弹塑性力学复习提纲(昆明理工大学研究生)
塑性力学复习纲要
复习纲要第一章绪论1.弹性与弹性变形物体受到不大的外力作用后产生的变形,在外力除去后可以全部恢复,物体仍保持原有的形状和尺寸。
这种性质称为材料的弹性,这种可以全部恢复的变形叫弹性变形。
这时称物体处于弹性状态。
2.塑性与塑性变形当外力超过一定限度后,在物体某些部分内,任意点上的应变将不随应力的消失而恢复。
这种变形不可恢复的性质称为塑性,不随应力消失而恢复的那部分变形称为塑性变形。
3.弹性区与塑性区在加载过程中,物体的一部分产生塑性变形时,称该部分已进入塑性状态,同时将该部分称为物体的塑性区,未进入塑性状态的区域则为弹性区。
4.塑性变形的特点(1)塑性应变和应力之间不再有一一对应的关系。
塑性变形不仅与当前的应力状态有关,还与加载的历史有关。
(2)应力与应变(或应变率)之间呈非线性关系。
5.塑性力学研究的主要内容(1)建立在塑性状态下应力与应变(或应变率)之间的关系。
(2)研究物体受外力作用进入塑性状态后产生的应力和变形,包括研究在加载过程中的每一时刻,物体内各点的应力和变形。
以及确定弹性区与塑性区的界限。
(3)有时根据需要还可以绕过加载过程中应力与变形的变化而直接去求物体达到极限状态(塑性变形无限制发展,物体已达到它对外力的最大承载能力)时的荷载,即极限荷载。
这种研究方法通常称为极限分析。
6.塑性力学的基本假设1、材料的塑性行为与时间、温度无关(在我们所研究的范围内,通常不考虑时间因素对变形的影响(如弹性后效、蠕变等),而且只限于考虑在常温下和缓慢变形的情形,所以也忽略温度和应变速度对材料性质的影响。
)2、材料具有无限的韧性3、材料是均匀的、连续的,并在初始屈服前为各向同性,且拉伸和压缩的应力-应变曲线一致;4、任何状态下的总应变可以分解为弹性和塑性两部分,且材料的弹性性质不因塑性变形而改变;5、对应于塑性变形部分的体积变化为零,静水压力不产生塑性变形。
7.简单拉伸与压缩试验 (1)拉伸试验由拉伸应力—应变曲线可知:图1.1 图1.2①拉伸开始阶段σ和ε成正比,变形全是弹性的。
弹塑性力学讲义 第一章绪论
3
每个分量用一个标量(具有两个下标)与两个并在一起基矢量(并矢) ,称为二阶 张量。矢量可称为一阶张量,标量为零阶张量。 5.2 求和约定 在张量表示说明中,看到张量分量表示是一组符号之和,很长,特别是高阶张量, 为了书写简捷,采用求和约定。 求和约定:当在同一项中,有一个下标字母出现两次时,则表示该项在该指标的取 值范围内遍历求和,且称此种在同一项重复出现一次的下标为哑标。如:
e1 e2 a2 b2 e3
a b ai ei b j e j ai b j eijk ek ai b j ekij ek , 则
c c k eijk ai b j ekij ai b j , a b a1 b1
ij
自动消失。ij 也称为换标符号。
eijk ( i,j,k =1,2,3)
定义: eijk
共有 27 个元素。
1 若(i , j , k ) (1,2,3)或 ( 2,3,1)或 (3,1,2)时 正排列顺序 -1 若(i , j , k ) ( 2,1,3)或(1, 3, 2)或(3, 2, 1)时 逆排列顺序 0 若 i , j , k中任意两指标相同时
(i=1,2,3),用 ri 表示矢径;
同样位移矢量 u,用 ui 表示位移,ij 表示应力
张量。
xi aij y j
i
x1 a11 y1 a12 y2 a13 y3 x2 a21 y1 a22 y2 a23 y3 x a y a y a y 31 1 32 2 33 3 3
矢量场的拉普拉斯算子定义为矢量场的梯度的散度:是一个向量
弹塑性力学复习重点
1.弹性力学的研究内容、研究对象和研究任务?基本假设?弹性力学与材料力学和结构力学的区别?弹性力学解的唯一性定理?答:弹性力学的研究弹性体由于受外力作用或温度改变等原因而发生的应力、应变和位移;弹性力学主要研究对象为,非杆状的结构(如板、壳、挡土墙、堤坝、地基等实体结构)以及杆状构建的进一步精确分析;弹性力学的研究任务是分析各种结构物或构件在弹性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。
弹性力学的基本假设有5个,分别是连续性假设、完全弹性体假设、物体均匀假设、物体各向同性假设以及微小位移和变形假设。
材料力学‐‐研究杆件(如梁、柱和轴)的拉压、弯曲、剪切、扭转和组合变形等问题。
求得是一种近似解。
结构力学‐‐在材料力学基础上研究杆系结构(如 桁架、刚架等)。
弹性力学‐‐研究各种形状的弹性体,如杆件、平面体、空间体、板壳、薄壁结构等问题。
弹性力学解的解的唯一性定理:弹性体在给定体力、面力和约束条件的情况下而处于平衡时,体内各点的应力分量、应变分量的解释唯一的。
2.应力状态、应力分量、应力张量、应力张量的三个不变量的物理意义是什么? 体积改变和形状改变定理是什么?偏应力第二不变量J2的物理含义是什么? 答:应力状态:物体内同一点各方位上的应力情况。
应力分量:为了探讨各个截面应力的变化趋势,确定可以描述应力状态的参数,通常将应力矢量分解,即为应力分量。
过M 点分别于三个坐标轴相垂直的微面上的应力状况,共有9个分量,统称为一点的应力分量。
应力张量:描述一点的应力状态的张量(数学表示)。
把应力分量作为一个整体用矩阵表示为一个整体称为应力张量应力张量的三个不变量J 1、J 2、J 3:物理意义:当坐标改变时,每一应力分量都将改变,但这三个量不变。
应力张量是二阶对称张量,因此它存在三个不变量,分别用J 1、J 2、J 3表示。
J 1 应力张量的主元之和 在弹性体内任一点,任何三个垂直方向上的正应力之和为一个常数。
弹塑性力学讲义01
昆明理工大学材料科学与工程学院
绪 论
一、弹塑性力学的发展
1、弹塑性力学
弹塑性力学是固体力学的一个重要分支学科, 是研究可变形固体受到外荷载或温度变化等因素的 影响而发生的应力、应变和位移及其分布规律的一
门科学,是研究固体在承载过程中产生的弹性变形
和塑性变形阶段这两个紧密相连的变形阶段力学响 应的一门科学。
阐明了应力、应变的概念和理论; 弹性力学和弹塑性力学的基本理论框 架得以确立。
7 弹塑性力学的目的
应用弹塑性力学基础求解塑性加工成型问题。在应 力、应变分析的基础上求解塑性加工成形中的变形 力学方程和解析方法,从而确定力能参数和工艺变
形参数以及影响这些参数的主要因素。
二、金属的弹性和塑性
无论是何种材料,在载荷的作用下,都要产生一些 变化,我们管它叫变形。 弹性变形:能恢复的变形称之为弹性变形 塑性变形:变形不能恢复的变形称之为塑性变形 塑性力学和弹性力学的区别在于,塑性力学考 虑物体内产生的永久变形,而弹性力学不考虑 .
1、金属塑性的影响因素
1) 化学成分的影响
纯金属具有较高塑性。 纯金属加入其它合金元素后成单相固溶体时也有较 好塑性. 合金的某元素与基体金属形成固溶体时,此二元合 金的塑性主要由基体元素的塑性决定,此情况也适 用于三元合金。 合金成分中不溶于固溶体或部分溶于固溶体中元素 将形成某种成分的过剩相存在于晶内或晶界,这些 过剩相对其塑性有非常大的影响。 若所含的元素形成化合物时,塑性降低。 面心立方>体心立方>六方晶格
(几何分析)
材料是连续的,物体在受力变形后仍应是连续的。 固体内既不产生“裂隙”,也不产生“重叠”。则材 料变形时,对一点单元体的变形进行分析,应满足的 条件是什么?(几何相容条件)
研究生塑性力学课程复习要点
研究生塑性力学课程复习1. 名词解释:塑性变形:指物体在除去外力后所残留下来的永久变形在给定的外力下,物体的变形并不随时间而改变。
韧性与脆性:如果变形很久就破坏,便称是脆性的;如果经受了很大的变形才破坏,便称材料具有较好的韧性。
应变强化:材料在超过弹性极限以后,在任一点卸载后再重新加载,则新得到的屈服应力将大于初始屈服应力,即材料经过塑性变形后得到了强化,这种现象称为应变强化。
等向强化:拉伸时的强化屈服应力和压缩时的强化屈服应力(绝对值)始终是相等的,称为等向强化。
随动强化:考虑到包氏效应,认为拉伸屈服应力和压缩屈服应力(的代数值)之差,即弹性响应的范围始终是不变的,称为随动强化。
屈服面:Mises 屈服条件:Tresca 屈服条件:双剪应力屈服条件与最大偏应力屈服条件:加载面:Drucker 公设(33式子):正交流动法则:加载准则:全量理论:亦称为形变理论,它是研究用应变全量表示弹塑性应力应变关系的理论。
这个理论的数学表达式简单,但不能反应复杂的加载历史。
增量理论:亦称为塑性流动理论,它是用应变增量表示弹塑性本构关系的理论。
简单加载、简单加载定理、静力场与机动场、上限定理与下限定理。
2. 基本概念:1)弹塑性材料在简单拉压时的应力应变响应曲线;2)轴向拉伸时的塑性失稳;3)理想弹塑性材料简单桁架的弹性极限、塑性极限、卸载后的残余应力与残余变形、加载路径的影响;4)体积变形为弹性(塑性不可压缩)的概念;5)等效应力、等效剪应力、等效应变、等效剪应变定义公式;6)主应力空间中应力状态在π平面上的投影;7)初始各向同性材料在π平面上屈服曲线的对称性质;8)薄壁圆管试件在拉-扭载荷或内压-轴向拉伸载荷下的屈服条件;9)Tresca 屈服条件与Mises 屈服条件;10) Drucker 公设、加载面的外凸性、塑性流动的正交性及加载准则;11)与Mises 屈服条件相关连的正交流动定律与塑性本构关系;12)简单加载的概念;13)全量理论与增量理论。
弹塑性力学考试大纲
《弹塑性力学》考试大纲
第一章应力理论
平衡方程和边界条件;应力状态分析;球形应力张量和
偏斜应力张量;
第二章应变理论
几何方程;应变状态分析;变形协调条件;球形应变
张量和偏斜应变张量及其不变量;
第三章应力和应变的关系
一般情况下的胡克定律;各向同性体的胡克定律;
第四章弹性力学问题的建立
弹性力学问题的提法;按位移求解问题;按应力求解问
题;应力函数;最简单问题的解法;
第五章弹性力学平面问题
平面应力和平面应变;用应力表示的变形协调条件;平
面问题的应力函数和双调和方程;平面极坐标问题的提
法及某些具体问题的求解(其中包括轴对称问题,曲杆
与带圆孔的板问题;楔体和半平面问题)
第六章等截面杆的扭转和弯曲
等截面直杆的扭转;薄壁杆件的扭转;
第七章空间对称应力分布
以位移表示的平衡方程的两种简单解;弹性半空间轴对
称问题;
第八章能量原理及其应用
弹性体的应变能、应变余能、体积变形应变能、形状变
形应变能;虚位移原理;位移变分方程和最小势能原理;
Ritz方法和伽辽金方法;虚应力原理;应力变分方程和
最小余能原理;能量法在弹性力学平面问题和扭转问题
中的应用;
第九章塑性力学基本问题
塑性力学基本概念;屈服条件;塑性力学应力应变关系;
简单塑性力学问题;
参考书目:
《弹性力学》,吴家龙编著,同济大学出版社
《弹性与塑性力学—例题和习题》,徐秉业主编,机械工业出版社。
弹塑性力学复习大纲
研究生《弹塑性力学》教学大纲陈明祥一、应力分析二、应力矢量与应力张量的概念, 斜面应力公式, 平衡微分方程与力边界条件;应力分量的坐标变换;主应力、应力张量不变量和最大剪切应力;Mohr应力圆;应力张量的分解、偏应力张量及其不变量;八面体上的应力和等效应力;主应力空间与(平面三、应变变形和应变的概念;应变张量和几何方程;刚体转动与转动张量;体积应变;应变张量的性质;应变率和应变增量;变形协调方程。
四、弹性本构方程应力-应变关系的一般表达;各向异性线弹性体的本构方程;各向同性线弹性体的本构方程;弹性应变能与弹性应变余能。
五、弹性力学基本方程与求解方法弹性力学的基本方程;求解方法;解的基本性质;圣维南原理;空间问题求解实例。
六、平面问题平面问题分类;平面问题的基本方程;平面问题的应力解法与实例分析;极坐标表示的基本方程;使用极坐标求解的几个问题。
七、薄板弯曲板的基本概念与薄板的基本假定;应力应变与挠度的关系;薄板弯曲微分方程;薄板横截面上的内力及内力表示的平衡微分方程;薄板的边界条件;薄板的广义力、广义变形和应变能;考虑横向剪切的Mindlin板理论。
八、温度应力问题热传导基本概念;热弹性基本方程;求解方法与举例。
九、能量原理与变分方法可能功原理;虚位移原理与最小势能原理;使用位移变分原理近似求解;虚应弹塑性力学目录力原理、最小余能原理及其近似求解;卡氏定理;有限元方法的基本概念。
九、塑性力学的基本概念塑性力学的主要内容;有关塑性本构关系的基本试验资料;应力路径与加载历史的基本概念;塑性本构关系的主要研究内容和研究方法;塑性变形的物理机制。
十、屈服条件屈服条件的概念与假设, 屈服面在主应力空间中的一般形状;Tresca屈服条件;Mises屈服条件;Tresca屈服条件和Mises屈服条件的比较及实验验证;后继屈服面与内变量;一致性条件;硬化模型。
十一、塑性本构关系塑性应变增量的概念;加卸载判别准则;Drucker公设和Ilyushin公设;加载面外凸形和正交流动法则;塑性势理论;理想塑性材料的增量本构关系;硬化材料的增量本构关系;增量本构关系的一般表达;关于增量理论的讨论;全量理论及适用范围;十二、简单弹塑性边值问题增量和全量理论的边值问题;梁的弹塑性弯曲;理想塑性材料的厚壁圆筒受内压作用。
昆明理工大学《》弹塑性力学》复习提纲及解析
《弹塑性力学》复习提纲1. 弹性力学和材料力学在求解的问题以及求解方法方面的主要区别是什么?研究对象及研究方法上都有所不同,材料力学,基本上只研究杆状构件,也就是长度远远大于高度和宽度的构件。
非杆状结构则在弹性力学里研究2. 弹性力学有哪些基本假设?连续性,完全弹性,均匀性,各项同性,假定位移和形变是微小的3. 弹性力学有哪几组基本方程?试写出这些方程。
平衡微分方程:0,0yx x x y y xy f f x y y x τσστ∂∂∂∂++=++=∂∂∂∂ 几何方程:,,x y xy u u x y x y ννεεγ∂∂∂∂===+∂∂∂∂ 物理方程:2(1),,x y y x x y xy xy E E E σμσσμσμεεγτ--+===4. 按照应力求解和按照位移求解,其求解过程有哪些差别?位移法是以位移分量为基本未知函数,从方程和边界条件中消去应力分量和形变分量,解出位移分量,然后再求形变分量和应力分量。
应力法是以应力分量为基本未知函数,从方程和边界条件中消去位移分量和形变分量,解出应力分量,然后再求出形变分量和位移分量。
5. 掌握以下概念:应力边界条件和位移边界条件;圣文南原理;平面应力与平面应变;逆解法与半逆解法。
圣维南原理:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力,那么,近处的应力分布将有显著的改变,但是远处所受的影响可以不计逆解法就是先设定各种形式的、满足相容方程的应力函数Φ;并由式22222,,x x y y xy f x f y y x x y σστ∂Φ∂Φ∂Φ=-=-=-∂∂∂∂求得应力分量;然后再根据应力边界条件和弹性体的边界形状,看这些应力分量对应于边界上什么样的面力,从而得知所选取的应力函数可以解决的问题。
半逆解法就是针对所要求解的问题,根据弹性体的边界形状和受力情况,假设部分或全部应力分量的函数形式;并从而推出应力函数的形式;然后代入相容方程,求出应力函数的具体表达式;再按式22222,,x x y y xy f x f y y x x y σστ∂Φ∂Φ∂Φ=-=-=-∂∂∂∂由应力函数求得应力分量;并考察这些应力分量能否满足全部应力边界条件,如果不对,则重新求解6. 什么是各向同性体?横观各向同性体?正交各向异性体?极端各向异性体?他们各有多少弹性常数?7. 什么是应力函数?双谐方程?如何推导出双谐方程?应力函数与应力分量间的关系?如何求解双谐方程?22222,,x x y y xy f x f y y x x y σστ∂Φ∂Φ∂Φ=-=-=-∂∂∂∂中Φ称为平面问题的应力函数,又称为艾里应力函数,444422420x x y y ∂Φ∂Φ∂Φ++=∂∂∂∂为双谐方程8. 由直角坐标下的多项式解可以获得哪些有意义的弹性力学解?如何计算应力、应变和位移?9. 由弹性力学所获得的受集中荷载的悬臂梁、受分布荷载的简支梁以及受纯弯曲的简支梁的解答,与材料力学所得到的解答有哪些共同之处和哪些不同之处?由此可以说明哪些问题?在弯应力x σ的表达式中,第一项是主要项,和材料力学中的解答相同,第二项是弹性力学提出的修正项,对于通常的浅梁,修正项很小,可以不计,对于较深的梁,则需注意修正项。
弹 塑 性 力 学 课 程《 各章学习的基本要求和复习思考题 》
★ 复习题
何谓应力? 何谓一点的应力状态? (1) 何谓应力? 何谓一点的应力状态? 进一步深入理解一点的应力状态的概念 一点的应力状态的概念, (2) 进一步深入理解一点的应力状态的概念,并掌握采用单 元体去表征和研究一点的应力状态的方法。 元体去表征和研究一点的应力状态的方法。 去表征和研究一点的应力状态 为什么一点的应力状态可用二阶张量的形式来表示? (3) 为什么一点的应力状态可用二阶张量的形式来表示? 应力张量是一个二阶对称张量吗 ? (4) 弹塑性力学中应力分量的符号规则是什么? 同材料力 弹塑性力学中应力分量的符号规则是什么? 学应力符号规则有何不同? 学应力符号规则有何不同? 一点的应力状态通常参照笛卡尔直角坐标系oxyz oxyz可表 (5) 一点的应力状态通常参照笛卡尔直角坐标系oxyz可表 若再参照另一坐标 示为 σ ij (i,j = x,y,z) 。若再参照另一坐标 系 ox′y′z′ , 则该点应力状态还可表示为 σ i′j ′ , (i‘,j ,y’,z (i ,j’ = x‘,y ,z ) 。于是有: σ ij = σ i′j ′ ,j ,y ,z‘) 于是有: 正确吗? 正确吗? 这样表示
★ 复习题
试写出柯西(Augustir1 Cauchy)几何方程的缩 (1) 试写出柯西(Augustir1 · Louis Cauchy)几何方程的缩 写式 ? 何谓线应变和剪应变? (2) 何谓线应变和剪应变? 试从受力物体内某点处沿相互垂 直的xy方向, xy方向 直的xy方向, 取两条微线段 ∆x 和 ∆y , 然后根据线应变 和剪应变的定义推导出该点的线应变 ε x 和剪应变 γ xy . 何谓主应变、主应变方向? (3) 何谓主应变、主应变方向? 主应变方向与主应力方向是 否一定相吻合? 否一定相吻合? 为什么一点的应变状态可用二阶张量的形式来表示? (4) 为什么一点的应变状态可用二阶张量的形式来表示? 表 示同一点应变状态的二阶应变张量 ε ij (i,j=x,y,j) 和 ε i′j′ (i ,j =x ,y ,j )应如何转换? 应变张量 ε ij 如 (i‘,j =x‘,y ,j‘)应如何转换? ,j’=x ,y’,j 何分解成球张量和偏张量 ? 应变谐调方程(又称为变形协调方程或圣文南(Saint (Saint(5) 应变谐调方程(又称为变形协调方程或圣文南(SaintVenant)方程 的物理意义是什么? 方程) Venant)方程)的物理意义是什么?
2019年硕士研究生弹塑性力学课程复习要点
2019年塑性力学课程复习*1.名词解释:塑性变形、应变强化、等向强化、随动强化、屈服面、Mises屈服条件、Tresca屈服条件、加载条件与加载面、Drucker公设、正交流动法则、加载准则、静力场与机动场、用于极限分析的上限定理与下限定理。
塑性变形:物体在除去外力后所残留下来的永久变形,在给定的外力下,物体的变形并不随时间而改变(p1)应变强化:重新拉伸后,材料并不在初始屈服点处进入塑性状态,而是在最后的卸载点附近进入塑性状态。
进入塑性状态后,应力应变曲线渐与初始应力应变曲线重合。
经历塑性变形后,材料受到了强化,屈服应力有了提高。
这种现象称为应变强化或应变硬化。
(p4)等向强化:认为拉伸时的强化屈服应力和压缩时的强化屈服应力绝对值相等。
也就是说当在拉伸变形时使得材料强化时,这种强化作用对拉伸和压缩都是相同的。
即压缩屈服应力得到了相同的提高。
随动强化:考虑到包兴格效应,认为拉伸屈服应力和压缩屈服应力(代数值)之差是不变的。
也就是弹性响应的范围始终不变。
屈服面:在复杂应力状态下。
初始弹性状态的界限为屈服条件,若以σij 作为坐标轴,屈服条件用F(σij)=0表示,则应力空间中F=0将表示为一个曲面,称为屈服曲面。
Mises屈服条件:注意到Tresca屈服条件不考虑中间主应力的影响,主方向不知道的情况下用J’2=0去拟合实验点,并称之为Mises屈服条件。
Tresca屈服条件:当最大剪应力达到某一极限值k时,材料开始产生屈服。
如果规定σ1 >=σ2 >=σ3,Tresca屈服条件可写为τmax=(σ1 -σ3)/2=k加载条件与加载面:经过变化的屈服条件称之为加载条件;在应力空间中对应的表面称为加载面。
Drucker公设:单轴实验表明,在平面上,回路(1)→(2)→(3)总是顺时针的。
这表明在一个应力闭循环中,需要外界注入功而不可能提取有用功。
在三维应力状态,这一性质可以表述为:当材料的物质微元在应力空间的任意应力闭循环中的余功非正时,即称材料满足Drucker公设。
弹塑性力学基础知识复习
空间力系的平衡方程包含了各种特殊力系的平衡方程,所 以由公式可以导出各种特殊力系的平衡方程。
(1)空间汇交力系的平衡方程 设空间汇交力系汇交于O点,则各力对O点的矩恒为零,
于是独立的平衡方程为
i1
把上式向直角坐标轴投影并利用力对点的矩和力对轴的矩关 系即公式有
n
n
n
i1
n
i1
Fix 0,
i1
Mx(Fi)0,
Fini1yM 0y(F,i)i10F,izin10Mz(Fi)0
(4-1)
式(4-1)就是空间力系的平衡方程的一般式,其平衡方程 还有四矩式、五矩式和六矩式,读者可以参考其它资料了解。
弯曲中心概念 典型图形弯曲中心的位置
挠曲线必须是光滑和连续的,任意截面都有唯一的挠度和转角
二 挠曲线近似微分方程 d 2y M dx 2 EI
{ 两个近似
忽略了剪力Q的影响
忽略 ( dy ) 2 , 1(dy)2 1
边界条件
dx
dx dytan
光滑连续条件
A
P
dx
C yA0,yBLB C
B
பைடு நூலகம் P
A
n
n
n
F ix0, F iy0, F iz0
i1
i1
i1
(2)空间力偶系的平衡方程 空间力偶系的主矢恒等于零,所以独立的平衡方程为
n
n
n
M x(F i) 0 , M y(F i) 0 , M z(F i) 0
i 1
i 1
i 1
(3)空间平行力系的平衡方程
11-弹塑性力学-总结与复习
谢 谢!
4.应力、应变图(主变形图):应变3×应力9=27种组合 实际: 23种组合,为什么? 5.应力测量,应变花,τij?
总结与复习 (Summarization and Review)
四、弹性力学(542) 5组基本方程:
1. 应力平衡微分方程:含义:表征点的应力之间的关系(基体假设的
应用,平面问题的具体形式) 2.几何方程:含义:位移-应变的关系 3.物理方程:广义虎克定律 含义:σ—ε关系 ①公式;②参数含义、关系 4.应变协调方程(相容方程,连续方程):含义,平面问题的相容方程 P P P (塑性变形连续方程: 1 2 3 0 ) 5.边值方程:具体问题具体分析
区别:弹性变形特点、塑性变形特点(可逆性、与加载 路线的关系、对组织与性能的影响、变形特点 描述等) 联系:①量变→质变(韧性材料) e p ②弹塑性共存:(包含关系 、材料 加工工模具弹性变形与工件塑性变形共存)
总结与复习 (Summarization and Review)
六、断裂力学基础
5.应力强度因子:含义,影响因素,量纲
6.断裂韧度Kic(实验确定),与试件几何(厚度)的关系: 厚度→平面应力→塑区大→扩展需能↑→KC↑ 7.KIC:平面应变断裂韧度,材料常数,应与几何无关,但测 量时应得保证试样足够厚,以保证裂纹尖端处于平面应变 状态。
总结与复习
(Summarization and Review)
总结与复习 (Summarization and Review)
②主剪应力(110);最大剪应力: max
1 3
2
③八面体应力(111);如何求?有何意义? ④等效应力:等效的含义,求解?
弹塑性力学总复习
《弹塑性力学》课程第一篇 基础理论部分第一章 应力状态理论1.1 基本概念1. 应力的概念应力:微分面上内力的分布集度。
从数学上看,应力sPF s ∆∆=→∆0lim ν由于微分面上的应力是一个矢量,因此,它可以分解成微分面法线方向的正应力νσ和微分面上的剪应力ντ。
注意弹塑性力学中正应力和剪应力的正负号规定。
2. 一点的应力状态(1)一点的应力状态概念凡提到应力,必须同时指明它是对物体内哪一点并过该点的哪一个微分面。
物体内同一点各微分面上的应力情况,称为该点的应力状态。
(2)应力张量物体内任一点不同微分面上的应力情况一般是不同的,这就产生了一个如何描绘一点的应力状态的问题。
应力张量概念的提出,就是为了解决这个问题。
在直角坐标系里,一点的应力张量可表示为⎪⎪⎪⎪⎭⎫⎝⎛=z zy zx yz yyx xz xy x ij στττστττσσ若已知一点的应力张量,则过该点任意微分面ν上的应力矢量p就可以由以下公式求出:n m l p xz xy x x ττσν++= (1-1’a ) n m l p yz y yx y τστν++=(1-1’b )n m l p z zy zx z σττν++=(1-1’c )由式(1-1),还可进一步求出该微分面上的总应力p 、正应力νσ和剪应力v τ: 222z y x p p p p ++=(1-2a )nl mn lm n m l zx yz xy z y x τττσσσσν222222+++++=(1-2b )22ννστ-=p(1-2c )(3)主平面、主方向与主应力由一点的应力状态概念可知,通过物体内任一点都可能存在这样的微分面:在该微分面上,只有正应力,而剪应力为零。
这样的微分面即称为主平面,该面的法线方向即称为主方向,相应的正应力称为主应力。
主应力、主方向的求解在数学上归结为求解以下的特征问题:}{}]{[i n i ij n n σσ=(1-3)式中,][ij σ为该点应力张量分量构成的矩阵,n σ为主应力,}{i n 为主方向矢量。
弹塑性力学基础
温加工
冷加工 在不产生回复和 再结晶温度以下
改善产品组织性能
降低金属变形抗力 改善金属塑性 提高强度
冷加工-退火 表面光洁,尺寸精确, 组织性能良好
加热温度 变形终了温度 变形程度 冷却速度
冷变形及热变形
冷变形
变形温度低于回复温度时,金属在 变形过程中只有加工硬化而无回复与再 结晶现象,变形后的金属只具有加工硬 化组织,这种变形称为冷变形。
继续提高变形速度,塑性又开始 下降:随变形速度↑,变形抗力
升高,达到相应于更小变形程度 下的断裂抗力之值。 第二次上升:热效应起作用,温度↑ ,变形抗力下降。
第二次下降:热效应极大,把金属加热到出现液相或大大降
低其晶间物质的强度。
4.变形程度 变形程度对塑性的影响,是同加工硬化及加工过程中伴 随着塑性变形的发展而产生的裂纹倾向联系在一起的。 在热变形过程中,变形程度与变形温度-速度条件是相 互联系着的,当加工硬化与裂纹胚芽的修复速度大于发生速
4、具有纤维组织的金属,各个方向上的机械性能 不相同。顺纤维方向的机械性能比横纤维方向的好。金 属的变形程度越大,纤维组织就越明显,机械性能的方 向性也就越显著。
使纤维分布与零件的轮廓相符合而不被切断; 使零件所受的最大拉应力与纤维方向一致,最大 切应力与纤维方向垂直。
实例:
当采用棒料直接经切削加工制造螺钉时,螺钉头部与杆部 的纤维被切断,不能连贯起来,受力时产生的切应力顺着纤维 方向,故螺钉的承载能力较弱(如图a示 )。 当采用同样棒料经局部镦粗方法制造螺钉时(如图b示),纤 维不被切断且连贯性好,纤维方向也较为有利,故螺钉质量较 好。
3)金属表面形成吸附润滑层,塑性↑
提高金属塑性的主要途径
提高塑性的主要途径有以下几个方面: (1)控制化学成分、改善组织结构,提高材料的成分和组 织的均匀性; (2)采用合适的变形温度—速度制度;
弹塑性力学复习课件详解
) )
x
y
2u 2v
0 0
应力解法:Michell-Beltrami
(
)
z
2 w
0
4、解的唯一性:
2 ij
1
1
( I1 ),ij
1
fk ,kij ( fi, j f j ,i )
5、圣维南原理:掌握基本思想(注意局部性和静力等效性)
如果把物体的一小部分边界上的面力变换为分布不同但静力等 效的面力(主矢量相同,对于同一点的主矩也相同),那么近 处的应力分布将有显著的改变,但是在远处所受的影响可以不 计。
1 E
(
r
r
1 G
r
6、具体问题的解法: 半无限平面问题,园孔的应力集中。
能量原理
1、功能原理:应变能应变余能; 2、虚位移原理:导出平衡方程及边界条件;
虚位移原理: 在外力作用下处于平衡状态的可变形体,当给予物体约束允
许的微小虚位移时,外力在虚位移上所做虚功等于物体的虚应变 能。
3、最小总势能原理基本思想;与虚位移原理的比较; 在给定外力作用下而保持平衡的弹性体,在满足位移边
5、极坐标里的3组方程组;
极坐标系下的平衡方程为
几何关系:
r r
r r
r
r
Fr
0
r r
r
2 r r
F
0
r
u r
1 r
v
u r
r
1 u r
v r
v r
r
1 2 E
( r
1
)
1 2 E
(
1
r ]
r
1 G
r
2(1 E
)
r
弹塑性力学总复习
《弹塑性力学》课程第一篇 基础理论部分第一章 应力状态理论1.1 基本概念1. 应力的概念应力:微分面上内力的分布集度。
从数学上看,应力sPF s ∆∆=→∆0lim ν由于微分面上的应力是一个矢量,因此,它可以分解成微分面法线方向的正应力νσ和微分面上的剪应力ντ。
注意弹塑性力学中正应力和剪应力的正负号规定。
2. 一点的应力状态(1)一点的应力状态概念凡提到应力,必须同时指明它是对物体内哪一点并过该点的哪一个微分面。
物体内同一点各微分面上的应力情况,称为该点的应力状态。
(2)应力张量物体内任一点不同微分面上的应力情况一般是不同的,这就产生了一个如何描绘一点的应力状态的问题。
应力张量概念的提出,就是为了解决这个问题。
在直角坐标系里,一点的应力张量可表示为⎪⎪⎪⎪⎭⎫⎝⎛=z zy zx yz yyx xz xy x ij στττστττσσ若已知一点的应力张量,则过该点任意微分面ν上的应力矢量p就可以由以下公式求出:n m l p xz xy x x ττσν++= (1-1’a ) n m l p yz y yx y τστν++=(1-1’b )n m l p z zy zx z σττν++=(1-1’c )由式(1-1),还可进一步求出该微分面上的总应力p 、正应力νσ和剪应力v τ: 222z y x p p p p ++=(1-2a )nl mn lm n m l zx yz xy z y x τττσσσσν222222+++++=(1-2b )22ννστ-=p(1-2c )(3)主平面、主方向与主应力由一点的应力状态概念可知,通过物体内任一点都可能存在这样的微分面:在该微分面上,只有正应力,而剪应力为零。
这样的微分面即称为主平面,该面的法线方向即称为主方向,相应的正应力称为主应力。
主应力、主方向的求解在数学上归结为求解以下的特征问题:}{}]{[i n i ij n n σσ=(1-3)式中,][ij σ为该点应力张量分量构成的矩阵,n σ为主应力,}{i n 为主方向矢量。
11-弹塑性力学-总结与复习
主要内容: 主要内容
1.绪论(弹,塑,变形特点;基本假设) 绪论( 变形特点;基本假设) 绪论 2.应力应变分析 应力应变分析 3.弹性力学 (542) 弹性力学 4.塑性力学基础 塑性力学基础 5.断裂力学基础 断裂力学基础
总结与复习 (Summarization and Review)
⑤静水压力:σ p = σ m = (σ 1 + σ 2 + σ 3 ) = (σ x + σ y + σ z ) 静水压力: 只产生体积缩胀,不产生形变;抑制裂纹扩展. 只产生体积缩胀,不产生形变;抑制裂纹扩展.
1 3 1 3
总结与复习 (Summarization and Review)
ε1 P + ε 2 P + ε 3 P = 0 塑性变形: 补:塑性变形
总结与复习 (Summarization and Review)
二,应力分析
1.点的应力状态:①定义; .点的应力状态: 定义; 描述方法(三种) ②描述方法(三种); 分解:意义,方法( ③分解:意义,方法( ),图示 2.特殊应力: .特殊应力: 主应力( ) 相互正交) 含义/求解 求解? ①主应力(100)(相互正mmarization and Review)
应力法求解过程: 应力法求解过程
(1)应力函数的设计 )
(2)验证:是否连续: 22 = 0 或在什么条件下满足连续条 )验证:是否连续: 求导! 件?求导! (3)求应力分量表达式(含待定参数) )求应力分量表达式(含待定参数) (4)利用边界条件确定待定参数 ) (5)确定应力函数 及 σ , ε , u 等 )确定应力函数φ及
弹塑性力学讲义
弹塑性力学讲义弹塑性力学1 弹塑性的概念所谓弹塑性指的是物体在外力作用下发生变形而外力除去后变形不能完全恢复的性质。
变形中可回复的部分称为弹性变形,变形中不可回复的部分称为塑性变形。
塑性变形总是在外力的作用超过一定的限度后出现。
2 简单拉压状态下金属材料弹塑性行为及其数学模型(1)理想塑性材料的弹塑性行为σs主要特点:屈服后加载,表现出一种流动变形现象,材料失去进一步承载的能力;屈服后卸载,应力应变增量大致与弹性变形段相同。
卸载至零后再次加载,应力应变关系相当于原应力应变关系曲线在应变轴方向作了一个平移,平移量为残余塑性应变。
数学表达:Eε(0 ε εs)σ σ(ε)σ(ε ε)s s Eε( εs ε 0)σ σ(ε)(ε εs) σs(2)线性强化材料的弹塑性行为σσs主要特点:屈服后加载,材料仍有进一步承载的能力,但应力应变增量的比例较弹性段小;屈服后卸载,应力应变增量大致与弹性变形段相同。
卸载至零后再次加载,屈服应力为卸载前的应力值(较先前的屈服应力大),应力应变关系相当于原应力应变关系曲线在应变轴方向作了一个平移,平移量为残余塑性应变,同时应力轴伸长。
两种常用的强化模型数学表达:Eε(0 ε εs)σ σ(ε)σ E(ε ε)(ε ε)ss sEε( εs ε 0)σ σ(ε)σs E(ε εs)(ε εs)上述描述弹塑性材料应力应变关系的数学模型称为全量型本构关系。
显然不能代表弹塑性变形规律的全貌。
它描述了单调应力-应变过程。
为了描述弹塑性力学行为的“过程相依”,需要建立增量型本构关系。
记当前应力为σ0,应力增量为dσ,应变增量为dε,分析弹塑性行为可以得出相应的增量变形法则。
理想塑性材料的增量型弹塑性关系(1)由dσ决定dε当σs σ0 σs时,dε dσ/E 当σ0 σs时,dεdλσ0ifdσ 0 dσ/Eifdσ 0dλσ0ifdσ 0当σ0 σs时,dεdσ/Eifdσ 0(2)由dε决定dσ当σs σ0 σs时,dσ Edε0ifdε 0当σ0 σs时,dσEdεifdε 0当σ0 σs时,dσ0ifdε 0 Edεifdε 0例:已经测得某理想弹塑性材料的细杆所经受的轴向应变过程如图所示,试求此杆中的应力过程。
弹塑性力学讲义第十一章塑性力学基础知识(精品PDF)
截面形状
1.5
1.7
1.15-1.17
(2)梁弹塑性弯曲时的变形
在线弹性阶段,梁弯矩和曲率的关系为线性关系
M=EI
( M Me ), 或
M EI
,
将应力与弯矩关系式 My 代入上式,可得 I
Ey
。
在弹塑性阶段,由于梁弯曲时截面仍然保持平面,可得
s Ey0
,
或
y0
s E
代入梁弹塑性弯曲时 M 的表达式
将发生塑性变形。确定材料发生塑性变形的条件为
f () = - s = 0 初始屈服条件(函数) 当软钢应力达到 A 点后,软钢有明显屈服(塑性流动)阶段。
经过屈服阶段后,荷载可再次增加(称为强化阶段,BC 段),但
强化阶段 增幅较少。对于此种材料(有明显屈服流动,强化阶段
应力较少)屈服条件是不变的。当应力满足屈服条件时,卸载将有
2 3
J
* 2
类似于e 的定义,在三维应力状态定义等效应变e:
1
e
2 3
J
* 2
2 3
1 2
eij
eij
2
2 3
eij
eij
2 3
1 2 2 2
3 2 3 1 2
1 2
1
2 3
x
y
2
y
z
2
z
x
23 2
2 xy
2 yz
2 zx
2
e 以发生塑性变形定义的量(由 1、2、3 定义),在变形 过程中的每一瞬时,发生应变增量(d1、d2、d3),则可定义瞬
对于三维应力状态,定义每一点应力状态都存在力学效应相同
的等效应力e
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《弹塑性力学》复习提纲1. 弹性力学和材料力学在求解的问题以及求解方法方面的主要区别是什么?研究对象的不同:材料力学,基本上只研究杆状构件,也就是长度远远大于高度和宽度的构件。
非杆状结构则在弹性力学里研究研究方法的不同:材料力学大都引用一些关于构件的形变状态或应力分布的假定,得到的解答往往是近似的,弹性力学研究杆状结构一般不必引用那些假定,得到的结果比较精确。
2. 弹性力学有哪些基本假设?(1)连续性,(2)完全弹性,(3)均匀性,(4)各向同性,(5)假定位移和形变是微小的3. 弹性力学有哪几组基本方程?试写出这些方程。
(1)平面问题的平衡微分方程:平面问题的几何方程:平面应力问题的物理方程:(在平面应力问题中的物理方程中将E换为,换为就得到平面应变问题的物理方程)(2)空间问题的平衡微分方程;空间问题的几何方程;空间问题的物理方程:4. 按照应力求解和按照位移求解,其求解过程有哪些差别?(1)位移法是以位移分量为基本未知函数,从方程和边界条件中消去应力分量和形变分量,导出只含位移分量的方程和相应的边界条件,解出位移分量,然后再求形变分量和应力分量。
要使得位移分量在区域里满足微分方程,并在边界上满足位移边界条件或应力边界条件。
(2)应力法是以应力分量为基本未知函数,从方程和边界条件中消去位移分量和形变分量,导出只含应力分量的方程和边界条件,解出应力分量,然后再求出形变分量和位移分量。
满足区域里的平衡微分方程,区域里的相容方程,在边界上的应力边界条件,其中假设只求解全部为应力边界条件的问题。
5. 掌握以下概念:应力边界条件和位移边界条件;圣文南原理;平面应力与平面应变;逆解法与半逆解法。
位移边界条件:若在部分边界上给定了约束位移分量和,则对于此边界上的每一点,位移函数u和v和应满足条件=,=(在上)应力边界条件:若在部分边界上给定了面力分量(s)和(s),则可以由边界上任一点微分体的平衡条件,导出应力与面力之间的关系式。
圣维南原理:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么近处的应力分布将有显著的改变,但是远处所受的影响可以不计。
平面应力问题:设所研究的物体为等厚度的薄板,在z方向不受力,外力沿z 方向无变化,可以认为在整个薄板里任何一点都有:=0 ,=0,=0,注意到剪应力互等关系,可知=0,=0,这样只剩下平行于xy面的三个应力分量,即,,它们是x和y的函数,不随z而变化平面应变问题:设有很长的柱形体,以任一横截面为xy面,任一纵线为z轴,所受的荷载都垂直于z轴且沿z方向没有变化,则所有一切应力分量,变形分量和位移分量都不沿z方向变化,而只是x和y的函数,如果近似的认为柱形体的两端受到平面的约束,使之在z方向无位移,则任何一个横截面在z方向都没有位移,所有变形都发生在xy面里。
逆解法:就是先设定各种形式的,满足相容方程的应力函数的Ф,并由式求的应力分量;然后再根据应力边界条件和弹性体的边界形状,看这些应力分量对应于边界上什么样的面力,从而得知所选取的应力函数可以解决的问题。
半逆解法:就是针对所要求解的问题,根据弹性体的边界形状和受力情况,假设部分或全部应力分量的函数形式;并从而推出应力函数的形式;然后代入相容方程,求出应力函数的具体表达式;在按式)由应力函数求的应力分量;并考察这些应力分量能负满足全部应力边界条件6. 什么是各向同性体?横观各向同性体?正交各向异性体?极端各向异性体?他们各有多少弹性常数?各向同性体:假定物体是各向同性的,既物体的弹性在所有各个方向都相同。
7. 什么是应力函数?双谐方程?如何推导出双谐方程?应力函数与应力分量间的关系?如何求解双谐方程?称为平面问题的应力函数。
是用应力函数表示的相容方程。
8. 由直角坐标下的多项式解可以获得哪些有意义的弹性力学解?如何计算应力、应变和位移9. 由弹性力学所获得的受集中荷载的悬臂梁、受分布荷载的简支梁以及受纯弯曲的简支梁的解答,与材料力学所得到的解答有哪些共同之处和哪些不同之处?由此可以说明哪些问题?在弯应力的表达式中,第一项是主要项,和材料力学的解答相同,第二项则是弹性力学提出的修正项,对于通常的浅梁,修正项很小,可以不计,对于较深的梁,则必须注意修正项。
弹性力学和材料力学解答的差别,是由于各自的解法不同。
简而言之,弹性力学的解答是严格考虑区域内的平衡微分方程,几何方程,物理方程,以及在边界上的边界条件而求解的,因而得出的解答是较精确的。
而在材料力学的解法中,没严格考虑上述条件,因而得出的解答时近似的。
一般来说,材料力学的解法只适用解决杆状构件的问题,这时他它的解答具有足够的精度,对于非杆状构件的问题,不能用材料力学的解法来求解,只能用弹性力学的解法来求解。
9. 如何推导出极坐标下弹性力学的基本方程?极坐标下弹性力学的基本方程与直角坐标下的方程有哪些区别?只需将角码x和y分别换成为。
区别:在直角坐标系中,xy都是直线,有固定的方向,xy坐标的量纲都是L,在极坐标中在不同的点有不同的方向,坐标线是直线,量纲是L,是圆弧曲线,坐标为量纲一的量,这些都引起弹性力学基本方程的差异。
10. 极坐标下弹性力学基本方程的通解可以解答哪些问题?受均布压力的圆环、带圆孔的无限大板、半平面体在边界上受集中力、对径受压的圆盘,以及布辛捏斯克解,是如何获得的?这些解答可以解决哪些工程问题?11. 什么是解析函数?复变函数的积分与实函数的积分有哪些共同之处和哪些不同之处?泰勒级数与罗伦级数有哪些共同之处和哪些不同之处?什么是保角映射?什么条件下一个映射是保角映射?若函数在点的某个领域内可导,则称它在点解析。
复积分的基本思想是在一元实函数积分中,把实函数换成复函数,把实轴上的积分区间换成复平面内逐段光滑的有向曲线,偏得到复函数积分凡在某区域内处处具有保角性和伸缩率不变形的映射都称为第一类保角映射对于相交于的任意两条有向曲线,其夹角大小和方向经过映射后都保持不变,这时,称映射在点具有保角性。
12. 如何使用复变函数来表示应力函数、应力和位移?如何使用复变函数来求解弹性力学问题?13. 如何获得带圆孔和带椭圆孔无限大板的解答?它们的映射函数各是什么?通过哪些步骤求解?带矩形孔口的问题如何获得解答?14. 空间(3维)问题弹性力学的基本方程与平面(2维)问题的基本方程有哪些区别?空间问题如何求解?15. 什么是轴对称问题?轴对称问题有哪些特点?轴对称问题弹性力学的基本方程与空间问题相比有哪些不同之处?所谓轴对称:是指物体的形状或某物理量是绕一轴对称的,凡通过对称轴的任何面都是对称面。
16. 什么塑性?塑性力学研究的内容与弹性力学有哪些不同?为什么在塑性状态下应力与应变间不再有一一对应关系?塑性力学的特点和基本假设各是什么?塑性:是材料的一种变形性质或变形的一个阶段,材料进入塑性的特征是当荷载卸载后以后存在不可恢复的永久变形。
塑性力学研究问题可以分为两个方面:一是根据实验观察所得结果为出发点,建立塑性状态下变形的基本规律既本构关系,二是应用这些理论和关系求解具体问题,既求物体在荷载等外来因素作用下的应力和变形的分布。
塑性力学远比弹性力学来的复杂,首先塑性力学没有统一的本构方程,因为塑性变形是一个非常复杂的过程,它是随不同的材料和外界条件而改变的啊,其次是方程是非线性的啊,变形是和加载的历史有关,再此是求解问题是,在物体中弹性区和塑性区往往是共存的,需要决定这两个区域的交界面。
塑性力学的特点:(1)应力---应变关系的多值性(2)本构关系的复杂性塑性力学的假设:(1)材料是均匀的啊,连续的。
(2)各向均匀的应力状态,既静水应力状态不影响塑性变形而产生弹性的体积变化。
(3)在温度不高,时间不长时,可以忽略蠕变和松弛的效应,在应变率不大的情况下,可以忽略应变率对塑性变形的影响。
17. 金属材料的应力应变曲线有哪些类型?岩石的应力应变曲线有哪些类型?这些应力应变曲线之间有哪些共同之处和哪些不同之处?根据这些应力应变曲线可以总结出哪些力学模型?18. 什么是求和约定?求和约定有什么意义?用什么方法表示导数?如何根据求和约定来简化公式的书写?求和约定;在同一项中,重复出现两次的字母标号为求和标号,它表示将该标号依次取为1,2,3,时所得各项取和。
例如:;求和约定的意义;因为求和标号不再是区分分量的标号,而只是一种约定求和的标志,所以不论选用哪一个字母都不会改变其含意,即求和标号可以任意变换字母都不会改变其含意。
例如:导数表示方法:,,并用ƒ,i表示,这里的逗号表示逗号后的字母标号所代表的变量求导。
用求和约定简化公式的书写;例如:表示一线性代数方程组19. 什么是张量?张量是如何定义的?什么是零阶张量?一阶张量?二阶张量?张量:在数学上,如果某些量依赖于坐标抽的选择,并在坐标变换时,其变换具有某种指定形式,则这些量的总称为张量。
零阶张量:由定义可知绝对标量(与坐标系选择无关)是零阶张量。
(标量:指完全由一个正值或负值的数量所确定的物理量)一阶张量:矢量是一阶张量,(矢量是指由三个分量所确定的物理量或几何量,它是和坐标系的选择有关,当坐标变换时,服从一定的规律)二阶张量:设在给定的坐标系内有具有两个标注的九个分量,当坐标变换时,它们在新坐标系内的九个分量变为,若这些量满足变换关系式则由此九个量的集构成二阶张量。
20. 什么是Bauschinger效应?对于强化材料,正向加载屈服极限提高后再反向加载,会出现什么现象?由Bauschinger效应可以获得哪些结论?Bauschinger效应:如果在完全卸载后施加相反方向的应力,比如由拉改为压,则曲线沿的延长线下降,即开始是成直线关系(弹性变形),但至一定程度(点)又开始进入屈服,并有反方向应力的屈服极限降低的现象(<,这种现象称为Bauschinger效应。
结论:即使是初始各向同性的材料,在出现塑性变形后,就带各向异性。
21. 什么是Bridgman 试验?由Bridgman 试验可以获得哪些结论?Bridgman 试验:Bridgman试验结果指出,弹簧钢在10000个大气压体积缩小约2.2% ,而且这种体积变化是可以恢复的(在各向均匀压缩的情况下),他又用各种钢试件作出轴向拉伸时的应力—应变曲线及轴向拉伸与静水压力同时作用下的应力_应变曲线。
两者加以比较,发现各向均压对初始屈服的影响很小,可以忽略不计。
结论:在静水应力状态不影响塑性变形而只产生弹性的体积变化。
22. 什么是理想弹塑性?应变硬化?应变软化?理想弹塑性、弹性-线形应变硬化和弹性-应变软化模型各可以代表哪些不同类型的材料?理想弹塑性体:忽略硬化。