山东省威海市2012届高三数学第二次模拟考试试题_理_(2012威海二模
2012届高三二模考试数学试卷(理)及答案
2012届高三模拟考试数学试题数学试题(理科)本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生要务必填写答题卷上密封线内的有关项目.2.选择题每小题选出答案后,用铅笔把答案代号填在答题卷对应的空格内.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.请考生保持答题卷的整洁.考试结束后,将答题卷和答题卡交回. 参考公式:锥体的体积公式13V Sh =,其中S 为锥体的底面面积,h 为锥体的高. 一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数(1)i ai ⋅+是纯虚数,则实数a 的值是( )A. 1B. 1-C.0D. 0或1-2.已知集合{||2,A x x x =≤∈R },{2,B x x =≤∈Z },则A B = ( )A. (0,2)B. [0,2]C. {0, 2}D. {0,1,2}3.设25025..12,25,()2.a b c ===,则,,a b c 的大小关系是(C )A.a c b >>B. c a b >>C. a b c >>D.b a c >>4.一空间几何体的三视图如图所示,则该几何体的体积为. A. 1 B. 3 C 6 D. 25.设向量(1,0)a = ,11(,)22b = ,则下列结论正确的是 ( )A.a b =B.2a b ⋅= C. a ∥b D. a b - 与b 垂直6.执行如图1所示的程序框图后,输出的值为5,则P 的取值范围( )A.715816P <≤ B. 1516P > C. 715816P ≤< D.3748P <≤ 7. 下列四个判断:①某校高三一班和高三二班的人数分别是,m n ,某次测试数学平均分分别是,a b ,则这两个班的数学平均分为2a b+; ②10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a ,中位数为b ,众数为c ,则有b a c >>; ③从总体中抽取的样本12221111(,),(,),,(,),,n nn n i i i i x y x y x y x x y y n n ====∑∑ 若记,则回归直线y =bx a +必过点(,x y )④已知ξ服从正态分布(0N ,2)σ,且(20)0.4P ξ-≤≤=,则(2)0.2P ξ>= 其中正确的个数有: ( )A .0个B . 1 个C .2 个D .3个8. 定义符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩,设111sgn()1sgn()122()()22x x f x f x -+-+=⋅+2()f x ⋅,[0,1]x ∈,其中1()f x =12x +, 2()f x ⋅=2(1)x -, 若1[()][0,)2f f a ∈,则实数a 的取值范围是( )A. 1(0,]4B. 11(,)42C. 11(,]42D. 3[0,]8二、填空题:本大共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.. 已知A 是单位圆上的点,且点A 在第二象限,点B 是此圆与x 轴正半轴的交点,记AOB α∠=, 若点A的纵坐标为35.则s i n α=_____________;tan(2)πα-=_______________.10.以抛物线24y x =的焦点为圆心,且被y 轴截得的弦长等于2的圆的方程为__________________.11.从如图所示的长方形区域内任取一个点()y x M ,,则点M 取自阴影部分的概率为____________.12.已知,x y 满足约束条件5000x y x y y ++⎧⎪-⎨⎪⎩≥≤≤,则24z x y =+的最小值是_________.13.设()11f x x x =-++,若不等式121()a a f x a+--≥对任意实数0a ≠恒成立,则x 取值集合是_______________________.(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图,AB 是圆O 的直径,DE AD =,6,8==BD AB ,则ADAC= ;15.(坐标系与参数方程选做题) 已知直线l 方程是11x ty t =+⎧⎨=-⎩(t 为参数),,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为1ρ=,则圆C 上的点到直线l 的距离最小值是 三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16. (本小题满分12分)已知等比数列{}n a 的前n 项和为n S , 11a =,且1S ,22S ,33S 成等差数列. (1)求数列{}n a 通项公式;(2)设n n b a n =+,求数列{}n b 前n 项和n T .17.(本小题满分14分) 有一个3×4×5的长方体, 它的六个面上均涂上颜色. 现将这个长方体锯成60个1×1×1的小正方体,从这些小正方体中随机地任取1个,设小正方体涂上颜色的面数为ξ. (1)求0ξ=的概率; (2)求ξ的分布列和数学期望.18.(本小题满分14分)如图5(1)中矩形ABCD 中,已知2AB =,AD =MN 分别为AD 和BC 的中点,对角线BD 与MN 交于O 点,沿MN 把矩形ABNM 折起,使平面ABNM 与平面MNCD 所成角为60 ,如图5(2).(1) 求证:BO DO ⊥;(2) 求AO 与平面BOD 所成角的正弦值.OABDC MNABDCMNO图6B A19.(本小题满分12分)在ABC ∆中,三个内角A ,B ,C 的对边分别为a ,b ,c ,其中2c =,且cos cos 1A bB a == (1)求证:ABC ∆是直角三角形;(2)如图6,设圆O 过,,A B C 三点,点P 位于劣弧AC ︿上,求PAC ∆面积最大值.20.(本小题满分14分)在直角坐标系xOy 中,动点P 与定点(1,0)F 的距离和它到定直线2x =的距离之比是2,设动点P 的轨迹为1C ,Q 是动圆2222:C x y r +=(12)r <<上一点. (1)求动点P 的轨迹1C 的方程; (2)设曲线1C上的三点1122(,),(,)A x y B C x y 与点F 的距离成等差数列,若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k ;(3)若直线PQ 与1C 和动圆2C 均只有一个公共点,求P 、Q 两点的距离PQ 的最大值.21.(本小题满分14分)已知函数()ln(1)f x x mx =++,当0x =时,函数()f x 取得极大值. (1)求实数m 的值;(2)已知结论:若函数()ln(1)f x x mx =++在区间(,)a b 内导数都存在,且1a >-,则存在0(,)x a b ∈,使得0()()()f b f a f x b a-'=-.试用这个结论证明:若121x x -<<,函数121112()()()()()f x f x g x x x f x x x -=-+-,则对任意12(,)x x x ∈,都有()()f x g x >;(3)已知正数12,,,n λλλL ,满足121n λλλ+++=L ,求证:当2n ≥,n N ∈时,对任意大于1-,且互不相等的实数12,,,nx x x L ,都有1122()n n f x x x λλλ+++>L 1122()()()n n f x f x f x λλλ+++L .2012届高考模拟测试数学试题(理科)参考答案和评分标准一.选择题:CACBD ABB二填空题:9.35(2分)247(3分) 10. 22(1)2x y -+= 11. 13 12. 15- 13. 33(,][,)22-∞-+∞ 14. 4315.1三、解答题: 本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.16.(本题满分14分)解:(1)设数列{}n a 的公比为q ,……………1分若1q =,则111S a ==,21244S a ==,31399S a ==,故13231022S S S +=≠⨯,与已知矛盾,故1q ≠,………………………………………………2分从而得1(1)111n nn a q q S q q--==--,………………………………………………4分由1S ,22S ,33S 成等差数列,得132322S S S +=⨯,即321113411q q q q--+⨯=⨯--, 解得13q =……………………………………………5分 所以11113n n n a a q--⎛⎫=⋅= ⎪⎝⎭.………………………………………………6分(2)由(1)得,11()3n n n b a n n -=+=+,………………………………7分 所以12(1)(2)()n n T a a a n =++++++1(1)(1)(12)12n n b q n nS n q -+=++++=+- ………………………………10分2111()(1)333.12213n n n n n n --+++-=+=-……………………………12分 17.(本题满分12分)(1)60个1×1×1的小正方体中,没有涂上颜色的有6个,61(0)6010P ξ=== … (3分) (2)由(1)可知1(0)10P ξ==;11(1)30P ξ==;2(2)5P ξ==;2(3)15P ξ== … (7分)… (10分)E ξ=0×110+1×1130+2×25+3×215=4730 …(12分)18(本题满分14分)解:(1)由题设,M ,N 是矩形的边AD 和BC 的中点,所以AM ⊥MN, BC ⊥MN, 折叠垂直关系不变,所以∠AMD 是平面ABNM 与平面MNCD 的平面角,依题意,所以∠AMD=60o , ………………………………………………………………………………………………………2分 由AM=DM ,可知△MAD 是正三角形,所以AD=2,在矩形ABCD 中,AB=2,AD=所以,,由题可知,由勾股定理可知三角形BOD 是直角三角形,所以BO ⊥DO ……………………………………………………………………………………… 5分解(2)设E ,F 是BD ,CD 的中点,则EF ⊥CD, OF ⊥CD, 所以,CD ⊥面OEF, OE CD⊥ 又BO=OD ,所以OE ⊥BD, OE⊥面ABCD, OE ⊂面BOD , 平面BOD ⊥平面ABCD过A 作AH ⊥BD ,由面面垂直的性质定理,可得AH ⊥平面BOD ,连结OH ,…………………… 8分 所以OH 是AO 在平面BOD 的投影,所以∠AOH 为所求的角,即AO 与平面BOD 所成角。
山东省烟台市2012届高三五月份适应性练习 数学理(二)(2012烟台二模)
山东省烟台市2012年高三适应性练习(二)数学(理)试题注意事项: 1.本试题满分150分,考试时问为120分钟.2.使用答题纸时,必须使用0.5毫米的黑色墨水签字笔书写,作图时,可用 2B 铅笔,要字迹工整,笔迹清晰.超出答题区书写的答案无效;在草稿纸,试题卷上答题无效.3.答卷前将密封线内的项¨填写清楚.一、选择题:本大题共12小题;每小题5分,共60分,在每小题给出的个选项中,只有一个选项符合题目要求,把正确选项的代号涂在答题卡上.1.设全集(2),{|21}x x U R A x -==<,{|ln(1)},B x y x ==-则图中阴影部分表示的集合为A .{xlx≥1)B .{x|l<x<2}C .{x |0<x<1)D .{x| x≤1}2.若复数(232)(1)a a a -++-i 是纯虚数,则实数a 的值为A .1B .2C .1或2D .-1 3.如果函数()sin()(0)6f x x πωω=+>的相邻两个零点之间的距离为12π,则ω的值为A .3B .6C .12D .244.学校为了调查学生在课外读物方面的支出情况,抽出 了一个容量为,n 的样本,其频率分布直方图如右图所示,其中支出在50,60)元的同学有30人,则n 的值为A .1100B .1000C .110D .1005.一个棱锥的三视图如图,则该棱锥的全面积是A .4+B .4+C .4+D .4+6.m=-1是直线mx+(2m-1)y+1=0和直线3x+my+3=0垂直的 A .充要条件 B .必要不充分条件 C .充分不必要条件 D .即不充分也不必要条件7.如图,设D 是图中边长为45的正方形区域,E 是D 内函数2y x =图象下方的点构成的区域。
向D 中随机投一点,则该点落入E 中的概率为 A .15 B .14C .13D .128.如图所示的流程图中,输出的结果是 A .5 B .20C .60D .1209.已知各项均为正数的等比数列{a n )的公比q=2,若存在两项,m n a a 15144,a mn=+则的最小值为A .53B .32C .94D .不存在10.设椭圆22221(0)x y a b ab+=>>的离心率12e =,右焦点F (c ,0),方程ax 2 +bx-c=0的两个根分别为x 1,x 2,则点 P (x 1,x 2)在A .圆222x y +=内B .圆222x y +=上C .圆222x y +=外D .以上三种情况都有可能11.函数1cos y x x=⋅在坐标原点附近的图象可能是12.设向量a=(a 1,a 2),b=(b 2,b 2),定义一种向量1212(,)(,)a b a a b b ⊗=⊗1222(,)a b a b =.已知1(2,),(,0),23m n π==点,(x ,y )在y=sin x 的图象上运动,点Q 在()y f x =的图象上运动且满足O Q m O P n =⊗+(其中O 为坐标原点),则y=()f x 的最大值为A .1B .3C .5D .12二、填空题.本人题共有4个小题,每小题4分,共16分.把正确答案填在答题卡的相应位置。
山东省威海市2019届高三二模考试理科数学试题(解析版)
2019年山东省威海市高考数学二模试卷(理科)一、选择题(本大题共12小题,共60.0分)1.已知复数z满足z(1+i)=(3+i)2,则|z|=()A. B. C. D. 82.已知集合,,,则A∩B=()A. B. C. D.3.如图所示茎叶图中数据的平均数为89,则x的值为()A. 6B. 7C. 8D. 94.已知角α的顶点在坐标原点,始边与x轴的正半轴重合,M,为其终边上一点,则cos2α=()A. B. C. D.5.若x,y满足约束条件,,,则z=3x-y的最大值为()A. 2B. 1C. 0D.6.函数的图象可由y=2cos2x的图象如何变换得到()A. 向左平移个单位B. 向右平移个单位C. 向左平移个单位D. 向右平移个单位7.若P为△ABC所在的平面内一点,且,则△ABC的形状为()A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰直角三角形8.已知函数f(x)=ln x+ln(a-x)的图象关于直线x=1对称,则函数f(x)的值域为()A. B. C. D.9.如图,网格纸上小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该四棱锥的体积为()A. 6B. 8C.D.10.在△ABC中,AC=3,向量在向量的投影的数量为-2,S△ABC=3,则BC=()A. 5B.C.D.11.已知函数f(x)的定义域为R,,对任意的x∈R满足f'(x)>4x,当α∈[0,2π]时,不等式f(sinα)+cos2α>0的解集为()A. B. C. D.12.设F1,F2为双曲线>,>的左右焦点,点P(x0,2a)为双曲线上的一点,若△PF1F2的重心和内心的连线与x轴垂直,则双曲线的离心率为()A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.在的展开式中,x4的系数是______.14.已知抛物线y2=2px(p>0)上的一点M到x轴的距离为4,到焦点的距离为5,则p=______.15.在直三棱柱ABC-A1B1C1中,∠ABC=90°,AA1=2,设其外接球的球心为O,已知三棱锥O-ABC的体积为1,则球O表面积的最小值为______.16.“克拉茨猜想”又称“3n+1猜想”,是德国数学家洛萨•克拉茨在1950年世界数学家大会上公布的一个猜想:任给一个正整数n,如果n是偶数,就将它减半;如果n为奇数就将它乘3加1,不断重复这样的运算,经过有限步后,最终都能够得到1.已知正整数m经过6次运算后得到1.则m的值为______.三、解答题(本大题共7小题,共82.0分)17.已知{a n}是递增的等比数列,a5=48,4a2,3a3,2a4成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n}满足b1=a2,b n+1=b n+a n,求数列{b n}的前n项和S n.18.如图,四棱锥P-ABCD中,已知PA⊥平面ABCD,△ABC为等边三角形,PA=2AB=2,AC⊥CD,PD与平面PAC所成角的正切值为C2.(Ⅰ)证明:BC∥平面PAD;(Ⅱ)若M是BP的中点,求二面角P-CD-M的余弦值.19.某蔬菜批发商分别在甲、乙两市场销售某种蔬菜(两个市场的销售互不影响),已知该蔬菜每售出1吨获利500元,未售出的蔬菜低价处理,每吨亏损100元.现统计甲、乙两市场以往100个销售周期该蔬菜的市场需求量的频数分布,如表:甲市场以市场需求量的频率代替需求量的概率.设批发商在下个销售周期购进吨该蔬菜,在甲、乙两市场同时销售,以X(单位:吨)表示下个销售周期两市场的需求量,T(单位:元)表示下个销售周期两市场的销售总利润.(Ⅰ)当n=19时,求T与X的函数解析式,并估计销售利润不少于8900元的概率;(Ⅱ)以销售利润的期望为决策依据,判断n=17与n=18应选用哪一个.20.在直角坐标系xOy中,设椭圆:>>的左焦点为F1,短轴的两个端点分别为A,B,且∠AF1B=60°,点,在C上.(Ⅰ)求椭圆C的方程;(Ⅱ)若直线l:y=kx+m(k>0)与椭圆C和圆O分别相切于P,Q两点,当△OPQ 面积取得最大值时,求直线l的方程.21.已知函数>.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)证明:当m∈[0,1)时,函数>有最大值.设g(x)的最大值为h(m),求函数h(m)的值域.22.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为,且曲线C1与C2恰有一个公共点.(Ⅰ)求曲线C1的极坐标方程;(Ⅱ)已知曲C1上两点,A,B满足,求△AOB面积的最大值.23.已知正实数a,b满足a+b=2.(Ⅰ)求证:;(Ⅱ)若对任意正实数a,b,不等式|x+1|-|x-3|≥ab恒成立,求实数x的取值范围.答案和解析1.【答案】C【解析】解:由z(1+i)=(3+i)2,得z=,∴|z|=||=.故选:C.把已知等式变形,再由商的模等于模的商求解.本题考查复数模的求法,考查数学转化思想方法,是基础题.2.【答案】B【解析】解:∵集合,∴A={y|-1≤y≤2},B={x|0≤x≤4},∴A∩B={x|0≤x≤2}=[0,2].故选:B.先分别求出集合A和B,由此能求出A∩B.本题考查集合的运算及关系,考查交集定义、不等式性质等基础知识,考查运算求解能力,属于基础题.3.【答案】B【解析】解:根据茎叶图中数据,计算平均数为×(86+80+x+90+91+91)=89,解得x=7.故选:B.根据茎叶图中数据计算平均数即可.本题考查了利用茎叶图中数据计算平均数的应用问题,是基础题.4.【答案】D【解析】解:∵M,∴OM==.∴sinα==.∴cos2α=1-2sin2α=1-2×()2=.故选:D.易得OM的长度,利用二倍角的三角函数,任意角的三角函数的定义即可求解.本题主要考查了二倍角的三角函数,任意角的三角函数的定义,考查了转化思想,属于基础题.5.【答案】A【解析】解:作出x,y满足约束条件对应的平面区域如图:z=3x-y,得y=3x-z,平移直线y=3x-z,由图象可知当直线y=3x-z经过点B(1,1)时,直线y=3x-z的截距最大,此时z最大,z max=3×1-1=2.即z的最大值是2.故选:A.作出不等式组对应的平面区域,通过目标函数的几何意义,利用数形结合即可的得到结论.本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.6.【答案】B【解析】解:函数=2,把函数的图象向左平移个单位,得到:y=2sin(2x+)=2cos2x的图象,故:要得到y=2sin()的图象,只需将y=2cos2x的图象向右平移个单位即可.故选:B.直接利用三角函数关系式的平移变换和伸缩变换的应用求出结果.本题考查的知识要点:三角函数关系式的恒等变换,函数图象的平移变换和伸缩变换的应用,主要考查学生的运算能力和转换能力,属于基础题型.7.【答案】C【解析】,解:∵,∴||=||∴y根据向量加法及减法的平行四边形法则可知,以为邻边所作的平行四边形的对角线相等即ABCD为矩形,C=则△ABC的形状为直角三角形故选:C.由已知可得||=||,根据向量加法及减法的平行四边形法则可知,以为邻边所作的平行四边形的对角线相等,可判断本题主要考查了向量加法及减法的平行四边形法则的简单应用,属于基础试题8.【答案】D【解析】解:根据题意,对于函数f(x)=lnx+ln(a-x),有f(a-x)=ln(a-x)+ln[a-(a-x)]=lnx+ln(a-x)=f(x),则函数f(x)的图象关于直线x=对称,若函数f (x )=lnx+ln (a-x )的图象关于直线x=1对称,则有=1,则a=2, 则f (x )=lnx+ln (2-x )=ln (2x-x 2),其定义域为(0,2), 设t=2x-x 2,则y=lnt ,又由t=-(x-1)2+1,0<x <2,则有0<t≤1,则y=lnt≤0,即函数f (x )的值域为(-∞,0]; 故选:D .根据题意,分析可得f (a-x )=f (x ),即可得函数f (x )的图象关于直线x=对称,据此可得a 的值,进而可得f (x )=lnx+ln (2-x )=ln (2x-x 2),设t=2x-x 2,则y=lnt ,由换元法分析可得答案.本题考查函数的对称性,涉及换元法求函数的值域,关键是求出a 的值,属于基础题. 9.【答案】B【解析】解:根据三视图知,该几何体是镶嵌在长方体中的四棱锥P-ABCD , 且长方体的长、宽、高分别为4、2、3,如图所示;结合图中数据,计算该四棱锥的体积为:V 四棱锥P-ABCD =V 三棱锥C-BDP +V 三棱锥D-ABP =××4×2×3+××4×3×2=8. 故选:B .根据三视图知该几何体是镶嵌在长方体中的四棱锥,结合图中数据求出该四棱锥的体积.本题考查了利用三视图求几何体体积的应用问题,是基础题.10.【答案】C【解析】解:AC=3,向量在向量的投影的数量为-2,S△ABC=3,可得|AB|cosA=-2,|AB|•|AC|•sinA=3,即|AB|sinA=2,即tanA==-1,内角A=135°,|AB|==2,|BC|2=|AB|2+|AC|2-2|AB|•|AC|•cosA=8+9-2•2•3•(-)=29,即|BC|=,故选:C.由向量的投影和三角形的面积公式,可得A,|AB|,再由余弦定理可得所求值.本题考查三角形的余弦定理和面积公式的运用,考查向量的投影的定义,以及化简运算能力,属于基础题.11.【答案】A【解析】解:令g(x)=f(x)+1-2x2,则g′(x)=f′(x)-4x>0,故g(x)在R上单调递增,又g()=f()+1-2×=-+1-=0,∴g(x)>0的解集为x>,∵cos2α=1-2sin2α,故不等式f(sinα)+cos2α>0等价于f(sinα)+1-2sin2α>0,即g(sinα)>0,∴sinα>,又α∈[0,2π],∴<α<.故选:A.令g(x)=f(x)+1-2x2,求导可得g(x)单调递增,且g()=0,故不等式f(sinα)+cos2α>0的解集为g(sinα)>0的解集.本题考查了导数与函数单调性的关系,考查函数单调性的应用,根据所求不等式构造函数是解题关键,属于中档题.12.【答案】A【解析】解:如图设P在第一象限,内切圆的圆心为I,内切圆与PF1,PF2,F1F2分别切与点E,F,G,根据圆的切线的性质得:PE=PF,F1E=F1G,F2F=F2G,根据双曲线的定义知:PF1-PF2=2a,即(PE+F1E)-(PF-F2F)=2a,∴F1G-F2G=2a,①又F1G+F2G=2c,②,联立①②解得F1G=a+c,F2G=c-a,∴G(a,0),∴内心I的横坐标为a,∵△PF1F2的重心和内心的连线与x轴垂直,∴△PF1F2的重心的横坐标为a,由三角形的重心坐标公式可得a=,解得x0=3a,∴P(3a.2a),将P的坐标代入双曲线可得:-=1,即9-=1,化简得3a2=2c2,所以离心率e==.故选:A.根据双曲线的定义和切线长定理可得内心的横坐标,从而可得重心的横坐标,再根据重心的坐标公式可得x0=3a,再将P的坐标代入双曲线可得.本题考查了双曲线的性质,属难题.13.【答案】80【解析】解:在的展开式的通项公式为T r+1=•25-r•,令5-=4,可得r=2,可得x4的系数是•23=80,故答案为:80.在二项展开式的通项公式中,令x的幂指数等于4,求出r的值,即可求得x4的系数.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.14.【答案】2或8【解析】解:抛物线y2=2px(p>0)上的一点M到x轴的距离为4,到焦点的距离为5,如图:可得|FQ|=3,所以p=5±|FQ|,所以P=2或8.故答案为:2或8.画出图形,利用抛物线的性质转化求解即可.本题考查抛物线的简单性质的应用,是基本知识的考查.15.【答案】16π【解析】解:如图,因为三棱柱ABC-A1B1C1是直三棱柱,且∠ABC=90°,设AB=a,BC=b,球的半径为r.连接AC1∩A1C=O,取AC的中点D,连接BD,则O到三棱柱六个顶点的距离相等,即O为三棱柱外接球的球心.OD=,又因为三棱锥O-ABC的体积为1,即,即,所以r==≥=2,当且仅当a=b时等号成立,所以球O表面积的最小值为S=4πr2=16π.故填:16π.设AB=a,BC=b,球的半径为r.连接AC1∩A1C=O,取AC的中点D,连接BD,则O到三棱柱六个顶点的距离相等,即O为三棱柱外接球的球心.OD=,三棱锥O-ABC的体积为1,即,即,表示出r,根据基本不等式可得r的最小值,从而得到球的表面积的最小值.本题借助直三棱柱的外接球,考查了基本不等式、球的表面积等.属于中档题.16.【答案】64、10、1、8.【解析】解:根据题意,正整数m经过6次运算后得到1,则正整数m经过5次运算后得到2,经过4次运算后得到4,经过3次运算后得到8或者1,分2种情况讨论:①,当经过3次运算后得到8时,经过2次运算后得到16,则经过1次运算后得到32或5,则m的值为64或10,②,当经过3次运算后得到1时,经过2次运算后得到2,则经过1次运算后得到4,则m的值为1或8;综合可得:m的值可能为64、10、1、8.故答案为:64、10、1、8.根据题意,利用正整数m经过6次运算后得到1,结合变化的规则,进行逐项逆推即可得答案.本题考查数列的应用,涉及归纳推理的应用,利用变换规则,进行逆向验证是解决本题的关键.17.【答案】解:(Ⅰ)设首项为a1,公比为q的递增的等比数列,a5=48,4a2,3a3,2a4成等差数列.故:,解得:q=2或1(舍去),整理得:a1=3,所以:,(Ⅱ)数列{b n}满足b1=a2,b n+1=b n+a n,所以:b1=6.则:b n=(b n-b n-1)+(b n-1-b n-2)+…+(b2-b1)+b1,=a n-1+a n-2+…+a2+a1+b1,=,=3•2n-1+3所以:S n=b1+b2+…+b n=.【解析】(Ⅰ)利用已知条件求出数列的通项公式.(Ⅱ)利用叠加法求出数列的通项公式,进一步求出数列的和.本题考查的知识要点:数列的通项公式的求法及应用,叠加法在数列通项公式的求法中的应用,数列的求和的应用,主要考察学生的运算能力和转换能力,属于基础题型.18.【答案】证明:(Ⅰ)∵PA⊥平面ABCVD,∴PA⊥CD,又AC⊥CD,CA∩PA=A,∴CD⊥平面PAC,∴∠DPC为PD与平面PAC所成角,在Rt△PAC中,tan∠DPC==,在Rt△PAC中,PC=,∴CD=,在Rt△ACD中,AD=2,∠CAD=60°,∵∠BCA=60°,∴在底面ABCD中,BC∥AD,AD⊂平面PAD,BC⊄平面PAD,∴BC∥平面PAD.解:(Ⅱ)设BC的中点为N,连结AN,则AN⊥BC,由(Ⅰ)知BC∥AD,∴AN⊥AD,分别以AN,AD,AP为x,y,z轴,建立空间直角坐标系,则P(0,0,2),C(,,0),D(0,2,0),M(,-,1),则=(-,,0),=(0,2,-2),=(,,),设平面PCD的法向量为=(x,y,z),则,令y=1,=(,,),设平面CDM的法向量为=(x,y,z),则,令y=1,得=(,,),设二面角P-CD-M的平面角为θ,则cosθ===.故二面角P-CD-M的余弦值为.【解析】(Ⅰ)推导出PA⊥CD,CD⊥平面PAC,∠DPC为PD与平面PAC所成角,由此能证明BC∥平面PAD.(Ⅱ)设BC的中点为N,连结AN,则AN⊥BC,分别以AN,AD,AP为x,y,z 轴,建立空间直角坐标系,利用向时法能求出二面角P-CD-M的余弦值.本题考查线面平行的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,意在考查学生的转化能力和计算求解能力,是中档题.19.【答案】解:(Ⅰ)由题意可知,当X≥19,T=500×19=9500;当X<19,T=500×X-(19-X)×100=600X-1900,所以T与X的函数解析式为T=,,<,由题意可知,一个销售周期内甲市场需求量为8,9,10的概率分别为0.3,0.4,0.3;乙市场需求量为8,9,10的概率分别为0.2,0.5,0.3,设销售的利润不少于8900元的事件记为A,当X≥19,T=500×19=9500>8900,当X<19,600X-1900≥8900,解得X≥18,由题意可知,P(X=16)=0.3×0.2=0.06;P(X=17)=0.3×0.5+0.4×0.2=0.23;所以P(A)=P(X≥18)=1-0.06-0.23=0.71.(Ⅱ)当n=17时,E(T)=(500×16-1×100)×0.06+500×17×0.94=8464;当n=18时,E(T)=(500×16-2×100)×0.06+(500×17-1×100)×0.23+18×500×0.71=8790;因为8464<8790,所以应选n=18.【解析】(Ⅰ)先分2段求出T与X的函数关系式,再利用函数的解析式求得概率;(Ⅱ)计算两个期望比较大小,作出决策.本题考查了离散型随机变量的期望与方差,属中档题.20.【答案】解:(Ⅰ)由∠AF1B=60°,可得a=2b,由点,在C上,可得+=1,∴b2=1,a2=4,∴椭圆C的方程为+y2=1,(Ⅱ)联立,可得(1+4k2)x2+8kmx+4m2-4=0,∵直线l与椭圆相切,∴△=16(4k2+1-m2)=0,即4k2+1=m2,设P(x1,y1),可得x1==-,则y1==,∴|OP|2=+===4-又直线l与圆O相切,可得|OQ|=,则|OQ|2===4-∴|PQ|===,∴S△OPQ=|PQ|•|OP|=•=•=•≤,当且仅当k=1时取等号,此时m2=1+4=5,则m=±,故直线l的方程为y=x+或y=x-.【解析】(Ⅰ)由∠AF1B=60°,可得a=2b,由点在C上,可得+=1,解得b2=1,a2=4,即可求出椭圆方程,(Ⅱ)联立,根据判别式求出4k2+1=m2,即可求出点P的坐标,可得|OP|,再求出|OQ|,表示出三角形的面积,根据基本不等式即可求出.本题考查椭圆的标准方程,考查直线与椭圆的位置关系,三角形面积公式与基本不等式的综合应用,考查计算能力,属于中档题.21.【答案】解:(Ⅰ)f′(x)=e2x+2×e2x=e2x,x>-1,令h(x)=-2x2+(2a-2)x+a-1,△=4(a2-1),当-1≤a≤1时,△≤0,则h(x)≤0,即f′(x)≤0,∴f(x)在(-1,+∞)上单调递增,当a<-1或a>1时,此时△>0,设h(x)=0的两根为x1,x2,且x1<x2,则x1=,x2=,若a<-1,可知x1<-1<x2,则x∈(x2,+∞),f′(x)<0,x∈(-1,x2),f′(x)>0,若a>1,可知-1<x1<x2,则x∈(-1,x1),(x2,+∞),f′(x)<0,x∈(x1,x2),f′(x)>0,综上所述,当a<-1时,f(x)在(,+∞)上单调递减,在(-1,)上单调递增,(,+∞)上单调递减,在(,)当a>1时,f(x)在(-1,),上单调递增,证明:(Ⅱ)>,∴g′(x)====,由(Ⅰ)可知当a=1时,f(x)=e2x在(0,+∞)单调递减,且f(0)=1,f(1)=0,∴对任意m∈[0,1),存在唯一x m∈(0,1],使f(x m)=m,(反之对任意x m(0,1]存在唯一m∈[0,1),f(x m)=m),∴当x∈(0,x m)时,f(x)>m,此时g′(x)>0,函数g(x)在(0,x m)上单调递增,当x∈(x m,+∞)时,f(x)<m,此时g′(x)<0,函数g(x)在(x m,+∞)上单调递减,∴当x=x m时,g(x)取得最大值,即最大值h(m)=g(x m)====令p(x)=e2x,p′(x)=-e2x≤0,(0<x≤1),∴p(x)在(0,1]上单调递减,∴p(1)≤h(m)<p(0),即-e2≤h(m)<-2,∴h(m)的值域为[-e2,-2).【解析】(Ⅰ)先求导,再分类讨论,根据导数和函数单调的关系即可求出,(Ⅱ)先求导,g′(x)=,由(Ⅰ)可知当a=1时,构造函数,再根据导数和函数最值的关系即可证明.本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、分类讨论方法、等价转化方法,考查了推理能力与计算能力,属于难题.22.【答案】解:(Ⅰ)曲线C2的极坐标方程为ρsin(θ+)=3,可得C2的直角坐标方程为:x+-6=0,即曲线C2为直线.曲线C1是圆心为(2,0),半径为|r|的圆.因为圆C1与直线C2恰有一个公共点,可得|r|==2,圆C1的普通方程为x2+y2-4x=0,所以C1的极坐标方程为ρ=4cosθ.(Ⅱ)由题意可设A(ρ1,θ),B(ρ2,θ+),(ρ1>0,ρ2>0),S△AOB=|OA||OB|sin=ρ1ρ2=4cosθcos(θ+)=4(cos2θ-sinθcosθ)=4(-)=2+2cos(2θ+),所以△AOB面积的最大值为2+2.【解析】(Ⅰ)消参可得C1的普通方程,再根据互化公式可得C1的极坐标方程.(Ⅱ)根据极径的几何意义和三角形面积公式可得面积,再根据三角函数的性质可得最大值.本题考查了简单曲线的极坐标方程,属中档题.23.【答案】(Ⅰ)证明:正实数a,b满足a+b=2,则=2(a+b)+2+2•≤6+2(a+b)+2=12,∴;(Ⅱ)解:对任意正实数a,b,有a+b≥2,所以2≤2,即ab≤1,当且仅当a=b 时取“=”;所以对任意a、b∈R+,不等式|x+1|-|x-3|≥ab恒成立,即|x+1|-|x-3|≥1恒成立;若x≤-1,则不等式化为-x-1-(3-x)≥1,即-4≥1,不等式无解;若-1<x<3,则不等式化为x+1-(3-x)≥1,解得≤x≤3;若x≥3,则不等式化为x+1-(x-3)≥1,即4≥1,不等式恒成立;综上,实数x的取值范围是[,+∞).【解析】(Ⅰ)根据题意,利用完全平方公式和基本不等式,即可证明;(Ⅱ)利用基本不等式得出ab≤1,把问题转化为|x+1|-|x-3|≥1恒成立,再利用分段讨论法求出不等式的解集.本题考查了基本不等式应用问题,也考查了不等式恒成立应用问题,是中档题.。
房山2012年二模数学(理)带详细答案
房山区2012年高三第二次模拟试题高三数学(理科)考 生 须知1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共 150分,考试时间为120分钟 。
2. 第Ⅰ卷选择题直接填涂在机读卡上。
3. 第Ⅱ卷非选择题直接写在答题纸上的指定位置,在试卷作答无效。
4.考试结束后,将机读卡与答题纸一并交回,试卷按学校要求自己保存好。
第I 卷 选择题(共40分)一、选择题:本大题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项,直接涂在答题纸上。
1. n S 是数列{}n a 的前项和,且2,111++=+n n a a a , 则5S =( ) (A)40 (B)35 (C)30 (D) 252.参数方程2cos (sin x y θθθ=⎧⎨=⎩,,为参数)和极坐标方程6cos ρθ=-所表示的图形分别是( )(A) 圆和直线 (B) 直线和直线 (C) 椭圆和直线 (D) 椭圆和圆3.正方形ABCD 的边长为1,||AB BC AC ++=( )(A )22 (B )2 (C )1 (D )22 4.在ABC ∆中,6A π=,1,2a b ==,则B = ( )(A)4π (B) 43π (C) 4π或43π (D)6π或65π5.若x ,y 满足约束条件⎪⎩⎪⎨⎧≤≤≥+-≥+30030x y x y x ,则y x z -=2的最大值为( )(A )9 (B )8 (C )7 (D )66. 如图是某年青年歌手大奖赛中,七位评委为甲乙两名选手打出的分数的茎叶图(其中m 为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a 1,a 2,则一定有 ( )(A )a 1>a 2 (B )a 1<a 2(C )a 1=a 2 (D )a 1,a 2的大小与m 的值有关7.圆2220x y ax +-+=与直线l 相切于点(3,1)A ,则直线l 的方程为( )0795455184464793m甲 乙(A) 250x y --= (B) 210x y --= (C)20x y --= (D) 40x y +-=8.已知定点(1,2)M ,点P 和Q 分别是在直线l :1y x =-和y 轴上动点,则当△MPQ 的周长最小值时,△MPQ 的面积是( )(A) 45 (B) 56 (C) 1 (D) 235第II 卷 非选择题(共110分)二、填空题:本大题共6小题,每小题5分,共30分。
山东省青岛市2012届高三第二次模拟试题 理科数学试题(2012青岛二模)
高三自评试题数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟. 注意事项:1.答卷前,考生务必用2B 铅笔和0.5毫米黑色签字笔(中性笔)将姓名、准考证号、考试科目、试卷类型填涂在答题卡规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔(中性笔)作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效. 参考公式:锥体的体积公式为:13V Sh =,其中S 为锥体的底面积,h 为锥体的高.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{},3M m =-,{}22730,N x x x x =++<∈Z ,如果M N ≠∅ ,则m 等于A .1-B .2-C .2-或1-D .32-2.设复数21z i=+(其中i 为虚数单位),则23z z +的虚部为A .2iB .0C .10-D .23.“4a <”是“对任意的实数x ,2123x x a -++≥成立”的 A .充分必要条件 B .充分不必要条件 C .必要不充分条件D .既非充分也非必要条件4.已知函数2log ,0()91,0x x x f x x ->⎧=⎨+≤⎩,则()31((1))log 2f f f +的值是A .7B . 2C .5D .35.设m ,n 是两条不同的直线, α,β,γ是三个不同的平面.有下列四个命题: ①若//αβ,m α⊂,n β⊂,则//m n ;②若m α⊥,//m β,则αβ⊥;③ 若n α⊥,n β⊥,m α⊥,则m β⊥; ④ 若αγ⊥,βγ⊥,m α⊥,则m β⊥. 其中错误..命题的序号是 A .①③ B .①④ C .②③④ D .②③ 6.执行如图所示的程序框图,若输出的b 的值为31, 则图中判断框内①处应填A .3B .4C .5D .6 7.函数y =则以下不可能成为该等比数列的公比的数是 A .34BCD8.以下正确命题的个数为①命题“存在R x ∈,220x x --≥”的否定是:“不存在R x ∈,220x x --<”;②函数131()()2xf x x =-的零点在区间11(,)32内;③已知随机变量ξ服从正态分布2(1,)N σ,(4)0.79P ξ≤=,则(2)0.21P ξ≤-=; ④函数()xxf x ee -=-的图象的切线的斜率的最大值是2-;⑤线性回归直线 y bxa =+ 恒过样本中心(),x y ,且至少过一个样本点. A .1 B .2 C .3 D .49.设22(13)40a x dx =-+⎰,则二项式26()a x x+展开式中不含..3x 项的系数和是A .160-B .160C .161D .161- 10.已知函数1π()cos ,[,]222f x x x x π=+∈-,01sin 2x =,0π[,]22x π∈-,那么下面命题中真命题的序号是①()f x 的最大值为0()f x ② ()f x 的最小值为0()f x③()f x 在0[,]2x π-上是增函数 ④ ()f x 在0π[,]2x 上是增函数A .①③B .①④C .②③D .②④11.一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的 A.外接球的半径为3B.C.表面积为1 D.外接球的表面积为163π12.已知直线()1y k x =+与抛物线2:4C y x =相交于A 、B 两点,F 为抛物线C 的焦点,若2F A F B =,则k =A.3±B.3±C .13±D .23第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分. 13.若tan 2,α=则sin cos αα= .14.已知直线y x a =+与圆224x y +=交于A 、B 两点,且0OA OB ⋅=,其中O 为坐标原点,则正实数a 的值为 .15.设x 、y 满足约束条件360200,0x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩,则目标函数22z x y =+的最大值为 .16.已知函数()f x 的定义域为[]15,-,部分对应值如下表,()f x 的导函数()y f x '=的图象如图所示. 下列关于()f x 的命题: ①函数()f x 的极大值点为0,4; ②函数()f x 在[]02,上是减函数;③如果当[]1x ,t ∈-时,()f x 的最大值是2,那么t 的最大值为4;④当12a <<时,函数()y f x a =-有4个零点;正视图 侧视图俯视图AC1A 1B 1C ⑤函数()y f x a =-的零点个数可能为0、1、2、3、4个. 其中正确命题的序号是 .三、解答题:本大题共6小题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分12分)已知向量)c o s ,(s in ),sin 3,(sin x x n x x m -==,设函数n m x f ⋅=)(,若函数)(x g 的图象与)(x f 的图象关于坐标原点对称.(Ⅰ)求函数)(x g 在区间⎥⎦⎤⎢⎣⎡-6,4ππ上的最大值,并求出此时x 的值;(Ⅱ)在ABC ∆中,c b a ,,分别是角C B A ,,的对边,A 为锐角,若23)()(=-A g A f ,7=+c b ,ABC ∆的面积为32,求边a 的长.18.(本小题满分12分)如图,在多面体111ABC A B C -中,四边形11ABB A 是正方形,1A C A B ==,11A C A B BC ==,11//B C BC ,1112B C =B C .(Ⅰ)求证:1//A B 面11A C C ;(Ⅱ)求二面角11C A C B --的余弦值的大小.19.(本小题满分12分)甲居住在城镇的A 处,准备开车到单位B 处上班,若该地各路段发生堵车事件都是相互独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如图(例如,A →C →D 算作两个路段:路段A C 发生堵车事件的概率为101,路段C D 发生堵车事件的概率为151,且甲在每个路段只能按箭头指的方向前进).(Ⅰ)请你为其选择一条由A 到B 的路线,使得途中发生堵车事件的概率最小;101151(Ⅱ)若记路线A →C →F →B 中遇到堵车次数为随机变量ξ,求ξ的分布列及E ξ. 20.(本小题满分12分)已知集合{}21,N A x x n n *==--∈,{}63,N B x x n n *==-+∈,设n S 是等差数列{}n a 的前n 项和,若{}n a 的任一项B A a n ∈,且首项1a 是A B 中的最大数,10750300S -<<-.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若数列{}n b满足139(2n a n n b +-=,令n T =246224()n b b b b ++++ ,试比较n T与4821n n +的大小.21.(本小题满分12分)已知函数()()23232f x ln x x =+-.(Ⅰ)求函数()y f x =的极大值; (Ⅱ)令()()()2312g x f x x m x =++-(m 为实常数),试判断函数()g x 的单调性;(Ⅲ)若对任意1163x ,⎡⎤∈⎢⎥⎣⎦,不等式()30a ln x ln f x x '-++>⎡⎤⎣⎦均成立,求实数a 的取值范围.22.(本小题满分14分)已知椭圆1C 、抛物线2C 的焦点均在x 轴上,1C 的中心和2C 的顶点均为坐标原点O ,从每条曲线上各取两个点,将其坐标记录于表中: (Ⅰ)求12C C 、的标准方程;(Ⅱ)请问是否存在直线l 同时满足条件:(ⅰ)过2C 的焦点F ;(ⅱ)与1C 交于不同两点Q 、R ,且满足O Q O R ⊥?若存在,求出直线l 的方程;若不存在,请说明理由.(Ⅲ)已知椭圆1C 的左顶点为A ,过A 作两条互相垂直的弦A M 、A N 分别另交椭圆于M 、N 两点.当直线A M 的斜率变化时,直线M N 是否过x 轴上的一定点,若过定点,请给出证明,并求出该定点坐标;若不过定点,请说明理由.高三自评试题数学(理科)参考答案及评分标准一、选择题:本大题共12小题.每小题5分,共60分. C D B A B B D C C A D A 二、填空题:本大题共4小题,每小题4分,共16分. 13.2514. 2 15. 52 16.①②⑤三、解答题:本大题共6小题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分12分)解:(Ⅰ)由题意得:21cos 2()sin cos 222xf x x x x x -=-=-1sin(2)26x π=-+………………………………………………………2分所以)62sin(21)(π---=x x g ………………………………………………3分因为⎥⎦⎤⎢⎣⎡-∈6,4ππx ,所以⎥⎦⎤⎢⎣⎡-∈-6,3262πππx 所以当262ππ-=-x 即6π-=x 时,函数)(x g 在区间⎥⎦⎤⎢⎣⎡-6,4ππ上的最大值为21.……………………………………………6分 (Ⅱ)由23)()(=-A g A f 得:23)62sin()62sin(1=-++-ππA A化简得:212cos -=A又因为02A π<<,解得:3π=A …………………………………………9分由题意知:32sin 21==∆A bc S ABC ,解得8=bc ,又7=+c b ,所以22222cos ()2(1cos )a b c bc A b c bc A =+-=+-+14928(1)252=-⨯⨯+=故所求边a 的长为5. …………………………………………………………………12分18.(本小题满分12分)解:(Ⅰ)取B C 的中点E ,连结A E ,1C E ,1B E11//B C BC ,11B C =12B C ,1111//,B C EC B C EC ∴=,∴四边形11C EB C 为平行四边形, 从而11//B E C C , 1C C ⊂面11A C C ,1B E ⊄面11A C C∴1//B E 面11A C C ………………………………………………………………2分 11//B C BC ,11B C =12B C ,1111//,B C BE B C BE ∴=∴四边形11BB C E 为平行四边形 ∴11//B B C E ,且1B B =1C E又 11ABB A 是正方形,∴11//A A C E ,且1A A =1C E 故11AEC A 为平行四边形,∴11//AE A C11A C ⊂面11A C C ,A E ⊄面11A C C∴//A E 面11A C C ………………………………………………………………4分 1AE B E E = ,∴面1//B AE 面11A C C1AB ⊂面1B AE ,∴1//A B 面11A C C ………………………………………6分(Ⅱ) 四边形11ABB A 为正方形, ∴11A A AB AC ===, 1A A AB ⊥∴1A B =11A C A B = ∴1A C =由勾股定理可得:190A AC ∠=,∴1A A AC ⊥AB AC A = ,∴1A A ⊥面ABC ,11A C A B BC ==,BC ∴=由勾股定理可得:90BAC ∠=,∴AB AC ⊥ …………………………………8分故以A 为原点,以A C 为x 轴建立坐标系如图,则1111(1,0,0),(0,0,1),(,,1)22C A C , (0,1,0)B ,所以1(1,0,1)CA =- ,111(,,1)22C C =- ,1(0,1,1)BA =- ,111(,,1)22B C =- . 设面11A C C 的法向量为1(,,)n x y z = ,由11110,0n CA n CC ⋅=⋅=⇒011022x z x y z -+=⎧⎪⎨-++=⎪⎩,令1z =,则1(1,1,1)n =- 设面11A C B 的法向量为2(,,)n m n k = ,则21210,0n BA n BC ⋅=⋅=则011022n k m n k -+=⎧⎪⎨-+=⎪⎩,令1k =,则2(1,1,1)n =- …………………………10分所以1212121cos ,3n n n n n n ⋅===-设二面角11C A C B --的平面角为α,12,n n θ=所以()1cos cos 3απθ=-= ……………………………………………………12分19.(本小题满分12分)解:(Ⅰ)记路段A C 发生堵车事件为A C ,各路段发生堵车事件的记法与此类同.因为各路段发生堵车事件都是独立的,且在同一路段发生堵车事件最多只有一次,所以路线A →C →D →B 中遇到堵车的概率为()()()()111P P AC C D D B P AC P C D P D B =-⋅⋅=- ()()()1111P AC P CD P DB =----⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦ 9145311015610=-⋅⋅= ……………………………………………………………………2分同理:路线A →C →F →B 中遇到堵车的概率为2P =1-P (AC ·CF ·FB )=800239(小于310) ………………………………………………………………………4分路线A →E →F →B 中遇到堵车的概率为3P =()911300P A E E F F B -⋅⋅=(大于310)显然要使得由A 到B 的路线途中发生堵车事件的概率最小,只可能在以上三条路线中选择.因此选择路线A →C →F →B ,可使得途中发生堵车事件的概率最小 …………6分(Ⅱ)路线A →C →F →B 中遇到堵车次数ξ可取值为0,1,2,3. ()0P ξ=()561800P A C C F F B =⋅⋅=,()()()()1P P AC C F FB P AC C F FB P AC C F FB ξ==⋅⋅+⋅⋅+⋅⋅=11711931191716371020121020121020122400⋅⋅+⋅⋅+⋅⋅=,()()()()2P P AC C F FB P AC C F FB P AC C F FB ξ==⋅⋅+⋅⋅+⋅⋅ 13111171931771020121020121020122400=⋅⋅+⋅⋅+⋅⋅=,()()13113102012800P P AC C F FB ξ==⋅⋅=⋅⋅=. 所以ξ的分布列为…………………………………………………………9分 ∴E ξ=56163777110123800240024008003⨯+⨯+⨯+⨯= ………………12分20.(本小题满分12分)解: (Ⅰ)根据题设可得: 集合A 中所有的元素可以组成以3-为首项,2-为公差的递减等差数列;集合B 中所有的元素可以组成以3-为首项,6-为公差的递减等差数列.由此可得,对任意的*∈N n ,有B B A =A B 中的最大数为3-,即13a =- …………………………………………2分设等差数列{}n a 的公差为d ,则3(1)n a n d =-+-,1101010()45302a a S d +==-因为10750300S -<<-, ∴7504530300d -<-<-,即616-<<-d 由于B 中所有的元素可以组成以3-为首项,6-为公差的递减等差数列所以)0,(6≠∈-=m Z m m d ,由1666m -<-<-2m ⇒=,所以12-=d …………5分所以数列{}n a 的通项公式为912n a n =-(*∈N n ) ………………………6分(Ⅱ)13922n a n n n b +-==246211[1()]12224()2424(1)1212nn n n T b b b b -=++++=⨯=--………………………7分48244824(221)24212212(21)nn nnn n n T n n n ---=--=+++于是确定n T 与4821n n +的大小关系等价于比较2n 与21n +的大小由2211<⨯+,22221<⨯+,32231>⨯+,42241>⨯+,⋅⋅⋅可猜想当3n ≥时,221n n >+ …………………………………………………………9分 证明如下:证法1:(1)当3n =时,由上验算可知成立. (2)假设n k =时,221k k >+,则12222(21)422(1)1(21)2(1)1k k k k k k k +=⋅>+=+=+++->++ 所以当1n k =+时猜想也成立根据(1)(2)可知 ,对一切3n ≥的正整数,都有221n n >+∴当1,2n =时,4821n n T n <+,当3n ≥时4821n n T n >+ ………………………………12分证法2:当3n ≥时110112(11)2221nnn n n nn n nn n n nn C C C C C C C C n n --=+=++⋅⋅⋅++≥+++=+>+∴当1,2n =时,4821n n T n <+,当3n ≥时4821n n T n >+ ………………………………12分21.(本小题满分12分) 解:(Ⅰ)()()23232f x ln x x =+-, ∴()y f x =的定义域为23,⎛⎫-+∞ ⎪⎝⎭; 由于()()191332x x f x x ⎛⎫+- ⎪⎝⎭'=-+,由()103f x x '=⇒=,当2133x ,⎛⎫∈-⎪⎝⎭时,()0f x '>;当13x ,⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<.∴()y fx =在2133,⎛⎤-⎥⎝⎦上为增函数;在13,⎡⎫+∞⎪⎢⎣⎭上为减函数, 从而()11336f x f ln ⎛⎫==-⎪⎝⎭极大. ………………………………………3分 (Ⅱ)⇒()()()ln 231g x x m x =++-,23x ⎛⎫>-⎪⎝⎭()()3121312323m x m g x m xx-++'⇒=+-=++,………………………………………4分① 当10m -=,即1m =时,()323g x x'=+0>,()g x ∴在23,⎛⎫-+∞ ⎪⎝⎭上为增函数;…………………………………………………………5分②当10m -≠,即1m ≠时,()()()()21313131212323m m x m m x m g x x x⎡⎤+-+⎢⎥--++⎣⎦'==++.由()()21031m g x x m +'=⇒=--,()21213131m m m ⎛⎫+⎛⎫---=- ⎪ ⎪ ⎪--⎝⎭⎝⎭, ∴(ⅰ)若1m >,则()212313m m +-<--,∴ 23x >-时,()0g x '>,()g x ∴在23,⎛⎫-+∞ ⎪⎝⎭上为增函数;…………………………………………………………7分(ⅱ)若1m <,则()212313m m +->--,()221,331m x m ⎛⎫+∈-- ⎪ ⎪-⎝⎭时,()0g x '>;()21,31m x m ⎛⎫+∈-+∞ ⎪ ⎪-⎝⎭时,()0g x '<, ()g x ∴在()221331m ,m ⎛⎤+-- ⎥ -⎝⎦上为增函数,在()2131m ,m ⎡⎫+-+∞⎪⎢⎪-⎣⎭上为减函数. 综上可知:当1m ≥时,()g x 在23,⎛⎫-+∞ ⎪⎝⎭上为增函数;当1m <时,()g x 在()221331m ,m ⎛⎤+-- ⎥ -⎝⎦上为增函数,在()2131m ,m ⎡⎫+-+∞⎪⎢⎪-⎣⎭上为减函数. …………………………9分(Ⅲ)由()30a ln x ln f x x '-++>⎡⎤⎣⎦3023a ln x lnx⇒-+>+,1163x ,⎡⎤∈⎢⎥⎣⎦,360235lnln x ∴≤≤+,而0a ln x -≥, ∴要对任意1163x ,⎡⎤∈⎢⎥⎣⎦,不等式()30a ln x ln f x x '-++>⎡⎤⎣⎦均成立,必须:323lnx+与a ln x -不同时为0. ………………………………………………………11分因当且仅当13x =时,323lnx+=0,所以为满足题意必有103a ln-≠,即13a ln≠. …………………………………………………………………12分22.(本小题满分14分)解:(Ⅰ)设抛物线()22:20C y mx m =≠,则有()220ym x x=≠,据此验证4个点知(3,-、()4,4-在抛物线上,易求xyC4:22= …………………2分设1C :()222210x y a b ab+=>>,把点(-2,0)(2,22)代入得:⎪⎪⎩⎪⎪⎨⎧=+=121214222b a a⇒ ⎪⎩⎪⎨⎧==1422b a ∴1C 方程为1422=+yx………………………………………………………4分(Ⅱ)容易验证直线l 的斜率不存在时,不满足题意;当直线l 斜率存在时,假设存在直线l 过抛物线焦点(1,0)F ,设其方程为(1)y k x =-,与1C 的交点坐标为()11,Q x y ,()22,R x y由2214(1)x y y k x ⎧⎪+=⎨⎪=-⎩消去y ,得 2222(14)84(1)0k x k x k +-+-=,于是 2122814kx x k+=+,21224(1)14k x x k-=+ …………① ……………………7分212121212(1)(1)[()1]y y k x k x k x x x x =-⨯-=-++即2222122224(1)83(1)141414k kky y k kkk-=-+=-+++……②由O Q O R ⊥ ,即0O Q O R ⋅=,得(*)02121=+y y x x将①、②代入(*)式,得 2222224(1)340141414k kk k kk---==+++,解得2k =±; 所以存在直线l 满足条件,且l 的方程为:22y x =-或22y x =-+…………………9分 (Ⅲ)设直线A M 的斜率为k ()0k ≠,则A M :(2)y k x =+,A N :1(2)y x k=-+则22(2),1,4y k x x y =+⎧⎪⎨+=⎪⎩ 化简得:2222(14)161640k x k x k +++-=. ∵此方程有一根为2-,∴222814M k x k-=+⇒2414M k y k=+同理可得22284N k x k -=+⇒244N ky k =-+………………………………………………11分则222222244541428284(1)414M N kkk k k k k k k k k--++==-----++ 所以M N 的直线方程为22224528()144(1)14k k k y x kk k--=--+-+令0y =,则222216(1)2865(14)145k k k x k k k--=+=-++.所以直线M N 过x 轴上的一定点6(,0)5-………………………………………………14分。
山东省各地市2012年高考数学最新联考试题分类大汇编(9)直线与圆
一、选择题:7. (山东省威海市2012年3月高三第一次模拟理科)已知圆的方程为,08622=--+y x y x 设该圆中过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积是( B ) A.610 B.620 C.630 D.6409. (山东省威海市2012年3月高三第一次模拟文科)已知圆的方程为,08622=--+y x y x 设该圆中过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积是( B ) A.610 B.620 C.630 D.6403. (山东省淄博市2012年3月高三第一次模拟文科)“m =1”是“直线x -y =0和直线x +my =0互相垂直”的( C )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(山东省济南市2012年2月高三定时练习文科)过点(1,0)且与直线053=-+y x 平行的直线方程是( B )A .013=++y xB .013=-+y xC .033=--y xD .033=-+y x7. (山东省实验中学2012年3月高三第四次诊断文科)已知抛物线22(0)y px p =>的准线与圆22670x y x +--=相切,则p 的值为( C )A.12B. 1C.2D.4 4. (山东省泰安市2012届高三上学期期末文科)直线02:=--+a y ax l 在x 轴和y 轴上的截距相等,则a 的值是( C )A.1 B .-1 C .-2或-1 D. -2或16. (山东省泰安市2012届高三上学期期末文科)已知圆C 经过点A (5,1),B (1,3)两点,圆心在x 轴上,则C 的方程是( D )A. 50)2(22=+-y xB. 10)2(22=++y x C. 50)2(22=++y x D. 10)2(22=+-y x7. (山东省济南一中2012届高三上学期期末文科)直线220210x y m x y x -+=+--=与圆有两个不同交点的一个充分不必要条件是( C )A .31m -<<B .42m -<<C .01m <<D .1m <10. (山东省青岛市2012届高三上学期期末文科)点()2,1P -为圆()22125x y -+=内弦AB 的中点,则直线AB 的方程为( C )A .10x y +-=B. 230x y +-=C. 30x y --=D. 250x y --= 二、填空题:15. (山东省济南一中2012届高三上学期期末文科)若直线220ax by +-=(,(0,))a b ∈+∞平分圆224260x y x y +---=,则12a b+的最小值是 3+。
2012年3-5月份全国名校高三模拟化学试题高频考点分类汇编:高考频点十五__化学反应原理综合题
高考频点十五 化学反应原理综合题题目一 反应热、化学反应速率及化学平衡综合题1.(邯郸市2012年高三第一次模)在一定温度下,向一容积为2L 升的恒容密闭容器内加入0.2 mol 的N 2和0.6 mol 的H 2,发生如下反应:N 2(g)+ 3H 2(g) 2NH 3(g) △H <0。
反应中NH 3的物质的量浓度的变化的情况如下图所示:(1)根据上图,计算从反应开始到平衡时,平均反应速率v (NH 3)= 。
(2)反应达到平衡后,第5分钟时,保持其它条件不变,若改变反应温度,则NH 3的物质的量浓度不可能为 (选填字母编号)。
a .0.20 mol·L -1b .0.16 mol·L -1c .0.10 mol·L -1d .0.05 mol·L -1(3)该反应的化学平衡常数表达式为___________________。
反应达到平衡后,第5分钟时,若保持其它条件不变,只把容器的体积缩小一半,平衡 移动(选填“正向”、“逆向”或“不”),化学平衡常数K (选填“增大”、“减小”或“不变”)。
(4)第5分钟时把容器的体积缩小一半后,若在第8分钟达到新的平衡(此时NH 3的浓度约为0.25 mol·L -1),请在上图中画出从第5分钟开始变化直至到达新平衡时NH 3浓度的变化曲线。
(5) 常温下,向0.001 mol·L -1的AlCl 3 溶液中通入NH 3直至过量,现象 ,当PH= 时,开始生成沉淀(已知:Ksp[Al (OH )3]= 1.0×10-33)。
【答案】(1)0.025 mol·L -1·min -1(2分)(2)a 、c (2分,全对给2分,漏选正确给1分,错选、多选不给分)(3))()]([)]([23223N c H c NH c K (2分); 正向 (1分);不变(1分) (4)(2分,画图起点终点正确即给分,不必延长)(5)白色沉淀(2分,溶液出现浑浊也给分),4(2分)【解析】本题考查化学平衡、平衡常数和溶解度积常数的计算。
2012昌平高三(二模)数学(理)
昌平区2011-2012学年度第二学期高三年级第二次统一练习数学试卷(理科)2012. 4第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知全集U = R ,集合}{042≤-=x x |x A ,}2{<=x |x B ,则B A = A. {0≥x |x } B. {20<≤x |x } C. {42≤<x |x } D. {40≤≤x |x } 2. 在复平面内,与复数i+11对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限3. “1=a ” 是“002=-=+y a x y x 和直线直线垂直”的A. 充分而不必要条件 B 必要而不充分条件 C. 充要条件 D.既不充分也不必要条件4. 已知直线l :为参数)t t y t x (1⎩⎨⎧+==,圆C :2cos ρθ=,则圆心C 到直线l 的距离是 A. 2 B.3 C.2 D. 15.已知空间几何体的三视图如图所示,则该几何体的各侧面 图形中,是直角三角形的有 A. 0个 B. 1个C. 2个D. 3 个6. 某电视台曾在某时间段连续播放5个不同的商业广告,现在要在该时间段新增播一个商业广告与两个不同的公益宣传广告,且要求两个公益宣传广告既不能连续播放也不能在首尾播放,则在不改变原有5个不同的商业广告的相对播放顺序的前提下,不同的播放顺序共有 A. 60种 B. 120种 C. 144种 D. 300种 7.如图,在棱长为a 的正方体1111D C B A ABCD -中,P 为11D A 的中点,Q 为11B A 上 任意一点,F E 、为CD 上任意两点,且EF 的长为定值,则下面的四个值中不为定值的是 A. 点P 到平面QEF 的距离B. 直线PQ 与平面PEF 所成的角C. 三棱锥QEF P -的体积D.二面角Q EF P --的大小C 1A 1C主视图 左视图8. 设等差数列{}n a 的前n 项和为n S ,已知()37712012(1)1a a -+-=,()32006200612012(1)1a a -+-=-,则下列结论正确的是A .20122012S =,20127a a <B .20122012S =,20127a a >C .20122012S =-,20127a a <D .20122012S =-,20127a a >第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分. 9.在∆ABC 中,4,2,2π===A b a 那么角C =_________.10.已知双曲线的方程为1422=-y x ,则其渐近线的 方程为____________,若抛物线px y 22=的焦点与 双曲线的右焦点重合,则_______p =.11. 如图给出了一个程序框图,其作用是输入x 的值, 输出相应的y 值,若要使输入的x 值与输出的y 值相等, 则这样的x 值有 ___________个.12. 如图,AB 是⊙O 的直径,CD 切⊙O 于点D ,CA 切⊙O 于点A ,CD 交AB 的延长线于点E .若3AC =,2ED =,则BE =_____;AO =_____.13. 若变量 x , y 满足约束条件⎪⎩⎪⎨⎧≤-≥≤400x y y x 表示平面区域M ,则当-42≤≤a 时,动直线a y x =+所经过的平面区域M 的面积为____________. 14. 若对于定义在R 上的函数f (x ) ,其图象是连续不断的,且存在常数λ(∈λR )使得 f (x +λ) +λf (x ) = 0对任意实数x 都成立,则称f (x ) 是一个“λ—伴随函数”. 有下列关于“λ—伴随函数”的结论:①f (x ) =0 是常数函数中唯一个“λ—伴随函数”;②f (x ) = x 不是“λ—伴随函数”;③f (x ) = x 2是一个“λ—伴随函数”; ④“21—伴随函数”至少有一个零点. 其中不正..确.的序号是________________(填上所有不.正确..的结论序号).三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(本小题满分13分)已知向量a (cos ,sin ),θθ= b = (13-,), 22π≤θ≤π-. (Ⅰ)当b a ⊥时,求θ的值; (Ⅱ)求||b a +的取值范围.16.(本小题满分13分)某游乐场将要举行狙击移动靶比赛. 比赛规则是:每位选手可以选择在A 区射击3 次或选择在B 区射击2次,在A 区每射中一次得3分,射不中得0分; 在B 区每射中一次得2分,射不中得0分. 已知参赛选手甲在A 区和B 区每次射中移动靶的概率分别是41和)10(<<p p .(Ⅰ) 若选手甲在A 区射击,求选手甲至少得3分的概率; (Ⅱ) 我们把在A 、B 两区射击得分的数学期望高者作为选择射击区的标准,如果选手甲最终选择了在B 区射击,求p 的取值范围.17.(本小题满分14分)在正四棱柱1111ABCD A BC D -中, 122AA AB ==,E 为AD 中点,F 为1CC 中点.(Ⅰ)求证:1AD D F ⊥; (Ⅱ)求证://CE 平面1AD F ;(Ⅲ) 求平面1AD F 与底面ABCD 所成二面角的余弦值.18.(本小题满分13分) 已知函数∈+--=a x a xax x f ,ln )1()(R . (Ⅰ)当1>a 时,求)(x f 的单调区间;(Ⅱ)若)(x f 在]1[e ,上的最小值为2-,求a 的值. 19.(本小题满分14分)如图,已知椭圆M :)0(12222>>=+b a b y a x ,离心率36=e ,椭圆与x 正半轴交于点A ,直线l 过椭圆中心O ,且与椭圆交于B 、C 两点,B (1,1).(Ⅰ) 求椭圆M 的方程;(Ⅱ)如果椭圆上有两点Q P 、,使PBQ ∠的角平分线垂直于AO ,问是否存在实数)0(≠λλ使得AC PQ λ=成立?20. (本小题满分13分)实数列 3210a ,a ,a ,a ,由下述等式定义123,0,1,2,3,.n n n a a n +=-=(Ⅰ)若0a 为常数,求123,,a a a 的值; (Ⅱ)求依赖于0a 和n 的n a 表达式;(Ⅲ)求0a 的值,使得对任何正整数n 总有1n n a a +>成立.昌平区2011-2012学年度第二学期高三年级第二次统一练习数学( 理科)试卷2012.4 参考答案一、选择题(本大题共8小题,每小题5分,共40分.)二、填空题(本大题共6小题,每小题5分,共30分.)9.127π 10. x y 21±= , 52 11. 3 12. 1 , 2313. 7 14. ① ③三、解答题(本大题共6小题,共80分) 15.(本小题满分13分)解:(Ⅰ) a ⊥b ∴b a ⋅0sin cos 3=-=θθ ……… 2分 得3tan =θ 又∵22π≤θ≤π-……… 4分 即:θ=3π………6分 (Ⅱ)||b a +=4)sin cos 3(21||2||22+-+=+⋅+θθb b a a )3sin(45π--=θ ……… 9分22π≤≤π-θ 6365π≤π-≤π-∴θ ……… 11分 21)3s i n (1≤π-≤-∴θ 4)3s i n (42≤π--≤-∴θ∴33≤+≤||b a ……… 13分16.(本小题满分13分)解:(Ⅰ)设“选手甲在A 区射击得0分”为事件M ,“选手甲在A 区射击至少得3分”为事件N ,则事件M 与事件N 为对立事件, 6427)411(41)(3003=-⋅⋅=)(C M P ………2分 6437642711=-=-=)M (P )N (P ………4分(Ⅱ) 设选手甲在A 区射击的得分为ξ,则ξ的可能取值为0,3,6,9.6427)41-(10)(3===ξP ;6427)411(41C 3)(213=-⋅⋅==ξP ; 649)411()41(6)(223=-==ξC P ; 641)41(9)(3===ξP所以ξ的分布列为49641964966427364270=⨯+⨯+⨯+⨯=ξ∴E 设选手甲在B 区射击的得分为η,则η的可能取值为0,2,4.2)-(10)(p P ==η;)1(2)1(C 2)(12p p p p P -=-⋅⋅==η;24)(p P ==η所以η的分布列为p p )p (p )p (E 441221022=⋅+-⋅+-⨯=η∴根据题意, 有 ξηE E > ∴1169494<<∴>p ,p ……… 13分 17.(本小题满分14分)(Ⅰ)证明:在正四棱柱1111ABCD A BC D -中四边形ABCD 是正方形, AD CD ∴⊥1DD ABCD AD ABCD ⊥⊂ 平面,平面1AD DD ∴⊥ 1DD CD D = 11AD CDD C ∴⊥平面111D F CDDC ⊂ 平面 1A D D F∴⊥ ……… 4分 (Ⅱ)证明:在正四棱柱1111ABCD A BC D -中,连结1A D ,交1AD 于点M ,连结,ME MF . M ∴为1AD 中点.E 为AD 中点,F 为1CC 中点. 111//2ME DD ME DD ∴=且……… 6分 又1121DD CF DD //CF =且 ∴四边形CEMF 是平行四边形. MF //CE ∴ ……… 8分CE ⊄ 平面1AD F ,MF ⊂平面1AD F .//CE ∴平面1AD F .………9分(Ⅲ)解:以D 为坐标原点,分别以1,,DA DC DD 为,,x y z 轴建立空间直角坐标系如图. 则1(0,0,0),(1,0,0),(1,1,0),(0,1,0),(0,0,2),(0,1,1)D A B C D F……… 10分∴平面ABCD 的法向量为1(0,0,2)DD =………11分设平面1AD F 的法向量为(,,)x y z =n .1(1,1,1),(1,0,2)AF AD =-=-,分则有10,0.AF AD ⎧⋅=⎪⎨⋅=⎪⎩n n 所以 0,20.x y z x z -++=⎧⎨-+=⎩ 取1z =,得(2,1,1)=n .111cos ,6DD DD DD ⋅〈〉==n n n . ………13分 平面F AD 1与平面所成二面角为锐角.所以平面1AD F 与底面ABCD 所成二面角的余弦值为618.(本小题满分13分)解:(Ⅰ)f (x )的定义域为{x |0>x }……………1分.2222))(1()1(11)(x a x x x x a a x x a x a x f --=+-+=+-+='…………3分1>a 令0)(>'x f ,即a x x x a x x ><>--或得1,0))(1(2,∴)(x f 的增区间为(0,1),),(+∞a ……………4分 令0)(<'x f ,即a x xa x x <<<--1,0))(1(2得, ∴)(x f 的减区间为),1(a ……………5分 (Ⅱ)①当1≤a 时, 0)(≥'x f 在]1[e ,上恒成立, ∴)(x f 在]1[e ,恒为增函数. … 6分21)1()]([min -=-==∴a f x f ,得.(3舍去)=a ……… 7分②当e a <<1 时,令0)(='x f ,得1或a x =. 当a x <<1时,0)(<'x f ∴)(x f 在),1(a 上为减函数; 当e x a <<时,0)(>'x f ∴)(x f 在),(e a 上为增函数;2)ln()1(1)()]([min -=+--==∴a a a a f x f ,得(舍)……… 10分③当e a >时,0)(≤'x f 在],1[e 上恒成立,此时)(x f 在],1[e 恒为减函数.2)1()()]([min -=+--==∴a eae ef x f ,得 .e a = ………12分 综上可知 .e a = ……… 13分 19.(本小题满分14分)解:(Ⅰ)由题意可知2)(136abe -==,得 223b a = ……… 2分 )11(,B 点 在椭圆上11122=+ba 解得:34422==b ,a ……… 4分 故椭圆M 的方程为:143422=+y x ……… 4分 (Ⅱ)由于PBQ ∠的平分线垂直于OA 即垂直于x 轴,故直线PB 的斜率存在设为k ,则QB 斜率为 - k ,因此PB 、QB 的直线方程分别为y = k (x -1)+1, y = -k (x -1) +1 ……… 6分由⎪⎩⎪⎨⎧=++-=14341)1(22y x x k y 得01631631222=--+--+k k x )k (k x )k (①由0>∆ ,得31-≠k ……… 8分 点B 在椭圆上,x =1是方程①的一个根,设),(),,(Q Q p p y x Q y x P13163122+--=⋅∴k k k x P 即1316322+--=∴k k k x P ,同理1316322+-+=k k k x Q ………10分 ∴=PQk 311312213)13(22)(222=+--+-⋅=--+=--k k k k k k x x k x x k x x y y Q P Q P Q P Q P)1,1(),0,2(--C A 31=∴AC k 即:AC PQ k k =∴向量//,则总存在实数λ使λ=成立. ………13分20.(本小题满分13分)解:(Ⅰ)0131a a -=,0291a a +-=,03277a a -= ……… 2分(Ⅱ)由123,nn n a a +=-得1112(3)(3)(3)n n n n n n a a +++-=--- ……… 3分 令(3)n n n a b =-,所以112(3)nn n n b b ++-=-所以121321()()()n n n b b b b b b b b -=+-+-++-23112342222(3)(3)(3)(3)n nb -=+++++---- 2111222()[()()()]3333n b -=+--+-++-1122()(1())133()31()3n b ----=+--- 1122(1()),153n b -=+-- ……… 6分所以1122(1())(3)3153n n n a a -=+---- ……… 7分 所以1112(3)[(3)32]15n n n n a a --=⋅-+-+⋅ 1102(13)(3)[(3)32]15n n n a --=--+-+⋅101[2(1)3](1)35n n n n n a -=+-⋅+-⋅⋅ ……… 8分 (Ⅲ)1111101[2(1)3](1)35n n n n n n n a a a +++++-=+-⋅+-⋅⋅101[2(1)3](1)35n n n n n a --+-⋅--⋅⋅ 0112(1)43()55n n n a =⋅+-⋅⋅- 所以101121()()(1)4()3535n nn n n a a a +-=+-⋅⋅- ……… 10分如果0105a ->,利用n 无限增大时,2()3n的值接近于零,对于非常大的奇数n ,有10n n a a +-<;如果0105a -<,对于非常大的偶数n ,10n n a a +-<,不满足题目要求.当015a =时,112,5n n n a a +-=⋅于是对于任何正整数n ,1n n a a +>,因此015a =即为所求. ……… 13分。
山东省威海市2013届高三5月模拟考试 数学(理)
第5题图威海市高三理科数学试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符 合题目要求的.) (A )1i + (B )1i - (C )1i -+ (D )1i --2.已知全集{}3,2,1,0,1,2--=U ,{},3,1,0,1-=M ,{}3,2,0,2-=N ,则(∁U M )N 为 (A ) {},1,1- (B ){}2- (C ){}2,2- (D ){}2,0,2-3.“函数xy a =单调递增”是“ln 1a >”的什么条件(A )充分不必要(B )必要不充分 (C )充分必要 (D )既不充分也不必要 4.已知随机变量ξ服从正态分布2(3,)N σ,若(6)0.3P ξ>=, 则(0)P ξ<=(A ) 0.3 (B )0.4 (C )0.6 (D )0.7 5.一算法的程序框图如右图所示,若输出的12y =,则输入的x (A )1- (B )1 (C )1或5 (D )1-或1 7.在等比数列{}n a 中,已知271251=a a a ,那么=84a a (A )3 (B )6 (C )9 (D )188.奇函数)(x f y =满足1)3(=f ,且)3()()4(f x f x f -=-,则)2(f 等于 (A )0 (B )1 (C )21-(D )219.设γβα,,为平面,l n m ,,为直线,下列说法中正确的是 (A )若 βα⊥,l =βα ,l m ⊥,则β⊥m (B )若γα⊥,γβ⊥,则βα⊥(C )若γα⊥,γβ⊥,m αβ= , l m ⊥,则l β⊥ (D )若α⊥n ,β⊥n , α⊥m ,则β⊥m10.已知双曲线22221x y a b-=(0,0a b >>)的左、右焦点为12,F F ,设P 是双曲线右支上一点,121211cos ,F F F F F P F P <>= ,且121,6F F F P π<>= ,则双曲线的离心率e =(A1 (B)12 (C)14 (D)1211.函数)2ln(sin )(+=x xx f 的图象可能是(A ) (B ) (C ) (D )12.某学习小组共有5位同学,毕业之前互赠一份纪念品,任意两位同学之间最多交换一次,已知这5位同学之间共进行了8次交换,其中一人收到2份纪念品,另外4位同学收到的纪念品的数量最少是m 个,最多是n 个,则m n +=(A )5 (B )6 (C )7 (D )8二、填空题(本大题共4小题,每小题4分,共16分)14.函数()sin(),(0,0)f x A x A ωϕω=+>>的部分图像 如图所示,则(1)(2)(2013)f f f +++= __________. 15.已知正数b a ,满足等式042=+-+ab b a , 则b a +的最小值为________.16.已知数列{}n a 的通项公式为(1)21nn a n =-⋅+,将该数 列的项按如下规律排成一个数阵:1a 2a 3a 4a 5a 6a …………则该数阵中的第10行,第3个数为_______________.三、解答题(本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)已知{}n a 为等差数列,n S 为其前n 项和,且222n n S a n =+.(Ⅰ)求,n n a S ;(Ⅱ)若2221,,k k k a a a -+成等比数列,求k 的值及公比. 18.(本小题满分12分)ABC ∆中,B ∠是锐角,2BC AB ==,已知函数2()2cos f x BC BA x =++ .(Ⅰ)若(2)14f B =,求AC 边的长; (Ⅱ)若()12f B π+=,求tan B 的值.19.(本小题满分12分)某单位在“五四青年节”举行“绿色环保杯”象棋比赛,规则如下:两名选手比赛时,先胜3局者将赢得这次比赛,比赛结束.假设选手乙每局获胜的概率为13,且各局比赛胜负互不影响,已知甲先胜一局.(Ⅰ)求比赛进行5局结束且乙胜的概率;(Ⅱ)设ξ表示从第二局开始到比赛结束时已比赛的局数,求随机变量ξ的分布列和数学期望. 20.(本小题满分12分)如图1,在梯形ABCD 中,BC ∥DA ,,2BE DA EA EB BC ⊥===,1DE =,将四边形DEBC 沿BE 折起,使平面DEBC 垂直平面ABE ,如图2,连结,AD AC . (Ⅰ)若F 为AB 中点,求证:EF ∥平面ADC ;(Ⅱ)若AM AC λ= ,且BM 与平面ADC 所成角的正弦值为3,试确定点M 的位置.已知椭圆22221(0)x y a b a b+=>>的离心率为e =过右焦点做垂直于x 轴的直线与椭圆相交2. (Ⅰ)求椭圆的标准方程;(Ⅱ)设点(0,2)M ,直线l :1y =,过M 任作一条不与y 轴重合的直线1l 与椭圆相交于A B 、两点,过AB 的中点N 作直线2l 与y 轴交于点P ,D 为N 在直线l 上的射影,若ND 、12AB 、MP 成等比数列,求直线2l 的斜率的取值范围.威海市高三理科数学参考答案C C B A B B CD D A A C 13.3|2x x ⎧⎫≤⎨⎬⎩⎭14.15. 4 6. 97 17.解:(Ⅰ)∵{}n a 为其等差数列,设公差为d18.解:(Ⅰ)2()2cos243222cos f x BC BA B B x =++=++⨯+()72cos f x B x =++ --------------------------2分 (2)72cos 214f B B B =++=整理得:24cos 90B B +-= --------------------------4分cos 2B =或cos 2B -=(舍) ∴2222cos 431AC BC BA BC BA B =+-⋅=+-= ∴1AC = --------------------------6分 (Ⅱ)()72sin 12f B B B π+=+-=整理得:sin 3B B -= --------------------------8分将上式平方得:22sin cos 12cos 9B B B B -+=∴2222sin cos 12cos 9sin cos B B B B B B-+=+,同除2cos B9= --------------------------10分整理得:28tan 30B B +-=∴tan B =,∵B ∠是锐角, ∴tan B =. --------------------------12分 19.解(Ⅰ)设乙获胜的概率为P 乙,由已知甲每局获胜的概率皆为12133-=. -------1分所以随机变量ξ的分布列为ξ 23 4P41 220.证明:(Ⅰ)取AC 中点N ,连接,FN DN FE ,, --------------------1分 ∵ ,F N 分别是,AB AC 的中点,又DE ∥BC 且1,2DE BC ==FN ∴∥DE 且,FN DE =∴四边形FNDE 为平行四边形. --------------------3分EF ∴∥ND ,又EF ⊄平面,ACD DN ⊂平面,ACD EF ∴∥平面ADC -----------5分(Ⅱ) 平面DEBC ⊥平面ABE 且交于,,BE AE EB ⊥AE ∴⊥平面,DECB AE DE ∴⊥ -----------5分由已知,,DE EB AE EB ⊥⊥,分别以,,EA EB ED 所在直线 为,,x y z 轴,建立空间直角坐标系。
高中高考数学二模试卷 理(含解析)-人教版高三全册数学试题
2016年某某省某某市扶沟县包屯高中高考数学二模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R,集合A={x|﹣1≤x≤1},B={x|x2﹣2x≤0},则(∁U A)∩B=()A.[﹣1,0] B.[﹣1,2] C.(1,2] D.(﹣∞,1]∪[2,+∞)2.设复数z=1+i(i是虚数单位),则|+z|=()A.2 B.C.3 D.23.不等式|2x﹣1|>x+2的解集是()A.(﹣,3)B.(﹣∞,﹣)∪(3,+∞)C.(﹣∞,﹣3)∪(,+∞)D.(﹣3,+∞)4.若函数f(x)=2sin(ωx+θ)对任意x都有f(+x)=f(﹣x),则f()=()A.2或0 B.﹣2或2 C.0 D.﹣2或05.一算法的程序框图如图,若输出的y=,则输入的x的值可能为()A.﹣1 B.0 C.1 D.56.已知双曲线,它的一个顶点到较近焦点的距离为1,焦点到渐近线的距离是,则双曲线C的方程为()A.x2﹣=1 B.﹣y2=1 C.﹣y2=1 D.x2﹣=17.用a,b,c表示空间中三条不同的直线,γ表示平面,给出下列命题:①若a⊥b,b⊥c,则a∥c;②若a∥b,a∥c,则b∥c;③若a∥γ,b∥γ,则a∥b;④若a⊥γ,b⊥γ,则a∥b.其中真命题的序号是()A.①② B.②③ C.①④ D.②④8.设点M(x,y)是不等式组所表示的平面区域Ω中任取的一点,O为坐标原点,则|OM|≤2的概率为()A. B.C. D.9.已知等差数列{a n}的前n项和为S n,若S17=170,则a7+a9+a11的值为()A.10 B.20 C.25 D.3010.已知△ABC三边长构成公差为d(d≠0)的等差数列,则△ABC最大内角α的取值X围为()A.<α≤B.<α<πC.≤α<πD.<α≤11.已知f(x)=在x=0处取得最小值,则a的最大值是()A.4 B.1 C.3 D.212.若对∀x,y∈[0,+∞),不等式4ax≤e x+y﹣2+e x﹣y﹣2+2恒成立,则实数a的最大值是()A.B.1 C.2 D.二、填空题:本大题共4小题,每题5分,满分20分,将答案填在答题纸上13.命题“对任意x≤0,都有x2<0”的否定为_______.14.若(ax2+)6的展开式中x3项的系数为20,则ab的值为_______.15.设函数f(x)=lnx的定义域为(M,+∞),且M>0,对于任意a,b,c∈(M,+∞),若a,b,c是直角三角形的三条边长,且f(a),f(b),f(c)也能成为三角形的三条边长,那么M的最小值为_______.16.已知||=1,||=, =0,点C在∠AOB内,且∠AOC=30°,设=m+n (m、n∈R),则等于_______.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.等差数列{a n}的公差为d(d<0),a i∈{1,﹣2,3,﹣4,5}(i=1,2,3),则数列{b n}中,b1=1,点B n(n,b n)在函数g(x)=a•2x(a是常数)的图象上.(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)若=a n•b n,求数列{}的前n项和S n.18.如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,点E、F分别在棱BB1、CC1上,且BE=BB1,C1F=CC1.(1)求平面AEF与平面ABC所成角α的余弦值;(2)若G为BC的中点,A1G与平面AEF交于H,且设=,求λ的值.19.甲、乙两同学参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,具体成绩如下茎叶图所示,已知两同学这8次成绩的平均分都是85分.(1)求x;并由图中数据直观判断,甲、乙两同学中哪一位的成绩比较稳定?(2)若将频率视为概率,对甲同学在今后3次数学竞赛成绩进行预测,记这3次成绩中高于80分的次数为ξ,求ξ的分布列及数学期望Eξ.甲乙9 8 7 58 x 2 1 8 0 0 3 55 3 9 0 2 520.已知动点P到直线x=2的距离等于P到圆x2﹣7x+y2+4=0的切线长,设点P的轨迹为曲线E;(1)求曲线E的方程;(2)是否存在一点Q(m,n),过点Q任作一直线与轨迹E交于M、N两点,点(,)都在以原点为圆心,定值r为半径的圆上?若存在,求出m、n、r的值;若不存在,说明理由.21.已知函数(其中常数a,b∈R),.(Ⅰ)当a=1时,若函数f(x)是奇函数,求f(x)的极值点;(Ⅱ)若a≠0,求函数f(x)的单调递增区间;(Ⅲ)当时,求函数g(x)在[0,a]上的最小值h(a),并探索:是否存在满足条件的实数a,使得对任意的x∈R,f(x)>h(a)恒成立.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲](共1小题,满分10分)22.如图,P为圆外一点,PD为圆的切线,切点为D,AB为圆的一条直径,过点P作AB的垂线交圆于C、E两点(C、D两点在AB的同侧),垂足为F,连接AD交PE于点G.(1)证明:PC=PD;(2)若AC=BD,求证:线段AB与DE互相平分.[选修4-4:坐标系与参数方程]23.已知直角坐标系xOy的原点和极坐标系Ox的极点重合,x轴非负半轴与极轴重合,单位长度相同,在直角坐标系下,曲线C的参数方程为,(φ为参数).(1)在极坐标系下,若曲线C与射线θ=和射线θ=﹣分别交于A,B两点,求△AOB 的面积;(2)给出直线l的极坐标方程为ρcosθ﹣ρsinθ=2,求曲线C与直线l在平面直角坐标系中的交点坐标.[选修4-5:不等式选讲]24.已知:函数f(x)=|1﹣3x|+3+ax.(1)若a=﹣1,解不等式f(x)≤5;(2)若函数f(x)有最小值,某某数a的取值X围.2016年某某省某某市扶沟县包屯高中高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R,集合A={x|﹣1≤x≤1},B={x|x2﹣2x≤0},则(∁U A)∩B=()A.[﹣1,0] B.[﹣1,2] C.(1,2] D.(﹣∞,1]∪[2,+∞)【考点】交、并、补集的混合运算.【分析】化简集合B,求出A的补集,再计算(∁U A)∩B.【解答】解:全集U=R,集合A={x|﹣1≤x≤1},B={x|x2﹣2x≤0}={x|0≤x≤2},∴∁U A={x|x<﹣1或x>1},∴(∁U A)∩B={x|1<x≤2}=(1,2].故选:C.2.设复数z=1+i(i是虚数单位),则|+z|=()A.2 B.C.3 D.2【考点】复数代数形式的乘除运算.【分析】先求出+z,再求出其模即可.【解答】解:∵z=1+i,∴+z=+1+i===1﹣i+1+i=2,故|+z|=2,故选:A.3.不等式|2x﹣1|>x+2的解集是()A.(﹣,3)B.(﹣∞,﹣)∪(3,+∞)C.(﹣∞,﹣3)∪(,+∞)D.(﹣3,+∞)【考点】绝对值三角不等式.【分析】选择题,对x+2进行分类讨论,可直接利用绝对值不等式公式解决:|x|>a等价于x>a或x<﹣a,最后求并集即可.【解答】解:当x+2>0时,不等式可化为2x﹣1>x+2或2x﹣1<﹣(x+2),∴x>3或2x﹣1<﹣x﹣2,∴x>3或﹣2<x<﹣,当x+2≤0时,即x≤﹣2,显然成立,故x的X围为x>3或x<﹣故选:B.4.若函数f(x)=2sin(ωx+θ)对任意x都有f(+x)=f(﹣x),则f()=()A.2或0 B.﹣2或2 C.0 D.﹣2或0【考点】正弦函数的图象.【分析】由f(+x)=f(﹣x),可得x=是函数f(x)的对称轴,利用三角函数的性质即可得到结论.【解答】解:∵函数f(x)=2sin(ωx+θ)对任意x都有f(+x)=f(﹣x),∴x=是函数f(x)的对称轴,即此时函数f(x)取得最值,即f()=±2,故选:B5.一算法的程序框图如图,若输出的y=,则输入的x的值可能为()A.﹣1 B.0 C.1 D.5【考点】程序框图.【分析】模拟执行程序可得程序功能是求分段函数y=的值,根据已知即可求解.【解答】解:模拟执行程序可得程序功能是求分段函数y=的值,∵y=,∴sin()=∴=2kπ+,k∈Z,即可解得x=12k+1,k∈Z.∴当k=0时,有x=1.故选:C.6.已知双曲线,它的一个顶点到较近焦点的距离为1,焦点到渐近线的距离是,则双曲线C的方程为()A.x2﹣=1 B.﹣y2=1 C.﹣y2=1 D.x2﹣=1【考点】双曲线的简单性质.【分析】由题意可得c﹣a=1,求出渐近线方程和焦点的坐标,运用点到直线的距离公式,可得b=,由a,b,c的关系,可得a,进而得到所求双曲线的方程.【解答】解:双曲线的一个顶点(a,0)到较近焦点(c,0)的距离为1,可得c﹣a=1,由双曲线的渐近线方程为y=x,则焦点(c,0)到渐近线的距离为d==b=,又c2﹣a2=b2=3,解得a=1,c=2,即有双曲线的方程为x2﹣=1.故选:A.7.用a,b,c表示空间中三条不同的直线,γ表示平面,给出下列命题:①若a⊥b,b⊥c,则a∥c;②若a∥b,a∥c,则b∥c;③若a∥γ,b∥γ,则a∥b;④若a⊥γ,b⊥γ,则a∥b.其中真命题的序号是()A.①② B.②③ C.①④ D.②④【考点】空间中直线与平面之间的位置关系.【分析】与立体几何有关的命题真假判断,要多结合空间图形,充分利用相关的公里、定理解答.判断线与线、线与面、面与面之间的关系,可将线线、线面、面面平行(垂直)的性质互相转换,进行证明,也可将题目的中直线放在空间正方体内进行分析.【解答】解:因为空间中,用a,b,c表示三条不同的直线,①中正方体从同一点出发的三条线,满足已知但是a⊥c,所以①错误;②若a∥b,b∥c,则a∥c,满足平行线公理,所以②正确;③平行于同一平面的两直线的位置关系可能是平行、相交或者异面,所以③错误;④垂直于同一平面的两直线平行,由线面垂直的性质定理判断④正确;故选:D.8.设点M(x,y)是不等式组所表示的平面区域Ω中任取的一点,O为坐标原点,则|OM|≤2的概率为()A. B.C. D.【考点】几何概型.【分析】若x,y∈R,则区域W的面积是2×2=4.满足|OM|≤2的点M构成的区域为{(x,y)|﹣1≤x≤1,0≤y≤2,x2+y2≤4},求出面积,即可求出概率.【解答】解:这是一个几何概率模型.若x,y∈R,则区域W的面积是2×2=4.满足|OM|≤2的点M构成的区域为{(x,y)|﹣1≤x≤1,0≤y≤2,x2+y2≤4},面积为2[﹣(﹣)]= +,故|OM|≤2的概率为.故选:D.9.已知等差数列{a n}的前n项和为S n,若S17=170,则a7+a9+a11的值为()A.10 B.20 C.25 D.30【考点】等差数列的前n项和.【分析】由等差数列的性质可得a7+a9+a11=3a9,而s17=17a9,故本题可解.【解答】解:∵a1+a17=2a9,∴s17==17a9=170,∴a9=10,∴a7+a9+a11=3a9=30;故选D.10.已知△ABC三边长构成公差为d(d≠0)的等差数列,则△ABC最大内角α的取值X围为()A.<α≤B.<α<πC.≤α<πD.<α≤【考点】余弦定理;正弦定理.【分析】由已知根据三角形内角和定理得3α>π,从而解得α>,妨设三角形三边为a﹣d,a,a+d,(a>0,d>0),利用余弦定理可得cosα=2﹣>﹣1,结合三角形内角的X围即可得解.【解答】解:∵α为△ABC最大内角,∴3α>π,即α>,由题意,不妨设三角形三边为a﹣d,a,a+d,(a>0,d>0),则由余弦定理可得,cosα===2﹣=2﹣,又∵三角形两边之和大于第三边,可得a﹣d+a>a+d,可得a>2d,即,∴cosα=2﹣>﹣1,又α为三角形内角,α∈(0,π),可得:α∈(,π).故选:B.11.已知f(x)=在x=0处取得最小值,则a的最大值是()A.4 B.1 C.3 D.2【考点】函数的最值及其几何意义.【分析】根据分段函数,分别讨论x的X围,求出函数的最小值,根据题意得出不等式a2<a+2,求解即可.【解答】解:∵f(x)=,当x≤0时,f(x)的最小值为a2,当x>0时,f(x)的最小值为2+a,∵在x=0处取得最小值,∴a2<a+2,∴﹣1≤a≤2,故选D.12.若对∀x,y∈[0,+∞),不等式4ax≤e x+y﹣2+e x﹣y﹣2+2恒成立,则实数a的最大值是()A.B.1 C.2 D.【考点】函数恒成立问题.【分析】利用基本不等式和参数分离可得a≤在x>0时恒成立,构造函数g(x)=,通过求导判断单调性求得g(x)的最小值即可得到a的最大值.【解答】解:当x=0时,不等式即为0≤e y﹣2+e﹣y﹣2+2,显然成立;当x>0时,设f(x)=e x+y﹣2+e x﹣y﹣2+2,不等式4ax≤e x+y﹣2+e x﹣y﹣2+2恒成立,即为不等式4ax≤f(x)恒成立.即有f(x)=e x﹣2(e y+e﹣y)+2≥e x﹣2•2+2=2+2e x﹣2(当且仅当y=0时,取等号),由题意可得4ax≤2+2e x﹣2,即有a≤在x>0时恒成立,令g(x)=,g′(x)=,令g′(x)=0,即有(x﹣1)e x﹣2=1,令h(x)=(x﹣1)e x﹣2,h′(x)=xe x﹣2,当x>0时h(x)递增,由于h(2)=1,即有(x﹣1)e x﹣2=1的根为2,当x>2时,g(x)递增,0<x<2时,g(x)递减,即有x=2时,g(x)取得最小值,为,则有a≤.当x=2,y=0时,a取得最大值.故选:D二、填空题:本大题共4小题,每题5分,满分20分,将答案填在答题纸上13.命题“对任意x≤0,都有x2<0”的否定为存在x0≤0,都有.【考点】命题的否定.【分析】利用全称命题的否定是特称命题,写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以,命题“对任意x≤0,都有x2<0”的否定为:存在x0≤0,都有;故答案为:存在x0≤0,都有;14.若(ax2+)6的展开式中x3项的系数为20,则ab的值为 1 .【考点】二项式系数的性质.【分析】直接利用二项式定理的通项公式,求出x3项的系数为20,得到ab的值.【解答】解:(ax2+)6的展开式的通项公式为T r+1=•a6﹣r•b r•x12﹣3r,令12﹣3r=3,求得r=3,故(ax2+)6的展开式中x3项的系数为•a3•b3=20,∴ab=1.故答案为:1.15.设函数f(x)=lnx的定义域为(M,+∞),且M>0,对于任意a,b,c∈(M,+∞),若a,b,c是直角三角形的三条边长,且f(a),f(b),f(c)也能成为三角形的三条边长,那么M的最小值为.【考点】三角形的形状判断;函数的值.【分析】不妨设c为斜边,则M<a<c,M<b<c,则可得ab>M2,结合题意可得,结合a2+b2≥2ab可求c的X围,进而可求M的X围,即可求解【解答】解:不妨设c为斜边,则M<a<c,M<b<c∴ab>M2由题意可得,∴∵a2+b2≥2ab>2c∴c2>2c即c>2∴ab>2∴M2≥2∴故答案为:16.已知||=1,||=, =0,点C在∠AOB内,且∠AOC=30°,设=m+n (m、n∈R),则等于 3 .【考点】平面向量数量积的运算;线段的定比分点.【分析】先根据=0,可得⊥,又因为===|OC|×1×cos30°==1×,所以可得:在x轴方向上的分量为在y轴方向上的分量为,又根据=m+n=n+m,可得答案.【解答】解:∵||=1,||=, =0,⊥===|OC|×1×cos30°==1×∴在x轴方向上的分量为在y轴方向上的分量为∵=m+n=n+m∴,两式相比可得: =3.故答案为:3三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.等差数列{a n}的公差为d(d<0),a i∈{1,﹣2,3,﹣4,5}(i=1,2,3),则数列{b n}中,b1=1,点B n(n,b n)在函数g(x)=a•2x(a是常数)的图象上.(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)若=a n•b n,求数列{}的前n项和S n.【考点】数列的求和;等差数列的通项公式.【分析】(I)等差数列{a n}的公差为d(d<0),a i∈{1,﹣2,3,﹣4,5}(i=1,2,3),可得a1=5,a2=3,a3=1.利用等差数列的通项公式即可得出.由点B n(n,b n)在函数g(x)=a•2x(a是常数)的图象上,可得b n=a•2n.利用b1=1,解得a,即可得出.(II)=a n•b n=(7﹣2n)•2n﹣1.利用“错位相减法”与等比数列的求和公式即可得出.【解答】解:(I)等差数列{a n}的公差为d(d<0),a i∈{1,﹣2,3,﹣4,5}(i=1,2,3),∴a1=5,a2=3,a3=1.∴d=3﹣5=﹣2,∴a n=5﹣2(n﹣1)=7﹣2n.∵点B n(n,b n)在函数g(x)=a•2x(a是常数)的图象上,∴b n=a•2n.∵b1=1,∴1=a×21,解得a=.∴b n=2n﹣1.(II)=a n•b n=(7﹣2n)•2n﹣1.∴数列{}的前n项和S n=5×1+3×2+1×22+…+(7﹣2n)•2n﹣1.∴2S n=5×2+3×22+…+(9﹣2n)•2n﹣1+(7﹣2n)•2n,∴﹣S n=5﹣2(2+22+…+2n﹣1)﹣(7﹣2n)•2n=5﹣﹣(7﹣2n)•2n=9﹣(9﹣2n)•2n,∴S n=(9﹣2n)•2n﹣9.18.如图,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,点E、F分别在棱BB1、CC1上,且BE=BB1,C1F=CC1.(1)求平面AEF与平面ABC所成角α的余弦值;(2)若G为BC的中点,A1G与平面AEF交于H,且设=,求λ的值.【考点】二面角的平面角及求法;棱柱的结构特征.【分析】(1)建立空间坐标系,求出平面的法向量,利用向量法进行求解即可.(2)利用四点共面, =x+y,建立方程关系进行求解即可.【解答】解:(1)在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,点E、F分别在棱BB1、CC1上,且BE=BB1,C1F=CC1.∴建立以A为坐标原点,AB,AC,AA1分别为x,y,z轴的空间直角坐标系如图:则A(0,0,0),A1(0,0,6),B(2,0,0),C(0,2,0),E(2,0,2),F(0,2,4),则=(2,0,2),=(0,2,4),设平面AEF的法向量为=(x,y,z)则令z=1.则x=﹣1,y=﹣2,即=(﹣1,﹣2,1),平面ABC的法向量为=(0,0,1),则cos<,>===即平面AEF与平面ABC所成角α的余弦值是;(2)若G为BC的中点,A1G与平面AEF交于H,则G(1,1,0),∵=,∴==λ(1,1,﹣6)=(λ,λ,﹣6λ),=+=(λ,λ,6﹣6λ)∵A,E,F,H四点共面,∴设=x+y,即(λ,λ,6﹣6λ)=x(2,0,2)+y(0,2,4),则,得λ=,x=y=,故λ的值为.19.甲、乙两同学参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,具体成绩如下茎叶图所示,已知两同学这8次成绩的平均分都是85分.(1)求x;并由图中数据直观判断,甲、乙两同学中哪一位的成绩比较稳定?(2)若将频率视为概率,对甲同学在今后3次数学竞赛成绩进行预测,记这3次成绩中高于80分的次数为ξ,求ξ的分布列及数学期望Eξ.甲乙9 8 7 58 x 2 1 8 0 0 3 55 3 9 0 2 5【考点】离散型随机变量的期望与方差;极差、方差与标准差;离散型随机变量及其分布列.【分析】(1)由题意利用平均数的定义仔细分析图表即可求得;(2)由题意记“甲同学在一次数学竞赛中成绩高于8”为事A,则,而随机变量ξ的可能取值为0、1、2、3,由题意可以分析出该随机变量ξ~B(3,),再利用二项分布的期望与分布列的定义即可求得.【解答】解:(1)依题意,解x=4,由图中数据直观判断,甲同学的成绩比较稳定.(2)记“甲同学在一次数学竞赛中成绩高于80分”为事A,则,随机变ξ的可能取值为0、1、2、3,ξ~B(3,),,其k=0、1、2、3.所以变ξ的分布列为:ξ0 1 2 3P20.已知动点P到直线x=2的距离等于P到圆x2﹣7x+y2+4=0的切线长,设点P的轨迹为曲线E;(1)求曲线E的方程;(2)是否存在一点Q(m,n),过点Q任作一直线与轨迹E交于M、N两点,点(,)都在以原点为圆心,定值r为半径的圆上?若存在,求出m、n、r的值;若不存在,说明理由.【考点】直线与圆锥曲线的综合问题.【分析】(1)设P(x,y),由题意可得,整理可得切线E 的方程(2)过点Q任作的直线方程可设为:为直线的倾斜角),代入曲线E的方程y2=3x,得(n+tsinα)2=3(m+tcosα),sin2αt2+(2nsinα﹣3cosα)t+n2﹣3m=0,由韦达定理得,,若使得点(,)在以原点为圆心,定值r为半径的圆上,则有=为定值【解答】解:(1)设P(x,y),圆方程x2﹣7x+y2+4=0化为标准式:则有∴(x﹣2)2=x2﹣7x+y2+4,整理可得y2=3x∴曲线E的方程为y2=3x.(2)过点Q任作的直线方程可设为:为直线的倾斜角)代入曲线E的方程y2=3x,得(n+tsinα)2=3(m+tc osα),sin2αt2+(2nsinα﹣3cosα)t+n2﹣3m=0由韦达定理得,,==═令﹣12n与2n2+6m﹣9同时为0得n=0,,此时为定值故存在.21.已知函数(其中常数a,b∈R),.(Ⅰ)当a=1时,若函数f(x)是奇函数,求f(x)的极值点;(Ⅱ)若a≠0,求函数f(x)的单调递增区间;(Ⅲ)当时,求函数g(x)在[0,a]上的最小值h(a),并探索:是否存在满足条件的实数a,使得对任意的x∈R,f(x)>h(a)恒成立.【考点】函数在某点取得极值的条件;利用导数研究函数的单调性.【分析】(I)根据所给的函数是一个奇函数,写出奇函数成立的等式,整理出b的值是0,得到函数的解析式,对函数求导,使得导函数等于0,求出极值点.(II)要求函数的单调增区间,首先对函数求导,使得导函数大于0,解不等式,问题转化为解一元二次不等式,注意对于a值进行讨论.(Ⅲ)求出函数g(x)在[0,a]上的极值、端点值,比较其中最小者即为h(a),再利用奇函数性质及基本不等式求出f(x)的最小值,对任意的x∈R,f(x)>h(a)恒成立,等价于f(x)min>h(a),在上只要找到一a值满足该不等式即可.【解答】解:(Ⅰ)当a=1时,因为函数f(x)是奇函数,∴对x∈R,f(﹣x)=﹣f(x)成立,得,∴,∴,得,令f'(x)=0,得x2=1,∴x=±1,经检验x=±1是函数f(x)的极值点.(Ⅱ)因为,∴,令f'(x)>0⇒﹣ax2﹣2bx+a>0,得ax2+2bx﹣a<0,①当a>0时,方程ax2+2bx﹣a=0的判别式△=4b2+4a2>0,两根,单调递增区间为,②当a<0时,单调递增区间为和.(Ⅲ)因为,当x∈[0,a]时,令g'(x)=0,得,其中.当x变化时,g'(x)与g(x)的变化情况如下表:x (0,x0)x0(x0,a)g'(x)+ 0 ﹣g(x)↗↘∴函数g(x)在[0,a]上的最小值为g(0)与g(a)中的较小者.又g(0)=0,,∴h(a)=g(a),∴,b=0时,由函数是奇函数,且,∴x>0时,,当x=1时取得最大值;当x=0时,f(0)=0;当x<0时,,∴函数f(x)的最小值为,要使对任意x∈R,f(x)>h(a)恒成立,则f(x)最小>h(a),∴,即不等式在上有解,a=π符合上述不等式,∴存在满足条件的实数a=π,使对任意x∈R,f(x)>h(a)恒成立.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲](共1小题,满分10分)22.如图,P为圆外一点,PD为圆的切线,切点为D,AB为圆的一条直径,过点P作AB的垂线交圆于C、E两点(C、D两点在AB的同侧),垂足为F,连接AD交PE于点G.(1)证明:PC=PD;(2)若AC=BD,求证:线段AB与DE互相平分.【考点】与圆有关的比例线段.【分析】(1)利用PD为圆的切线,切点为D,AB为圆的一条直径,证明:∠DGP=∠PDG,即可证明PC=PD;(2)若AC=BD,证明DE为圆的一条直径,即可证明线段AB与DE互相平分.【解答】证明:(1)∵PD为圆的切线,切点为D,AB为圆的一条直径,∴∠PDA=∠DBA,∠BDA=90°,∴∠DBA+∠DAB=90°,∵PE⊥AB∴在Rt△AFG中,∠FGA+∠GAF=90°,∴∠FGA+∠DAB=90°,∴∠FGA=∠DBA.∵∠FGA=∠DGP,∴∠DGP=∠PDA,∴∠DGP=∠PDG,∴PG=PD;(2)连接AE,则∵CE⊥AB,AB为圆的一条直径,∴AE=AC=BD,∴∠EDA=∠DAB,∵∠DEA=∠DBA,∴△BDA≌△EAD,∴DE=AB,∴DE为圆的一条直径,∴线段AB与DE互相平分.[选修4-4:坐标系与参数方程]23.已知直角坐标系xOy的原点和极坐标系Ox的极点重合,x轴非负半轴与极轴重合,单位长度相同,在直角坐标系下,曲线C的参数方程为,(φ为参数).(1)在极坐标系下,若曲线C与射线θ=和射线θ=﹣分别交于A,B两点,求△AOB 的面积;(2)给出直线l的极坐标方程为ρcosθ﹣ρsinθ=2,求曲线C与直线l在平面直角坐标系中的交点坐标.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(1)曲线C的参数方程为,(φ为参数),利用平方关系可得:曲线 C 在直角坐标系下的普通方程.将其化为极坐标方程为,分别代入和,可得|OA|,|OB|,,利用直角三角形面积计算公式可得△AOB的面积.(2)将l的极坐标方程化为直角坐标方程得x﹣y﹣2=0,与椭圆方程联立解出即可得出交点坐标.【解答】解:(1)曲线C的参数方程为,(φ为参数),利用平方关系可得:曲线 C在直角坐标系下的普通方程为,将其化为极坐标方程为,分别代入和,得,∵,故△AOB的面积.(2)将l的极坐标方程化为直角坐标方程,得x﹣y﹣2=0,联立方程,解得x=2,y=0,或,∴曲线C与直线l的交点坐标为(2,0)或.[选修4-5:不等式选讲]24.已知:函数f(x)=|1﹣3x|+3+ax.(1)若a=﹣1,解不等式f(x)≤5;(2)若函数f(x)有最小值,某某数a的取值X围.【考点】绝对值不等式的解法;绝对值三角不等式.【分析】(1)若a=﹣1,不等式f(x)≤5,即为|3x﹣1|≤x+2,去掉绝对值解不等式f(x)≤5;(2)分析知函数f(x)有最小值的充要条件为,即可某某数a的取值X围.【解答】解:(1)当a=﹣1时,f(x)=|3x﹣1|+3﹣x,所以不等式f(x)≤5,即为|3x﹣1|≤x+2,讨论:当时,3x﹣1﹣x+3≤5,解之得;当时,﹣3x+1﹣x+3≤5,解之得,综上,原不等式的解集为…(2),分析知函数f(x)有最小值的充要条件为,即﹣3≤a≤3…。
山东省威海市2014届高三下学期第一次模拟考试数学(理)试题
山东省威海市2014届高三下学期第一次模拟考试数学(理)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共5页.考试时间120分钟.满分150分.答题前,考生务必用0.5毫米的黑色签字笔将自己的姓名、座号、考号填写在答题纸规定的位置.第Ⅰ卷(选择题 共60分)注意事项:每小题选出答案后,用铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.一、选择题本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,2},{1,,}A B a b ==,则“2a =”是“A B ⊆”的 (A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件 2. 1i z i ⋅=-(i 为虚数单位),则z =(A )1i + (B )1i - (C )1i -+ (D )1i -- 3.若a b >,则下列不等式成立的是(A )ln ln a b > (B )0.30.3a b > (C )1122a b > (D>4.根据给出的算法框图,计算(1)(2)f f -+= (A )0 (B )1 (C )2 (D )45.某班级统计一次数学测试后的成绩,并制成了如下的 频率分布表,根据该表估计该班级的数学测试平均分为(A )80 (B )81 (C )82 (D )836.已知,l m 是两条不同的直线,α是一个平面,且l ∥α,则下列命题正确的是 (A )若l ∥m ,则m ∥α (B )若m ∥α,则l ∥m (C )若l m ⊥,则m α⊥ (D )若m α⊥,则l m ⊥ 7.已知函数()sin 2f x x =向左平移6π个单位后,得到函数()y g x =,下列关于()y g x =的说法正确的是第4题图(A )图象关于点(,0)3π-中心对称 (B )图象关于6x π=-轴对称(C )在区间5[,]126ππ--单调递增 (D )在[,]63ππ-单调递减 8.任取三个整数,至少有一个数为偶数的概率为(A )0.125 (B )0.25 (C )0.5 (D )0.8759.二项式n的展开式中第4项为常数项,则常数项为 (A )10 (B )10- (C )20 (D )20-10.函数()(2)()f x x ax b =-+为偶函数,且在(0,)+∞单调递增,则(2)0f x ->的解集为 (A ){|22}x x x ><-或 (B ){|22}x x -<< (C ){|04}x x x <>或 (D ){|04}x x <<11.双曲线221x y m-=的离心率2e =,则以双曲线的两条渐近线与抛物线2y mx =的交点为顶点的三角形的面积为(A (B ) (C ) (D )12.已知1a >,设函数()4x f x a x =+-的零点为m ,()log 4a g x x x =+-的零点为n ,则mn 的最大值为(A )8 (B )4 (C )2 (D )1第Ⅱ卷(非选择题 共90分)注意事项:1. 请用0.5毫米的黑色签字笔将每题的答案填写在答题纸的指定位置.书写的答案如需改动,要先划掉原的答案,然后再写上新答案.2. 不在指定答题位置答题或超出答题区域书写的答案无效.在试题卷上答题无效. 3. 第Ⅱ卷共包括填空题和解答题两道大题.中学联盟 二、填空题本大题共4小题,每小题4分,共16分.13.若函数cos 22y x x a =++在0,2π⎡⎤⎢⎥⎣⎦上有两个不同的零点,则实数a 的取值范围为_______________________.14.已知圆O 过椭圆22162x y +=的两焦点且关于直线10x y -+=对称,则圆O 的方程为__________________.15.设,x y 满足约束条件22002x x y e y x +≥⎧⎪-≥⎨⎪≤≤⎩,则(,)M x y 所在平面区域的面积为___________. 16.函数()y f x =的定义域为(,1)(1,)-∞-+∞ ,其图象上任一点(,)P x y 满足221x y -=,则给出以下四个命题:①函数()y f x =一定是偶函数; ②函数()y f x =可能是奇函数;③函数()y f x =在(1,)+∞单调递增;④若()y f x =是偶函数,其值域为(0,)+∞ 其中正确的序号为_______________.(把所有正确的序号都填上)三、解答题本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17. (本小题满分12分)已知向量(cos ,sin )a αα=,(1+cos ,sin )b ββ=- .(Ⅰ)若3πα=,(0,)βπ∈,且a b ⊥,求β;(Ⅱ)若=βα,求a b ⋅的取值范围.18. (本小题满分12分)一个袋子中装有7个小球,其中红球4个,编号分别为1,2,3,4,黄球3个,编号分别为2,4,6,从袋子中任取4个小球(假设取到任一小球的可能性相等). (Ⅰ)求取出的小球中有相同编号的概率;(Ⅱ)记取出的小球的最大编号为X ,求随机变量X 的分布列和数学期望.19.(本小题满分12分) 如图,矩形ABCD 所在的平面和平面ABEF 互相垂直,等腰梯形ABEF 中,AB ∥EF ,AB =2,1AD AF ==,60BAF ∠=,O ,P 分别为AB ,CB的中点,M 为底面OBF ∆的重心.(Ⅰ)求证:PM ∥平面AFC ;(Ⅱ)求直线AC 与平面CBF 所成角的正弦值.20.(本小题满分12分)已知正项数列{}n a ,其前n 项和n S 满足2843,n n n S a a =++且2a 是1a 和7a 的等比中项. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ) 符号[]x 表示不超过实数x 的最大整数,记23[log ()]4n n a b +=,求1232n b b b b +++ .21.(本小题满分13分)过椭圆22221(0)x y a b a b+=>>的左顶点A 作斜率为2的直线,与椭圆的另一个交点为B ,与y 轴的交点为C ,已知613AB BC =. (Ⅰ)求椭圆的离心率;(Ⅱ)设动直线y kx m =+与椭圆有且只有一个公共点P ,且与直线4x =相交于点Q ,若x 轴上存在一定点(1,0)M ,使得PM QM ⊥,求椭圆的方程.22.(本小题满分13分)山东中学联盟设函数()(1)x f x ae x =+(其中 2.71828....e =),2()2gxx b x =++,已知它们在0x =处有相同的切线.(Ⅰ)求函数()f x ,()g x 的解析式;(Ⅱ)求函数()f x 在[,1](3)t t t +>-上的最小值;(Ⅲ)若对2,()()x kf x g x ∀≥-≥恒成立,求实数k 的取值范围.高三理科数学参考答案一、选择题A D D A C, D C DB C,C B二、填空题13. (21]-,- 14. 22(1)5x y +-= 15. 22e - 16. ② 三、解答题17.(本小题满分12分)解:(Ⅰ)∵a b ⊥ ∴cos cos cos sin sin 0a b ααβαβ⋅=+-=----------------1分∵3πα=∴coscoscos sinsin 0333πππββ+-=整理得1cos()32πβ+=- ----------------------3分∴2233k ππβπ+=+过42,33k k z ππβπ+=+∈ ----------------------4分∵(0,)βπ∈∴3πβ=--------------6分(Ⅱ)222cos cos sin cos 2cos 1a b ααααα⋅=+-=+- ----------------------8分令[]cos ,1,1t t α=∈- 2219212()48a b t t t ⋅=+-=+- ----------------------9分∴当1t =时,max 2a b ⋅= ,当14t =-时,98min a b ⋅=- ----------------------11分∴a b ⋅ 的取值范围为9[,2]8-. ----------------------12分18.(本小题满分12分)解(Ⅰ):设取出的小球中有相同编号的事件为A ,编号相同可分成一个相同和两个相同 ----------------------2分112233472()119()35C C C P A C ++== ----------------------4分(Ⅱ) 随机变量X 的可能取值为:3,4,6 --------------------6分4711(3)35P X C ===, ----------------------7分 132244472(4)5C C C P X C +===, ----------------------8分 36474(6)7C P X C === ----------------------9分所以随机变量X 的分布列为:----------------10分所以随机变量X 的数学期望124179346355735EX =⨯+⨯+⨯=. ----------------------12分 19.(本小题满分12分)解(Ⅰ)连结OM 延长交BF 于H ,则H 为BF 的中点,又P 为CB 的中点,∴PH ∥CF ,又∵AF ⊂平面AFC ,∴PH ∥平面AFC -------------------2分 连结PO ,则PO ∥AC ,AC ⊂平面AFC ,PO ∥平面AFC -----------------4分1PO PO P = ∴平面1POO ∥平面AFC , ----------------5分PM ⊂平面AFC//PM 平面AFC----------------------6分(Ⅱ) 矩形ABCD 所在的平面和平面ABEF 互相垂直,CB AB ⊥所以CB ⊥平面ABEF ,又AF ⊂平面1BDC ,所以CB AF ⊥ ----------------7分 又2AB =,1AF =,60BAF ∠=,由余弦定理知BF =,222AF BF AB +=得AF BF ⊥ ----------------8分AFCB B = ∴AF ⊥平面CFB ---------------------9分 所以ACF ∠为直线AC 与平面CBF 所成的角, ---------------------10分 在直角三角形ACF 中sin AF ACF AC ∠=== ----------------------12分 法二:以O为原点建立如图所示空间直角坐标系,1(1,0,0),(1,0,0),(1,0,1),(,0),2A B C F --设平面CBF 的法向量为(,,)n x y z =,()3(,1),0,0,12FC CB =-=- , -------------------8由0,0,n CB n FC ⎧⋅=⎪⎨⋅=⎪⎩所以0,0,z y =⎧⎪+= 令1x =,则10x y z =⎧⎪=⎨⎪=⎩,所以(1,n =-,-----------------10分()2,0,1AC =-∴cos ,5n AC <>==----------------------11分∴直线AC 与平面CBF-------------------12分 20.(本小题满分12分) 解:(Ⅰ) 由2843n n n S a a =++①知2111843(2,)n n n S a a n n N ---=++≥∈② ----------------------1分由①-②得1118()()44n n n n n n n a a a a a a a ---=-++-整理得11(4)()0(2,)n n n n a a a a n n N ----+=≥∈ ----------------------2分 ∵{}n a 为正项数列∴10,n n a a -+>,∴14(2,)n n a a n n N --=≥∈ ----------------------3分 所以{}n a 为公差为4的等差数列,由2111843,a a a =++得13a =或11a = ----------4分 当13a =时,277,27a a ==,不满足2a 是1a 和7a 的等比中项. 当11a =时,275,25a a ==,满足2a 是1a 和7a 的等比中项.所以1(1)443n a n n =+-=-. ----------------------6分(Ⅱ) 由43n a n =-得223[log ()][log ]4n n a b n +==, ----------------------7分 由符号[]x 表示不超过实数x 的最大整数知,当122mm n +≤<时,2[log ]n m =,----------------------8分所以令12322222[log 1][log 2][log 3][log 2]n n S b b b b =+++=+++0112341n n =+++++++++-++∴1234112223242(1)2n S n n -=⨯+⨯+⨯+⨯+-⨯+① ----------------------9分2345212223242(1)22n S n n =⨯+⨯+⨯+⨯+-⨯+② ----------------------10分①-②得234112222...2(1)22(12)(1)2(2)2212n n n n nS n nn n n n ---=+++++----=---=---- (2)22n S n n ∴=-++即1232n b b b b +++ (2)22nn n =-++. ----------------------12分21. (本小题满分13分)解(Ⅰ)∵A (,0)a -,设直线方程为2()y x a =+,11(,)B x y令0x =,则2y a =,∴(0,2)C a , ----------------------2分∴1111(,),(,2)AB x a y BC x a y =+=------------------------3分 ∵613AB BC =∴1x a +=11166(),(2)1313x y a y -=-,整理得111312,1919x a y a =-= --------------------4分∵B 点在椭圆上,∴22221312()()11919a b +⋅=,∴223,4b a = ----------------------5分∴2223,4a c a -=即2314e -=,∴12e = ----------------------6分 (Ⅱ)∵223,4b a =可设223.4b t a t ==,∴椭圆的方程为2234120x y t +-= ----------------------7分由2234120x y t y kx m⎧+-=⎨=+⎩得222(34)84120k x kmx m t +++-= ----------------------8分 ∵动直线y kx m =+与椭圆有且只有一个公共点P ∴0∆=,即2222644(34)(412)0k m m m t -+-=整理得2234m t k t =+ ----------------------9分设P 11(,)x y 则有122842(34)34km km x k k =-=-++,112334my kx m k=+=+ ∴2243(,)3434km mP k k-++ ----------------------10分 又(1,0)M ,Q (4,4)k m +若x 轴上存在一定点(1,0)M ,使得PM QM ⊥, ∴2243(1,)(3,(4))03434km mk m k k+-⋅--+=++恒成立 整理得2234k m +=, ----------------------12分 ∴223434k t k t +=+恒成立,故1t =所求椭圆方程为22143x y += ----------------------13分22. (本小题满分13分)解:(Ⅰ) ()(2)xf x ae x '=+, ()2g x x b '=+ ----------------------1分由题意,两函数在0x =处有相同的切线.(0)2,(0),2,(0)(0)2,2,4f a g b a b f a g a b ''∴==∴====∴==,2()2(1),()42x f x e x g x x x ∴=+=++. ----------------------3分(Ⅱ) ()2(2)xf x e x '=+,由()0f x '>得2x >-,由()0f x '<得2x <-,()f x ∴在(2,)-+∞单调递增,在(,2)-∞-单调递减. ----------------------4分 3,12t t >-∴+>-① 当32t -<<-时,()f x 在[,2]t -单调递减,[2,1]t -+单调递增,∴2min ()(2)2f x f e -=-=-. ----------------------5分 ② 当2t ≥-时,()f x 在[,1]t t +单调递增,min ()()2(1)t f x f t e t ∴==+;22(32)()2(1)(2)t e t f x e t t -⎧--<<-⎪∴=⎨+≥-⎪⎩ ----------------------6分(Ⅲ)令2()()()2(1)42x F x kf x g x ke x x x =-=+---,由题意当min 2,()0x F x ≥-≥ ----------------------7分 ∵2,()()x kf x g x ∀≥-≥恒成立,(0)220,1F k k ∴=-≥∴≥ ----------------------8分()2(1)2242(2)(1)x x x F x ke x ke x x ke '=++--=+-, ----------------------9分2x ≥- ,由()0F x '>得11,ln x e x k k >∴>;由()0F x '<得1ln x k< ∴()F x 在1(,ln ]k -∞单调递减,在1[ln ,)k+∞单调递增 ----------------------10分①当1ln 2k<-,即2k e >时,()F x 在[2,)-+∞单调递增,22min 22()(2)22()0F x F ke e k e-=-=-+=-<,不满足min ()0F x ≥. ----------------11分② 当1ln 2k =-,即2k e =时,由①知,2min 22()(2)()0F x F e k e =-=-=,满足min ()0F x ≥. ---------------12分③当1ln2k >-,即21k e ≤<时,()F x 在1[2,ln ]k -单调递减,在1[ln ,)k+∞单调递增 min 1()(ln )ln (2ln )0F x F k k k==->,满足min ()0F x ≥.综上所述,满足题意的k 的取值范围为2[1,]e . ----------------------13分。
2012东北三校二模--理科数学
东北三省三校2012届高三数学第二次联考试题 理 新人教A 版本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,共24题,满分150分,考试结束后,请将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔记清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.设集合{1,2,3}M =,{2,3,4}N =,则( C )A .M N ⊆B .N M ⊆C .{2,3}M N =D .{1,4,5}M N = 2.已知1(z i i =-是虚数单位),则24z z+=( ) A.2 B .2i C .24i + D .24i -3.在30的展开式中,x 的幂指数是整数的项共有( ) A .4项 B .5项 C .6项 D .7项4.向量AB 与向量(3,4)a =- 的夹角为π,||10AB =,若点A 的坐标是(1,2),则点B 的坐标为( )A .(-7,8)C .(-5,10)5A .34 B .45C .56D .676.已知4sin cos (0)34πθθθ+=<<,则sin cos θθ-的值为( )A .3 B .3- C .13 D .13-7.若,*m n N ∈,则a b >“”是“m nm n n m m n a b a b ab +++>+”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件8.一个几何体的三视图如图所示(单位长度:cm )的体积为33cm,则该几何体的高h 为( ) A .cm π B.(cm πC .(cm π+D .(3cm π+9.若抛物线2y 2(0)px p =>的值为( )A .2B .18C .2或18D .4或1610.设函数()2sin+4f x x πωω=()(>0)与函数()cos(2)(||)2g x x πφφ=+≤的对称轴完全相同,则φ的值为( )A .4π B .4π- C .2π D .2π-11.已知半径为5的球O 被互相垂直的两个平面所截,得到的两个圆的公共弦为4,若其中的一圆的半径为4,则另一圆的半径为( )AC.12.设()f x 在区间(,)-∞+∞可导,其导数为'()f x ,给出下列四组条件( ) ①()p f x :是奇函数,':()q f x 是偶函数②()p f x :是以T 为周期的函数,':()q f x 是以T 为周期的函数③()p f x :在区间(,)-∞+∞上为增函数,':()0q f x >在(,)-∞+∞恒成立 ④()p f x :在0x 处取得极值,'0:()0q f x =A .①②③B .①②④C .①③④D .②③④第II 卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分。
20.三角函数的化简求值
1.广东省2012年高考数学考前十五天每天一练(4) 已知tan 2θ=,则22sin sin cos 2cos θθθθ+-=(D ) A . 43-B .54C .34-D .452.陕西省西工大附中2011届高三第八次适应性训练数学(文) 观察下列几个三角恒等式:①tan10tan 20tan 20tan 60tan 60tan101++= ; ②tan13tan35tan35tan 42tan 42tan131++= ; ③tan 5tan100tan100tan(15)+-tan(15)tan 51+-=;一般地,若tan ,tan ,tan αβγ都有意义,你从这三个恒等式中猜想得到的一个结论为 .【答案】90,tan tan tan tan tan tan 1αβγαββγγα++=++=当时3.陕西省咸阳市2012届高三上学期高考模拟考试(文科数学) sin 330 的值是( )A .12 B. 12- C. D. 【答案】B4.2012北京宏志中学高考模拟训练-数学理cos300= ( )(A)-12 (C)12【答案】C5.2012北京宏志中学高考模拟训练-数学理 已知2sin 3α=,则cos(2)πα-= ( )(A ) (B )19-6..山东省烟台市2012届高三五月份适应性练习 数学文(二)(2012烟台二模)22sin(250)cos 70cos 155sin 25-︒︒︒-︒的值为A .B .一12C .12D 【答案】C7.山东省烟台市2012届高三五月份适应性练习 数学文(三)已知倾斜角为α的直线的值为则平行与直线α2tan 022,y x l =+- A.54 B.34 C.43 D.32 【答案】A4.(福建省厦门市2012年高中毕业班适应性考试)已知a ∈(3,2ππ),且cos 5α=-,则tan α DA .43B .一43C .-2D .22.(2011年江苏海安高级中学高考数学热身试卷)已知tan 2α=,则s i n ()c o s ()s i n ()c o s ()παπααα++--+-= . 【答案】1贵州省五校联盟2012届高三年级第三次联考试题)10.如果33sin cos cos sin θθθθ->-,且()0,2θπ∈,那么角θ的取值范围是( )A .0,4π⎛⎫ ⎪⎝⎭B .3,24ππ⎛⎫ ⎪⎝⎭ C .5,44ππ⎛⎫ ⎪⎝⎭ D . 5,24ππ⎛⎫⎪⎝⎭C(贵州省五校联盟2012届高三第四次联考试卷) 5.已知πα<<0,21cos sin =+αα ,则α2cos 的值为 ( ) A.4- B.47 C.47± D.43- A(贵州省2012届高三年级五校第四次联考理) 13.函数sin y x x =-的最大值是 . 2(贵州省2012届高三年级五校第四次联考文) 4. 若4cos ,,0,52παα⎛⎫=∈- ⎪⎝⎭则tan 4πα⎛⎫+= ⎪⎝⎭( )A .17 B .7 C .177或D .177-或-A洋浦中学2012届高三第一次月考数学理科试题13.已知函数22()1xf x x =+,则11(1)(2)(3)()()23f f f f f ++++= .25冀州市中学2012年高三密卷(一)6. 已知角α2的顶点在原点, 始边与x 轴非负半轴重合, 终边过⎪⎪⎭⎫⎝⎛-23,21, )[πα2,02∈ 则 =αtan ( )A. 3-B. 3C. 33D. 33±B冀州中学高三文科数学联排试题 10.已知sin θ+cos θ=15,θ∈(0,π),则tan θ的值为 A . 43- B .34- C .43或43- D .43-或34-A河北省南宫中学2012届高三8月月考数学(文) 6.已知2tan =α,则ααcos sian 的值为( )A.21B.32C.52D.1C冀州中学第三次模拟考试文科数学试题13. 已知2()4f x x x =-,则(sin )f x 的最小值为 -32012年普通高考理科数学仿真试题(三) 12.定义一种运算:⎩⎨⎧≤=⊗a b b a a b a ,,,令()()45sin cos 2⊗+=x x x f ,且⎥⎦⎤⎢⎣⎡∈2,0πx ,则函数⎪⎭⎫⎝⎛-2πx f 的最大值是 A.45B.1C.—1D.45-【答案】A2012年普通高考理科数学仿真试题(四) 17.(本小题满分12分)已知函数()().1cos 2267sin 2R x x x x f ∈-+⎪⎭⎫⎝⎛-=π (I )求函数()x f 的周期及单调递增区间;>b.(II )在△ABC 中,三内角A ,B ,C 的对边分别为a,b,c,已知点⎪⎭⎫ ⎝⎛21,A 经过函数()x f 的图象,b,a,c 成等差数列,且9=⋅AC AB ,求a 的值. 【答案】9(广东省韶关市2012届第二次调研考试).已知A 是单位圆上的点,且点A 在第二象限,点B 是此圆与x 轴正半轴的交点,记AOB α∠=, 若点A 的纵坐标为35.则sin α=35_____________; tan(2)πα-=___247____________. 5(广东省深圳市2012高三二模文). tan 2012︒∈A. (0,3B. (3C. (1,3--D. (3- 【答案】B16(上海市财大附中2012届第二学期高三数学测验卷理)对任意的实数α、β,下列等式恒成立的是( ) AA ()()2sin cos sin sin αβαβαβ⋅=++-B .()()2cos sin sin cos αβαβαβ⋅=++-C .cos cos 2sinsin22αβαβαβ+-+=⋅ D .cos cos 2coscos22αβαβαβ+--=⋅17.(上海市财大附中2012届第二学期高三数学测验卷文)已知πα<<0,21cos sin =+αα ,则α2cos 的值为( ) A A .47- B .47 C .47± D .43-3.广东省中山市2012届高三期末试题数学文 已知233sin 2sin ,(,),52cos πθθθπθ=-∈且则的值等于 A .23 B .43 C .—23 D .—43AB7. 广东实验中学2011届高三考前 已知24sin 225α=-, (,0)4πα∈-,则s i n c o s αα+=A .15-B .51 C .75- D .5716. 北海市合浦县教育局教研室2011-2012学年高一下学期期中考试数学试题 已知函数R x x x x f ∈-=,cos sin 3)(,若1)(≥x f ,则x 的取值范围是 ⎭⎬⎫⎩⎨⎧∈+≤≤+z k k x k x ,232ππππ 15. 北海市合浦县教育局教研室2011-2012学年高一下学期期中考试数学试题若⎪⎩⎪⎨⎧>-≤=)0(21)0(6sin )(x x x x x f π,则=)]1([f f 21- 。
2023-2024学年山东省潍坊市高三二模数学试题+答案解析(附后)
一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合,,则下列Venn 2023-2024学年山东省潍坊市高三二模数学试题✽图中阴影部分可以表示集合的是( )A. B.C. D.2.在平面直角坐标系中,角的终边经过点,则( )A. B.C.D.3.已知函数,则( )A. 是奇函数,且在R 上是增函数B. 是偶函数,且在R 上是增函数C. 是奇函数,且在R 上是减函数D. 是偶函数,且在R 上是减函数4.在中,D 在BC 上且,点E 是AD 的中点,记,,则( )A.B.C.D.5.已知事件A 、B 满足,,则( )A.B.C. 事件A ,B 相互独立D. 事件A ,B 互斥6.某公司为实现利润目标制定奖励制度,其中规定利润超过10万元且少于1000万元时,员工奖金总额单位:万元随利润单位:万元的增加而增加,且奖金总额不超过5万元,则y 关于x 的函数可以为参考数据:,( )A.B.C.D.7.如图,宫灯又称宫廷花灯,是中国彩灯中富有特色的汉民族传统手工艺品之一.现制作一件三层六角宫灯模型,三层均为正六棱柱内部全空,其中模型上、下层的底面周长均为,高为现在其内部放入一个体积为的球形灯,且球形灯球心与各面的距离不少于则该模型的侧面积至少为( )A. B.C. D.8.已知双曲线的左,右焦点分别为,,O为坐标原点,过作C的一条渐近线的垂线,垂足为D,且,则C的离心率为( )A. B. 2 C. D. 3二、多选题:本题共4小题,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.在复数范围内关于x的实系数一元二次方程的两根为,,其中,则( )A. B. C. D.10.已知实数,则( )A. B.C. D.11.已知函数其中,,的部分图象如图所示,则( )A.B. 函数为偶函数C.D. 曲线在处的切线斜率为12.已知四棱锥,底面ABCD是正方形,平面ABCD,,点M在平面ABCD上,且,则( )A. 存在,使得直线PB与AM所成角为B. 不存在,使得平面平面PBMC. 当一定时,点P与点M轨迹上所有的点连线和平面ABCD围成的几何体的外接球的表面积为D. 若,以P为球心,PM为半径的球面与四棱锥各面的交线长为三、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年威海市高考模拟考试理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共5页.满分150分.考试时间120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合1{1,10,}10A =,{|lg ,}B y y x x A ==∈,则A B = A.1{}10 B. {10} C. {1} D. ∅ 2.复数11i -的共轭复数为A.11+22iB. 1122i -C. 11+22i -D. 1122i -- 3.如图,三棱锥V ABC -底面为正三角形,侧面VAC 与底面垂直且VA VC =,已知其主视图的面积为23,则其左视图的面积为A.B.C.4.若函数()sin()f x x ϕ=+是偶函数,则tan2ϕ=A.0B.1C.1-D. 1或1- 5.等差数列{}n a 中,10590,8S a ==,则4a =A.16B.12C.8D.6 6.已知命题p :函数12x y a+=-恒过(1,2)点;命题q :若函数(1)f x -为偶函数,则()f x的图像关于直线1x =对称,则下列命题为真命题的是VAB C第3题图A.p q∧ B.p q⌝∧⌝ C.p q⌝∧ D.p q∧⌝7.R上的奇函数()f x满足(3)()f x f x+=,当01x<≤时,()2xf x=,则(2012)f= A. 2- B. 2 C.12- D.128.函数2lg()=xf xx的大致图像为9.椭圆2222+1(0)x ya ba b=>>,若直线kxy=与其一个交点的横坐标为b,则k的值为A.1± B.3± D.10.设6(x-的展开式中3x的系数为A,二项式系数为B,则:A B=A.4B. 4- C.62 D.62-11.如图,菱形ABCD的边长为2,60A∠= ,M为DC的中点,若N为菱形内任意一点(含边界),则AM AN⋅的最大值为A.3B. 6 D.912.函数()f x的定义域为A,若存在非零实数t,使得对于任意()x C C A∈⊆有,x t A+∈且()()f x t f x+≤,则称()f x为C上的t度低调函数.已知定义域为[)0+∞,的函数()=3f x mx--,且()f x为[)0+∞,上的6度低调函数,那么实数m的取值范围是A.[]0,1 B. [)+∞1, C.(],0-∞ D.(][),01,-∞+∞第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.某商场调查旅游鞋的销售情况,随机抽取了部C第11题图A分顾客的购鞋尺寸,整理得如下频率分布直方图,其中直方图从左至右的前3个小矩形的面积之比为1:2:3,则购鞋尺寸在[)39.5,43.5内的顾客所占百分比为______. 14.阅读右侧程序框图,则输出的数据S 为______.15.将,,a b c 三个字母填写到3×3方格中,要求每行每列都不能出现重复字母,不同的填写方法有________种.(用数值作答)16.若集合12,n A A A 满足12n A A A A = ,则称12,n A A A 为集合A 的一种拆分.已知:①当12123{,,}A A a a a = 时,有33种拆分; ②当1231234{,,,}A A A a a a a = 时,有47种拆分; ③当123412345{,,,}A A A A a a a a a = ,时,有515种拆分;……由以上结论,推测出一般结论:当112123{,,,}n n A A A a a a a += 有_________种拆分.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知函数2()sin cos f x x x x ωωω=⋅0>ω),直线1x x =,2x x =是)(x f y =图象的任意两条对称轴,且||21x x -的最小值为4π. (I )求()f x 的表达式; (Ⅱ)将函数()f x 的图象向右平移8π个单位后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数()y g x =的图象,若关于x 的方程()0g x k +=,在区间0,2π⎡⎤⎢⎥⎣⎦上有且只有一个实数解,求实数k 的取值范围. 18.(本小题满分12分)第14题图某市职教中心组织厨师技能大赛,大赛依次设基本功(初赛)、面点制作(复赛)、热菜烹制(决赛)三个轮次的比赛,已知某选手通过初赛、复赛、决赛的概率分别是34,23,14且各轮次通过与否相互独立.(I )设该选手参赛的轮次为ξ,求ξ的分布列和数学期望; (Ⅱ)对于(I )中的ξ,设“函数()3sin()2x f x x R ξπ+=∈是偶函数”为事件D ,求事件D 发生的概率.19.(本小题满分12分)在等比数列}{n a 中,412=a ,512163=⋅a a .设22122log 2log 2n n n a a b +=⋅,n T 为数列{}n b 的前n 项和.(Ⅰ)求n a 和n T ;(Ⅱ)若对任意的*∈N n ,不等式n n n T )1(2--<λ恒成立,求实数λ的取值范围.20.(本小题满分12分)如图所示多面体中,AD ⊥平面PDC ,ABCD 为平行四边形,E 为AD 的中点,F 为线段BP上一点,∠CDP =120,AD =3,AP =5,PC =(Ⅰ)若F 为BP 的中点,求证:EF ∥平面PDC ; (Ⅱ)若13BF BP =,求直线AF 与平面PBC 所成角的正弦值.21.(本小题满分12分)已知函数21()ln 12a f x a x x +=++. (Ⅰ)当21-=a 时,求)(x f 在区间],1[e e上的最值;(Ⅱ)讨论函数)(x f 的单调性; (Ⅲ)当10a -<<时,有()1ln()2af x a >+-恒成立,求a 的取值范围. 22.(本小题满分14分)如图,在平面直角坐标系xoy 中,设点()0,F p (0p >),直线l :y p =-,点P 在直线l 上移动,R 是线段PF 与x F DCB APE过R 、P 分别作直线1l 、2l ,使1l PF ⊥,2l l ⊥ 12l l Q = . (Ⅰ)求动点Q 的轨迹C 的方程;(Ⅱ)在直线l 上任取一点M 做曲线C 的两条切线,设切点为A 、B ,求证:直线AB 恒过一定点;(Ⅲ)对(Ⅱ)求证:当直线,,MA MF MB 的斜率存在时,直线,,MA MF MB 的斜率的倒数成等差数列.理科数学参考答案一、选择题C B BD D, B A D C A, D D 二、填空题13. 55% 14. 0 15. 12 16. 1(21)n n +- 三、解答题17.(本小题满分12分)解:(Ⅰ)11()sin 2sin 22sin(2)223f x x x x x πωωωω==+=+,-------------------------------------------3分由题意知,最小正周期242T ππ=⨯=,222T πππωω===,所以2ω=, ∴()sin(4)3f x x π=+-----------------------------------------6分(Ⅱ)将()f x 的图象向右平移个8π个单位后,得到sin(4)6y x π=-的图象,再将所得图象所有点的横坐标伸长到原来的2倍,纵坐标不变,得到sin(2)6y x π=-的图象.()sin(2).6g x x π=-所以 -------------------------9分令26x t π-=,∵02x π≤≤,∴566t ππ-≤≤ ()0g x k +=,在区间0,2π⎡⎤⎢⎥⎣⎦上有且只有一个实数解,即函数()y g x =与y k =-在区间0,2π⎡⎤⎢⎥⎣⎦上有且只有一个交点,由正弦函数的图像可知1122k -≤-<或1k -= ∴1122k -<≤或1k =-.-------------------12分18.(本小题满分12分)解:(I )ξ可能取值为1,2,3. -------------------------------2分记“该选手通过初赛”为事件A ,“该选手通过复赛”为事件B ,31(1)()1,44321(2)()()()(1),434P P A P P AB P A P B ξξ===-=====⨯-=321(3)()()().432P P AB P A P B ξ====⨯=--------------------------5分ξ的分布列为:ξ的数学期望123.4424E ξ=⨯+⨯+⨯= --------------------------7分(Ⅱ)当1ξ=时,1()3sin=3sin()222x f x x πππ+=+()f x 为偶函数; 当2ξ=时,2()3sin 3sin()22x f x x πππ+==+()f x 为奇函数;当3ξ=时,33()3sin 3sin()222x f x x πππ+==+()f x 为偶函数;∴事件D发生的概率是34.-----------------------------------12分 19.(本小题满分12分)解:(Ⅰ)设}{n a 的公比为q ,由5121161552263==⋅=q q a a a 得21=q , ∴n n n q a a )21(22=⋅=-. ---------------------------------- 2分22211211()2122()2log 2log 2=log2log21111()(21)(21)22121n n nn n a a b n n n n -++=⋅⋅==--+-+∴)1211215131311(21+--++-+-=n n T n 111)22n 121nn =-=++(. -------------------------------------5分(Ⅱ)①当n 为偶数时,由2-<n T n λ恒成立得,322)12)(2(--=+-<nn n n n λ恒成立,即m in )322(--<nn λ,----------------------------------6分 而322--n n 随n 的增大而增大,∴2=n 时0)322(m in =--nn , ∴0<λ;----------------------------------8分 ②当n 为奇数时,由2+<n T n λ恒成立得,522)12)(2(++=++<nn n n n λ恒成立,即m in )522(++<nn λ,-----------------------------------9分 而95222522=+⋅≥++n n n n ,当且仅当122=⇒=n nn 等号成立, ∴9<λ. ---------------------------------------11分综上,实数λ的取值范围0∞(-,). ----------------------------------------12分 20.(本小题满分12分)解(Ⅰ)取PC 的中点为O ,连FO ,DO ,∵F ,O 分别为BP ,PC 的中点, ∴FO ∥BC ,且12FO BC =, 又ABCD 为平行四边形,ED ∥BC ,且12ED BC =, ∴FO ∥ED ,且FO ED = ∴四边形EFOD 是平行四边形---------------------------------------------2分 即EF ∥DO 又EF ⊄平面PDC ∴EF ∥平面PDC . --------------------------------------------- 4分(Ⅱ)以DC 为x 轴,过D 点做DC 的垂线为y 轴,DA 为z 轴建立空间直角坐标系, 则有D (0 ,0 , 0),C (2,0,0),B (2,0,3),P(2,-,A (0,0,3) ------------------------------6分设(,,)F x y z,14(2,,3)(1)33BF x y z BP =--==--∴2(2),3F则2(1)3AF =------------------------------8分设平面PBC 的法向量为1(,,)n x y z =则1100n CB n PC ⎧⋅=⎪⎨⋅=⎪⎩即3040z x =⎧⎪⎨-=⎪⎩ 取1y =得12n = -----------------10分2cos ,AF n AF n AF n⋅<>====⋅ ∴AF 与平面PBC所成角的正弦值为分21. (本小题满分12分)解:(Ⅰ)当21-=a 时,14ln 21)(2++-=x x x f ,∴xx x x x f 21221)(2-=+-='. ∵)(x f 的定义域为),0(+∞,∴由)(='x f 得1=x . ---------------------------2分 ∴)(x f 在区间],1[e e 上的最值只可能在)(),1(),1(e f ef f 取到,而421)(,4123)1(,45)1(22e e f e e f f +=+==,∴45)1()(,421)()(m in 2m ax ==+==f x f e e f x f . ---------------------------4分(Ⅱ)2(1)()(0,)a x af x x x++'=∈+∞,.①当01≤+a ,即1-≤a 时,)(,0)(x f x f ∴<'在),0(+∞单调递减;-------------5分②当0≥a 时,)(,0)(x f x f ∴>'在),0(+∞单调递增; ----------------6分③当01<<-a 时,由0)(>'x f 得1,12+->∴+->a a x a ax 或1+--<a ax (舍去) ∴)(x f 在),1(+∞+-a a 单调递增,在)1,0(+-a a上单调递减; --------------------8分综上,当0≥a 时,)(x f 在),0(+∞单调递增;当01<<-a 时,)(x f 在),1(+∞+-a a 单调递增,在)1,0(+-a a上单调递减. 当1-≤a 时,)(x f 在),0(+∞单调递减;-----------------------9分(Ⅲ)由(Ⅱ)知,当01<<-a 时,min ()f x f =即原不等式等价于1ln()2af a >+- ---------------------------10分即111ln()212a a aa a a +-⋅+>+-+ 整理得ln(1)1a +>- ∴11a e>-,----------------------------11分 又∵1<<-a ,所以a的取值范围为11,0e⎛⎫- ⎪⎝⎭. ---------------------------12分 22. (本小题满分14分)解:(Ⅰ)依题意知,点R 是线段FP 的中点,且RQ ⊥FP ,∴RQ 是线段FP 的垂直平分线. ---------------------------------------2分∴PQ QF =.故动点Q 的轨迹C 是以F 为焦点,l 为准线的抛物线, 其方程为:24(0)x p y p =>. -----------------------------------4分 (Ⅱ)设(,)M m p -,两切点为11(,)A x y ,22(,)B x y 由24x py =得214y x p =,求导得12y x p'=. ∴两条切线方程为1111()2y y x x x p-=- ① 2221()2y y x x x p-=-② -------------------6分对于方程①,代入点(,)M m p -得,1111()2p y x m x p --=-,又21114y x p= ∴211111()42p x x m x p p--=-整理得:2211240x mx p --= 同理对方程②有2222240x mx p --=即12,x x 为方程22240x mx p --=的两根. ∴212122,4x x m x x p +==- ③-----------------------8分设直线AB 的斜率为k ,2221211221211()4()4y y x x k x x x x p x x p--===+-- 所以直线AB 的方程为211211()()44x y x x x x p p-=+-,展开得:12121()44x x y x x x p p =+-,代入③得:2my x p p=+ ∴直线恒过定点(p .-------------------------------------10分(Ⅲ) 证明:由(Ⅱ)的结论,设(,)M m p -, 11(,)A x y ,22(,)B x y且有212122,4x x m x x p +==-, ∴1212,MA MB y p y pk k x m x m++==-- ----------------------------11分 ∴11MA MB k k +=1212122222221212124()4()4444x m x m x m x m p x m p x m x x y p y p x p x p p p p p------=+=+=+++++++ =1212212221122121212124()4()4()4()44()4p x m p x m p x m x p x m x pm pm mx x x x x x x x x x x x p p-----+====-------------------------------13分又∵12MFm m k p p p==---,所以112MA MB MF k k k += 即直线,,NA NM NB的斜率倒数成等差数列.----------------------------14分。