模拟电路实验报告 单级放大电路

合集下载

单级放大电路设计 模电实验(DOC)

单级放大电路设计 模电实验(DOC)

单级放大电路设计模电实验(DOC)东南大学电工电子实验中心实验报告课程名称:电子电路基础第三次实验实验名称:单级电压放大电路设计院:吴健雄专业:电类姓名:学号:实验室:实验组别:同组人员:实验时间:2011 年 5 月5 日评定成绩:审阅教师:实验三单级电压放大电路设计一、基本信息实验时数:时间要求:教材:实验检查:6学时第10~11周完成,第11周内交实验报告《电子线路实践》Page 1~6 带班教师检查二、学习目标:1、掌握单级放大电路的设计、工程估算、安装和调试;2、了解三极管各项基本器件参数、工作点、偏置电路、输入阻抗、输出阻抗、增益、幅频特性等的基本概念以及测量方法;3、了解负反馈对放大电路特性的影响。

4、掌握基本的模拟电路的故障检查和排除方法,深化示波器、稳压电源、交流毫伏表、函数发生器的使用技能训练。

三、设计提示:图3-1 射级偏置电路1、对于图3-1中的偏置电路,只有R2支路中的电流I1>>IBQ时,才能保证UBQ恒定实现自动稳定工作点的作用,所以工程中一般取:I1?(5~10)IBQ 。

I1?(10~20)IBQ2、为了提高电路的稳定性,一般要求UBQ>>UBE,工程中一般取UBQ=(5~10)UBE,即UBQ=(3~5)V,UBQ=(1~3)V。

3、电路的静态工作点电流ICQ?UBQ?UBERE,于是小信号放大,所以ICQ一般取~2mA。

4、ICQ确定后通过以下公式可计算R1和R2的值:R2?UBQI1?UBQ?5~10?IBQ?5~10?ICQ’? ?RL???UBQ,R1?VCC?UBQI1??VCC?UBQ?R2UBQ。

5、交流电压放大倍数Au??rbe’’??RL??RL。

????26mVrb??1?? ?re300??1???ICQ6、交流输入阻抗Ri?rbe//R1//R2?rbe?rb?(1??)re?300?(1??)7、交流输出阻抗RO?ro//RC?RC。

模拟电路 实验二 单级放大器(硬件)

模拟电路 实验二 单级放大器(硬件)

路 路 码术 数 位 发
选 分 器运 器 寄 器
择配


器器


电电 压流 表表
灯 指七 泡 示段
灯数 码 管
译峰条
码鸣形
数器光



码 条 形 光 柱
其它器件库
仪器库
熔 数子 有 无 断 据电 耗 耗 器 写路 传 传
入网 输 输 器表 线 线
晶 直真 开 开 开 体 流空 关 关 关
电三 式 式 式 机极 升 降 升
管压压降 变变压 压压变 器器压 器
数 函示 波字 逻逻
字 数波 特信 辑辑
多 信器 图号 分转
用号
仪发 析换
表发
生 仪仪



2.EWB仪器库栏
数字多用表
这是一种自动调整量程的数字多用表。其电压栏、电流档的内 阻、电阻档的电流值和分贝档标准电压值都可任意进行设置。下图 为它的图标和面板(双击图标可弹出)。
5. 动态参数测量电路
输入正弦波信号 : 频率 f = 1kHz 幅值 Vi = 30mV
单级放大电路的负载线
图2-3 静态工作点过低输出电压 (截止)失真的波形 图2-4 静态工作点过高输出电压 (饱和)失真的波形
条件
工作点位置合适
VCE=4V
工作点位置合适
VCE=4V
输入信号幅度太大 0.3V
接地 触发 B通道
时基控制
面板展开 外触发输入
X轴偏置
Y轴偏置 Y轴输入方式
自动触发
触发控制
为了能够更细致地观察波形,按下示波器面板上的Expand按钮将面板进一步展开成下 图所示。通过拖曳指针可以详细读取波形任一点的读数,以及两个指针间读数的差。

单级放大电路实验报告

单级放大电路实验报告

单级放大电路实验报告实验报告-单级放大电路1. 引言单级放大电路是一种常见的电子电路,用于放大输入信号的幅度。

该电路可以应用于各种声音放大器、音频放大器等实际应用中。

本实验旨在通过设计和构建单级放大电路,了解其工作原理和性能。

2. 实验材料- 电源- 耳机- 电阻- 电容- 电位器- 三极管等器件3. 实验步骤3.1 设计电路根据实验要求和材料提供的参数,设计所要构建的单级放大电路。

3.2 收集所需器件根据电路设计,收集所需的电阻、电容、三极管等器件。

3.3 组装电路按照电路设计将所需器件按照正确的连接方式组装成电路。

3.4 连接电源将电源正、负极正确连接到电路上,注意电压大小不超过器件的额定值。

3.5 调节电位器根据实际需要,通过调节电位器的阻值来调节输出信号的幅度。

3.6 测试使用耳机或其他输出设备来实时测试电路的放大效果,检查输出信号的幅度是否满足要求。

4. 实验结果和分析根据实验数据和实时测试,在调节电位器阻值的不同情况下,记录输出信号的幅度和音质。

根据实验结果对电路进行评估和分析,并提出改进的建议。

5. 结论单级放大电路是一种常见的电子电路,可用于放大输入信号的幅度。

本实验通过设计和构建单级放大电路,并进行实时测试,对其工作原理和性能进行了了解。

在实验中,我们调节了电位器的阻值来调整输出信号的幅度,并观察了输出信号的变化。

实验结果表明,电路可以有效地放大输入信号,并满足实际需求。

6. 注意事项6.1 在实验中,注意安全使用电源,避免电压过高导致器件损坏或危险情况发生。

6.2 在调节电位器时,注意不要超过其额定阻值范围,以免损坏电位器或其他器件。

6.3 注意选择合适的耳机或输出设备进行测试,以保证实验结果的准确性。

6.4 在实验结束后,注意关闭电源,拆除电路,并妥善保存实验数据及相关器件。

以上是单级放大电路实验报告的一般框架和内容,具体实验步骤和结果会根据实验需求和实际情况有所差异。

在撰写报告时,需要详细描述实验步骤、结果分析和结论,并注意阐述实验中的注意事项,以保证实验的安全性和准确性。

模拟电路应用实验—晶体管单级放大电路实验报告

模拟电路应用实验—晶体管单级放大电路实验报告

模拟电路应用实验—晶体管单级放大电路实验报告实验目的:1. 理解晶体管的结构与基本特性2. 掌握晶体管单级放大电路的构成方法与基本性能3. 学习测量电路中的关键参数4. 熟悉使用实验仪器(万用表、示波器、信号发生器等)实验原理:晶体管是由三个层(P、N、N或P、P、N)构成的半导体三极管。

由于晶体管有较高的输入电阻和较低的输出电阻,且电压放大系数大,因此被广泛应用于电子放大、开关、调制等方面。

晶体管单级放大电路是将晶体管作为电压放大器的基本电路。

其基本电路图如下:晶体管单级放大电路可以分为两种工作状态:放大状态和截止状态。

当输入信号较小时,晶体管工作于放大状态;当输入信号较大时,晶体管工作于截止状态。

实验步骤:1. 按照电路图连接晶体管单级放大电路,连接好信号源,示波器和万用表。

2. 打开电源并调节工作电压,保证晶体管正常工作。

3. 测量输入电压和输出电压的大小,计算增益。

4. 改变输入信号的频率,观察输出信号的频率变化并做相关测量。

5. 改变负载电阻的大小,观察输出信号的变化并做相关测量。

实验结果:1. 在输入电压为300mv时,输出电压为1.2v,计算增益为4。

2. 在变化输入信号频率时,输出信号的频率也随之变化;当输入信号频率到达10KHz 时,输出信号的频率无法再跟随增加。

3. 在改变负载电阻的大小时,输出信号的电压随之变化,当负载电阻小于100欧时,输出信号失真,不能正常工作。

实验结论:通过本次实验,我们了解了晶体管单级放大电路的基本原理和电路构成方法,在实际操作中熟悉了各种仪器的使用方法。

同时我们还学会了测量了电路中的关键参数,如输入电压、输出电压、增益等。

实验的结果表明,晶体管单级放大电路是一种有效的电压放大器,在实际应用中有着广泛的应用前景。

单级放大电路仿真实验报告

单级放大电路仿真实验报告

单级共射放大电路
一、画电路图
(一)元器件
一个二极管2N222A、直流电压源V2、交流电压源V1、三个电阻、两个电容及接地线。

各元器件的参数设置参见电路图。

(二)电路图如图2-1所示
图2-1 单级共射放大电路
二、分析电路图
(一)直流工作点分析
选择所有的输出变量到分析变量列表,直流工作点仿真结果如图2-2所示
图2-2 直流工作点仿真结果
(二)瞬态分析
由于信号源的频率为1khz,故将终结时间设置为2ms即可得到两个周期的瞬态波形,将输出变量分别设置为V1和V5,即可得到如图2-3、图2-4所示的输入及输出波形。

输入波形
输出波形
对所有数据进行分析后,启动后处理程序,求放大电路电压增益的幅频响应、相频响应及输入阻抗频率响应。

定义输出波形函数为v5/v1,点击“Draw”按钮即可得到如图2-6所示的电压增益的幅频响应及相频响应
电压增益的幅频响应及相频响应
输入阻抗频率响应
有输入阻抗频率响应图,激活游标,如图2-8所示,可读出当频率为1Khz时的输入电阻为2.8093KOhm.
2.求输出电阻
由图2-9所示电路图可获得如图2-10所示的输出阻抗的频率响应图
(之后的图片是课后完成,故有所不同)
输出阻抗电路图
输出电阻的读取,由图可读出输出阻抗为3.7190KOhm
求上、下限频率
由电压增益的幅频响应及相频响应图,可知电压最大增益为146.5022,可求出当电压增益为103.5770时所对应的两个频率分别为上、下限频率。

由图2-10可读出下限频率为6.3096hz;由图2-11可读出上限频率为19.9526Mhz。

模拟电子技术基础 单级共射放大电路实验报告(免费)

模拟电子技术基础 单级共射放大电路实验报告(免费)

单级共射放大电路一.实验目的1.2.二.实验设备模拟电子技术实验箱、双踪示波器、数字万用表三.实验原理1.实验电路图2. 理论分析计算(1)静态工作点(2)放大倍数:全旁路:空载带负载部分旁路:空载带负载(3)输入电阻:全旁路:部分旁路:(4)输出电阻:3.实验测量方法(1)静态工作点测量(2)放大倍数测量方法(3)输入电阻测量(4)输出电阻测量(5)最大不失真电压测量四.实验测试内容及数据记录1.静态工作点的调试与测量静态测量应在u i(即不接入交流输入信号)的情况下进行,调节R W,使U EQ=2.8V,用万用表测量U BQ、U CQ,并测量R W的值(注意:电阻R W的值要在断电和断路的情况下测量)。

静态工作点测试数据记录表(仿真结果)2.动态参数测量保持R W的值不变,在放大器输入端加入频率为1kHz的正弦信号,调节信号源使放大器的输入信号和输出信号幅度适中(保证输出不失真),同时用示波器观察放大器输入信号u i和输出信号u o的波形并完成相关测量。

动态参数测量数据记录表(仿真结果)3.测量最大不失真输出电压测试条件:Ce只旁路R e”,带负载R L测试方法:调整Q点使电路动态范围最大,加大输入信号i u使o u稍有失真,调节R W使失真消失,再加大输入信号使o u 失真,再调节R W 使失真消失,为此反复调节直到o u 波形正、负半周同时出现失真,此时输出达最大不失真输出幅度,记录该最大不失真输出幅度并测量此时的静态工作点。

最大不失真输出测量数据记录表(实 验 结 果)4.Q 点对输出的影响调节R W 改变电路的静态工作点,同时配合调节输入信号的幅度是输出出现截止失真、饱和失真、同时出现截止、饱和失真,记录三种情况下的输入、输出波形。

失真波形记录 (仿 真 结 果)(实 验 结 果)u itu otu itu ot u itu otu itu otu itu ot u itu ot。

单级放大器的实验报告

单级放大器的实验报告

电子线路实验报告题目:单级放大电路实验第一部分:multisim仿真一:仿真模型的建立过程1)启动multisim 10.0,在place中点击component的元件库中,将电路所需的元件(信号源[ac power],直流电源[vcc],三极管[BJT NPN],电阻[resistor],滑线变阻器[potentiometer],电容[cap electrolit],地端[ground])一一调用,放工作区中。

2)将放置好的元件移动,旋转,然后,按照位置适当的连接完成。

3)在已经连接好的电路中选中一个元件,单击左键,在出现的快捷菜单中,选择属性[properties],在打开的页面中修改元件的参数,选择适当的参数来保证下面的仿真工作顺利进行。

4)最后在操作界面顶端的工作菜单中,点击选项[options],选择sheetproperties,在打开的对话界面中,在Net Name 栏中,选择show all 选项,是电路中每条线路上都显示标号,以便仿真与电路的修改。

5) 完成后的单级放大电路的multisim原理图如下所示。

图1-1二:实际操作中的错误错误最开始仿真过程无法进行,万用表测量值为负值,不符合实际中的电压情况,没有实现放大的功效。

原因在绘制multisim原理图时,忽略了节点的作用,在分压偏置的两个R1,R2中间,没有节点,没有完成正常的分压偏置作用。

三:电路原理分析1)电路中必须根据放大管的类型加入合适的直流电源,以便设置合适的静态工作点,并且作为输出的能源。

对于晶体管放大电路,电源的极性和大小要保证发射结的正向偏置,且基极与发射极之间的静态电压要大于开启电压,保证晶体管导通,集电结要处于反向偏置,保证晶体管工作在放大区。

2)电阻的取值要得当,与电源相配合,是放大管有合适的静态工作点。

3)加入输入信号时候,要能够作用输出回路,改变基极和发射极之间的电压,从而改变基极或发射极的电流。

模拟电路实验 实验1 单机放大电路(1)

模拟电路实验 实验1 单机放大电路(1)

实验1 单级放大电路(1)一、实验目的1.熟悉电子元件器件和模拟电路实验箱。

2.掌握三极管直流放大倍数β的测量,及三极管好坏的判断方法3.掌握放大器静态工作点的调试方法。

二、实验仪器1.双踪示波器 OS-5040A2.信号发生器 FG-7002C3.台式数字万用表 DM-441B三、实验内容及步骤1.NPN型三极管好坏的判断方法1)选中数字万用表“二极管挡”功能键,量程键不用设置;2)万用表红表笔接B极,黑表笔分别去测C极和E极,两次测量中万用表应有大约200~800欧姆左右的电阻读数值;3)交换红、黑表笔,重复上述测量,万用表显示屏阻值读数为无穷大(四个零同时闪烁),则被测三极管完好,否则损坏。

2.三极管 值的测定Rb图 1.1 β值的测试电路(1)用台式数字万用表判断实验箱上三极管好坏。

(2)按图1.1所示,连接电路(注意:接线前先测量+12V电源,记录下电压值,然后关断电源后再连线),将R P5的阻值调到最大(用万用表2MΩ档来判断Rp5在什么位置阻值最大)。

(3)接线完毕仔细检查,确定无误后接通电源。

改变R P5,按表1-1中I C值测出对应的Rb值,然后计算I B(μA)和三极管1V1的β值(注意:测量Rb阻值时,应将Rb两端与电路断开后测量)。

表1-13.静态调整12VRb按图1.2接线,调整R P 使V E = 2.2V ,计算并填写表1-2。

表1-2(V E :1V1发射极E 对地电压)四、数据分析处理根据所测数据完成表格1-1、1-2 注:1) Rc=1R5=5K1,I B =(Vcc-U B )/Rb ,Rb=1R3+Rp5 2) I B =Ic/β;Ic=(Vcc-V E -V CE )/Rc。

单级交流放大电路实验报告

单级交流放大电路实验报告

单级交流放大电路实验报告一、实验目的1、掌握单级交流放大电路的工作原理和基本结构。

2、学习使用电子仪器测量电路的性能参数,如电压放大倍数、输入电阻、输出电阻等。

3、熟悉放大器静态工作点的调试方法,了解静态工作点对放大器性能的影响。

4、观察放大器输出信号的失真情况,分析产生失真的原因及解决方法。

二、实验原理单级交流放大电路是由一个晶体管(如三极管)组成的基本放大电路。

它的主要作用是将输入的小信号进行放大,输出一个较大的信号。

在三极管放大器中,要使三极管能够正常放大信号,必须给三极管设置合适的静态工作点。

静态工作点是指在没有输入信号时,三极管的基极电流、集电极电流和集电极发射极电压的值。

通过调节基极电阻和集电极电阻的大小,可以改变静态工作点的位置。

放大器的电压放大倍数是衡量其放大能力的重要指标,它等于输出电压与输入电压的比值。

输入电阻是从放大器输入端看进去的等效电阻,输出电阻是从放大器输出端看进去的等效电阻。

三、实验仪器1、示波器2、函数信号发生器3、直流稳压电源4、数字万用表四、实验电路本次实验采用的单级交流放大电路如下图所示:在此处插入实验电路图五、实验内容及步骤(一)静态工作点的调试1、按照实验电路图连接好电路,将直流稳压电源的输出电压调整到合适的值(如 12V),接入电路。

2、调节电位器 Rb,使三极管的基极电压 Vb 达到预定的值(例如2V)。

3、用万用表测量三极管的集电极电流 Ic 和集电极发射极电压 Vce,计算静态工作点的参数。

(二)测量电压放大倍数1、将函数信号发生器的输出端连接到放大器的输入端,设置输入信号的频率为 1kHz,峰峰值为 10mV。

2、用示波器同时观察输入信号和输出信号的波形,测量输出信号的峰峰值 Vopp。

3、计算电压放大倍数 Av = Vopp / 10mV。

(三)测量输入电阻1、在放大器的输入端串联一个已知电阻 Rs(例如1kΩ)。

2、测量输入信号的电压 Vi 和电阻 Rs 两端的电压 Vs。

单级晶体管放大电路实验报告

单级晶体管放大电路实验报告

竭诚为您提供优质文档/双击可除单级晶体管放大电路实验报告篇一:晶体管单级放大器实验报告晶体管单级放大器一.试验目的(1)掌握multisium11.0仿真软件分析单级放大器主要性能指标的方法。

(2)掌握晶体管放大器静态工作点的测试和调整方法,观察静态工作点对放大器输出波形的影响。

(3)测量放大器的放大倍数,输入电阻和输出电阻。

二.试验原理及电路VbQ=Rb2Vcc/(Rb1+Rb2)IcQ=IeQ=(VbQ-VbeQ)/ReIbQ=IcQ/β;VceQ=Vcc-IcQ(Rc+Re)晶体管单级放大器1.静态工作点的选择和测量放大器的基本任务是不失真的放大信号。

为了获得最大输出电压,静态工作点应选在输出特性曲线交流负载线的中点。

若工作点选的太高会饱和失真;选的太低会截止失真。

静态工作点的测量是指接通电源电压后放大器不加信号,测量晶体管集电极电流IcQ和管压降VceQ。

本试验中,静态工作点的调整就是用示波器观察输出波形,让信号达到最大限度的不失真。

当搭接好电路,在输入端引入正弦信号,用示波器输出。

静态工作点具体调整步骤如下:具有最大动态范围的静态工作点图根据示波器观察到的现象,做出不同的调整,反复进行。

当加大输入信号,两种失真同时出现,减小输入信号,两种失真同时消失,可以认为此时静态工作点正好处于交流负载线的中点,这就是静态工作点。

去点信号源,测量此时的VcQ,就得到了静态工作点。

2.电压放大倍数的测量电压放大倍数是输出电压V0与输入电压Vi之比Av=V0/Vi3、输入电阻和输出电阻的测量(1)输入电阻。

放大电路的输入电阻Ri可用电流电压法测量求得,测试电路如图2.1-3(a)所示。

在输入回路中串接一外接电阻R=1KΩ,用示波器分别测出电阻两端的电压Vs和Vi,则可求得放大电路的输入电阻Ri为(a)(b)oVo-电阻R值不宜取得过大,否则会引入干扰;但也不能取得过小,否则测量误差比较大。

通常取与Ri为同一数量级比较合适。

模拟电路应用实验—晶体管单级放大电路实验报告

模拟电路应用实验—晶体管单级放大电路实验报告

1 实验二晶体管单级放大电路实验一、实验目的1、熟悉分压式偏置共射极单管放大电路和射极输出器的组成。

2、掌握放大电路静态工作点的调试方法,加深静态工作点对放大电路性能的影响。

3、进一步熟悉常用电子仪器的使用方法。

二、预习要求1、熟悉分压式偏置共射极单管放大电路的构成。

2、熟悉共射放大电路静态工作点及调试方法。

3、什么是信号源电压u s ?什么是放大器的输入信号u i ?什么是放大器的输出信号u o ?如何用示波器和交流毫伏表测量这些信号?4、如何通过动态指标的测量求出放大器的电压放大倍数A V 、输入电阻R i 和输出电阻R o ?5、了解负载变化对放大器的放大倍数的影响。

6、观察静态工作点选择得不合适或输入信号u i 过大所造成的失真现象,从而掌握放大器不失真的条件。

三、实验设备及仪器模拟电子技术实验台、数字存储示波器、数字万用表、函数信号发生器、数字交流毫伏表。

四、实验内容及步骤1、连线如图1.1所示的分压式偏置共射放大电路。

2、共射放大电路静态工作点的测量图1.1 三极管共射放大电路接通电源V CC ,调节电位器RP1RP1,使发射极电位,使发射极电位U E =2.6V 2.6V,用直流电压表测量,用直流电压表测量U B 、U C 以及电阻R C1上的电压U Rc 的值,填入表1.1中。

中。

表1.1 静态直流工作点参数测量测 量 值 (V ) 计 算 值U E U B U C U Rc I E (mA ) I C (mA ) U CE (V )共射放大电路交流参数测量共射放大电路交流参数测量维持已调好的静态工作点不变,在输入端加入f =1kHz 1kHz、、u s =100mVrms 的正弦波信号,分别用交流毫伏表和双踪示波器测量u s 、u i 、u o 的值,并观察输入、输出波形及其相位,将结果填入表1.2中。

中。

表1.2 动态交流参数测量条件条件 测量值(mV ) 计 算 值 波 形R L u su iu oA V A VS R i R o 输入(u i ) 输出(u o )∞2k Ω输入电阻和输出电阻的计算方法如下:∵ s s i ii u R R R u += ∴ is i s i u u u R R -=∵ L Lo oo o R R R u u +=∴ L o o oo o R u u u R -=式中:式中:u u oo 为R L =∞时的输出开路电压,=∞时的输出开路电压,u u o =2k Ω时的输出负载电压。

[VIP专享]模拟电路实验报告 单级放大电路

[VIP专享]模拟电路实验报告 单级放大电路

6、仿真电路
总结
通过课题设计,我更能体会到理论知识和实际的工程设计之间存在许多差异,我们平时只是做一些习题,那些都是有固定格式套路的,而设计则需要你
有自己的想法,通过自己设计的方案去选择合适的电路,从而达到自己想要的
结果。

更重要的收获是我摸索出了一套做设计电路的很有效的方法,就是,首
先要了解所设计电路要实现的目的,然后进行模块设计,每一个模块具有一定
的功能,根据功能设计电路,而设计电路的时候首先进行参数调整这样就必须
先进行等效电路的分析,直到把每一步都计算的很清楚之后再进行仿真,这样
就可以大大缩短做设计课题的时间而不必匆忙而无头绪。

但必须强调一点基础
知识要很扎实。

像我们所做的课题首先应该把静态工作点设计好,这样就不必
考虑交流信号的失真了。

然后再进行放大倍数的设计,再匹配电阻,这样下来
整个电路基本就完成了。

这样的课题设计特别能调动我的积极性,当完成设计
后倍感欣慰,有种工程师的感觉,我喜欢这样的作业。

参考文献
[1] 童诗白,华成英主编. 模拟电子技术基础. [M]北京:高等教育出版社,2006年
[2] 谭博学主编. 集成电路原理与应用. [M]北京:电子工业出版社,2003年
[3] 赵淑范,王宪伟编著.电子技术实验与课程设计.[M]北京:清华大学
出版,2006年
[4] 高吉祥主编.电子技术基础实验与课程设计. [M]北京:电子工业出版社,2005年。

实验6单级放大电路

实验6单级放大电路
测量的方法也很多,这里介绍一种换算法如图11-4。输出端加 负载电阻RL,调节信号源电压,使输出波形大小适中并不失 真,用交流毫伏表测量输出电压Uo。然后去掉RL,再测量空载
单级放大电路
四、实验原理 4、单管放大电路性能指标的 测试(选做) (2)放大电路输出电阻Ro 的测试 时的输出电压Uo’。则 输出电阻Ro可由下式 算出
单级放大电路
三、实验要求 1、单管放大器工作原理。 2、放大器静态及动态测量方法。 四、实验原理 1、静态工作点的设臵对放大电路的影响 任何组态(共射、共基、共集)的放大电路的主要任务都是不失真 地放大信号,而完成这一任务的首要条件,就是合理地选择静态工 作点。为了保证输出的最大动态范围而又不失真,往往把静态工作 点设臵在交流负载线的中点,如图11-1(a )所示。静态工作点设 臵的偏高或偏低;在输入信号比较大时会造成输出信号的饱和失真 或截止失真,如图11-1(b)。对于小的输入信号(如多级放大电 路前臵级的输入信号),由于输出信号的动态范围很小,所以失真 不是主要问题,而考虑的往往是降低噪声和减小直流损耗。达到
电工学实验6
单级放大电路
单级放大电路
一、实验目的 1、熟悉电子元器件和模拟电路实验箱。 2、掌握放大器静态工作点的调试方法及其对放大器性能的影响。 3、学习测量放大器Q点,AV、ri、ro的方法,了解共射极电路特性。 4、学习放大器的动态特性。 二、实验仪器 1、示波器 2、信号发生器 3、数字毫伏表9;0 1) RL U0
图11-4 测试放大电路输出电阻R0的电路
单级放大电路
五、实验内容及步骤
Vcc +12V Rb1 51K R1 5K1 Ui + R2 51 Rb2 24K Re1 100 Re2 1K8 + CE 10μ RL 5K1 C1 10μ + Rp 680K Rc 5K1 C2 10μ + +

模电实验单级共射放大电路

模电实验单级共射放大电路

单极共射放大电路一、实验目的(1)掌握用Multisim 13 仿真软件分析单极放大电路主要性能指标的方法。

(2)熟悉掌握常用电子仪器的使用方法,熟悉基本电子元器件的作用。

(3)学会并熟悉“先静态后动态”的电子线路的基本调试方法。

(4)分析静态工作点对放大器性能的影响,学会调试放大器的静态工作点。

(5)掌握放大器的放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。

(5)测量放大电路的频率特性。

二、实验原理1.基本电路电路在接通直流电源CC V 而未加入输入信号时(通过隔直流电容1C 将输入端接地),电路中产生的电流、电压为直流量,记为BEQ V ,CEQ V ,BQ I ,CQ I ,由它们确定了电路的一个工作点,称为静态工作的Q 。

三极管的静态工作点可用下式近似估算:)7.0~6.0(=BEQ V V 硅管; (0.2~0.3)V 锗管()e c CQ CC CEQ R R I V V +-=CC P BQ V R R R R V 212++= EBEQBQ EQ CQ R V V I I -=≈ βCQ BQ I I =2.静态工作点的选择放大器静态工作点的选择是指对三极管集电极电流C I (或CE V )的调整与测试。

在晶体管低频放大电路中,静态工作点的选择及稳定具有举足轻重的作用,直接关系到放大电路能否正常可靠地工作。

若工作点偏高(C I 放大),则放大器在加入交流信号以后易产生饱和失真,此时输出信号o u 的负半周将被削底;若工作点偏低,则易产生截止失真,即o u 的正半周被削顶(一般截止失真不如饱和失真明显)。

这些情况都不符合不失真放大的要求。

所以在选定工作点以后还必须进行动态调试,即在放大电路的输入端加入一定的输入电压i u ,并检查输出电压o u 的大小和波形是否满足要求。

如不满足,则应调节静态工作点的位置。

还应说明的是,上面所说的工作点“偏高”或“偏低”不是绝对的,应该是相对信号的幅度而言。

单级放大器实验报告

单级放大器实验报告

一、实验目的1.测定放大器的静态工作点;2.测定放大器电压放大倍数;3.学习放大器输入电阻、输出电阻的测试方法。

4.测定放大器的动态范围,观察非线性失真。

5.熟悉晶体管偏置对工作点及动态范围的影响。

6.研究负载对非线性失真和放大倍数的影响。

二、实验仪器或软件1.模拟电子技术实验训练箱 1台2.数字万用表 1台3.数字示波器 1台4.函数发生器 1台三、实验电路四、工作原理任何组态(共射、共基、共集)的放大电路的主要任务都是不失真地放大信号,而完成这一任务的首要条件,就是合理地选择静态工作点。

为了保证输出的最大动态范围而又不失真,往往把静态工作点设置在交流负载线的中点,静态工作点设置得偏高或偏低,在输入信号比较大时会造成输出信号的饱和失真或截止失真。

因此,静态工作点要根据电路的实际需要而设置。

(1)静态工作点(2) 动态参数电压放大倍数: be L i o v r R V V A 'β-== 输入电阻: bcb i r R R //= 其中21//b b b R R R =输出电阻:co R R ≈输入电阻测量使用串联法,输出电阻测量用带载与无载法,最终输入电阻3121R V V V R i i i i -=输出电阻()L oLo o R V V R 1-=∝Ebe c b b b R V E R R R I /)(112-+=)(e c c c ce R R I E V +-=βCb I I =(3) 动态范围为使负载得到最大幅度的不失真输出电压,静态工作点应设在交流负载线的中点。

静态工作点满足下列条件:⎪⎩⎪⎨⎧=+=-'L C CEE C C CE C R I V V R I V E为了使电路不产生饱和失真,电路应满足: CEScm CE V V V +≥为了使电路不产生截止失真,电路应满足:cmL C V R I ≥'五、实验步骤1.自拟实验电路,设计各参数器件2.静态工作点的调试3.测量电压放大倍数4.放大器输入电阻的测量5.输出电阻的测量6.动态范围的调试观察改变负载R L 对输出波形和放大倍数影响 观察改变输入信号幅值对输出波形影响六、实验数据及分析(1)自拟实验电路(2)静态工作点的调试∵Ic=1.3mA∴V B=V BE+I c R e=0.7+2.6=3.3V调节R w测量V B,找到最接近3.3V的值,经过调试,Rw=17kΩ时,V B=3.242V(3)电压放大倍数带载电路∵VoL=1.078V,Vi=14.137mV∴RL=5kΩ时,AvL=Vo/Vi=1138/14.142=76.25∵Vo∞=1.677V,Vi=14.138mV∴Av∞=Vo∞/Vi=1138/14.142=118.62将R3短路,接通电源,输入频率f=1kHz的正弦波信号Vi,调节Vi的幅值,用示波器观察放大器输出端信号Vo不失真时,用万用表测量Vi及带载VoL和空载Vo∞的值,并计算电压放大倍数AvL和Av∞。

单级放大电路实验报告

单级放大电路实验报告

单级放大电路一.实验目的1、熟悉电子元器件和模拟电路实验箱。

2、掌握放大器静态工作点的调试方法及其对放大器性能的影响。

3、学习测量放大器Q点,Av,ri,ro的方法,了解共射放大电路特性。

4、学习放大器的动态性能。

二.实验原理实验电路图1、三极管放大作用当三极管发射结处于正向偏置状态,而集电结处于反向偏置状态时,集电极电流受基极电流控制,且基极电流发生很小变化时集电极电流变化很大,如果将小信号加到基极与集电极之间,即会引起Ib变化,Ib放大后,导致Ic发生很大变化,根据U=Ic*R,电阻上电压发生很大变化,即得到放大信号。

2、静态工作点的测量测量静态工作点时,应在输入信号ui=0的情况下进行,将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I以及各电极对地的电位Uc、Ue。

当流过Rb1和Rb2的电流远大于晶体管基极电流Ib时,Ub=(Rb1/(Rb1+Rb2))Ucc,Ie=Ic。

3、放大器动态指标测试调整放大器到合适的静态工作点然后加入输入电压Ui在输出电压uo不失真的情况下,用数字万用表测出ui和uo的有效值Ui和Uo,则Au=Uo/Ui。

三.实验设备1、示波器2、数字万用表3、分立元件放大电路模块4、导线若干四.实验内容及步骤l 、实验电路如上图(1)、用万用表判断实验箱上三极管的极性和好坏、电容C的极性和好坏。

接通电源,用示波器调出准确的正弦波信号,关闭电源。

(2)、按图连接电路,将R p的阻值调到阻值最大位置。

(3)、接线完毕仔细检查,确定无误后接通电源。

2、静态分析3、动态研究( 1 )将示波器接入输入输出端观察U i和U O端波形,并比较相位。

( 2 )信号源频率不变,逐渐加大信号幅度观察UO不失真时的最大值。

五.实验总结及感想1. 从实验数据来看,实验值和理论值还是存在一定差异。

实验中所采用的元件并非理想元件,理论计算时一般都忽略一些小量,所以两者都有误差。

单体放大电路实验报告

单体放大电路实验报告

单体放大电路实验报告实验目的:通过搭建单体放大电路,了解放大电路的工作原理,学习如何测量放大倍数以及频率响应。

实验器材:1. 电压源2. NPN三极管3. 电阻(2个)4. 万用表5. 示波器实验步骤:1. 按照电路图搭建单体放大电路,其中电阻的取值根据实际情况选择。

确保电路连接正确并牢固。

2. 连接电压源,将电压源的正极连接至电路的正极,负极连接至电路的地线。

3. 使用万用表测量电路中各个元件的电压和电流,确保输入和输出端口的电压符合预期。

4. 将示波器的探头连接至输出端口,并调整示波器的触发和垂直放大系数,以便观察输出信号的幅值和波形。

5. 调整电压源的输出电压,观察输出信号的变化,并记录各个电压和电流的数值。

6. 改变输入信号的频率,观察输出信号的变化,并记录各个电压和电流的数值。

7. 根据数据计算单体放大电路的放大倍数,并绘制频率响应曲线。

实验结果:根据实验步骤中所观察和记录的数据,我们可以计算出单体放大电路的放大倍数,并绘制出频率响应曲线。

通过对实验结果的分析,我们可以得出如下结论:1. 单体放大电路能够将输入信号进行放大,输出信号的幅值较输入信号大。

2. 单体放大电路的放大倍数与输入电压、输出电压之间存在线性关系。

3. 单体放大电路的频率响应曲线呈现一定的带通特性,放大倍数在一定频率范围内较为稳定。

讨论与结论:本实验通过搭建单体放大电路,成功实现了输入信号的放大,并观察了其频率响应特性。

通过实验数据的分析和计算,得出了单体放大电路的放大倍数和频率响应曲线。

实验结果表明单体放大电路能够有效放大输入信号,并在一定频率范围内保持较为稳定的放大倍数。

实验过程中需要注意电路的连接正确性以及实验数据的准确测量,以确保实验结果的可靠性。

本实验为进一步学习电子电路的放大器设计和应用奠定了基础,为我们深入理解和应用放大电路提供了实验支持。

实验一 单级交流放大电路 实验报告

实验一 单级交流放大电路 实验报告

For personal use only in study and research; not forcommercial use实验一单级交流放大电路一、实验目的1.熟悉电子元器件和模拟电路实验箱,2.掌握放大电路静态工作点的调试方法及其对放大电路性能的影响。

3.学习测量放大电路Q点,AV ,ri,ro的方法,了解共射极电路特性。

4.学习放大电路的动态性能。

二、实验仪器1.示波器2.信号发生器3.数字万用表三、实验原理1.三极管及单管放大电路工作原理。

以NPN三极管的共发射极放大电路为例说明三极管放大电路的基本原理:三极管的放大作用是:集电极电流受基极电流的控制,并且基极电流很小的变化,会引起集电极电流很大的变化,。

如果将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。

如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I可以算得,这电阻上电压就会发生很大的变化。

我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。

2.放大电路静态和动态测量方法。

放大电路良好工作的基础是设置正确的静态工作点。

因此静态测试应该是指放大电路静态偏置的设置是否正确,以保证放大电路达到最优性能。

放大电路的动态特性指对交流小信号的放大能力。

因此动态特性的测试应该指放大电路的工作频带,输入信号的幅度范围,输出信号的幅度范围等指标。

四、实验内容及步骤1.装接电路与简单测量图1.1 工作点稳定的放大电路(1)用万用表判断实验箱上三极管V的极性和好坏,电解电容C的极性和好坏。

测三极管B、C和B、E极间正反向导通电压,可以判断好坏;测电解电容的好坏必须使用指针万用表,通过测正反向电阻。

三极管导通电压UBE=0.7V、UBC=0.7V,反向导通电压无穷大。

(2)按图1.1所示,连接电路(注意:接线前先测量+12V电源,关断电源后再连线),将RP的阻值调到最大位置。

单级放大电路实验报告_格式

单级放大电路实验报告_格式

单级放大电路实验报告_格式
实验目的:熟悉单级放大电路的工作原理,掌握单级放大电路的实验方法和技巧,学习电路仿真软件的使用。

实验器材:
1.万用表
2.示波器
3.信号源
4.电阻、电容
5.放大管
实验步骤:
1.按照电路图连接电路,调节电源电压为所需值。

2.调节信号源发出随机信号,并将信号输入到单级放大电路的输入端。

3.使用示波器观察电路的输入和输出信号波形,并通过示波器测量信号的幅值和频率。

4.利用万用表测量电路的各个参数,如电压、电阻和电容等。

5.通过电路仿真软件对电路进行仿真分析。

实验结果:
在实验过程中,我们得到了单级放大电路输入和输出信号的波形,测量了信号的幅值和频率,同时还测量了电路的电阻、电容和电压等参数。

在使用电路仿真软件进行仿真分析时,发现仿真结果与实际实验结果相符合。

实验分析:
通过对单级放大电路的实验和分析,我们对其工作原理和特点有了更深入的了解。

单级放大电路能够将输入的小信号放大到一定程度,以便更好地输出。

在实际应用中,单级放大电路常常用于音频放大器、视频放大器和放大传感器等。

实验总结:
通过本次实验,我们不仅进一步巩固了电路基础知识,还学习了电路仿真软件的使用方法。

实验过程中,我们需要认真阅读电路图,并按照实验步骤进行实验操作,保证实验结果的准确性和可靠性。

同时,我们也需要注重电路参数的测量和分析,以便更好地理解电路的实际工作情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

内蒙古工业大学精品课程设计专题
内蒙古工业大学信息工程学院课程学习报告
课程名称:模拟电子技术
班级:通信10-1 班
姓名:董勇、袁祯祯、张宸
成绩:
指导教师:房建东
0/ 6
1
引言
在实际生活中,我们经常会遇到一些关于放大的原理事。

例如用放大镜观察一些体积小的东西或是用显微镜观察一些微小的生物。

而在电学的领域中我们经常用放大电路来感知一些微小电信号的变化。

在我所设计的放大电路中包括了三极管、电阻、电容、直流电源和交流电源等等。

其中电阻分为偏执电阻和反馈电阻,电容
分为隔直电容和旁路电容。

而后通过multisim 软件仿真的实现来使弱电压 放大电路对小信号的放大。

我通过学习《电路原理》、《模拟电子技术基础》等教科书,并深层次的研究了其中的电路接法及三极管的工作原理,以及上网搜索相关信息、文献,了解了影响放大电路的各种因素。

为了使电路简单,我以三极管的级联形式搭建我的放大电路,根据级联放大电路的性质:
uN U u u A A A A ......**21
这样就可使电路达到预期工作状态,从而达到我们所期望的结果。

弱电压放大电路设计与分析
1、弱电压放大电路的框图如下:
2、弱电压放大电路工作原理说明:
(1)第一级共集放大电路是为了使输入电阻足够大。

(2)第二级和第三级放大电路是为了放大输入信号的幅值。

(3)第四级共集放大电路是为了使输出电阻足够小。

3、弱电压放大电路具体参数
Ω=K R 151 Ω==K R R 532 Ω=K R 3.24 Ω=K R 1005 Ω==K R R L 56
V V CC 12= 150321===βββ V V V BEQ BEQ 7.021== uF C 10=
4、放大电路理论计算
=++=)}//////)(1(//{121625i be be R R R R r R R βΩK 68
=
+++=
)
//////)(1()
//////)(1(1216212161be be be u R R R R r R R R R A ββ9896.0
=
-
=1
1121312)
//////(be b be b u r I r R R R I A β
37.6
=
-
=1
233u3//be i r R R A )
(β
116.3
=
+++=
)()
(L be L R R r R R A //)1(//)1(62262u4ββ
0.994
=
++=2
5
3261////
βR R r R R be O
Ω48
5、实际电路
6、仿真电路
3
7、实际测量数据
测量值
输出端口电压源第一级第二级第三级第四级最大值140.478uV 139.014uV 5.079mV 604.485mV 588.382mV 最小值-139.652uV -136.377uV -5,.334mV -64.146mV 592.496mV 差值280.139uV 275.391uV 10.412mV 1.209V 1.181V
8、数据分析
第一级放大器输出的电压基本和电源电压相同,第二级输出电压具有放大
功能,第三级输出电压具有放大功能,第四级放大器输出电压基本和第三级相同。

即第一级起到匹配输入电阻的作用第四级起到匹配输出电阻的作用,第二级和第
三级起到放大的作用。

总结
通过课题设计,我更能体会到理论知识和实际的工程设计之间存在许多差异,我们平时只是做一些习题,那些都是有固定格式套路的,而设计则需要你有自己的想法,通过自己设计的方案去选择合适的电路,从而达到自己想要的结果。

更重要的收获是我摸索出了一套做设计电路的很有效的方法,就是,首先要了解所设计电路要实现的目的,然后进行模块设计,每一个模块具有一定的功能,根据功能设计电路,而设计电路的时候首先进行参数调整这样就必须先进行等效电路的分析,直到把每一步都计算的很清楚之后再进行仿真,这样就可以大大缩短做设计课题的时间而不必匆忙而无头绪。

但必须强调一点基础知识要很扎实。

像我们所做的课题首先应该把静态工作点设计好,这样就不必考虑交流信号的失真了。

然后再进行放大倍数的设计,再匹配电阻,这样下来整个电路基本就完成了。

这样的课题设计特别能调动我的积极性,当完成设计后倍感欣慰,有种工程师的感觉,我喜欢这样的作业。

参考文献
[1] 童诗白,华成英主编. 模拟电子技术基础. [M]北京:高等教育出版社,2006年
[2] 谭博学主编. 集成电路原理与应用. [M]北京:电子工业出版社,2003年
[3] 赵淑范,王宪伟编著.电子技术实验与课程设计.[M]北京:清华大学出
版,2006年
[4] 高吉祥主编.电子技术基础实验与课程设计. [M]北京:电子工业出版社,2005年
5。

相关文档
最新文档