HE4057_V1.0中文规格书赫尔半导体HEERMICR

合集下载

HEF4047BT中文资料

HEF4047BT中文资料

Fig.2 Pinning diagram.
January 1995
3
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in 元器件交易网 _white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ... January 1995 4 Product specification
HEF4047BP(N): HEF4047BD(F): HEF4047BT(D):
14-lead DIL; plastic (SOT27-1) 14-lead DIL; ceramic (cerdip) (SOT73) 14-lead SO; plastic (SOT108-1)
( ): Package Designator North America
5
元器件交易网
Philips Semiconductors
Product specification

HE4056E_V2.0中文规格书赫尔半导体HEERMICR

HE4056E_V2.0中文规格书赫尔半导体HEERMICR

HE4056E_V2.0中文规格书赫尔半导体HEERMICR产品概述HE4056E 是一款完善的单节锂离子电池采用恒流/恒压线性充电电源管理芯片。

专门设计适用于USB 的供电规格。

得益于内部的P-MOSFET 架构,在应用上不需要外部检测电阻。

在大功率运行或高环境温度时,热反馈可以自动调节充电电流以降低芯片温度。

充电电压被限定在4.2V ,充电电流通过外部电阻调节,最大可充1.1A 的充电电流。

在达到目标充电电压后,当充电电流降低到设定值的1/10时,就会自动结束充电过程。

当输入端(交流适配器或USB 电源)拔掉后,自动进入低电流状态,电池漏电流将降到2uA 以下。

还可被设置于停机工作状态,使电源供电电流降到55uA 。

还具备其余特性包括:电池温度检测,充电电流监测,输入欠压闭锁,自动重新充电和充电及充电已满的指示。

功能特性可编程充电电流可达1.1A.实现对单节锂离子电池的完全线性充电管理恒流/恒压充电并具有可在无过热危险的情况下实现充电速率最大化的热调节功能U SB 接口管理单片锂离子电池?预设充电电压为4.2V ?充电电流输出监控?充电状态指示标志?自动重新充电1/10充电电流终止待机模式下的供电电流为55uA ? 2.9V 涓流充电阈值电压?软启动限制了浪涌电流?采用ESOP-8封装应用领域手机,MP3,PDA ?蓝牙应用?USB 接口充电器HE4056E HE4056E HE4056E HE4056E HE4056E HE4056E 1.1A Lithium Ion Battery Linear Charger管脚分布管脚定义HE4056E1.1A Lithium Ion Battery L i near Cha r ger内部框图典型应用电路绝对最大值范围电性参数(V CC =5.0V ,Ta=25℃,除非另有说明)±2-2101 HE4056E1.1A Lithium Ion Battery Linear Charger功能描述HE4056E 是一款完善的单节锂离子电池恒流/恒压线形充电电源管理芯片。

HE63XXM_V1.1中文规格书赫尔半导体HEERMICR

HE63XXM_V1.1中文规格书赫尔半导体HEERMICR

HE63XXM 系列是使用 CMOS 技术开发的低压差,高精度输出电压,超低功耗电流的正电压型电压稳压电路。

由于内置有低通态电阻晶体管,因而输入输出压差低。

同时具有高输入电压承受能力,最高工作电压可达 18V,适合需要较高耐压的应用电路。

■特性:·输出电压精度高。

·输入输出压差低。

·超低功耗电流。

·低输出电压温漂·高输入耐压。

·输出短路保护精度 ±2%典型值 Iout=1mA 6mV 典型值2.0uA典型值 50 PPm /℃升至 18V 保持输出稳压 短路电流小于 50 mA■用途:·使用电池供电设备的稳压电源·通信设备的稳压电源·家电玩具的稳压电源·移动电话用的稳压电源·便携式医用仪器稳压电源■产品目录HE63①②③④⑤HE63XXM 低压差线性稳压器250mA Low Power LDO注: 在希望使用上述输出电压档以外的产品,客户可要求定制,输出电压范围1.5V~12V ,每0.1V 进行细分。

封装型式和管脚绝对最大额定值:(除特殊注明以外:Ta=25℃) 项目记号绝对最大额定值单位输入电压V IN 18 V 输出电压V OUT V ss -0.3~ V IN +0.3 容许功耗P DSOT_89 500 Mw 工作周围温度范围T opr -40~+85 ℃保存周围温度范围T stg -40~+125注意 绝对最大额定值是指无论在任何条件下都不能超过的额定值。

万一超过此额定值,有可能造成产品劣化等物理性损伤。

■电气属性:HE63XXM 系列(HE6318,输出电压+1.8V )(除特殊注明以外:Ta=25℃)项目记号条件最小值典型值最大值单位测定电路输出电压V OUT V IN =3. 8V ,I OUT =10mA1.7641.8 1.836 V 1 输出电流*1 I OUT V IN= 3.8V 250 mA 3 输入输出压差*2 V drop I OUT =10 mA 120 mV 1输入稳定度△V OUT1 △V IN ·V OUT 2.5V ≤V IN ≤15V I OUT =1mA 0.05 0.2 %/V 负载稳定度△V OUT2 V IN =3.8V1.0mA ≤I OUT ≤150mA 45 90 mV 输出电压温度系数△V OUT △Ta ·V OUTV IN =3.8V ,I OUT =1mA -40℃≤Ta ≤85℃ ±50 ±100 Ppm/℃消耗电流I SS1 V IN =15V 无负载1.22.5 uA 2输入电压VIN -- 18 V 输出短路电流IlimV out=0V1550mAHE63XXM 低压差线性稳压器250mA Low Power LDOSOT_23 200HE63XX M 系列(HE6325,输出电压+2.5V )(除特殊注明以外:Ta=25℃)项目记号条件最小值典型值最大值单位测定电路输出电压V OUT V IN = 4.5V ,I OUT =50mA2.4502.5 2.550 V 1 输出电流*1 I OUT V IN= 4.5V 250 mA 3 输入输出压差*2 V drop I OUT =1 mA I OUT =50 mA 5 150 mV 1输入稳定度△V OUT1 △V IN ·V OUT 3.5V ≤V IN ≤15V I OUT =1mA 0.05 0.2 %/V 负载稳定度△V OUT2 V IN =4.5V1.0mA ≤I OUT ≤250mA 45 90 mV 输出电压温度系数△V OUT △Ta ·V OUTV IN =4.5V ,I OUT =10mA -40℃≤Ta ≤85℃ ±50 ±100 Ppm/℃消耗电流I SS1 V IN =15V 无负载1.22.5 uA 2输入电压VIN -- 18 V 输出短路电流IlimV out=0V1550mAHE63XX M 系列(HE6328,输出电压+2.8V )(除特殊注明以外:Ta=25℃)项目记号条件最小值典型值最大值单位测定电路输出电压V OUT V IN = 4.8V ,I OUT =50mA2.7442.8 2.856 V 1 输出电流*1 I OUT V IN= 5V 250 mA 3 输入输出压差*2 V drop I OUT =1 mA I OUT =50 mA 5 120 mV 1输入稳定度△V OUT1 △V IN ·V OUT 4.8V ≤V IN ≤15V I OUT =1mA 0.05 0.2 %/V 负载稳定度△V OUT2 V IN =4.8V1.0mA ≤I OUT ≤300mA 60 100 mV 输出电压温度系数△V OUT △Ta ·V OUTV IN =4.8V ,I OUT =10mA -40℃≤Ta ≤85℃ ±50 ±100 Ppm/℃消耗电流I SS1 V IN =15V 无负载1.22.5 uA 2输入电压VIN -- 18 V 输出短路电流IlimV out=0V1550mAHE63XX M 系列(HE6330,输出电压+3.0V )(除特殊注明以外:Ta=25℃)项目记号条件最小值典型值最大值单位测定电路输出电压V OUT V IN = 5V ,I OUT =10mA2.9403.0 3.060 V 1 输出电流*1 I OUT V IN= 5V 250 mA 3 输入输出压差*2 V drop I OUT =1 mA I OUT =100 mA 5 250 - mV 1输入稳定度△V OUT1 △V IN ·V OUT 4V ≤V IN ≤15V I OUT =1mA 0.05 0.2 %/V 负载稳定度△V OUT2 V IN =5V1.0mA ≤I OUT ≤300mA 60 100 mV 输出电压温度系数△V OUT △Ta ·V OUTV IN =5V ,I OUT =10mA -40℃≤Ta ≤85℃ ±50 ±100 Ppm/℃消耗电流I SS1 V IN =15V 无负载1.22.5 uA 2输入电压VIN -- 18 V 输出短路电流IlimV out=0V1550mAHE63XXM 低压差线性稳压器250mA Low Power LDOHE63XX M 系列(HE6333,输出电压+3.3V )(除特殊注明以外:Ta=25℃)项目记号条件最小值典型值最大值单位测定电路输出电压V OUT V IN = 5.3V ,I OUT =10mA3.2343.3 3.366 V 1 输出电流*1 I OUT V IN= 5.3V 250 mA 3 输入输出压差*2 V drop I OUT =1 mA I OUT =100 mA 5 220 mV 1输入稳定度△V OUT1 △V IN ·V OUT 4.3V ≤V IN ≤15V I OUT =1mA 0.05 0.2 %/V 负载稳定度△V OUT2 V IN =5.3V1.0mA ≤I OUT ≤300mA 60 100 mV 输出电压温度系数△V OUT △Ta ·V OUTV IN =5.3V ,I OUT =10mA -40℃≤Ta ≤85℃ ±50 ±100 Ppm/℃消耗电流I SS1 V IN =15V 无负载1.22.5 uA 2输入电压VIN -- 18 V 输出短路电流IlimV out=0V1550mAHE63XX M 系列(HE6336,输出电压+3.6V )(除特殊注明以外:Ta=25℃)项目记号条件最小值典型值最大值单位测定电路输出电压V OUT V IN = 5.6V ,I OUT =10mA3.5283.6 3.672 V 1 输出电流*1 I OUT V IN= 5.6V 250 mA 3 输入输出压差*2 V drop I OUT =1 mA I OUT =100mA 5 200 mV 1输入稳定度△V OUT1 △V IN ·V OUT 4.6V ≤V IN ≤15V I OUT =1mA 0.05 0.2 %/V 负载稳定度△V OUT2 V IN =5.6V1.0mA ≤I OUT ≤300mA 60 100 mV 输出电压温度系数△V OUT △Ta ·V OUTV IN =5.6V ,I OUT =10mA -40℃≤Ta ≤85℃ ±50 ±100 Ppm/℃消耗电流I SS1 V IN =15V 无负载1.22.5 uA 2输入电压VIN -- 18 V 输出短路电流IlimV out=0V1550mAHE63XX M 系列(HE6344,输出电压+4.4V )(除特殊注明以外:Ta=25℃)项目记号条件最小值典型值最大值单位测定电路输出电压V OUT V IN = 6.4V ,I OUT =10mA4.3124.4 4.488 V 1 输出电流*1 I OUT V IN= 6.4V 250 mA 3 输入输出压差*2 V drop I OUT =1 mA I OUT =100mA 5 180 - mV 1输入稳定度△V OUT1 △V IN ·V OUT 5.4V ≤V IN ≤15V I OUT =1mA 0.05 0.2 %/V 负载稳定度△V OUT2 V IN =6.4V1.0mA ≤I OUT ≤300mA 60 100 mV 输出电压温度系数△V OUT △Ta ·V OUTV IN =6.4V ,I OUT =10mA -40℃≤Ta ≤85℃ ±50 ±100 Ppm/℃消耗电流I SS1 V IN =15V 无负载1.22.5 uA 2输入电压VIN -- 18 V 输出短路电流IlimV out=0V1550mAHE63XX M 系列(HE6350,输出电压+5.0V )(除特殊注明以外:Ta=25℃)项目记号条件最小值典型值最大值单位测定电路输出电压V OUT V IN = 7V ,I OUT =10mA4.9105.0 5.100 V 1 输出电流*1 I OUT V IN= 7V 250 mA 3 输入输出压差*2 V drop I OUT =1 mA I OUT =100 mA 5 180 mV 1输入稳定度△V OUT1 △V IN ·V OUT 6V ≤V IN ≤15V I OUT =1mA 0.05 0.2 %/V 负载稳定度△V OUT2 V IN =7V1.0mA ≤I OUT ≤300mA 60 100 mV 输出电压温度系数△V OUT △Ta ·V OUTV IN =7V ,I OUT =10mA -40℃≤Ta ≤85℃ ±50 ±100 Ppm/℃消耗电流I SS1 V IN =15V 无负载1.22.5 uA 2输入电压VIN -- 18 V 输出短路电流IlimV out=0V1550mA*⒈缓慢增加输出电流,当输出电压为小于V OUT 的98%时的输出电流值 *⒉V drop =V IN1-(V OUT (E )×0.98V )V OUT (E ):V IN =V OUT +2V ,I OUT =1 mA 时的输出电压值V IN1:缓慢下降输出电压,当输出电压降为V OUT (E )的98%时的输入电压■测定电路1.2.■标准电路:注意 上述连接图以及参数并不作为保证电路工作的依据。

HE4054B_V1.0中文规格书赫尔半导体HEERMICR

HE4054B_V1.0中文规格书赫尔半导体HEERMICR

概述HE4054B是一款性能优异的单节锂离子电池恒流/恒压线性充电器。

HE4054B采用SOT23-5L封装配合较少的外围原件使其非常适用于便携式产品,并且适合给USB电源以及适配器电源供电。

基于特殊的内部MOSFET架构以及防倒充电路,HE4054B不需要外接检测电阻和隔离二极管。

当外部环境温度过高或者在大功率应用时,热反馈可以调节充电电流以降低芯片温度。

充电电压固定在4.2V,而充电电流则可以通过一个电阻器进行外部设置。

当充电电流在达到最终浮充电压之后降至设定值的1/10,芯片将终止充电循环。

当输入电压断开时,HE4054B进入睡眠状态,电池漏电流将降到1uA以下。

HE4054B还可以被设置于停机模式,此时芯片静态电流降至25uA。

HE4054B还包括其他特性:欠压锁定,自动再充电和充电状态标志。

特性◆可编程充电电流500mA◆无需外接MOSFET,检测电阻以及隔离二极管◆用于单节锂电池、采用SOT23-5L封装的完整线性充电器◆恒定电流/恒定电压操作,并具有可在无过热危险的情况下实现充电速率最大化的热调节功能。

◆精度达到±1%的4.2V预充电电压◆用于电池电量检测的充电电流监控器输出◆自动再充电◆充电状态输出显示◆C/10充电终止◆待机模式下的静态电流为25uA◆2.9V涓流充电◆软启动限制浪涌电流应用范围◆移动电话、PDA◆MP3、MP4播放器◆充电器◆数码相机◆电子词典◆蓝牙、GPS导航仪◆便携式设备HE4054B采用SOT23-5L封装典型应用打标说明及管脚分布SOT23-5L管脚图丝印字符丝印字符说明左示意图LTH7芯片代码 Y 年号 W 周号 XXXX生产批号管脚描述LTH7YWXXXX最大额定值(注)ESD与Latch-up等级结构框图(如果没有特殊说明,环境温度= 25︒C,输入电压=5V)注释(1): 这时处于充电状态,I CC= I VCC- I BAT(2): 这里C/10终止电流门限指的是终止电流与恒流充电电流的比值使用说明HE4054B是一款专门为锂离子电池设计的线性充电器,利用芯片内部的功率MOSFET对电池进行恒流/恒压充电。

HE3050F V1.1_CN规格书赫尔半导体HEERMICR

HE3050F V1.1_CN规格书赫尔半导体HEERMICR

特点•反向充电连接保护•电池单元反向连接保护•过温保护•过充电电流保护•两步检测过充电流:过放电电流保护负载短路•充电器检测功能•0V 电池充电功能•符合RoHS 标准且不含铅(Pb )•低至40mΩ的等效开启电阻内部功率MOSFET •内部延迟发生器•高精度电压检测•低电流损耗工作状态:典型值2.5µA.掉电状态:典型值1.5µA •只需一个外接电容•采用SOT23-6封装•-40℃至+85℃温度范围应用•单节锂离子电池组•充电宝•单节锂聚合物电池组•IOT 传感器/电子玩具概述HE 3050F 针对锂离子/聚合物电池保护提供了高集成解决方案。

HE 3050F 包含内部功率MOSFET ,高精度电压检测电路和延迟电路。

HE 3050F 具有电池应用所需的所有保护功能,包括过充电、过放电、过流和负载短路保护等。

准确的过充电检测电压保证了充电的安全和充分利用。

低待机电流在存储时从电池中消耗很少的电流。

该产品不仅适用于数字蜂窝电话,而且适用任何其他需要长期电池寿命的锂离子和锂聚合电池供电的信息设备。

HE 3050F 需要最少数量的现成的外部组件,并且采用的SOT23-6封装可以节省空间。

典型应用电路Figure 1.Typical Application Circuit523/6HE 3050F单节锂离子和锂聚合物电池保护芯片引脚描述管脚设置Figure 2.Pin Configuration引脚描述引脚名称功能1NC NC2VM连接电池组的负极。

内部FET 开关将这个端口连接到GND 3/6GND 接地引脚5VDD 电源引脚4NCNC印章说明标记描述封装最小包装3代表过放电流值;50代表导通内阻;F 代表SOT-23封装;B 代表过充电压;9代表生产年份;A 代表生产周数SOT23-63000PCS订购须知型号HE 3050F-AHE 3050F-BHE3050F-CHE 3050F-D过充电压 4.250V 4.300V 4.425V 4.475V 丝印图350FA350FB350FC350FD-6HE 3050F单节锂离子和锂聚合物电池保护芯片绝对最大额定值(1)(2)VDD输入电压…………….........…...-0.3V to6V 工作温度范围……………….…...-40°C to+85°C 铅温度(钎焊,10s)…………………..+300°C θJA…….………………….…………........250°C/W θJC……….……...……………...…..........130°C/W VM输入电压…..…………………......…...-6V to10V存储温度范围.....................................-55°C to150°C 结温...........................................................+125°C ESD(Human Body Made)HMB............................2KV ESD(Machine Made)MM (200V)备注1:超过这些额定值可能会损坏器件。

HE4056B电源管理芯片充电管理赫尔微半导体

HE4056B电源管理芯片充电管理赫尔微半导体

HE40561.1A Lithium Ion Battery Linear ChargerFeatures●Protection of battery cell reverse connection●Programmable charge current up to 1.1A●No MOSFET sense resistor or blocking dioderequired●Complete linear Charger for single Cell Lithium-IonBatteries●CC and CV operation with thermal regulation tomaximize Rate without risk of overheating●Preset 4.2V charge voltage with ±1% accuracy ●Automatic Recharge●Two Status Indication for Charge status, no batteryand battery failure indicators●C/10 charge termination●55μA supply current in shutdown● 2.9V trickle current charge threshold●Soft-Start limits inrush current●Battery Temperature Sensing●Available in SOP-8 and ESOP-8 packageApplications●Cellular Telephones ●Mobile Power Supply ●Digital Still Cameras ●MP3 Players ●Bluetooth Applications●Portable Devices●USB Bus-Powered ChargersGENERAL DESCRIPTIONHE4056 is a complete CC/CV linear charger for single cell lithium-ion batteries. it is specifically designed to work within USB power Specifications.No external sense resistor is needed and no blocking diode is required due to the internal P-MOSFET architecture.Thermal feedback regulates the charge current to limit the die temperature during high power operation or high ambient temperature .The charge voltage is fixed at 4.2V,and the charge current can be programmed externally with a single resistor. The HE4056 automatically terminates the charge cycle when the charge current drops to 1/10th the programmed value after the final float voltage is reached.When the input supply (wall adapter or USB supply) is removed the HE4056 automatically enters a low current state dropping the battery drain current to less than2μ A.The HE4056 can be put into shutdown mode reducing the supply current to 55μA.Other features include Battery temperature monitor, under-voltage lockout, automatic recharge and two status pins to indicate charge and charge termination.1.1A Lithium Ion Battery Linear Charger Pin Configuration1.1A Lithium Ion Battery Linear ChargerAbsolute Maximum Ratings1.1A Lithium Ion Battery Linear ChargerCaution: The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions.1.1A Lithium Ion Battery Linear ChargerNote: The ●denotes specifications which apply over the full operating temperature rang, otherwise specifications are at TA=25℃,VCC=5V,unless otherwise specified.Description of the PrincipleThe HE4056 is a complete CC/CV linear charger for single cell lithium-ion batteries. CC/CV to charger batter by internal MOSFET .It can deliver up to 1.1A of charge current .No blocking diode or external current sense resistor is required. HE4056 include two Open-Drain charge status Pins: Charge status indicator CHRG and battery failure status output STDBY.The internal thermal regulation circuit reduces the programmed charge current if the die temperature attempts to rise1.1A Lithium Ion Battery Linear Chargerabove a preset value of approximately 145℃. This feature protects the HE4056 from excessive temperature, and allows the user to push the limits of the power handling capability of a given circuit board without risk of damaging the HE4056 or the external components. Another benefit of adopting thermal regulation is that charge current can be set according to typical, not worst-case, ambient temperatures for a given application with the assurance that the charger will automatically reduce the current in worst-case conditions.The charge cycle begins when the voltage at the VCC pin rises above the UVLO level, a current set resistor is connected from the PROG pin to ground, and the CE pin is pulled above the chip enable threshold.The CHRG pin outputs a logic low to indicate that the charge cycle is on going. At the beginning of the charge cycle, if the battery voltage is below 2.9V, the charge is in precharge mode to bring the cell voltage up to a safe level for charging. The charger goes into the fast charge CC mode once the voltage on the BAT pin rises above 2.9 V. In CC mode, the charge current is set by RPROG. When the battery approaches the regulation voltage 4.2V, the charge current begins to decrease as the HE4056 enters the CV mode. When the current drops to charge termination threshold, the charge cycle is terminated, and CHRG pin assumes a high impedance state to indicate that the charge cycle is terminated and STDBY pin is pulled low.The charge termination threshold is 10% of the current in CC mode. To restart the charge cycle, remove the input voltage and reapply it, or momentarily force CE pin to 0V. The charge cycle can also be automatically restarted if the BAT pin voltage falls below the recharge threshold. The on-chip reference voltage, error amplifier and the resistor divider provide regulation voltage with 1% accuracy which can meet the requirement of lithium-ion and lithium polymer batteries. When the input voltage is not present, or input voltage is below VBAT, the charger goes into a sleep mode, dropping battery drain current to less than 3μA. This greatly reduces the current drain on the battery and increases the standby time. The charger can be shutdown by forcing the CE pin to GND.The charging profile is shown in the following figure:1.1A Lithium Ion Battery Linear ChargerThe charge current is programmed using a single resistor from the PROG pin to ground. The program resistor and the charge current are calculated using the following equations.BATPROG I R 1450; In application, according the charge current to determine RPROG ,the relation between RPROG and charge current can reference the following chart:Charge TerminationA charge cycle is terminated when the charge current falls to 1/10th the programmed value after the final float voltage is reached. This condition is detected by using an internal filtered comparator to monitor the PROG pin. When the PROG pin voltage falls below 100mV for longer than tTEMP (typically 1.8mS), Charging is terminated. The charge current is latched off and the HE4056 enters standby mode, where the input supply current drops to 55μA ( Note:C/10 termination is disabled in trickle charging and thermal limiting modes).When charging, transient loads on the BAT pin can cause the PROG pin to fall below 100mV for short periods of timebefore the DC charge current has dropped to 1/10th the programmed value. The 1.8mS filter time (tTEMP) on the termination comparator ensures that transient loads of this nature do not result in premature charge cycle termination. Once the average charge current drops below 1/10th the programmed value, the HE4056 terminated the charge cycle and ceases to provide any current through the BAT pin. In this state all loads on the BAT pin must be supplied by the battery. The HE4056 constantly monitors the BAT pin voltage in standby mode. If this voltage drops below the 4.10V recharge threshold (VRECHRG ),another charge cycle begins and current is once again supplied to the battery. To manually restart a charge cycle when in standby mode, the input voltage must be removed and reapplied or the charger must be shut down and restarted using the PROG pin. Figure 1 shows the state diagram of a typical charge cycle1.1A Lithium Ion Battery Linear ChargerThermal limiting1.1A Lithium Ion Battery Linear ChargerAn internal thermal feedback loop reduces the programmed charge current if the die temperature attempts to rise above a preset value of approximately 145℃ . The feature protects the HE4056 from excessive temperature and allows the user to push the limits of the power handling capability of a given circuit board without risk of damaging the HE4056. The charge current can be set according to typical (not worst-case) ambient temperature with the assurance that the charger will automatically reduce the current in worst-case conditions.To prevent the damage caused by the very high or very low temperature done to the battery pack, the HE4056 continuously senses battery pack temperature by measuring the voltage at TEMP pin determined by the voltage divider circuit and the battery ’s internal NTC thermistor as shown in Figure 1.The HE4056 compares the voltage at TEMP pin (VTEMP) against its internal VLOW and VHIGH thresholds to determine if charging is allowed. In HE4056, VLOW is fixed at (45%×Vcc), while VHIGH is fixed at (80%×Vcc). If VTEMP<VLOW or VTEMP>VHIGH , it indicates that the battery temperature is too high or too low and the charge cycle is suspended. When VTEMP is between VLOW and VHIGH , charge cycle resumes. The battery temperature sense function can be disabled by connecting TEMP pin to GND.Under Voltage lockout (UVLO)An internal under voltage lockout circuit monitors the input voltage and keeps the charger in shutdown mode until VCC rises above the under voltage lockout threshold . If the UVLO comparator is tripped, the charger will not come out of shutdown mode until VCC rises 140mV above the battery voltage.Auto restartOnce charge is been terminated, HE4056 immediately use a 1.8ms filter time ( tRECHARGE )on the termination comparator to constant monitor the voltage on BAT pin. If this voltage drops below the 4.1V recharge threshold (about between 80% and 90% of VCC), another charge cycle begins. This ensured the battery maintained (or approach) to a charge full status andavoid the requirement of restarting the periodic charging cycle. In the recharge cycle, CHRG pin enters a pulled down status.Stability ConsiderationsIn CC mode, the PROG pin is in the feedback loop, not the battery. The CC mode stability is affected by the impedance at the PROG pin. With no additional capacitance on the PROG pin, the charger is stable with program resistor values as high as 20K. However, additional capacitance on this node reduces the maximum allowed program resistor. Therefore, if IPROG pin is loaded with a capacitance C, the following equation should be used to calculate the maximum resistance value for RPROG : PROGPROGC R ⨯⨯≤51021πAs user, may think charge current is important, not instantaneous current. For example, to run a low current mode switch power which parallel connected with battery, the average current from BAT pin usually importance to instantaneous current. In this case, In order to measure average charge current or isolate capacitive load from IPROG pin, a simple RC filter can be used on PROG pin as shown in Figure 2. In order to ensure the stability add a 10K resistor between PROG pin and filter capacitor.1.1A Lithium Ion Battery Linear ChargerFig.2 Isolating with capacitive load on PROG PinPower DissipationThe conditions that cause the HE4056 to reduce charge current through thermal feedback can be approximated by considering the power dissipated in the IC. Nearly all of this power dissipation is generated by the internal MOSFET-this is calculated to be approximately:BAT BAT CC D I V V P ⨯-=)(The approximate ambient temperature at which the thermal feedback begins to protect the ICis:JA D A P C T θ⨯-︒=145;So:JABAT BAT CC A I V V C T θ⨯⨯--︒=)(145For example: The HE4056 with 5V supply voltage through programmable provides full limiting current 850mA to a charge lithium-ion battery with 3.85V voltage. If JA is 100℃/W ( reference to PCB layout considerations), When HE4056 begins to decrease the charge current, the ambient temperature about:CT A ︒=⨯⨯--=25.4710085.0)85.35(145HE4056 can work in the condition of the temperature is above 47.25℃, but the charge current will pull down to below 850mA. In a fixed ambient temperature, the charge current is calculated to be approximately :JABAT CC ABAT)V (V T C I θ⨯--=︒145Just as Description of the Principle part talks about so, the current on PROG pin will reduce in proportion to the reduced charge current through thermal feedback. In HE4056 design applications don ’t need to considerate the worst case of thermal condition, this point is importance, because if the junction temperature up to 145℃ ,HE4056 will auto reduce the power dissipation.Thermal ConsiderationsBecause of the small size of the thin SOP-8 or ESOP-8 package, it is important to use a good thermal PC board layout to maximize the available charge current. The PC board copper is the heat sink. The footprint copper pads should be as wide as possible and expand out to larger copper areas to spread and dissipate the heat to the surrounding ambient. Other heat sources on the board, not related to the charger, must also be considered when designing a PC board layout because they will affect overall temperature rise and the maximum charge current.VCC bypass capacitorMany types of capacitors can be used for input bypassing, however, caution must be exercised when using multilayer ceramic capacitors. Because of the self-resonant and high Q characteristics of some types of ceramic capacitors, high voltage transients can be generated under some start-up conditions, such as connecting the charger input to a live powerHE40561.1A Lithium Ion Battery Linear Chargersource. Adding a 1.5Ω resistor in series with a ceramic capacitor will minimize start-up voltage transients.Charging Current Soft StartHE4056 includes a soft start circuit which used to maximize to reduce the surge current in the begging of charge cycle. When restart a new charge cycle, the charging current ramps up from 0 to the full charging current within 20μs. In the start process it can maximize to reduce the action which caused by surge current load.Board Layout ConsiderationsRPROG at PROG pin should be as close to HE4056 as possible, also the parasitic capacitance at PROG pin should be kept as small as possible.The capacitance at VCC pin and BAT pin should be as close to HE4056 as possible.During charging, HE4056’s temperature may be high, the NTC thermistor should be placed far enough to HE4056 so that the thermistor can reflect the battery ’s temperature correctly.It is very important to use a good thermal PC board layout to maximize charging current. The thermal path for the heat generated by the IC is from the die to the copper lead frame through the package lead (especially the ground lead) to the PC board copper, the PC board copper is the heat sink. The footprint copper pads should be as wide as possible and expand out to larger copper areas to spread and dissipate the heat to the surrounding ambient. Feed through vias to inner or backside copper layers are also useful in improving the overall thermal performance of the charger. Other heat sources on the board, not related to the charger, must also be considered when designing a PC board layout because they will affect overall temperature rise and the maximum charge current.The ability to deliver maximum charge current under all conditions require that the exposed metal pad on the back side of the HE4056 package be soldered to the PC board ground. Failure to make the thermal contact between the exposed pad on the backside of the package and the copper board will result in larger thermal resistance.Add thermal regulation currentIt will effective to decrease the power dissipation through reduce the voltage of both ends of the inner MOSFET. In the thermal regulation, this action of transporting current to battery will raise. One of the measure is through an external component(as a resistor or diode) to consume some power dissipation.For example: The HE4056 with 5V supply voltage through programmable provides full limiting current 1000mA to a charge lithium-ion battery with 3.8V voltage. If JA is 120℃/W, so that at 25℃ ambient temperature, the charge current is calculated to be approximately :JABAT CC BAT CC BAT)V R I V CC I θ⨯-⨯--=︒︒(25145In order to increase the thermal regulation charge current, can decrease the power dissipation of the IC through reducing the voltage (as show fig.3) of both two ends of the resistor which connecting in series with a 5V AC adapter.With square equation to calculate I BAT :CCJAA CC BAT CC BAT CC BAT R T C R V V V V I 2)145(4)(2θ-︒⨯----=If RCC=0.25Ω, VCC=5V, VBAT=3.75V, TA=25℃ and JA =120℃/W, we can calculate the thermal regulation charge current: IBAT =1080mA. It means that in this structure it can output 1000mA full limiting charge current at more high ambient temperature environment.Although it can transport more energy and reduce the charge time in this application, but actually spread charge time, if1.1A Lithium Ion Battery Linear ChargerHE4056 stay in under-voltage state, when VCC becomes too low in voltage mode. Fig.4 shows how the voltage reduced with increase RCC value in this circuit. This technique will act the best function when in order to maintain the minimize thedimension of the components and avoid voltage decreased to minimize RCC .USB and Wall Adapter PowerHE4056 allows charging from a USB port, a wall adapter can also be used to charge Li-Ion/Li-polymer batteries. Figure 5 shows an example of how to combine wall adapter and USB power inputs. A P-channel MOSFET, Q1, is used to prevent back conducting into the USB port when a wall adapter is present and Schottky diode, D1, is used to prevent USB power loss through the 1K Ω pull-down resistor.Generally, AC adaptor is able to provide bigger much current than the value of specific current limiting which is 500mA for USB port. So can rise charge current to 600mA with using a N-MOSFET (Q1) and an additional set resistor value as highas 10K.HE40561.1A Lithium Ion Battery Linear ChargerHE4056 has two open-drain status indicator output CHRG and STDBY .CHRG is pull-down when the HE4056 in a charge cycle. In other status CHRG in high impedance,CHRG and are all in high impedance when the battery out of the normal temperature.Represent in failure state, when TEMP pin in typical connecting, or the charger with no battery: red LED and green LED all don ’t light. The battery temperature sense function is disabled by connecting TEMP pin to GND. If battery is not connected to charger,CHRG pin outputs a PWM level to indicate no battery. If BAT pin connects a 10μF capacitor, the frequency of CHRG flicker about 1-4S, If not use status indicator should set status indicator output connected to GND.The values of R1 and R2 in the application circuit can be determined according to the assumed temperature monitor range and thermistor ’s values. The Follows is an example: Assume temperature monitor range is TL ~TH ,(TL <TH);the thermistor in battery has negative temperature coefficient (NTC ),RTL is thermistor ’s resistance at TL , RTH is the resistance atTH ,so RTL >RTH ,then at temperature TL, the voltage at TEMP pin is:INTHTHTEMPH V R R R R R V ⨯+=////212At temperature TH, the voltage at TEMP pin is:INTLTLTEMPL V R R R R R V ⨯+=////212We know VTEMPL =VHIGH =K2×Vcc (K2=0.8);VTEMPH =VLOW =K1×Vcc (K1=0.45) Then we can have :12121)()(K K R R K K R R R TH TL TH TL ⨯--⨯=;)()()(212211121K K K R K K K R K K R R R TH TL TH TL ⨯--⨯--⨯=Likewise, for positive temperature coefficient thermistor in battery, we have RTH >RTL and we can calculate:12121)()(K K R R K K R R R TL TH TH TL ⨯--⨯=;)()()(212211121K K K R K K K R K K R R R TL TH TH TL ⨯--⨯--⨯=We can conclude that temperature monitor range is independent of power supply voltage VCC and it only depends on R1, R2, RTL and RTH: The values of RTH and RTL can be found in related battery handbook or deduced from testing data. In actual application, if only one terminal temperature is concerned (normally protecting overheating), there is no need to use R2 but R1. It becomes very simple to calculate R1 in this case.Block Diagram1.1A Lithium Ion Battery Linear Charger1.1A Lithium Ion Battery Linear ChargerC210uF1.1A Lithium Ion Battery Linear ChargerPackaging Information:SOP8 PACKAGE OUTLINE DIMENSIONS。

HE4056E_V2.0 中文规格书赫尔半导体HEERMICR

HE4056E_V2.0 中文规格书赫尔半导体HEERMICR

8
-0.3
Vcc+0.3
-0.3
7
-0.3
10
-0.3
10
-0.3
10
-0.3
10
1200
1200
2000
-25
85
-60
125
单位
V V V V V V V mA uA V ℃ ℃
电性参数(VCC=5.0V,Ta=25℃,除非另有说明)
参数
符号
测试条件
最小值 典型值 最大值 单位
输入电压
Vcc
4.0
充电电压被限定在 4.2V,充电电流通过外部电阻调节,最大可充 1.1A 的充电电流。 在达到目标充电电压后,当充电电流降低到设定值的 1/10 时,HE4056E 就会自动结束充电 过程。当输入端(交流适配器或 USB 电源)拔掉后, HE4056E自动进入低电流状态,电池 漏电流将降到 2uA 以下。HE4056E 还可被设置于停机工作状态,使电源供电电流降到 55uA。 HE4056E 还具备其余特性包括:电池温度检测,充电电流监测,输入欠压闭锁,自动重新 充电和充电及充电已满的指示。
4
Jan 2,2019
HE4056E
1.1A Lithium Ion Battery Linear Charger
涓流充电电流 涓流充电极限电压
VCC-VBAT停止工作阈 值电压
C/10充电终止电流
PROG端电压 /CHRG端最小输出电
压 /STDBY端最小输出电
压 电池再充电迟滞电压
TEMP脚高温电压 TEMP脚低温电压
功能特性
可编程充电电流可达 1.1A. 实现对单节锂离子电池的完全线性充电管理 恒流/恒压充电并具有可在无过热危险的情况下实现充电速率最大化的热调节

HE75XXS_V1.1中文规格书赫尔半导体HEERMICR

HE75XXS_V1.1中文规格书赫尔半导体HEERMICR

■产品简介HE75XX S 系列是采用 CMOS 工艺制造,低功耗的高压稳压器,最高输入电压可达 30V ,输出电压范围为2.0V~5.0V。

它具有高精度的输出电压、极低的供电电流、极低的跌落电压等特点。

■产品特点■产品用途■封装形式和管脚功能定义■型号选择名称型号最高输入电压(V)输出电压(V) 容差封装形式HE75XX SHE7530Sxx 3.0 +2% TO92 SOT89-3 SOT23-3HE7533Sxx3.3 +2% HE7536Sxx 3.6 +2% HE7544Sxx4.4 +2% HE7550Sxx5.0+2%●低功耗:≤2.0μA●低跌落电压:典型值0.1V ●低温漂:典型值50 ppm/℃●高的输入电压:最高可达●高精度的输出电压:容差为+2%●封装形式:TO-92、SOT89-3、SOT23-3●电池等电源的供电设备●各种通信设备●音频/视频设备●安防监控设备管脚序号管脚定义 功能说明TO-92 SOT89-3 SOT23-3 1 1 1 GND 芯片接地端 2 2 3 VIN 启动输入端 3 3 2VOUT 芯片输出端303030303030VHE 75XXS 低压差线性稳压器150mA Low Power LDO■原理框图■极限参数项目 符号 参数 极限值 单位 电压 VIN 最大输入电压V 功耗PD 功耗 200 mW 温度Tw工作温度 -25~70 ℃ Tc 存储温度 -50~125 ℃ Th焊接温度260℃,10s■电学特性◆HE7530S( T OPT=25℃)符号参数测试条件最小值典型值最大值单位V OUT输出电压V IN =5V ,I OUT =1mA2.94 33.06 V I OUT输出电流V IN =5V60 150 -mA△V OUT负载调节V IN =5V ,1mA ≤I OUT ≤50mA-60 150 mV V DIF 跌落电压I OUT =1mA -100 -mV I SS静态电流V IN =5V ,空载 - 2 2 µA ΔV OUT /(ΔV IN * V OUT )Line Regulation4V ≤V IN ≤18V ,I OUT =1mA-0.2 -%/V V IN 输入电压---V ΔV OUT /ΔTa温度系数V IN =5V ,I OUT =10mA ,0℃≤Ta ≤70℃-+0.45-mV/℃V ref V in GN DV out3030HE 75XX S 低压差线性稳压器150mA Low Power LDO◆HE7533S( T OPT=25℃)符号参数测试条件最小值典型值最大值单位V OUT 输出电压V IN =5V ,I OUT =1mA3.234 3.3 3.366 V I OUT输出电流V IN =5.5V60 150 -mA △V OUT负载调节V IN =5.5V ,1mA ≤I OUT ≤50mA-60 150 mV V DIF 跌落电压I OUT =1mA -100 -mV I SS静态电流V IN =5.5V ,空载 - 2 2 µA ΔV OUT /(ΔV IN * V OUT )Line Regulation4.5V ≤V IN ≤18V ,I OUT =1mA-0.2 -%/VV IN 输入电压---V ΔV OUT /ΔTa温度系数V IN =5.5V ,I OUT =10mA ,0℃≤Ta ≤70℃-+0.5-mV/℃◆HE7536S( T OPT=25℃)符号参数测试条件最小值典型值最大值单位V OUT 输出电压V IN =5V ,I OUT =1mA3.528 3.6 3.672 V I OUT输出电流V IN =5.6V60 150 -mA △V OUT负载调节V IN =5.6V ,1mA ≤I OUT ≤30mA-60 150 mV V DIF 跌落电压I OUT =1mA -100 -mV I SS静态电流V IN =5.6V ,空载 - 2 2 µA ΔV OUT /(ΔV IN * V OUT )Line Regulation4.6V ≤V IN ≤18V ,I OUT =1mA-0.2 -%/V V IN 输入电压---V ΔV OUT /ΔTa温度系数V IN =5.6V ,I OUT =10mA ,0℃≤Ta ≤70℃-+0.6-mV/℃◆HE7544S( T OPT=25℃)符号参数测试条件最小值典型值最大值单位V OUT 输出电压V IN =6V ,I OUT =1mA4.312 4.4 4.488 V I OUT输出电流V IN =6.4V60 150 -mA △V OUT负载调节V IN =6.4V ,1mA ≤I OUT ≤30mA-60 150 mV V DIF 跌落电压I OUT =1mA -100 -mV I SS静态电流V IN =6.4V ,空载 - 2 2 µA ΔV OUT /(ΔV IN * V OUT )Line Regulation5.4V ≤V IN ≤18V ,I OUT =1mA-0.2 -%/V V IN 输入电压---V ΔV OUT /ΔTa温度系数V IN =6.4V ,I OUT =10mA ,0℃≤Ta ≤70℃-+0.7-mV/℃303030◆HE7550S( T OPT=25℃)符号参数测试条件最小值典型值最大值单位V OUT 输出电压V IN =7V ,I OUT =1mA4.9 55.1 V I OUT输出电流V IN =7V60 150 -mA△V OUT负载调节V IN =7V ,1mA ≤I OUT ≤30mA-60 150 mV V DIF 跌落电压I OUT =1mA -100 -mV I SS静态电流V IN =7V ,空载 - 2 2 µA ΔV OUT /(ΔV IN * V OUT )Line Regulation6V ≤V IN ≤18V ,I OUT =1mA-0.2 -%/V V IN 输入电压---V ΔV OUT /ΔTa温度系数V IN =7V ,I OUT =10mA ,0℃≤Ta ≤70℃-+0.75-mV/℃■应用电路1、基本电路2、 高输出电流稳压电路1 32 HE75XX S GND VIN Vout C210uFC110uFVinVout303、短路保护电路4、提高输出电压电路(1)V OUT=Vxx(1+R2/R1)+Iss*R2 5、提高输出电压电路(2)V OUT=Vxx+VD16、 电流调节电路IOUT = VXX/RX + ISS7、 双端输出电路注示:“××”代表输出电压HE75XXsHE75XXs■封装信息HE 75XX S 低压差线性稳压器150mA Low Power LDO。

LD1117_V1.1 中文规格书赫尔半导体HEERMICR

LD1117_V1.1 中文规格书赫尔半导体HEERMICR

■概述LD1117是一個輸出電流達到1A 的三端輸出低壓差線性穩壓器,有1.2V 、1.8V 、2.5V 、3.3V 、5.0V 及可調節輸出電壓等各種版本,其電壓降在1A 時僅為1.2V 。

以其優良的性能和極度的經濟性能,適用於各種電器產品。

■特點●1A 輸出電流時壓降僅為1.2V ●限流功能●過熱保護功能●有固定輸出電壓1.2V 、1.8V 、2.5V 、3.3V 、5.0V 及可調節輸出電壓版本●固定輸出電壓1.2V 的電壓精度為2%●固定輸出電壓 1.8V 、2.5V 、3.3V 、5.0V 及可調節輸出電壓的精度為1.5%●溫度範圍:-40℃ ~ +125℃■典型應用電路Vref=V out-Vadj=1.25V (典型值) V out=Vref*(1+RF2/RF1)+Iadj*RF2 Iadj=55uA (典型值)■封裝及腳位定義(常用封裝為SOT-223、TO-252) ■應用●膝上型電腦、掌上電腦及筆記本電腦●電池充電器●SCSI -Ⅱ主動終端●移動電話●無繩電話●電池供電系統●便攜式設備●開關電源後置穩壓器LD1117ADJLD11173.3SOT-89Vin 30V ■內部框圖■極限參數參數符號範圍單位輸入工作電壓引腳溫度(焊接5秒) Tlead260℃工作結溫範圍Tj 150℃儲存溫度Tstg -65~+150℃功耗Pd 內部限制(註1)mW ESD 能力(最小)ESD2000V註1:最大允許功耗是最大工作結溫Tj(max),結對空熱阻和環境溫度的函數。

最大允許功耗在給定的環境溫度下,超過最大允許功耗會導致芯片溫度過高,調整器因此會進入過熱保護狀態。

不同的封裝類型的結對空熱阻是不一樣的,由封裝技術決定。

■推薦工作條件參數符號範圍單位輸入電壓Vin 24V 工作結溫範圍Tj-40~+125℃■電氣特性(除非特別指明,否則黑色字體所示的參數,Tamb=25℃,正常工作結溫範圍-40~+125℃)參數符號測試條件最小值典型值最大值單位基準電壓Vref LD1117-ADJ, IOUT=10mA, VIN-VOUT=2V , TJ=25°C10mA ≤IOUT ≤1A, 1.4V ≤VIN-VOUT ≤10V 1.231 1.2251.250 1.2501.268 1.275VLD1117-1.2, IOUT=10m Α, VIN=3.2V ,TJ=25°C 10mA ≤IOUT ≤1A, 3.0V ≤VIN ≤10V 1.176 1.152 1.200 1.200 1.224 1.248 VLD1117-1.5, IOUT=10m Α, VIN=3.5V ,TJ=25°C 10mA ≤IOUT ≤1A, 3.0V ≤VIN ≤10V 1.477 1.470 1.500 1.500 1.522 1.530 VLD1117-1.8, IOUT=10mA,VIN=3.8V , TJ=25°C , 0≤IOUT ≤1A, 3.2V ≤VIN ≤10V 1.773 1.746 1.800 1.800 1.827 1.854 VLD1117-2.5, IOUT=10mA,VIN=4.5V ,TJ=25°C , 0≤IOUT ≤1A, 3.9V ≤VIN ≤10V 2.462 2.450 2.500 2.500 2.538 2.550 VLD1117-3.3, IOUT=10mA, VIN=5V ,TJ=25°C , 0≤IOUT ≤1A,4.75V ≤VIN ≤10V 3.250 3.235 3.300 3.300 3.349 3.365 V輸出電壓V outLD1117-5.0, IOUT=10mA, VIN=7V , TJ=25°C , 0≤ IOUT ≤1A, 6.5V ≤VIN ≤12V4.925 4.9005.000 5.0005.075 5.100V輸出電壓溫度穩定性TSout0.3%線性調整 Rline VINMIN ≤VIN ≤ 12V , VOUT=Fixed/Adj, Iout=10mA6 15 mV 負載調整 Rload10mA ≤IOUT ≤1A, VOUT=Fixed/Adj 6 18 mV壓差VdropIOUT=100mAIOUT=500mA IOUT=1A1.00 1.05 1.201.20 1.25 1.30V靜態電流Iq 4.25V ≤VIN ≤ 6.5V 5 10 mA紋波抑制比 PSRR fRIPPLE=120Hz, (VIN-VOUT)=3V , VRIPPLE=1VPP5060dB 可調管腳電流 Iadj 60 120uA 可調管腳電流變化0≤ IOUT ≤800mA, 1.4V ≤VIN-VOUT ≤10V0.2 5uALD1117低压差线性稳压器1A Bipolar Linear Regulator參數符號測試條件最小值典型值最大值單位溫度保護點 TSD 150℃限流保護點 Ilimit 1.4 1.6 1.8A 溫度穩定性0.5%長期穩定性TA=125°C,1000Hrs0.3%RMS輸出噪聲% of VOUT,10Hz≤f≤10kHz0.005% SOT223-3L 120熱阻係數(無散熱片)TO252-2L 100℃/W■典型電性特性曲綫■SOT223封裝外形圖■封裝外形圖TO-252聲明:●我公司保留說明書更改權利,恕不另行通知;●任何半導體產品特性條件下都有一定失效或者發生故障的可能,買方有責任在使用我司產品進行系統設計和整機製造時遵守安全標準并採取安全措施,以避免潛在失敗風險可能造成人身傷害或財產損失情況的發生;●產品提升永無止境,我司將竭誠為客戶提供更優秀的半導體產品。

电源ICME4057微盟原装规格书

电源ICME4057微盟原装规格书

ME4057 1A 锂电池充电管理芯片系列概述ME4057 是一款完整的单节锂离子电池恒压恒流充电管理芯片。

采用带有散热PAD的ESOP8封装形式,外加很少的外部原件,使其成为便携应用的理想选择。

通常可应用在USB电源或适配器电源中。

ME4057不需要电流检测电阻,也不需要外部隔离二极管实现防倒灌应用。

其内部有热反馈电路可以对在充电过程中对芯片温度加以控制。

充电截止电压固定在4.2V/4.34V/4.4V, 充电电流可以外接电阻调节,当充电电流达到恒流电流的1/10时,ME4057将终止充电。

当输入电压(适配器或USB)被拿掉后,ME4057进入睡眠模式。

芯片内部自动关断充电通路,输入电压变低。

此时电池漏电流降低到2uA以下。

当ME4057有电源而电池拿掉时,芯片电流为降低至55uA,来降低系统损耗。

ME4057还具有电池温度检测,输入欠压锁定,自动再充电和两个充电指示引脚。

特点●防电池反接保护功能● 可编程充电电流可达1A●无需MOSFET,检测电阻或隔离二极管●采用ESOP8封装的单节完整线性充电器●恒流恒压切换,内部热反馈保护功能●精度可达±1%的4.2V/4.34V/4.4V 固定充电截止电压●自动再充电功能●充电状态双输出,无电池和故障状态显示● C/10 终止充电● 待机电流55μA● 2.9V涓流切换阈值● 软启动限制浪涌电流● 电池温度监测功能应用场合●移动电话●数码相机● MP3,MP4播放器●蓝牙应用●便携设备● USB电源,适配器封装形式● 8-pin ESOP8典型充电周期图 (1000mAh 电池)0.250.50.75 1.0 1.25 1.5 1.75 2.020040060080010001200 2.753.003.253.503.754.004.254.50时间(小时)充电电流(m A )充电电压(V )选购指南ME 40 57 X XX G浮充电压A/B :4.2V D :4.34V E :4.4V环保标识产品品种号产品类别号公司标志封装形式SP :ESOP8芯片脚位图TEMP PROG GND VCCCECHRGSTDBYBAT ESOP8脚位说明芯片功能示意图绝对最大额定值注意:绝对最大额定值是本产品能够承受的最大物理伤害极限值,请在任何情况下勿超出该额定值。

XT4057_C南麟中文版规格书具有热调节功能单片双灯显示的微型线性电池管理芯片

XT4057_C南麟中文版规格书具有热调节功能单片双灯显示的微型线性电池管理芯片

具有热调节功能单片双灯显示的微型线性电池管理芯片■产品概述XT4057是一个完善的单片锂离子电池恒流/恒压线形电源管理芯片。

它薄的尺寸和小的外包装使它便于便携应用。

更值得一提的是,XT4057专门设计适用于USB的供电规格。

得益于内部的MOSFET结构,在应用上不需要外部电阻和阻塞二极管。

在高能量运行和高外围温度时,热反馈可以控制充电电流以降低芯片温度。

充电电压被限定在4.2V,充电电流通过外部电阻调节。

在达到目标充电电压后,当充电电流降低到设定值的1/10时,XT4057就会自动结束充电过程。

当输入端(插头或USB 提供电源)拔掉后,XT4057自动进入低电流状态,电池漏电流将降到2µA以下。

XT4057还可被设置于停止工作状态,使电源供电电流降到25µA。

XT4057采用独特的内部专利结构确保了电池接反时芯片自动进入保护状态,确保IC不被击穿导致电池自放电引起事故。

其余特性包括:充电电流监测,输入低电压闭锁,自动重新充电和充电已满及开始充电的标志。

■用途●手机,PDA,MP3●蓝牙应用■产品特点●可编程使充电电流可达500mA.●不需要MOSFET,传感电阻和阻塞二极管●小的尺寸实现对锂离子电池的完全线形充电管理●恒电流/恒电压运行和热度调节使得电池管理效力最高,没有热度过高的危险●从USB接口管理单片锂离子电池●预设充电电压为4.2V 1%●充电电流输出监控●充电状态指示标志●1/10充电电流终止●停止工作时提供25µA电流● 2.9V涓流充电阈值电压●软启动限制浪涌电流●电池反接保护■封装●SOT23-6L■典型应用电路VINGND GND 注:C1=4.7uF,C2=10uF,IBAT = (V PROG/R PROG)*1000■ 订购信息■ 引脚配置CHRG GND BAT PROGSOT23-6L (TOP VIEW)VIN123465DONE■ 引脚分配■ 引脚功能PROG (引脚6):充电电流编程,充电电流监控和关闭端。

HE-480R 半导体清洁过程中的电导度计说明书

HE-480R 半导体清洁过程中的电导度计说明书

Repeatability
Within ±0.5ˋ of the full scale (in equivalent inputʣ
Linearity
Within ±0.5ˋ of the full scale (in equivalent inputʣ
Transmission output
4mA to 20mA DC : input/output isolated type
˙ Converter HE-480R
Panel Cut Size
45
+0.6 0
130 (min.)
+0.8 0
92
70 (min.)
˙Resistivity sensor ERF-001 Series
Cable-attached type
Connector type
Water-proof Connector
Unit
kЊɾm
182.3ʢstandardʣ, 181.8, 182.4 Shown on the Left.
When the measured value is above the upper limit of the measurement range derived from
the specified specific resistance, the specified resistance is used as the measured value.
˔High precision temperature compensation
The HE-480R employs a platinum temperature resistor (Pt1000Њ) in its temperature compensation element, thereby enabling high precision temperature compensation in the range of 0 to 100°C.
˔Selectable temperature compensation function

赫尔微HE75xxH_V1.8heermicr规格书

赫尔微HE75xxH_V1.8heermicr规格书

Features● Quiescent Current: 4.2uA@12V ● PSRR:60dB@100Hz● Voltage drop:600mV@100mA ● ESD HBM:8KV● High input voltage (up to 40V)● Output voltage accuracy: tolerance ±2% ● Output current:100mA(Typ.)● TO92 , SOT89 and SOT23-3 packageApplications● Battery-powered equipment ●Communication equipment●Audio/Video equipmentGeneral DescriptionThe HE75XXH series is a set of three-terminal low power high voltage regulators implemented in CMOS technology. They allow input voltages as high as 40V. They are available with several fixed output voltages ranging from 1.8V to 5.0V. CMOStechnology ensures low voltage drop and low quiescent current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain variable voltages and currents.Note: ”XX” stands for output voltages.TO92 & SOT89 packages will add a “#” mark at the end of the marking.Order Information HE75Block DiagramPin Assignment1 2 3MarkMarkSOT23-3 (Top View)Mark 1 32SOT89 (Top View) TO92 (Top View)Absolute Maximum RatingsStorage Temperature ..................-50℃to 125℃Supply Voltage ................................-0.3V to 40VOperating Temperature .................-40℃to 85℃Note: These are stress ratings only. Stresses exceeding the range specified under “Absolute Maximum Ratings” may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.Electrical CharacteristicsThe following specifications apply for VIN = 12V, TA=25℃,C IN=C OUT=10μF, unless specifi ed otherwise.Note: P D is measured at Ta= 25℃Application CircuitsBasic CircuitsHigh Output Current Positive Voltage RegulatorShort-Circuit Protection by Tr1Circuit for Increasing Output VoltageCircuit for Increasing Output VoltageConstant Current RegulatorTypical Performance CharacteristicsPackage Information3-pin TO92 Outline DimensionsHE75XXH series150mA Low Power LDO 3-pin SOT89 Outline DimensionsHE75XXH series150mA Low Power LDO 3-pin SOT23 Outline Dimensions。

半导体磁敏传感器 MRS系列产品手册说明书

半导体磁敏传感器 MRS系列产品手册说明书

我公司专业代理销售MR半导体磁敏式传感器,主要活跃在情报机器,半导体制造装置, 计测分析仪器,电子保安设备,原子能等广泛领域, 日本公司建于1951年,是以精密加 工技术和磁性技术为中心,从原材料到计测技术,既注重企业发展的一贯性,又紧跟产业 发展方向的企业。

 MRS系列产品名单 型号 构造 用途例 MRS-D 二电极串联型 通用 MRS-F-06 二电极串联型 纸币识别用 MRS-F-11 二电极串联型 纸币识别用 MRS-G-06 二电极串联型 纸币识别用 MRS-H-06 二电极串联型 纸币识别用 MRS-09 四电极桥式型 译码器用 MRS-13 四电极桥式型(三回路) 译码器用 半导体磁敏传感器 MRS-F-21 用途 磁性油墨印刷物的识别 检测AC,DC电流 特点 MR传感器是由InSb单结晶制成,感度高,SN比好. 被检体不必紧密接触传感器也可以检测. 输出电压值与磁性体的移动速度无关. 被检部是纯电阻,抗诱导干扰能力强. 体积小,安装方便. 地址:深圳市福田区福华路福庆街鸿图大厦1602室电话:0755-******** 83376489传真:联系人:李卓文 杨建龙http :/// E-mail :欢迎索取免费详细资料、设计选型指南和光盘、样品;产品繁多未能尽录,欢迎来电查询。

中国传感器科技信息网:HTTP:///工控安防网:HTTP:///消费电子专用电路网:/E-MAIL:**************************MSN: suns8888@hotmail.com QQ: 195847376 地址:深圳市福田区福华路福庆街鸿图大厦1602室电话:0755-******** 83376489 83387030 83387016传真:0755-******** 83338339 邮编:518033 手机:(0)139****1329深圳展销部:深圳华强北路赛格电子市场2583号 TEL/FAX:0755-******** 25059422北京分公司:北京海淀区知春路132号中发电子大厦3097号TEL:010-******** 82615020 135******** FAX:************上海分公司:上海市北京东路668号上海賽格电子市场2B35号TEL:021-******** 56703037 137******** FAX:************西安分公司:西安高新开发区20所(中国电子科技集团导航技术研究所) 西安劳动南路88号电子商城二楼D23号TEL:029-8102261913072977981FAX*************成都:TEL:(0)137****6236 SUNSTAR商斯达实业集团是集研发、生产、工程、销售、代理经销、技术咨询、信息服务等为一体的高科技企业,是专业高科技电子产品生产厂家,是具有10多年历史的专业电子元器件供应商,是中国最早和最大的仓储式连锁规模经营大型综合电子零部件代理分销商之一,是一家专业代理和分銷世界各大品牌IC 芯片和電子元器件的连锁经营綜合性国际公司。

HEF4051BTS中文资料

HEF4051BTS中文资料
HEF4051B
8-channel analog multiplexer/demultiplexer
Rev. 04 — 12 January 2005 Product data sheet

1. General description
The HEF4051B is an 8-channel analog multiplexer/demultiplexer with three address inputs (A0 to A2), an active LOW enable input (E), eight independent inputs/outputs (Y0 to Y7) and a common input/output (Z). The device contains eight bidirectional analog switches, each with one side connected to an independent input/output (Y0 to Y7) and the other side connected to a common input/output (Z). With E LOW, one of the eight switches is selected (low-impedance ON-state) by A0 to A2. With E HIGH, all switches are in the high-impedance OFF-state, independent of A0 to A2. If break before make is needed, then it is necessary to use the enable input. VDD and VSS are the supply voltage connections for the digital control inputs (A0 to A2, and E). The VDD to VSS range is 3 V to 15 V. The analog inputs/outputs (Y0 to Y7, and Z) can swing between VDD as a positive limit and VEE as a negative limit. VDD − VEE may not exceed 15 V. For operation as a digital multiplexer/demultiplexer, VEE is connected to VSS (typically ground).

RA60H4047M1中文资料

RA60H4047M1中文资料

1
4
5
1 RF Input (Pin) 2 Gate Voltage (VGG), Power Control 3 Drain Voltage (VDD), Battery 4 RF Output (Pout) 5 RF Ground (Case)
PACKAGE CODE: H2M
RoHS COMPLIANCE
• Metal shield structure that makes the improvements of spurious radiation simple
• Low-Power Control Current IGG=5mA (typ) @ VGG=5V
• Module Size: 67 x 18 x 9.9 mm
IDD Leakage Current
VDD=17V, VGG=0V, Pin=0W
— Stability
VDD=10.0-15.2V, Pin=25-70mW, 5<Pout <65W (VGG control), Load VSWR=3:1

Load VSWR Tolerance VDD=15.2V, Pin=50mW,
lead in electronic Ceramic parts. However, it is applicable to the following exceptions of RoHS Directions. 1.Lead in the Glass of a cathode-ray tube, electronic parts, and
Pout=60W (VGG control), Load VSWR=20:1
400
470 MHz

HE9009赫尔半导体HEERMICR

HE9009赫尔半导体HEERMICR

HE9009M6RHigh Performance Regulated Charge PumpGeneral DescriptionThe HE9009M6R is a high performance charge pump DC/DC converter that produces a regulated 5V output. No external inductor is required for operation. The operating voltage range is 2.8V to V OUT . Internal soft-start circuitry effectively reduces the in-rush current both while start-up and mode change. The HE9009M6R features very low quiescent current, over current protection and short circuit protection.The HE9009M6R is available in SOT23-6 package.Order InformationHE9009□□ □R : Pb-FreePackage Type M 6:SOT23-6Applications✧LCD Panel✧Cellular and Smart mobile phone ✧PDA/DSC✧Flash LED DriverFeatures◆2x Mode for Ultra-High Efficiency ◆ 2.8V to V OUT Range Input Voltage ◆Soft Start Function◆Built-In Short-Circuit Protection ◆340KHz Fixed frequency ◆Built-in Thermal Protection ◆Over Current Protection Function ◆I SD <1uA in Shutdown ◆SOT23-6 Package◆RoHS Compliant and 100% Lead (Pb)-FreeTypical Application CircuitMarking Information2.2uFFunction Block DiagramVINENVOUTAbsolute Maximum Ratings Note 1✧Input Voltage to GND (V IN) ---------------------------------------------------------------------------------------------- 6V ✧EN to GND Voltage (V EN) ----------------------------------------------------------------------------- 0.3V to V IN+0.3V ✧Operating Junction Temperature Range ------------------------------------------------------------------------ 125℃✧Maximum Soldering Temperature (at leads, 10sec) --------------------------------------------------------- 260℃Note 1. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operationalsections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affectdevice reliability. Thermal Information✧Maximum Power Dissipation (P D) -------------------------------------------------------------------------------- 0.45W ✧Thermal Resistance (J A) ----------------------------------------------------------------------------------------- 250℃/WESD Susceptibility✧HBM(Human Body Mode) --------------------------------------------------------------------------------------------- 2KV ✧MM(Machine Mode) --------------------------------------------------------------------------------------------------- 200VRecommended Operating Conditions✧Operation Ambient Temperature Range -------------------------------------------------------------- -20℃ to 85℃Electrical Characteristics(Over recommended operating conditions unless specified otherwise, VIN =3.6V,EN=High, TA=25℃ )Application InformationFigure1: Up to 6pcs White/Blue LED Driver from Li-Ion Battery SourceFigure2: Step-up to 5V with loading application from Li-Ion Battery SourcePackage Description6-pin SOT23-6Outline Dimensions。

HE4054规格书赫尔微(HEERMICR)

HE4054规格书赫尔微(HEERMICR)

Li-lon battery chargerFeatures●Protection of battery cell reverse connection ●Programmable charge current up to 800mA ●No MOSFET sense resistor or blocking dioderequired●Complete linear Charger for single CellLithium-Ion Batteries●CC and CV operation with thermal regulationto maximize Rate without risk of overheating ●Preset 4.2V charge voltage with ±1%accuracy●Automatic Recharge●C/10 charge termination● 2.9V trickle current charge threshold●Soft-Start limits inrush current●Available in SOT23-5 packageApplications●Cellular Telephones ●Mobile Power Supply ●Digital Still Cameras ●MP3 Players ●Bluetooth Applications●Portable Devices●USB Bus-Powered ChargersGENERAL DESCRIPTIONHE4054 is a complete CC/CV linear charger for single cell lithium-ion batteries. it is specifically designed to work within USB power Specifications.No external sense resistor is needed and no blocking diode is required due to the internal P-MOSFET architecture.Thermal feedback regulates the charge current to limit the die temperature during high power operation or high ambient temperature .The charge voltage is fixed at 4.2V,and the charge current can be programmed externally with a single resistor. The HE4054 automatically terminates the charge cycle when the charge current drops to 1/10th the programmed value after the final float voltage is reached.When the input supply (wall adapter or USB supply) is removed the HE4054 automatically enters a low current state dropping the battery drain current to less than 2μA.The HE4054 can be put into shut down mode reducing the supply current to 55μA.Other features include Battery temperature monitor, under-voltage lockout, automatic recharge and two status pins to indicate charge and charge termination.Li-lon battery charger Pin ConfigurationPin AssignmentAbsolute Maximum Ratingssuffer physical damage. These values must therefore not be exceeded under any conditions.Li-lon battery chargerElectrical Characteristics(VIN = 5V; TJ = 25°C; unless otherwise specified.)Li-lon battery chargerDescription of the PrincipleThe HE4054 is a complete CC/CV linear charger for single cell lithium-ion batteries. CC/CV to charger batter by internal MOSFET .It can deliver up to 800mA of charge current .No blocking diode or external current sense resistor is required.HE4054 include Open-Drain charge status Pins: Charge status indicator CHRG.The internal thermal regulation circuit reduces the programmed charge current if the die temperature attempts to rise above a preset value of approximately 145℃. This feature protects theHE4054 from excessive temperature, and allows the user to push the limits of the power handling capability of a given circuit board without risk of damaging theHE4054 or the external components. Another benefit of adopting thermal regulation is that charge current can be set according to typical, not worst-case, ambient temperatures for a given application with the assurance that the charger will automatically reduce the current in worst-case conditions.The charge cycle begins when the voltage at the V CC pin rises above the UVLO level, a current set resistor is connected from the PROG pin to ground, The CHRG pin outputs a logic low to indicate that the charge cycle is on going. At the beginning of the charge cycle, if the battery voltage is below 2.9V, the charge is in precharge mode to bring the cell voltage up to a safe level for charging. The charger goes into the fast charge CC mode once the voltage on the BAT pin rises above 2.9 V. In CC mode, the charge current is set by R PROG. When the battery approaches the regulation voltage 4.2V, the charge current begins to decrease as theHE4054 enters the CV mode. When the current drops to charge termination threshold, the charge cycle is terminated, and CHRG pin assumes a high impedance state to indicate that the charge cycle is terminated.The charge termination threshold is 10% of the current in CC mode. The charge cycle can also be automatically restarted if the BAT pin voltage falls below the recharge threshold. The on-chip reference voltage, error amplifier and the resistor divider provide regulation voltage with 1% accuracy which can meet the requirement of lithium-ion and lithium polymer batteries. When the input voltage is not present, or input voltage is below V BAT, the charger goes into a sleep mode, dropping battery drain current to less than 3μA. This greatly reduces the current drain on the battery and increases the standby time. The charging profile is shown in the following figure:Li-lon battery chargerProgramming Charge CurrentThe charge current is programmed using a single resistor from the PROG pin to ground. The program resistor and the charge current are calculated using the following equations.BAT PROG I R 1450;In application, according the charge current to determine R PROG ,the relation between R PROG and chargeCharge TerminationA charge cycle is terminated when the charge current falls to 1/10th the programmed value after the final float voltage is reached. This condition is detected by using an internal filtered comparator to monitor the PROG pin. When the PROG pin voltage falls below 100mV for longer than t TEMP (typically 1.8mS), Charging is terminated. The charge current is latched off and theHE4054 enters standby mode, where the input supply current drops to 55μA ( Note:C/10 termination is disabled in trickle charging and thermallimiting modes).When charging, transient loads on the BAT pin can cause the PROG pin to fall below 100mV for short periods of time before the DC charge current has dropped to 1/10th the programmed value. The 1.8mS filter time (t TEMP ) on the termination comparator ensures that transient loads of this nature do not result in premature charge cycle termination. Once the average charge current drops below 1/10th the programmed value, theHE4054 terminated the charge cycle and ceases to provide any current through the BAT pin. In this state all loads on the BAT pin must be supplied by the battery.TheHE4054 constantly monitors the BAT pin voltage in standby mode. If this voltage drops below theLi-lon battery charger4.10V recharge threshold (V RECHRG ),another charge cycle begins and current is once again supplied to the battery. To manually restart a charge cycle when in standby mode, the input voltage must be removed and reapplied or the charger must be shut down and restarted using the PROG pin. Figure 1 shows the state diagram of a typical charge cycleFig.1 State diagram of a typical charge cycleThermal limitingLi-lon battery chargerAn internal thermal feedback loop reduces the programmed charge current if the die temperature attempts to rise above a preset value of approximately 145℃ . The feature protects theHE4054 from excessive temperature and allows the user to push the limits of the power handling capability of a given circuit board without risk of damaging theHE4054. The charge current can be set according to typical (not worst-case) ambient temperature with the assurance that the charger will automatically reduce the current in worst-case conditions.Under Voltage lockout (UVLO)An internal under voltage lockout circuit monitors the input voltage and keeps the charger in shutdown mode until V CC rises above the under voltage lockout threshold . If the UVLO comparator is tripped, the charger will not come out of shutdown mode until V CC rises 140mV above the battery voltage.Auto restartOnce charge is been terminated,HE4054 immediately use a 1.8ms filter time ( t RECHARGE )on the termination comparator to constant monitor the voltage on BAT pin. If this voltage drops below the 4.1V recharge threshold (about between 80% and 90% of V CC ), another charge cycle begins. This ensured the battery maintained (or approach) to a charge full status and avoid the requirement of restarting the periodic charging cycle. In the recharge cycle, CHRG pin enters a pulled down status.Stability ConsiderationsIn CC mode, the PROG pin is in the feedback loop, not the battery. The CC mode stability is affected by the impedance at the PROG pin. With no additional capacitance on the PROG pin, the charger is stable with program resistor values as high as 20K. However, additional capacitance on this node reduces the maximum allowed program resistor. Therefore, if I PROG pin is loaded with a capacitance C, the following equation should be used to calculate the maximum resistance value for R PROG :PROGPROG C R ⨯⨯≤51021π As user, may think charge current is important, not instantaneous current. For example, to run a low current mode switch power which parallel connected with battery, the average current from BAT pin usually importance to instantaneous current. In this case, In order to measure average charge current or isolate capacitive load from I PROG pin, a simple RC filter can be used on PROG pin as shown in Figure 2. In order to ensure the stability add a 10K resistor between PROG pin and filter capacitor.Li-lon battery chargerFig.2 Isolating with capacitive load on PROG PinPower DissipationThe conditions that cause theHE4054 to reduce charge current through thermal feedback can be approximated by considering the power dissipated in the IC. Nearly all of this power dissipation is generated by the internal MOSFET-this is calculated to be approximately:BAT BAT CC D I V V P ⨯-=)(The approximate ambient temperature at which the thermal feedback begins toprotect the IC is:JA D A P C T θ⨯-︒=145; So: JA BAT BAT CC A I V V C T θ⨯⨯--︒=)(145For example: TheHE4054 with 5V supply voltage through programmable provides full limiting current 550mA to a charge lithium-ion battery with 3.85V voltage. If JA is 120℃/W ( reference to PCB layout considerations), WhenHE4054 begins to decrease the charge current, the ambient temperature about:C T A ︒=⨯⨯--=1.6912055.0)85.35(145HE4054 can work in the condition of the temperature is above 69.1℃, but the charge current will pull down to below 550mA. In a fixed ambient temperature, the charge current is calculated to be approximately :JABAT CC ABAT)V (V T C I θ⨯--=︒145 Just as Description of the Principle part talks about so, the current on PROG pin will reduce in proportion to the reduced charge current through thermal feedback. In HE4054 design applications don ’t need to considerate the worst case of thermal condition, this point is importance, because if the junction temperature up to 145℃ ,HE4054 will auto reduce the power dissipation.Thermal ConsiderationsBecause of the small size of the thin SOT23-5 package, it is important to use a good thermal PC board layout to maximize the available charge current. The PC board copper is the heat sink. The footprintHE4054Li-lon battery chargercopper pads should be as wide as possible and expand out to larger copper areas to spread and dissipate the heat to the surrounding ambient. Other heat sources on theboard, not related to the charger, must also be considered when designing a PC board layout because they will affect overall temperature rise and the maximum charge current.VCC bypass capacitorMany types of capacitors can be used for input bypassing, however, caution must be exercised when using multilayer ceramic capacitors. Because of the self-resonant and high Q characteristics of some types of ceramic capacitors, high voltage transients can be generated under some start-up conditions, such as connecting the charger input to a live power source. Adding a 1.5Ωresistor in series with a ceramic capacitor will minimize start-up voltage transients.Charging Current Soft StartHE4054 includes a soft start circuit which used to maximize to reduce the surge current in the begging of charge cycle. When restart a new charge cycle, the charging current ramps up from 0 to the full charging current within 20μs. In the start process it can maximize to reduce the action which caused by surge current load.Board Layout ConsiderationsR PROG at PROG pin should be as close toHE4054 as possible, also the parasitic capacitance at PROG pin should be kept as small as possible.The capacitance at VCC pin and BAT pin should be as close toHE4054 as possible.It is very important to use a good thermal PC board layout to maximize charging current. The thermal path for the heat generated by the IC is from the die to the copper lead frame through the package lead (especially the ground lead) to the PC board copper, the PC board copper is the heat sink. The footprint copper pads should be as wide as possible and expand out to larger copper areas to spread and dissipate the heat to the surrounding ambient. Feed through vias to inner or backside copper layers are also useful in improving the overall thermal performance of the charger. Other heat sources on the board, not related to the charger, must also be considered when designing a PC board layout because they will affect overall temperature rise and the maximum charge current.The ability to deliver maximum charge current under all conditions require that the exposed metal pad on the back side of theHE4054 package be soldered to the PC board ground. Failure to make the thermal contact between the exposed pad on the backside of the package and the copper board will result in larger thermal resistance.Typical ApplicationHE4054Li-lon battery charger H E4054HE4054Li-lon battery chargerVer0.1 11 Jul 26,2013Package Information5-pin SOT23-5L Outline Dimensions。

和森顿器件有限公司产品说明书

和森顿器件有限公司产品说明书

Anderson Instrument Co.,Inc.156Auriesville Rd.~Fultonville,NY 12072:518-922-5315~Fax:518-922-8997Teléfono Este producto cuenta con un (1)año de garantía en caso de defectos de fabricación.Para obtener una declaración completa de garantía,comuníquese con Anderson o visitenuestro sitio Web.Guía de instalación y de puesta en marchaFlujómetro electromagnéticoModelo IZMAG Versión 1.2Documento 1175LEA ESTO PRIMEROESPECIFICACIONESDESCRIPCIÓN DEL PRODUCTOEl flujómetro IZMAG de Anderson es un instrumento de precisión que se integra directamente a una línea de proceso y proporciona información en tiempo real respecto del proceso.Su principio de funcionamiento se basa en la medición de un voltaje que es el resultado de un líquido conductor que pasa a través de un campo electromagnético.Esta información generada por IZMAG se puede utilizar para generar una indicación instantánea de la velocidad de flujo de un líquido o bien,se puede acumular a lo largo del tiempo a fin de calcular un total de lo que ha pasado por la tubería.De acuerdo a lo descrito anteriormente,el IZMAG puede proporcionar salidas de manera precisa para el control o indicación del proceso de flujo.Rendimiento Especificaciones de operación/medioambientales Precisión de velocidadTamaño Rango de flujo operacionalLímites de temperatura Proceso de 0a 100°C(de 32a 212°F)0a 165°C (32a 265°F)para limpieza en el lugar de 30minutosTemperatura ambiente:CC -25a 55°C (-12a 130°F)-25a 45°C (-12a 120°F)Clasificación de presión 1,4a 145psi abs.0,1a 11barias abs.Requisitos del producto:Aprobaciones Conductividad mín. de 5 ms CE, 3-A:±0,20%*gal/min L/min150,3a 301,17a 11,7250,8a 803,0a 300321,3a 1305,0a 500503a 30011,7a 1166655,2a 52520a 2000808a 80030a 300010012a 120046a 4667:CA ::*±1mm/seg.Materiales /ConstrucciónEléctrico /Energía /Señal Superficies de contacto Acero inoxidable 316L conrevestimiento de PFA,EPDMCubierta Acero inoxidable 304Clasificación de la caja Tipo de conexión de proceso Requisitos de energía 9a 32V CC 7W/V.A 100a 240V CA 50a 60hz -15%/+10%7W/V.A.Salida de señal (2)salida de impulso digital 24V CC a 20mA(1)salida de estado digital 24V CC a 20mA1)4a 20mA pasivo/activo2°opcional de 4a 20mA con Hart (pasivo)Entrada de control (1)9a 32V CC R<3,2kilohmios Conexiones (3)puertos M16con abrazaderas de cordón y adaptadores de conducto de 12,7mm (1/2pulg.)Pantalla LCD gráfica46X 23mm con iluminación Comunicaciones Hart,BUS CS3del producto:::IP 67:Tri-clamp®,Cherry I-line :.:(::::DESEMBALAJEInspección del producto Luego de recibir el producto,realice una inspección detallada en busca de daños en los conectores y en la parte frontal del sensor.Los reclamos por daños deben emitirse directamente al transportista.:Elementos de importancia:····Hoja de registro de configuración de IZMAG Caja del medidorAbrazaderas de cordón ManualTUBERÍA DE 3xDE DIÁMETRO MÍNIMO TUBERÍA DE DIÁMETRO MÍNIMO DE 5x Instale la caja del medidor en línea con la calcomanía en forma de flecha correspondiente a la dirección del flujo.Instale en la línea de proceso de acuerdocon el curso deorientación para asegurar el llenado constante del tubo de flujo .Evite instalar la caja del medidor en lugares con condiciones de vacío debido a la potencial ocurrencia de imprecisiones.Evite instalar la caja del medidor cerca de equipos de fuerte emisión de campos electromagnéticos,debido a que esto puede distorsionar el campo magnéticogenerado por el flujómetro y finalmente causar errores en la medición.Antes de realizar trabajos de soldadura en una tubería con flujómetro instalado,desconecte el cable del tubo Advertencia :INSTALACIÓN DEL IZMAGLa tubería debe estar conectada a tierra adecuadamente o la conexión a tierra se puede traspasar a la agarradera del tubo de flujo.TERMINACIONES INTERNASCuenta entrada de inhibiciónSalida analógicaactiva/pasiva(activa predeterminada) 4a20mACarga máxima de500ohmios paratodos los elementosen el bucle de controlobtener los requisitos de voltaje Alimentado por CC9a32V CC7WAlimentado por CA100a240V CA50/60HzFusible eléctrico a T1.5AFusible eléctrico a T500mANOTA:El equipo debe conectarse a un sistema de cableado en conformidad con las normas ANSI/NFPA70,NEC con CSA,C22.1y CEC Parte1ORIENTACIÓN DE LA PANTALLACada IZMAG viene con una llave hexagonal de3mm que simplifica la rotación de la pantalla del flujómetro.Para adaptar la orientación de la pantalla para instalaciones de tuberías verticales,quite los dos tornillos de plata de cabeza cilíndrica ubicados a ambos costados de la pantalla,gírela en90grados y vuelva a colocar los tornillos en los orificios de la parte superior de la pantalla y la parte inferior deésta.Aplique par de torsión moderadamente.Corte el suministro eléctrico antes de ejecutar esta acción.Partiendo de la pantalla total,accione la tecla siete veces para hacer aparecer la pantalla “Service Level”(nivel de servicio).Luego accione la tecla 3veces para traer la pantalla de salida actual de la simulación.CALIBRACIÓN.:---Ajuste de cero hidráulicoSimulación de salidaJunto con la puesta en marcha inicial del flujómetro se recomienda realizar un ajuste en cero (ajuste en “ZERO”)a fin de que el flujómetro logre el mejor resultado posible en su nuevo ambiente.No obstante,para la mayoría de las aplicaciones no es necesario un ajuste de cero ¡ATENCIÓN!Es importante confirmar estas condiciones antes de ejecutar un procedimiento de calibración en cero El dispositivo debe alcanzar su temperatura de trabajo,es decir,debería permanecer encendido por al menos 5minutos.El transmisor se debe llenar completamente con el líquido característico sin aire.No debe haber líquido durante la totalidad del proceso de medición de “ajusteZERO”.Comenzamos en la “pantalla total”(total display)y activaremos 6veces mediante la tecla hasta llegar a la pantalla de “funciones especiales”(Special Functions).Luego,use la tecla hasta la pantalla “zero adjust”(ajuste en cero).Simulación de salida analógicaSimulación de salida deimpulsoPara acceder a la función de simulación del IZMAG es necesario ingresar un código de seguridad.Luego de seleccionar el tipo de simulación apareceráen pantalla una solicitud de código.Para este caso la simulación seráposible luego de ingresar el código “333”.Para comenzar,escriba un “3”utilizando la tecla luego,mueva el cursor hacia la izquierda utilizando la tecla e ingrese el siguiente “3”seguido de un último movimiento de cursor que le permitiráingresar el último número“3”.Simulación de la velocidad deflujoEl proceso de medición de “ZERO adjust”(ajuste en cero)se activa cuando se mantiene presionada la tecla por 1,5segundos.En la línea superior de la pantalla se aprecia el valor actual de barra de progreso indica el estado de avance de la medició medición termina cuando la barra de progreso se completa.El nuevo valor de ZERO aparece bajo la barra de progreso antes de seraplicado.Mediante la tecla se puede establecer la salida con tres configuraciones primera salida seráde 20mA,al accionar nuevamente la tecla ésta pasaráa ser de 12mA y con otro accionamiento más la salida seráde 4mA.Al abandonar esta pantalla la simulación de salida habráterminado.De acuerdo a las instrucciones dadas para acceder a la pantalla de salida actual,la simulación de salida de impulso apareceráluego de accionar una vez la tecla .La activación de la función darácomienzo a la simulación.Para el caso de la salida de impulso,una barra de progreso indicarála duración de la prueba y cuándo ésta estécompleta (luego de 1minuto).El medidor habrádado una salida de un determinado número de impulsos.En cuanto a la pantalla actual,estáfinalizarácuando la pantalla cambie.De acuerdo a las instrucciones dadas para acceder a la pantalla de salida de la salida de impulso,la simulación de la velocidad de flujo apareceráluego de accionar una vez la tecla .Esta función permite una simulación continua tanto para las salidas de impulso como para las salidas analógicas utilización de esta simulación puede ser de utilidad cuando se prueba un sistema “en seco”antes de su utilización real.Al comenzar a usar la tecla ,el flujo indicaráuna lectura de 0gal/min;cifra que veráun incremento del 10%del Qmax con cada activación de la tecla .La función finalizaráluego de presionar la tecla una vez más pasada la velocidad máxima.Se le puede indicar que ingrese primero un código de desbloqueo.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概述
HE4057是一款性能优异的单节锂离子电池恒流/恒压线性充电器。

HE4057采用SOT23-6封装配合较少的外围原件使其非常适用于便携式产品,并且适合给USB电源以及适配器电源供电。

基于特殊的内部MOSFET架构以及防倒充电路,HE4057不需要外接检测电阻和隔离二极管。

当外部环境温度过高或者在大功率应用时,热反馈可以调节充电电流以降低芯片温度。

充电电压固定在4.2V,而充电电流则可以通过一个电阻器进行外部设置。

当充电电流在达到最终浮充电压之后降至设定值的1/10,芯片将终止充电循环。

当输入电压断开时,HE4057进入睡眠状态,电池漏电流将降到1uA以下。

HE4057可以被设置于停机模式,此时芯片静态电流降至25uA。

HE4057还包括其他特性:电池温度监测,欠压锁定,自动再充电和两个状态引脚以显示充电和充电终止。

特性
◆可编程充电电流500mA
◆无需外接MOSFET,检测电阻以及隔离二极管
◆用于单节锂电池、采用SOT23-6封装的完整线性充电器◆恒定电流/恒定电压操作,并具有可在无过热危险的情况
下实现充电速率最大化的热调节功能。

◆精度达到±1%的4.2V预充电电压
◆用于电池电量检测的充电电流监控器输出
◆自动再充电
◆充电状态双输出、无电池和故障状态显示
◆C/10充电终止
◆待机模式下的静态电流为25uA
◆2.9V涓流充电
◆软启动限制浪涌电流
应用范围
◆移动电话、PDA
◆MP3、MP4播放器
◆充电器
◆数码相机
◆电子词典
◆蓝牙、GPS导航仪
◆便携式设备
HE4057采用SOT23-6封装
HE4057 500mA线性锂离子电池充电器
典型应用
打标说明及管脚分布
SOT23-6
管脚图
丝印字符
丝印字符说明 左示意图
57BM
芯片..
Y 年号 W 周号 XXXX
生产批号
管脚描述
57BM YWXXXX
最大额定值(注)
ESD与Latch-up等级
结构框图
(如果没有特殊说明,环境温度= 25︒C,输入电压=5V)
注释(1): 这时处于充电状态,I CC= I VCC- I BAT
(2): 这里C/10终止电流门限指的是终止电流与恒流充电电流的比值
使用说明
HE4057是一款专门为锂离子电池设计的线性充电器,利用芯片内部的功率MOSFET对电池进行恒流/恒压充电。

充电电流可以由外部电阻编程决定,最大充电电流可以达到500mA。

HE4057拥有两个漏极开路输出的状态指示输出端,充电状态指示端CHRG和电池充电完成指示输出端STDBY。

芯片内部的功率管电路在芯片的结温超过135℃时自动降低充电电流,这个功能可以使用户最大限度利用芯片充电,不用担心芯片过热而损坏芯片或者外部元器件。

●工作原理
当输入电压大于UVLO检测阈值和芯片使能输入端接高电平时,HE4057开始对电池充电。

如果电池电压低于
2.9V,充电器用小电流对电池进行预充电。

当电池电压超过2.9V时,充电器采用恒流模式对电池充电,充电电流由PROG端和GND端之间的电阻决定。

当电池电压接近4.2V时,充电电流逐渐减小,HE4057进入恒压充电模式。

当充电
电流减小到充电结束阈值时,充电周期结束。

充电结束阈值是恒流充电电流的1/10。

当电池电压降到再充电阈值以下时,自动开始新的充电周期。

芯片内部的高精度的电压基准源,误差放大器和电阻分压网络确保BAT端调制电压的精度在1%以内,满足锂离子和锂聚合物电池的要求。

当输入电压掉电或者输入电压低于电池电压时,充电器进入待机模式,电池端消耗的电流小于2uA,从而增加待机时间。

●充电终止
当充电电流在达到最终浮充电压之后降至设定值的1/10,充电循环被终止。

该条件是通过采用一个内部滤波比较器对PROG端进行监控来检测的。

当PROG端电压降至100mV以下的时间超过1.8ms时,充电终止,HE4057进入待机模式,此时的输入电源电流降至约45uA。

充电时,BAT端上的瞬变负载会使PROG端电压在DC充电电流降至设定值的1/10之间短暂地降至100mV以下,比较器的1.8ms延时时间确保了这种性质的瞬变负载不会导致充电循环过早终止。

一旦平均充电电流降至设定值的1/10以下,HE4057集中式充电循环并停止通过BAT端提供任何电流。

在这种状态下,BAT端上所有负载都必须由电池供电。

●充电状态指示
HE4057有两个漏极开路状态指示输出端CHRG和STDBY。

当充电器处于充电状态时,CHRG被拉到低电平,在其他状态CHRG为高阻态;当电池充电结束后,STDBY被拉到低电平,在其他状态STDBY为高阻态。

当电池没有接到充电器时,CHRG闪烁表示没有安装电池。

●热限制
如果芯片温度升至135 C以上时,一个内部热反馈环路将减小设定的充电电流。

该功能可防止HE4057过热,并允许用户提高给定电路板功率处理能力的上限而减小损坏HE4057的风险。

●欠压锁闭
HE4057拥有一个内部欠压锁定电路对输入电压进行监控,在V CC升至欠压锁定门限电压之前使芯片保持在停机工作模式。

当V CC电压升高至3.8V之后,芯片退出UVLO,开始正常工作。

V CC下降时的UVLO迟滞电压为200mV。

●自动充电循环
电池电压达到浮充电压,充电循环被终止之后,HE4057立即对BAT端电压进行监控。

当BAT端电压低于4.1V时,
充电循环重新开始。

确保了电池被维持在一个接近满电的状态,同时免除了进行周期性充电循环启动的需要。

封装说明:SOT23-6。

相关文档
最新文档