2π 1 2 27.( 2016 全国卷 1 文数)如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π,则它的表面积3是().A .17πB.18πC.20π D .28π【答案】 B 【解析】由三视图可知该几何体是7个球(如图所示),设球的半径为 R ,则8V 7 4π 3 28πS表7 2 3 28R 得 R=2 ,所以它的表面积是84π 2 +42 173 38.( 2016 全国卷 2 文数)右图是圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为().A.20πB.24C.28D.32【答案】 C【解析】由题意可知,圆柱的侧面积为S12π 2 4 16圆锥的侧面积为S212π 2 48 2圆柱的底面积为S3π 22 4该几何体的表面积为S S1+S2 +S3289.( 2016 全国卷 3 文数)如图所示,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为() .A. 18 36 5B. 54 18 5C. 90D. 81【答案】 B 【解析】(1)由题意知,几何体为平行六面体,边长分别为3,3,45,几何体的表面积S=3×6×2+3×3×2+ 3× 45×2= 54+ 18 5. 10.( 2016 北京文数)某四棱柱的三视图如图所示,则该四棱柱的体积为___________.【答案】3【解析】由已知中的三视图可知,该几何体是一个以俯视图为底面的四棱柱,2棱柱的底面积为 S 1(1+2) 1 3 棱柱的高为1,故体积为3 2 2 211.(2016 山东文数)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为() .A . 1 2 πB . 1 2 π3 3 3 3C. 1 2 πD.1 2 π3 6 6 11 1正(主)视图侧(左)视图俯视图【答案】 C【解析】由题意可知,该几何体上部是一个半球,下部是一个四棱锥,半球的直径为棱锥的底面对角线,由棱锥底面棱长为1,可得2R 22,故 R2半球的体积为,2 23 2(g )=326棱锥的面积为1,高为 1,故体积为1故几何体的体积为1 +23 3 612.( 2016 天津文数3)将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为() .【答案】 B【解析】由正视图和俯视图可知该几何体的直观图如图所示,故该几何体的侧视图为选项 B.13( 2016 四川文数)已知某三棱锥的三视图如图所示,则该三棱锥的体积等于. 【答案】 C【解析】由题意可知,该几何体为三棱锥,底面为俯视图所示的三角形,底面积 S 13 1 3 ,高为 h1 1 32 1 棱锥的体积为VSh g 3g1=3 2 3 314.( 2016 浙江文数)某几何体的三视图如图所示(单位:cm),则该几何体的表2 3面积是 ______cm ,体积是 ______cm .【答案】 C 【解析】由题意可知,该几何体为长方体上面放置一个小的正方体,其表面积为 S 6 22 2 42 4 2 4 2 22 80其体积为 V 23 4 4 2 40。
数学(文)三视图高考真题试题解析
1.【2017课标II,文6】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A.90πB.63π C.42π D.36π【答案】B【考点】三视图【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.2.【2017北京,文6】某三棱锥的三视图如图所示,则该三棱锥的体积为(A)60 (B)30(C)20 (D)10【答案】D 【解析】试题分析:该几何体是三棱锥,如图:图中红色线围成的几何体为所求几何体,该几何体的体积是115341032V =⨯⨯⨯⨯=,故选D.【考点】1.三视图;2.几何体的体积.【名师点睛】本题考查了空间想象能力,由三视图还原几何体的方法:如果我们死记硬背,不会具体问题具体分析,就会选错,实际上,这个题的俯视图不是几何体的底面,因为顶点在底面的射影落在了底面的外面,否则中间的那条线就不会是虚线.@网 3.【2015高考陕西,文5】一个几何体的三视图如图所示,则该几何体的表面积为( ) A .3π B .4π C.24π+ D .34π+【答案】D【考点定位】1.空间几何体的三视图;2.空间几何体的表面积.【名师点睛】1.本题考查空间几何体的三视图及几何体的表面积,意在考查考生的识图能力、空间想象能力以及技术能力;2.先根据三视图判断几何体的结构特征,再计算出几何体各个面的面积即可;3.本题属于基础题,是高考常考题型.4.【2016高考天津文数】将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )【答案】B考点:三视图【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.5.【2015北京文7】某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( )A. B.2C.3 D.【答案】C【考点定位】三视图.【名师点晴】本题主要考查的是三视图,属于容易题.解题时一定要抓住三视图的特点,否则很容易出现错误.本题先根据三视图判断几何体的结构特征,再计算出几何体中最长棱的棱长即可.6.【2015新课标2文6】一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )1 A. 81B.71C.61D.5【答案】D【解析】试题分析:如图所示,截去部分是正方体的一个角,其体积是正方体体积的16,剩余部分体积是正方体体积的56,所以截去部分体积与剩余部分体积的比值为15,故选D.【考点定位】本题主要考查三视图及几何体体积的计算.【名师点睛】由于三视图能有效的考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.学#7. (2014课标全国Ⅰ,文8)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( ).A.三棱锥B.三棱柱C.四棱锥D.四棱柱答案:B名师点睛:本题考查根据三视图判断原几何体的形状,考查空间想象能力,容易题. 三视图的长度特征:“长对正,宽相等,高平齐”,即主视图和左视图一样高,主视图和俯视图一样长,左视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.8.【2015高考安徽,文9】一个四面体的三视图如图所示,则该四面体的表面积是( )(A )13+ (B )122+ (C)23+ (D)22 【答案】C【解析】由该几何体的三视图可知,该几何体的直观图,如下图所示:其中侧面PA C⊥底面ABC,且PAC ∆≌ABC ∆,由三视图中所给数据可知:2====BC AB PC PA ,取AC 中点,O 连接BO PO ,,则POB Rt ∆中,1==BO PO ⇒2=PB ∴3222212432+=⋅⋅+⋅⋅=S ,故选C . 【考点定位】本题主要考查空间几何体的三视图、锥体表面积公式.【名师点睛】在利用空间几何体的三视图求几何体的体积或者表面积时,一定要正确还原几何体的直观图,然后再利用体积或表面积公式求之;本题主要考查了考生的空间想象力和基本运算能力.9.【2014年普通高等学校招生全国统一考试湖北卷7】在如图所示的空间直角坐标系xyz O -中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )A.①和② B.③和① C . ④和③ D.④和② 【答案】D考点:空间由已知条件,在空间坐标系中作出几何体的形状,正视图与俯视图的面积,容易题. 【名师点睛】将空间几何体的三视图与空间直角坐标系融合在一起,凸显了数学内知识间的内在联系,充分体现了数学特点和知识间的内在联系,能较好的考查学生的综合知识运用能力.其解题突破口是正确地在空间直角坐标系中画出该几何体的原始图像.10.【2015高考重庆,文5】某几何体的三视图如图所示,则该几何体的体积为( )(A) 123π+ (B )136π (C) 73π(D) 52π【答案】B【考点定位】三视图及柱体与锥体的体积.【名师点睛】本题考查三视图的概念和组合体体积的计算,采用三视图还原成直观图,再利用简单几何体的体积公式进行求解.本题属于基础题,注意运算的准确性.11.【2015高考浙江,文2】某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A . 3cmB .123cm C.3233cm D.4033cm【答案】C【解析】由三视图可知,该几何体是一个棱长为的正方体与一个底面边长为,高为的正四棱锥的组合体,故其体积为32313222233V cm =+⨯⨯=.故选C. 【考点定位】1.三视图;2.空间几何体的体积. 学¥【名师点睛】本题主要考查空间几何体的体积.解答本题时要能够根据三视图确定该几何体的结构特征,并准确利用几何体的体积计算方法计算求得体积.本题属于中等题,重点考查空间想象能力和基本的运算能力.12.【2016高考山东文数】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )(A )12+π33(B)12+π33 (C)12+π36(D)21+π6【答案】C考点:1.三视图;2.几何体的体积.【名师点睛】本题主要考查三视图及几何体的体积计算,本题涉及正四棱锥及球的体积计算,综合性较强,较全面的考查考生的视图用图能力、空间想象能力、数学基本计算能力等.13. 【2014四川,文4】某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是( )(锥体体积公式:13V Sh,其中S为底面面积,为高)A、B、C、3D、侧视图俯视图11222211【答案】DBDCAOBDCA【考点定位】空间几何体的三视图和体积.【名师点睛】本题主要考查空间几何体的体积.解答本题时要能够根据三视图确定该几何体的结构特征,并准确利用几何体的体积计算方法计算求得体积.本题属于中等题,重点考查空间想象能力和基本的运算能力.14. 2016高考新课标Ⅲ文数]如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为()(A)18365+ (B )54185+ (C)90 (D )81 【答案】B 【解析】试题分析:由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积236233233554185S =⨯⨯+⨯⨯+⨯⨯=+,故选B.考点:空间几何体的三视图及表面积.【技巧点拨】求解多面体的表面积及体积问题,关键是找到其中的特征图形,如棱柱中的矩形,棱锥中的直角三角形,棱台中的直角梯形等,通过这些图形,找到几何元素间的关系,建立未知量与已知量间的关系,进行求解.&网15.【2015高考湖南,文10】某工作的三视图如图3所示,现将该工作通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工作的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积/原工件的体积)( )A 、89πB 、827πC 、224(21)π-D 、28(21)-【答案】A【考点定位】三视图、基本不等式求最值、圆锥的内接长方体【名师点睛】运用基本不等式求最值要紧紧抓住“一正二定三相等”条件,本题“和为定”是解决问题的关键.空间想象能力是解决三视图的关键,可从长方体三个侧面进行想象几何体.求组合体的体积,关键是确定组合体的组成形式及各部分几何体的特征,再结合分割法、补体法、转化法等方法求体积.16.【2016高考新课标1文数】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是错误!,则它的表面积是( )(A)17π (B)18π (C)20π(D)28π【答案】A考点:三视图及球的表面积与体积【名师点睛】由于三视图能有效的考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.17.【2015高考北京,文7】某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为( ) A. B.2C.3 D.【答案】C【考点定位】三视图.【名师点晴】本题主要考查的是三视图,属于容易题.解题时一定要抓住三视图的特点,否则很容易出现错误.本题先根据三视图判断几何体的结构特征,再计算出几何体中最长棱的棱长即可. 18.【2017山东,文13】由一个长方体和两个14圆柱构成的几何体的三视图如图,则该几何体的体积为 .【答案】π22+【解析】试题分析:由三视图可知,长方体的长宽高分别为2,1,1,圆柱的高为1,底面圆半径为1,所以2π1π21121242V ⨯=⨯⨯+⨯⨯=+.【考点】三视图及几何体体积的计算.【名师点睛】(1)由实物图画三视图或判断、选择三视图,此时需要注意“长对正、高平齐、宽相等”的原则.(2)由三视图还原实物图,解题时首先对柱、锥、台、球的三视图要熟悉,再复杂的几何体也是由这些简单的几何体组合而成的;其次,要遵循以下三步:①看视图,明关系;②分部分,想整体;③综合起来,定整体.19.【2014高考北京文第11题】某三棱锥的三视图如图所示,则该三棱锥的最长棱的棱长为.俯视图正(主)视图11122【答案】22考点:本小题主要考查立体几何中的三视图,考查同学们的空间想象能力,考查分析问题与解决问题的能力.20.【2016高考四川文科】已知某三菱锥的三视图如图所示,则该三菱锥的体积 .侧视图俯视图【答案】33【解析】试题分析:由三视图可知该几何体是一个三棱锥,且底面积为123132S =⨯=高为1,所以该几何体的体积为1133133V Sh === 考点:1.三视图;2.几何体的体积.【名师点睛】本题考查三视图,考查几何体体积,考查学生的识图能力.解题时要求我们根据三视图想象出几何体的形状,由三视图得出几何体的尺寸,为此我们必须掌握基本几何体(柱、锥、台、球)的三视图以及各种组合体的三视图.~网21.【2015高考天津,文10】一个几何体的三视图如图所示(单位:m),则该几何体的体积为3m.【答案】8π3【考点定位】本题主要考查三视图及几何体体积的计算.【名师点睛】由于三视图能有效的考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.22.【2014天津文10】一个几何体的三视图如图所示(单位:m),则该几何体的体积为3m.【答案】20. 3考点:三视图考点定位:本题考点为利用三视图还原几何体及求组合体的体积【名师点睛】本题考查三视图及求组合体的体积,本题属于基础题,正确利用三视图还原为原几何体,特别是有关数据的还原,本题中的几何体为一个圆锥与一个圆柱的组合体,借助三视图中的数据,求出圆锥和圆柱的体积,两体积相加得出组合体的体积,三视图问题为今年高考热点,是必考题,是高考备考的重点,近几年出题难度逐年增加.。
2017高考试题分类汇编立体几何文数
立体几何(三视图)【2017年北京卷第6题】某三棱锥的三视图如下图,那么该三棱锥的体积为(A)60 (B)30 (C)20 (D)10【2017年山东卷第13题】由一个长方体和两个14圆柱组成的几何体的三视图如右图,那么该几何体的体积为 .【2017年浙江卷第3题】某几何体的三视图如下图(单位:cm),那么该几何体的体积(单位:3cm)是A. π+12B.π+32C.π3+12D.π3+32【2017年新课标II 第6题】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部份后所得,那么该几何体的体积为A.90πB.63πC.42πD.36π立体几何(点线面关系、大题)【2017年浙江卷第11题】我国古代数学家刘徽创建的“割圆术”能够估算圆周率π,理论上能把π的值计算到任意精度。
祖冲之继承并进展了“割圆术”,将π的值精准到小数点后七位,其结果领先世界一千连年,“割圆术”的第一步是计算单位圆内接正六边形的面积S 6,S 6= 。
【2017年新课标I 卷第16题】已知三棱锥S-ABC 的所有极点都在球O 的球面上,SC 是球O 的直径.假设平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S-ABC 的体积为9,那么球O 的表面积为________.【2017年新课标I 卷第6题】如图,在以下四个正方体中,A ,B 为正方体的两个极点,M ,N ,Q 为所在棱的中点,那么在这四个正方体中,直接AB 与平面MNQ 不平行的是( )【2017年浙江卷第9题】如图,已知正四面体D –ABC (所有棱长均相等的三棱锥),P ,Q ,R 别离为AB ,BC ,CA 上的点,AP=PB ,2BQ CR QC RA==,别离记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面角为α,β,γ,那么A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α【2017年新课标III 卷第9题】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,那么该圆柱的体积为A .πB .3π4C .π2D .π4【2017年新课标II 第15题】长方体的长、宽、高别离为3,2,1,其极点都在球O 的球面上,那么球O 的表面积为【2017年新课标III 卷第10题】在正方体1111ABCD A B C D 中,E 为棱CD 的中点,那么A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥【2017年天津卷第11题】已知一个正方体的所有极点在一个球面上,假设那个正方体的表面积为18,那么那个球的体积为 .【2017年江苏卷第6题】如图,在圆柱O 1 O 2 内有一个球O ,该球与圆柱的上、下底面及母线均相切。
2016-2017高考数学三视图汇编
高考立体几何三视图1(2017全国卷二理数)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A.π90B.π63C.π42D.π36【答案】B 【解析】该几何体可视为一个完整的圆柱减去一个高为6的圆柱的一半.2(2017北京文数)某三棱锥的三视图如图所示,则该三棱锥的体积为A 60B 30C 20D 10【答案】D 【解析】该几何体是如图所示的三棱锥P-ABC,由图中数据可得该几何体的体积为11V=⨯⨯⨯⨯=53410323(2017北京理数)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为A 3B 2C 2D 2【答案】B 【解析】如下图所示,在四棱锥-P ABCD 中,最长的棱为PA , 所以2222=2(22)23+=+=PA PC AC ,故选B .4(2017山东理数)由一个长方体和两个14圆柱构成的几何体的三视图如图,则该几何体的体积为 。
【答案】2+2π 【解析】由三视图可知,长方体的长、宽、高分别是2、1、1,圆柱的高为1,底面半径为1,所以2121121=2+42V ππ⨯=⨯⨯+⨯⨯5(2017全国卷一理数)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .16【答案】B【解析】由题意该几何体的直观图是由一个三棱锥和三棱柱构成,232如下图,则该几何体各面内只有两个相同的梯形, 则这些梯形的面积之和为12(24)2122⨯+⨯⨯=,故选B.6(2017浙江文数)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是( )A. π+12B. π+32C.3+12π D. 3π+32【答案】A 【解析】由三视图可知该几何体由一个三棱锥和半个圆锥组合而成,圆锥的体积为2111π13232V π=⨯⨯⨯⨯=,三棱锥的体积为2111213322V =⨯⨯⨯⨯=,所以它的体积为12π122V V V =+=+7.(2016全国卷1文数)如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是( ). A .17π B . 18π C . 20π D . 28π【答案】B 【解析】由三视图可知该几何体是78个球(如图所示),设球的半径为R ,则374π28π833V R =⨯=得R=2,所以它的表面积是22734π2+21784S 表ππ=⨯⨯⨯⨯=8.(2016全国卷2文数)右图是圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( ). A.20πB.24πC.28πD.32π【答案】C 【解析】由题意可知,圆柱的侧面积为12π2416S π=⨯⨯=圆锥的侧面积为212π2482S π=⨯⨯⨯=圆柱的底面积为23π24S π=⨯=该几何体的表面积为123++28S S S S π==9.(2016全国卷3文数)如图所示,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为 ( ). A.18365+ B.54185+ C.90 D.81【答案】B 【解析】 (1)由题意知,几何体为平行六面体,边长分别为3,3,45,几何体的表面积S =3×6×2+3×3×2+3×45×2=54+18 5.10.(2016北京文数)某四棱柱的三视图如图所示,则该四棱柱的体积为___________.正(主)视图俯视图侧(左)视图【答案】32【解析】由已知中的三视图可知,该几何体是一个以俯视图为底面的四棱柱,棱柱的底面积为131+2122S ()=⨯⨯= 棱柱的高为1,故体积为3211.(2016山东文数)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( ).A .12π33+ B.1π33+C.1π36+D.1π6+ 【答案】C 【解析】由题意可知,该几何体上部是一个半球,下部是一个四棱锥,半球的直径为棱锥的底面对角线,由棱锥底面棱长为1,可得2R =,故2R =,半球的体积为32=326()πg棱锥的面积为1,高为1,故体积为13故几何体的体积为1+36 12.(2016天津文数3)将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( ). 【答案】B 【解析】由正视图和俯视图可知该几何体的直观图如图所示,故该几何体的侧视图为选项B.13(2016四川文数)已知某三棱锥的三视图如图所示,则该三棱锥的体积等于 .【答案】C 【解析】由题意可知,该几何体为三棱锥,底面为俯视图所示的三角形,底面积123132S =⨯⨯= ,高为1h =棱锥的体积为11331=33V Sh ==g g14.(2016浙江文数)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是______cm 2,体积是______cm 3.【答案】C 【解析】由题意可知,该几何体为长方体上面放置一个小的正方体,其表面积为22262244242280S =⨯+⨯+⨯⨯-⨯=其体积为3244240V =+⨯⨯=2020-2-8。
2017高考黄金100题解读与扩展:专题一 空间几何体的三视图 含解析
专题一空间几何体的三视图I.题源探究·黄金母题【例1】如图是一个奖杯的三视图,试根据奖杯的三视图计算它的表面积与体积(尺寸如图,单位:cm, 取3。
14,结果精确到21cm,可用计算器)【解析】由奖杯的三视图知奖杯的上部是直径为4cm的球,中部是一个四棱柱,其中上、下底面是边长分别为8cm、4cm的矩形,四个侧面中的两个侧面是边长分别为20cm、8cm的矩形,另两个侧面是边长分别为20cm、4cm 的矩形,下部是一个四棱台,其中上底面是边长分别10cm、8cm的矩形,下底面是边长分别20cm、16cm的矩形,直棱台的高为2cm,所以它的表面各和体积分别为11933cm、10673cm.II.考场精彩·真题回放【例2】【2016全国新课标Ⅲ卷】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为A.18365+C.90 D.81+B.545【答案】B【解析】由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积S=⨯⨯+⨯⨯+⨯⨯=+故选B.236233233554185【例3】﹙2016年全国1卷理﹚如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半π,则它的表面积是()径。
若该几何体的体积是283A .17πB .18πC .20πD .28π【答案】A 【解析】由三视图知:该几何体是78个球,设球 的半径为R ,则37428V R 833ππ=⨯=,解得 R 2= ,所以它的表面积是R 2= 22734221784πππ⨯⨯+⨯⨯=,故选A .【例4】【2016全国新课标Ⅱ卷】如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π【答案】C【解析】由题意可知,圆柱的侧面积为122416S ππ=⋅⋅=,圆锥的侧面积为2122482S ππ=⋅⋅⋅=,圆柱的底面面积为 2324S ππ=⋅=,故该几何体的表面积为12328S S S S π=++=,故选C . 【例5】【2016天津高考】将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )【答案】B【解析】由题意得截去的是长方体前右上方顶点,故选B .【例6】【2016山东高考】一个由半球和四棱锥组成的几何体,其三视图如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间几何体的三视图、表面积和体积
1、(16全国3)如图,网格纸上小正方形的边长为1,粗实现画出的是
某多面体的三视图,则该多面体的表面积为( )
(A )18365+ (B )54185+ (C )90 (D )81
2、(16北京)某三棱锥的三视图如右图所示,则该三棱锥的体积为( )
(A )16
(B )13 (C )12 (D )1 3、(09海南宁夏)一个棱锥的三视图如右图,则该棱锥的全面积为( )
(A )48122+ (B )48242+
(C )36122+ (D )36242+
4、(16四川)已知某三棱锥的三视图如下图所示,则该三棱锥的体积 。
5、(16天津)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如下图所示(单位:m ),则该四棱锥的体积为_______m 3.
6、(15北京)某三棱锥的三视图如上图所示,则该三棱锥的表面积是( )
A .25+
B .45+
C .225+
D .5
7、(16全国1)如图,某几何体的三视图是三个半径相等的圆及
每个圆中两条相互垂直的半径.若该几何体的体积是
328π, 则它的表面积是( )
(A )π17 (B )π18 (C )π20 (D )π28
4第题图第5题图第1题图
第2题图第3题图第7题图
第6题图
8、(16浙江,文)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是___cm 2,体积是____ cm 3
9、(16浙江,理)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 cm 2,体积是 cm 3. 10、(16山东)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )(A )1233+π (B )1233+
π (C )1236+π (D )216+π
11、(14全国2)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线
画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体
毛坯切削得到,则切削的部分的体积与原来毛坯体积的比值为( )
A.
2717 B.95 C.2710 D.3
1
12、(13全国1)某几何体的三视图如图所示,
则该几何体的体积为( ) A .168π+ B .88π+
C .1616π+
D .816π+
13、(15全国1)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问“积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( ) (A )14斛 (B )22斛 (C )36斛 (D )66斛
14、(14北京)在空间直角坐标系Oxyz 中,已知(2,0,0)(2,2,0),(0,2,0),(1,1,2)A B C D .若123,,S S S 分别是三棱锥D ABC -在,,xOy yOz zOx 坐标平面上的正投影图形的面积,则( )
A .123S S S ==
B .21S S =且23S S ≠
C .31S S =且32S S ≠
D .32S S =且31S S ≠ 第8题图第9题图第10题图
15、(14湖北)在如图所示的空间直角坐标系xyz O -中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )
A.①和②
B.③和①
C. ④和③
D.④和②
16、(13全国2)一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体正视图时,以zOx 平面为投影面,则得到正视图可以为( )
(A) (B) (C) (D)
17、(16四川)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥
的正视图 如图所示,则该三棱锥的体积是 . 18、(11全国)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为( )
19、(07海南宁夏)已知三棱锥S ABC -的各顶点都在一个半径为r 的球面上,
球心O 在AB 上,SO ⊥底面ABC ,2AC r =,则球的体积与三棱锥体积之
比是( )A.π B.2π C.3π D.4π
20、(10全国)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( )(A) 2a π (B) 27
3a π (C) 2113
a π (D) 25a π 21、(08海南宁夏)一个六棱柱的底面是正六边形,其侧棱垂直底面.该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为
98,底面周长为3,则这个球的体积为 .
22、(12全国)已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为( )
()A 26 ()B 36 ()C 23 ()D 22
23、(16全国3)在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,AB BC ⊥,
6AB =,8BC =,13AA =,则V 的最大值是( )
(A )4π (B )92π (C )6π (D )323
π 24、(11全国1)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,23AB BC ==,则棱锥O ABCD -的体积为 。
25、(11全国1)已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的
16
3 ,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为 。
26、(13全国1)已知H 是球O 的直径AB 上一点,:1:2AH HB =,AB ⊥平
面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积______。
27、(13全国1)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,
将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,
如果不计容器的厚度,则球的体积为 ( )
A 、500π3cm 3
B 、866π3cm 3
C 、1372π3cm 3
D 、2048π3cm 3 28、如图,正方体ABCD —A 1B 1C 1D 1的棱长为2,动点
E ,
F 在棱A 1B 1上,动点P ,Q 分别在棱AD ,CD 上.若EF =1,A 1E =x ,DQ =y ,DP =z (x ,y ,z 大于零),则四面体P —EFQ 的体积( )
A .与x ,y ,z 都有关
B .与x 有关,与y ,z 无关
C .与y 有关,与x ,z 无关
D .与z 有关,与x ,y 无关
29、(13湖南7)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...
等于( ) A .1 B .2 C .2-12 D .2+12
30、(08海南宁夏)某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a b +的最大值为( )
A .22
B .23
C .4
D .25
参考答案
2 6-10 C A 80,40 72,32 D 11-15 C A B D D
21-25
43π A B 13 26-30
92π A D C C。