matlab上机实验五

合集下载

MATLAB(实验五)

MATLAB(实验五)

实验五1、 编写程序,该程序在同一窗口中绘制函数在[]0,2π之间的正弦曲线和余弦曲线,步长为200/π,线宽为 2 个象素,正弦曲线设置为蓝色实线,余弦曲线颜色设置为红色虚线,两条曲线交点处,用红色星号标记,并通过函数方式在生成的图形中添加注释,至少应包括:标题,文本注释,图例和坐标轴标注。

x=0:pi/200:2*pi;sinx = sin(x); cosx = cos(x);k=find(abs(sinx-cosx)<1e-2); x1=x(k);figure,plot(x,sinx,'LineWidth',2) hold on ,plot(x,cosx,'r:','LineWidth',2)hold on ,plot(x(find(cosx==sinx)),cosx(find(cosx==sinx)),'r*','LineWidth',2)hold on ,plot(x1,sin(x1),'r*') xlabel('x:(0-2\pi)'); ylabel('y:sin(x)/cos(x)');title('正弦曲线和余弦曲线');text(x1+0.1,sin(x1),'sin(x)=cos(x)');gtext('sin(x)') gtext('cos(x)')legend('sin(x)','cos(x)')2、 绘制图像:双曲抛物面:22164x y z =-,1616x -<<,44y -<<,并对绘制的双曲抛物面尝试进行视点控制。

[X,Y] = meshgrid(-16:0.4:16,-4:0.1:4); Z = X.^2/16 - Y.^2/4;subplot(1,3,1),plot3(X,Y,Z),view(0,180),title('azimuth = 0,elevation = 180'); subplot(1,3,2),plot3(X,Y,Z),view(-37.5,-30),title('azimuth = -37.5,elevation = -30');subplot(1,3,3),plot3(X,Y,Z),view([3,3,2]),title('viewpoint=[3,3,1]');3、 表中列出了4个观测点的6次测量数据,将数据绘制成为分组形式和堆叠形式的条形图。

matlab实验内容答案

matlab实验内容答案

实验报告说明:matlab 课程实验需撰写8个实验报告,每个实验报告内容写每次实验内容中标号呈黑体大号字显示的题目。

第一次实验内容:实验一 MATLAB 运算基础一、实验目的1.熟悉启动和退出MATLAB 的方法。

2.熟悉MATLAB 命令窗口的组成。

3.掌握建立矩阵的方法。

|4.掌握MATLAB 各种表达式的书写规则以及常用函数的使用。

二、实验内容1.先求下列表达式的值,然后显示MATLAB 工作空间的使用情况并保存全部变量。

(1)22sin 8511z e︒=+ (2)12ln(2z x =,其中2120.455i +⎡⎤=⎢⎥-⎣⎦(3)0.30.33sin(0.3), 3.0, 2.9, 2.8,,2.8,2.9,3.02a ae e z a a --=+=--- 提示:利用冒号表达式生成a 向量,求各点的函数值时用点乘运算。

(4)2220141122123t t z t t t t t ⎧≤<⎪=-≤<⎨⎪--≤<⎩,其中t =0::】提示:用逻辑表达式求分段函数值。

2.已知12344347873657A -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,131203327B -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦求下列表达式的值:(1) A+6=B 和A-B+I(其中I 为单位矩阵)。

(2) A*B 和A.*B 。

(3) A^3和A^.3 。

(4) A/B 和B\A 。

(5)[A ,B]和[A([1,3],;);B^2] 。

!3.设有矩阵A 和B12345678910111213141516171819202122232425A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦, 30161769023497041311B ⎡⎤⎢⎥-⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎣⎦(1) 求它们的乘积C 。

(2) 将矩阵C 的右下角3×2子矩阵赋给D(3) 查看MATLAB 工作空间使用情况。

4.完成下列操作:(1)求[100,999]之间能被21整除的数的个数。

matlab实验五

matlab实验五

实验五 基于matlab 的数据拟合与回归分析一、 实验类型验证性实验二、 实验学时2学时三、 实验目的1、掌握利用MATLAB 中实现单因变量的多元线性回归分析(经典多元线性回归分析)的方法;2、掌握利用MATLAB 中实现多因变量的多元线性回归分析(多对多线性回归分析)的方法。

3、掌握MATLAB 有关逐步回归的命令。

四、 实验内容及要求 实验内容:1 学习MATLAB 中有关经典多元线性回归分析的命令;(1) [b,bint,r,rint,stats] = regress(y,X,alpha)建立回归分析模型01122,i i i ip ip i y b b x b x b x ε=+++++其中()()2E 0,D i i εεσ==,1,2,,i n =.注:在该命令中,设计矩阵()(1)ij n p X x ⨯+=(X 的第1列全为1 ) 或响应值向量()1i n y y ⨯=中的无效值Nan 将被免忽略。

输入参数至少有2个,alpha 是检验的显著性水平,默认值为0.05。

输出参数至少有1个,b 是回归系数的估计值;bint 是各回归系数的置信度为1-alpha 的置信区间(第1列是它们的下界,第2列是它们的上界);r 是残差,rint 是残差的置信区间;stats 给出一个1*4的向量,依次是判定系数2R ,F 统计量的观测值及检验的p 值,以及误差的方差的估计值2ˆσ. 这里//(1)U p MMSF Q n p MSE==-- 是检验回归模型是否显著的检验统计量,当012:0p H b b b ====成立时, ~(,1)F F p n p --.可以通过分析残差的置信区间来观察原始数据是否存在异常点,若残差的置信区间不包括0,则可认为对应的观测值是异常值,将异常值全部去掉,重新建立的回归模型将更加精确。

可以调用命令rcoplot(r,rint)按观测顺序逐个画出各组观测值对应的残差和残差置信区间,从而观测异常值的位置。

MATLAB实验报告

MATLAB实验报告

v1.0 可编辑可修改实验一 MATLAB 环境的熟悉与基本运算一、实验目的及要求1.熟悉MATLAB 的开发环境; 2.掌握MATLAB 的一些常用命令;3.掌握矩阵、变量、表达式的输入方法及各种基本运算。

二、实验内容1.熟悉MATLAB 的开发环境: ① MATLAB 的各种窗口:命令窗口、命令历史窗口、工作空间窗口、当前路径窗口。

②路径的设置:建立自己的文件夹,加入到MATLAB 路径中,并保存。

设置当前路径,以方便文件管理。

2.学习使用clc 、clear ,了解其功能和作用。

3.矩阵运算:已知:A=[1 2;3 4]; B=[5 5;7 8]; 求:A*B 、A.*B ,并比较结果。

4.使用冒号选出指定元素:已知:A=[1 2 3;4 5 6;7 8 9]; 求:A 中第3列前2个元素;A 中所有列第2,3行的元素; 5.在MATLAB 的命令窗口计算: 1) )2sin(π2) 5.4)4.05589(÷⨯+ 6.关系及逻辑运算1)已知:a=[5:1:15]; b=[1 2 8 8 7 10 12 11 13 14 15],求: y=a==b ,并分析结果 2)已知:X=[0 1;1 0]; Y=[0 0;1 0],求: x&y+x>y ,并分析结果 7.文件操作1)将0到1000的所有整数,写入到D 盘下的文件 2)读入D 盘下的文件,并赋给变量num8.符号运算1)对表达式f=x 3-1 进行因式分解2)对表达式f=(2x 2*(x+3)-10)*t ,分别将自变量x 和t 的同类项合并 3)求3(1)xdz z +⎰三、实验报告要求完成实验内容的3、4、5、6、7、8,写出相应的程序、结果实验二 MATLAB 语言的程序设计一、实验目的1、熟悉 MATLAB 程序编辑与设计环境2、掌握各种编程语句语法规则及程序设计方法3、函数文件的编写和设计4、了解和熟悉变量传递和赋值二、实验内容1.编写程序,计算1+3+5+7+…+(2n+1)的值(用input 语句输入n 值)。

实验五 MATLAB二维、三维图形的绘制

实验五  MATLAB二维、三维图形的绘制

实验五 MATLAB二维、三维图形的绘制一、实验目的1.掌握二维、三维图形的绘制;2.掌握特殊二维图形的绘制;3.掌握绘图参数的设置;4.了解并学习简单动画的制作。

二、实验内容1.运行下列程序,学会并掌握标题、坐标轴标签和网格线的设置方法x=0:1:10;y=x.^2-10*x+6;plot(x,y);title ('Plot of y=x.^2-10*x+6');xlabel ('x');ylabel ('y');grid on;2.运行下列程序,学会并掌握线型、点型、颜色的设置方法x = -pi:pi/20:pi;y1 = sin(x);y2 = cos(x);plot(x,y1,'bo',x,y2,'r:');title('线型、点型和颜色');xlabel('时间'),ylabel('Y');grid on;3.同一坐标系内多条曲线的绘制1)使用 plot(x,[y1;y2;…])x = -pi:pi/20:pi;y1 = sin(x);y2 = cos(x);plot(x,[y1;y2]);legend('sin x','cos x');2)使用hold命令x = -pi:pi/20:pi;y1 = sin(x);y2 = cos(x);plot(x,y1);hold on;plot(x,y2,‘r’);3)在plot后使用多输入变量x = -2*pi:pi/20:2*pi;y1 = 2*sin(x);y2 = 2*cos(x);plot(x,y1,'ro',x,y2,'b:');title('线型、点型和颜色');xlabel('时间'),ylabel('Y');4) 使用plotyy命令x = -pi:pi/20:pi;y1 = sin(x);y2 = 5*cos(x);plotyy(x,y1,x,y2);grid on;gtext(‘sinx’) ; gtext(‘5cosx’) ;4.子图形窗口的绘制subplot(2,1,1);x= -pi:pi/20:pi;y=sin(x);plot(x,y) ; grid on;title('正弦曲线');subplot(2,1,2);x= -pi:pi/20:pi;y=cos(x);plot(x,y); grid on;title('余弦曲线');5.对数坐标图形x=0:0.1:10;y=x.^2 -10.*x +25;subplot(2,2,1);plot(x,y); grid on;xlabel('a) x、y轴线性刻度');subplot(2,2,2);semilogx(x,y); grid on;xlabel('b) x轴对数刻度、y轴线性刻度');subplot(2,2,3);semilogy(x,y); grid on;xlabel('c) x轴线性刻度、y轴对数刻度');subplot(2,2,4);loglog(x,y); grid on;xlabel(‘d) x、y轴对数刻度');6.极坐标下的绘图theta = 0:pi/20:2*pi;r = 0.5+cos(theta);polar(theta,r);7.复数的绘图,并比较下面几种情况的不同1)t = 0:pi/20:6*pi;y = exp(0.1*t) .* (cos(t) + i * sin(t));plot(y);grid on ;title('Plot of Complex Function vs Time');xlabel('Real Part');ylabel('Imaginary Part');2)t = 0:pi/20:6*pi;y = exp(0.1*t) .* (cos(t) + i * sin(t));plot(t, y);grid on ;title('Plot of Complex Function vs Time');xlabel('t');ylabel('y(t)');3)t = 0:pi/20:6*pi;y = exp(0.1*t) .* (cos(t) + i * sin(t));plot(t, real(y),'b-');grid on;hold on;plot(t, imag(y),'r-');title('Plot of Complex Function vs Time');xlabel('t');ylabel('y(t)');legend('real','imaginary');hold off;4)t = 0:pi/20:6*pi;y = exp(0.1*t) .* (cos(t) + i * sin(t));polar(angle(y),abs(y));title('Plot of Complex Function');8.特殊二维图形的绘制1)x = [1 2 3 4 5 6];y = [2 6 8 7 8 5];stem(x,y);title('Example of a Stem Plot');xlabel('x');ylabel('y');axis([0 7 0 10]);将上述程序中的stem语句换为stairs、bar、barh和compass,即可实现阶梯图、条形图、罗盘图的绘制。

matlab实验五循环结构程序设计实验报告

matlab实验五循环结构程序设计实验报告

实验五:循环结构程序设计实验报告一、实验目的1. 了解循环结构的基本概念和原理;2. 掌握使用Matlab进行循环结构程序设计的方法;3. 提高编程能力和问题解决能力。

二、实验内容1. 学习while循环和for循环的基本语法和用法;2. 设计并编写一些基于循环结构的Matlab程序;3. 分析程序运行结果并进行总结。

三、实验原理循环结构是程序设计中的重要组成部分,它可以让一段代码重复执行多次,从而简化程序的编写。

在Matlab中,循环结构主要有while 循环和for循环两种形式。

while循环在执行循环体前判断条件是否为真,只有条件为真时才会执行循环体;for循环则是指定循环的次数,每次迭代时执行一次循环体。

四、实验步骤与结果1. 编写一个使用while循环的程序,实现1~100的累加。

程序代码如下:```matlabsum = 0;i = 1;while i <= 100sum = sum + i;i = i + 1;enddisp(sum);```运行程序后,得到的结果为5050。

2. 编写一个使用for循环的程序,实现1~10的阶乘。

程序代码如下:```matlabresult = 1;for i = 1:10result = result * i;enddisp(result);```运行程序后,得到的结果为xxx。

五、实验总结通过本次实验,我深刻理解了循环结构的基本概念和原理,掌握了使用Matlab进行循环结构程序设计的方法。

在编写循环程序的过程中,我发现循环结构可以大大简化程序的编写,并且能够高效地处理重复性任务。

我也进一步提高了自己的编程能力和问题解决能力。

本次实验使我对Matlab中的循环结构有了更加深入的了解,我相信这对我的编程能力和日后的学习工作都将大有裨益。

六、实验感想和改进意见通过本次实验,我深刻认识到循环结构在程序设计中的重要性和灵活性。

循环结构能够帮助我们简化程序的编写,提高代码的重用性和可读性,因此在实际的程序设计中,合理地运用循环结构能够大大提高程序的效率和逻辑清晰度。

matlab实验

matlab实验

实验一 MATLAB基本操作一、实验目的1、了解MATLAB应用程序环境2、掌握MATLAB语言程序的书写格式和MATLAB语言程序的结构。

3、掌握在MATLAB应用环境下编写程序4、掌握MATALB调试过程,帮助文件5、掌握MATLAB语言上机步骤,了解运行一个MATLAB程序的方法。

6、本实验可在学习完教材第一章后进行。

二、主要仪器及耗材PC电脑,MATLAB6.5软件三、实验内容和步骤1、MATLAB语言上机步骤:(1)、进入系统在C盘或其他盘上找到MATLAB或MATLAB6.5,然后双击其图标打开文件夹。

然后进行编辑源程序->编译->连接->执行程序->显示结果(2)、常用命令编辑切换(F6),编译(F9),运行(CTRL+F9),显示结果(ALT+F5)其它常用命令见“附录一”。

2、有下面的MATLAB程序。

(1)数值计算功能:如,求方程 3x4+7x3 +9x2-23=0的全部根p=[3,7,9,0,-23]; %建立多项式系数向量x=roots(p) %求根(2)绘图功能:如,绘制正弦曲线和余弦曲线x=[0:0.5:360]*pi/180;plot(x,sin(x),x,cos(x));(3)仿真功能:如,请调试上述程序。

3、熟悉MATLAB环境下的编辑命令,具体见附录一。

三、实验步骤1、静态地检查上述程序,改正程序中的错误。

2、在编辑状态下照原样键入上述程序。

3、编译并运行上述程序,记下所给出的出错信息。

4、按照事先静态检查后所改正的情况,进行纠错。

5、再编译执行纠错后的程序。

如还有错误,再编辑改正,直到不出现语法错误为止。

四、实验注意事项1、记下在调试过程中所发现的错误、系统给出的出错信息和对策。

分析讨论对策成功或失败的原因。

2、总结MATLAB程序的结构和书写规则。

五、思考题1、matlab到底有多少功能?2、MATLAB的搜索路径3、掌握使用MATLAB帮助文件实验二 MATLAB 矩阵及其运算一、 实验目的1、了解矩阵的操作,包括矩阵的建立、矩阵的拆分、矩阵分析等2、了解MATLAB 运算,包括算术运算、关系运算、逻辑运算等3、掌握字符串的操作,了解结构数据和单元数据。

概率-matlab上机实验

概率-matlab上机实验

数学实验-概率学院:理学院班级:xxxx姓名:xxxx学号:xxxx指导教师:xxxxx实验名称:概率试验目的:1)通过对mathematica软件的练习与运用,进一步熟悉和掌握mathematica软件的用法与功能。

2)通过试验过程与结果将随机实验可视化,直观理解概率论中的一些基本概念,并初步体验随机模拟方法。

实验步骤:1)打开数学应用软件——Mathematica ,单击new打开Mathematica 编辑窗口;2)根据各种问题编写程序文件;3)运行程序文件并调试;4)观察运行结果(数值或图形);5)根据观察到的结果写出实验报告,并析谈学习心和体会。

实验内容:1)概率的统计定义2)古典概型3)几种重要分布1)二项分布2)泊松分布4)概率问题的应用(一)概率的统计定义我们以抛掷骰子为例,按古典概率的定义,我们要假设各面出现的机会是等可能的,这就要假设:(1)骰子的质料绝对均匀;(2)骰子是绝对的正方体:(3)掷骰子时离地面有充分的高度。

但在实际问题中是不可能达到这些要求的,假设我们要计算在一次抛掷中出现一点这样一个事件 的概率为多少,这时,已无法仅通过一种理论的考虑来确定,但我们可以通过试验的方法来得到事件 概率:设反复地将骰子抛掷大量的次数,例如n 次,若在n 次抛掷中一点共发生了 次,则称是 这个事件在这n 次试验中的频率,概率的统计定义就是将 作为事件 的概率P( )的估计。

这个概念的直观背景是:当一个事件发生的可能性大(小)时,如果在同样条件下反复重复这个实验时,则该事件发生的频繁程度就大(小)。

同时,我们在数学上可以证明:对几何任何一组试验,当n 趋向无穷时,频率 趋向同一个数。

<练习一>模拟掷一颗均匀的骰子,可用产生1-6的随机整数来模拟实验结果1) 作n=200组实验,统计出现各点的次数,计算相应频率并与概率值1/6比较;2) 模拟n=1000,2000,3000组掷骰子试验,观察出现3点的频率随试验次数n 变化的情形,从中体会频率和概率的关系。

实验五+MATLAB数值计算(含实验报告)

实验五+MATLAB数值计算(含实验报告)

实验五 MATLAB 数值计算一、实验目的1.掌握求数值导数和数值积分的方法。

2.掌握代数方程数值求解的方法。

3.掌握常微分方程数值求解的方法。

二、实验的设备及条件计算机一台(带有MATLAB7.0以上的软件环境)。

设计提示1.参考本节主要内容,学习并理解相关函数的含义及调用方法。

三、实验内容1.线性系统方程:分别使用左除(\)和求逆(inv )求解下面系统方程的解:⎪⎩⎪⎨⎧=+=+=++377251463c b b a c b a2. 数值积分:使用quad 和trapz 求解⎰-503/dx xe x 的数值积分,并与其解析解9243/5+--e 相比较;3. 请完成教材P154页中实验指导环节的实验内容第2题4. 请完成教材P155页中思考练习的第3题(1),并绘制解在该求解区间(即[0,5])上的图像;。

5、请完成教材P164页实验指导环节的实验内容第5题。

(提示:该函数的符号导数,可以通过函数diff 求得。

首先定义符号变表达式,如求sin(x)的一阶符号导数,可以先定义f=’sin(x)’;df=diff(f);可求得df=cos(x)。

其中df 即为函数f 的一阶符号导数)。

四、实验报告要求(包含预习报告要求和最终报告要求)1.实验名称2.实验目的3.实验设备及条件4.实验内容及要求5.实验程序设计指程序代码。

6.实验结果及结果分析实验结果要求必须客观,现象。

结果分析是对实验结果的理论评判。

7.实验中出现的问题及解决方法8. 思考题的回答五、实验报告的提交方式Word文档,命名方式:实验号_你的学号_姓名例如本次实验:实验一_000000001_张三.doc(信息101提交报告邮箱):E_mail: *******************(网络工程101提交作业邮箱):E_mail: *******************(注意网络班的M是大写的)下一次课前提交,过期不收!六、参考文献参考教材和Matlab帮助文件。

MATLAb与数学实验 第五章习题解答

MATLAb与数学实验 第五章习题解答
i=
1 3 2 4 1 3 5 2 4 3 5
j=
1 1 2 2 3 3
3 4 4 5 5
s=
1 3 1 3 2 1 3 2 1 2 1 A1 =
10200 01020 30102 03010 00301 (2) n=nnz(A)
n=
13 ans =
1 2 -1 3 -2 4 1 -3 5 2
-4 3 -5
>> nx=nzmax(A)
nx =
35
>> [i,j,s]=find(A)
i=
1 2 1 3 2 4 1 3 5 2 4 3 5
j=
1 2 3 3 4 4 5 5 5 6 6 7 7
s=
1 2 -1 3 -2 4 1 -3 5 2 -4 3 -5
A1 =
1 0 -1 0 1 0 0
0 2 0 -2 0 2 0
C=
11 11 11
>> B=[3 5 7;0 1 0]
B=
357 010
>> D=[0 0 0;0 0 0]
D=
000 000
2.随机生成:(1)一个含有五个元素的列向量. (2)一个数值在 0~100 之间的三行四列的矩阵.
答 (1) rand(5,1)
ans =
0.9501
0.2311 0.6068 0.4860 0.8913
0 0 3 0 -3 0 3
0 3 0 1 0
0 0 0
4
0
4
0

0 0 3 0 1
0 0 0 0 5 0 5
答(1) n=nnz(A)
n=
11
>> nonzeros(A)

(完整版)Matlab实验5选择结构程序结构

(完整版)Matlab实验5选择结构程序结构

实验五、选择与循环结构一、实验目的:1、 掌握建立和执行M 文件的方法。

2、 掌握利用if 语句实现选择结构的方法。

3、 掌握利用switch 语句实现多分支选择结构的方法。

4、 掌握try 语句的使用。

5、 掌握利用for 语句实现循环结构的方法。

6、 掌握利用while 语句实现循环结构的方法。

7、 熟悉利用向量运算来代替循环的操作方法。

二、实验内容:1、 列分段函数的值。

⎪⎩⎪⎨⎧--≠≠<≤+--≠<-+=其他且且,632,100,6530,6222x x x x x x x x x x x y要求:(1) 用if 语句实现,分别输出x =-0.5,-3.0,1.0,2.0,2.5,3.0,5.0时的y 值。

提示:x 的值从键盘输入,可以是向量。

%homework_5_1_1.mx=input('请输入x 的值:x=');if (x<0 & x~=-3)y= x.*x + x - 6elseif (x>=0 & x<10 & x~=2 & x~=3)y=x.*x-5.*x+6elsey=x.*x-x-6end>> homework_5_1请输入x 的值:x=[-0.5 -3.0 1.0 2.0 2.5 3.0 5.0]y =-5.2500 6.0000 -6.0000 -4.0000 -2.2500 0 14.0000(2) 用逻辑表达式实现上述函数。

%homework_5_1_2.mx=input('请输入x 的值:x=')y=(x<0 & x~=-3).*(x.*x+x-6)...+(x>=0 & x<10 &x~=2 &x~=3).*(x.*x-5.*x+6)...+(x>=10 | x==-3 | x==3 | x==2).*(x.*x-x-6)>> homework_5_1_2请输入x=[-0.5 -3.0 1.0 2.0 2.5 3.0 5.0]x =-0.5000 -3.0000 1.0000 2.0000 2.5000 3.0000 5.0000 y =-6.2500 6.0000 2.0000 -4.0000 -0.2500 0 6.00002、输入一个百分制成绩,要求输出成绩的等级为A,B,C,D,E。

MATLAB上机实验报告

MATLAB上机实验报告

MATLAB上机实验报告实验一、实验目的--------------------------------------------------------------------------------------------------------3二、实验内容--------------------------------------------------------------------------------------------------------3三、实验步骤--------------------------------------------------------------------------------------------------------31. M 文件的编辑----------------------------------------------------------------------------------------------32. 程序流程控制结构---------------------------------------------------------------------------------------31) for 循环结构-----------------------------------------------------------------------------------------42) while 循环结构----------------------------------------------------------------------------------------5练习-----------------------------------------------------------------------------------------------------------53)if-else-end分支结构---------------------------------------------------------------------------------54)switc-case结构----------------------------------------------------------------------------------------63. 子函数和参数传递------------------------------------------------------------------------------------------6练习-----------------------------------------------------------------------------------------------------------74. 局部变量和全局变量--------------------------------------------------------------------------------------8 MATLAB上机练习6.1 M 文件--------------------------------------------------------------------------------------------8(1)脚本文件-----------------------------------------------------------------------------------------------------8(2)函数文件-----------------------------------------------------------------------------------------------------9(3)函数调用-----------------------------------------------------------------------------------------------------9 6.2 MATLAB 的程序控制结构( 1) for 循环----------------------------------------------------------------------------------------------------9(2) while 循环----------------------------------------------------------------------------------------------------12(3)if语句---------------------------------------------------------------------------------------------------------12(4)switch 语句-------------------------------------------------------------------------------------------------13(5)try 语句-----------------------------------------------------------------------------------------------------14(6)程序流的控制--------------------------------------------------------------------------------------------14 6.3 数据的输入与输出-----------------------------------------------------------------------------------14(1)键盘输入语句------------------------------------------------------------------------------------------14(2)屏幕输出语句---------------------------------------------------------------------------------------------14 6.4 MATLAB文件操作(1)fopen 语句-----------------------------------------------------------------------------------------------------15(2) fclose 语句-----------------------------------------------------------------------------------------------------15 6.5 面向对象编程--------------------------------------------------------------------------------------------15(1)创建类目录----------------------------------------------------------------------------------------------------15(2) 建立类的数据结构-----------------------------------------------------------------------------------------15(3)创建类的基本方法---------------------------------------------------------------------------------------------16 6.6 MATLAB 程序优化-----------------------------------------------------------------------------------------17 6.7程序调试------------------------------------------------------------------------------------------------------17 6.8 习题----------------------------------------------------------------------------------------------------------17实验五MATLAB 程序设计一、实验目的掌握MATLAB 程序设计的主要方法,熟练编写MATLAB 函数。

MATLAB实验报告

MATLAB实验报告

班级:通信班姓名:彭羊平学号: 222008315222033实验一:matlab的基本操作一、实验目的:1、了解MATLAB的集成环境,熟悉其基本操作。

2、了解MATLAB的基础知识,包括矩阵的建立、简单操作、逻辑操作和关系运算。

3、熟悉基本的数学函数和逻辑函数。

4、在命令窗口输入命令完成一些简单的功能,为MATLAB程序设计奠定基础。

二、实验内容:1、利用diag等函数产生下列矩阵:然后利用reshape函数将它们变换成行向量。

2、利用rand函数产生(0,1)间均匀分布的10*10随机矩阵A,然后统计A中大于等于0.6的元素的个数。

3、有一矩阵A,找出矩阵中值大于1的元素,并将它们重新排列成列向量B。

4、在一测量矩阵A(6*6),存在有奇异值(假设大于100的值为奇异值),编程实现删去奇异值所在的行。

三、实验结果:1、程序如下:a=fliplr(diag([8,-7,2])+diag([5,3],-1))a=reshape(a,1,9)b=diag([2,5,8])+diag([4],2)+diag([7],-2) b=reshape(b,1,9)结果如下:2、程序如下:A=rand(10)A=A>0.6sum(sum(A))结果如下:3、程序如下:A=fix(5*rand(5))a=A>1;K=find(a);for k=1:length(K)B(k)=A(K(k));endB=B'结果如下:4、程序如下:A=fix(100*rand(8))+5 B=A>100;k=find(any(B'))A(k,:)=0结果如下:班级:通信班姓名:彭羊平学号: 222008315222033实验二: matlab绘图(1)一、实验目的:1、了解MATLAB图形系统和各种图形函数。

2、熟悉MATLAB的基本图形操作,具备MATLAB画图能力。

3、熟悉各种数学函数,并通过图形函数画出。

实验五 matlab基础知识(简单)

实验五 matlab基础知识(简单)

本次实验注意:《实验五MALTAB基础知识(简单)》《实验五基于Matlab的信号频谱分析(复杂)》选作一个即可实验五MALTAB基础知识(一)实验目的 (2)(二)实验设备 (2)(三)实验要求 (2)(四)实验内容 (2)1.1 MATLAB基础知识 (2)1.1.1 MATLAB程序设计语言简介 (2)1.1.2 MA TLAB界面及帮助 (2)1.2 MA TLAB基本运算 (4)1.2.1 MA TLAB内部特殊变量和常数 (4)1.2.2 变量类型 (4)1.2.3 内存变量管理 (5)1.2.4 MA TLAB常用数学函数 (5)1.2.5 MA TLAB矩阵生成 (5)1.2.6 MA TLAB矩阵运算 (8)1.2.7 MA TLAB中的矩阵分析 (10)1.3 MA TLAB程序设计 (10)1.3.1 M文件 (10)1.3.2 程序控制结构 (12)实验五MALTAB基础知识(一)实验目的●了解MA TLAB 程序设计语言的基本特点,熟悉MA TLAB软件运行环境●掌握创建、保存、打开m文件及函数的方法●掌握变量等有关概念,具备初步的将一般数学问题转化为对应的计算机模型并进行处理的能力(二)实验设备计算机,Matlab软件(三)实验要求本实验属于验证实验,请根据(四)实验内容的步骤,运行相应的指令或例子,并将仿真结果截图至文档(请自己新建一个word文档,注意,并不一定所有指令或例子的实验结果都要截图,截图数目大于等于5个即可,自己选择性截图,答案不唯一,自由发挥)请在页眉处填写班级、学号、姓名,并将实验报告命名为“实验五_学号_姓名”,并通过FTP上传至指定文件夹。

(四)实验内容1.1 MATLAB基础知识1.1.1 MATLAB程序设计语言简介MA TLAB,Matrix Laboratory的缩写,是由MathWorks公司开发的一套用于科学工程计算的可视化高性能语言,具有强大的矩阵运算能力。

matlab上机实验心得

matlab上机实验心得

MATLAB上机实验心得1. 引言在学习MATLAB课程期间,我们进行了一系列的上机实验。

通过这些实验,我深刻体会到了MATLAB在数学建模和数据分析方面的强大功能。

本文将详细介绍我在实验中的学习心得和体会,并分享一些使用MATLAB进行数据处理和可视化的技巧。

2. 实验一:MATLAB基础在第一次实验中,我们掌握了MATLAB的基本操作和语法。

通过编写简单的脚本,我学会了如何定义变量、进行算术运算、使用条件语句和循环结构等。

我还学会了如何使用MATLAB自带的函数库来解决常见的数学问题。

这次实验让我对MATLAB有了初步的认识,并为后续实验打下了坚实的基础。

3. 实验二:数据处理与可视化在第二次实验中,我们探索了MATLAB在数据处理和可视化方面的能力。

我们使用了一些常见的数据处理函数,如读取文件、筛选数据、计算统计量等。

我们还学习了如何使用plot函数绘制线图、scatter函数绘制散点图以及histogram函数绘制直方图等。

通过这次实验,我意识到MATLAB在数据处理和可视化方面的高效和便捷。

使用MATLAB,我们可以快速地对大量数据进行处理和分析,并通过可视化方式直观地展示数据的特征和规律。

4. 实验三:数学建模第三次实验是最具挑战性的一次,我们需要运用MATLAB解决实际问题并进行数学建模。

在实验中,我们学习了如何将实际问题转化为数学模型,并使用MATLAB求解。

我们通过编写脚本来解决最优化问题、微分方程求解等。

这次实验让我深刻理解了数学建模的重要性,并提高了我的问题解决能力。

MATLAB 的强大计算能力和丰富的函数库为数学建模提供了极大的便利。

5. 实验四:图像处理在第四次实验中,我们学习了MATLAB在图像处理方面的应用。

我们掌握了如何读取、显示、修改和保存图像。

我们还学会了一些常见的图像处理算法,如灰度变换、直方图均衡化、滤波器等。

这次实验让我对图像处理有了初步的认识,并意识到MATLAB在该领域有着广泛应用。

数字信号处理实验MATLAB上机DOC

数字信号处理实验MATLAB上机DOC

班级: 学号: 姓名: 日期: 实验一:离散时间信号的分析一、实验目的利用DFT 卷积实现系统的时域分析二、实验原理在离散时间、连续频率的傅里叶变换中,由于卷积性质知道,对系统输出的计算可以通过求x[n]和h[n]的DTFT ,将得到的X(e jw )和H(e jw )相乘就可以得到Y(e jw ),进而再通过反变换得到y[n]。

这就避免了在时域进行繁琐的卷积求解。

三、实验步骤(包括代码和波形)1-2(2)x[k]=g[k]=k+1,0<=k<=3;x[k]=g[k]=0,其他 编码如下:ak=1:4 gk=1:4Z=conv(ak,gk) stem(Z)波形如下:12345675101520251-3(1)已知序列x[k]={1,2,3,4;k=0,1,2,3},y[k]={-1,1,2,3;k=0,1,2,3},试计算x[k]的自相关函数以及序列x[k]与y[k]的互相关函数。

编码如下:x=[1,2,3,4];kx=0:3; y=[-1,1,-2,3];ky=0:3; xf=fliplr(x); s1=conv(x,xf); s2=conv(xf,y); yf=fliplr(y); s3=conv(yf,x);k1=kx(1)+ky(1):kx(end)+ky(end); kxf=-fliplr(kx);k2=kxf(1)+ky(1):kxf(end)+ky(end); kyf=-fliplr(ky);k3=kyf(1)+kx(1):kyf(end)+kx(end); subplot(2,2,1); stem(k1,s1);xlabel('k1');ylabel('s1'); subplot(2,2,2); stem(k2,s2);xlabel('k2');ylabel('s2'); subplot(2,2,3) stem(k3,s3);xlabel('k3');ylabel('s3');波形如下:0246102030k1s 1-4-2024-10-50510k2s 2-4-2024-10-50510k3s 3M-1已知g1[t]=cos(6*pi*t),g2=cos(14*pi*t),g3=cos(26*pi*t),以抽样频率f(max)=10HZ对上述三个信号进行抽样。

MATLAB数值分析实验五(欧拉法,荣格-库塔法解常微分方程)

MATLAB数值分析实验五(欧拉法,荣格-库塔法解常微分方程)

佛山科学技术学院实 验 报 告课程名称 数值分析 实验项目 常微分方程问题初值问题数值解法 专业班级 姓 名 学 号 指导教师 陈剑 成 绩 日 期一. 实验目的1、理解如何在计算机上实现用Euler 法、改进Euler 法、Runge -Kutta 算法求一阶常微分方程初值问题⎩⎨⎧=∈='1)(],[),,()(y a y b a x y x f x y 的数值解。

2、利用图形直观分析近似解和准确解之间的误差。

二、实验要求(1) 按照题目要求完成实验内容; (2) 写出相应的Matlab 程序;(3) 给出实验结果(可以用表格展示实验结果); (4) 分析和讨论实验结果并提出可能的优化实验。

(5) 写出实验报告。

三、实验步骤1、用Matlab 编写解常微分方程初值问题的Euler 法、改进Euler 法和经典的四阶Runge-Kutta 法。

2、给定初值问题⎪⎩⎪⎨⎧=≤≤-=;1)1(,21,1')1(2y x xy x y⎪⎩⎪⎨⎧=≤≤++-=31)0(10,25050')2(2y x x x y y 要求:(a )用Euler 法和改进的Euler 法(步长均取h=0.05)及经典的四阶Runge-Kutta 法(h=0.1)求(1)的数值解,并打印)10,....2,1,0(1.01=+=i i x 的值。

(b) 用经典的四阶Runge-Kutta 方法解(2),步长分别取h=0.1, 0.05,0.025,计算并打印)10,....2,1,0(1.0==i i x 个点的值,与准确解25031)(x e x y x +=-比较,并列表写出在x=0.2,0.5,0.8处,对于不同步长h 下的误差,讨论同一节点处,误差随步长的变化规律。

(c )用Matlab 绘图函数绘制(2)的精确解和近似解的图形。

四、实验结果 %Euler.mfunction y = Euler(x0,xn,y0,h) %Euler 法解方程f_xy ; %x0,y0为初始条件; %x0,xn 为求值区间; %h 为步长; %求区间个数: n = (xn-x0)/h;%矩阵x 存储n+1个节点: x = [x0:h:xn]';%矩阵y 存储节点处的值: y = [y0;zeros(n,1)];%矩阵y_存储节点处导数值: y_(1)= f_xy(x0,y0); y_ = [y_(1);zeros(n,1)];%进行迭代(欧拉法迭代;求导数): for i = 2:n+1y (i) = y(i-1)+h*y_(i-1); y_(i) = f_xy(x(i),y(i)); end%Imp_Euler.mfunction y = Imp_Euler(x0,xn,y0,h)%改进的Euler法解方程f_xy;%x0,y0为初始条件;%x0,xn为求值区间;%h为步长;%求区间个数:n = (xn-x0)/h;%矩阵x存储n+1个节点:x = [x0:h:xn]';%矩阵y存储节点处的值:y = [y0;zeros(n,1)];%矩阵y_存储节点处导数值:y_(1)= f_xy(x0,y0);y_ = [y_(1);zeros(n,1)];%使用改进Euler法求值(欧拉法求近似;近似点导数;梯形校正;求导):for i = 2:n+1y_l = y(i-1) + h*y_(i-1);y_l = f_xy(x(i),y_l);y(i) = y(i-1) + (h/2)*(y_(i-1)+y_l);y_(i)= f_xy(x(i),y(i));end%R_Kutta4.mfunction y = R_Kutta4(x0,xn,y0,h)%Runger_Kutta法解方程f_xy;%x0,y0为初始条件;%x0,xn为求值区间;%h为步长;%求区间个数:n = (xn-x0)/h;%矩阵x存储n+1个节点:x = [x0:h:xn]';%矩阵y存储节点处的值:y = [y0;zeros(n,1)];%矩阵k1,k2,k3,k4存储各节点(中点)数值:k1(1)= f_xy(x0,y0);k1 = [k1(1);zeros(n,1)];k2(1)= f_xy(x0+h/2,y0+h*k1(1)/2);k2 = [k2(1);zeros(n,1)];k3(1)= f_xy(x0+h/2,y0+h*k2(1)/2);k3 = [k3(1);zeros(n,1)];k4(1)= f_xy(x0+h,y0+h*k3(1));k4 = [k4(1);zeros(n,1)];for i= 2:n+1y(i) = y(i-1)+(h/6)*(k1(i-1)+2*k2(i-1)+2*k3(i-1)+k4(i-1));k1(i)= f_xy(x(i),y(i));k2(i)= f_xy(x(i)+h/2,y(i)+h*k1(i)/2);k3(i)= f_xy(x(i)+h/2,y(i)+h*k2(i)/2);k4(i)= f_xy(x(i)+h,y(i)+h*k3(i));end(a):%f_xy.mfunction y_=f_xy(x,y)%求解第五次作业第一题的点(x,y)处的导数;y_ = 1/(x^2) - y/x;%run521.mclc,clear;x0 = 1;xn = 2;h = 0.05;y0 = 1;%便于显示出x,与y对应:x = [x0:h:xn]';y = Euler(x0,xn,y0,h);YE =[x,y];y = Imp_Euler(x0,xn,y0,h); YIE= [x,y];h = 0.1;x = [x0:h:xn]';y = R_Kutta4(x0,xn,y0,h); YRK= [x,y];(b): %f_xy.mfunction y_=f_xy(x,y) %求第二个方程的导数: y_ = -50*y+50*(x^2)+2*x;%run522.mclc,clear; x0 = 0; xn = 1; y0 = 1/3; %步长0.1: h = 0.1; x = [x0:h:xn]';y = R_Kutta4(x0,xn,y0,h); y_r= f_Real(x); Y1 = [x,y,y_r];%步长0.05: h = 0.05; x = [x0:h:xn]';y = R_Kutta4(x0,xn,y0,h); y_r= f_Real(x); Y2 = [x,y,y_r]; %步长0.025: h = 0.025; x = [x0:h:xn]';y = R_Kutta4(x0,xn,y0,h); y_r= f_Real(x); Y3 = [x,y,y_r];五、讨论分析(a)从结果可以看出使用RK 方法,步长较大但是结果也更加精确; (b)分析求值结果的误差,可以发现当步长取0.1时,误差是超级大的(10^8数量级),但是当步长缩小一半取0.05时,误差就很小了,再缩小一半,误差就更小了。

控制系统计算机仿真(matlab)实验五实验报告

控制系统计算机仿真(matlab)实验五实验报告

实验五 控制系统计算机辅助设计一、实验目的学习借助MATLAB 软件进行控制系统计算机辅助设计的基本方法,具体包括超前校正器的设计,滞后校正器的设计、滞后-超前校正器的设计方法。

二、实验学时:4 学时 三、实验原理1、PID 控制器的设计PID 控制器的数学模型如公式(5-1)、(5-2)所示,它的三个特征参数是比例系数、积分时间常数(或积分系数)、微分时间常数(或微分系数),因此PID 控制器的设计就是确定PID 控制器的三个参数:比例系数、积分时间常数、微分时间常数。

Ziegler (齐格勒)和Nichols (尼克尔斯)于1942提出了PID 参数的经验整定公式。

其适用对象为带纯延迟的一节惯性环节,即:s e Ts Ks G τ-+=1)( 5-1式中,K 为比例系数、T 为惯性时间常数、τ为纯延迟时间常数。

在实际的工业过程中,大多数被控对象数学模型可近似为式(5-1)所示的带纯延迟的一阶惯性环节。

在获得被控对象的近似数学模型后,可通过时域或频域数据,根据表5-1所示的Ziegler-Nichols 经验整定公式计算PID 参数。

表控制器的参数。

假定某被控对象的单位阶跃响应如图5-4所示。

如果单位阶跃响应曲线看起来近似一条S 形曲线,则可用Ziegler-Nichols 经验整定公式,否则,该公式不适用。

由S 形曲线可获取被控对象数学模型(如公式5-1所示)的比例系数K 、时间常数T 、纯延迟时间τ。

通过表5-1所示的Ziegler-Nichols 经验整定公式进行整定。

如果被控对象不含有纯延迟环节,就不能够通过Ziegler-Nichols 时域整定公式进行PID 参数的整定,此时可求取被控对象的频域响应数据,通过表5-1 所示的Ziegler-Nichols 频域整定公式设计PID 参数。

如果被控对象含有纯延迟环节,可通过pade 命令将纯延迟环节近似为一个四阶传递函数模型,然后求取被控对象的频域响应数据,应用表5-1求取PID 控制器的参数。

(2021年整理)实验五利用MATLAB求解极点配置问题

(2021年整理)实验五利用MATLAB求解极点配置问题

实验五利用MATLAB求解极点配置问题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(实验五利用MATLAB求解极点配置问题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为实验五利用MATLAB求解极点配置问题的全部内容。

现代控制理论第四次上机实验报告实验五 利用MATLAB 求解极点配置问题实验目的:1、学习极点配置状态反馈控制器的设计算法;2、通过编程、上机调试,掌握系统极点配置设计方法.实验步骤:1、极点配置状态反馈控制器的设计,采用MATLAB 的m-文件编程;2、在MATLAB 界面下调试程序,并检查是否运行正确。

实验要求:1、 在运行以上程序的基础上,针对状态空间模型为[]01034132x x u y x⎡⎤⎡⎤=+⎢⎥⎢⎥--⎣⎦⎣⎦=的被控对象设计状态反馈控制器,使得闭环极点为—4和—5,并讨论闭环系统的稳态性能。

先判断系统能控性:〉〉 A = [0 1 ;-3 -4];B = [0;1];Tc=ctrb(A ,B )n=size (A );if rank (Tc )==n(1)disp ('The system is controlled’)elsedisp(’The system is not controlled’)endTc =0 11 —4The system is controlled再求状态反馈器:〉〉 A = [0 1 ;-3 -4];B = [0;1];J = [—4 -5];K = place (A ,B ,J)K =17。

0000 5.0000即状态反馈控制器为:状态反馈闭环系统状态空间表达式:A1=A—BK=[0 1;—20 -9]配置极点前:〉> A=[0 1 ;—3 —4];B=[0;1];C=[3 2];D=0;step(A,B,C,D)得到波形:配置极点后:A变为A1〉〉 A=[0 1 ;—20 —9];B=[0;1];C=[3 2];D=0;step(A,B,C,D)得到波形:由上述两图对比可知,配置极点后,系统动态性能变好,但是稳态误差变大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上机五1、众所周知,水是地球上所有生命赖以生存的基础。

没有水,一切生命创造的精彩都将不复存在。

当今世界,经济在高速发展,我们对于水需求更大,然而我们却在面临前所未有的水危机,水污染的恶化更使水短缺雪上加霜。

我们的水资源正在遭受各种污染的侵袭,水污染严重破坏生态环境、影响人类生存,要想实现人类社会的可持续发展,首先要解决水污染问题。

由有害化学物质造成水的使用价值降低或丧失称之为水污染。

水的污染有两类:一类是自然污染;另一类是人为污染。

而后者是主要的。

水污染可根据污染杂质的不同而主要分为化学性污染、物理性污染和生物性污染三大类。

水中杂质按尺寸分,可分为溶解物、胶体颗粒和悬浮物3种。

有些杂质可以用基于高浓度、外加计量反应试剂为基础的传统的物化方法(如沉降、吸附、湿式氧化等) 以及生化技术等进行处理。

而对于天然水体和饮用水中低浓度、高毒性、难降解污染物 (如多溴联苯醚、全氟辛酸(磺酸)、消毒副产物、内分泌干扰物、PPCPs(抗生素)等) 很难用前述传统的物化方法和生化技术等技术进行处理,迫切需要提出建立新型的高效选择性检测和消除的原理和方法。

问题:附件中给定的数据是利用动态光反射仪器测量出水中某污染物粒径随时间的变化值,请就给定的数据拟合出粒径随时间变化的曲线和分布。

尝试拟合出相应的函数?Time (s) Aggregation Size(nm纳米)0 50.7221 67.9642 73.1363 82.684 83.6105 89.09126 93.16147 101.1168 106.3189 104.6210 108.6 231 115.1 252 112 273 122.1 294 132 315 132.9 336 131.9 357 128.7 378 142.8 399 142.6 420 152.7 441 152.6 462 147.8 483 149.5 504 156.2 525 170.1 546 159.4 567 167.3 588 171.5 609 165.1 630 178.6 651 174.5 672 169.8 693 174.4 714 179 735 176.1 756 165.6 777 166 798 181.4 819 190.2 840 185.2 861 188.4 882 187.4 903 197.9 924 193.7 945 210.6 966 212.5 987 196.5 1008 195.3 1029 215.3 1050 208.2 1071 217.5 1092 206.7 1113 232.31134 215 1155 212.2 1176 210.4 1197 227.6 1218 221.3 1239 225.8 1260 240.5 1281 224.3 1302 215.7 1323 241.6 1344 220.6 1365 230 1386 254.6 1407 252 1428 242.3 1449 244.9 1470 254.9 1491 250.6 1512 265.2 1533 254.6 1554 253.7 1575 239.2 1596 245.1 1617 237.1 1638 255.4 1659 227 1680 243.4 1701 262.8 1722 263.1 1743 275.7 1764 259 1785 274.6 1806 271.7 1827 256.9 1848 256.1 1869 275.6 1890 260.6 1911 267 1932 259.8 1953 258.1 1974 250.5 1995 279.2 2016 277.8 2037 273.92058 285 2079 280.7 2100 307 2121 263.6 2142 285.2 2163 277.3 2184 291.5 2205 278.6 2226 298.7 2247 287.7 2268 279.7 2289 272.8 2310 288.6 2331 277.8 2352 307.6 2373 301.4 2394 317.8 2415 296.1 2436 312 2457 306.6 2478 293.7 2499 318.3 2520 332.6 2541 299.1 2562 332.9 2583 328.8 2604 296.1 2625 342.7 2646 327.6 2667 321.3 2688 381.7 2709 348.9 2730 314.3 2751 353.8 2772 326.5 2793 357.3 2814 347.9 2835 319.1 2856 308.1 2877 319.3 2898 311.1 2919 331.8 2940 332 2961 298.12982 324.5 3003 306.4 3024 318.7 3045 312.3 3066 307.9 3087 349.5 3108 291.3 3129 320.7 3150 298.8 3171 306.7 3192 304.5 3213 323.9 3234 325.1 3255 287.8 3276 318.4 3297 318.3 3318 316 3339 319.4 3360 322.2 3381 325.3 3402 356.7 3423 313.4 3444 328.4 3465 321.7 3486 330.9 3507 337.5 3528 350.4 3549 377.8 3570 337.3 3591 351.3 3612 343.1 3633 338.6 3654 354.8 3675 360.7 3696 339.1 3717 368.6 3738 356.9 3759 382.5 3780 348.1 3801 398.8 3822 357.8 3843 400.7 3864 346.3 3885 3893927 378.3 3948 424.4 3969 472.2 3990 377.2 4011 381.2 4032 379.3 4053 353.2 4074 350.5 4095 349.2 4116 325.7 4137 343.3 4158 359 4179 361.6 4200 371.9 4221 391.3 4242 365.3 4263 376 4284 340.3 4305 345.5 4326 363.6 4347 387.6 4368 367.1 4389 321.8 4410 365.5 4431 324.8 4452 339.1 4473 372.3 4494 369 4515 358.3 4536 367.7 4557 364.7 4578 352.8 4599 368.5 4620 386.2 4641 380.1 4662 345.3 4683 376.4 4704 397.8 4725 342.2 4746 323.7 4767 329.9 4788 346 4809 329.54851 351.7 4872 342.7 4893 375.2 4914 351.1 4935 396.4 4956 343.2 4977 385.4 4998 350.5 5019 374 5040 374.1 5061 360 5082 391.5 5103 410.9 5124 429.9 5145 403.1 5166 403.7 5187 378.3 5208 389.7 5229 374.2 5250 424.6 5271 405.6 5292 356.1 5313 367.5 5334 359.4 5355 367.5 5376 387.9 5397 407.3 5418 349.9 5439 393 5460 362.3 5481 353.8 5502 373.6 5523 359.6 5544 362.5 5565 398.8 5586 365.7 5607 354.2 5628 363.9 5649 371 5670 368.7 5691 409.3 5712 345.7 5733 408.85775 385.75796 378.45817 424.65838 420.75859 447.35880 394.55901 411.85922 417.65943 453.35964 389.35985 342.96006 366.56027 348.56048 375.46069 349.76090 407.76111 373.66132 381.56153 373.56174 364.46195 414.26216 400.86237 3666258 398.76279 425.36300 430.7 答: x=[]';y=[]';plot(x,y);axis([0 6400 50 440])通过MATLAB自带作图Tools—Basic Fittingresiduals01000200030004000500060002、已知数据点来自函数(也可以是满足定义域的任何一列数),利用多项式拟合下列函数(1)f(x)=1/(1+x^2);(2) f(x)=x^2e^(-5x)cosx;(3) f(x)=x^2+x+100;(4) f(x)=x^3+1000x^2+5x+1。

答(1)clear allx0=-1+2*[0:10]/10;y0=1./(1+25*x0.^2);x=-1:0.01:1; ya=1./(1+x.^2);p3=polyfit(x0,y0,3);y1=polyval(p3,x); p5=polyfit(x0,y0,5);y2=polyval(p5,x); p8=polyfit(x0,y0,8);y3=polyval(p8,x); p10=polyfit(x0,y0,10);y4=polyval(p10,x); plot(x,ya,x,y1,x,y2,'-',x,y3,'--',x,y4,':');-1-0.8-0.6-0.4-0.20.20.40.60.81-2-1012x 10-15residuals-1-0.8-0.6-0.4-0.200.20.40.60.81-0.500.511.52(2)clear all ;x0=-1:0.2:1;y0=x0.^2.*exp(-5*x0).*cos(x0); x=-1:0.01:1;ya=x.^2.*exp(-5*x).*cos(x);p3=polyfit(x0,y0,3);y1=polyval(p3,x); p5=polyfit(x0,y0,5);y2=polyval(p5,x); p8=polyfit(x0,y0,8);y3=polyval(p8,x); p10=polyfit(x0,y0,10);y4=polyval(p10,x);plot(x,ya,x,y1,x,y2,'-',x,y3,'--',x,y4,':');-1-0.8-0.6-0.4-0.20.20.40.60.81-100102030405060708090(3)clear all ; x0=-1:0.2:1;y0=x0.^2+x0+100; x=-1:0.01:1; ya=x.^2+x+100;p3=polyfit(x0,y0,3);y1=polyval(p3,x); p5=polyfit(x0,y0,5);y2=polyval(p5,x); p8=polyfit(x0,y0,8);y3=polyval(p8,x); p10=polyfit(x0,y0,10);y4=polyval(p10,x);plot(x,ya,x,y1,x,y2,'-',x,y3,'--',x,y4,':');-1-0.8-0.6-0.4-0.200.20.40.60.8199.5100100.5101101.5102102.5(4)clear all ; x0=-1:0.2:1;y0=x0.^3+1000*x0.^2+5*x0+1; x=-1:0.01:1;ya=x.^3+1000*x.^2+5*x+1;p3=polyfit(x0,y0,3);y1=polyval(p3,x); p5=polyfit(x0,y0,5);y2=polyval(p5,x); p8=polyfit(x0,y0,8);y3=polyval(p8,x); p10=polyfit(x0,y0,10);y4=polyval(p10,x);plot(x,ya,x,y1,x,y2,'-',x,y3,'--',x,y4,':');-1-0.8-0.6-0.4-0.200.20.40.60.810200400600800100012003、每个至少利用两种方法,对总用水量、农业用水、工业用水、第三产业及生活等其它用水、水资源总量分别拟合出不同的函数曲线,根据拟合曲线预测未来20年用水情况, 包括总用水量、农业用水、工业用水、第三产业及其生活用水。

相关文档
最新文档