3d reconstruction and rendering from image sequences

合集下载

Bundle adjustment

Bundle adjustment

Bundle adjustmentA sparse matrix obtained when solving a modestly sized bundle adjustment problem. This is the sparsity pattern of a 992×992 normal equations (i.e. approximate Hessian) matrix.Black regions correspond to nonzero blocks.Given a set of images depicting a number of 3D points from differentviewpoints, bundle adjustment can be defined as the problem ofsimultaneously refining the 3D coordinates describing the scenegeometry as well as the parameters of the relative motion and theoptical characteristics of the camera(s) employed to acquire theimages, according to an optimality criterion involving thecorresponding image projections of all points.Bundle adjustment is almost always used as the last step of everyfeature-based 3D reconstruction algorithm. It amounts to anoptimization problem on the 3D structure and viewing parameters (i.e.,camera pose and possibly intrinsic calibration and radial distortion), toobtain a reconstruction which is optimal under certain assumptionsregarding the noise pertaining to the observed image features: If the image error is zero-mean Gaussian, then bundle adjustment is the Maximum Likelihood Estimator. Its name refers to the "bundles" of light rays originating from each 3D feature and converging on eachcamera's optical center, which are adjusted optimally with respect to both the structure and viewing parameters.Bundle adjustment was originally conceived in the field of photogrammetry during 1950s and has increasingly been used by computer vision researchers during recent years.Bundle adjustment boils down to minimizing the reprojection error between the image locations of observed and predicted image points, which is expressed as the sum of squares of a large number of nonlinear, real-valued functions. Thus, the minimization is achieved using nonlinear least-squares algorithms. Of these,Levenberg –Marquardt has proven to be one of the most successful due to its ease of implementation and its use of an effective damping strategy that lends it the ability to converge quickly from a wide range of initial guesses. By iteratively linearizing the function to be minimized in the neighborhood of the current estimate, the Levenberg –Marquardt algorithm involves the solution of linear systems known as the normal equations. When solving the minimization problems arising in the framework of bundle adjustment, the normal equations have a sparse block structure owing to the lack of interaction among parameters for different 3D points and cameras. This can be exploited to gain tremendous computational benefits by employing a sparse variant of the Levenberg –Marquardt algorithm which explicitly takes advantage of the normal equations zeros pattern, avoiding storing and operating on zero elements.Mathematical definitionBundle adjustment amounts to jointly refining a set of initial camera and structure parameter estimates for finding the set of parameters that most accurately predict the locations of the observed points in the set of available images.More formally, assume that 3D points are seen in m views and let be the projection of the i th point on image . Let denote the binary variables that equal 1 if point is visible in image and 0 otherwise. Assume alsothat each camera is parameterized by a vectorand each 3D point by a vector . Bundle adjustmentminimizes the total reprojection error with respect to all 3D point and camera parameters, specificallywhere is the predicted projection of point i on image j and denotes the Euclidean distance between the image points represented by vectors and . Clearly, bundle adjustment is by definition tolerant to missing image projections and minimizes a physically meaningful criterion.Software•sba [1]: A Generic Sparse Bundle Adjustment C/C++ Package Based on the Levenberg–Marquardt Algorithm (C, Matlab)•ssba [2]: Simple Sparse Bundle Adjustment package based on the Levenberg–Marquardt Algorithm (C) with LGPL license.References• B. Triggs; P. McLauchlan and R. Hartley and A. Fitzgibbon (1999). "Bundle Adjustment — A Modern Synthesis". ICCV '99: Proceedings of the International Workshop on Vision Algorithms. Springer-Verlag.pp. 298–372. doi:10.1007/3-540-44480-7_21. ISBN 3-540-67973-1.•M.I.A. Lourakis and A.A. Argyros (2009). "SBA: A Software Package for Generic Sparse Bundle Adjustment".ACM Transactions on Mathematical Software (ACM) 36 (1): 1–30. doi:10.1145/1486525.1486527.•R.I. Hartley and A. Zisserman (2004). Multiple View Geometry in computer vision (2nd ed.). Cambridge University Press. ISBN 0521540518.External links• B. Triggs, P. McLauchlan, R. Hartley and A. Fitzgibbon, Bundle Adjustment — A Modern Synthesis, Vision Algorithms: Theory and Practice, 1999 [3].• A. Zisserman. Bundle adjustment [4]. CV Online.References[1]http://www.ics.forth.gr/~lourakis/sba/[2]http://www.inf.ethz.ch/personal/chzach/opensource.html[3]http://lear.inrialpes.fr/pubs/2000/TMHF00/Triggs-va99.pdf[4]/rbf/CVonline/LOCAL_COPIES/ZISSERMAN/bundle/bundle.htmlArticle Sources and Contributors3 Article Sources and ContributorsBundle adjustment Source: /w/index.php?oldid=400293908 Contributors: Andy M. Wang, BenFrantzDale, Daviddoria, Lourakis, Michael Hardy, Physchim62, Thrapper,12 anonymous editsImage Sources, Licenses and ContributorsImage:Bundle adjustment sparse matrix.png Source: /w/index.php?title=File:Bundle_adjustment_sparse_matrix.png License: Creative Commons Attribution 3.0Contributors: Lourakis, 1 anonymous editsLicenseCreative Commons Attribution-Share Alike 3.0 Unported/licenses/by-sa/3.0/。

面向三维视频的虚拟视点合成技术研究进展

面向三维视频的虚拟视点合成技术研究进展

相较于二维平面多媒体服务,三维(Three-Dimension,3D)立体多媒体服务能给观众带来身临其镜的真实感,极大地引起用户的关注。

近几年来,裸眼立体视频、虚拟现实等3D多媒体服务已走入家庭。

3D多媒体技术是人类通过左眼和右眼分别获得具有视差信息的左右视点场景信息,并在大脑中相互融合得到具有立体感的三维信息。

在3D视频技术中,人们利用双目摄像机分别对同一场景进行拍摄,然后再依靠计算机视觉技术获得立体视频图像。

但如何依靠计算机视觉技术获得更高质量的3D视频图像是研究者的主要目标。

在3D视频中,自由视点视频(Free-Viewpoint Video,FVV)技术是一个非常重要的发展方向,该视频格式是由视频信息加深度信息组成。

在解码端通过虚拟视点绘制技术合成不同视角的视频图像,可广泛应用于虚拟现实和3D视频信号处理过程中。

为了能够获取任意视点条件下所能观察到的图像,最原始的方法是在不同视点处均设置摄像机采集图像。

然而无论使用多少部摄像机同时对某个事物进行摄录,最终都无法获取任意视点所观察的图像。

但依靠视点合成技术可以根据已拍摄的图像近似绘制出未知视点处的图像,从而极大地减少了拍摄相机的布置数。

然而当前绘制技术会产生空洞、伪影、偏移等缺陷,严重影响了用户体验质量。

1虚拟视点合成技术虚拟视点绘制方法根据实现手段和辅助工具可划分为基于模型绘制(Model Based Rendering,MBR)、基于几何图形绘制(Graph Based Rendering,GBR)和基于图像绘制(Image Based Rendering,IBR)三种方法。

而基于深度图像绘制(Depth Image Based Rendering,DIBR)是一种基于参考视点的纹理图和其相应的深度图,通过3D映射方程绘制虚拟视点图像的合成方法[1-2]。

由于绘制速度快,复杂度比一般绘制方法低,因面向三维视频的虚拟视点合成技术研究进展张博文,周洋,殷海兵杭州电子科技大学通信工程学院,杭州310018摘要:基于深度图像的虚拟视点合成技术是三维视频信息处理、虚拟现实和计算机图形学领域的新兴交叉技术。

基于双目视觉的智能驾驶三维场景的重建技术研究

基于双目视觉的智能驾驶三维场景的重建技术研究

基于双目视觉的智能驾驶三维场景的重建技术研究摘要三维重建作为计算机视觉技术中的一个重要分支,其研究一直处于火热状态,如今已在工业测量、影视娱乐、医疗科技以及文物重建等各方面得到广泛应用。

本文则主要对智能驾驶领域的双目视觉三维场景重建技术进行研究。

首先对针孔相机以及双目相机的成像原理进行讲解,介绍相机畸变产生及图像校正原理。

然后搭建双目相机三维重建系统,选取张正友标定法对相机进行标定,获取所需相机内外参数并对相机采集到的图片进行校正。

校正完成后通过立体匹配算法对图像进一步处理,获取视差图,再通过重投影矩阵由视差图计算出三维点坐标并重建三维点云模型。

最后对实验结果进行分析,总结实验结果及存在的不足。

关键词:双目视觉;相机标定;立体匹配;三维重建Research on 3D Reconstruction of Intelligent DrivingBased on Binocular VisionAbstractAs an important branch of computer vision technology, three-dimensional reconstruction has been in a hot state. Now it has been widely used in industrial measurement, studio entertainment, medical technology and cultural relic reconstruction. This paper mainly studies the 3D reconstruction technology based on binocular vision in the field of intelligent driving.Firstly, the paper explains the image-forming principle of pinhole camera and binocular camera, and introduces the generation of camera distortion and the principle of image correction. Secondly, a binocular camera 3D reconstruction system is built. Zhang Zhengyou calibration method is selected to calibrate the camera, required camera internal and external parameters are obtained and images collected by the camera are corrected. After the correction, stereo matching algorithm is used to further process the image to obtain the parallax map. 3D point coordinates is calculated via parallax map through the reprojection matrix and 3D point cloud model is reconstructed. Finally, the experimental results are analyzed, and the results and shortcomings are summarized.Keywords:Binocular Vision;Camera Calibration;Stereo Matching;3D Reconstruction目录第1章绪论............................................................................................. 错误!未定义书签。

基于希尔伯特变换的三频三步相移结构光三维重建方法

基于希尔伯特变换的三频三步相移结构光三维重建方法

Modeling and Simulation 建模与仿真, 2023, 12(5), 4437-4448 Published Online September 2023 in Hans. https:///journal/mos https:///10.12677/mos.2023.125404基于希尔伯特变换的三频三步相移结构光三维重建方法郑晓美,王勇青*,杜国红,殷少帅盐城工学院电气工程学院,江苏 盐城收稿日期:2023年7月16日;录用日期:2023年8月31日;发布日期:2023年9月7日摘要 在光学三维重建技术中,当投影仪以恒定的投影速率工作时,减少投影条纹图案的数量是减少投影时间的有效方法。

为了提高物体形貌的三维重建的速度,我们提出了基于希尔伯特变换的三频三步相移结构光三维重建方法。

我们对最高频率的条纹投影三个条纹图案,条纹之间的相移设计为3π/2,其余两个频率的条纹分别投影一个条纹图案。

利用其余两个频率的投影的条纹和背景光强图像获取余弦分量,希尔伯特变换将余弦分量与冲击响应进行卷积,在频率和幅度保持不变的前提下将相位移动π/2。

为了提高该方法的准确性和鲁棒性,我们采用了三频外差法来进行相位展开。

实验结果表明:该方法在对高精度标准球重建时精度为0.0399 mm ,重建精度较高。

投影条纹图片由传统的9幅缩减到了5幅,提高了投影效率。

关键词三维重建,多频外差,时间相位展开,条纹投影轮廓术,希尔伯特变换Three-Frequency Three-Step Phase-Shift Structured Light 3D Reconstruction Method Based on Hilbert TransformXiaomei Zheng, Yongqing Wang *, Guohong Du, Shaoshuai YinSchool of Electrical Engineering, Yancheng Institute of Technology, Yancheng JiangsuReceived: Jul. 16th , 2023; accepted: Aug. 31st , 2023; published: Sep. 7th , 2023AbstractIn optical 3D reconstruction techniques, when the projector works at a constant projection rate, *通讯作者。

基于3D Slicer软件的蝶鞍区三维重建技术在经蝶内镜垂体瘤切除术中的应用价值

基于3D Slicer软件的蝶鞍区三维重建技术在经蝶内镜垂体瘤切除术中的应用价值

lationofthetumorsuppressorPTENbycompetingendogenousmRNAs[J].Cell,2011,147(2):344-357.[12] KARRETHFA,TAYY,PERNAD,etal.Invivoidentificationoftumor-suppressivePTENceRNAsinanoncogenicBRAF-in ducedmousemodelofmelanoma[J].Cell,2011,147(2):382-395.[13] SUMAZINP,YANGX,CHIUHS,etal.AnextensivemicroRNA-mediatednetworkofRNA-RNAinteractionsregulatesestab lishedoncogenicpathwaysinglioblastoma[J].Cell,2011,147(2):370-381.[14] LVM,ZHONGZ,HUANGM,etal.lncRNAH19regulatesepithelial-mesenchymaltransitionandmetastasisofbladdercancerbymiR-29b-3pascompetingendogenousRNA[J].BiochimBiophysActa,2017,1864(10):1887-1899.[15] MOY,LUY,WANGP,etal.Longnon-codingRNAXISTpromotescellgrowthbyregulatingmiR-139-5p/PDK1/AKTaxisinhepatocellularcarcinoma[J].TumourBiol,2017,39(2):1010428317690999.[16] WANGK,JINJ,MAT,etal.MiR-139-5pinhibitsthetumorigenesisandprogressionoforalsquamouscarcinomacellsbytarge tingHOXA9[J].JCellMolMed,2017,21(12):3730-3740.[17] LUL,XUEX,LANJ,etal.MicroRNA-29aupregulatesMMP2inoralsquamouscellcarcinomatopromotecancerinvasionandanti-ap optosis[J].BiomedPharmacother,2014,68(1):13-19.[18] YUT,WANGXY,GONGRG,etal.TheexpressionprofileofmicroRNAsinamodelof7,12-dimethyl-benz[a]anthrance-in ducedoralcarcinogenesisinSyrianhamster[J].JExpClinCanc erRes,2009,28:64.[19] CHENL,ZHANGS,WUJ,etal.circRNA_100290playsaroleinoralcancerbyfunctioningasaspongeofthemiR-29family[J].Oncogene,2017,36(32):4551-4561.[20] WANGJY,ZHANGQ,WANGDD,etal.MiR-29a:Apotentialtherapeutictargetandpromisingbiomarkerintumors[J].BiosciRep,2018,38(1):BSR20171265.[21] YANB,GUOQ,FUFJ,etal.TheroleofmiR-29bincancer:regulation,function,andsignaling[J].OncoTargetsTher,2015,8:539-548.[22] ZHIML,LIUZJ,YIXY,etal.DiagnosticperformanceofmicroRNA-29aforcolorectalcancer:Ameta-analysis[J].GenetMolRes,2015,14(4):18018-18025.[23] WUY,CRAWFORDM,MAOY,etal.TherapeuticdeliveryofmicroRNA-29bbycationiclipoplexesforlungcancer[J].MolTherNucleicAcids,2013,2:e84.[24] SHARANRN,MEHROTRAR,CHOUDHURYY,etal.Associationofbetelnutwithcarcinogenesis:revisitwithaclinicalper spective[J].PLoSOne,2012,7(8):e42759.[25] TSAIYS,LEEKW,HUANGJL,etal.Arecoline,amajoralkaloidofarecanut,inhibitsp53,repressesDNArepair,andtriggersDNAdamageresponseinhumanepithelialcells[J].Toxicology,2008,249(2-3):230-237.[26] SHOWKATM,BEIGHMA,ANDRABIKI.mTORsignalinginproteintranslationregulation:Implicationsincancergenesisandtherapeuticinterventions[J].MolBiolInt,2014,2014:686984.[27] XUZ,HUANGCM,SHAOZ,etal.Autophagyinducedbyarecanutextractcontributestodecreasingcisplatintoxicityinoralsqua mouscellcarcinomacells:Rolesofreactiveoxygenspecies/AMPKsignaling[J].IntJMolSci,2017,18(3):524.(编校:蔺癑)基于3DSlicer软件的蝶鞍区三维重建技术在经蝶内镜垂体瘤切除术中的应用价值刘耀赛1,李梦双2,韦 硕1,储 昆1,范月超1Thevalueof3Dsellarregionreconstructionbasedon3DSlicersoftwareinendoscopictranssphenoidalsurgeryforpituitaryadenomaLIUYaosai1,LIMengshuang2,WEIShuo1,CHUKun1,FANYuechao11DepartmentofNeurosurgery;2DepartmentofRadiology,AffiliatedHospitalofXuzhouMedicalUniversity,JiangsuXuzhou221000,China.【Abstract】 Objective:Toinvestigatetheapplicationvalueof3Dreconstructiontechniquebasedon3DSlicersoft wareinendoscopictranssphenoidalsurgeryforpituitaryadenoma.Methods:FromOctober2017toMarch2019,70patientswithpituitaryadenomatreatedindepartmentofneurosurgery,AffiliatedHospitalofXuzhouMedicalUniversi ty,wererandomlydividedintotwogroups:Preoperativereconstructiongroupandtraditionalsurgicalgroup.Inthe【收稿日期】 2020-02-28【修回日期】 2020-03-27【基金项目】 江苏省研究生创新培养计划(编号:SJCX19_0940)【作者单位】 1徐州医科大学附属医院神经外科;2放射科,江苏 徐州 221000【作者简介】 刘耀赛(1993-),男,江苏徐州人,硕士在读,主要从事脑肿瘤的临床研究。

基于空洞卷积与多尺度特征融合的室内场景单图像分段平面三维重建

基于空洞卷积与多尺度特征融合的室内场景单图像分段平面三维重建

传感技术学报CHINESE JOURNAL OF SENSORS AND ACTUATORS Vol.34No.3 Mar.2021第34卷第3期2021年3月Piecewise Planar3D Reconstruction for Indoor Scenes from a Single Image Based on Atrous Convolution and Multi-Scale Features Fusion*SUN Keqiang,MIAO Jun*9JIANG Ruixiang,HUANG Shizhong,ZHANG Guimei (Computer Vision Institute of Nanchang Hongkong University,Nanchang Jiangxi33Q063f China)Abstract:It is hard for pixel-level and regional-level3D reconstruction algorithms to recover details of indoor scenes due to luminous changes and lack of texture.A piecewise planar3D reconstruction method is proposed based on the convolution residual connection of the holes and the multi-scale feature fusion network.This model uses the shallow high-resolution detail features generated by the ResNet-101network with the added hole convolution to reduce the loss impact of spatial information as network structure deepens on the detail reconstruction,so that this model can learn more abundant features and by coupling positioning accuracy optimized by the fiilly connected conditional ran­dom field(CRF)with the recognition ability of deep convolutional neural network,which keeps better boundary smoothness and details・Experimental results show that the proposed method is robust to the plane prediction of in­door scenes with complex backgrounds,the plane segmentation results are accurate,and the depth prediction accura­cy can reach92.27%on average.Key words:3D reconstruction of indoor scene;deep convolutional neural network;conditional random field;atrous convolution;multi-scale feature fusionEEACC:6135;6135E doi:10.3969/j.issn.l004-1699.2021.03.012基于空洞卷积与多尺度特征融合的室内场景单图像分段平面三维重建*孙克强,缪君*,江瑞祥,黄仕中,张桂梅(南昌航空大学计算机视觉研究所,江西南昌330063)摘要:受光照变化和纹理缺乏等因素的影响,基于单幅室内场景图像的像素级和区域级三维重建算法很难恢复场景结构细节。

纹理物体缺陷的视觉检测算法研究--优秀毕业论文

纹理物体缺陷的视觉检测算法研究--优秀毕业论文

摘 要
在竞争激烈的工业自动化生产过程中,机器视觉对产品质量的把关起着举足 轻重的作用,机器视觉在缺陷检测技术方面的应用也逐渐普遍起来。与常规的检 测技术相比,自动化的视觉检测系统更加经济、快捷、高效与 安全。纹理物体在 工业生产中广泛存在,像用于半导体装配和封装底板和发光二极管,现代 化电子 系统中的印制电路板,以及纺织行业中的布匹和织物等都可认为是含有纹理特征 的物体。本论文主要致力于纹理物体的缺陷检测技术研究,为纹理物体的自动化 检测提供高效而可靠的检测算法。 纹理是描述图像内容的重要特征,纹理分析也已经被成功的应用与纹理分割 和纹理分类当中。本研究提出了一种基于纹理分析技术和参考比较方式的缺陷检 测算法。这种算法能容忍物体变形引起的图像配准误差,对纹理的影响也具有鲁 棒性。本算法旨在为检测出的缺陷区域提供丰富而重要的物理意义,如缺陷区域 的大小、形状、亮度对比度及空间分布等。同时,在参考图像可行的情况下,本 算法可用于同质纹理物体和非同质纹理物体的检测,对非纹理物体 的检测也可取 得不错的效果。 在整个检测过程中,我们采用了可调控金字塔的纹理分析和重构技术。与传 统的小波纹理分析技术不同,我们在小波域中加入处理物体变形和纹理影响的容 忍度控制算法,来实现容忍物体变形和对纹理影响鲁棒的目的。最后可调控金字 塔的重构保证了缺陷区域物理意义恢复的准确性。实验阶段,我们检测了一系列 具有实际应用价值的图像。实验结果表明 本文提出的纹理物体缺陷检测算法具有 高效性和易于实现性。 关键字: 缺陷检测;纹理;物体变形;可调控金字塔;重构
Keywords: defect detection, texture, object distortion, steerable pyramid, reconstruction
II

3d建模英文专业术语

3d建模英文专业术语

3d建模英文专业术语1. 3D Modeling: The process of creating a three-dimensional representation of an object or scene using specialized software.2. Mesh: A collection of vertices, edges, and faces that define the shape and structure of a 3D object.3. Vertices: The individual points in a 3D mesh that define the shape of the object.4. Edges: The lines connecting vertices in a 3D mesh, which define the boundaries of the object's shape.5. Faces: The two-dimensional surfaces created by connecting multiple edges in a 3D mesh, which define the visible surface of the object.6. Polygons: A face with three or more sides, composed of connected edges and vertices.7. Subdivision: A technique used to smooth out the appearance of a 3D object by subdividing its faces into smaller polygons.8. UV Mapping: The process of unwrapping a 3D object's surface into a 2D representation in order to apply textures and materials accurately.9. Texture: A two-dimensional image applied to a 3D object's surface to create the appearance of different materials, patterns, or colors.10. Rigging: The process of creating a digital skeleton for a 3D character or object, which allows for realistic movement and animation.11. Animation: The process of creating movement and changes over time in a 3D object or scene, often involving keyframes and interpolation.12. Rendering: The process of generating a final image or animation from a 3D scene, taking into account lighting, materials, and camera settings.13. Lighting: The placement and configuration of virtual lights within a 3D scene to create the desired illumination and shadows.14. Shading: The application of surface properties, such as color, reflectivity, and transparency, to a 3D object in order to create a realistic appearance.15. Keyframe: A main pose or position in an animation timeline that defines a specific moment of movement or change.16. Interpolation: The process of calculating the positions, orientations, and other parameters between keyframes in order to create smooth animation transitions.17. Boolean Operations: A set of mathematical operations used in 3D modeling to combine, subtract, or intersect multiple 3D shapes.18. NURBS: Non-uniform rational B-splines, a type of mathematical curve commonly used in 3D modeling to create smooth and precise shapes.19. CAD (Computer-Aided Design): The use of computer software to assist in the creation, modification, analysis, or optimization of a design.20. Wireframe: A visualization of a 3D object or scene that shows only the edges and vertices, without any solid surfaces or textures.。

Proposal

Proposal

Research and Design of the 3D Reconstruction System Based on Binocular Stereo VisionMajor: civil engineeringSchool of civil engineeringChongqing UniversityNovember, 2017Opening report1.The topic of this research:How to make artificial intelligence (automobile, robot) aware of our world is a complex problem. The 3D reconstruction based on stereo vision provides us a direction. Stereoscopic vision of three dimensional reconstruction means the way to restore the geometry of 3D visible surfaces from two or more two-dimensional images in computer vision. Stereo vision is a simple, reliable, flexible and widely used method to simulate human eyes' processing of scenery. In the computer stereo vision system, two images of the same scene can be obtained from different angles by using a camera. Then, the 3D shape of the scene is reconstructed by computer, and the spatial position information of the object is recovered.2.The purpose of this researchThe purpose of this research is to make computer have the ability of 3d environmental information, using digital camera as image sensor, using image processing, visual computing and other technologies for non-contact 3d measurement, using computer program to obtain 3d information of objects, and 3d model reconstruction, which will not only enable the machine to perceive the geometric information of objects in a three-dimensional environment, including its shape, position, posture, motion, etc., and can describe, store, identify and understand them.3. The research significance of the thesisHuman beings acquire information from the external environment, mainly through the eyes. There is a saying called "seeing is believing", is to illustrate the importance of the information obtained by human eyes. According to scientists statistics, most of the human perception of the world, about 60% from the visual, auditory information accounted for 20%, the other, such as taste, tactile information and so on add up to 20%. And human beings get visual information from the outside world, and use the brain to judge, processing is a very complex process. In the real world, any three-dimensional object has a very complex structure and color information, this information through the retina in order to convert the two-dimensional image information, the information transmitted in the brain pathways of photoreceptor cells, the brain for the final 3D reconstruction and color and position determination. The human brain is an extremely complex and developed processing system that can quickly process this information so that humans can quickly identify objects in the external environment.The purpose of computer vision system is to recognize the 3D world through the projection of the 3D scene on the camera plane. With the rapid development of computer hardware and software facilities and technology, computer vision theoryhas also been rapid developed.Allowing computers to recognize objects as fast as humans has been a relentless pursuit of human beings and decades of dreams. It is the main work of computer vision to use the computer to replace the human visual information in the environment of the outside world.4.Research methods (or experiment)To conduct this research, we will try to figure out some questions first.1.The argumentation of the subject, that is, the purpose of the subject and thebackground of project.2.The innovation point of the subject research. For example, is it new to most of us?Or is it possible that this idea will be widely used after most of us know about it?After solving these problems, the main research methods of this topic are as follows:(1)Document analysis(2)Combination of empirical analysis and logical analysisThe methods used in this study are:Monocular vision,Binocularvision,Trinocular vision5. Anticipated results3D reconstruction based on stereo matching and camera calibration, using SFM (Structure from Motion) algorithm to restore external camera parameters, and then calculate the 3D coordinates of discrete space points, triangulation and texture after Delaunay, finally through the OpenGL programming display 3D model.6. Details of the experimentOur research decides to adopt SFM which belongs to monocular vision method.SFM (Structure from motion) is a method to use numerical method to recover camera parameters and 3D information through detecting matching feature points in multiple images which is not calibrated. SFM requires very low image, and can be reconstructed by video or even random sequence of images. At the same time, the image sequence can be used to realize the camera self-calibration in the process of reconstruction, which eliminates the steps of camera calibration in advance. And because of the progress of feature point extraction and matching technology, the robustness of the SFM is also very strong. Another advantage of the SFM is that it can reconstruct large scale scenes, and the number of input images can reach millions. It is very suitable for 3D reconstruction of natural terrain and urban landscape. It is flexible and convenient to use. It is suitable for all kinds of complicated occasions with less cost. So it is the most widely used method.7.References[1]HORN B.Shape from shading: a method for obtaining the shape of a smooth opaque object from one view[D].Cambridge: [s.n.],1970.[2]BELHUMEUR P,KRIEGMAN D,YUILLE A.The bas-relief ambiguity [J].International Journal of Computer Vision,1999,35 ( 1 ) :33-44.[3]BAKSHI S,YANG Y.Shape from shading for non-lambertian surfaces [C]/ /Proc of International Conference on Image Processing.1994:130-134.[4]PENNA M.A shape from shading analysis for a single perspective image ofa polyhedro[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1989,11( 6) : 545-554.[5]VOGEL O,BREUB M,WEICKERT J.Perspective shape from shading with non-lambertian reflectance[C]/ /Proc of DAGM Symposium on Pattern Recognition.Berlin: Springer,2008: 517-526.[6]ECKER A,JEPSON A D.Polynomial shape from shading[C]/ /Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2010.[7]WOODHAM R J.Photometric method for determining surface orientation from multiple images[J].Optical Engineering,1980,19 ( 1)139-144.[8]NOAKES L,KOZERA R.Nonlinearities and noise reduction in 3- source photometric stereo[J].Journal of Mathematical Imaging and Vision,2003,18( 2) : 119-127.[9]HOROVITZ I,KIRYATI N.Depth from gradient fields and control points: bias correction in photometric stereo[J].Image and Vision Computing,2004,22( 9) : 681-694.[10]TANG L K,TANG C K,WANG T T.Dense photometric stereo using tensorial belief propagation[C]/ /Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Diego:[s.n.],2005: 132-139.。

利用单目图像重建人体三维模型

利用单目图像重建人体三维模型

算倣语咅信is与电ifiChina Computer&Communication2021年第5期利用单目图像重建人体三维模型钱融王勇王瑛(广东工业大学计算机学院,广东广州510006)摘要:人体三维模型在科幻电影、网上购物的模拟试衣等方面有广泛的应用场景,但是在单目图像重建中存在三维信息缺失、重建模型不具有贴合的三维表面等问题-为了解决上述的问题,笔者提出基于SMPL模型的人体三维模型重建算法。

该算法先预估人物的二维关节点,使用SMPL模型关节与预估的二维关节相匹配,最后利用人体三维模型数据库的姿势信息对重建的人体模型进行姿势先验,使得重建模型具有合理的姿态与形状.实验结果表明,该算法能有效预估人体关节的三维位置,且能重建与图像人物姿势、形态相似的人体三维模型.关键词:人体姿势估计;三维人体重建;单目图像重建;人体形状姿势;SMPL模型中图分类号:TP391.41文献标识码:A文章编号:1003-9767(2021)05-060-05Reconstruction of a Three-dimensional Human Body Model Using Monocular ImagesQIAN Rong,WANG Yong,WANG Ying(School of Computer,Guangdong University of Technology,Guangzhou Guangdong510006,China) Abstract:The human body3D model are widely used in science fiction movies,online shopping simulation fittings,etc,but there is a lack of3D information in monocular image reconstruction,and the reconstructed model does not have problems such as a fit 3D surface.In order to solve the above mentioned problems,a human body3D model reconstruction algorithm based on SMPL model is proposed.The algorithm first estimates the two-dimensional joint points of the character,and uses the SMPL model joints to match the estimated two-dimensional joints;finally,the posture information of the three-dimensional human body model database is used to perform posture prior to the reconstructed human body model,making the reconstructed model reasonable Posture and shape.The algorithm was tested on the PI-INF-3DHP data set.The experimental results show that the algorithm can effectively predict the3D position of human joints,and can reconstruct a3D model of the human body similar to the pose and shape of the image.Keywords:human pose estimation;3D human reconstruction;monocular image reconstruction;human shape and pose;SMPL0引言人体三维模型所承载的信息量远远大于人体二维图像,能满足高层的视觉任务需求,例如在网购中提供线上试衣体验,为科幻电影提供大量的人体三维数据。

虚拟现实场景漫游系统设计与实现说明书

虚拟现实场景漫游系统设计与实现说明书

3rd International Workshop on Materials Engineering and Computer Sciences (IWMECS 2018) Design and Implementation of Scene Roaming System Based on VRSaihua Xu a, Yin Xiaohong, Xie FangsenNanchang Institute of Science and Technology, Nanchang 330108, Chinaa ****************Keywords: VR; scene roaming system; computer graphics; information technology; panoramaAbstract: The biggest characteristic of VR virtual roaming is that the object being roamed exists objectively, but the form of roaming is virtual in a different place. At the same time, the making of roaming object is the real data based on object. Virtual reality technology is appeared at the end of twentieth Century a new comprehensive information technology, which combines digital image processing, computer graphics, multimedia technology, sensor technology and other information technology branch, which greatly promoted the development of the computer technology. The paper presents design and implementation of scene roaming system based on VR.1.IntroductionVR panorama has broad applications, such as tourist attractions, hotels, construction and real estate; decoration exhibition. In architectural design, real estate or decoration can be accomplished by panoramic panorama technology. Not only make up for the shortcomings of a single point of view renderings, and three-dimensional animation to the economical and practical, the best choice as a designer.The human in the pursuit of rapid economic growth, also requires a higher quality of life, the technology is playing a central role. Virtual simulation (VR) refers to a special environment generated by computer, people can through their "projection" to the environment. Use the special device and operation control of the environment, to achieve a specific purpose, which is to dominate this environment [1]. It has its immersive interactive (immersion), (interaction) and ideas (imagination), which can make people immersed, beyond its natural form, and, with the interactive performance of multidimensional the environment of information. Rapidly penetrated into all sectors of society, and has been used in computer aided design, engineering and scientific data visualization, 3D Geographic Information System (GIS), has been widely used in medical, gaming and entertainment.In recent years, China's Internet penetration rate increased year by year, the Internet is going into the life and work NIC< report "people's investigation showed that at home and units in the proportion of Internet users in 2009 has been significantly improved, 83.2% of Internet users choose the Internet at home, while 30.2% of people choose in units of the Internet network, the Internet as a tool for everyday the value is rising. Unlimited business opportunities in all walks of life came into being. With its sharp eyes have begun to explore their business opportunities on the Internet.Virtual reality technology (Virtual Reality, referred to as VR) as a new media technology, its application areas including real estate planning, architecture and landscape design, Home Furnishing art design, experience education, medical simulation, military simulation, security monitoring, network simulation, traffic planning, cultural relics and ancient complex, virtual tourism, games and entertainment, and will gradually be involved to all walks of life, the full depth of the public daily life learning, become an integral part of the future digital life technology pillar.Virtual reality, multimedia and network information technology for the protection of historical relics, provides new means and methods of restoration and research at home and abroad have been paid attention to. In early 1990s, the British Museum, the Metropolitan Museum and other large museum has realized the virtual roaming. In recent years, China with great development in digitalcultural relics related areas, the Ministry of education established the "University Digital Museum Construction Engineering, Dunhuang Research Institute and Northwestern University jointly launched the" digital Dunhuang murals cooperative research ", the Imperial Palace Museum and Toppan Printing Company has developed a virtual the Imperial Palace in Beijing. The bid for the 2008 Olympic Games also put forward the" Virtual Olympic Museum "creative, has aroused great interest and concern of the International Olympic Committee, which host provides great help to get China Help.The research on virtual reality technology in the collection shows the application of practical task, the use of virtualization, virtual exhibition cultural digital technology, improve the display rate and the display effect of cultural relics and cultural relics protection entities, and further extended to break the constraints of time, the museum's collection, collection, exhibition and cultural dissemination function.2. Interactive roaming system based on VRAccording to the connotation and essential characteristics of virtual reality technology, it can be seen that its research and development is a relatively high technical requirements, it needs a corresponding software and hardware system environment to be matched. In addition to the perfect virtual reality software development platform and three-dimensional image processing system, according to the technical characteristics of virtual reality [2]. The system also requires a highly lifelike three-dimensional immersion, which is mainly realized by three-dimensional hearing, three-dimensional tactile or force sense and visual environment with high immersion. Stereo hearing is usually realized by three-dimensional surround stereo sound system, while highly immersive visual environment is usually realized by large screen stereoscopic projection display system.In addition, according to the technical characteristics of virtual reality, real-time interaction is the soul of virtual reality technology, which is different from other traditional media technology in essence. In virtual reality system, this kind of interaction is usually realized by virtual reality interactive device, and finally a complete virtual reality realization system is formed.This article from the modeling and rendering of 3D MAX baking technology to 3D campus roaming system using mature VRP-BUILDER virtual reality editor module to build a two development.The development of 3D and the method of 3D simulation roaming system based on VRP technology, Wuzhou University (North) to build the virtual scene, automatic roaming, manual roaming Campus navigation path, view the scenery of the campus, the campus information query, climate effect, dynamic effect of various entities, and do a detailed route according to the collision detection. At the same time according to the characteristics of 3D simulation roaming, roaming in the automatic and manual roaming process, based on the existing scene as the foundation, through the video, pictures, music. To the virtual reality system; provide convenience for the need to understand the Wuzhou University campus geographic information users [3].()1,,1,0,mod )()(10,−=−≡∑−=N k N l k x h k w j L l i l j j (1) The modeling method of Polygon+NURBS advanced modeling, each model using simplified model to the three-dimensional virtual campus architecture; using Bitmap bitmap +UVW Mapping mapping, VRAY real scene rendering method for reduction of the campus; using Max-for-VRP derived plug-in model into VRP-BUILDER virtual reality editor module, adding collision detection algorithm, VRP realize man-machine command line scripts the interactive function, to ensure the practicality of the system; the use of walking camera, dynamic roaming increase real 3D performance, multi angle view school environment; running from virtual reality editor module is derived for the EXE portable can run the executable file system.According to the real terrain data is used for terrain generation of a class of the most, at presentmost of the digital terrain model (Digital Terrain Model, DTM) to generate DTM data, by the sampling elevation in the grid map the value composition corresponding to the remote sensing image data captured texture plane or satellite.The texture image is mapped to the corresponding part in the reconstruction of terrain surface. Terrain rendering algorithm is simple, the DTM cell transformation of 4 adjacent grid points defined into 2 dimensional space of the triangle, then the optic internal area of pyramidal all such triangles sent to the graphics pipeline drawing.This algorithm can also be the image texture data to the highest resolution mapped to the corresponding polygon, but this is a very inefficient, because in general, triangle and remote sensing images The number of physical pixels is very large, and each individual triangle projection to the image space is very small, and a lot of texture pixels may be compressed to a pixel in the image, so that the effect is negligible [4]. Therefore, if directly generated by DTM terrain, even in high performance graphics hardware platform on real-time rendering, it is almost impossible, usually needs to be simplified to DTM. Data simplification methods will be discussed in detail in the next chapter.The biggest characteristic of this kind of virtual roaming is that the object being roamed is already objective and real, but the form of roaming is only fictitious in different places and at the same time. Roaming object making is real data based on object. It creates a virtual information environment in multidimensional information space, which can make users feel immersive and have perfect interaction ability with environment. And it helps to enlighten the idea that VR has not only been focused on computer graphics, it has been involved in a wider range of fields, such as videoconferencing, network technology and distributed computing technology. Virtual reality technology has become an important means of new product design and development.3.Design of 3D VR scene roaming systemThe virtual scene simulation technology is regarded as an important branch of virtual scene technology. Computer technology, image processing and graphics generation technology, multimedia technology, information synthesis technology, the integrated use of display technology and other high technology, its components include simulation modeling technology, animation technology and real-time visual technology at present domestic virtual scene technology market has not yet substantial development, but also has begun to take shape [5].The United States is in the leading position in the field, the basic research mainly focuses on perception, user interface, the four aspects of software and hardware. NASA (NASA) research focused on real time simulation of space station operation, they used a lot for the cockpit flight simulation technology [6]. The University of North Carolina (UNC) the computer department developed a help users in complex visual parallel processing system for real-time dynamic display of building landscape.Figure1. vehicle real-time 3D visual simulation and virtual environment Massachusetts Institute of Technology (Mrr) in 1985 to set up a media lab, a man named BOLIOtest environment for different graphic simulation experiment. University of Washington Washington Technology Center (HIT Lab) Interface Technology Laboratory of feeling, perception, cognition and motion control ability of.DaveSimS et al developed a virtual reality model to see how the system operates retreat in Illinois.The State University developed in vehicle design, system realization, distributed virtual remote collaboration support in different countries; different regions of the engineers can design through real-time collaboration computer network. George Mason University developed in a dynamic virtual environment in real-time fluid simulation system [7]. The California Graduate School of Naval Research Laboratory of NPS visualization the work in the virtual environment navigation and simulation.In order to achieve IEEE in distributed interactive simulation (Dls) network protocol under the support of the vehicle real-time 3D visual simulation and virtual environment. The Wright Patterson Air Force Base "3D image and Computer Graphics Lab" is S on GI4D/400 workstation built space satellite the virtual environment to simulate near space and describe the 3D graphical model of satellite earth's orbit and the running state of the simulation The information of the simulation object is more fully [8].Virtual reality (Virtual Reality VR) technology is appeared at the end of twentieth Century a new comprehensive information technology, which combines digital image processing, computer graphics, multimedia technology, sensor technology and other information technology branch, which greatly promoted the development of computer technology.The virtual technology of virtual reality technology (King) (such as virtual tour entity and Virtual Museum) virtual environment (landscape) technology (such as the restoration of generation Epang palace, Old Summer Palace has lost the building, construction has not yet been discovered Mausoleum of the First Qin Emperor) two categories. Application of virtual reality technology and cross field is very extensive. At present the successful use of the field of battlefield virtual reality technology the virtual reality simulation environment, combat command, aircraft, ship, vehicle virtual reality driving training, aircraft, missiles, ships and cars (virtual manufacturing virtual design system, including virtual reality construction) Display and visit of buildings, virtual reality surgery training, virtual reality game, virtual reality, film and television art, etc. so we can see that VR technology has strong market demand and technology drive [9].The construction of the integrated innovation of virtual reality system to realize the reconstruction of the product can be applied research and innovation training platform based on the overall goal is through the use of scientific, reasonable configuration, virtual laboratory system, the establishment of a virtual laboratory environment with the participants feel personally on the scene and real-time interactive capabilities, which will enhance the level of scientific research and teaching environment to a with the level of technological innovation platform. After the completion of the "integrated innovation based on reconfigurable product system virtual reality application of innovative research and training platform" should be a set of teaching, scientific research and demonstration functions, with immersive display and real-time interaction as the main function of the virtual reality laboratory environment and a new generation of digital media technology innovation platform.4.Design and implementation of scene roaming system based on VRThe mathematical model of distribution of Brown motion to generate realistic scenes from random fractal, many nonlinear phenomena he can express effectively in nature, is so far the best to describe the real terrain. Then he is a generalization of the Brown movement. The algorithm is: random fractal terrain generation technology of fractal geometry and FMB based on the method, used a Poisson step method (poissonfaulting), Fu Liye filter (fourierfiltersng), the midpoint displacement method (midpointdisplaeement), successive random additions (Suc.essiverandomadditions) and band limited noise accumulation method (summingbandlimit.dnoises) and other five categories. Among them, the random midpoint displacement method is the most simple and classic that is a direct application of FBM.A one-dimensional random midpoint displacement method for his own thought is: the known vertex elevation (or attribute) line, the midpoint of the elevation ( For the ends of attributes) or height (or attribute) the average value plus a random displacement, displacement of the two segment of the midpoint subdivision and recursive displacement, know that meet the resolution needed so far. The extension to the two-dimensional surface, according to the different pattern of the simulation can be divided into triangle grid simulation method, rectangular (square) grid simulation method, diamond square grid simulation method, parameter block grid simulation method, the thought and the one-dimensional similar. The square grid as an example the realization process of two-dimensional random midpoint displacement method.Good computer games, not only can achieve the purpose of work alternately, eliminate fatigue, and cultivate intelligence sentiment and inspire imagination. Computer game show is mainly virtual editing script under artificial scene behavior changes. So the application and effect of the virtual building scene roaming technology in the field of play a decisive role.The original delta game using a large number of indoor and outdoor architectural scenes, such as barracks, bunkers, tunnels, tower, armory, tower. Later the popular Quake, VR and other special police use the subway, train and ship building internal scene real-time strategy game has been more common. When this network game against the CS scene it is from 3D indoor and outdoor buildings. Even the sports games such as need for speed, FIFA, the stadium, bridge, tunnel and other buildings scene is also indispensable.Battlefield virtual simulation and command simulation training have all kinds of virtues of virtual simulation technology, such as safety, repeatability, economy, difficulty of battlefield environment adjustability, convenient against simulation, easy to achieve various tactical settings and so on.The virtual reality technology and multimedia technology, network technology is the application of computer technology in twenty-first Century three with the greatest development potential. Although the virtual reality technical difficulties still exist many unsolved theoretical problems have not yet overcome the impact on human life and work but also very little. However, it is foreseeable that in the near future, have a significant impact on the virtual reality technology is bound to human life and production.5.SummaryThe paper presents design and implementation of scene roaming system based on VR. Although all the countries have successfully developed some typical applications of virtual reality, but the application of high technology compared with other, is still in the initial stage of application development. Although it may not be able to clearly imagine, in the new century and new forms of popular virtual reality, but people can through the application of medium shape change the principle and extension of the field of medium main propagation characteristics, a reasonable conception of future scenarios.References[1] Wang Rui, the design and implementation of the money Xuelei.OpenSceneGraph 3D rendering engine. Beijing: Tsinghua University press, 2012.11.[2] Zhu Danchen, song Guiling. The realization of computer and modernization of virtual museum system based on Unreal3 and 2013, 34:48-52.[3] Duan Xinyu. The foundation of virtual reality and VRML programming. Beijing: Higher Education Press, 2014.3.[4] Xiao Peng, Liu Gengdai, Xu Mingliang.OpenSceneGraph 3D rendering engine programming guide. Beijing: Tsinghua University press, 2012.[5] Feng Yufen. Design and implementation of virtual cell roaming system based on Virtools.Computer simulation, 2015, 26 (6): 285-287.[6] Jiang Xuezhi, Li Zhonghua. Research status of virtual reality technology at home and abroad.Journal of Liaoning University of Technology, 2016.[7] Deng Zheng detailed translation of.OpenGL programming guide. Fourth edition. Beijing: people post and Telecommunications Press, 2015.[8] Yuan Haibo, Liu Houquan, and so on. 3D interactive. Microcomputer information based on scene semantics in virtual museums, 2012, 25 (9-3): 175-177.[9] Li Zhiwen, Han Xiaoling. Research status and future development of virtual reality technology and future development. Information technology and information technology (Human-ComputerInteraction Edition) 2015 (3): 94 - 96.。

三维医学影像诊断工作站—3dmed

三维医学影像诊断工作站—3dmed

中国体视学与图像分析年月第卷第期2001662・・73 CHINESE JOURNA LOFSTEREOLOGYANDIMAGEANALYSISVol. 6No.2Jun.2001()文章编号:1007-1482200102-0073-05三维医学影像诊断工作站—3dmed何晖光田捷杨骅葛行飞,,,()中科院自动化所人工智能实验室北京,100080摘要本文介绍了一个我们自主开发的三维医学影像诊断工作站。

系统运行于:WindowsNT/环境主要包括数据接口、图像预处理、切片重组、三维重建、三维显示、虚拟内窥镜等功能。

2000/98,可广泛用于、等医学图像的处理与分析辅助医生进行临床诊断具有很好的应用前景。

CTMRI,,关键词医学图像预处理三维重建三维显示:;;;中图分类号文献标识码:TP391.41:A—3DMEDICALIMAGEDIAGNOSISWORKSTATION3dmed HE Hui-guang,TIANJie,YANGHua,GEXing-fei()AILab,InstituteofAutomation,CAS,Beijing100080Abstr act:Inthispaper,wepresenta3Dmedicalimageclinicalwor kstation.ThesystemrunsunderwindowsNT/2000/98,Itha spowerfulfunctionssuchasdata interface,imagepreprocess ing,reslice,3Dreconstruction,3Drendering,surgerymanip ulationandvirtualendoscope.Thesystemcanbewidely appl ied tomedicalimageprocessingandanalyzingforCT,MRI,anditcanalsohelpthedoctorinclinic diagnosis.KeyWords:Med icalImage,Preprocess,3Dreconstruct,3Ddisplay取、三维重建和三维显示可以辅助医生对病变体及,前言1其他感兴趣的区域进行定性直至准确的定量分析,使医生看得更好看得更准从而可以大大提高医疗,,年代技术在医学临床中的成功应用开70,CT,诊断的准确性和正确性。

基于NeRF的文物建筑数字化重建

基于NeRF的文物建筑数字化重建

航天返回与遥感第44卷第1期40SPACECRAFT RECOVERY & REMOTE SENSING2023年2月基于NeRF的文物建筑数字化重建程斌1杨勇2徐崇斌2,*李国帅2任镤3高致2(1 中国空间技术研究院杭州中心,杭州310012)(2 北京空间机电研究所,北京100094)(3 北京印刷学院,北京102600)摘要文物古迹建筑在历史的发展中不断丢失其本身的特征,在时间的推移中不断改变或消失。

因此,如何精确的测量保存当前文物的历史风貌是一个亟需解决的问题。

数字化建模可以最大程度地保存文物在当前时期的外观特征,因此将数字化建模应用到文物重建中具有重要意义。

文物重建任务中用到的大多依旧是传统的基于视觉的重建方法,这种方法一般需要多个视点图像,并且负担极高的时间成本,对于大量文物古迹的重建与更新是不够高效的。

针对这一问题,文章通过无人机拍摄遥感影像完成数据采集,引入神经辐射场(Neural Radiance Fields,NeRF)方法进行文物古迹的数字化重建,构建体素,完成目标渲染。

该方法可以在10min左右实现较好的重建效果,并且避免传统网格重建结果中孔洞的出现,给文物古迹建筑的重建提供了新的思路。

关键词遥感影像文物保护三维重建神经辐射场中图分类号: TP399文献标志码: A 文章编号: 1009-8518(2023)01-0040-10DOI: 10.3969/j.issn.1009-8518.2023.01.005The Digital Reconstruction of Heritage Buildings Based on NeRF CHENG Bin1YANG Yong2XU Chongbin2,*LI Guoshuai2REN Pu3GAO Zhi2(1 China Academy of Space Technology Hangzhou Institute, Hangzhou 310012, China)(2 Beijing Institute of Space Mechanics & Electricity, Beijing 100094, China)(3 Beijing Institute of Graphic Communication, Beijing 102600, China)Abstract Heritage buildings have been losing their own characteristics in the course of history, changing or disappearing in the course of time. Therefore, how to accurately measure the preservation of the historical appearance of current heritage is an urgent problem to be solved. Digital modeling can be an excellent way to preserve the appearance of artifacts in the current period, and therefore this research is of great importance in the conservation of cultural assets. Most of the reconstruction tasks used in heritage reconstruction are still traditional visual-based reconstruction methods, which generally require multiple viewpoint images and are extremely time-consuming, and are not efficient enough for the reconstruction and updating of a large number of heritage sites. To address this problem, this paper completes data acquisition by remote sensing images taken by UA V, and introduces NeRF (Neural Radiance Fields) method for digital reconstruction of cultural relics and收稿日期:2022-10-23基金项目:北京市自然科学基金(4214064:数据驱动的古建筑三维场景建模方法);北京印刷学院校级项目(Eb202308:博物馆数字展示内容智能生成方法研究)引用格式:程斌, 杨勇, 徐崇斌, 等. 基于NeRF的文物建筑数字化重建[J]. 航天返回与遥感, 2023, 44(1): 40-49.CHENG Bin, YANG Yong, XU Chongbin, et al. The Digital Reconstruction of Heritage Buildings Based on NeRF[J].第1期程斌等: 基于NeRF的文物建筑数字化重建 41monuments, and constructs voxels to complete target rendering. This method can achieve a better reconstruction effect of the relics in ten minutes, and avoid the appearance of holes in the traditional mesh reconstruction results, which provides a new idea for the reconstruction of relics and monuments buildings.Keywords remote sensing image; heritage conservation; 3D reconstruction; Neural Radiance Fields (NeRF) 0 引言文物古迹是每一个历史时期文化的重要见证,是研究历史、追本溯源的重要信息来源。

基于组织学连续切片的三维重建技术

基于组织学连续切片的三维重建技术

基于组织学连续切片的三维重建技术党海霞;令春艳;陈洪涛【摘要】组织学连续切片的三维重建技术,因其分辨率高,能精确再现组织内部结构,已在生物科学领域广泛应用,成为三维重建领域不可替代的部分。

本文重点介绍了组织学切片三维重建的方法和三维重建的软件,提出了医学图像三维重建技术发展所面临的相关问题,在此基础上得出计算机辅助组织学切片三维重建技术在医学研究领域的优势,并总结了该技术在医学研究中的一些应用,以期对相关研究提供借鉴。

%Three-dimensional (3D) reconstruction of series histological sections is one of the most powerful methods for accurate high-resolution representation of almost any type of tissue structures.It has been widely applied in biolog-ical sciences.We introduced 3D reconstruction method and 3D reconstruction software.Moreover, we put forward ad-vantages of 3D reconstruction technique of series histological sections and its application in medical research.【期刊名称】《大连医科大学学报》【年(卷),期】2016(038)005【总页数】5页(P506-510)【关键词】组织学连续切片;计算机;三维重建【作者】党海霞;令春艳;陈洪涛【作者单位】大连医科大学口腔医学院,辽宁大连116044;大连医科大学口腔医学院,辽宁大连116044;大连医科大学附属大连市口腔医院口腔外科,辽宁大连116021【正文语种】中文【中图分类】R445.9[引用本文] 党海霞,令春艳,陈洪涛.基于组织学连续切片的三维重建技术[J].大连医科大学学报,2016,38(5):506-510.三维重建或三维可视化目前在医学领域应用甚广[1-2]。

3D_打印金刚石复合片及其钻头的研究进展

3D_打印金刚石复合片及其钻头的研究进展

3D 打印金刚石复合片及其钻头的研究进展*吴晶晶1, 张绍和2,3, 曲飞龙4, 苏 舟2,3, 孔祥旺2,3, 何 焘2,3(1. 湖南工业大学 土木工程学院, 湖南 株洲 412007)(2. 有色金属成矿预测与地质环境监测教育部重点实验室, 长沙 410083)(3. 中南大学 地球科学与信息物理学院, 长沙 410083)(4. 中冶长天国际工程有限责任公司, 长沙 410205)摘要 PDC 钻头已成为油气勘探领域的首选钻头类型,日益提升的PDC 钻头性能要求特别是钻进效率要求给钻头制造带来较大挑战。

钻头工作面结构改进是PDC 钻头实现高效破岩的关键,但这给PDC 钻头制造带来难题。

3D 打印技术是一种新型的快速成形技术,具有制造任意复杂形状结构、个性化定制和创意设计的优点,将3D 打印工艺应用于PDC 及其钻头的生产是未来发展的必然趋势。

本文中介绍了目前用于制备PDC 及其钻头的3D 打印技术的基本原理,包括光固化成形技术(SLA )、熔融沉积技术(FDM )、激光选区烧结(SLS )、激光选区熔化技术(SLM )和喷墨粘粉式(3DP )等;总结了现有3D 打印技术在PDC 及其钻头制造方面的研究进展,并对未来3D 打印PDC 钻头的发展进行了展望。

关键词 3D 打印;金刚石复合片;金刚石复合片钻头;模具成形;复杂结构中图分类号 TG74; TQ164 文献标志码 A 文章编号 1006-852X(2023)01-0014-09DOI 码 10.13394/ki.jgszz.2022.3003收稿日期 2022-07-03 修回日期 2022-08-13聚晶金刚石复合片(polycrystalline diamond com-pact ,PDC ),是由聚晶金刚石与硬质合金基体在高温高压条件下烧结而成的一种复合超硬材料[1]。

采用PDC 作为切削齿的PDC 钻头,由于其在软到中硬地层中具有钻速快、寿命长、可靠性高、综合效益显著等优点[2],因而在石油、天然气、地热开发等领域的钻井工程中得到广泛的应用。

基于视觉的三维重建关键技术研究综述

基于视觉的三维重建关键技术研究综述

第46卷第4期自动化学报Vol.46,No.4 2020年4月ACTA AUTOMATICA SINICA April,2020基于视觉的三维重建关键技术研究综述郑太雄1黄帅1李永福2冯明驰1摘要三维重建在视觉方面具有很高的研究价值,在机器人视觉导航、智能车环境感知系统以及虚拟现实中被广泛应用.本文对近年来国内外基于视觉的三维重建方法的研究工作进行了总结和分析,主要介绍了基于主动视觉下的激光扫描法、结构光法、阴影法以及TOF(Time offlight)技术、雷达技术、Kinect技术和被动视觉下的单目视觉、双目视觉、多目视觉以及其他被动视觉法的三维重建技术,并比较和分析这些方法的优点和不足.最后对三维重建的未来发展作了几点展望.关键词三维重建,主动视觉,被动视觉,关键技术引用格式郑太雄,黄帅,李永福,冯明驰.基于视觉的三维重建关键技术研究综述.自动化学报,2020,46(4):631−652DOI10.16383/j.aas.2017.c170502Key Techniques for Vision Based3D Reconstruction:a ReviewZHENG Tai-Xiong1HUANG Shuai1LI Yong-Fu2FENG Ming-Chi1Abstract3D reconstruction is important in vision,which can be widely used in robot vision navigation,intelligent vehicle environment perception and virtual reality.This study systematically reviews and summarizes the progress related to3D reconstruction technology based on active vision and passive vision,ser scanning,structured light,shadow method,time offlight(TOF),radar,Kinect technology and monocular vision,binocular vision,multi-camera vision,and other passive visual methods.In addition,extensive comparisons among these methods are analyzed in detail.Finally, some perspectives on3D reconstruction are also discussed.Key words3D reconstruction,active vision,passive vision,key techniquesCitation Zheng Tai-Xiong,Huang Shuai,Li Yong-Fu,Feng Ming-Chi.Key techniques for vision based3D reconstruc-tion:a review.Acta Automatica Sinica,2020,46(4):631−652三维重建经过数十年的发展,已经取得巨大的成功.基于视觉的三维重建在计算机领域是一个重要的研究内容,主要通过使用相关仪器来获取物体的二维图像数据信息,然后,再对获取的数据信息进行分析处理,最后,利用三维重建的相关理论重建出真实环境中物体表面的轮廓信息.基于视觉的三维重建具有速度快、实时性好等优点,能够广泛应用于人工智能、机器人、无人驾驶、SLAM (Simultaneous localization and mapping)、虚拟现收稿日期2017-10-24录用日期2018-07-05Manuscript received October24,2017;accepted July5,2018国家自然科学基金(61773082,51505054),重庆市基础与前沿技术项目(cstc2018jcyjAX0684),重庆邮电大学交叉项目(A2018-02),重庆市重点产业共性关键技术创新专项项目(cstc2015zdcy-ztzx60002)资助Supported by National Natural Science Foundation of China (61773082,51505054),Basic Science and Emerging Technology of Chongqing(cstc2018jcyjAX0684),Project of Crossing and Emerging Area of CQUPT(A2018-02),and Chongqing Science and Technology Commission(cstc2015zdcy-ztzx60002)本文责任编委桑农Recommended by SANG Nong1.重庆邮电大学先进制造工程学院重庆4000652.重庆邮电大学自动化学院重庆4000651.College of Advanced Manufacturing Engineering,Chongqing University of Posts and Telecommunications,Chongqing4000652.College of Automation,Chongqing University of Posts and Telecommunications,Chongqing400065实和3D打印等领域,具有重要的研究价值[1−3],也是未来发展的重要研究方向.1963年,Roberts[4]首先提出了使用计算机视觉的方法从二维图像获取物体三维信息的可能性,也就是从这时开始,基于视觉的三维重建快速发展,涌现出了许多新方法.从发表在ICCV(Interna-tional Conference on Computer Vision)、ECCV (European Conference on Computer Vision)和CVPR(International Conference on Computer Vision and Pattern Recognition)等知名国际会议上的相关论文数量增长情况便可看出其研究发展程度.发达国家对于三维重建技术的研究工作起步比较早,研究相对比较深入.1995年,日本东京大学的Kiyasu等[5]利用物体反射的M-array coded 光源影像对物体表面进行三维重建.随着研究更进一步的深入,2006年,Snavely等[6]开发出了Photosynth和Photo Tourism两个三维重建系统.这两个系统的优点是能够自动计算每一帧图像的视点,从而可以重建出物体的稀疏三维模型.遗憾的是,稀疏三维模型重建的效果并不是很清晰,可视化程度较低,需要进行稠密三维模型重建.2008年,632自动化学报46卷Pollefeys等[7]在相机焦距不变的条件下对重建物体的周围拍摄多幅图像,通过特征提取、匹配和多视几何关系等步骤对相机进行标定并重建三维模型. 2009年,Furukawa等[8]提出了一种基于面片的多视图立体重建方法,这种方法的优点是重建出的物体轮廓完整性较好、适应性较强,而且不需要初始化数据.此外,2013年,微软研究院推出的Kinect Fusion项目[9]在三维重建领域取得了重大突破,与三维点云拼接不同,它主要采用一台Kinect围绕物体进行连续扫描,并且实时地进行物体的三维模型重建,这样做有效地提高了重建精度.微软研究院(Microsoft Research)在ISMAR2015会议上公布了Mobile Fusion项目[10],这个项目使用手机作为一台3D扫描仪,可以拍摄出各种3D场景图像.国内对于三维重建的研究虽然相对落后,但也取得了不错的成果.1996年,中科院的李利等[11]提出了恢复室内场景的三维重建技术.2002年,中科院的Zhong等[12]提出了一种新的匹配方法–半稠密匹配法,这种方法解决了稀疏匹配重建出的物体信息较少和稠密匹配重建出的点云物体信息较多等问题. 2003年,中科院的Lei等[13]利用Kruppa方程进行相机的自标定,成功研发出了CVSuite软件[14],该软件实现了利用不同视角的影像进行三维建模. 2014年,西安电子科技大学的张涛[15]提出了一种基于单目视觉的三维重建方法,这种方法利用获取的空间稀疏三维点云,再使用欧氏重建和射影重建方法,从而重建出获取图像的真实场景.近年来,三维重建技术的研究和应用得到了快速的发展,但仍然面临着许多问题.为此,本文将对近些年来基于视觉的三维重建技术方法的主要进展和部分具有代表性的研究成果进行介绍,为科研人员提供参考,并以此为基础,通过对比和分析,探究三维重建技术研究中的难点和热点,以及可能的发展趋势.在接下来章节中,本文将从现有技术分析总结和未来发展方向两个方面讨论三维重建关键技术问题,具体安排如下:第1节总结了三维重建的方法;第2节对各种方法进行了分析,并比较了各种方法的优缺点、自动化程度、重建效果、实时性以及应用场景;第3节总结了三维重建关键技术以及未来的发展方向,并总结概括了本文内容.1三维重建方法从整体上来看,三维重建技术主要通过视觉传感器来获取外界的真实信息,然后,再通过信息处理技术或者投影模型得到物体的三维信息,也就是说,三维重建是一种利用二维投影恢复三维信息的计算机技术[16−17].1997年,V´a rady等[18]将数据获取方式分为接触式和非接触式两种.2005年,Isgro 等[19]又将非接触式方法分为主动式和被动式两类.主动式需要向场景中发射结构光源,然后再通过计算和提取光源在场景中的投影信息来检测目标位置并进行测量.被动式不使用任何其他能量,而是通过获取外界光源的反射来进行三维测量.接触式方法其实就是利用某些仪器能够快速直接测量场景的三维信息[20],主要包括触发式测量、连续式测量、CMMs(Coordinate measuring ma-chines)和RA(Robotics arms)等.虽然,接触式方法有其独特的优点,但是该方法只能应用于仪器能够接触到测量场景的场合.而且,在测量某些加工精密物体表面时,很可能会划伤被测物体的表面,造成被测物体某种程度的损坏,影响其性能.非接触式方法是在不接触被测量物体的前提下,利用影像分析模型原理来获取被测物体的数据信息.虽然,这种方法的精度并没有接触式高,但是,这种方法的应用范围比接触式方法更广泛.由于接触式测量不属于视觉测量,因此本文只对非接触式方法进行详细介绍.非接触式主要包括主动视觉法和被动视觉法;主动视觉又包括激光扫描法、结构光法、阴影法、TOF 技术、雷达技术、Kinect技术等;被动视觉法根据摄像机数目的不同分为单目视觉法、双目视觉法和多目视觉法;根据原理(匹配方法)不同又可以分为区域视觉法、特征视觉法等;根据应用方法也可以分为运动恢复结构法和机器学习法等.三维重建技术的分类如图1所示.1.1基于主动视觉的三维重建技术基于主动视觉的三维重建技术主要包括激光扫描法[21−22]、结构光法[23]、阴影法[24]和TOF技术[25]、雷达技术[26]、Kinect技术[27]等.这些方法主要利用光学仪器对物体表面进行扫描,然后,通过分析扫描数据,重建物体表面的三维结构.此外,这些方法还可以获取目标表面的其他一些细节信息,从而能够精确地重建出目标物的三维结构.1.1.1激光扫描法激光扫描法其实就是利用激光测距仪来进行真实场景的测量.首先,激光测距仪发射光束到物体的表面,然后,根据接收信号和发送信号的时间差确定物体离激光测距仪的距离,从而获得测量物体的大小和形状.该方法的优点是不仅可以建立简单形状物体的三维模型,还能生成不规则物体的三维模型,而且生成的模型精度比较高.激光扫描数据处理流程如图2所示,首先,通过激光扫描法获取点云数据,然后与原始获得的数据进行配准获得配准后的点云数据,最后对获取的点云数据进行一系列的处理,从而获取目标物的三维模型.4期郑太雄等:基于视觉的三维重建关键技术研究综述633图1三维重建技术分类Fig.1Classification of3D reconstructiontechnology图2激光扫描数据处理流程Fig.2The process of laser scanning data processing20世纪60年代,欧美一些国家就已经对三维激光扫描技术进行了研究.在很早以前,斯坦福大学就已经开展了大规模的地面固定激光扫描系统的研究,获得了较精确的实验结果.1999年,Yang等[28]介绍了三角法激光扫描,详细地论述了在大型曲面测量原理的基础上影响激光扫描测量精度的几个因素.2003年,Boehler等[29]分析并验证了使用不同种类的三维激光扫描仪对实验结果的影响.更进一步,2006年,Reshetyuk[30]详细地分析了脉冲式地面激光扫描仪的误差来源以及影响程度,并对该误差模型进行了评价.2007年,Voisin等[31]研究环境光线对三维激光扫描的影响.至此,三维激光扫描仪步入了一个新的里程碑.1.1.2结构光法随着科技的不断进步,三维重建技术涌现出了许多研究方向,其中结构光法就是三维重建技术的主要研究方向之一[32].结构光法的原理是首先按照标定准则将投影设备、图像采集设备和待测物体组成一个三维重建系统;其次,在测量物体表面和参考平面分别投影具有某种规律的结构光图;然后再使用视觉传感器进行图像采集,从而获得待测物体表面以及物体的参考平面的结构光图像投影信息;最后,利用三角测量原理、图像处理等技术对获取到的图像数据进行处理,计算出物体表面的深度信息,从而实现二维图像到三维图像的转换[33−36].按照投影图像的不同,结构光法可分为:点结构光法、线结构光法、面结构光法、网络结构光和彩色结构光.基于结构光法的三维重建主要利用光学三角测量原理来计算物体的深度信息.它主要通过扫描仪中的光源、光感应器和反射点构成的三角关系来计算目标物体的深度信息,从而实现目标物体的三维重建.三角测量又可以分为:单光点测量、单光条测634自动化学报46卷量和多光条测量.如图3为结构光三角测量原理示意图.图3结构光三角测量原理示意图Fig.3Schematic diagram of the principle of structuredlight triangulation如图3所示,假设物体坐标(X W ,Y W ,Z W )为世界坐标与被测量的图像坐标(u,v )以及投影角θ之间的关系如下:[X W ,Y W ,Z W ]=bf cos θ−u[u,v,f ](1)自20世纪80年代以来,基于结构光法的三维重建越来越受到国外研究人员的关注.2000年,Kowarschik 等[37]采用了一种光栅结构法的三维测量系统,解决了结构光在测量中存在的遮挡问题.2002年,Shakhnarovich 等[38]提出了利用多种点结构光投影的光点法进行三维重建.2004年,Salvi 等[39]采用结构光条法,将激光发射的光束直接通过圆柱体透镜,然后,再使用步进电机匀速转动圆柱体透镜,使光束能够完全扫过测量物体的表面,进而可以获得物体的图像信息并进行信息的提取和三维测量.国内也在这方面做了大量的研究,2002年,张广军等[40]建立了结构光三维双视觉RBF (Radial basis function)神经网络模型,这种模型的优点是不需要考虑外在因素的影响,从而使该模型具有较高的精度.同年,天津大学首先研制了可以应用于生物医学、工业测量等领域的线结构光轮廓传感器[41].2004年,清华大学研究出了线结构光的多用途传感器,这种传感器的优点是可以对运动的物体以及腐蚀性的物体进行三维测量和重建,特别适合于对移动物体和腐蚀性表面的快速、在线、非接触的测量与重建[42].1.1.3阴影法阴影法是一种简单、可靠、低功耗的重建物体三维模型的方法[43−44].这是一种基于弱结构光的方法,与传统的结构光法相比,这种方法要求非常低,只需要将一台相机面向被灯光照射的物体,通过移动光源前面的物体来捕获移动的阴影,再观察阴影的空间位置,从而重建出物体的三维结构模型.这种方法的优点是检测速度快、精度高.阴影法主要分为这几种类型:平行光的直接阴影法、点光源发散光的直接阴影法、微观阴影法、聚焦阴影法、立体和全息阴影法和大型阴影法.最经典的平行光阴影法如图4所示,该方法使用点光源通过聚焦透镜和针孔,再利用凹透镜原理使其转换成平行光投影到毛玻璃片上,其中ε表示平行光投影到毛玻璃片上产生的误差.图4平行光阴影法Fig.4Parallel photocathode从国内外的研究来看,阴影被分为硬阴影和软阴影.与硬阴影相比,软阴影要考虑物体之间的几何特征,更加难以实现,但是,显示效果更加真实.在真实的世界中,由于光源比较复杂以及物体之间有光照的影响,形成的阴影明暗程度并不是唯一的,所以,使用阴影法实现三维空间的物体重建是非常复杂的过程[45−48],该方法不适合于实时性较高的三维场景.1.1.4TOF 技术TOF (Time of flight)法是主动测距技术的一种,可从发射极向物体发射脉冲光,遇到物体反射后,接收器收到反射光时停止计时,由于光和声在空气中的传播速度是不变的,从而通过发射到接收的时间差来确定物体的距离,进而确定产生的深度信息,其原理如式(2)所示:d =n +ϕ2π2λ(2)其中,λ表示脉冲的波长;n 表示波长的个数;ϕ表示脉冲返回时的相位;d 表示物体离发射之间的距离.TOF 相机的研究相对比较早,与二维测距仪相比具有较大的优势,它可以从三维点云中直接获取场景的几何信息.2014年,微软推出了Kinect 2.04期郑太雄等:基于视觉的三维重建关键技术研究综述635传感器,采用TOF技术来计算深度,从而获得三维点云信息.文献[49−50]使用TOF相机获取的深度信息提取出场景中的几何信息.2008年,May等[49]使用两帧之间匹配数据中对应的方向向量来提高定位精度.2009年,Hedge等[50]运用提取的方向向量来探测不容易识别的路平面.同年,Pathak等[51]利用方向向量建立三维地图,为移动机器人提供导航信息.然而,由于TOF相机获取的三维点云信息存在比较多的误差点,只依靠几何信息来构建地图和定位会产生较大的误差.Stipes等[52]采用ICP(Iterative closest point)算法拼接TOF两帧之间的数据,通过获取的三维点云来实现ICP的迭代过程.May等[53]通过SLAM算法解决两帧之间的数据匹配问题.1.1.5雷达技术雷达作为一种很常见的主动视觉传感器,可以通过发射和接收的光束之间的时间差来计算物体的距离、深度等信息.如式(3)所示:d=c∆t2(3)式中,c为光速;∆t为发射与接受的时间间隔;d表示雷达到物体之间的距离.在20世纪60年代激光雷达传感器迅速发展,这种传感器通过激光束的扫描,可以得到周围环境的深度信息.本部分仅介绍激光雷达的相关应用,其他雷达不再赘述.激光雷达的数学模型可以表示为:XYZ=λa1a2a3b1b2b3c1c2c3xyz+X SY SZ S(4)其中,X,Y,Z是空间点的三维坐标;a i,b i,c i为3个空间姿态角组成的方向余弦;x,y,z为空间扫描点坐标;X S,Y S,Z S为激光雷达扫描器的直线外方位元素;通过式(4)可以获得物体的空间三维坐标.2004年,Streller等[54]对激光雷达获取的扫描点进行聚类,从而实现智能车前方目标的检测.2005年,Schwalbe等[55]利用激光雷达获取点云数据,然后采用线追踪近邻面将点云数据进行分段投影,最后重建出建筑物的三维模型.2007年,Weiss等[56]使用激光雷达聚类的方法来提取智能车前方车辆的轮廓信息,然后对目标车辆进行三维重建,从而获取形状信息,最后采用模式识别算法,结合得到的轮廓和形状信息对目标车辆进行检测.2010年,胡明[57]提出了边界保持重建算法,利用激光雷达获取的点云数据选取二次曲面进行局部拟合,再使用单元分解的方法对拟合曲面进行点云拼接,从而实现了点云的三维重建.2012年,魏征[58]使用车载激光雷达获取建筑物的点云数据进行了几何重建.1.1.6Kinect技术Kinect传感器是最近几年发展比较迅速的一种消费级的3D摄像机,它是直接利用镭射光散斑测距的方法获取场景的深度信息[59],Kinect在进行深度信息获取时采用的是第1.1.2节所介绍的结构光法,下面主要是对Kinect技术研究现状进行简要概述.由于Kinect价格便宜,自2010年发售以来,受到了国内外的广泛关注,并开始使用Kinect进行三维重建的研究.Kinect传感器如图5所示.图5Kinect传感器Fig.5Kinect sensorKinect传感器中间的镜头为摄像机,左右两端的镜头被称为3D深度感应器,具有追焦的功能,可以同时获取深度信息、彩色信息、以及其他信息等. Kinect在使用前需要进行提前标定,大多数标定都采用张正友标定法[60].2011年,Smisek等[61]为了解决Kinect传感器无法找到棋盘格角点问题,对Kinect深度相机自身的红外发射器进行遮挡,并使用卤素灯生成红外图像,从而标定Kinect传感器两个相机之间的位置.2014年,Zollh¨o fer等[62]为了解决Kinect获取的深度信息含有噪声的问题,使用高斯滤波器进行滤波处理,从而减小了噪声影响.目前,使用Kinect进行三维重建的研究比较流行.2014年,Henry等[63]最早使用Kinect相机对室内环境进行三维重建,得到的效果不是很好,重建的模型有很多黑色斑点,实时性也较差,需要进一步提高其性能.为了解决这些问题,2012年,Henry 等[64]使用了重投影误差的帧间配准、FAST特征等优化方法对其进行了改进,实时性得到了显著提高.2011年,Newcombe和Izadi等[65−66]开发了Kinect Fusion系统,该系统利用获取的深度信息生成三维点云及法向量,从而可以对场景进行三维重建,其结果更加精确.2013年,吴侗[67]采用体密度变化率直方图的方法对点云数据进行分割和检测,然后,对于Kinect采集到的纹理信息使用卷包裹算法,从而完成了对点云数据的三维重建.表1所示为主动视觉常用方法优缺点的对比.636自动化学报46卷表1主动视觉方法对比Table1Active visual method comparison方激光扫描结构光阴影TOF技雷达技Kinect技法法[28−31]法[32−42]法[43−48]术[49−53]术[54−58]术[59−67]1.重建结果 1.简单方便、 1.设备简单,图像 1.数据采集频 1.视场大、扫描 1.价格便宜、轻优很精确;无破坏性;直观;率高;距离远、灵敏度便;2.能建立形 2.重建结果速 2.密度均匀, 2.垂直视场角高、功耗低; 2.受光照条件的点状不规则物率快、精度高、简单低耗,对图像大; 2.直接获取深度影响较小;体的三维模能耗低、抗干的要求非常低. 3.可以直接提信息,不用对内部 3.同时获取深度型.扰能力强.取几何信息.参数进行标定.图像和彩色图像.1.需要采用 1.测量速度慢; 1.对光照的要求较 1.深度测量系统 1.受环境的影响 1.深度图中含有算法来修补 2.不适用室外高,需要复杂的记误差大;较大;大量的噪声;漏洞;场景.录装置; 2.灰度图像对比 2.计算量较大, 2.对单张图像的缺 2.得到的三 2.涉及到大口径度差、分辨率低;实时性较差;重建效果较差.维点云数据的光学部件的消 3.搜索空间大、量非常庞大,像差设计、加工效率低;点而且还需要和调整. 4.算法扩展性差,对其进行配空间利用率低.准,耗时较长;3.价格昂贵.1.2基于被动视觉的三维重建技术1.2.1根据相机数目分类基于被动视觉的三维重建技术是通过视觉传感器(一台或多台相机)获取图像序列,进而进行三维重建的一种技术.这种技术首先通过视觉传感器(一台或多台相机)获取图像序列,然后提取其中有用的信息,最后,对这些信息进行逆向工程的建模,从而重建出物体的三维结构模型.该方法的优点是能够应用于各种复杂的环境中,对主动视觉法具有很好的补足.另外,它具有价格较低,操作简单,实时性较高,对光照要求较低以及对场景没有要求的优点,容易实现;不足的是重建精度不是很高.由于主动视觉方法受环境及设备等因素的限制,近几年,人们投入大量精力用于被动视觉方法的研究上.根据相机数量的不同,被动视觉的三维重建技术可以分为单目视觉、双目视觉和多目视觉,这一部分将重点从相机数目的角度对被动视觉的三维重建技术进行总结和分类.1.2.1.1单目视觉法单目视觉是仅使用一台相机进行三维重建的方法,该方法简单方便、灵活可靠、处理时间相对较短,而且价格便宜,使用范围比较广,能够使用在三维测量和检测等领域.为了进一步表示空间中任意一个三维点P在世界坐标系转换到二维图像坐标系之间的关系,关系坐标可以表示为:uv1=f x0u00f y v0001·R t01X WY WZ W1(5)其中,(X W,Y W,Z W)为空间中的三维点;(R t)称为旋转矩阵和平移向量;f x和f y是摄像机在两个方向上的焦距;(u0,v0)是摄像头主点在图像坐标系下的坐标;(u,v)是图像坐标系下的坐标;从而通过式(5)可以求解出任意空间一点的三维坐标.基于单目视觉的三维重建流程如图6所示.单目视觉主要提取图像中的亮度、深度、纹理、轮廓、几何形状、特征点等特征信息.由于这些特征信息已经在文献[68]中详细阐述过,为了使相关研究人员以及读者能够更好地了解发展趋势以及能够清楚它们之间在三维重建中的优缺点,这一部分简要的概述图像中所包含的特征信息.1)明暗度恢复形状法明暗度恢复形状法,简称SFS(Shape from shading),即通过分析图像中的明暗度信息,利用表面的反射模型,获取物体表面的法向信息,从而恢复出物体的三维轮廓,图像在(u,v)处的像素强度4期郑太雄等:基于视觉的三维重建关键技术研究综述637I uv 可以表示为:I uv =R I (ρ,n,s,v )(6)其中,R I 表示反射图;ρ为表面反射率;n 是表面法向量;s 表示入射光方向;v 表示反射光方向.明暗度恢复形状法的概念最早由Horn [69]于1970年提出.1989年,Penna [70]提出了PSFS (Per-spective shape from shading)方法,这种方法其实就是用透视投影替代正交投影的明暗度恢复法.1994年,Bakshi 等[71]提出了使用非朗伯特模型的明暗度法.2008年,Vogel 等[72]综合以上两种方法又提出了基于非朗伯特模型的PSFS 方法.图6基于单目视觉的三维重建流程Fig.63D reconstruction process based onmonocular vision2)光度立体视觉法虽然SFS 可以从单幅图像中获取物体的三维信息,但是其信息量比较少,而且重建出来的三维模型的效果也不是很好.于是,Woodham [73]于1980年对明暗度恢复形状法的不足进行改进,提出了光度立体视觉法,简称PS (Photometric stereo).光度立体视觉法首先将单个摄像机固定在目标物体的正上方,然后通过光源发出的光线从不同的角度射到目标物体的表面,最后通过摄像机获取多幅图像,从而得到图像的灰度值与目标物体的关系以此来恢复三维物体的形状.随后,许多研究人员在光度立体视觉法的基础上又有了进一步的研究.2003年,Noakes 等[74]在光度立体视觉法中提出非线性与噪声减除的方法.2004年,Horovitz 等[75]在光度立体视觉法中引入了控制点和梯度场的概念.2005年,Tang 等[76]使用可信度传递与马尔科夫随机场[77]的方法对光度立体视觉法进行了优化.2007年,Sun 等[78]采用非朗伯特模型的光度立体视觉法.2009年,Vlasic 等[79]提出了使用多视角进行三维重建的方法.2010年,Shi 等[80]提出了自标定的光度立体视觉法.Morris 等[81]使用了动态折射立体法对物体表面进行三维重建.Higo [82]提出了对非刚性不规则物体进行三维重建的方法.这些方法在一定程度上提高了三维重建的精度.这种方法可以用亮度方程进行表示:I (x,y )=k (x,y )×N (x,y )×S (7)其中,I 为图像亮度;S 为光源向量;N 为物体表面的法向量;k 是由物体表面反射系数、光源强度、摄像机对光敏感度共同决定的系数.光度立体视觉法在不同光照的条件下通过摄像机拍摄多幅图像,再根据不同图像的亮度方程进行联立,从而求解出物体表面的法向量,进而恢复物体的几何形状.3)纹理法纹理法简称SFT (Shape from texture).这种方法通过分析图像中物体表面的纹理大小和形状,来获取物体的三维信息,进而重建出物体的三维模型.纹理法分为两种,一种是基于频谱分析的方法,这种方法主要通过频域变换分析纹理单元的谱信息来恢复物体表面的法向,利用这些法向重建出物体的三维模型.1988年,Brown 等[83]采用傅里叶变换对物体的纹理进行了三维重建.2002年,Clerc 等[84]使用小波变换对物体表面进行了纹理分析和三维重建.另外一种则是在正交投影条件下基于后验概率分布的方法,这个方法是由Wiktin [85]于1981年最早提出的.2010年,Warren 等[86]为了使重建效果有进一步的提高,采用了透视投影模型对Wiktin 的方法进行了改进,通过实验验证了这种方法的可行性.4)轮廓法轮廓法简称SFS/SFC (Shape from silhou-ettes/contours).该方法主要是通过一个相机从多个角度拍摄图像来获取物体的轮廓信息,通过这些轮廓信息恢复物体的三维结构模型.轮廓法又可以分为体素法[87]、视壳法[88]和锥素法[89−91]三种.采用轮廓进行三维重建是由Martin 等[87]于1983年首次提出的方法,这种方法首先将物体所在的三维几何空间离散化为体素,然后再使用正向试探法,消除投影在轮廓区域以外的体素,进而可以获得物体的三维信息.为了进一步研究轮廓法的相关。

简要概述三维重建3Dreconstruction技术

简要概述三维重建3Dreconstruction技术

简要概述三维重建3Dreconstruction技术三维重建的英文术语名称是3D Reconstruction.三维重建是指对三维物体建立适合计算机表示和处理的数学模型,是在计算机环境下对其进行处理、操作和分析其性质的基础,也是在计算机中建立表达客观世界的虚拟现实的关键技术。

三维重建的步骤(1)图像获取:在进行图像处理之前,先要用摄像机获取三维物体的二维图像。

光照条件、相机的几何特性等对后续的图像处理造成很大的影响。

(2)摄像机标定:通过摄像机标定来建立有效的成像模型,求解出摄像机的内外参数,这样就可以结合图像的匹配结果得到空间中的三维点坐标,从而达到进行三维重建的目的。

(3)特征提取:特征主要包括特征点、特征线和区域。

大多数情况下都是以特征点为匹配基元,特征点以何种形式提取与用何种匹配策略紧密联系。

因此在进行特征点的提取时需要先确定用哪种匹配方法。

特征点提取算法可以总结为:基于方向导数的方法,基于图像亮度对比关系的方法,基于数学形态学的方法三种。

(4)立体匹配:立体匹配是指根据所提取的特征来建立图像对之间的一种对应关系,也就是将同一物理空间点在两幅不同图像中的成像点进行一一对应起来。

在进行匹配时要注意场景中一些因素的干扰,比如光照条件、噪声干扰、景物几何形状畸变、表面物理特性以及摄像机机特性等诸多变化因素。

(5)三维重建:有了比较精确的匹配结果,结合摄像机标定的内外参数,就可以恢复出三维场景信息。

由于三维重建精度受匹配精度,摄像机的内外参数误差等因素的影响,因此首先需要做好前面几个步骤的工作,使得各个环节的精度高,误差小,这样才能设计出一个比较精确的立体视觉系统。

基于视觉的三维重建,指的是通过摄像机获取场景物体的数据图像,并对此图像进行分析处理,再结合计算机视觉知识推导出现实环境中物体的三维信息。

1. 相关概念(1)彩色图像与深度图像彩色图像也叫作RGB图像,R、G、B三个分量对应于红、绿、蓝三个通道的颜色,它们的叠加组成了图像像素的不同灰度级。

透明物体的三维重建综述

透明物体的三维重建综述

第32卷第2期计算机辅助设计与图形学学报Vol.32No.2 2020年2月Journal of Computer-Aided Design & Computer Graphics Feb. 2020透明物体的三维重建综述吴博剑1,2,3), 黄惠2)*1) (中国科学院深圳先进技术研究院深圳518055)2) (深圳大学可视计算研究中心深圳518061)3) (中国科学院大学深圳先进技术学院深圳518055)(hhzhiyan@)摘要: 透明物体的三维重建一直以来都被认为是很有挑战性的问题. 不同于传统重建算法对物体表面的漫反射属性假设, 因为透明物体与光线之间存在复杂的, 如反射和折射等, 与视角相关的光学效应, 将导致传统重建算法无法直接应用在透明物体上. 文中简要介绍透明物体的三维重建相关研究, 围绕从X恢复形状、反向渲染技术、断层摄影技术和直接光线测量这4个方面回顾了近些年来的主要研究工作, 分析并指出当前工作的优缺点以及不同的应用环境, 展示了这一挑战性问题的研究现状和发展趋势, 并探讨了未来有潜力的研究方向.关键词: 透明物体; 三维重建; 折射定理; 光线与像素对应关系; 光线与光线对应关系中图法分类号: TP391.41 DOI: 10.3724/SP.J.1089.2020.18101Survey on 3D Reconstruction of Transparent ObjectsWu Bojian1,2,3) and Huang Hui2)*1) (Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055)2) (Visual Computing Research Center, Shenzhen University,Shenzhen 518061)3) (Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences,Shenzhen 518055)Abstract: 3D reconstruction of transparent objects has long been considered as a challenging problem. Different from traditional reconstruction approaches which usually assume the diffuse reflection properties of target ob-jects, because of the complicated view dependent light effects, such as reflection and refraction etc., between light and transparent objects, it will directly lead to failure while applying traditional reconstruction methods to trans-parent objects. This survey briefly introduces related works about 3D reconstruction of transparent objects. It re-views the main research works in recent years which are summarized into four categories: shape-from-X, inverse rendering, tomography, and direct ray measurements, respectively. The advantages and disadvantages, and various applicable environments of each category will also be analyzed and elaborated. After that, we will show current research status and trends along this direction, and then discuss and explore the possible future follow-up research ideas.Key words: transparent objects; 3D reconstruction; the law of refraction; ray-pixel correspondences; ray-ray cor-respondences收稿日期: 2019-09-27; 修回日期: 2019-11-29. 基金项目: 国家自然科学基金(61761146002, 61861130365); 广东省高等学校科技创新重点项目(2018KZDXM058); 广东省自然科学基金研究团队(2015A030312015). 吴博剑(1992—), 男, 博士研究生, 主要研究方向为计算机图形学; 黄惠(1977—), 女, 博士, 教授, 博士生导师, CCF杰出会员, 论文通讯作者, 主要研究方向为计算机图形学.174 计算机辅助设计与图形学学报第32卷1背景真实世界中三维信息的获取一直以来都是计算机图形学和计算机视觉领域一个重要研究方向. 随着研究人员对真实物体三维模型化需求和兴趣的逐渐增长, 并受到各种不同应用形式的驱动, 如基于大数据的三维建模、历史文化遗产和文物等的数字化保存、自动驾驶的发展等, 对真实物体三维重建的研究日益活跃. 因此无论是在研究还是工程, 更加有效的建模方法都是很有必要的.在过去几十年中, 研究人员对漫反射表面物体的三维重建提出了众多不同的重建算法, 如全自动扫描[1]、多目立体视觉[2-3]、光度立体法[4]等, 如图1a所示从不同视角拍摄的图片中获取信息以恢复物体的三维形状, 图1b和图1c中分别采用深度相机或扫描仪获取物体表面的三维点云数据. 实验表明, 这些技术能够有效地应用于非透明物体, 甚至是半透明物体上的三维重建. 然而这些方法都不能直接适用于透明物体的三维重建, 因为透明物体与光线之间的相互作用存在复杂的反射和折射关系, 将导致传统三维重建算法并不能有效地重建透明物体. 文献[5]中指出, 针对透明物体的三维重建, 无论是从数据采集系统还是三维重建算法方面, 长期以来一直都被认为是很具挑战性的问题.a. 多目立体视觉b. 深度相机c. 三维扫描仪图1 漫反射表面物体三维重建的几种不同的传统方法针对透明物体, 本文将简要介绍近些年来三维重建研究方面的相关工作, 分析并指出它们的优缺点以及不同的应用环境, 然后对该研究方向上可能存在的难点问题以及研究思路进行总结和展望. 关于更广泛的漫反射物体和镜面反射物体的三维重建, 将不对其进行详细介绍, 具体请参考这方面的相关综述[5-7].2 透明物体的三维重建获取透明物体完整的表面几何信息是一个非常复杂的问题. 透明物体内部的材质分布可能存在高度不一致性, 如近年来对重建火焰[8-9]、混合流体[10]、气体[11-12]、云[13-14]以及内部材质非一致性物体[15]等相关研究中, 由于这些物体的成像机制并不简单, 因此至今尚未有统一的重建方法. 此外, 文献[16]中还考虑了采用侵入式方法对透明物体进行三维重建, 然而该方法针对一些名贵物品等明显并不完全适用, 因为通过浸泡化学溶液可能会损伤物体表面结构. 当然, 这里首先仅仅列举一些特殊情况的处理方法. 通常情况下, 研究人员主要集中在简化的子问题上, 如不同介质之间有明确分界面情况下的物体表面重建. 因此, 下面将重点介绍普通透明物体的重建方法, 如水面、玻璃杯等人工制品. 如不加特殊说明, 本文中均假设目标透明物体内部材质分布一致并且已知折射率. 2.1 从X恢复形状(shape-from-X)用于透明物体三维重建的一种方法是从由于光线折射而导致已知或未知标定图案扭曲中推测出物体的几何信息, 将这一类方法归纳为“从扭曲恢复形状”[17-19]技术. 由于透明物体表面的透射属性, 光线经过透明物体内部之后可能会发生多次反射与折射, 因此拍摄得到的扭曲图案是光线与物体表面多次相互作用的综合结果, 这也将大大提升反向推测物体几何信息的难度. 正是由于这样的复杂性, 使得“从扭曲恢复形状”技术通常仅仅适用于单一折射表面或形状简单的参数化表面模型, 而不容易推广到更广泛的物体类别上. Murase[20-21]首先提出并研究了折射表面的三维重建, 其主要考虑了水面重建的问题, 通过使用单一视角的正交投影设备, 将相机镜头垂直于水面的平均表面; 在水箱底部放置一个未知背景图案, 相机记录了一系列由于水面波动而被扭曲的图案, 并采用光流法进行分析; 然后采用像素轨迹的均值作为水面的平均表面近似值, 据此得到未扭曲的背景图案. 在正交投影的情况下, 可以建立每一帧中分界面介质处的扭曲矢量和水表面梯度的关系, 然后对梯度矢量积分可以获得最终重建的水面模型. 此外, Morris等[22]考虑了随时间变化的水面重建, 并利用立体设备和已知背景图案, 克服了文献[20-21]中的一些限制因素. 用这种扩展的设备不仅可以获得折射率, 还能准确地估计每个像素点的深度和法向量. 除此之外, 该方法不依赖于平均表面形状, 而且对消失的表面重建很鲁棒.不同的是, Zuo等[23]在“从剪影恢复形状”技术中引入内部遮挡轮廓, 并提出基于可视化凸包的第2期吴博剑, 等: 透明物体的三维重建综述175逐步优化算法用以重建透明物体. 另外, “从反射恢复形状”[24-25]技术通过采集透明物体对环境光的反射来设计重建算法. 文献[24]使用一个固定的单视点设备和一个移动的近场光源, 将光源移动到一系列标定好的二维网格上并拍摄, 从而在每个像素点上获得密集的反射值, 这些反射值大小直接受表面反射和全局光照2种效果影响. 由于整个拍照过程中相机和物体是相对静止的, 并且物体的反射是相对于一个固定的观察方向, 因此可以测得物体表面双向反射分布函数的一个二维切面. 然而该方法的数据采集部分较为复杂, 需要手动调整点光源位置以照亮目标物体获取到不同方向的反射光线信息. 因为光线在物体表面的入射和反射与物体表面法向量紧密相关, 所以通过该方法进行三维重建是可能的. 另外, 因为反射场仅仅依赖于物体的表面几何, 所以该方法的优点在于可以重建表面复杂且内部材质不一致的物体. 借鉴类似的思想, 文献[25]则采用更加简便的数据采集方式获取到透明物体表面的高光反射信息, 并应用图割理论求解法向量场以重建物体的三维模型. 尽管其实验结果中的重建精度不是很高, 但对该研究方向的探索具有一定启发作用. 文献[26]通过将多个传感器放置在透明物体周围, 测量给定入射光线经过透明物体之后的反射和折射响应信号, 并依据反向光线追踪原理反推物体几何形状, 计算得到物体折射率. 文献[27]展示了将辐射度信息和几何信息结合起来的重建方法. 显而易见, 虽然这类方法将重建仅仅限制在反射表面上而减少待求解未知数数量且能达到较高的重建精度, 但是其一个明显缺点是透明物体的反射场通常比较微弱, 一般难以准确获取, 并且数据采集阶段也很费时费力; 而不准确的反射信息最终也将会直接影响重建精度. 另外, “从偏振恢复形状”[28-29]技术将透明物体对光线的偏振和三维重建联系起来, 把物理成像方法融入三维重建. 其基本原理是光线经过透明物体表面反射后, 非偏振光变成部分线性偏振光, 通过测量光偏振态, 恢复物体表面法向量. 此外, “从红外恢复形状”[30]技术依据红外热成像原理, 将红外线源投射至物体产生热量, 通过红外传感器检测并依此恢复物体几何表面信息; 而“从紫外恢复形状”[31]技术则通过在物体表面投射紫外线源以及提前标定视觉系统跟踪荧光, 以推断物体三维形状. 这类方法通常需要专业的设备和高昂的成本, 尽管重建精度能满足一定的工业级需求, 但是很难被直接应用到实际场景中. 2.2 反向渲染技术正向渲染过程是已知物体的三维几何形状, 然后指定物体表面的材质属性, 追踪从相机成像平面上每个像素点出发的光线, 将其与物体相互作用, 包括反射或折射, 最终和场景相交, 计算得到每个像素点的颜色. 而反向渲染过程则相反, 是从采集的图片中反推出物体的三维几何信息. 其基本原理一般是通过正向渲染合理假设的初始粗糙模型, 将生成的图片和采集的图片相互比对, 并将成像残差与表面变形联系起来, 然后逐步优化粗糙模型, 以达到最终重建的目的. 这也是可微分渲染器[32]的主要思想之一. 另外, 研究人员也分别基于物理和化学的方法考虑反向渲染, 如考虑将荧光染料和水混合使其自发光, 假设恒定自发射率成像模型, 获取多视角视频帧并与合成图片进行匹配, 对其逐步优化以实现三维重建[33-34]. 文献[35]用不透明的白色涂料将液体染色, 并在其表面上投影条纹, 继而基于多目立体视觉并结合物理仿真从动态水流视频中进行重建. 该方法的不足之处在于, 通常需要改变目标物体的内部属性, 以使得成像系统能够获取透明物体表面固有的几何信息. 关于直接从包含透明物体的图片中反推出三维结构目前仍然是一个开放性问题.2.3 断层摄影技术在某些特殊情况下, 如光线经过匀质物体则会沿直线传播, 光线不会被物体所折射. 实验表明, 如果波长足够高, 在X射线照射的情况下, 物体周围的介质和物体本身的折射率相似或相同时, 通过断层摄影技术[36]是有可能恢复出物体的三维形状. Trifonov等[37]和Hullin等[38]提出将物体浸泡在相同折射率的溶液中, 并使用化学颜料将溶液染色和物体区分开. 如果透明物体是均匀介质, 理论上光线经过整套装置后在内部不会发生折射. 通过断层摄影技术从360°采集图片即可重建目标物体. 尽管这种方法可以用来重建较为复杂的物体, 但是一个显而易见的弊端在于, 实验过程中需要准确匹配物体和溶液的相对折射率, 因此难以推广至常规应用场景中. 此外, 该方法本身是侵入式的, 也较难适用于名贵物品或文物的三维重建.2.4 直接光线测量如图2所示, 将已知透明物体放置在背景屏幕前, 采用RGB相机拍摄, 假设相机满足小孔成像原理, 依据反向光线追踪, 从相机出发的每一条入176计算机辅助设计与图形学学报 第32卷射光线cq 与经过物体多次折射后最终的出射光线2p Q 上一个或多个参考点Q 的对应关系, 称之为光线与像素对应关系, 该参考点由背景屏幕上的一个或多个像素点表示. 这个问题首先由Zongker 等[39]提出, 并作为环境抠图问题研究. 在得到出射光线方向上一个参考点位置的对应关系后, 移动背景屏幕, 即可获得相同出射光线方向上的另外一个参考点位置, 连接2个参考点即可获得出射光线方向; 而入射光线方向则可以通过相机内参矩阵转换像素点q 直接得到. 由此可得到入射光线方向和出射光线方向的对应关系, 称之为光线与光线对应关系. 当然, 该对应关系的获取也可通过测量不同位置标定好的平面图案或从光流数据中近似得到. 理论上, 由于光线在透明物体表面的折射和表面法向量密切相关, 因此通过光线的折射关系, 如折射定理, 能够相应地恢复出物体的三维几何形状.图2 光线与像素对应关系由于折射现象本身的复杂性, 通常光线经过透明物体后会发生多次反射和折射, 甚至会出现全反射. 换言之, 依据光线跟踪, 从相机射出的每一条光线可能会与物体多个表面相交, 在这种情况下恢复透明物体表面的几何信息是一个高度欠定的问题. 基于此, 部分研究人员仅分析一次折射现象[40-42], 特别是水面等流体表面的重建[22,43-44]. 不同于之前的工作仅仅关注表面重建, 文献[45]首次提出采用多相机系统观测水面, 并同时重建水面和水下场景的三维模型. 综上, 下面从简单情况开始逐步分析基于光线测量的重建问题.1次折射. 光线的折射给透明物体的三维重建带来了更多未知的变量, 首先从简单的1次折射开始分析. 如图3所示, 假设位于P 点的相机沿(1,2,3)i PO i =方向观测折射率为2r 的均匀介质中某点Q '. 如果12r r =, 光线将沿直线传播不发生偏转; 否则(不失一般性, 考虑12r r <的情况, 如从空气进入水面, 此时折射角小于入射角), 光线在2种介质分界面上某点i O 处发生折射. 此时有2个未知变量, 分别为相交点i O 到相机成像中心的距离i d , 即深度值, 以及相交点处的表面法向量i n . 从图3可以发现, 当用相机观测介质中同一点Q 时, 因为存在多个可能的(), i i O n 满足折射定理, 所以认为深度和法向量是相互耦合的. 这也将产生多义性而导致无法正确地估计出深度信息. 换言之, 针对1次折射, 如果仅仅知道光线与像素对应关系, 无法求解满足该关系的特定三维表面.图3 1次折射的深度和法向量的多义性图4所示讨论了2种简单方案来消除多义性. 在图4a 中, 通过增加出射光线方向上参考点位置的数量, 即1Q 和2Q , 则可以完全确定出射光线方向. 那么在已知折射率的情况下, 依据折射定理就能够唯一确定相交点O 的位置(注意, 采用入射光线和折射光线相交的三角测量方法也可求解). 在图4b 中, 通过增加一个新的相机视角, 观察折射表面上同一点O , 然后约束2个相机视角下的入射光线在同一相交点O 处发生折射时的法向量一致性, 即可同时求解出交点处的位置和法向量, 进而恢复三维表面形状.2次折射. 如图5所示, 给定光线与光线对应关系的前提下, 深度与表面法向量的多义性仍然存在. Tsai 等[46]从理论上证明了2种情况: 如果指定相交点1v 处的法向量1n , 那么1d 就能唯一确定; 如果指定1d , 那么相交点1v 处的法向量1n 方向的图4 1次折射时深度和法向量多义性消除方案第2期吴博剑, 等: 透明物体的三维重建综述177搜索空间被限制在一条一维曲线上. 关于详细的证明过程, 这里不再赘述, 请参考相关论文了解. 针对2次折射多义性问题, Qian等[47]提出分别在前相交点1v和后相交点2v处同时约束表面法向量并满足折射定理法向量的一致性, 即可同时求解1v 和2v的位置; Wu等[48]采用类似的思想在此基础上扩展至透明物体的完整三维重建.图5 2次折射时深度和法向量的多义性针对多次折射的情况, 因为没有完整的理论支撑, 所以不在本文讨论范围. 值得注意的是, Kim等[49]考虑了轴向对称透明物体(如高脚杯等, 会发生多于2次折射)的三维重建, 但并非采用基于分析光线路径的物理方法, 所以该方法很难应用到普通非对称物体上. 文献[50-51]提出将物体部分表面浸在水中, 使得光线在进入透明物体之前更改入射光线路径, 并结合未改变之前的入射光线, 通过三角测量的方式, 使改变前后入射光线相交, 以重建透明物体表面. 尽管该方法对模型复杂度和光线折射次数等都没有具体要求, 但算法本质上并没有处理多次折射的情况, 而是将除入射光线之外的路径固定住来简化问题, 以忽略掉内部多次折射的影响而重建表面.综合上述介绍的几种情况, Kutulakos等[52]基于光线与光线对应关系, 分析了通过三角测量方法重建透明物体的可能性, 并且将该问题按照光线经过物体的折射次数分类为(),,N M K问题. 如图6所示, 其中N表示三维重建所需要的相机视角数目, 如单目、双目或多目等; M是分段线性光线路径上光线与物体表面反射或折射的作用点数目; K是从物体射出的光线路径上标定好的参考点数目. 他们深入研究了这种表示法中重建的可能性组合, 指出在光线多于2次反射或者折射的情况下, 无论添加多少个相机视角或出射光线上参考点数目, 在物理理论上对透明物体进行三维重建均是不可能的. 另外, 出射光线上多于2个不重叠的参考点也不能给重建带来更多有用的信息; 表1中列出了可能实现透明物体三维重建的(),,N M K取值组合.图6 采用直接光线测量法对透明物体进行三维重建表1可能实现三维重建的取值组合K=1 K=2 NM=1M=2M=3 M=1 M=2 M=3 1√ √[48]2√ √ √[47]>2√ √ √Kutulakos等[52]对()3, 2, 2进行了实验分析, 利用一个三视点设备测量出射光线, 提出了一个实际可行的、针对2次折射分界面物体的三维重建算法. 其通过在每个像素点恢复4个表面点和法向量估计值, 其中1个表面点和其对应的法向量在后侧表面, 另外3个表面点和法向量分别对应3个不同的观测视角. 值得注意的是, Qian等[47]考虑了()2, 2, 2的情况, 同时恢复物体表面的三维点云和对应点法向量信息. 他们的数据采集系统包含2个相机和1个作为背景光源的屏幕, 在捕获到每个相机视角下的光线与光线对应关系后, 通过约束每个表面点上的几何法向量和满足折射定理法向量一致性, 同时优化表面点的位置和法向量, 以达到最终重建的目的. 基于此, Wu等[48]首次提出透明物体的完整三维重建, 创新性地提出一个全自动的数据采集系统, 将透明物体放置在旋转平台上, 通过旋转物体并采用单个固定的RGB相机捕获不同相机视角下的光线与光线对应关系. 基于采集的数据, 从由空间雕刻[53]生成的初始模型开始, 算法在3个约束条件下逐渐地优化初始模型: 分别是法向量一致性约束、表面投影和轮廓图一致性约束以及表面平滑性约束, 逐步收敛至最终三178 计算机辅助设计与图形学学报第32卷维重建结果. 在仿真和真实实验结果下, 该方法能有效地恢复透明物体的复杂几何形状并复现它们的光线折射特性. 如图7a所示, 尽管透明物体与环境中的光线有着复杂的作用关系, 但采用文献[48]的算法, 也可实现透明物体的高质量重建结果. 这也使得在虚拟环境中对透明物体进行真实感渲染成为可能, 如图7b所示.a. 透明物体真实拍摄图片b. 重建模型仿真环境渲染图7 透明物体的完整三维重建从图7可以很直观地看出, 该方法的优点在于它是非侵入式的方法, 在不破坏物体表面结构和表面属性的情况下依据物理定理实现三维重建. 虽然光线传输过程的分析有理论保证, 并且在众多工作中都能得到较为准确的重建结果; 但是, 如上所述, 涉及多次折射时, 如空心玻璃杯, 尽管物体表面几何非常简单, 该方法在使用时依然存在明显的不足.3 总结与展望不同于传统三维重建算法对物体漫反射表面属性的假设, 透明物体和光线之间存在复杂的视角相关特性, 因此给重建问题带来了巨大的挑战. 近些年来, 研究人员也在这个研究方向上探索了很多可能的方案. 当然, 不同方法之间会有一定的交叉, 本文尝试从4个方面对这些方案进行总结, 主要包括从X恢复形状、反向渲染技术、断层摄影技术和直接光线测量, 并且分析了不同方案的优缺点, 以及适用性环境. 可以看出, 这些方案中大部分都集中在分析透明物体与光线之间的相互作用, 考虑结合物理定理恢复透明物体的三维几何形状. 当然, 目前的工作主要集中于材质一致性透明物体的重建算法研究, 关于如何将现有算法扩展至非一致性透明物体也是值得探索的一个研究方向. 另外, 考虑从物理分析上如何突破光线多次折射的限制等研究也很有实际意义.值得注意的是, 上述所有方法基本上是针对水面或小型人工制品的三维重建, 而扩展到真实场景. 文献[54]提出使用单个超声波传感器增强传统深度相机, 如Microsoft Kinect相机, 该传感器能够测量到任何物体的深度, 包括透明表面; 并提出一种新颖的融合算法, 将深度图按照物体表面属性分割, 并基于分割结果进一步更新深度图. 实验表明, 该方法在众多挑战性的室内场景中表现良好. 当然, 这一类同时考虑数据采集系统和三维重建算法的研究是非常有意义的, 在未来的工作中如果能考虑更加巧妙和简洁的数据采集以及重建算法, 也将会给这方面的研究带来更多的贡献.如上文所述, 三维模型的重建离不开数据采集系统, 两者相辅相成, 文中所涉及的方法大多数是在受控的环境中进行. 因此, 更加高效简便的数据获取方式也是很值得探究的一个方向. 类似于漫反射物体的实时扫描, 透明物体的实时扫描和重建也将会是很有挑战性的工作. 由于透明物体内部材质的不确定性, 一致或非一致性, 以及与光线之间复杂的作用关系, 如何实现一种通用的扫描重建也是非常有挑战性的.另外, 随着深度学习技术在图形图像领域的广泛应用, 在未来的工作中也可以考虑将深度学习方法应用于透明物体的三维重建工作中来. 例如, Chen等[55]首次提出采用深度神经网络方法学习光线经过透明物体的光传输矩阵, 用以估计环境抠图[39]. 未来的研究工作可以考虑在此基础上扩展至将光线折射特性融入神经网络, 以实现端到端的透明物体的三维重建, 这其中涉及的很多技术问题都很值得深入研究. 例如, 怎样从单视角或多视角输入的图片中恢复透明物体的深度信息, 估计不同视角图片的像素对应关系, 又或者是将微分渲染引入重建过程中等.最后, 随着技术的不断发展和进步, 希望研究人员能够不断努力地探索, 发现关于透明物体的三维重建方面更多有趣的研究, 以实现各类不同材质属性物体的通用性重建算法.参考文献(References):[1] Wu S H, Sun W, Long P X, et al. Quality-driven Pois-son-guided autoscanning[J]. ACM Transactions on Graphics, 2014, 33(6): Article No.203[2] Galliani S, Lasinger K, Schindler K. Massively parallel mul-。

基于断层扫描数据三维建模技术分析

基于断层扫描数据三维建模技术分析
(3)实现了基于直线求交算法的三维模型去自交技术。首先基于点的偏置算法对模型进行 偏置,然后以原始模型上的点坐标为投射直线原点,以邻接面法矢加权总和平均值为直线的方 向向量来构建直线。投射直线穿过偏置模型,提取所需要的自交三角面片编号装入链表,最后 滤除自交点云数据,重新构建网格模型。通过对不同的离散数据模型进行去自交实验,验证了 本文算法是有效的。
Keywords: boundary-edge enhancement, shrink-wrapping, 3D reconstruction, offset, removing
self-intersection
II
南京航空航天大学硕士学位论文
目录
第一章 绪论 .......................................................................................................................................... 1 1.1 引言 ......................................................................................................................................... 1 1.2 计算机辅助CT影像轮廓提取技术.......................................................................................... 2 1.2.1 几种典型的CT切片分割方法....................................................................................... 2 1.2.2 轮廓自动提取算法的优点............................................................................................ 4 1.3 CT数据三维重建技术研究 ..................................................................................................... 4 1.4 面向骨科的三维建模去自交技术........................................................................................... 5 1.5 本文选题背景及研究内容....................................................................................................... 6 1.5.1 选题背景 ...................................................................................................................... 6 1.5.2 课题研究内容............................................................................................................... 7

动画场景设计

动画场景设计
PHOTOGRAMMETRY 3D RECONSTRACTION 基于近景测量法的三维重建交互设计方法研究
Take photos from different angles as much as possible. 从不同的角度对物体拍照,数量越多越好。
Wireframe 网格线
Calculate high resoulution basecolor map 通过高清照片计算出高分辨率的基础色贴图
Final Render 最终渲染
Control the faces within an appropriate range 将模型面数控制在合适范围内
Matcap+surface 白模+表面
PBR Workflow
物理规则渲染
Baking other maps 烘焙与绘制缺失贴图
Basecolor map基础色贴图 Normal map法线贴图
Roughness map粗糙度贝占图
基于近景测量法的三维重建交互设计/王巍吴雨玷,湖南师范大学工程与设计学院
动画场景设计/吴佩,副教授,湖南师范大学工程与设计学院
Calculate the 3D pointction
3D重建
i
Hight 62CM Width 18.5CM
高度62公分 宽度1&5公分
Reconstraction the mesh 通过点云重建高精度网格
More than 50000000 faces 超过五于万面数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3D Reconstruction and Rendering from Image Sequences R.Koch,J.-F.Evers-Senne,J.-M.Frahm,K.KoeserInstitute of Computer Science and Applied MathematicsChristian-Albrechts-University of Kiel,24098Kiel,Germanyemail:rk@informatik.uni-kiel.deAbstractThis contribution describes a system for3D surface re-construction and novel view synthesis from image streams of an unknown but static scene.The system operates fully automatic and estimates camera pose and3D scene geom-etry using Structure-from-Motion and dense multi-camera stereo reconstruction.From these estimates,novel views of the scene can be rendered at interactive rates.1INTRODUCTIONImage Based Rendering(IBR)is an active researchfield in the computer vision and graphics community.In the last decade,many systems were proposed that synthesize novel views based on collections of real views of a scene.Those systems differ with respect to the amount of interactivity for novel view selection,the ability to compensate scene depth effects(parallax)etc.For a recent review on IBR techniques see[8].In this contribution,we will describe a system for3D sur-face reconstruction and novel view synthesis from images of an unknown static scene[4].In afirst step,a structure from motion(SfM)approach is employed to estimate the un-known camera poses and intrinsic calibration parameters of the camera throughout the sequence[11].The images may come either from a set of closely spaced photographic still images,a hand-held video camcorder,or a multi-camera rig with rigidly coupled digitalfirewire cameras.Together with the calibration,a sparse set of3D feature points is estimated based on the static scene hypothesis.Those features already contain a sparse3D scene description.To refine the3D scene geometry,dense depth maps are estimated from the now calibrated input images in a second step[10].Thus,for each recorded image,the associated calibration,3D pose, and a dense depth map is stored[9].These data can be used in many ways.One way would be to reconstruct a consistent3D scene surface from all views by triangulating a3D wireframe surface from all depth maps.The surface can then be textured with the real images, forming a view-dependent texture map surface(VDTM)[1].For this,the topology problem must be solved to distinguish between connected and occluded surfaces from all views. Another way would be to render directly from the real views using depth-compensated warping[2].In this case,local surface geometry between adjacent views is sufficient.In our contribution we describe ways to render interpolated views using view-dependent geometry and texture models (VDGT)[3].We will describe the system and its components in the following section,followed by some experiments and eval-uation of the approach.2SYSTEM OVERVIEWFigure1gives an overview on the components of the sys-tem.The complete system can be divided into an offline data acquisition and an online rendering part.In the offline part,the images are preprocessed to estimate calibration and depth maps for each view.In the online rendering,the given data set is used to render novel views at interactiverates.Figure1:Block diagram of the reconstruction and rendering system.2.1Offline Data AcquisitionRelative camera calibration is obtained with a structure from motion approach similar to[11].A2D feature detector (Harris Detector[6]or structure tensor[5])extracts dom-inant2D intensity corners in the images.Tofind corre-spondence matches between different views of the scene, we track the features throughout the2D sequence using the KLT-tracker[12]or with correlation-based corner match-ing.The correspondence matching is guided by the epipo-lar constraint and robust matching statistics using randomFigure 2:Images of the original scene.sampling consensus (RANSAC)[7].The image correspondences are tracked through many images viewing the same scene.All 2D correspondences result from projection of the same 3D feature into the im-ages,hence we compute the 3D intersection of all viewing rays by simultaneous estimation of the camera poses and 3D feature points.Bundle adjustment will compute the best possible fit and give the relative camera pose of all views and the corresponding 3D features.We cannot compute ab-solute camera pose as the overall scale of the scene is not known,but a scaled metric pose estimate is determined [7].Figure 2shows some images of the scene used for track-ing and reconstruction.Figure 4shows an overview image of the scene and the resulting camera pose and 3D feature estimates after SfMtracking.Figure 3:Dense depth maps of scene,depth color coded (dark=near,light=far,black=undefined).After camera calibration,a dense and robust depth esti-mate is needed for every pixel of the different views.This can be achieved by multi-view stereoscopic depth estima-tion [10,13].For each view,all spatially neighboring cam-era views are used to estimate per-pixel depth,which is stored in a depth map.Results of this depth estimate can be seen in figure 3.The depth maps are usually dense and relative depth error is around 1%relative depth deviation.These data form the basis to the 3D reconstruction and on-line IBRgeneration.Figure 4:Overview image (top)and 3D calibration and tracks of scene (bottom).The little pyramids show the cam-era positions,the colored points give the 3D feature posi-tions of salient tracked features.2.2Interactive Online RenderingThe calibrated views and the preprocessed depth maps are used as input to the image-based interactive rendering en-gine.The user controls a virtual camera which views the scene from novel viewpoints.The novel view is interpo-lated from the set of real calibrated camera images and their associated depth maps.During rendering it must be de-cided which camera images are best suited to interpolate the novel view,how to compensate for depth changes and how to blend the texture from the different images.For large and complex scenes hundreds or even thousands of images have to be processed.All these operations must be performed at interactive frame rates of 10fps or more.We address these issues in the following section:•Selection of best real camera views,•fusion of multiview geometry from the views,•viewpoint-adaptive mesh generation,•viewpoint-adaptive texture blending.For each novel view to be rendered,the most suitable real views must be selected for interpolation.The cameras are ranked based on similarity in view point,viewing direction, and commonfield of view with the novel view.For further detail we refer to[1].Rendering with View dependent Geometry and Texture (VDGT):The ranked cameras and their associated depth samples are now used to interpolate novel views.Since the novel view may cover afield of view that is larger than any real camera view,we have to fuse views from different cam-eras into one locally consistent image.Efficient hardware-accelerated image warping is employed to map the different real views into the novel viewpoint.Therefore,we generate a warping surface from a regular grid that is placed in the image plane of the virtual camera.The warping surface will have to be updated for each camera motion at interactive rates.Therefore,warping uses a scalable coarse geometric approximation of the real depth ing this approx-imation as a coarse3D surface model,the novel view is rendered by blending the rendered coarse models into one consistent novel view.For texture blending,one may de-cide to either select the best-ranked camera(single-texture mode)or to blend all associated camera textures on the sur-face(multi-texture mode).Proper blending of all textures will result in smoother transition between views but with higher rendering costs for multi-pass rendering.Rendering from Multiple Local Models(MLM):In-stead of the backward warping used for VDGT,one may use a forward mapping by computing a set of individual lo-cal models.These models could be a direct meshing of the depth map for each view or a set of depth layers[2].In that case,the rendering is simplified to texture mapping of all local models and rendering them into the new view.This is fully hardware-accelerated and can be performed very fast. The drawback is that no consistency between the different models is guaranteed and that holes may remain in the ren-dered view.3RESULTSIn this section we will discuss modeling and rendering results with the proposed methods.The depth maps obtained from the modeling are not dense,as can be seen by the black regions infigure3.This will cause the depth compensated warping to fail,unless the holes are interpolated properly.Figure5shows ren-dering results by view interpolation from adjacent camera views.The top image shows rendering results with the four best ranked cameras and depth interpolation,using VDGT. It can be seen that the wrong depth range in the back of the archway leads to blending artifacts,seen as a slight blur due to inconsistent depth in the different cameras.However,the impression of the image is quite smooth and the artefacts are not very visible.In the bottom image,rendering with MLM gives a sharper impression as the depth buffer selects the nearest model surface only,but due to inconsistencies, the image appears inconsistent in some parts and some holesremain.Figure5:IBR results for view rendering using VDGT(top) and MLM(bottom).4CONCLUSIONSWe have presented a system for the automatic IBR from uncalibrated,handheld image sequences.The camera path was calibrated and nearly dense depth maps were com-puted,leaving a set of calibrated and textured depth maps for depth-compensated interpolation.Two different methods for view interpolation were dis-cussed.The rendering results show that the generated qual-ity is still not sufficient for seamless rendering from arbi-trary extrapolated image positions.One issue to investi-gate further is the proper handling of unmodeled depth re-gions and the problem of global seamless integration of lo-cal models.AcknowledgmentsThis work was funded partially by the European projects IST2000-28436ORIGAMI and IST-2003-2013MATRIS.References[1]J.-F.Evers-Senne and R.Koch.Image based inter-active rendering with view dependent geometry.In Eurographics2003,Computer Graphics Forum.Euro-graphics Association,2003.[2]J.-F.Evers-Senne and R.Koch.Image based renderingfrom handheld cameras using quad primitives.In Vi-sion,Modeling,and Visualization VMV:proceedings, Nov.2003.[3]J.-F.Evers-Senne and R.Koch.Interactive render-ing with view-dependent geometry and texture.In Sketches and Applications SIGGRAPH2003,2003.[4]J.-F.Evers-Senne,J.Woetzel,and R.Koch.Modellingand rendering of complex scenes with a multi-camera rig.In1st European Conference on Visual Media Production(CVMP2004),London,United Kingdom, March2004.[5]W.F¨o rstner.A feature based correspondence algo-rithm for image matching.In International Archives of Photogrammetry and Remote Sensing,volume26-3/3,pages150–166.Rovaniemi,1986.[6]C.Harris and M.Stephens.A combined corner andedge detector.In4th Alvey Vision Conference,Manch-ester,pages147–151,1988.[7]R.Hartley and A.Zisserman.Multiple View Geome-try in Computer Vision.Cambridge university press, 2000.[8]R.Koch and J.-F.Evers-Senne.View synthesis andrendering methods.In3D Video Communications.Wi-ley,2005.[9]R.Koch,J.Frahm,J.-F.Evers-Senne,and J.Woet-zel.Plenoptic modeling of3d scenes with a sensor-augmented multi-camera rig.In Tyrrhenian Interna-tional Workshop on Digital Communication(IWDC): proceedings,Sept.2002.[10]R.Koch,M.Pollefeys,and L.V.Gool.Multi view-point stereo from uncalibrated video sequences.In Proc.ECCV’98,number1406in LNCS,Freiburg, 1998.Springer-Verlag.[11]M.Pollefeys,R.Koch,and L.J.V.Gool.Self-calibration and metric reconstruction in spite of vary-ing and unknown internal camera parameters.Interna-tional Journal of Computer Vision,32(1):7–25,1999.[12]J.Shi and C.Tomasi.Good features to track.In Con-ference on Computer Vision and Pattern Recognition, pages593–600,Seattle,June1994.IEEE.[13]J.Woetzel and R.Koch.Real-time multi-stereo depthestimation on GPU with approximative discontinuity handling.In1st European Conference on Visual Me-dia Production(CVMP2004),London,United King-dom,March2004.。

相关文档
最新文档