2极三相异步电机
2极大功率自润滑高压高速三相异步电动机设计
着功率 的提升 , 激振 力增 强 , 电磁 增大了 振动和噪 声控 制的难 度。如何解 决功率提 升后所面 临的 自润滑 、 振动 、 噪声等问题?文中结合具体事 例 , 出了功 率提升 的解决方 案 , 出了轴 承 自润滑 提 提
设计主要相关参数的关系以及 自润滑实现 的主要措施 , 出了振动 与噪声产生 的主 要原 因和 相应 提
的解决措施 。
关键词
大功率
自润滑 振动
噪声
中图分类号 T 3 3 文献标识码 B 文章编号 10 7 8 (0 7 0 0 0 0 M4 0 8— 2 1 20 )5— 0 8— 5
Deino -oeIih P we e - u rc t n H g - otg s f P l I - o rS r L b iai ih V l e g 2 g f o a
O 引言
随着经济 的快速一直在开展 2 电机 极 滑动轴承 自润滑技术攻关 , 累丰富的理论和实 积 践经验 , 取得了丰硕的成果 , 已经掌握了 2 极电机
整, 市场对大容量 、 高品质机电产品的需求不断增 大; 日益严重的能源危机和污染问题也使市场 而
lb c t n b a i g a d s me man me s r st a r d o t t h e man r a o sc u e y u r a i e r o i a u e c ri u .T i e s n a s d b i o n n o e i
i h- e d Th e - a eI d c n M t r H g -p e r ePh s n u to o o S - i
三相异步电机电磁转矩计算公式
三相异步电机电磁转矩计算公式三相异步电机电磁转矩计算公式1. 电磁转矩的定义电磁转矩是指三相异步电机在旋转时所产生的力矩,用于驱动机械设备的转动。
2. 电磁转矩的计算公式电磁转矩的计算公式可以分为两种情况:启动情况和正常运行情况。
启动情况下的电磁转矩计算公式启动情况下的电磁转矩计算公式如下:T = (3 * Ks * Is^2) / (ωe^2 * Rr)其中,T为电磁转矩,Ks为转矩系数,Is为电机的起动电流,ωe为电网频率,Rr为转子电阻。
正常运行情况下的电磁转矩计算公式正常运行情况下的电磁转矩计算公式如下:T = Kt * Is * Ir / (ωe * p)其中,T为电磁转矩,Kt为转矩系数,Is为电机的定子电流,Ir 为电机的转子电流,ωe为电网频率,p为极对数。
3. 举例说明以一台三相异步电机为例,其定子电流为10A,转子电流为8A,电网频率为50Hz,极对数为2。
启动情况下的电磁转矩计算假设转矩系数Ks为,转子电阻Rr为欧姆,代入启动情况下的电磁转矩计算公式得到:T = (3 * * 10^2) / (50^2 * ) = ·m正常运行情况下的电磁转矩计算假设转矩系数Kt为,代入正常运行情况下的电磁转矩计算公式得到:T = * 10 * 8 / (50 * 2) = ·m根据以上计算,可以看出在启动情况下,电机的电磁转矩为·m;在正常运行情况下,电机的电磁转矩为·m。
结论电磁转矩的计算与电机的起动电流、定子电流、转子电流、电网频率、转矩系数、极对数、转子电阻等因素密切相关。
根据不同的情况使用对应的计算公式可以准确地计算电机的电磁转矩。
4. 三相异步电机的转矩系数转矩系数是用于计算电磁转矩的一个重要参数,它与电机的机械设计和性能有关。
常见的转矩系数有几种,如起动转矩系数、最大转矩系数、额定转矩系数等。
起动转矩系数起动转矩系数是指电机在启动时产生的转矩与额定转矩之比。
IC511冷却方式2极隔爆型三相异步电动机风路结构
初 引 进 德 国西 门 子 公 司 的 高 压 空 空 冷 隔 爆 型 电 动机 , 广 范应 用 于煤 矿 、 石化 、 化 工 等 可 能 含 有 爆 炸 性 气 体 的 危 险场 所 环 境 , 为 国 家 的 经 济 建 设 的安全 生产 做 出 了重 要 的贡 献 。I C 5 1 1冷 却
方 式 的 风 路 结 构 在 我 国 防 爆 电 机 和 非 防爆 电 机
介绍 , 以供参考 。
1 通风 结构
1 . 1 引进原 电动 机风 路结 构 ( 见图1 )
1 .内风扇 ; 2 .端盖 ; 3 .定子线 圈; 4 .导风板 ; 5 .机座 ; 6 .冷却管 ; 7 .转子铁心 ; 8 .定子铁心 ; 9 .定子 通风道 ; 1 0 .转 子通风道 ;1 1 .对称 内风路及流道 ;1 2 .外风路及流道 ;1 3 .风扇罩 ;1 4 .外风扇 。
电动机风路试验数据 的计算和分析 , 提出了对 I C 5 1 1冷却 方式 2极 隔爆 型三相 异步 电动机 内风 路 的改 进方案 , 并且对不 同的改进 方案做了对 比试验 加 以验 证 。提 出了一种 适合 I C 5 1 1冷却方 式大机 座号 电 动机的改进型风路结构 , 为成 功开发大机座号 I C 5 1 1隔爆型高效率三相异步 电动机提供 了有利条件 。
关键词 :隔爆 型电机 ; 风路结构 ; 通风道 ; 轴 流扇 ; 隔风筒 ; 冷却管 ; 冷却 方式 ; 温升
பைடு நூலகம்
0 引言
上均得 到 推 广 和 应 用 。近 年 来 , 这种 I C 5 1 1冷 却 方 式 的 隔 爆 型 电 动 机 风 路 结 构 在 我 国 的 电 动 机 上 也 得 到 了 进 一 步 优 化 和 改 进 。 这 里 仅 对
电机转速
2级、4级、6级电动机的转速
电动机同步转速公式如下:f为频率,单位为Hz.n为转速,其单位为r/min p为磁极对数
(注意是磁极对
各种型号极数的三相异步电动机的实际转速请参考下列
三相异步电动机转速是分级的,是由电机的“极数”决定的。
极数反映出电动机的同步转速,2极同步转速是3000r/min,4极同步转速是1500r/min,6极同步转速是1000r/min,8极同步转速是750r/min 。
三相交流电机每组线圈都会产生N、S磁极,每个电机每相含有的磁极个数就是极数。
由于磁极是成对出现的,所以电机有2、4、6、8……极之分。
由于在中国三相交流电的频率为50Hz,因此2极同步转速是3000r/min,4极同步转速是1500r/min,6极同步转速是1000r/min,8极同步转速是750r/min。
这几种速度都只是各种极数电机的同步转速,而非实际转速.
异步电机转子的转速总是低于或高于其旋转磁场的转速,异步之名由此而来。
异步电机转子转速与旋转磁场转速之差(称为转差)通常在10%以内。
由此可知,交流电机(不管是同步还是异步)的转速都受电源频率的制约。
7.5kW 2极高效三相异步电机计算程序.
7.5kW 2极高效三相异步电机计算程序
设计高效三相感应电动机,型号是HMS132S2-2 7.5kW。
给定数据:输出额定功率P N=7.5kW,额定电压U N=400V(∆接法),额定频率为50HZ,极数P是2,相数m1=3.
表4-1三相异步电动机HMS132S2-2 7.5kW手算步骤与结果
4.2电磁方案的调整
判断电磁方案是否可行的话得看它的电磁性能能否满足设计任务书的要求,还要看它是否能够节约材料,节约加工时间和效率等因素,既要符合技术要求又要经济性能。
因此,设计异步电机时,1、好的优化设计并不够。
2、研究一下先进的技术和工艺,采用更加优良的材料。
经过这些处理,才能够设计并且造就出性能好的异步电机。
前面几章,重点介绍了电磁设计的原理与计算,参数计算以及启动性能的各方面计算,并且确定了三相异步电动机的转子、定子、铁心、端环等各种尺寸和数据。
如果经过核算得到设计的三相异步电动机的一些性能,这些性能并不能使得电机能够高效率的运行,那就得找出原因并且对电磁方案进行调整。
因为三相异步电机的各参数和性能是分不开的,所以采取某些措施来提高三相异步电机的各方面性能,必然会使其他的性能参数发生一些改变。
调整方案的过程中要系统
的分析与安排,并且有步骤的进行调整。
该过程可能比较复杂,所以得细心,要多次调整直到达到满意的结果。
对于提高电磁方案有许多方面。
我们可以调高效率η、提高功率因数cos α或者降低启动电流st I 以及提高启动转矩st T 都可以优化电机的电磁性能并使得电机能够高效的运行。
三相异步电动机课件ppt课件
4.1.2 三相异步电动机的基本工作原理
一、转动原理
1、电生磁:三相对称绕组通
往三相对称电流产生圆形旋转 磁场。
2、磁生电:旋转磁场切割
转子导体感应电动势和电流。
3、电磁力:转子载流(有功
分量电流)体在磁场作用下受 电磁力作用,形成电磁转矩, 驱动电动机旋转,将电能转化 为机械能。
V2
W1
n1
每个整距绕组由Nc个相同和线匝组成,每个整距线圈的 电动势:
E y1(y ) Nc Et1 4.44 fNc 1
第4章 三相异步电动机
三、短距线圈的电动势 每个短距线圈的电动势:
E y1( y ) 4.44 fNcΦ1k y1
ky1
E y1(yτ) E y1(yτ)
sin(
Fp1 2 Fq1k y1 0.9( 2 qNc ) k y1kq1Ic
第4章 三相异步电动机
3、相绕组的磁动势
每个极下的磁动势和磁阻构成一条分支磁路。若电机有p 对磁极,就有p条并联的对称分支磁路,所以一相绕组的基波 磁动势就是该绕组在一对磁极下线圈所产生的基波磁动势,若 每相电流为Ip:
第4章 三相异步电动机
双层绕组的特点:
1)线圈数等于槽数;
2)线圈数组数等于极数,也等于最大并联支路数;
3)每相绕组的电动势等于每条支路的电动势。
可组成较 多的并联 支路
可以选择最有利的节
距,使电动势和磁动
优 势波形更接近正弦波 点
所有线圈的形状 和尺寸相同,便 于实现机械化
端部排列整齐 机械强度高
部连线较长适用于q468等偶数的2极小型三相第4章三相异步电动机优点优点元件少结构简单嵌线方便槽内无层间绝缘槽内无层间绝缘元件少结构简单嵌线方便广泛应用于10kw以下的广泛应用于10kw以下的异步电动机定子绕组异步电动机定子绕组单层绕组为整距绕组整距绕组单层绕组为三相单层绕组的优缺点不适宜于大中型电机缺点电动势和磁动势波形较差势波形较差电动势和磁动铁损和噪声较大声较大铁损和噪起动性能较差第4章三相异步电动机423423三相双层绕组三相双层绕组双层绕组每个槽内放上下两层线圈的有效边线圈的每一个有效边放在某一槽的上层另一个有效边则放置在相隔为y的另一槽的下层
三相异步水泵电机的故障原因和处理
三相异步水泵电机的故障原因和处理三相异步水泵电机的故障原因和处理:绕组是电动机的组成部分,老化,受潮、受热、受侵蚀、异物侵入、外力的冲击都会造成对绕组的伤害,电机过载、欠电压、过电压,缺相运行也能引起绕组故障三相异步水泵电机的故障原因和处理绕组是水泵电动机的组成部分,老化,受潮、受热、受侵蚀、异物侵入、外力的冲击都会造成对绕组的伤害,电机过载、欠电压、过电压,缺相运行也能引起绕组故障。
绕组故障一般分为绕组接地、短路、开路、接线错误。
现在分别说明故障现象、产生的原因及检查方法。
一、三相异步水泵电机绕组接地指绕组与贴心或与机壳绝缘破坏而造成的接地。
1、水泵电机故障现象机壳带电、控制线路失控、绕组短路发热,致使电动机无法正常运行。
2、水泵电机产生原因绕组受潮使绝缘电阻下降;电动机长期过载运行;有害气体腐蚀;金属异物侵入绕组内部损坏绝缘;重绕定子绕组时绝缘损坏碰铁心;绕组端部碰端盖机座;定、转子磨擦引起绝缘灼伤;引出线绝缘损坏与壳体相碰;过电压(如雷击)使绝缘击穿。
3.水泵电机检查方法(1)观察法。
通过目测绕组端部及线槽内绝缘物观察有无损伤和焦黑的痕迹,如有就是接地点。
(2)万用表检查法。
用万用表低阻档检查,读数很小,则为接地。
(3)兆欧表法。
根据不同的等级选用不同的兆欧表测量每组电阻的绝缘电阻,若读数为零,则表示该项绕组接地,但对电机绝缘受潮或因事故而击穿,需依据经验判定,一般说来指针在“0”处摇摆不定时,可认为其具有一定的电阻值。
(4)试灯法。
如果试灯亮,说明绕组接地,若发现某处伴有火花或冒烟,则该处为绕组接地故障点。
若灯微亮则绝缘有接地击穿。
若灯不亮,但测试棒接地时也出现火花,说明绕组尚未击穿,只是严重受潮。
也可用硬木在外壳的止口边缘轻敲,敲到某一处等一灭一亮时,说明电流时通时断,则该处就是接地点。
(5)电流穿烧法。
用一台调压变压器,接上电源后,接地点很快发热,绝缘物冒烟处即为接地点。
应特别注意小型电机不得超过额定电流的两倍,时间不超过半分钟;大电机为额定电流的20%-50%或逐步增大电流,到接地点刚冒烟时立即断电。
7.5kW 2极高效三相异步电机计算程序
7.5kW 2极高效三相异步电机计算程序
设计高效三相感应电动机,型号是HMS132S2-2 7.5kW。
给定数据:输出额定功率P N=7.5kW,额定电压U N=400V(∆接法),额定频率为50HZ,极数P是2,相数m1=3.
表4-1三相异步电动机HMS132S2-2 7.5kW手算步骤与结果
4.2电磁方案的调整
判断电磁方案是否可行的话得看它的电磁性能能否满足设计任务书的要求,还要看它是否能够节约材料,节约加工时间和效率等因素,既要符合技术要求又要经济性能。
因此,设计异步电机时,1、好的优化设计并不够。
2、研究一下先进的技术和工艺,采用更加优良的材料。
经过这些处理,才能够设计并且造就出性能好的异步电机。
前面几章,重点介绍了电磁设计的原理与计算,参数计算以及启动性能的各方面计算,并且确定了三相异步电动机的转子、定子、铁心、端环等各种尺寸和数据。
如果经过核算得到设计的三相异步电动机的一些性能,这些性能并不能使得电机能够高效率的运行,那就得找出原因并且对电磁方案进行调整。
因为三相异步电机的各参数和性能是分不开的,所以采取某些措施来提高三相异步电机的各方面性能,必然会使其他的性能参数发生一些改变。
调整方案的过程中要系统
的分析与安排,并且有步骤的进行调整。
该过程可能比较复杂,所以得细心,要多次调整直到达到满意的结果。
对于提高电磁方案有许多方面。
我们可以调高效率η、提高功率因数cos α或者降低启动电流st I 以及提高启动转矩st T 都可以优化电机的电磁性能并使得电机能够高效的运行。
三相交流电机的分类及特点
三相交流电机的分类及特点1、三相异步电动机(鼠笼)(无刷)(1)结构:转子:鼠笼定子:3绕组(2)原理:三相异步电机(Triple-phase asynchronousmotor)是感应电动机的一种,同时接入380V三相交流电流(相位差120度)形成旋转磁场,鼠笼产生感应电流,进而运动。
靠感应来实现运动,定子旋转磁场切割鼠笼,使鼠笼产生感应电流,感应电流受力使转子旋转。
转子转速与定子旋转磁场转速必须有转速差才能形成磁场切割鼠笼,产生感应电流。
(3)启动:星三角启动、降压启动。
(4)换向:交换定子三相中任意两个接头的接线。
(5)调速:调速困难。
(6)特点:由于三相异步电动机的转子与定子旋转磁场以相同的方向、不同的转速旋转,存在转差率,所以叫三相异步电动机。
三相异步电动机转子的转速低于旋转磁场的转速,转子绕组因与磁场间存在着相对运动而产生电动势和电流,并与磁场相互作用产生电磁转矩,实现能量变换。
与单相异步电动机相比,三相异步电动机运行性能好,并可节省各种材料。
按转子结构的不同,三相异步电动机可分为笼式和绕线式两种。
笼式转子的异步电动机结构简单、运行可靠、重量轻、价格便宜,得到了广泛的应用,其主要缺点是调速困难。
2、绕线式三相异步电动机(有滑环)(1)结构:转子:3绕组+3个滑环定子:3绕组(2)原理:与三相异步电机相同。
(3)启动:1)转子串电阻调速启动;2)转子串频敏变阻器调速启动;3)转子串极调速启动;4)转子串水电阻调速启动;5)转子串变频调速启动;(4)换向:交换定子三相中任意两个接头的接线。
(5)调速:同启动。
(6)特点:绕线式三相异步电动机的转子和定子一样也设置了三相绕组并通过滑环、电刷与外部变阻器连接。
调节变阻器电阻可以改善电动机的起动性能(启动电流小)和调节电动机的转速,适合启动时间较长、频繁启动的场所。
绕线式异步电动机的使用,一般是在一些需要较大启动转矩的场合,比如吊车(起重机)磨球机、破碎机等。
Y2系列三相异步电动机主要技术数据
Y2系列三相异步电动机主要技术数据(H63~355mm)编辑:电机维修网-电动机维修网发表时间:2008-10-9 阅读次数:7254 主要技术数据Y2系列(IP54)电动机的主要数据见表5;Y2-E系列(IP54)电动机的效率、功率因数值见表6;Y2-E系列(IP54)电动机的堵转转矩对额定转矩、堵转电流对额定电流之比的保证值见表7;Y2系列电动机空载时测得的A计权声功率级的噪声值见表8;Y2系列电动机在负载时测得A计权声功率级的噪声值为表8和表9之和的数值;Y2系列电动机在空载时测得振动速度有效值见表10。
表5型号额定功率/kW 满载时堵转电流堵转转矩最大转矩转动惯量/(kg·m2)净重/kg转速/(r/min)电流/A 效率(%)功率因数额定电流额定转矩额定转矩同步转速3000r/min2极Y2-631-2 0.18 2720 0.53 65.0 0.80 5.5 2.2 2.3 ——Y2-632-2 0.25 0.69 68.0 0.81Y2-711-2 0.37 2740 0.99 70.0 0.81 6.1 2.2 2.3 ——Y2-712-2 0.55 1.4 73.0 0.82Y2-801-2 0.75 2830 1.83 75.0 0.83 6.1 2.2 2.3 0.00075 16Y2-802-2 1.1 2.55 77.0 0.84 7.0 0.00090 17Y2-90S-2 1.5 2840 3.40 79.0 0.0012 22Y2-90L-2 2.2 4.80 81.0 0.85 0.0014 25Y2-100L-2 3.0 2870 6.31 83.0 0.87 7.5 0.0029 33Y2-112M-2 4.0 2890 8.23 85.0 0.88 0.0055 45Y2-132S1-2 5.5 2900 11.18 86.0 0.01099 64Y2-132S2-2 7.5 15.06 87.0 0.0126 70Y2-160M1-2 11 2930 21.35 88.0 0.89 0.0377 117Y2-160M2-2 15 28.78 89.0 0.0449 125Y2-160L-2 18.5 34.72 90.0 0.90 0.055 147Y2-180M-2 22 2940 41.28 90.5 2.0 0.0075 180Y2-200L1-2 30 2950 55.37 91.2 0.124 240Y2-200L2-2 37 67.92 92.0 0.139 255Y2-225M-2 45 2970 82.16 92.3 0.233 309Y2-250M-2 55 100.1 92.5 0.312 403Y2-280S-2 75 134.0 93.2 0.91 0.597 544Y2-280M-2 90 160.27 93.8 0.675 620Y2-315S-2 110 2980 195.46 94.0 7.1 1.8 2.2 1.18 980Y2-315M-2 132 233.3 94.5 1.82 1080Y2-315L1-2 160 279.44 94.6 0.92 2.08 1160Y2-315L2-2 200 347.83 94.8 2.41 1190Y2-355L-2 315 543.25 95.6 4.16 1850续同步转速1500r.min4极Y2-631-4 0.12 1310 0.44 57.0 0.72 4.4 2.1 2.2 ——Y2-632-4 0.18 0.62 60.0 0.73 ——Y2-711-4 0.25 1330 0.79 65.0 0.74 5.2 ——Y2-712-4 0.37 1.12 67.0 0.75 ——Y2-801-4 0.55 1390 1.57 71.0 0.75 5.2 2.4 2.3 0.0018 17 Y2-802-4 0.75 2.03 73.0 0.77 6.0 2.3 0.0021 18Y2-90S-4 1.1 1400 2.82 75.0 7.0 0.0021 22Y2-90L-4 1.5 3.7 78.0 0.79 0.0027 27Y2-100L1-4 2.2 1430 5.16 80.0 0.81 0.0054 34Y2-100L2-4 3.0 6.78 82.0 0.82 0.0067 38Y2-112M-4 4.0 1440 8.83 84.0 0.0095 43Y2-132S-4 5.5 11.7 85.0 0.83 0.0214 68Y2-132M-4 7.5 15.6 87.0 0.84 7.5 2.2 0.0296 81Y2-160M-4 11 1460 22.35 88.0 0.85 0.0747 123Y2-160L-4 15 30.14 89.0 7.2 0.0918 144Y2-180M-4 18.5 1470 36.47 90.5 0.139 182Y2-180L-4 22 43.14 91.0 0.158 190Y2-200L-4 30 57.63 92.0 0.86 0.262 270Y2-225S-4 37 1480 69.89 92.5 0.87 0.406 284Y2-225M-4 45 94.54 92.8 0.469 320Y2-250M-4 55 103.1 93.0 0.66 427Y2-280S-4 75 139.7 93.8 1.12 562Y2-280M-4 90 1490 166.93 94.2 6.9 2.1 1.46 667Y2-315S-4 110 201.06 94.5 0.880.89 3.11 1000Y2-315M-4 132 240.57 94.8 3.62 1100Y2-315L1-4 160 287.95 94.9 4.13 1160Y2-315L2-4 200 358.8 95.0 4.94 1270Y2-355M-4 250 442.12 95.3 0.90 5.67 1700Y2-355L-4 315 555.32 95.6 6.66 1850同步转速1000r/min6极Y2-711-6 0.18 850 0.74 56.0 0.66 4.0 1.9 2.0 ——Y2-712-6 0.25 850 0.95 59.0 0.68 ——0.37 890 1.3 62.0 0.70 4.7 0.00158 17Y2-802-6 0.55 1.79 65.0 0.72 2.1 0.0021 19Y2-90S-6 0.75 910 2.26 69.0 0.72 5.5 2.0 0.0029 23Y2-90L-6 1.1 3.14 72.0 0.73 0.0035 25Y2-100L-6 1.5 940 3.95 76.0 0.75 0.0069 33Y2-112M-6 2.2 5.57 79.0 0.76 6.5 0.0138 45Y2-132M1-6 4.0 9.64 82.0 0.0357 73Y2-132M2-6 5.5 12.93 84.0 0.77 0.0449 84Y2-160M-6 7.5 970 17.0 86.0 0.77 2.0 0.0881 119Y2-160L-6 11 24.23 87.5 0.78 0.116 147Y2-180L-6 15 31.63 89.0 0.81 7.0 0.207 195Y2-200L1-6 18.5 38.1 90.0 2.1 0.315 220Y2-200L2-6 22 44.52 90.0 0.83 0.360 250Y2-225M-6 30 980 58.63 91.5 0.84 2.0 0.547 292Y2-250M-6 37 71.08 92.0 0.86 2.1 0.834 408Y2-280S-6 45 85.98 92.5 2.0 1.39 536Y2-280M-6 55 104.75 92.8 1.65 595Y2-315S-6 75 990 141.75 93.5 2.0 4.11 990Y2-315M-6 90 169.58 93.8 4.28 1080Y2-315L1-6 110 206.83 94.0 6.7 5.45 1150Y2-315L2-6 132 244.82 94.2 0.87 6.12 1210Y2-355M1-6 160 291.52 94.5 0.88 1.9 8.85 1600Y2-355M2-6 200 363.64 94.7 9.55 1700Y2-355L-6 250 453.60 94.9 10.63 1800同步转速750r/min8极Y2-801-8 0.18 630 0.88 51.0 0.61 3.3 1.8 1.9 0.00158 17 Y2-802-8 0.25 640 1.15 54.0 0.0021 19Y2-90S-8 0.37 660 1.49 62.0 4.0 0.0029 23Y2-90L-8 0.55 2.18 63.0 2.0 0.0035 25Y2-100L-8 0.75 690 2.43 71.0 0.67 0.0069 33Y2-100L2-8 1.1 3.42 73.0 0.69 5.0 0.0107 38Y2-112M-8 1.5 380 4.47 75.0 0.0149 50Y2-132S-8 2.2 710 6.04 78.0 0.71 6.0 0.0314 63Y2-132M-8 3.0 7.9 79.0 0.73 0.0395 79Y2-160M1-8 4.0 720 10.28 81.0 0.73 1.9 0.0753 118Y2-160M2-8 5.5 13.61 83.0 0.74 2.0 0.0931 119Y2-160L-8 7.5 17.88 85.5 0.75 0.126 145Y2-180L-8 11 730 25.29 87.5 0.76 6.6 0.203 184Y2-200L-8 15740 34.09 88.0 0.339 250Y2-225S-8 18.5 40.58 90.0 1.9 0.491 266Y2-225M-8 22 740 47.37 90.5 0.78 0.547 292Y2-250M-8 30 63.43 91.0 0.79 0.834 405Y2-280S-8 37 76.83 91.5 1.39 520Y2-280M-8 45 92.93 92.0 1.65 592Y2-315S-8 55 112.97 92.8 0.81 1.8 4.79 1000Y2-315M-8 75 151.33 93.0 5.58 1100Y2-315L1-8 90 177.86 93.8 0.82 6.37 1160Y2-315L2-8 110 216.92 94.0 6.4 7.23 1230Y2-355M1-8 132 260.3 93.7 10.55 1600Y2-355L-8 200 386.36 94.5 0.83 12.86 1800同步转速600r/min10极Y2-315S-10 45 590 99.67 91.5 0.75 6.2 1.5 2.0 4.79 810Y2-315M-10 55 121.16 92.0 0.75 6.37 930Y2-315L1-10 75 162.16 92.5 0.76 7.0 1045Y2-315L2-10 90 191.03 93.0 0.77 7.15 1115Y2-355M1-10 110 230 93.2 0.78 6.0 1.3 12.55 1500Y2-355M2-10 132 275.11 93.5 13.75 1600Y2-355L-10 160 333.47 93.5 14.86 1700表6 Y2-E系列(IP54)的效率、功率因数功率/kW 同步转速/(r/min)3000 1500 1000 3000 1500 1000效率(%)功率因数0.55 — 73.5 —— 0.75 —0.75 77.0 75.5 72.5 0.83 0.77 0.711.1 79.0 76.5 74.5 0.84 0.78 0.711.5 80.5 79.5 78.0 0.85 0.78 0.742.2 82.5 82.0 81.0 0.85 0.81 0.753 84.0 83.0 84.0 0.87 0.82 0.764 86.0 86.0 85.5 0.90 0.82 0.765.5 88.0 87.0 86.5 0.90 0.83 0.777.5 88.5 88.0 88.5 0.90 0.85 0.7811 90.5 90.5 89.0 0.90 0.85 0.8015 91.0 91.0 90.5 0.90 0.85 0.8118.5 92.0 92.5 91.5 0.90 0.86 0.8122 91.7 92.8 92.0 0.90 0.86 0.8330 92.7 93.2 93.5 0.90 0.86 0.8537 93.2 94.0 93.5 0.90 0.87 0.8645 94.2 94.2 93.5 0.90 0.87 0.8655 94.5 94.5 93.8 0.90 0.87 0.8675 94.8 94.7 — 0.91 0.87 —90 95.2 95.0 0.91 0.87表7 Y2-E系列的堵转转矩对额定转矩、堵转电流对额定电流之比的保证值功率/kW 同步转速/(r/min)3000 1500 1500 3000 1500 1000堵转转矩/额定转矩堵转电流/额定电流0.55 — 2.4 —— 6.0 —0.75 2.2 2.1 7.0 5.61.12.3 6.51.5 6.42.2 7.13 8.04 7.05.57.5 2.1 1.911 2.1 7.71518.5 8.22230 1.9 1.8 7.3 7.337 1.745 1.7 1.855 1.575 2.0 ——90表8 Y2系列电动机空载时测得的A计权声功率级的噪声值功率/kW 同步转速/(r/min)3000 1500 1000 750 600声功率级/dB(A)0.12 — 52 ——0.18 61 52 52 520.25 61 55 52 520.37 64 55 54 560.55 64 58 54 560.75 67 58 57 591.1 67 61 57 591.5 72 61 61 612.2 72 64 65 643.0 76 64 69 644.0 77 64 69 685.5 80 71 69 687.5 80 71 73 6811 86 75 73 7015 86 75 73 7318.5 86 76 76 7322 89 76 76 7330 92 79 76 7537 92 81 78 7645 92 81 80 76 8255 93 83 80 82 8275 94 86 85 82 8290 94 86 85 82 82110 96 93 85 82 90132 96 93 85 90 90160 99 97 92 90 90200 99 97 92 90 —250 103 101 92 ——315 103 101 ———表9功率/kW 同步转速/(r/min)3000 1500 1000 750 600声功率级/dB(A)≤11 2 5 7 8>11~37 2 4 6 7>37~110 2 3 5 6 7>110~315 2 3 4 5 6注:例如要知Y2系列(IP54)0.25kW-4极(同步转速为1500r/min)电动机的负载噪声值,查表8为55dB(A),查表9为5dB(A),故该台电动机的负载噪声60dB(A)。
Y系列3相电机绕组数据
8.9
15
290
205
200
54/
44
70
1---1.5
34
3
组
1---9
双
层
叠
绕
2
路
11.1
18.5
327
230
195
75
1—1.12 1—1.18
32
12.3
22
220
2---1.25
28
13.8
30
368
260
210
80
1—1.3 2—1.4
26
23.8
37
400
285
225
72/
58
85
24
18.4
37
368
245
200
48/
44
80
2---1.05
46
ห้องสมุดไป่ตู้16
1-----12
双层
叠
绕
4路
24.1
4
极
45
235
2—1.3 2—1.4
20
2路
26.3
55
400
260
240
85
3---1.3
36
4
路
34.6
75
445
300
60.
50
100
2—1.25 2—1.3
26
5
1----14
42.1
功率
定子外径
定子内径
铁芯长度
定转槽数
转子内径
线规
每槽线数
相极组
节距
绕
组
形
一文解析三相步进电机与两相步进电机得差距在哪里
一文解析三相步进电机与两相步进电机得差距在哪里众所周知,步进电机主要是依相数来做分类的,通常我们常见的有四相、二相、三相等几类。
所以本文小编主要介绍三相步进电机与两相步进电机得差距在哪里,首先介绍的是它们之间的区别,其次阐述了三相步进电机与两相步进电机步距角之间的差距,具体的跟随小编来详细了解一下。
三相步进电机与两相步进电机的区别1、电机的相数是指电机内部的线圈数不同,两相步进电机电机内部是由2个线圈组成,而三相步进电机内部是由3个线圈。
2、电机的步距角是指电机每走一步的角度,一般市面上二相电机的步距角为0.9°/1.8°、三相的为0.75°/1.5°。
3、电机的尺寸三相的电机一般是大电机,所以尺寸方面一般会比两相的电机大,这也决定了三相步进电机比两相的运行起来平稳性更好。
4、力矩二相的电机的力矩相同尺寸会比三相的力矩稍微大些。
5、精度两相步进电机驱动器的细分功能越来越强大,两相的同样可以达到三相所能达到的精度。
三相步进电机的高速性能好(特性较硬),要比两相步进电机的步距角小,精度更好。
由于扭力随速度升高下降得较慢,所以通常用于精度要求高的场合。
三相步进电机与两相步进电机步距角详解1、决定步距角的因素步进电机分辨率(一圈的步数,360°除以步距角)越高,位置精度越高。
为了得到高分辨率,设计的极数要多。
PM型转子为N与S极在转子的铁心外表面上交互等节距放置,转子极数为N极与S极数之和,为简化讲解,假设极对数为1。
此处确定转子为永久磁铁的步进电机的步距角θs由下式表示,其中Nr为转子极对数,P为定子相数,(本课后面叙述的HB型步进电机Nr为转子齿数):上式的物理含义如下:转子旋转一周的机械角度为360。
,如用极数2Nr去除,相当于一个极所占的机械角度即180°/Nr。
这就是说,一个极的机械角度用定子相数去分割就得到步距角,此概念如下图所示。
电动机的极数什么意思?2极,4极,6极什么区别
电动机的极数是什么意思?2极,4极,6极有什么区别?下面台州恒富电机厂带您一起来探讨一下。
三相异步电机“极数”是指定子磁场磁极的个数。
定子绕组的连接方式不同,可形成定子磁场的不同极数。
选择电动机的极数是由负荷需要的转速来确定的,电动机的极数直接影响电动机的转速,电动机转速=60乘以频率再除以电动机极对数,即n=60f/p (注意:P为电机极对数,例如2极的电机p=1=电机极数/2,而不是直接的电机的极数2)。
电动机的电流只跟电动机的电压、功率有关系。
绕组的一来一去才能组成回路,也就是磁极对数,是成对出现的,极就是磁极的意思,这些绕组当通过电流时会产生磁场,相应的就会有磁极。
三相交流电机每组线圈都会产生N、S磁极,每个电机每相含有的磁极个数就是极数。
由于磁极是成对出现的,所以电机有2、4、6、8……极之分。
电机的极数与同步转速是对应的,(电机的极数与电机的同步转速成反比,电机极数越多,转速越低),即:
2极的电机的同步转速为3000r/min
4极的电机的同步转速为1500r/min
6极的电机的同步转速为1000r/min
8极的电机的同步转速为750r/min。
三相异步电动机启动、调速、正反转的常用方法
三相异步电动机启动、调速、正反转的常用方法
三相异步电动机是工业中常见的一种电动机类型,常用于驱动各种设备和机械。
下面介绍三相异步电动机的启动、调速、正反转的常用方法。
1. 启动方法:
(1) 直接启动:将电动机直接接通电源,并通过起动器启动,使电动机正常运转。
(2) 降压启动:采用降压起动器,通过降低电动机起动时的供电电压,减小启动电流,实现平稳起动。
(3) 自耦变压器启动:使用自耦变压器,先将电动机通过变压器接通降压启动,然后再切换到全压运行。
2. 调速方法:
(1) 换向极调速:在电机的定子绕组上安装两个或多个绕组,通过选择并联或串联不同的绕组,改变定子磁通路径,实现调速。
(2) 变频调速:通过改变电源的频率,控制电动机的转速。
常用的方法包括整流变频调速、逆变变频调速等。
3. 正反转方法:
(1) 切换反向起动器:在启动过程中,根据需要切换反向起动器,使电动机按照相反的方向旋转。
(2) 通过控制电源的相序:调整电源的相序,使电动机启动时的旋转方向相反。
总结起来,三相异步电动机的常用启动方法包括直接启动、降
压启动和自耦变压器启动;常用调速方法包括换向极调速和变频调速;常用正反转方法包括切换反向起动器和控制电源相序。
这些方法可以根据具体的工业应用需求进行选择和组合使用。
三相异步电动机的极对数2,转差率0.06
一、概述三相异步电动机作为重要的电机类型,其极对数和转差率对于电动机的性能具有重要的影响。
本文将针对三相异步电动机的极对数为2和转差率为0.06进行深入探讨,分析其对电动机性能的影响和作用机理。
二、三相异步电动机的极对数为21. 极对数的概念和作用极对数是电动机的一个重要参数,它影响着电动机的运行特性和性能。
极对数越大,电动机的机械特性和电气特性都会发生相应的变化。
三相异步电动机的极对数为2,意味着电动机内部的磁极对数为2。
2. 极对数为2的三相异步电动机特点(1) 启动转矩较大:极对数为2的三相异步电动机启动时具有较大的启动转矩,适合用于启动需要较大转矩的负载设备。
(2) 频率较高:极对数为2的三相异步电动机工作时产生的旋转磁场频率较高,适合用于高速运转的场合。
(3) 惯量较小:极对数为2的三相异步电动机的惯性较小,响应速度快,适合需要快速启停和转速变化的应用场合。
三、三相异步电动机的转差率为0.061. 转差率的概念和作用转差率是三相异步电动机的另一个重要参数,它是描述电动机转子旋转速度和旋转磁场速度之间的差异程度。
转差率为0.06意味着电动机的转子转速与旋转磁场速度之间的差异为0.06。
2. 转差率为0.06的三相异步电动机特点(1) 转速稳定:转差率为0.06的三相异步电动机具有较稳定的转速特性,在稳态工作时转速波动较小。
(2) 转矩输出较大:转差率为0.06的三相异步电动机在负载变化时,可以快速调整输出转矩,使得其适用于负载要求频繁变化的场合。
四、极对数和转差率对电动机性能的影响1. 启动性能极对数和转差率对于电动机的启动性能具有重要影响。
极对数为2的三相异步电动机具有较大的启动转矩,能够快速启动负载设备。
而转差率为0.06的电动机则能够保持较稳定的转速,在启动过程中转速波动较小。
2. 负载适应性极对数为2和转差率为0.06的三相异步电动机具有较好的负载适应性,能够在负载要求频繁变化的场合稳定运行,并快速调整输出转矩和转速,使得其适用范围更广。
三相异步电机和两相异步电机
三相异步电机和两相异步电机
首先,让我们从结构上来比较这两种电机。
三相异步电机由三
个绕组组成,每个绕组相互位移120度,这种结构使得电机能够产
生旋转磁场,从而驱动转子转动。
而两相异步电机由两个绕组组成,通常是一个主绕组和一个辅助绕组,这种结构使得电机在启动时需
要一些外部辅助设备来产生旋转磁场,如启动电容器或者外部的起
动线圈。
其次,从工作原理上来比较,三相异步电机的工作原理是利用
三相交流电源产生的旋转磁场来感应出转子中的感应电动势,从而
使得转子转动。
而两相异步电机在启动时需要通过外部辅助设备来
产生一个起始转矩,一旦转子转动起来,它就可以继续运行,但是
它的起动过程相对于三相异步电机来说更为复杂。
另外,从性能特点上来比较,三相异步电机通常具有较高的效
率和较好的动态特性,因此在工业领域中得到广泛应用,例如空调、水泵、风扇等。
而两相异步电机由于其结构和工作原理的限制,通
常功率较小,用于一些家用电器或者轻工业领域。
最后,从应用领域来比较,三相异步电机在工业生产中应用广
泛,而两相异步电机则多用于一些家用小型电器中,例如洗衣机、冰箱等。
综上所述,三相异步电机和两相异步电机在结构、工作原理、性能特点和应用领域上都存在一些差异,选择何种类型的电机取决于具体的应用需求和性能要求。
希望这些信息能够对你有所帮助。
三相异步电动机同步转速
三相异步电动机同步转速
1、异步电动机的同步转速是指加在电机输入端的交流电产生的旋转磁场的速度,这个速度就叫同步速度,计算公式是n=60f/P,f:交流电的频率,P:电机极对数,以国内电网50Hz为例,对于4极电机(2对极)的同步速度=60×50/2=1500RPM。
2、异步电动机的转子速度在理论空载下等于同步速度,但实际上不可能做到。
两者之差为转差速度,这个值除以同步速度则得到转差率。
负载越大,转子速度越小,转差率越大。
实际应用中:电机铭牌上的速度为转子速度。
三相异步电动机同步转速与电机极数有关:
2电机同步转速为3000转/分。
4电机同步转速为1500转/分。
6电机同步转速为1000转/分。
8电机同步转速为750转/分。
额定转速与电机转差率有关,转差率各个厂家的产品有差异,一般在4%左右。
比如4极电机的额定转速一般在1440转/分左右。
三相电机,六套线圈,就是2极电机?
三相电机,六套线圈,就是2极电机?
一、故障描述
一台37KW三相异步笼型电机,定子线圈大修重绕,支配完成后,成品试车,通电后电机不转动,有电磁声、定子电流三相平衡。
电机铭牌照片:
二、问题分析
电机再次解体,对照工作记录本的原来数据,接线方式为2极2路角接,检查接线准确,没有发现故障原因。
再次分析原始记录数据,单层同心式绕组,节距为1-16、2-15、3-14、4-13,每组线圈数为4,定子槽数为48,判断应该为4极电机的绕组分布。
三、故障处理
绕组接线方式改为4极2路角接,装配后,成品试车正常。
四、补充知识
电机绕组“显极式绕组”与“庶极式绕组”的区别
1.显极式绕组
在显极式绕组中,每个(组)线圈形成一个磁极,绕组的线圈(组)数与磁极数相等。
为了要使磁极的极性N和S相互间隔,相邻两个线圈(组)里的电流方向必须相反,即相邻
两个线圈(组)的连接方式必须尾端接尾端,首端接首端(电工术语为“尾接尾、头接头”),也即反接串联方式。
2.庶极式绕组
在庶极式绕组中,每个(组)线圈形成两个磁极,绕组的线圈(组)数为磁极数的一半,因为另半数磁极由线圈(组)产生磁极的磁力线共同形成。
每个线圈(组)所形成的磁极的极性都相同,因而所有线圈(组)里的电流方向都相同,即相邻两个线圈(组)的连接方式应该是尾端接首端(电工术语为“尾接头”),即顺接串联方式。
两极三相异步电动机
两极三相异步电动机
两极三相异步电动机是一种常见的电动机类型,它的工作原理是利用旋转磁场的作用,将电能转化为机械能。
这种电动机通常用于工业生产中的各种机械设备,如风扇、水泵、压缩机等。
两极三相异步电动机的名称中,两极指的是电动机的磁极数,三相则表示电动机的电源是三相交流电。
这种电动机的转速与电源频率成正比,通常在50Hz的电源下,转速为1500转/分。
由于其结构简单、可靠性高、维护方便等优点,两极三相异步电动机被广泛应用于各种工业领域。
两极三相异步电动机的工作原理是利用电磁感应的原理,通过三相交流电源产生的旋转磁场,使电动机的转子产生转动。
当电动机的转子转动时,它会在定子上产生感应电动势,从而产生电流,这个电流会产生一个磁场,与旋转磁场相互作用,从而使电动机的转子继续转动。
两极三相异步电动机的优点是结构简单、可靠性高、维护方便等。
同时,它还具有高效率、低噪音、低振动等特点,因此被广泛应用于各种工业领域。
但是,由于其转速与电源频率成正比,因此在一些特殊的应用场合中,需要采用变频器等设备来调节电源频率,以满足不同的工作要求。
两极三相异步电动机是一种常见的电动机类型,它的工作原理是利
用旋转磁场的作用,将电能转化为机械能。
它具有结构简单、可靠性高、维护方便等优点,被广泛应用于各种工业领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ansoft RMxprt Application NoteTwo-Pole Three-Phase Induction Motor ProblemThis application note describes how to set up, solve, and analyze the results of a two-pole, three-phase induction motor using RMxprt. The model created by RMxprt will then be used as an input for EMpulse as a basis for performing a more detailed analysis and for increasing the accuracy of the performance pre-dictions.RMxprt uses a combination of analytical and magnetic circuit equations to predict the performance of this motor. EMpulse is a nonlinear time-domain finite element analysis (FEA) software package that solves electromagnetic field equations, electric circuit equations, and equations of motion.You can create the project from scratch or open the pre-solved project,called3ph.pjt,located in the/ansoft/ examples/rmxprt/directory.If you are creating a project from scratch,select Three-Phase Induction Motors as the motor type in RMxprt.This project was created using version 3.0 of RMxprt and version 8.0 of Maxwell 2D.Motor CharacteristicsThe three-phase induction motor operates by producing a torque, which turns the rotor. To accomplish this, the rotating stator field is set up by out-of-phase currents in the stator windings. The magnetic field established in the stator induces an electromotive force (EMF)in the rotor bars,and a current flow is then established in these rotor bars. The rotor magnetic field created by the rotor currents is of opposite polar-ity than the stator field pole that generated it, so the rotor’s polarity is attracted to the stator’s opposite polarity. This effect produces the torque, and the rotor turns.The following table lists the characteristics of the three-phase induction motor used in this example:The figure on the previous page shows the geometry used in this example.Number of poles2Number of stator slots36Number of rotor slots28Stator outer diameter (inches)10.125Rotor outer diameter (inches)5.525Shaft diameter (inches)1.875Air gap (inches)0.046Stack length (inches)9.5General DataUse the General window to define the general data for the motor, such as the output power, number of poles, frequency and motor speed.Define the Wire Gauge➤Before generating the model, select the English units and the American wire setting:1.Choose Tools/Options ,make certain the Wire Setting is set to American (AWG),and then choose OK .2.Choose Tools/Model Units , and select English Unit .3.When you change the units before entering data, a message appears telling you that the Rated Output Power must be greater than 0. Choose Ignore , then start entering your data. Do notchoose Modify ; if you do so, RMxprt will revert to metric units.4.Choose Materials/Wire to view the wire data.5.Choose Exit to close the wire data, and do not save the settings.If you do not use this command to view the wire data, then RMxprt may fail to list values for the wire Gauge setting in the Stator2 window.Define the General Data➤Define the general data:1.Choose the General window tab.2.Enter 70.87kW in the Rated Output Power field for this two-pole motor.This is the mechanical power developed at the shaft. This value is equal to a 95 horsepower motor.3.Enter 460 kW in the driving RMS line-to-line Rated Voltage field.4.Enter 2 in the Number of Poles field.5.Enter 60 Hz in the Frequency field.6.Enter 3502 rpm in the Rated Speed field. This is the speed of the motor.7.Enter 1276 W in the Stray Loss field. If the measured stray load loss is unavailable, NEMA MG1[1],paragraph 20.52,states that this value shall be assumed to be 1.2%of the rated output for motors rated less than 2500 hp and 0.9% for motors rated 2500 hp and greater. IEEEStandard 112 [2] gives different assumed stray load loss values for motors rated less than2500hp. They are as follows:In this example, follow the IEEE guidelines, and use 1.8% or 1276 watts.8.Enter 700 W in the Friction Loss field. This value contains both the friction and wind losses at the given speed.9.Enter 9.5 inches in the Iron Core Length field. This is the length of the stator.10.Enter 0.95in the Stacking Factor field.This gives a value of 9.025inches as the net length of the steel, after taking lamination into account.11.Select D23 as the nonlinear Steel Type used in the manufacturing of the stator lamination. To examine the material BH-curve for D23, choose Materials/BH , then choose Open from the B-H Data window, and select D23.h-b . Once the data is loaded in the left window, you can plot the B-H curve for this material or the standard loss (B-P)curve.The specific weight of the material is also displayed. This information is necessary to calculate the iron core loss. Choose Exit to 1-125 hp 1.8%126-500 hp1.5%501-2499 hp 1.2%exit this window and continue the general data input.12.Select Wye as the Winding Connection.13.Select Constant Speed as the Load Type. The load type defines the load curve (torque functionof speed)for the mechanical load at the shaft.This data gives the rated load operating point for the motor. The no-load operation, break-down operation (maximum torque), and lock rotor operation are independent of the load type.14.Leave75o C as the Operating Temperature.Stator DataUse the Stator1 and Stator2 windows to define the stator.Define the Stator DimensionsUse the Stator1 window to define the stator dimensions.➤Define the stator dimensions:1.Choose the Stator1 window tab.2.Enter5.525 inches in the Inner Diameter field to specify the inner diameter of the stator.3.Enter10.125 inches in the Outer Diameter field to specify the outer diameter of the stator.4.Enter36 in the Number of Slots field. This value specifies the number of slots in the stator.5.Select2 as the Slot Type. This indicates the shape of the slot.6.Deselect Auto Design, and enter the following Slot Dimensions:Field ValueHs00.555Hs10.065Hs20.698Bs00.16Bs10.309Bs20.432Define the Stator WindingsUse the Stator2 window to define the stator windings.➤Define the windings:1.Choose the Stator2 window tab.2.Select 21 as the Winding Type . The winding is a double layer lap winding.3.Enter 0percent in both the Top Spare Space and the Bottom Spare Space fields.The spare spaces in the slot are taken to be 0% of the slot’s area.4.Enter 0.01inches in the Slot Insulation field. The slot insulation is the thickness on one side of the stator slot.5.Enter 0in the End Adjustment field.The end adjustment is taken to be the length that the stator windings extend beyond the end of the stator. For this motor, the windings do not extend beyond the stator.6.Enter 1 in the Parallel Branches field, indicating that the coils making up one phase are connected in series.7.Enter 11 in the Conductors per Slot field.8.Enter 16 in the Coil Pitch field. Had the stator used a full pitch winding, then the coil pitch would be 18 slots (36 slots/2 poles). The winding is wound 2 slots shorter, which results in a coil pitch of 16 slots.9.Enter 4.378in the Wires per Conductor field. This is not the actual number, but the equivalentnumber that gives the total wire cross-sectional area. (One conductor is made up of two 15AWG wires and of three 16 gauge wires.)10.Enter 0.01inches in the Wire Wrap field. This value represents the thickness of the wire wrap.11.Enter 0.057087inches in the Wire Diameter field. When you enter this value, the Gauge setting automatically changes to 15.12.Select 15 as the Gauge for the wire if it did not automatically appear. Wire gauge settings are given in AWG.Mean half length = Length of A + Length of B + Length of CEnd AdjustmentStack lengthRotor DataUse the Rotor1 and Rotor2 windows to define the rotor.Define the Rotor DimensionsUse the Rotor1 window to define the rotor dimensions.➤Define the rotor dimensions:1.Choose the Rotor1 window tab.2.Enter0.046inches in the Air Gap field.This value specifies the width of the air gap between therotor and the stator.3.Enter1.875inches in the Inner Diameter field.The inner diameter of the rotor is the same as theouter diameter of the shaft.4.Select Cast Rotor at the bottom of the window. In this example the rotor is cast, rather thanusing individual bars.5.Enter28 in the No.fields for both the Top slot and the Bottom slot. This defines the number ofrotor slots for both the top and the bottom.6.Select3 as the Slot Type for both the Top and Bottom slots.7.Enter the following dimensions for the Top slot:Field ValueHr00.0215Hr010.0215Hr10.01Hr20.22Br00.01Br10.15Br20.16Rr08.Enter the following dimensions for the Bottom slot:Field ValueHr00Hr10Hr20.44Br00.16Br10.3Br20.2Rr0Define the Rotor VentsUse the Rotor2 window to define the rotor vents.➤Define the rotor vents:1.Choose the Rotor2 window tab.2.Leave Axial Hole selected as the Vent Type. When you select the vent, a figure of the selectedtype appears.3.Enter0 in the Number of Vents field. There are no vents in the rotor.4.Enter0in the Skew Width field.This value defines how much the rotor bars are skewed.In thisexample, there is no skew.5.Enter0 inches in the End Length of Bar field. This value is the length of the gap between theend ring and the rotor core, for only one end of the gap, not both.6.Enter0.815 inches in the End-Ring Height field. This value is the end-ring dimension in theradius direction. The ring’s height covers at least the cross-section of the rotor conductor. The end-ring connects the bars of the rotor to one another.7.Enter1.276inches in the End-Ring Width field.This value is the end ring dimension in the axialdirection.8.Under Bar Resistivity, select Aluminum to define the resistivity. This is the material used inmanufacturing the bars.9.Under End-Ring Resistivity, select Aluminum to define the resistivity. This is the material usedin manufacturing the end ring.Process the Analytical DesignWith the motor data defined, you are ready to generate the model.➤Generate the model:1.Choose Tools/Options,make certain the Wire Setting is set to American(AWG),and choose OK.2.Choose Analysis/Analytical Design. RMxprt calculates the motor performance parameters forthis design. Choose OK when the analysis is complete.Displaying the Lamination and Winding ArrangementOnce the analysis is completed, you can display the laminations on the objects and the winding arrange-ment for the model.➤Display the laminations and the winding arrangement:1.Choose Tools/Options/Lamination, make certain all the Lamination items are checked, andchoose OK.2.Choose Post Process/View Lamination to examine the cross-section of the motor. Choose File/Exit to close the window when you are done viewing the lamination.3.Choose Post Process/View Winding Layout to see the winding arrangement. Choose File/Exitwhen you are done viewing the winding arrangement.Design OutputChoose Post Process/Design Output to examine the motor’s parameters.The Design Output window is bro-ken down into the following sections:GENERAL DATAThis information is the same as the data you entered in the General window.STATOR DATAThis information is generally the same as the data you entered in the Stator1and Stator2windows.If you selected Auto Design, RMxprt displays the optimized values for the windings.ROTOR DATAThis information is the same as the data you entered in the Rotor1 and Rotor2 windows.RATED-LOAD OPERATIONThis section displays information about the main performance parameters in the steady state: current, losses,mechanical torque,and input power,as well as the parameters of the one-phase equivalent circuit: resistance and leakage reactance for the stator winding, and magnetizing reactance for the rotor.NO-LOAD, BREAK-DOWN, AND LOCKED-ROTOR OPERATIONThese sections display information about the motor parameters at different operating conditions.DETAILED DATA AT RATED OPERATIONThis detailed data includes the slot, end-winding, differential, and skewing leakage reactance for the sta-tor winding and the rotor. The sum of these values gives the main leakage reactance as displayed in the Rated-Load Operation section. Other data listed in this area include the winding factor; the stator-teeth,rotor-teeth,stator-yoke,rotor-yoke,and air-gap flux density;and the magnetomotive force.The following table lists additional parameters that are displayed:WINDING ARRANGEMENTThis is the winding arrangement for one full A phase, B phase, and C phase winding. Only one layer arrangement is displayed; the second can be deduced rapidly from the coil pitch. For this example, the winding arrangement is:The Winding Arrangement section also displays the following values (in electrical degrees):TRANSIENT FEA INPUT DATAThis information is used when calculating the motor performance using the 2D time transient finite ele-ment field solver EMpulse.For main and auxiliary windings, this section displays:•the number of turns, as seen from the terminal.•the number of parallel branches.•the terminal resistance.•the end leakage inductance. For the rotor end ring, this section displays both the end-ring resistance and end-ring inductance between two bars at one end, as well as the skew leakage inductance.•the 2D equivalent values for the air-gap and the stacking factors. This section also displays the estimated rotor inertia, without taking into account any mechanical load attached on the shaft.When you have reviewed the output data, choose Exit to exit the Design Output window.Slot Fill Factor (%)The percentage of the available slot area (total slot area minus slot insu-lation) that is filled with the wire (copper plus insulation).Correction Factor The correction factor for the magnetic circuit length for the stator yokeand rotor yoke.Saturation Factor The saturation factor for the teeth field and for the teeth and yoke field.Stator Current Density(A/mm 2)The current density of the stator.Specific Electric Loading (A/mm)The ampere-conductors per meter of armature periphery.Stator Thermal Load (A 2/mm 3)The current density in each slot multiplied by the Specific Electric Load-ing.Half-Turn Length of Stator Winding (inch)The half-turn length of the stator windings.Top layer:AAAAAAZZZZZZBBBBBBXXXXXXCCCCCCYYYYYYBottom layer:YYAAAAAAZZZZZZBBBBBBXXXXXXCCCCCCYYYYAngle per slot 180 electrical degrees divided by the number of slots per pole.Phase-A axis The center of the A phase winding with respect to the phase first slot.First slot center The reference used to calculate phase.Plot the Performance CurvesExamine the performance curves for the model.➤Plot the performance curves:1.Choose Tools/Options, make certain the Maxwell Path points to the Ansoft folder, and chooseOK.2.Choose Post Process/Performance Curves. The PlotData window appears, with an Openwindow visible. The following plot titles are available for you to open:n_curr.dat Input Current vs Speedn_effi.dat Efficiency vs Speedn_pow2.dat Output Power vs Speedn_powf.dat Power Factor vs Speedn_torq.dat Output Torque vs Speed3.Select the name of the plot you want to view.4.Choose OK. The plot appears in the PlotData window. After you’ve opened one plot, choosePlot/Open to open a different plot.For these plots, the speed is measured per unit of the synchronous speed. The followingfigures show three of the performance plots for the sample problem:5.When you have finished viewing the performance curves, choose File/Exit to exit PlotData.Create the Maxwell 2D ProjectNow you can create the Maxwell 2D project.➤Create the Maxwell project:1.Choose Tools/Options, make certain the Periodic and Teeth-Teeth options are enabled, andchoose OK. These options allow you to take advantage of the motor symmetry.2.Choose Analysis/View Geometry. The Maxwell 2D Modeler appears, displaying the geometry.3.Choose File/Exit to exit the Maxwell 2D Modeler.4.Choose Analysis/Create Maxwell 2D Project. Enter a project name and a path for the project inthe Project Name and Path fields.5.Choose Create. A message window appears, informing you that the Maxwell 2D project hasbeen created.6.Choose OK to close the message window.7.Choose File/Save to save the setup.8.Return to the Project Manager to continue with the rest of this example.Leave RMxprt open torefer to later in the example.This completes the RMxprt design of the three-phase induction motor. You can continue the analysis of this design using the time transient FEA software program, EMpulse, to predict the operating perfor-mance of the motor.Examples of Analyzing Motor PerformanceThis section provides some useful exercises for analyzing the changes of the motor’s performance in dif-ferent situations.Y - SwitchingCreate an induction motor designed for a D-armature connection, that can be started with the armatures connected in Y. Examine the starting torque and current for the two cases of the Y-connection and the delta connection.You should obtain the following results:•For the D-connection, the torque is 461 Nm, and the phase current is 527 A.•For the Y-connection, the torque is 105 Nm, and the phase current is 252 A.Multiple Parallel CircuitsThe windings forming one phase may be connected in series or in parallel, providing multiple parallel circuits (parallel branches). Examine the changes in the winding resistance and the phase current at the rated-load operation. You should obtain the following results:•For one parallel branch, the resistance is 0.232 ohms, and the phase current is 69.9 A.•For two parallel branches, the resistance is 0.057 ohms, and the phase current is 214.4 A.Influence of Rotor Resistivity on Locked-Rotor TorqueChange the material for the rotor bars and the end ring. Use copper instead of aluminum, and examine the changes in the value of the locked-rotor torque. Keep the Y connection and two parallel paths. You should obtain the following results:•For aluminum, the locked-rotor torque is 652 Nm.•For copper, the locked-rotor torque is 512 Nm.Finite Element AnalysisNow that the Maxwell 2D project has been created, you can use the EMpulse environment to predict the operating performance of a three-phase induction motor. EMpulse is a nonlinear time-domain FEA soft-ware package that allows you to analyze the electromagnetic (plane parallel) phenomena in electromag-netic devices that are combined with electric circuits and motion.If you only want to open and inspect the finished project, the solved project is called3ph_fea.pjt. If you want to step through the project yourself,open the project you just created in RMxprt,and start from that point.If the project you previously exported from RMxprt does not appear in the projects list, you may need to refresh the list by clicking on the project directory again.Set Up the GeometryThe geometry of the model is already created by RMxprt.➤Open the project, and set up the geometry:1.From the Project Manager in the Maxwell Control Panel,open the Maxwell2D project that wascreated in the previous section. If using the pre-solved project, its name is3ph_fea.pjt. Uponopening the project, notice that the first three options on the Executive Commands menu arealready set:Transient is selected as the Solver,XY Plane is selected as the Drawing plane, andDefine Model already has a check mark next to it.2.Choose Define Model/Draw Model. The Maxwell 2D Modeler appears.3.Choose Window/Change View/Zoom In, and zoom in on the air gap. There is an additionalobject in the air gap called Band,which is used during the solution process to determine whichobjects are stationary and which rotate.4.Choose File/Save to save the file, and choose File/Exit to exit the Maxwell 2D Modeler andreturn to the Executive Commands window.5.Choose Define Model/Group Objects. The Group Objects window appears. RMxprt assignednames to all of the objects in the geometry.6.Group the objects that belong to the same winding,as follows(notice the abbreviations for thenames of the windings):Bar objects Bar0-Bar13PhA objects PhA0-PhA11PhB objects PhB0-PhB11PhReB objects PhReB10, PhReB11PhReC objects PhReC0-PhReC11The stator windings of an induction motor can be grouped into six different objects. However, since the FEA model is only half of the full model,groups PhReA and PhC are not included in the sample drawing.If you assume that the rotor turns counterclockwise (positive torque), the stator windings have to be grouped counterclockwise in the same sequence. In this example, that order is PhA (represented as A), PhReC (represented as C-), PhB (represented as B), and PhReB (represented as B-).The following figure shows the FEA model of the motor:StatorRotorShaftSlave boundary Master boundary7.Choose Exit to return to the Executive Commands menu, and save the changes as you exit.Assign Material PropertiesAfter grouping the objects,you can now assign material properties.Because this example requires materi-als not included in the material database, you must create them in the Material Manager.Add a New MaterialUse the Material Manager to add a new nonlinear material called D23 to the local material database.➤Add a new material:1.Choose Setup Materials from the Executive Commands menu.2.Choose Material/Add , and enter D23 in the name field below Material Properties .3.Select Nonlinear Material , and choose B H Curve . The B-H Curve Entry window appears.4.Choose Import . The Import Data window appears.5.Browse and select the statr_eq.bh file that was created within RMxprt.In most cases,this file is located in c:\ansoft\rmxprt\matlib .6.Make certain that bh Format is selected before importing. Choose OK to import the file.7.Choose Exit to exit the B-H Curve Entry window and return to the Material Manager.8.Choose Enter . The new material is now available in the database for this project.Derive a New MaterialDerive a new conductor material called Aluminium_115, and add it to the local material database.➤Derive the new material:1.Select aluminum from the Material list, and then choose Material/Derive .2.Enter Aluminum_115 in the name field below Material Properties .3.Enter 2.304e7S/m in the Conductivity field.4.Choose Enter to enter the new material in the local material database. This material is now available in the database for this project.Assign the MaterialsAssign the material properties to the objects in the model.➤Assign the materials:1.Assign vacuum to the AirGap and Band .2.Assign Aluminum_115 to the Bar group.3.Assign copper to groups PhA ,PhB ,PhReB , and PhReC .4.Assign D23 to the Rotor and Stator .5.Assign steel_stainless to the Shaft .6.Exclude the background from the model.7.Choose Exit when done assigning materials, and save the changes as you exit the MaterialManager.Note:The rotor bar conductivity is set up for a working temperature of 75 degrees Celsius.The conductivity of the stator windings will not be taken into account if the windings are set up as a stranded conductor.The resistances of the stator windings will be spec-ified later in the Source Setup window.Set the Boundaries and SourcesChoose Setup Boundaries/Sources from the Executive Commands menu. The 2D Boundary /S ource Man-ager appears. The first step in defining the boundary conditions is to define the Maste r/S lave boundary.You then need to define the value boundary and set up the sources.Define the Master BoundaryUse the Edit/Select/Trace command to define the master boundary.➤Define the master boundary:1.Choose Window/New , then Window/Tile to open an additional window and arrange thewindows in tile format.2.Choose Window/Change View/Zoom In , and zoom in on the air gap so that the area where the Band and the inside diameter of the stator cross the x-axis (in the positive direction) can beeasily seen.3.Choose Edit/Select/Trace .4.Starting in the window with the full model shown, click on the center axis of the motor (u=0,v=0), and then click on the Rotor Inside Diameter (u=0.9375, v=0).5.Switch to the window where the air gap is enlarged, and click on the following intersections:•Rotor Outside Diameter (u=2.7165, v=0)•Band (u=2.7395, v=0)•Stator Inside Diameter (u=2.7625, v=0)6.Switch back to the window with the full model, and double-click on the Stator OutsideDiameter (u=5.0625, v=0) to end the master boundary definition.7.Choose Assign/Boundary/Master , and then choose Assign .The master boundary is now assigned.Define the Slave Boundary Again, use the Edit/Select/Trace command to define the slave boundary.➤Define the slave boundary:1.In the window where the air gap is enlarged, use the bottom scroll bar to display the air gap where the Band and the inside diameter of the stator cross the x-axis in the NEGATIVEdirection.2.Choose Edit/Select/Trace .3.Starting in the window with the full model shown, click on the center axis of the motor (u=0,v=0), and then click on the Rotor Inside Diameter (u=-0.9375, v=0).4.Switch to the window where the air gap in enlarged, and click on the following intersections:•Rotor Outside Diameter (u=-2.7165, v=0)•Band (u=-2.7395, v=0)•Stator Inside Diameter (u=-2.7625, v=0)5.Switch back to the window with the full model, and double-click on the Stator OutsideDiameter (u=-5.0625, v=0), to end the slave boundary definition.6.Choose Assign/Boundary/Slave , and select Slave = -Master .7.Choose Assign .The slave boundary is now assigned.Note:When you are solving for an odd number of poles of an electrical machine, use theSlave =-Master symmetry.When solving for an even number of poles,use the Slave =+Master symmetry.Define the Value BoundaryDefine the remaining boundaries.➤Define the value boundary:1.To assign the outside diameter of the stator a zero value boundary, choose Edit/Select/Edge,and click on the outside diameter of the stator. Click the right mouse button when doneselecting.2.Choose Assign/Boundary/Value, and change the Name from value1 to Zero_Flux.3.Keep the Value field set to0.A zero value boundary means that all of the flux will be containedin the motor; there will be no leakage flux.4.Choose Assign.The stator edge is assigned a value boundary of zero.Source SetupWhen you are specifying the source,you have two options in EMpulse:using coils that are either current supplied or voltage supplied. In electric motors, you should generally use voltage supplied windings, in which case the resulting currents depend on the winding’s resistance and back electromotive force(emf). EMpulse can calculate the currents from the field solution and the terminal data.Phase A Winding➤Set up the Phase A winding parameters:1.Choose Edit/Select/Object/By Clicking, and select the object group PhA. Right-click the mouseto end the selection.2.Choose Assign/Source/Solid. New fields appear below the view window.3.Enter PhaseA in the Name field.4.Select Voltage, then select Strand.5.Choose Functions, and add the following three new functions, choosing Add after each:•PhaseA = 460*sqrt(2/3)*cos(360*60*T)•PhaseB = 460*sqrt(2/3)*cos(360*60*T-120)•PhaseC = 460*sqrt(2/3)*cos(360*60*T-240)6.Choose Done to close the window when you have finished entering the functions in step 5.7.Choose Options,select Function,and choose OK to indicate that the voltage will be a functionalvalue.8.Enter PhaseA in the Value field.9.Choose Winding. The Winding Setup for Boundary “Phase A”window appears.10.Assign a Positive polarity to the object group PhA.11.Under Terminal Attributes, enter the following values, which were derived using the transientFEA input data from RMxprt’s Design Output:•Enter0.231977 ohms in the Resistance field. The resistance is the total resistance of the winding at the working temperature.•Enter0.000441694henries in the Inductance field. The inductance is only the end-winding leakage inductance, which cannot be deduced from the 2D field solution.•Enter66 in the Total turns as seen from terminal field.•Enter1 in the Number of Parallel Branches field.12.Choose OK to accept the settings and return to the 2D Boundary/Source Manager.13.Choose Assign.The PhaseA winding parameters are now defined.。