考前练兵浙江省2013届高考压轴卷 数学文试题
全国各地2013届高考数学 押题精选试题分类汇编5 数列 文
2013届全国各地高考押题数学(文科)精选试题分类汇编5:数列一、选择题1 .(2013届全国大纲版高考压轴卷数学文试题(一))设等差数列{}n a 的前n 项和为n S ,若1011S S -=,则11S 等于 ( )A .109B .119 C .1110D .65【答案】B2 .(2013届四川省高考压轴卷数学文试题)若等比数列{}n a 满足123453a a a a a ++++=,222221234512a a a a a ++++=,则123453a a a a a ++++=的值是( )A B .C .4D .2【答案】C3 .(2013届全国大纲版高考压轴卷数学文试题(二))己在等差数列{}n a 的公差0d <,若462824,10a a a a =+=,则该数列的前n 项和n S 的最大值为( )A .50B .45C .40D .35【答案】B4 .(2013届湖南省高考压轴卷数学(文)试题)已知数列}{n a 满足:)(12,1*11N n a a a n n ∈+==+,则=12a( )A .210-1B .211-1C .212-1 D .213-1【答案】C5 .(2013届山东省高考压轴卷文科数学)如果等差数列{}n a 中,34512a a a ++=,那么127a a a +++=( )A .14B .21C .28D .35【答案】C【解析】因为34512a a a ++=,所以44a =,所以1274728a a a a +++==.6 .(2013届浙江省高考压轴卷数学文试题)若数列}{n a 的通项公式是()()n a n =-13-2g ,则a a a 1210++=L( )A .15B .12C .-12D .-15【答案】A【解析】a 1+a 2=a 3+a 4==a 9+a 10=3,故所求和=3×5=15.选A 二、填空题7 .(2013届北京市高考压轴卷文科数学)已知等差数列{n a }中,35a a +=32,73a a -=8,则此数列的前10项和10S =_____【答案】190【解析】由7348a a d -==,解得2d =,由3532a a +=,解得110a =.所以101109101902S a d ⨯=+=. 8 .(2013届上海市高考压轴卷数学(文)试题)在等差数列{}n a 中,若11a =,前5项的和525S =,则2013a =_______________.【答案】4025【解析】在等差数列中,51542555102S a d d ⨯==+=+,解得2d =,所以2013120121201224025a a d =+=+⨯=.9 .(2013届福建省高考压轴卷数学文试题)定义映射:f A B →,其中{(,),}A m n m n =∈R ,B =R ,已知对所有的有序正整数...对(,)m n 满足下述条件: ①(,1)1f m =; ②若n m >,(,)0f m n =; ③(1,)[(,)(,1)]f m n n f m n f m n +=+-; 则(,2)f n =_______. 【答案】22n-10.(2013届天津市高考压轴卷文科数学)等差数列{}n a 的前n 项和是n S ,若125a a +=,349a a +=,则10S 的值为_______【答案】65【解析】由125a a +=,得125a d +=,由349a a +=得1259a d +=,解得11,2d a ==,所以1011091020+45=652S a ⨯=+=.11.(2013届陕西省高考压轴卷数学(文)试题)“公差为d 的等差数列数列{}n a 的前n 项的和为n S ,则数列n S n ⎧⎫⎨⎬⎩⎭是公差为2d 的等差数列”,类比上述性质有:“公比为q 的等比数列数列{}n b 的前n 项的和为n T ,则数列___________________________”. 【答案】{}nnT 是公比为q的等比数列【解析】nn nn b b b T 121)(⋅⋅= nn nqb 11211)(-+++=()1112)1(1)(--==n nn n n q b qb ,∴{}nnT 是公比为q 的等比数列.12.(2013届湖北省高考压轴卷 数学(文)试题)记123k k kk S =+++k n +,当1,2,3,k =时,观察下列等式:21322432354346542511,22111,326111,4241111,5233015,212S n n S n n n S n n n S n n n n S An n n Bn =+=++=++=++-=+++可以推测A B -=_____________________. 【答案】14【解析】:本题考查归纳推理问题.根据各式的规律,显然16A =.令1n =,则5511S ==,代入得511511621212SB B =+++=⇒=-,所以1116124A B ⎛⎫-=--= ⎪⎝⎭. 13.(2013届山东省高考压轴卷文科数学)观察下列等式:231111222⨯=-⨯,2231411112223232⨯+⨯=-⨯⨯⨯,2333141511112223234242⨯+⨯+⨯=-⨯⨯⨯⨯,,由以上等式推测到一个一般的结论:对于n ∈*N ,2314121122232(1)2n n n n +⨯+⨯++⨯=⨯⨯+__________;【答案】1(1)21n n +-【解析】由已知中的等式:231111222⨯=-⨯,2231411112223232⨯+⨯=-⨯⨯⨯, 2333141511112223234242⨯+⨯+⨯=-⨯⨯⨯⨯,, 所以对于n ∈*N ,2314121122232(1)2n n n n +⨯+⨯++⨯=⨯⨯+1(1)21n n +-.14.(2013届辽宁省高考压轴卷数学文试题)设{a n }是等比数列,公比q =,S n 为{a n }的前n 项和.记*2117,.n nn n S S T n N a +-=∈设0n T 为数列{n T }的最大项,则0n =__________ .【答案】4【解析】本题主要考查了等比数列的前n 项和公式与通项及平均值不等式的应用,属于中等题.nT==17]n =+-因为n +n=4,即n=4时取等号,所以当n 0=4时T n 有最大值. 15.(2013届江西省高考压轴卷数学文试题)已知{}n a 是一个公差大于0的等差数列,且满足16,557263=+=a a a a .令1421-=+n n a b )(*∈N n ,记数列{}n b 的前n 项和为n T ,对任意的n N *∈,不等式100n mT <恒成立,则实数m 的最小值是_______.【答案】10016.(2013届安徽省高考压轴卷数学文试题)已知数列{}n a 中满足1111(2)2(1)n n n n a a a a a n n n --=-=≥-,,则数列{}n a 的通项公式是________.【答案】31nn -【解析】本题考查叠加法求通项公式.因为11(1)n n n n a a a a n n ---=-两边同除1n na a -得111111(2)(1)1n n n a a n n n n--==-≥--,所以2132111111,12a a a a -=--1123=-111n n a a --=11(2)1n n n -≥-,相加得11111n a a n -=-,因为112a =,带入得31n na n =-. 17.(2013届安徽省高考压轴卷数学文试题)如图所示,将正整数从小到大沿三角形的边成螺旋状排列起来,2在第一个拐弯处,4在第二个拐弯处,7在第三个拐弯处,,则在第20给个拐弯处的正整数是_______.2322212019181716151413121110987654321【答案】211【解析】观察图,仔细分析规律.2322212019181716151413121110987654321第一个拐弯处211=+; 第二个拐弯处4112=++; 第三个拐弯处71123=+++; 第四个拐弯处1111234=++++; 第五个拐弯处16112345=+++++; 发现规律:拐弯处的数是从1开始的一 串正整数相加之和再加1,在第几个拐弯处,就加到第几个正整数,所以第20个拐弯处的数就是:112320211+++++=. 三、解答题18.(2013新课标高考压轴卷(一)文科数学)设{}n a 是公差大于零的等差数列,已知12a =,23210a a =-.(Ⅰ)求{}n a 的通项公式; (Ⅱ)设{}n b 是以函数24sin y x π=的最小正周期为首项,以3为公比的等比数列,求数列{}n n a b -的前n 项和n S .【答案】解:(Ⅰ)设{}n a 的公差为d ,则()12112210a a d a d ⎧=⎪⎨+=+-⎪⎩ 解得2d =或4d =-(舍)所以2(1)22n a n n =+-⨯= (Ⅱ)21cos 24sin 42xy x ππ-==⨯2cos 22x π=-+其最小正周期为212ππ=,故首项为1; 因为公比为3,从而13n n b -= 所以123n n n a b n --=- 故()()()011234323n n S n -=-+-++-()2213213n n n +-=--211322nn n =++-⋅ 19.(2013届广东省高考压轴卷数学文试题)设等差数列{}n a 的前n 项和为n S ,且12a =,36a =.(1)求数列{}n a 的通项公式; (2)若110k S =,求k 的值;(3)设数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求2013T的值.【答案】解:(1)设等差数列{}n a 的公差为d ,∵131226a a a d =⎧⎨=+=⎩,∴2d =数列{}n a 的通项公式()2122n a n n =+-⋅=(2)方法一:∵21(1)(1)2211022k k k k k S ka d k k k --=+=+⋅=+=解得10k =或11k =-(舍去)方法二:∵()221102k k k S +==,解得10k =或11k =-(舍去)(3)∵(22)(1)2n n n S n n +==+,∴1111(1)1nS n n n n ==-++ ∴20131232013T T T T T =++++111111112233420132014⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭12013120142014=-=20.(2013届湖北省高考压轴卷 数学(文)试题)已知等差数列{}n a 的公差d 大于0,且35,a a 是方程214450x x -+=的两根,数列{}n b 的前n 项和为()1,2nn n b S S n N *-=∈. (1)求数列{}{},n n a b 的通项公式; (2)记n n n c a b =⋅,求证:1n n c c +<; (3)求数列{}n c 的前n 项和n T .【答案】(1)因为35,a a 是方程214450x x -+=的两根,且数列{}n a 的公差0d >,所以355,9a a ==,公差53253a a d -==-.所以()5521n a a n d n =+-=-. 又当1n =时,有11112b b S -==,所以113b =.当2n ≥时,有()1112n n n n n b S S b b --=-=-,所以()1123n n b n b -=≥. 所以数列{}n b 是首项为13,公比为13的等比数列,所以1111333n n nb -⎛⎫=⨯=⎪⎝⎭. (2)由(1)知112121,33n n n n n n n n c a b c ++-+=⋅==, 所以()1114121210333n n n n n n n n c c +++-+--=-=≤, 所以1n n c c +≤. (3)因为213n n n nn c a b -=⋅=, 则123135333n T =+++213n n -+,①23411353333n T =+++1232133n n n n +--++,②由①-②,得2321223333n T =+++122133n n n +-+-231131112123333nn n +-⎛⎫=+++- ⎪⎝⎭+, 整理,得113n nn T +=-. 21.(2013届天津市高考压轴卷文科数学)在数列{}n a 中,已知)(l o g 32,41,41*4111N n a b a a a n n n n ∈=+==+. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求证:数列{}n b 是等差数列;(Ⅲ)设数列{}n c 满足n n n b a c ⋅=,求{}n c 的前n 项和n S . 【答案】解:(Ⅰ)∵411=+n n a a ∴数列{n a }是首项为41,公比为41的等比数列, ∴)()41(*N n a n n ∈= (Ⅱ)∵2log 341-=n n a b∴232)41(log 321-=-=n b n n∴11=b ,公差d=3∴数列}{n b 是首项11=b ,公差3=d 的等差数列 (Ⅲ)由(Ⅰ)知,n n a )41(=,23-=n b n (n *N ∈) ∴)(,)41()23(*N n n c n n ∈⨯-=∴n n n n n S )41()23()41()53()41(7)41(4411132⨯-+⨯-+⋯+⨯+⨯+⨯=-, ① 于是1432)41()23()41()53()41(7)41(4)41(141+⨯-+⨯-+⋯+⨯+⨯+⨯=n n n n n S ②两式①-②相减得132)41()23(])41()41()41[(34143+⨯--+⋯+++=n n n n S =1)41()23(21+⨯+-n n ∴ )()41(381232*1N n n S n n ∈⨯+-=+ . 22.(2013届江西省高考压轴卷数学文试题)对于给定数列{}n c ,如果存在实常数,p q 使得1n n c pc q +=+对于任意*n N ∈都成立,我们称数列{}n c 是“T 数列”.(Ⅰ)若n a n 2=,32n n b =⋅,*n N ∈,数列{}n a 、{}n b 是否为“T 数列”?若是,指出它对应的实常数,p q ,若不是,请说明理由;(Ⅱ)证明:若数列{}n a 是“T 数列”,则数列}{1++n n a a 也是“T 数列”;(Ⅲ)若数列{}n a 满足12a =,)(23*1N n t a a n n n ∈⋅=++,t 为常数.求数列{}n a 前2013项的和.【答案】解:(Ⅰ)因为2,n a n =则有12,n n a a +=+*n N ∈ 故数列{}n a 是“T 数列”, 对应的实常数分别为1,2. 因为32n n b =⋅,则有12n n b b += *n N ∈故数列{}n b 是“T 数列”, 对应的实常数分别为2,0 (Ⅱ)证明:若数列{}n a 是“T 数列”, 则存在实常数,p q , 使得1n n a pa q +=+对于任意*n N ∈都成立, 且有21n n a pa q ++=+对于任意*n N ∈都成立,因此()()1212n n n n a a p a a q ++++=++对于任意*n N ∈都成立,故数列{}1n n a a ++也是“T 数列”.对应的实常数分别为,2p q(Ⅲ)因为 *132()n n n a a t n N ++=⋅∈,则有22332a a t +=⋅,44532a a t +=⋅,=+20112010a a 201023⋅t ,=+20132012a a 201223⋅t .故数列{}n a 前2013项的和)(3212013a a a S ++=+⋅⋅⋅+++)(54a a ++)(20112010a a )(20132012a a ++⋅+=2232t +⋅⋅⋅+⋅423t +⋅201023t 201223⋅t )42(22014-+=t23.(2013届辽宁省高考压轴卷数学文试题)已知等比数列{}n a 的公比为q (1≠q )的等比数列,且201220132011,,a a a 成等差数列, (Ⅰ)求公比q 的值;(Ⅱ)设{}n b 是以2为首项,q 为公差的等差数列,其前n 项和为n S ,当2≥n 时,比较n S 与n b 的大小,并说明理由.【答案】解答:(Ⅰ)由题设,2,22011201122011201220112013q a a q a a a a +=+=即.012,021=--∴≠q q a1=∴q 或21-=q ,又1≠q ,∴21-=q(Ⅱ).49)21(2)1(2,212nn n n n S q n +-=--+=-=则当,4)10)(1(,21---==-≥-n n S b S n n n n 时故对于+∈N n○1当92≤≤n 时,n n b S >; ○2当10=n 时,n n b S =;○3当11≥n 时,n n b S < 24.(2013届全国大纲版高考压轴卷数学文试题(一))已知数列{}n a 的首项123a =121n n n a a a +=+,1,2,3,n =. (Ⅰ)证明:数列1{1}n a -是等比数列; (Ⅱ)数列{}nna 的前n 项和n S . 【答案】解解:(Ⅰ)∵121n n n a a a +=+,∴ 111111222n n n na a a a ++==+⋅, ∴11111(1)2n n a a +-=-,又123a =,∴11112a -=, ∴数列1{1}na -是以为12首项,12为公比的等比数列. (Ⅱ)由(Ⅰ)知1111111222n n n a -+-=⋅=,即1112n n a =+,∴2n n n nn a =+. 设23123222n T =+++2n n+, ① 则23112222n T =++1122n n n n+-++,② 由①-②得 2111222n T =++11111(1)1122112222212n n n n n n n n n +++-+-=-=---, ∴ 11222n n n n T -=--.又123+++(1)2n n n ++=. ∴数列{}nna 的前n 项和 22(1)4222222n n n n n n n n n S +++++=-+==25.(2013届北京市高考压轴卷文科数学)已知点(1,2)是函数()(01)xf x a a a =≠>且的图象上一点,数列{}n a 的前n 项和()1n S f n =-. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)将数列{}n a 前2013项中的第3项,第6项,,第3k 项删去,求数列{}n a 前2013项中剩余项的和.【答案】解:(Ⅰ)把点(1,2)代入函数()xf x a =,得2a =.()121,n n S f n ∴=-=-当1n =时,111211;a S ==-= 当2n ≥时,1n n n a S S -=-1(21)(21)n n -=---12n -=经验证可知1n =时,也适合上式,12n n a -∴=.(Ⅱ)由(Ⅰ)知数列{}n a 为等比数列,公比为2,故其第3项,第6项,,第2013项也为等比数列,首项31324,a -==公比32012201328,2a ==为其第671项∴此数列的和为67120134(18)4(21)187--=- 又数列{}n a 的前2013项和为2013201320131(12)21,12S ⨯-==--∴所求剩余项的和为2013201320134(21)3(21)(21)77----=26.(2013届新课标高考压轴卷(二)文科数学)已知数列{}n a 的首项为51=a ,前n 项和为n S ,且521++=+n S S n n )(*N n ∈ (Ⅰ)证明数列{}1+n a 是等比数列 (Ⅱ)令()n n x a x a x a x f +⋅⋅⋅⋅⋅⋅++=221,求函数)(x f 在点1=x 处的导数()1'f ,并比较()12'f 与n n 13232-的大小.【答案】(1)解:521++=+n S S n n (1)∴421++=-n S S n n ,2≥n (2)两列相减得)1(211+=++n n a a 当1=n 时,111212=+=a a1212=+∴a ,611=+a)1(212+=+n a a故总有)1(211+=++n n a a ,*N n ∈,又51=a ,011≠+a 从而2111=+++n n a a ,即数列{}1+n a 是等比数列由(1)知123-⨯=n n a()n n x a x a x a x f +⋅⋅⋅⋅⋅⋅++=221 ∴()121'2-+⋅⋅⋅⋅⋅⋅++=n n x na x a a x f ∴()n na a a f +⋅⋅⋅⋅⋅⋅++=21'21()()()12312321232-⨯+⋅⋅⋅⋅⋅⋅+-⨯+-⨯=n n())321(223222332n n n +⋅⋅⋅⋅⋅+++-⨯+⋅⋅⋅⋅⋅⋅+⨯+⨯+=()62)1(2131++-⨯-=+n n n n ∴()n n n n n n n f n 132312)1(2)1(12)1323(1222'+-++-⨯-=--=()12122421122++--n n n n=[])12(2)1(12+--n n n(1) 当n=1时(1)式为0 ()n n f 1323122'-=当n=2时(1)式为-12 ()n n f 1323122'-<当3≥n 时,,01>-n 又1222)11(2110+>+≥++⋅⋅⋅⋅⋅⋅++=+=-n n C C C C nn n n n n n n∴[]0)12(2)1(>+--n n n 即(1)式>0 ∴()n n f 1323122'->27.(2013届湖南省高考压轴卷数学(文)试题)设满足以下两个条件的有穷数列a 1, a 2, a n 为n(n=2,3,4,)阶“梦想数列”:① a 1+a 2 +a 3 ++a n =0 ②|a 1|+|a 2|+|a 3|++|a n |=1⑴分别写出一个单调递增的3阶和4阶“梦想数列”;⑵若某21阶“梦想数列”是递增等差数列,求该数列的通项公式;⑶记n 阶“梦想数列”的前k 项和为s k (k=1,2,3,,n)试证:|s k |≤21 【答案】解:(Ⅰ)数列11,0,22-为单调递增的三阶“梦想数列”, 数列3113,,,8888--为单调递增的四阶“梦想数列” (Ⅱ)设等差数列的公差为d,,28.(2013届重庆省高考压轴卷数学文试题)若对于正整数k ,()g k 表示k 的最大奇数因数,例如(3)3g =,(10)5g =.设(1)(2)(3)(4)(2)n n S g g g g g =+++++.(Ⅰ)求(6)g ,(20)g 的值;(Ⅱ)求1S ,2S ,3S 的值;(Ⅲ)求数列{}n S 的通项公式. 【答案】解:(Ⅰ)(6)3g =,(20)5g = (Ⅱ)1(1)(2)112S g g =+=+=;2(1)(2)(3)(4)11316S g g g g =+++=+++=;3(1)(2)(3)(4)(5)(6)(7)(8)1131537122S g g g g g g g g =+++++++=+++++++=(Ⅲ)由(Ⅰ)(Ⅱ)不难发现对m *∈N , 有(2)()g m g m = 所以当2n ≥时,(1)(2)(3)(4)(21)(2)n n n S g g g g g g =+++++-+[(1)(3)(5)(21)][(2)(4)(2)]n n g g g g g g g =++++-++++1[135(21)][(21)(22)(22)]n n g g g -=++++-+⨯+⨯++⨯11(121)2[(1)(2)(2)]2n n n g g g --+-⨯=+++114n n S --=+于是114n n n S S ---=,2,n n *≥∈N . 所以112211()()()n n n n n S S S S S S S S ---=-+-++-+12244442n n --=+++++14(14)4221433n n --=+=+-,2,n n *≥∈N又12S =,满足上式, 所以对n *∈N ,1(42)3nn S =+ 29.(2013届山东省高考压轴卷文科数学)已知等比数列{}n a 的所有项均为正数,首项1a =1,且435,3,a a a 成等差数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)数列{1n n a a λ+-}的前n 项和为n S ,若n S =21(*)nn N -∈,求实数λ的值. 【答案】【解析】(Ⅰ)设数列{}n a 的公比为q ,由条件得423,3,q q q 成等差数列, 所以4326q q q+=解得2,3=-=q q 或由数列{}n a 的所有项均为正数,则q =2 数列{}n a 的通项公式为n a =12n -(*)n N ∈(Ⅱ)记n n n a a b λ-=+1,则112)2(22---=⋅-=n n n n b λλ若0,0,2===n n S b λ不符合条件;若2≠λ, 则21=+nn b b,数列{}n b 为等比数列,首项为λ-2,公比为2,此时)12)(2()21(21)2(--=---=n n n S λλ 又nS =21(*)n n N -∈,所以1=λ 30.(2013届福建省高考压轴卷数学文试题)设{}n a 为等差数列,n S 为数列{}n a 的前n 项和,已知373,7S S =-=. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设42n an b n =⋅+,求数列{}n b 的前n 项和n T .【答案】解:(Ⅰ)设等差数列{}n a 的公差为d依题意得11133232177672a d a d ⎧+⨯⨯=-⎪⎪⎨⎪+⨯⨯=⎪⎩解得121a d =-⎧⎨=⎩∴2(1)13n a n n =-+-⨯=-(Ⅱ)由(Ⅰ)得31422n n n b n n --=⋅+=+ ∴123n n T b b b b =++++0121(2222)(123)n n -=+++++++++12(1)122n n n -+=+- (1)212n n n +=-+31.(2013届全国大纲版高考压轴卷数学文试题(二))在数列{}n a 中,113,21n n a a a n -==--+(2n ≥,且*n N ∈) (Ⅰ)求23,a a 的值;(Ⅱ)证明:数列{}n a n +是等比数列,并求{}n a 的通项公式; (Ⅲ)求数列{}n a 的前n 项和n S . 【答案】解:(Ⅰ)111,21(2,*)n n a a a n n n N -==--+≥∈2132416,611a a a a ∴=--+=-=--+=(Ⅱ)11112111(1)11n n n n n n a n a n n a n a n a n a n ----+--++--+===-+-+--+-{}n a n ∴+以114a +=为首项,1-为公比的等比数列从而14(1)n n a n -+=⋅-,即14(1)n n a n -=⋅-- (Ⅲ)当n 为偶数时,12(1)0(12)2n n n n S a a a n +=++=-+++=-当n 为奇数时,2(1)14(12)4(8)22n n n S n n n +=-+++=-=-+- 综上,1(1)22(1)2n n n n S ++=+⋅--32.(2013届上海市高考压轴卷数学(文)试题)本题共3小题,第(Ⅰ)小题4分,第(Ⅱ)小题6分,第(Ⅲ)小题8分.设正数数列{}n a 的前n 项和为n S ,且对任意的n N *∈,n S 是2n a 和n a 的等差中项. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)在集合{|2,,10001500}M m m k k Z k ==∈≤<且中,是否存在正整数m ,使得不等式210052nn a S ->对一切满足n m >的正整数n 都成立?若存在,则这样的正整数m共有多少个?并求出满足条件的最小正整数m 的值;若不存在,请说明理由;(Ⅲ)请构造一个与数列{}n S 有关的数列{}n u ,使得()n n u u u +++∞→ 21lim 存在,并求出这个极限值.【答案】解:(Ⅰ)由题意得,n n n a a S +=22 ①,当1=n 时,12112a a a +=,解得11=a , 当2≥n 时,有12112---+=n n n a a S ②, ①式减去②式得,12122---+-=n n n n n a a a a a于是,1212--+=-n n n n a a a a ,111))((---+=-+n n n n n n a a a a a a因为01>+-n n a a ,所以11=--n n a a , 所以数列{}n a 是首项为1,公差为1的等差数列, 所以{}n a 的通项公式为n a n =(*N n ∈).(Ⅱ)设存在满足条件的正整数m ,则210052)1(2n n n >-+,10052>n, 2010>n ,又2000{=M ,2002,,2008,2010,2012,,2998},所以2010=m ,2012,,2998均满足条件,它们组成首项为2010,公差为2的等差数列.设共有k 个满足条件的正整数,则2998)1(22010=-+k ,解得495=k . 所以,M 中满足条件的正整数m 存在,共有495个,m 的最小值为2010. (Ⅲ)设n n S u 1=,即)1(2+=n n u n ,则)1(232221221+++⨯+⨯=+++n n u u u n ⎪⎭⎫ ⎝⎛+-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=111211*********n n n ,其极限存在,且()21112lim lim 21=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-=+++∞→∞→n u u u n n n . 注:n n S c u =(c 为非零常数),121+⋅⎪⎭⎫⎝⎛=n S c n nu (c 为非零常数),1+⋅=n S c n n qu (c 为非零常数,1||0<<q )等都能使()n n u u u +++∞→ 21lim 存在.33.(2013届四川省高考压轴卷数学文试题)已知数列{}n a 的前n 项和n S 和通项n a 满足1(1)2n n S a =-. (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足n n b na =,求证:123 (4)n b b b +++<【答案】解:(Ⅰ)当2n ≥时,111111(1)(1)2222n n n n n a a a a a --=---=-+,则13n n a a -=,由题意可知10n a -≠,113n n a a -= 所以{n a }是公比为31的等比数列 1111(1)2S a a ==-,113a =1111()()333n n n a -=⨯=(II)证明:n n n b )31(=设n n n T )31(...)31(3)31(2)31(1321⨯++⨯+⨯+⨯=∴2341111111()2()3()...()33333n n T n +=⨯+⨯+⨯+⨯ ∴1331313()()443234n n n T n +=--<34.(2013届浙江省高考压轴卷数学文试题)已知数列{}n a 的前n 项和为n S ,且*22()n n S a n N =-∈,数列{}n b 满足11b =,且12n n b b +=+.(Ⅰ)求数列{}n a 、{}n b 的通项公式,并求数列{}n n a b ⋅的前n 项的和n D ; (Ⅱ)设22*sin cos ()22n n n n n c a b n N ππ=⋅-⋅∈,求数列{}n c 的前2n 项和2n T . 【答案】【解析】 (Ⅰ)当1=n ,21=a ;当2≥n 时,1122n n n n n a S S a a --=-=- ,∴ 12n n a a -=, ∴{}n a 是等比数列,公比为2,首项12a =, ∴2n n a = 由12n n b b +=+,得{}n b 是等差数列,公差为2 又首项11=b ,∴21n b n =- ∴(21)2n n n a b n ⋅=-⨯ ∴1231123252(23)2(21)2n n n D n n -=⨯+⨯+⨯++-⨯+-⨯ ①①×2得23412123252(23)2(21)2n n n D n n +=⨯+⨯+⨯++-⨯+-⨯ ②①—②得:123112222222(21)2n n n D n +-=⨯+⨯+⨯++⨯--⨯114(12)22(21)212n n n -+-=+⨯--⨯-12(32)6n n +=--,1(23)26n n D n +=-+(Ⅱ)2(21)n n c n ⎧=⎨--⎩ 为偶数为奇数n n321222[37(41)]n n T n -=+++-+++-2122223n n n +-=--35.(2013届陕西省高考压轴卷数学(文)试题)在等比数列{}n a 中,已知13a =,公比1q ≠,等差数列{}n b 满足1142133b a b a b a ===,,. (Ⅰ)求数列{}n a 与{}n b 的通项公式; (Ⅱ)求数列{}n n a b 的前n 项和.【答案】【解析】(Ⅰ) 设等比数列{}n a 的公比为q ,等差数列{}n b 的公差为d . 由已知得:2323,3q a q a ==,d b d b b 123,23,31341+=+==3411123333322=⇒⎩⎨⎧+=+=⇒⎩⎨⎧+=+=q d q dq d q d q 或 1=q (舍去), 所以, 此时 2=d所以,n n a 3=, 12+=n b n . (Ⅱ)设(21)3n n n n c a b n ==+⋅,n n c c c S +++= 21()123335373...213n n =⨯+⨯+⨯+++⨯,()23413335373...213n n S n +=⨯+⨯+⨯+++⨯两式相减得()()1231233233...3213n n n S n +-=⨯+⨯+++-+⨯, 所以13.n n S n +=⋅36.(2013届海南省高考压轴卷文科数学)等比数列{a n }中,a 1,a 2,a 3分别是下表第一、二、(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若数列{b n }满足:b n =a n +(﹣1)lna n ,求数列{b n }的前2n 项和S 2n . 【答案】专题:计算题.分析:本题考查的是数列求和问题.在解答时:(Ⅰ)此问首先要结合所给列表充分讨论符合要求的所有情况,根据符合的情况进一步分析公比进而求得数列{a n }的通项公式;(Ⅱ)首先要利用第(Ⅰ)问的结果对数列数列{b n }的通项进行化简,然后结合通项的特点,利用分组法进行数列{b n }的前2n 项和的求解. 解答:解:(Ⅰ)当a 1=3时,不符合题意;当a 1=2时,当且仅当a 2=6,a 3=18时符合题意;当a 1=10时,不符合题意;所以a 1=2,a 2=6,a 3=18,∴公比为q=3,故:a n =2•3n ﹣1,n∈N*.(Ⅱ)∵b n =a n +(﹣1)n lna n=2•3n ﹣1+(﹣1)n ln(2•3n ﹣1)=2•3n ﹣1+(﹣1)n [ln2+(n ﹣1)ln3]=2•3n ﹣1+(﹣1)n (ln2﹣ln3)+(﹣1)n nln3∴S 2n =b 1+b 2++b 2n=2(1+3++32n ﹣1)+[﹣1+1﹣1++(﹣1)2n ]•(ln2﹣ln3)+[﹣1+2﹣3++(﹣1)2n 2n]ln3==32n +nln3﹣1∴数列{b n }的前2n 项和S 2n =32n +nln3﹣1.37.(2013届安徽省高考压轴卷数学文试题)( )若数列{}n a 的前n 和为n S ,首项是()a a R ∈,满足2220n n S na n n -+-=(1)求数列{}n a 的通项公式;(2)是否存在()a a R ∈,使20n n S S λ-=(其中λ是与正整数n 无关的常数)?若存在,求出x 和k 的值,若不存在,请说明理由;(3)求证:a 为有理数的充要条件是数列{}n a 存在三项构成等比数列.【答案】【解析】(1)因为2220n n S na n n -+-=,所以21122(1)0n n S n a n n ++-+++=,两式相减得:11(1)n n n a n a na n ++=+--,即11n n a a +-=,所以数列{}n a 是等差数列, 所以(1)1()n a a n n a n N *=+-=+-∈(2)解法一、因为20n n S S λ-=,所以[]1(1)2(21)2an n n an n n λ+-=+-, 整理得,(14)(21)(21)0n a λλ----=,所以当14λ=,12a =时,该式恒成立. 即当12a =时,2104n n S S -=,故1124x λ==,即为所求. 解法二、假设存在()a a R ∈满足题意20n n S S λ-=,分别令12n n ==,得: 214200S S S S λλ-=⎧⎨-=⎩,即(21)02(23)210a a a a λλ+-=⎧⎨+--=⎩,解得1124a λ==,,当12a =时,[]21111(1)(21)04224n n S S n n n n n n -=+--+-=为常数,所以1124a λ==,即为所求.(3)①充分性:若三个不同项a i a j a k +++,,成等比数列,且i j k <<,则 ()()()a j a i a k +=++,即2(2)a i k j j ik +-=-,若20i k j +-=,则20j ik -=,解得i j k ==,这与i j k <<矛盾,即20i k j +-≠,此时22j ik a i k j-=+-,且i j k ,,非负整数,故a 是有理数 ②必要性:若a 是有理数,且0a ≤,则必存在正整数k ,使得0a k +>,令y a k =+,则正项数列12y y y ++,,,是原数列{}:12n a a a a ++,,,的一个子数列,只要正项数列12y y y ++,,,中存在着三个不同的项构成等比数列,则原数列必有三个不同项构成等比数列.不失一般性,不妨设0a >,记n a m=(m n N *∈,,且m n ,互质),又设k l N *∈,,l k >,则a a k a l ++,,成等比数列,则2()()a k a a l +=+,解得22m l k k n=+,为使l 为整数,则令k n =,于是2l n mn =+,所以(2)a a n a n m +++,,成等比数列. 综上所述,原命题得证. 14分.。
2013年浙江省普通高等学校招生全国统一考试高三数学压轴卷
2013届高三数学压轴卷(文科)卷面满分:150分 考试时间:120分钟一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数 ,1i z -=则=+z z1A.i 2321+B.i 2321- C.i 2323- D.i 2123- 2.已知函数)1lg()(2+=x x f 的值域为M ,函数⎪⎩⎪⎨⎧<>=1,2,3)(3x x x x g x 的定义域为N ,则M N =A. )1,0[B. (2,)+∞C. [)+∞,0D. [)),2(1,0+∞3.2012年学期末,某学校对100间学生公寓进行综合评比,依考核分数分为A,B,C,D 四种等级,其中分数在)70,60[为D 等级,有15间;分数在)80,70[为C 等级,有40间;分数在)90,80[为B 等级,有20间;分数在)100,90[为D 等级,有25间. 考核评估后,得其频率直方图如图所示,估计这100间学生公寓评估得分的中位数是AC .78.80D .78.854.关于直线,,a b l 以及平面βα,,下面命题中正确的是 A .若,//,//βαb a 则.//b aB .若,,//a b a ⊥α则.α⊥bC .若,//,βαa a ⊥则.βα⊥D .若βα⊂⊂b a ,,且,//,b l a l ⊥,则.α⊥l5.右图的程序框图输出结果i=A .6B .7C .8D .9x )6.若方程22(2cos )(2sin )1(02)x y θθθπ-+-=≤≤的任意一组解(,)x y 都满足不等式x y ≤,则θ的取值范围是 A.5[,]44ππB.513[,]1212ππ C.7[,]46ππ D.77[,]126ππ 7.在四棱锥ABCD P -中,)3,2,4(-=→AB ,)0,1,4(-=→AD ,)8,2,6(--=→AP ,则这个四棱锥的高=hA. 1B. 2C. 13D. 268.已知两个等差数列5,8,11,...和3,7,11,...都有2013项,则两数列有( )相同的项 A. 501 B. 502 C. 503 D. 5059.下列命题中,正确命题的个数是①命题“x R ∃∈,使得013<+x ”的否定是“x R ∀∈,都有013>+x ”.②双曲线)0,0(12222>>=-b a by a x 中,F 为右焦点,A 为左顶点,点),0(b B 且0=⋅→→BF AB ,则215+. ③在△ABC 中,若角A 、B 、C 的对边为a 、b 、c ,若cos2B +cos B +cos(A -C )=1,则 a 、c 、b 成等比数列.④已知,a b 是夹角为120的单位向量,则向量a b λ+ 与2a b - 垂直的充要条件是45=λ.A. 1 个B. 2 个C. 3 个D. 4 个 10.已知三棱锥BOC A -,OC OB OA ,,两两垂直,且长度均为6,长为2的线段MN 的一个端点M 在棱OA 上运动,另一端点N 在BOC ∆内运动(含边界),则MN 的中点P 的轨迹与三棱锥所围成的几何体的体积为 A. 636π-B. 336π-C.3363ππ-或 D.6366ππ-或二.填空题:本大题共4小题,每小题5分,共20分.11.设点),(y x P 在以)1,2()2,1()0,1(C B A 、、三点构成的三角形区域(包含边界)内,则xy 的最大值为 .12.已知三次函数)(x f y =有三个零点321,,x x x ,且在点))(,(i i x f x 处的切线的斜率为)3,2,1(=i k i .则=++321111k k k . 13.一个棱长为8cm 的密封正方体盒子中放一个半径为1cm 的小球,无论怎样摇动盒子,则小球在盒子中不能到达的空间体积为 .14.已知集合{},),0(,14,1143⎭⎬⎫⎩⎨⎧+∞∈+=∈=≤-++∈=t tt x R x B x x R x A 则 集合B A =________.15.若)(x f 满足对于)](,[n m m n x >∈时有km x f kn≤≤)(恒成立,则称函数)(x f 在],[m n 上是“被k 限制”,若函数22)(a ax x x f +-=在区间)0](,1[>a a a上是“被2限制”的,则a 的取值范围为 .四、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分) 已知函数)42tan()(π+=x x f .(1)求()f x 的最小正周期和单调增区间; (2)设)2,4(ππα∈,若()2cos 2,2f αα=求α的大小. 17.(本小题满分12分)已知正方形ABCD 的边长为2,E F G H 、、、分别是边AB BC CD DA 、、、的中点. (1)在正方形ABCD 内部随机取一点P ,求满足2<PE 的概率;(2)从A B C D E F G H 、、、、、、、这八个点中,随机选取两个点,记这两个点之间的距离的平方..为ξ,求)4(≤ξP . 18.(本小题满分12分)如图是三棱柱111C B A ABC -的三视图,正(主)视图和俯视图都是矩形,侧(左)视图为等边三角形,D 为AC 的中点.(1)求证:1AB ∥平面1BDC ;(2)设1AB 垂直于1BC ,且2=BC ,求点C 到平面1DBC 的距离.正(主)视图 俯视图侧(左)视图19.(本小题满分12分)已知等比数列{}n a 的首项20131=a ,公比21-=q ,数列{}n a 前n 项的积.记为n T . (1)求使得n T 取得最大值时n 的值;(2)证明{}n a 中的任意相邻三项按从小到大排列,总可以使其成等差数列,如果所有这些等差数列的公差按从小到大的顺序依次设为n d d d d ,,,321⋅⋅⋅,证明:数列{}n d 为等比数列. (参考数据1021024=)20.(本小题满分13分)已知函数)0(),1ln()(>+=k xkx x f 在1=x 处取得极小值. (1)求k 的值;(2)若()f x 在))21(,21(f 处的切线方程为)(x g y =,求证:当0>x 时,曲线)(x f y =不可能在直线)(x g y =的下方.21.(本小题满分14分)已知抛物线)0(22>=p py x ,直线062=+-y x 截抛物线C 所得弦长为58. (1)求抛物线的方程;(2)已知B A 、是抛物线上异于原点O 的两个动点,记),90(≠=∠ααAOB 若,tan αm S AOB =∆试求当m 取得最小值时αtan 的最大值.。
2013年浙江省高考数学试卷(文科)及解析
2013年浙江省高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•浙江)设集合S={x|x>﹣2},T={x|﹣4≤x≤1},则S∩T=()A .[﹣4,+∞)B.(﹣2,+∞)C.[﹣4,1]D.(﹣2,1]2.(5分)(2013•浙江)已知i是虚数单位,则(2+i)(3+i)=()A .5﹣5i B.7﹣5i C.5+5i D.7+5i3.(5分)(2013•浙江)若α∈R,则“α=0”是“sinα<cosα”的()A .充分不必要条件B.必要不充分条件C .充分必要条件D.既不充分也不必要条件4.(5分)(2013•浙江)设m、n是两条不同的直线,α、β是两个不同的平面,()A .若m∥α,n∥α,则m∥nB.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β5.(5分)(2013•浙江)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A108cm3B100 cm3C92cm3D84cm3....6.(5分)(2013•浙江)函数f(x)=sinxcos x+cos2x的最小正周期和振幅分别是()A .π,1B.π,2C.2π,1D.2π,27.(5分)(2013•浙江)已知a、b、c∈R,函数f(x)=ax2+bx+c.若f(0)=f(4)>f(1),则()A .a>0,4a+b=0B.a<0,4a+b=0C.a>0,2a+b=0D.a<0,2a+b=08.(5分)(2013•浙江)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x )的图象如图所示,则该函数的图象是()A.B.C.D.9.(5分)(2013•浙江)如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C 2的离心率是()A.B.C.D.10.(5分)(2013•浙江)设a,b ∈R,定义运算“∧”和“∨”如下:a∧b=a∨b=若正数a、b、c、d满足ab≥4,c+d≤4,则()A.a∧b≥2,c∧d≤2B.a∧b≥2,c∨d≥2C.a∨b≥2,c∧d≤2D.a∨b≥2,c∨d≥2二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)(2013•浙江)已知函数f(x)=,若f(a)=3,则实数a=_________.12.(4分)(2013•浙江)从三男三女6名学生中任选2名(每名同学被选中的概率均相等),则2名都是女同学的概率等于_________.13.(4分)(2013•浙江)直线y=2x+3被圆x2+y2﹣6x﹣8y=0所截得的弦长等于_________.14.(4分)(2013•浙江)某程序框图如图所示,则该程序运行后输出的值等于_________.15.(4分)(2013•浙江)设z=kx+y,其中实数x、y满足若z的最大值为12,则实数k=_________.16.(4分)(2013•浙江)设a,b∈R,若x≥0时恒有0≤x4﹣x3+ax+b≤(x2﹣1)2,则ab等于_________.17.(4分)(2013•浙江)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于_________.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(14分)(2013•浙江)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(Ⅰ)求角A的大小;(Ⅱ)若a=6,b+c=8,求△ABC的面积.19.(14分)(2013•浙江)在公差为d的等差数列{a n}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(Ⅰ)求d,a n;(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|a n|.20.(15分)(2013•浙江)如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC上的点.(Ⅰ)证明:BD⊥面PAC;(Ⅱ)若G是PC的中点,求DG与PAC所成的角的正切值;(Ⅲ)若G满足PC⊥面BGD,求的值.21.(15分)(2013•浙江)已知a∈R,函数f(x)=2x3﹣3(a+1)x2+6ax(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)若|a|>1,求f(x)在闭区间[0,|2a|]上的最小值.22.(14分)(2013•浙江)已知抛物线C的顶点为O(0,0),焦点F(0,1)(Ⅰ)求抛物线C的方程;(Ⅱ)过F作直线交抛物线于A、B两点.若直线OA、OB分别交直线l:y=x﹣2于M、N两点,求|MN|的最小值.2013年浙江省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•浙江)设集合S={x|x>﹣2},T={x|﹣4≤x≤1},则S∩T=()A .[﹣4,+∞)B.(﹣2,+∞)C.[﹣4,1]D.(﹣2,1]考点:交集及其运算.专题:计算题.分析:找出两集合解集的公共部分,即可求出交集.解答:解:∵集合S={x|x>﹣2}=(﹣2,+∞),T={x|﹣4≤x≤1}=[﹣4,1],∴S∩T=(﹣2,1].故选D点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)(2013•浙江)已知i是虚数单位,则(2+i)(3+i)=()A .5﹣5i B.7﹣5i C.5+5i D.7+5i考点:复数代数形式的乘除运算.专题:计算题.分直接利用多项式的乘法展开,求出复数的最简形式.析:解答:解:复数(2+i)(3+i)=6+5i+i2=5+5i.故选C.点评:本题考查复数的代数形式的混合运算,考查计算能力.3.(5分)(2013•浙江)若α∈R,则“α=0”是“sinα<cosα”的()A .充分不必要条件B.必要不充分条件C .充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:三角函数的图像与性质.分析:当“α=0”可以得到“sinα<cosα”,当“sinα<cosα”时,不一定得到“α=0”,得到“α=0”是“sinα<cosα”的充分不必要条件.解答:解:∵“α=0”可以得到“sinα<c osα”,当“sinα<cosα”时,不一定得到“α=0”,如α=等,∴“α=0”是“sinα<cosα”的充分不必要条件,故选A.点评:本题主要考查了必要条件,充分条件与充要条件的判断,要求掌握好判断的方法.4.(5分)(2013•浙江)设m、n是两条不同的直线,α、β是两个不同的平面,()A .若m∥α,n∥α,则m∥nB.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β考点:空间中直线与平面之间的位置关系;空间中直线与直线之间的位置关系;平面与平面之间的位置关系.专题:计算题;空间位置关系与距离.分析:用直线与平面平行的性质定理判断A的正误;用直线与平面平行的性质定理判断B的正误;用线面垂直的判定定理判断C的正误;通过面面垂直的判定定理进行判断D的正误.解答:解:A、m∥α,n∥α,则m∥n,m与n可能相交也可能异面,所以A不正确;B、m∥α,m∥β,则α∥β,还有α与β可能相交,所以B不正确;C、m∥n,m⊥α,则n⊥α,满足直线与平面垂直的性质定理,故C正确.D、m∥α,α⊥β,则m⊥β,也可能m∥β,也可能m∩β=A,所以D不正确;故选C.点评:本题主要考查线线,线面,面面平行关系及垂直关系的转化,考查空间想象能力能力.5.(5分)(2013•浙江)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3B.100 cm3C.92cm3D.84cm3考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).据此即可得出体积.解解:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个答:三棱锥(长方体的一个角).∴该几何体的体积V=6×6×3﹣=100.故选B.点评:由三视图正确恢复原几何体是解题的关键.6.(5分)(2013•浙江)函数f(x)=sinxcos x+cos2x的最小正周期和振幅分别是()A .π,1B.π,2C.2π,1D.2π,2考点:两角和与差的正弦函数;二倍角的正弦;二倍角的余弦;三角函数的周期性及其求法.专题:计算题;三角函数的图像与性质.分析:f(x)解析式第一项利用二倍角的正弦函数公式化简,再利用两角和与差的正弦函数公式及特殊角的我三角函数值化为一个角的正弦函数,根据正弦函数的值域,确定出振幅,找出ω的值,求出函数的最小正周期即可.解答:解:f(x)=sin2x+cos2x=sin(2x+),∵﹣1≤sin(2x+)≤1,∴振幅为1,∵ω=2,∴T=π.故选A点评:此题考查了两角和与差的正弦函数公式,二倍角的正弦函数公式,以及三角函数的周期性及其求法,熟练掌握公式是解本题的关键.7.(5分)(2013•浙江)已知a、b、c∈R,函数f(x)=ax2+bx+c.若f(0)=f(4)>f(1),则()A.a>0,4a+b=0B.a<0,4a+b=0C.a>0,2a+b=0D.a<0,2a+b=0考点:二次函数的性质.专题:函数的性质及应用.分析:由f(0)=f(4)可得4a+b=0;由f(0)>f(1)可得a+b<0,消掉b变为关于a的不等式可得a>0.解答:解:因为f(0)=f(4),即c=16a+4b+c,所以4a+b=0;又f(0)>f(1),即c>a+b+c,所以a+b<0,即a+(﹣4a)<0,所以﹣3a<0,故a>0.故选A.点评:本题考查二次函数的性质及不等式,属基础题.8.(5分)(2013•浙江)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是()A.B.C.D.考点:函数的图象.专题:函数的性质及应用.分析:根据导数的图象,利用函数的单调性和导数的关系,得出所选的选项.解答:解:由导数的图象可得,函数f(x)在[﹣1,0]上增长速度逐渐变大,图象是下凹型的;在[0,1]上增长速度逐渐变小,图象是上凸型的,故选B.点评:本题主要考查函数的单调性和导数的关系,属于基础题.9.(5分)(2013•浙江)如图F1、F 2是椭圆C1:+y2=1与双曲线C2的公共焦点A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A.B.C.D.考点:椭圆的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:不妨设|AF1|=x,|AF2|=y,依题意,解此方程组可求得x,y的值,利用双曲线的定义及性质即可求得C2的离心率.解答:解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1:+y2=1上的点,∴2a=4,b=1,c=;∴|AF1|+|AF2|=2a=4,即x+y=4;①又四边形AF1BF2为矩形,∴+=,即x2+y2=(2c)2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C2的实轴长为2a,焦距为2c,则2a=,|AF2|﹣|AF1|=y﹣x=2,2c=2=2,∴双曲线C 2的离心率e===.故选D.点评:本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题.10.(5分)(2013•浙江)设a,b∈R,定义运算“∧”和“∨”如下:a∧b=a∨b=若正数a、b、c、d满足ab≥4,c+d≤4,则()A .a∧b≥2,c∧d≤2B.a∧b≥2,c∨d≥2C.a∨b≥2,c∧d≤2D.a∨b≥2,c∨d≥2考点:函数的值.专题:计算题;新定义.分析:依题意,对a,b赋值,对四个选项逐个排除即可.解答:解:∵a∧b=,a∨b=,正数a、b、c、d满足ab≥4,c+d≤4,∴不妨令a=1,4,则a∧b≥2错误,故可排除A,B;再令c=1,d=1,满足条件c+d≤4,但不满足c∨d≥2,故可排除D;故选C.点评:本题考查函数的求值,考查正确理解题意与灵活应用的能力,着重考查排除法的应用,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)(2013•浙江)已知函数f(x)=,若f(a )=3,则实数a=10.考点:函数的值.专题:计算题.分析:利用函数的解析式以及f(a)=3求解a即可.解答:解:因为函数f(x)=,又f(a)=3,所以,解得a=10.故答案为:10.点评:本题考查函数解析式与函数值的应用,考查计算能力.12.(4分)(2013•浙江)从三男三女6名学生中任选2名(每名同学被选中的概率均相等),则2名都是女同学的概率等于.考点:古典概型及其概率计算公式.专题:概率与统计.分析:由组合数可知:从6名学生中任选2名共有=15种情况,2名都是女同学的共有=3种情况,由古典概型的概率公式可得答案.解答:解:从6名学生中任选2名共有=15种情况,满足2名都是女同学的共有=3种情况,故所求的概率为:=故答案为:点评:本题考查古典概型及其概率公式,涉及组合数的应用,属基础题.13.(4分)(2013•浙江)直线y=2x+3被圆x2+y2﹣6x﹣8y=0所截得的弦长等于4.考点:直线与圆的位置关系.专题:计算题;直线与圆.分析:求出圆的圆心与半径,利用圆心距,半径,半弦长满足勾股定理,求解弦长即可.解答:解:圆x2+y2﹣6x﹣8y=0的圆心坐标(3,4),半径为5,圆心到直线的距离为:,因为圆心距,半径,半弦长满足勾股定理,所以直线y=2x+3被圆x2+y2﹣6x﹣8y=0所截得的弦长为:2×=4.故答案为:4.点评:本题考查直线与圆的位置关系,弦长的求法,考查转化思想与计算能力.14.(4分)(2013•浙江)某程序框图如图所示,则该程序运行后输出的值等于.考点:程序框图.专题:图表型.分析:由题意可知,该程序的作用是求解S=1++++的值,然后利用裂项求和即可求解.解答:解:由题意可知,该程序的作用是求解S=1++++的值.而S=1++++=1+1﹣+﹣+﹣+﹣=.故答案为:.点评:本题考查了程序框图中的循环结构的应用,解题的关键是由框图的结构判断出框图的计算功能.15.(4分)(2013•浙江)设z=kx+y,其中实数x、y满足若z的最大值为12,则实数k=2.考点:简单线性规划.专题:计算题;不等式的解法及应用.分析:作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=kx+y对应的直线进行平移.经讨论可得当当k<0时,找不出实数k的值使z的最大值为12;当k≥0时,结合图形可得:当l经过点C时,z max=F(4,4)=4k+4=12,解得k=2,得到本题答案.解答:解:作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(2,0),B(2,3),C(4,4)设z=F(x,y)=kx+y,将直线l:z=kx+y进行平移,可得①当k<0时,直线l的斜率﹣k>0,由图形可得当l经过点B(2,3)或C(4,4)时,z可达最大值,此时,z max=F(2,3)=2k+3或z max=F(4,4)=4k+4但由于k<0,使得2k+3<12且4k+4<12,不能使z的最大值为12,故此种情况不符合题意;②当k≥0时,直线l的斜率﹣k≤0,由图形可得当l经过点C时,目标函数z达到最大值此时z max=F(4,4)=4k+4=12,解之得k=2,符合题意综上所述,实数k的值为2故答案为:2点评:本题给出二元一次不等式组,在目标函数z=kx+y的最大值为12的情况下求参数k的值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.16.(4分)(2013•浙江)设a,b∈R,若x≥0时恒有0≤x4﹣x3+ax+b≤(x2﹣1)2,则ab等于﹣1.考点:函数恒成立问题.专题:转化思想;函数的性质及应用.分析:由题意,x≥0时恒有0≤x4﹣x3+ax+b≤(x2﹣1)2,考察(x2﹣1)2,发现当x=±1时,其值都为0,再对照不等式左边的0,可由两边夹的方式得到参数a,b满足的方程,从而解出它们的值,即可求出积解答:解:验证发现,当x=1时,将1代入不等式有0≤a+b≤0,所以a+b=0;当x=﹣1时,将﹣1代入不等式有0≤2﹣a+b≤0,所以b﹣a=﹣2 联立以上二式得:a=1,b=﹣1所以ab=﹣1故答案为﹣1点评:本题考查函数恒成立的最值问题,由于所给的不等式较为特殊,可借助赋值法得到相关的方程直接求解,本题解法关键是观察出不等式右边为零时的自变量的值,将问题灵活转化是解题的关键17.(4分)(2013•浙江)设、为单位向量,非零向量=x +y,x、y∈R.若、的夹角为30°,则的最大值等于2.考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:由题意求得=,||==,从而可得===,再利用二次函数的性质求得的最大值.解答:解:∵、为单位向量,和的夹角等于30°,∴=1×1×cos30°=.∵非零向量=x+y,∴||===,∴====,故当=﹣时,取得最大值为2,故答案为2.点评:本题主要考查两个向量的数量积的运算,求向量的模,利用二次函数的性质求函数的最大值,属于中档题.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(14分)(2013•浙江)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(Ⅰ)求角A的大小;(Ⅱ)若a=6,b+c=8,求△ABC的面积.考点:正弦定理;余弦定理.专解三角形.题:分析:(Ⅰ)利用正弦定理化简已知等式,求出sinA的值,由A为锐角,利用特殊角的三角函数值即可求出A的度数;(Ⅱ)由余弦定理列出关系式,再利用完全平方公式变形,将a ,b+c及cosA的值代入求出bc的值,再由sinA的值,利用三角形面积公式即可求出三角形ABC的面积.解答:解:(Ⅰ)由2asinB=b,利用正弦定理得:2sinAsinB=sinB,∵sinB≠0,∴sinA=,又A为锐角,则A=;(Ⅱ)由余弦定理得:a2=b2+c2﹣2bc•cosA,即36=b2+c2﹣bc=(b+c)2﹣3bc=64﹣3bc,∴bc=,又sinA=,则S△ABC=bcsinA=.点评:此题考查了正弦定理,三角形的面积公式,熟练掌握正弦定理是解本题的关键.19.(14分)(2013•浙江)在公差为d的等差数列{a n}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(Ⅰ)求d,a n;(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|a n|.考点:数列的求和;等差数列的通项公式;等比数列的性质.专题:等差数列与等比数列.分析:(Ⅰ)直接由已知条件a1=10,且a1,2a2+2,5a3成等比数列列式求出公差,则通项公式a n可求;(Ⅱ)利用(Ⅰ)中的结论,得到等差数列{a n}的前11项大于等于0,后面的项小于0,所以分类讨论求d<0时|a1|+|a2|+|a3|+…+|a n|的和.解答:解:(Ⅰ)由题意得,即,整理得d2﹣3d﹣4=0.解得d=﹣1或d=4.当d=﹣1时,a n=a1+(n﹣1)d=10﹣(n﹣1)=﹣n+11.当d=4时,a n=a1+(n﹣1)d=10+4(n﹣1)=4n+6.所以a n=﹣n+11或a n=4n+6;(Ⅱ)设数列{a n}的前n项和为S n,因为d<0,由(Ⅰ)得d=﹣1,a n=﹣n+11.则当n≤11时,.当n≥12时,|a1|+|a2|+|a3|+…+|a n|=﹣S n+2S11=.综上所述,|a1|+|a2|+|a3|+…+|a n|=.点评:本题考查了等差数列、等比数列的基本概念,考查了等差数列的通项公式,求和公式,考查了分类讨论的数学思想方法和学生的运算能力,是中档题.20.(15分)(2013•浙江)如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC上的点.(Ⅰ)证明:BD⊥面PAC;(Ⅱ)若G是PC的中点,求DG与PAC所成的角的正切值;(Ⅲ)若G满足PC⊥面BGD,求的值.考点:直线与平面垂直的判定;直线与平面所成的角;点、线、面间的距离计算.专题:空间位置关系与距离;空间角.分析:(Ⅰ)由PA⊥面ABCD,可得PA⊥BD;设AC与BD 的交点为O,则由条件可得BD是AC的中垂线,故O为AC的中点,且BD⊥AC.再利用直线和平面垂直的判定定理证得BD⊥面PAC.(Ⅱ)由三角形的中位线性质以及条件证明∠DGO为DG与平面PAC所成的角,求出GO和AC的值,可得OC、OD的值,再利用直角三角形中的边角关系求得tan∠DGO的值.(Ⅲ)先证PC⊥OG,且PC==.由△COG∽△PCA,可得,解得GC的值,可得PG=PC﹣GC 的值,从而求得的值.解答:解:(Ⅰ)证明:∵在四棱锥P﹣ABCD中,PA⊥面ABCD,∴PA⊥BD.∵AB=BC=2,AD=CD=,设AC与BD 的交点为O ,则BD是AC的中垂线,故O为AC的中点,且BD⊥AC.而PA∩AC=A,∴BD⊥面PAC.(Ⅱ)若G是PC 的中点,则GO平行且等于PA,故由PA⊥面ABCD,可得GO⊥面ABCD,∴GO⊥OD,故OD⊥平面PAC,故∠DGO为DG与平面PAC所成的角.由题意可得,GO=PA=.△ABC中,由余弦定理可得AC2=AB2+BC2﹣2AB•BC•cos ∠ABC=4+4﹣2×2×2×cos120°=12,∴AC=2,OC=.∵直角三角形COD中,OD==2,∴直角三角形GOD中,tan∠DGO==.(Ⅲ)若G满足PC⊥面BGD,∵OG⊂平面BGD,∴PC⊥OG,且PC==.由△COG∽△PCA,可得,即,解得GC=,∴PG=PC﹣GC=﹣=,∴==.点评:本题主要考查直线和平面垂直的判定定理的应用,求直线和平面所成的角,空间距离的求法,属于中档题.21.(15分)(2013•浙江)已知a∈R,函数f(x)=2x3﹣3(a+1)x2+6ax (Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)若|a|>1,求f(x)在闭区间[0,|2a|]上的最小值.考点:利用导数研究曲线上某点切线方程;利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:(Ⅰ)求导函数,确定切线的斜率,求出切点的坐标,即可求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)分类讨论,利用导数确定函数的单调性,从而可得极值,即可得到最值.解答:解:(Ⅰ)当a=1时,f′(x)=6x2﹣12x+6,所以f′(2)=6∵f(2)=4,∴曲线y=f(x)在点(2,f(2))处的切线方程为y=6x﹣8;(Ⅱ)记g(a)为f(x)在闭区间[0,|2a|]上的最小值.f′(x)=6x2﹣6(a+1)x+6a=6(x﹣1)(x﹣a)令f′(x)=0,得到x1=1,x2=a当a>1时,x0(0,1)1(1,a)a(a,2a)2af′(x)+0﹣0+f(x)0单调递增极大值3a﹣1单调递减极小值e2(3﹣a)单调递增4a3比较f(0)和f(a)=a2(3﹣a)的大小可得g(a)=;当a<﹣1时,X0(0,1)1(1,﹣2a)﹣2af′x)﹣0+f(x)0单调递减极小值3a﹣1单调递增﹣28a3﹣24a2∴g(a)=3a﹣1∴f(x)在闭区间[0,|2a|]上的最小值为g(a)=.点评:本题考查导数知识的运用,考查导数的几何意义,考查函数的最值,考查学生的计算能力,考查分类讨论的数学思想,属于中档题.22.(14分)(2013•浙江)已知抛物线C的顶点为O(0,0),焦点F(0,1)(Ⅰ)求抛物线C的方程;(Ⅱ)过F作直线交抛物线于A、B两点.若直线OA、OB分别交直线l:y=x﹣2于M、N两点,求|MN|的最小值.考点:直线与圆锥曲线的关系;抛物线的标准方程.专题:综合题;数形结合;转化思想;圆锥曲线的定义、性质与方程.分析:(I)由抛物线的几何性质及题设条件焦点F(0,1)可直接求得p,确定出抛物线的开口方向,写出它的标准方程;(II)由题意,可A(x1,y1),B(x2,y2),直线AB的方程为y=kx+1,将直线方程与(I)中所求得方程联立,再结合弦长公式用所引入的参数表示出|MN|,根据所得的形式作出判断,即可求得最小值.解答:解:(I)由题意可设抛物线C的方程为x2=2py(p>0)则=1,解得p=2,故抛物线C的方程为x2=4y (II)设A(x1,y 1),B(x2,y2),直线AB的方程为y=kx+1由消去y,整理得x2﹣4kx﹣4=0所以x1+x2=4k,x1x 2=﹣4,从而有|x1﹣x2|==4由解得点M的横坐标为x M ===,同理可得点N的横坐标为x N=所以|MN|=|x M ﹣x N|=|﹣|=8||=令4k﹣3=t,t 不为0,则k=当t>0时,|MN|=2>2当t<0时,|MN|=2=2≥综上所述,当t=﹣时,|MN|的最小值是点评:本题主要考查抛物线的几何性质,直线与抛物线的位置关系,同时考查解析几何的基本思想方法和运算求解能力,本题考查了数形结合的思想及转化的思想,将问题恰当的化归可以大大降低题目的难度,如本题最后求最值时引入变量t,就起到了简化计算的作用。
考前练兵全国大纲版2013届高考压轴卷 数学理文试题
2013全国大纲版高考压轴卷 数学理试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效...........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
一.选择题 (1)若复数,12iiz -=则z 等于( ) ()()()()212221D C B A(2) 若{}8222<≤∈=-x Z x A ,{}1log 2>∈=x R x B ,则()B C A R 的元素个数为( )(A) 0(B) 1(C) 2 (D)3(3)已知函数()y f x =与()x fy 1-=互为反函数,且函数()1y f x =+与函数()11+=-x f y 也互为反函数,若(),01=f 则()20101-f =( ) ()()()()2009201010--D C B A(4) 已知等比数列{}n a 中,公比,0<q 若,42=a 则321a a a ++ 有( )(A)最小值-4 (B)最大值-4 (C)最小值12 (D)最大值12(5) 一圆形餐桌依次有A 、B 、C 、D 、E 、F 共有6个座位.现让3个大人和3 个小孩入座进餐,要求任何两个小孩都不能坐在一起,则不同的入座方法总 数为 ( )(A )6 (B )12 (C )72 (D )144 (6) 已知函数sin()(0)y x ϕϕ=π+>的部分图象如右图所示,设P 是图象的最高点,,A B 是图象与x 轴的交点,则tan APB ∠=( ) (A )10 (B )8 (C )87 (D )47(7) 在正方形ABCD 中,,4=AB 沿对角线AC 将正方形ABCD 折成一个直二面角D AC B --,则点B 到直线CD 的距离为( )()()()()222322322+D C B A(8) 设,R a ∈函数()x x e a e x f -⋅+=的导函数是(),x f '且()x f '是奇函数,若曲线()x f y =的一条切线的斜率是,23则切点的横坐标为( ) (A) 22ln -(B)2ln - (C) 2ln (D) 22ln (9) 已知()),,2,1,0(0,2log 0,112*∈≥≠>⎪⎩⎪⎨⎧≥+<+-=N n n m m x x C x xx x f n n m 若()x f 在0=x 处连续,则m 的值为( ) (A)81 (B)41 (C) 21(D) 2 (10)已知数列{}n a 的通项公式为13n a n =-,那么满足119102k k k a a a +++++= 的整数k ( )(A )有3个 (B )有2个 (C )有1个 (D )不存在(11) 已知直线l 交椭圆805422=+y x 于N M ,两点,椭圆与y 轴的正半轴交于B 点,若BMN ∆的重心恰好落在椭圆的右焦点上,则直线l 的方程是( ) (A) 02856=--y x (B)02856=-+y x (C) 02865=-+y x (D) 02865=--y x(12) 在半径为R 的球内放入大小相等的4个小球,则小球半径r 的最大值为( )(A)()R 26- (B)()R 12- (C)R 41 (D)R31第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目。
2013年浙江省高考数学试卷(文科)及解析
2013年浙江省高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)(2013•浙江)设集合S={x|x>﹣2},T={x|﹣4≤x≤1},则S∩T=()A.[﹣4,+∞)B.(﹣2,+∞)C.[﹣4,1]D.(﹣2,1]2.(5分)(2013•浙江)已知i是虚数单位,则(2+i)(3+i)=()A.5﹣5i B.7﹣5i C.5+5i D.7+5i3.(5分)(2013•浙江)若α∈R,则“α=0”是“sinα<cosα”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)(2013•浙江)设m、n是两条不同的直线,α、β是两个不同的平面,()A.若m∥α,n∥α,则m∥n B.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β5.(5分)(2013•浙江)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3B.100 cm3C.92cm3D.84cm36.(5分)(2013•浙江)函数f(x)=sinxcos x+cos2x的最小正周期和振幅分别是()A.π,1 B.π,2 C.2π,1 D.2π,27.(5分)(2013•浙江)已知a、b、c∈R,函数f(x)=ax2+bx+c.若f(0)=f(4)>f(1),则()A.a>0,4a+b=0 B.a<0,4a+b=0 C.a>0,2a+b=0 D.a<0,2a+b=08.(5分)(2013•浙江)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是()A.B.C.D.9.(5分)(2013•浙江)如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A.B.C.D.10.(5分)(2013•浙江)设a,b∈R,定义运算“∧”和“∨”如下:a∧b=a∨b=若正数a、b、c、d满足ab≥4,c+d≤4,则()A.a∧b≥2,c∧d≤2 B.a∧b≥2,c∨d≥2 C.a∨b≥2,c∧d≤2 D.a∨b≥2,c∨d≥2二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)(2013•浙江)已知函数f(x)=,若f(a)=3,则实数a=_________.12.(4分)(2013•浙江)从三男三女6名学生中任选2名(每名同学被选中的概率均相等),则2名都是女同学的概率等于_________.13.(4分)(2013•浙江)直线y=2x+3被圆x2+y2﹣6x﹣8y=0所截得的弦长等于_________.14.(4分)(2013•浙江)某程序框图如图所示,则该程序运行后输出的值等于_________.15.(4分)(2013•浙江)设z=kx+y,其中实数x、y满足若z的最大值为12,则实数k=_________.16.(4分)(2013•浙江)设a,b∈R,若x≥0时恒有0≤x4﹣x3+ax+b≤(x2﹣1)2,则ab等于_________.17.(4分)(2013•浙江)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于_________.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(14分)(2013•浙江)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(Ⅰ)求角A的大小;(Ⅱ)若a=6,b+c=8,求△ABC的面积.19.(14分)(2013•浙江)在公差为d的等差数列{a n}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(Ⅰ)求d,a n;(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|a n|.20.(15分)(2013•浙江)如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC上的点.(Ⅰ)证明:BD⊥面PAC;(Ⅱ)若G是PC的中点,求DG与PAC所成的角的正切值;(Ⅲ)若G满足PC⊥面BGD,求的值.21.(15分)(2013•浙江)已知a∈R,函数f(x)=2x3﹣3(a+1)x2+6ax(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)若|a|>1,求f(x)在闭区间[0,|2a|]上的最小值.22.(14分)(2013•浙江)已知抛物线C的顶点为O(0,0),焦点F(0,1)(Ⅰ)求抛物线C的方程;(Ⅱ)过F作直线交抛物线于A、B两点.若直线OA、OB分别交直线l:y=x﹣2于M、N两点,求|MN|的最小2013年浙江省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)(2013•浙江)设集合S={x|x>﹣2},T={x|﹣4≤x≤1},则S∩T=()A.[﹣4,+∞)B.(﹣2,+∞)C.[﹣4,1]D.(﹣2,1]考点:交集及其运算.专题:计算题.分析:找出两集合解集的公共部分,即可求出交集.解答:解:∵集合S={x|x>﹣2}=(﹣2,+∞),T={x|﹣4≤x≤1}=[﹣4,1],∴S∩T=(﹣2,1].故选D点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)(2013•浙江)已知i是虚数单位,则(2+i)(3+i)=()A.5﹣5i B.7﹣5i C.5+5i D.7+5i考点:复数代数形式的乘除运算.专题:计算题.分析:直接利用多项式的乘法展开,求出复数的最简形式.解答:解:复数(2+i)(3+i)=6+5i+i2=5+5i.故选C.点评:本题考查复数的代数形式的混合运算,考查计算能力.3.(5分)(2013•浙江)若α∈R,则“α=0”是“sinα<cosα”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:三角函数的图像与性质.分析:当“α=0”可以得到“sinα<cosα”,当“sinα<cosα”时,不一定得到“α=0”,得到“α=0”是“sinα<cosα”的充分不必要条件.解答:解:∵“α=0”可以得到“sinα<cosα”,当“sinα<cosα”时,不一定得到“α=0”,如α=等,∴“α=0”是“sinα<cosα”的充分不必要条件,故选A.点评:本题主要考查了必要条件,充分条件与充要条件的判断,要求掌握好判断的方法.4.(5分)(2013•浙江)设m、n是两条不同的直线,α、β是两个不同的平面,()A.若m∥α,n∥α,则m∥n B.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β考点:空间中直线与平面之间的位置关系;空间中直线与直线之间的位置关系;平面与平面之间的位置关系.判定定理判断C的正误;通过面面垂直的判定定理进行判断D的正误.解答:解:A、m∥α,n∥α,则m∥n,m与n可能相交也可能异面,所以A不正确;B、m∥α,m∥β,则α∥β,还有α与β可能相交,所以B不正确;C、m∥n,m⊥α,则n⊥α,满足直线与平面垂直的性质定理,故C正确.D、m∥α,α⊥β,则m⊥β,也可能m∥β,也可能m∩β=A,所以D不正确;故选C.点评:本题主要考查线线,线面,面面平行关系及垂直关系的转化,考查空间想象能力能力.5.(5分)(2013•浙江)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3B.100 cm3C.92cm3D.84cm3考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).据此即可得出体积.解答:解:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).∴该几何体的体积V=6×6×3﹣=100.故选B.点评:由三视图正确恢复原几何体是解题的关键.6.(5分)(2013•浙江)函数f(x)=sinxcos x+cos2x的最小正周期和振幅分别是()A.π,1 B.π,2 C.2π,1 D.2π,2考点:两角和与差的正弦函数;二倍角的正弦;二倍角的余弦;三角函数的周期性及其求法.专题:计算题;三角函数的图像与性质.即可.解答:解:f(x)=sin2x+cos2x=sin(2x+),∵﹣1≤sin(2x+)≤1,∴振幅为1,∵ω=2,∴T=π.故选A点评:此题考查了两角和与差的正弦函数公式,二倍角的正弦函数公式,以及三角函数的周期性及其求法,熟练掌握公式是解本题的关键.7.(5分)(2013•浙江)已知a、b、c∈R,函数f(x)=ax2+bx+c.若f(0)=f(4)>f(1),则()A.a>0,4a+b=0 B.a<0,4a+b=0 C.a>0,2a+b=0 D.a<0,2a+b=0考点:二次函数的性质.专题:函数的性质及应用.分析:由f(0)=f(4)可得4a+b=0;由f(0)>f(1)可得a+b<0,消掉b变为关于a的不等式可得a>0.解答:解:因为f(0)=f(4),即c=16a+4b+c,所以4a+b=0;又f(0)>f(1),即c>a+b+c,所以a+b<0,即a+(﹣4a)<0,所以﹣3a<0,故a>0.故选A.点评:本题考查二次函数的性质及不等式,属基础题.8.(5分)(2013•浙江)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x )的图象如图所示,则该函数的图象是()A.B .C.D.考点:函数的图象.专题:函数的性质及应用.分析:根据导数的图象,利用函数的单调性和导数的关系,得出所选的选项.解答:解:由导数的图象可得,函数f(x)在[﹣1,0]上增长速度逐渐变大,图象是下凹型的;在[0,1]上增长速度逐渐变小,图象是上凸型的,故选B.点评:本题主要考查函数的单调性和导数的关系,属于基础题.9.(5分)(2013•浙江)如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点A、B分别是C1、C2在第二、A.B.C.D.考点:椭圆的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:不妨设|AF1|=x,|AF2|=y,依题意,解此方程组可求得x,y的值,利用双曲线的定义及性质即可求得C2的离心率.解答:解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1:+y2=1上的点,∴2a=4,b=1,c=;∴|AF1|+|AF2|=2a=4,即x+y=4;①又四边形AF1BF2为矩形,∴+=,即x2+y2=(2c)2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C2的实轴长为2a,焦距为2c,则2a=,|AF2|﹣|AF1|=y﹣x=2,2c=2=2,∴双曲线C2的离心率e===.故选D.点评:本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题.10.(5分)(2013•浙江)设a,b∈R,定义运算“∧”和“∨”如下:a∧b=a∨b=若正数a、b、c、d满足ab≥4,c+d≤4,则()A.a∧b≥2,c∧d≤2 B.a∧b≥2,c∨d≥2 C.a∨b≥2,c∧d≤2 D.a∨b≥2,c∨d≥2考点:函数的值.专题:计算题;新定义.分析:依题意,对a,b赋值,对四个选项逐个排除即可.解答:解:∵a∧b=,a∨b=,正数a、b、c、d满足ab≥4,c+d≤4,∴不妨令a=1,4,则a∧b≥2错误,故可排除A,B;点评:本题考查函数的求值,考查正确理解题意与灵活应用的能力,着重考查排除法的应用,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)(2013•浙江)已知函数f(x)=,若f(a)=3,则实数a=10.考点:函数的值.专题:计算题.分析:利用函数的解析式以及f(a)=3求解a即可.解答:解:因为函数f(x)=,又f(a)=3,所以,解得a=10.故答案为:10.点评:本题考查函数解析式与函数值的应用,考查计算能力.12.(4分)(2013•浙江)从三男三女6名学生中任选2名(每名同学被选中的概率均相等),则2名都是女同学的概率等于.考点:古典概型及其概率计算公式.专题:概率与统计.分析:由组合数可知:从6名学生中任选2名共有=15种情况,2名都是女同学的共有=3种情况,由古典概型的概率公式可得答案.解答:解:从6名学生中任选2名共有=15种情况,满足2名都是女同学的共有=3种情况,故所求的概率为:=故答案为:点评:本题考查古典概型及其概率公式,涉及组合数的应用,属基础题.13.(4分)(2013•浙江)直线y=2x+3被圆x2+y2﹣6x﹣8y=0所截得的弦长等于4.考点:直线与圆的位置关系.专题:计算题;直线与圆.分析:求出圆的圆心与半径,利用圆心距,半径,半弦长满足勾股定理,求解弦长即可.解答:解:圆x2+y2﹣6x﹣8y=0的圆心坐标(3,4),半径为5,圆心到直线的距离为:,因为圆心距,半径,半弦长满足勾股定理,所以直线y=2x+3被圆x2+y2﹣6x﹣8y=0所截得的弦长为:2×=4.14.(4分)(2013•浙江)某程序框图如图所示,则该程序运行后输出的值等于.考点:程序框图.专题:图表型.分析:由题意可知,该程序的作用是求解S=1++++的值,然后利用裂项求和即可求解.解答:解:由题意可知,该程序的作用是求解S=1++++的值.而S=1++++=1+1﹣+﹣+﹣+﹣=.故答案为:.点评:本题考查了程序框图中的循环结构的应用,解题的关键是由框图的结构判断出框图的计算功能.15.(4分)(2013•浙江)设z=kx+y,其中实数x、y满足若z的最大值为12,则实数k=2.考点:简单线性规划.专题:计算题;不等式的解法及应用.分析:作出题中不等式组表示的平面区域,得如图的△ABC及其内部,再将目标函数z=kx+y对应的直线进行平移.经讨论可得当当k<0时,找不出实数k的值使z的最大值为12;当k≥0时,结合图形可得:当l经过点C时,z max=F(4,4)=4k+4=12,解得k=2,得到本题答案.解答:解:作出不等式组表示的平面区域,得到如图的△ABC及其内部,其中A(2,0),B(2,3),C(4,4)设z=F(x,y)=kx+y,将直线l:z=kx+y进行平移,可得①当k<0时,直线l的斜率﹣k>0,由图形可得当l经过点B(2,3)或C(4,4)时,z可达最大值,此时,z max=F(2,3)=2k+3或z max=F(4,4)=4k+4但由于k<0,使得2k+3<12且4k+4<12,不能使z的最大值为12,故此种情况不符合题意;②当k≥0时,直线l的斜率﹣k≤0,由图形可得当l经过点C时,目标函数z达到最大值此时z max=F(4,4)=4k+4=12,解之得k=2,符合题意综上所述,实数k的值为2故答案为:2点评:本题给出二元一次不等式组,在目标函数z=kx+y的最大值为12的情况下求参数k的值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.16.(4分)(2013•浙江)设a,b∈R,若x≥0时恒有0≤x4﹣x3+ax+b≤(x2﹣1)2,则ab等于﹣1.考点:函数恒成立问题.专题:转化思想;函数的性质及应用.分析:由题意,x≥0时恒有0≤x4﹣x3+ax+b≤(x2﹣1)2,考察(x2﹣1)2,发现当x=±1时,其值都为0,再对照不等式左边的0,可由两边夹的方式得到参数a,b满足的方程,从而解出它们的值,即可求出积解答:解:验证发现,当x=1时,将1代入不等式有0≤a+b≤0,所以a+b=0;当x=﹣1时,将﹣1代入不等式有0≤2﹣a+b≤0,所以b﹣a=﹣2联立以上二式得:a=1,b=﹣1所以ab=﹣1故答案为﹣1点评:本题考查函数恒成立的最值问题,由于所给的不等式较为特殊,可借助赋值法得到相关的方程直接求解,本题解法关键是观察出不等式右边为零时的自变量的值,将问题灵活转化是解题的关键17.(4分)(2013•浙江)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于2.考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:由题意求得=,||==,从而可得===,再利用二次函数的性质求得的最大值.解答:解:∵、为单位向量,和的夹角等于30°,∴=1×1×cos30°=.∵非零向量=x+y,∴||===,∴====,故当=﹣时,取得最大值为2,故答案为2.点评:本题主要考查两个向量的数量积的运算,求向量的模,利用二次函数的性质求函数的最大值,属于中档题.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(14分)(2013•浙江)在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(Ⅰ)求角A的大小;(Ⅱ)若a=6,b+c=8,求△ABC的面积.考点:正弦定理;余弦定理.专题:解三角形.分析:(Ⅰ)利用正弦定理化简已知等式,求出sinA的值,由A为锐角,利用特殊角的三角函数值即可求出A的度数;(Ⅱ)由余弦定理列出关系式,再利用完全平方公式变形,将a,b+c及cosA的值代入求出bc的值,再由sinA的值,利用三角形面积公式即可求出三角形ABC的面积.解答:解:(Ⅰ)由2asinB=b,利用正弦定理得:2sinAsinB=sinB,∵sinB≠0,∴sinA=,又A为锐角,则A=;(Ⅱ)由余弦定理得:a2=b2+c2﹣2bc•cosA,即36=b2+c2﹣bc=(b+c)2﹣3bc=64﹣3bc,∴bc=,又sinA=,则S△ABC=bcsinA=.点评:此题考查了正弦定理,三角形的面积公式,熟练掌握正弦定理是解本题的关键.19.(14分)(2013•浙江)在公差为d的等差数列{a n}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(Ⅰ)求d,a n;(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|a n|.考点:数列的求和;等差数列的通项公式;等比数列的性质.专题:等差数列与等比数列.分析:(Ⅰ)直接由已知条件a1=10,且a1,2a2+2,5a3成等比数列列式求出公差,则通项公式a n可求;(Ⅱ)利用(Ⅰ)中的结论,得到等差数列{a n}的前11项大于等于0,后面的项小于0,所以分类讨论求d <0时|a1|+|a2|+|a3|+…+|a n|的和.解答:解:(Ⅰ)由题意得,即,整理得d2﹣3d﹣4=0.解得d=﹣1或d=4.当d=﹣1时,a n=a1+(n﹣1)d=10﹣(n﹣1)=﹣n+11.当d=4时,a n=a1+(n﹣1)d=10+4(n﹣1)=4n+6.所以a n=﹣n+11或a n=4n+6;(Ⅱ)设数列{a n}的前n项和为S n,因为d<0,由(Ⅰ)得d=﹣1,a n=﹣n+11.则当n≤11时,.当n≥12时,|a1|+|a2|+|a3|+…+|a n|=﹣S n+2S11=.综上所述,|a1|+|a2|+|a3|+…+|a n|=.点评:本题考查了等差数列、等比数列的基本概念,考查了等差数列的通项公式,求和公式,考查了分类讨论的数学思想方法和学生的运算能力,是中档题.20.(15分)(2013•浙江)如图,在四棱锥P﹣ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G为线段PC上的点.(Ⅰ)证明:BD⊥面PAC;(Ⅱ)若G是PC的中点,求DG与PAC所成的角的正切值;(Ⅲ)若G满足PC⊥面BGD,求的值.考点:直线与平面垂直的判定;直线与平面所成的角;点、线、面间的距离计算.专题:空间位置关系与距离;空间角.分析:(Ⅰ)由PA⊥面ABCD,可得PA⊥BD;设AC与BD的交点为O,则由条件可得BD是AC的中垂线,故O为AC的中点,且BD⊥AC.再利用直线和平面垂直的判定定理证得BD⊥面PAC.(Ⅱ)由三角形的中位线性质以及条件证明∠DGO为DG与平面PAC所成的角,求出GO和AC的值,可得OC、OD的值,再利用直角三角形中的边角关系求得tan∠DGO的值.(Ⅲ)先证PC⊥OG,且PC==.由△COG∽△PCA,可得,解得GC的值,可得PG=PC﹣GC 的值,从而求得的值.解答:解:(Ⅰ)证明:∵在四棱锥P﹣ABCD中,PA⊥面ABCD,∴PA⊥BD.∵AB=BC=2,AD=CD=,设AC与BD的交点为O,则BD是AC的中垂线,故O为AC的中点,且BD⊥AC.而PA∩AC=A,∴BD⊥面PAC.(Ⅱ)若G是PC的中点,则GO平行且等于PA,故由PA⊥面ABCD,可得GO⊥面ABCD,∴GO⊥OD,故OD⊥平面PAC,故∠DGO为DG与平面PAC所成的角.由题意可得,GO=PA=.△ABC中,由余弦定理可得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+4﹣2×2×2×cos120°=12,∴AC=2,OC=.∵直角三角形COD中,OD==2,∴直角三角形GOD中,tan∠DGO==.(Ⅲ)若G满足PC⊥面BGD,∵OG⊂平面BGD,∴PC⊥OG,且PC==.由△COG∽△PCA,可得,即,解得GC=,∴PG=PC﹣GC=﹣=,∴==.点评:本题主要考查直线和平面垂直的判定定理的应用,求直线和平面所成的角,空间距离的求法,属于中档题.21.(15分)(2013•浙江)已知a∈R,函数f(x)=2x3﹣3(a+1)x2+6ax(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)若|a|>1,求f(x)在闭区间[0,|2a|]上的最小值.考点:利用导数研究曲线上某点切线方程;利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:(Ⅰ)求导函数,确定切线的斜率,求出切点的坐标,即可求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)分类讨论,利用导数确定函数的单调性,从而可得极值,即可得到最值.解答:解:(Ⅰ)当a=1时,f′(x)=6x2﹣12x+6,所以f′(2)=6∵f(2)=4,∴曲线y=f(x)在点(2,f(2))处的切线方程为y=6x﹣8;(Ⅱ)记g(a)为f(x)在闭区间[0,|2a|]上的最小值.f′(x)=6x2﹣6(a+1)x+6a=6(x﹣1)(x﹣a)令f′(x)=0,得到x1=1,x2=a当a>1时,x 0 (0,1) 1 (1,a) a (a,2a)2af′(x)+ 0 ﹣0 +f(x)0 单调递增极大值3a﹣1 单调递减极小值单调递增4a3e2(3﹣a)比较f(0)和f(a)=a2(3﹣a)的大小可得g(a)=;当a<﹣1时,X 0 (0,1) 1 (1,﹣2a)﹣2af′x)﹣0 +f(x)0 单调递减极小值3a﹣1 单调递增﹣28a3﹣24a2∴g(a)=3a﹣1∴f(x)在闭区间[0,|2a|]上的最小值为g(a)=.点评:本题考查导数知识的运用,考查导数的几何意义,考查函数的最值,考查学生的计算能力,考查分类讨论的数学思想,属于中档题.22.(14分)(2013•浙江)已知抛物线C的顶点为O(0,0),焦点F(0,1)(Ⅰ)求抛物线C的方程;(Ⅱ)过F作直线交抛物线于A、B两点.若直线OA、OB分别交直线l:y=x﹣2于M、N两点,求|MN|的最小值.考点:直线与圆锥曲线的关系;抛物线的标准方程.专题:综合题;数形结合;转化思想;圆锥曲线的定义、性质与方程.分析:(I)由抛物线的几何性质及题设条件焦点F(0,1)可直接求得p,确定出抛物线的开口方向,写出它的标准方程;(II)由题意,可A(x1,y1),B(x2,y2),直线AB的方程为y=kx+1,将直线方程与(I)中所求得方程联立,再结合弦长公式用所引入的参数表示出|MN|,根据所得的形式作出判断,即可求得最小值.解答:解:(I)由题意可设抛物线C的方程为x2=2py(p>0)则=1,解得p=2,故抛物线C的方程为x2=4y (II)设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+1由消去y,整理得x2﹣4kx﹣4=0所以x1+x2=4k,x1x2=﹣4,从而有|x1﹣x2|==4由解得点M的横坐标为x M===,同理可得点N的横坐标为x N=所以|MN|=|x M﹣x N|=|﹣|=8||=令4k﹣3=t,t不为0,则k=当t>0时,|MN|=2>2当t<0时,|MN|=2=2≥综上所述,当t=﹣时,|MN|的最小值是点评:本题主要考查抛物线的几何性质,直线与抛物线的位置关系,同时考查解析几何的基本思想方法和运算求解能力,本题考查了数形结合的思想及转化的思想,将问题恰当的化归可以大大降低题目的难度,如本题最后求最值时引入变量t,就起到了简化计算的作用。
2013年浙江卷数学试题及答案(文)
2013·浙江卷(文科数学)1. 设集合S ={x |x >-2},T ={x |-4≤x ≤1},则S ∩T =( ) A .[-4,+∞) B .(-2,+∞) C .[-4,1] D .(-2,1]1.D [解析] 从数轴可知,S ∩T =(-2,1].所以选择D.2. 已知i 是虚数单位,则(2+i)(3+i)=( ) A .5-5i B .7-5i C .5+5i D .7+5i2.C [解析] (2+i)(3+i)=6-1+i(2+3)=5+5i.所以选择C. 3. 若α∈,则“α=0”是“sin α<cos α”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件3.A [解析] 若α=0,则sin 0=0<cos 0=1,而sin α<cos α,则2sin α-π4<0,所以α=0是sin α<cos α的充分不必要条件.所以选择A.4., 设m ,n 是两条不同的直线,α,β是两个不同的平面( ) A .若m ∥α,n ∥α,则m ∥n B .若m ∥α,m ∥β,则α∥β C .若m ∥n ,m ⊥α,则n ⊥α D .若m ∥α,α⊥β,则m ⊥β4.C [解析] 对于选项C ,若m ∥n ,m ⊥α,易得n ⊥α.所以选择C.5. 已知某几何体的三视图(单位: cm)如图1-1所示,则该几何体的体积是( )图1-1A .108 cm 3B .100 cm 3C .92 cm 3D .84 cm 35.B [解析] 此直观图是由一个长方体挖去一个三棱锥而得,如图所示其体积为3×6×6-13×12×3×4×4=108-8=100(cm 3).所以选择B.6. 函数f (x )=sin x cos x +32cos 2x 的最小正周期和振幅分别是( ) A .π,1 B .π,2 C .2π,1 D .2π,26.A [解析] f (x )=12sin 2x +32cos 2x =sin2x +π3,则最小正周期为π;振幅为1,所以选择A.7. 已知a ,b ,c ∈,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( ) A .a >0,4a +b =0 B .a <0,4a +b =0C .a >0,2a +b =0D .a <0,2a +b =07.A [解析] 若f (0)=f (4),则函数f (x )的图像关于直线x =2对称,则-b2a =2,则4a+b =0,而f (0)=f (4)>f (1),故开口向上,所以a >0,4a +b =0.所以选择A.8. 已知函数y =f (x )的图像是下列四个图像之一,且其导函数y =f ′(x )的图像如图1-2所示,则该函数的图像是( )图1-2图1-38.B [解析] 由导函数的图像可知,f ′(x )>0恒成立,则f (x )在(-1,1)上递增,且导函数为偶函数,则函数f (x )为奇函数,再从导函数的图像可知,当x ∈(0,1)时,其二阶导数f ″(x )<0,则f (x )在x ∈(0,1)时,其图像是向上凸的,或者y 随着x 增长速度越来越缓慢,故选择B.9., 如图1-4所示,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )图1-4A. 2B. 3C.32D. 629.D [解析] 设双曲线实半轴长为a ,焦半距为c ,|AF 1|=m ,|AF 2|=n ,由题意知c =3,⎩⎪⎨⎪⎧m +n =4,m 2+n 2=(2c )2=12,2mn =(m +n )2-(m 2+n 2)=4,(m -n )2=m 2+n 2-2mn =8,2a =m -n =2 2,a =2,则双曲线的离心率e =c a =32=62,选择D.10. 设a ,b ∈,定义运算“∧”和“∨”如下:a ∧b =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b , a ∨b =⎩⎪⎨⎪⎧b ,a ≤b ,a ,a >b .若正数a ,b ,c ,d 满足ab ≥4,c +d ≤4,则( ) A .a ∧b ≥2,c ∧d ≤2 B .a ∧b ≥2,c ∨d ≥2 C .a ∨b ≥2,c ∧d ≤2 D .a ∨b ≥2,c ∨d ≥210.C [解析] 从定义知,a ∧b =min(a ,b ),即求a ,b 中的最小值;a ∨b =max(a ,b ),即求a ,b 中的最大值;假设0<a <2,0<b <2,则ab <4,与已知ab ≥4相矛盾,则假设不成立,故max(a ,b )≥2,即a ∨b ≥2;假设c >2,d >2,则c +d >4,与已知c +d ≤4相矛盾,则假设不成立,故min(a ,b )≤2,即c ∧d ≤2.故选择C.11. 已知函数f (x )= x -1.若f (a )=3,则实数a = ________. 11.10 [解析] f (a )=a -1=3.则a -1=9,a =10.12. 从3男3女共6名同学中任选2名(每名同学被选中的机会均等),这2名都是女同学的概率等于________.12.15 [解析] 设选2名都是女同学的事件为A ,从6名同学中选2名,共有15种情况,而从3名女生中选2名,有3种情况,所以P (A )=315=15.13. 直线y =2x +3被圆x 2+y 2-6x -8y =0所截得的弦长等于________.13.4 5 [解析] 圆的标准方程为(x -3)2+(y -4)2=25,圆心到直线的距离为d =|2×3-4+3|5=5,所以弦长为252-(5)2=220=4 5. 14. 若某程序框图如图1-5所示,则该程序运行后输出的值等于________.图1-514.95 [解析] S =1+11×2+12×3+…+14×5=1+1-12+12-13+…+14-15=1+1-15=2-15=95. 15. 设z =kx +y ,其中实数x ,y 满足⎩⎪⎨⎪⎧x ≥2,x -2y +4≥0,2x -y -4≤0.若z 的最大值为12,则实数k =________.15.2 [解析] 不等式组表示的可行区域为如图所示的三角形ABC 及其内部,A (2,0),B (4,4),C (2,3),要使z 的最大值为12,只能经过B 点,此时12=4k +4,k =2.16. 设a ,b ∈,若x ≥0时恒有0≤x 4-x 3+ax +b ≤(x 2-1)2,则ab =________. 16.-1 [解析] 当x =1时,0≤a +b ≤0,则a +b =0,b =-a ,令f (x )=(x 2-1)2-(x 4-x 3+ax -a )=x 3-2x 2-ax +a +1,则f (x )≥0在x ≥0时恒成立,f (1)=1-2-a +a +1=0,则x =1应为极小值点,f ′(x )=3x 2-4x -a ,故f ′(1)=0,a =-1,b =1,ab =-1.17. 设,为单位向量,非零向量=x +y ,x ,y ∈若,的夹角为π6,则|x ||b|的最大值等于________.17.2 [解析] |x ||b |=|x |2|b |2=x 2x 2e 21+2xy e 1·e 2+y 2e 22=x 2x 2+2xy ×32+y 2=11+3y x +y x2=1y x +322+14≤114=2. 18. 在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且2a sin B = 3b .(1)求角A 的大小;(2)若a =6,b +c =8,求△ABC 的面积.18.解:(1)由2a sin B = 3b 及正弦定理a sin A =bsin B ,得sin A = 32.因为A 是锐角,所以A =π3.(2)由余弦定理a 2=b 2+c 2-2bc cos A 得b 2+c 2-bc =36.又b +c =8,所以bc =283.由三角形面积公式S =12bc sin A ,得△ABC 的面积为7 33.19. 在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列.(1)求d ,a n ;(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |. 19.解:(1)由题意得5a 3·a 1=(2a 2+2)2, 即d 2-3d -4=0.故d =-1或d =4.所以a n =-n +11,n ∈*或 a n =4n +6,n ∈*.(2)设数列{a n }的前n 项和为S n ,因为d <0,由(1)得d =-1,a n =-n +11,则 当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n =-12n 2+212n .当n ≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=-S n +2S 11=12n 2-212n +110.综上所述,|a 1|+|a 2|+|a 3|+…+|a n |=⎩⎨⎧-12n 2+212n ,n ≤11,12n 2-212n +110,n ≥12.20. 如图1-6所示,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AB =BC =2,AD =CD = 7,P A = 3,∠ABC =120°,G 为线段PC 上的点. (1)证明:BD ⊥平面APC ;(2)若G 为PC 的中点,求DG 与平面APC 所成的角的正切值;(3)若G 满足PC ⊥平面BGD ,求PGGC的值.图1-620.解:(1)证明:设点O 为AC ,BD 的交点.由AB =BC ,AD =CD ,得BD 是线段AC 的中垂线. 所以O 为AC 的中点,BD ⊥AC .又因为P A ⊥平面ABCD ,BD ⊂平面 ABCD , 所以P A ⊥BD .所以BD ⊥平面APC .(2)联结OG .由(1)可知OD ⊥平面APC ,则DG 在平面APC 内的射影为OG ,所以∠OGD 是DG 与平面APC 所成的角.由题意得OG =12P A =32.在△ABC 中,AC =AB 2+BC 2-2AB ·BC ·cos ∠ABC =2 3,所以OC =12AC = 3.在直角△OCD 中,OD =CD 2-OC 2=2. 在直角△OGD 中,tan ∠OGD =OD OG =4 33.所以DG 与平面APC 所成的角的正切值为4 33.(3)因为PC ⊥平面BGD ,OG ⊂平面BGD ,所以PC ⊥OG . 在直角△P AC 中,得PC =15, 所以GC =AC ·OC PC =2 155.从而PG =3 155,所以PG GC =32.21. 已知a ∈,函数f (x )=2x 3-3(a +1)x 2+6ax .(1)若a =1,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)若|a |>1,求f (x )在闭区间[0,2|a |]上的最小值.21.解:(1)当a =1时, f ′(x )=6x 2-12x +6,所以f ′(2)=6. 又因为f (2)=4,所以切线方程为y =6x -8. (2)记g (a )为f (x )在闭区间[0,2|a |]上的最小值. f ′(x )=6x 2-6(a +1)x +6a =6(x -1)(x -a ). 令f ′(x )=0,得x 1=1,x 2=a . 当a >1时, x 0 (0,1) 1 (1,a ) a (a ,2a ) 2a f ′(x ) + 0 - 0 + f (x )单调 递增极大值 3a -1单调 递减极小值 a 2(3-a )单调 递增4a 3比较f (0)=0和f (a )=a 2(3-a )的大小可得g (a )=⎩⎪⎨⎪⎧0,1<a ≤3,a 2(3-a ),a >3.当a <-1时, x 0 (0,1) 1 (1,-2a )-2a f ′(x ) - 0 + f (x )单调 递减极小值 3a -1单调 递增-28a 3-24a 2得g (a )=3a -1.综上所述,f (x )在闭区间[0,2|a |]上的最小值为 g (a )=⎩⎪⎨⎪⎧3a -1,a <-1,0,1<a ≤3,a 2(3-a ),a >3.图1-122. 已知抛物线C 的顶点为O (0,0),焦点为F (0,1). (1)求抛物线C 的方程;(2)过点F 作直线交抛物线C 于A ,B 两点,若直线AO ,BO 分别交直线l :y =x -2于M ,N 两点,求|MN |的最小值.22.解:(1)由题意可设抛物线C 的方程为x 2=2py (p >0),则p2=1,p =2,所以抛物线C的方程为x 2=4y .(2) 设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =kx +1.由⎩⎪⎨⎪⎧y =kx +1,x 2=4y 消去y ,整理得x 2-4kx -4=0. 所以x 1+x 2=4k ,x 1x 2=-4. 从而|x 1-x 2|=4k 2+1.由⎩⎪⎨⎪⎧y =y 1x 1x ,y =x -2,解得点M 的横坐标x M =2x 1x 1-y 1=2x 1x 1-x 214=84-x 1.同理点N 的横坐标x N =84-x 2. 所以|MN |= 2|x M -x N |= 2⎪⎪⎪⎪84-x 1-84-x 2=8 2⎪⎪⎪⎪⎪⎪x 1-x 2x 1x 2-4(x 1+x 2)+16=8 2 k 2+1|4k -3|.令4k -3=t ,t ≠0,则k =t +34.当t >0时,|MN |=2 2 25t 2+6t+1>2 2; 当t <0时,|MN |=2 2⎝⎛⎭⎫5t +352+1625≥852. 综上所述,当t =-253,即k =-43时,|MN |的最小值是85 2.。
浙江省考试院2013届高三测试卷数学(文)试题--含答案
测试卷数学(文科)姓名______________ 准考证号___________________ 本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至3页,非选择题部分4至5页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。
2.每小题选出答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
参考公式:球的表面积公式S=4πR2球的体积公式V=43πR3其中R表示球的半径锥体的体积公式V=13 Sh其中S表示锥体的底面积, h表示锥体的高柱体的体积公式V=Sh其中S表示柱体的底面积, h表示柱体的高台体的体积公式()1213V h S S=其中S1, S2分别表示台体的上、下底面积, h表示台体的高如果事件A, B互斥, 那么P(A+B)=P(A)+P(B)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={-2,-1,1,2 },B={x | x2-x-2≥0 },则A∩B=A.{-1,1,2 } B.{-2,-1,2 }C.{-2,1,2 } D.{-2,-1,1}2.已知a∈R,则“a>0”是“a+1a≥2”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.已知直线l,m和平面α,A.若l∥m,m⊂α,则l∥αB.若l∥α,m⊂α,则l∥mC.若l⊥m,l⊥α,则m⊥αD.若l⊥α,m⊂α,则l⊥m 4.若函数f(x) (x∈R)是奇函数,函数g(x) (x∈R)是偶函数,则A.函数f[g(x)]是奇函数B.函数g[f(x)]是奇函数C.函数f(x)⋅g(x)是奇函数D.函数f(x)+g(x)是奇函数5一个最低分后,所剩数据的平均数与方差分别为A.86,3 B.86,53C.85,3 D.85,36.函数y=sin (2x+π4)的图象可由函数y=cos 2x的图象A.向左平移π8个单位长度而得到B.向右平移π8个单位长度而得到C.向左平移π4个单位长度而得到D.向右平移π4个单位长度而得到7.如图,在四边形ABCD中,AB⊥BC,AD⊥DC.若|AB|=a,|AD|=b,则AC BD⋅=A.a2-b2B.b2-a2C.a2+b2D.ab8.设函数f(x)=x3-4x+a,0<a<2.若f(x)的三个零点为x1,x2,x3,且x1<x2<x3,则A.x1>-1 B.x2<0 C.x2>0 D.x3>29.已知双曲线x2-22y=1,点A(-1,0),在双曲线上任取两点P,Q满足AP⊥AQ,则直线PQ恒过点A.(3,0) BC.(-3,0) D10.如图,函数y=f(x)的图象为折线ABC,设则函数y=g(x)的图象为A.B.(第7题图)y yC.D.非选择题部分(共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
浙江省2013年高考数学模拟(提优)测试一试题(含解析)文 新人教A版
浙江省2013年高考模拟冲刺(提优)测试一数学(文)试题一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)设∪=R,P={x|x2<1},Q={x|x≥0},则P∩(∁U Q)=()A.{x|﹣1<x<0} B.{x|x<0} C.{x|x<﹣1} D.{x|0<x<1}考点:交、并、补集的混合运算.分析:求解二次不等式化简集合P,然后直接利用交集和补集的运算求解.解答:解:由P={x|x2<1}={x|﹣1<x<1},Q={x|x≥0},所以∁U Q={x|x<0},所以P∩(∁U Q)={x|﹣1<x<1}∩{x|x<0}={x|﹣1<x<0}.故选A.点评:本题考查了交、并、补集的混合运算,考查了二次不等式的解法,是基础题.2.(5分)如图,阴影部分(含边界)所表示的平面区域对应的约束条件是()A.B.C.D.考点:简单线性规划的应用.专题:不等式的解法及应用.分析:由图解出两个边界直线对应的方程,由二元一次不等式与区域的对应关系从选项中选出正确选项.解答:解:由图知,一边界过(0,1),(﹣1,0)两点,故其直线方程为x﹣y+1=0另一边界直线过(0,2),(﹣2,0)两点,故其直线方程为x﹣y+2=0由不等式与区域的对应关系知区域应满足x﹣y+1≤0与x﹣y+2≥0,且x≤0,y≥0.故区域对应的不等式组为.故选A.点评:考查用两点法求直线方程与二元一次方程与区域的对应关系,是基本概念应用的题型.3.(5分)如图是某几何体的三视图,则该几何体的体积为()A.3B.6C.8D.12考点:由三视图求面积、体积.专题:计算题.分析:利用三视图复原的几何体的形状,通过三视图的数据求解几何体的体积即可.解答:解:由题意三视图复原的几何体是放倒的四棱柱,底面是直角梯形,上底边长为1,下底边长为2,高为2的梯形,棱柱的高为2,并且是直棱柱,所以棱柱的体积为:=6.故选B.点评:本题考查三视图与几何体的直观图的关系,判断三视图复原的几何体的形状是解题的关键.4.(5分)已知a,b为实数,且ab≠0,则下列命题错误的是()A.若a>0,b>0,则B.若,则a≥0,b≥0C.若a≠b,则D.若,则a≠b考点:命题的真假判断与应用.专题:计算题;不等式的解法及应用.分析:由基本不等式可得A正确;选项B,有意义可得ab不可能异号,结合可得ab不会同为负值;选项C,可举反例说明错误;选项D平方可得(a﹣b)2>0,显然a≠b解答:解:选项A,由基本不等式可得:若a>0,b>0,则,故A正确;选项B,由有意义可得ab不可能异号,结合可得ab不会同为负值,故可得a≥0,b≥0,故正确;选项C,需满足a,b为正数才成立,比如举a=﹣1,b=2,显然满足a≠b,但后面的式子无意义,故错误;选项D,由平方可得(a﹣b)2>0,显然可得a≠b,故正确.故选C点评:本题考查命题真假的判断与应用,涉及基本不等式的知识,属基础题.5.(5分)函数f(x)=sin(ωx+ϕ)(x∈R)的部分图象如图所示,如果,且f(x1)=f(x2),则f(x1+x2)=()A.B.C.D.1考点:由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的对称性.专题:计算题;三角函数的图像与性质.分析:通过函数的图象求出函数的周期,利用函数的图象经过的特殊点求出函数的初相,得到函数的解析式,利用函数的图象与函数的对称性求出f(x1+x2)即可.解答:解:由图知,T=2×=π,∴ω=2,因为函数的图象经过(﹣),0=sin(﹣+ϕ)∵,所以ϕ=,∴,,所以.故选C.点评:本题考查三角函数的解析式的求法,函数的图象的应用,函数的对称性,考查计算能力.6.(5分)如图,在正方体ABCD﹣A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列说法错误的是()A.M N与CC1垂直B.M N与AC垂直C.M N与BD平行D.M N与A1B1平行考点:棱柱的结构特征.专题:证明题.分析:先利用三角形中位线定理证明MN∥BD,再利用线面垂直的判定定理定义证明MN与CC1垂直,由异面直线所成的角的定义证明MN与AC垂直,故排除A、B、C选D解答:解:如图:连接C1D,BD,在三角形C1DB中,MN∥BD,故C正确;∵CC1⊥平面ABCD,∴CC1⊥BD,∴MN与CC1垂直,故A正确;∵AC⊥BD,MN∥BD,∴MN与AC垂直,B正确;∵A1B1与BD异面,MN∥BD,∴MN与A1B1不可能平行,D错误故选D点评:本题主要考查了正方体中的线面关系,线线平行与垂直的证明,异面直线所成的角及其位置关系,熟记正方体的性质是解决本题的关键7.(5分)(2013•浙江模拟)已知等比数列{a n}的公比为q,则“0<q<1”是“{a n}为递减数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:等差数列与等比数列.分析:可举﹣1,,…,说明不充分;举等比数列﹣1,﹣2,﹣4,﹣8,…说明不必要,进而可得答案.解答:解:可举a1=﹣1,q=,可得数列的前几项依次为﹣1,,…,显然不是递减数列,故由“0<q<1”不能推出“{a n}为递减数列”;可举等比数列﹣1,﹣2,﹣4,﹣8,…显然为递减数列,但其公比q=2,不满足0<q <1,故由“{a n}为递减数列”也不能推出“0<q<1”.故“0<q<1”是“{a n}为递减数列”的既不充分也不必要条件.故选D点评:本题考查充要条件的判断,涉及等比数列的性质,举反例是解决问题的关键,属基础题.8.(5分)偶函数f(x)在[0,+∞)上为增函数,若不等式f(ax﹣1)<f(2+x2)恒成立,则实数a的取值范围为()A.B.(﹣2,2)C.D.考点:奇偶性与单调性的综合.专题:计算题;函数的性质及应用.分析:根据偶函数图象关于原点对称,得f(x)在[0,+∞)上单调增且在(﹣∞,0]上是单调减函,由此结合2+x2是正数,将原不等式转化为|ax﹣1|<2+x2恒成立,去绝对值再用一元二次不等式恒成立的方法进行处理,即得实数a的取值范围.解答:解:∵f(x)是偶函数,图象关于y轴对称∴f(x)在[0,+∞)上的单调性与的单调性相反由此可得f(x)在(﹣∞,0]上是减函数∴不等式f(ax﹣1)<f(2+x2)恒成立,等价于|ax﹣1|<2+x2恒成立即不等式﹣2﹣x2<ax﹣1<2+x2恒成立,得的解集为R∴结合一元二次方程根的判别式,得:a2﹣4<0且(﹣a)2﹣12<0解之得﹣2<a<2故选:B点评:本题给出偶函数的单调性,叫我们讨论关于x的不等式恒成立的问题,着重考查了函数的单调性与奇偶性、一元二次不等式解法等知识,属于基础题.9.(5分)已知F1,F2分别是双曲线的左、右焦点,过点F2与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M,若点M在以线段F1F2为直径的圆外,则双曲线离心率的取值范围是()A.B.C.D.(2,+∞)考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:根据斜率与平行的关系即可得出过焦点F2的直线,与另一条渐近线联立即可得到交点M的坐标,再利用点M在以线段F1F2为直径的圆外和离心率的计算公式即可得出.解答:解:如图所示,过点F2(c,0)且与渐近线平行的直线为,与另一条渐近线联立解得,即点M.∴|OM|==.∵点M在以线段F1F2为直径的圆外,∴|OM|>c,∴,解得.∴双曲线离心率e=.故双曲线离心率的取值范围是(2,+∞).故选D.点评:熟练掌握平行线与向量的关系、双曲线的渐近线、两点间的距离计算公式、离心率的计算公式、点与圆的位置关系是解题的关键.10.(5分)下列命题不正确的是()A.若a>b>0,则log2a+log3b>log2b+log3aB.若log2a+log3b>log2b+log3a,则a>b>0C.若a>b>2013,则D.若,则a>b>2013考点:命题的真假判断与应用.专题:压轴题;函数的性质及应用;不等式的解法及应用.分析:考察函数f(x)=log2x﹣log3x,求导f′(x)=>0在x∈(0,+∞)恒成立,利用导数与单调性的关系得出f(x)=log2x﹣log3x在x∈(0,+∞)是增函数,从而判断A,B正确.再考察函数g(x)=2x﹣log2x,同理可得g(x)=2x﹣log2x,在x∈(2013,+∞)是增函数,从而得出C选项正确,D错误.解答:解:考察函数f(x)=log2x﹣log3x,由于f′(x)=>0在x∈(0,+∞)恒成立,故f(x)=log2x﹣log3x在x∈(0,+∞)是增函数,∴a>b>0,⇔log2a﹣log3a>log2b﹣log3b⇔log2a+log3b>log2b+log3a.故A,B正确.考察函数g(x)=2x﹣log2x,同理可得g(x)=2x﹣log2x,在x∈(2013,+∞)是增函数,∴若a>b>2013,则,C选项正确,D错误.故选D.点评:本题主要考查了命题的真假判断与应用,以及对数函数性质的综合应用,属于基础题.二、填空题11.(4分)已知f(x)为奇函数,当x>0时,f(x)=log2x,则f(﹣4)= ﹣2 .考点:函数的值.专题:函数的性质及应用.分析:利用奇函数的性质即可得出f(﹣4)=﹣f(4),再利用对数的运算法则即可得出.解答:解:∵f(x)为奇函数,当x>0时,f(x)=log2x,∴f(﹣4)=﹣f(4)=﹣log24=﹣2.故答案为﹣2.点熟练掌握奇函数的性质、对数的运算法则是解题的关键.评:12.(4分)(2009•嘉定区二模)设i是虚数单位,则= 1+i .考点:复数代数形式的乘除运算.专题:计算题.分析:先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分子和分母再进行复数的除法运算,整理成最简形式.解答:解:∵===1+i,∴=1+i,故答案为:1+i.点评:本题考查复数的除法运算,复数的加减乘除运算是比较简单的问题,在高考时有时会出现,若出现则是要一定要得分的题目.13.(4分)某程序框图如图所示,则该程序运行后输出的a的值为﹣1 .考点:程序框图.专题:图表型.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算并输出S值.模拟程序的运行过程,用表格对程序运行过程中各变量的值进行分析,不难得到最终的输出结果.解答:解:程序在运行过程中各变量的值如下表示:S i a是否继续循环循环前0 1 1/第一圈1 2 0 是第二圈1 3﹣1 是第三圈0 4 1 是第四圈1 5 0 是第五圈1 6﹣1 是…依此类推,a的值呈周期性变化:1,0,﹣1,1,0,﹣1,…第2012圈1 2013﹣1否故最终的输出结果为:﹣1,故答案为:﹣1.点评:本题考查循环结构的程序框图,解决本题的关键是弄清开始和结束循环的条件.属于基础题.14.(4分)各项都是正数的等比数列{a n}中,首项a1=2,前3项和为14,则a4+a5+a6值为112 .考点:等比数列的通项公式;等比数列的前n项和.专题:等差数列与等比数列.分析:设出等比数列的公比,且各项都是正数,由首项a1=2,前3项和为14列式求出公比,则a4+a5+a6值可求.解答:解:设等比数列{a n}的公比为q,由a1=2,前3项和为14,得:,所以q2+q﹣6=0,解得:q=﹣3或q=2.因为等比数列的各项都是正数,所以q=2.则a4+a5+a6=.故答案为112.点评:本题考查了等比数列的通项公式,考查了等比数列的前n项和,解答时注意公比是否有可能等于1,此题是基础题.15.(4分)在一个袋子中装有分别标注数字1,2,3,4,5的五个小球中随机取出2个小球,则取出的小球标注的数字之和被3整数的概率是.考点:古典概型及其概率计算公式.专题:概率与统计.分析:所有的取法共有=10种,而2个数字和能被3整除的取法有4种,由此求得取出的小球标注的数字之和被3整数的概率.解解:所有的取法共有=10种,而2个数字和能被3整除的取法有(12)、(15)、答:(24)、(45)共4种,故取出的小球标注的数字之和被3整数的概率是=,故答案为.点本题考查古典概型及其概率计算公式的应用,属于基础题.评:16.(4分)如图,Rt△ABC中,∠C=90°,其内切圆切AC与D点,O为圆心.若||=2||=2,则= ﹣3 .平面向量数量积的运算.考点:专平面向量及应用.题:分由两个向量垂直的性质可得=0,=0,再根据=()析:•,结合条件运算求得结果.解解:∵Rt△AB C中,∠C=90°,其内切圆切AC与D点,O为圆心,||=2||=2,答:可得,且||=2,||=1.再由圆的切线性质可得,故有=0,=0.显然<,>=π,||=||+||=1+2=3.∴=()•=++=0+1×3×cosπ+0=﹣3,故答案为﹣3.点评:本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量垂直的性质,属于中档题.17.(4分)直线l过椭圆的左焦点F,且与椭圆相交于P、Q两点,M为PQ的中点,O为原点.若△FMO是以OF为底边的等腰三角形,则直线l的方程为.考点:直线与圆锥曲线的关系.专题:压轴题;圆锥曲线的定义、性质与方程.分析:由椭圆的方程求出椭圆的左焦点,由题意可知直线l的斜率存在且不等于0,写出直线l的方程,和椭圆方程联立后利用根与系数关系得到PQ中点M的横坐标,再由△FMO是以OF为底边的等腰三角形得到M的横坐标,两数相等求出k的值,则直线l 的方程可求.解答:解:由,得a2=2,b2=1,所以c2=a2﹣b2=2﹣1=1.则c=1,则左焦点F(﹣1,0).由题意可知,直线l的斜率存在且不等于0,则直线l的方程为y=kx+k.设l与椭圆相交于P(x1,y1)、Q(x2,y2),联立,得:(2k2+1)x2+4k2x+2k﹣2=0.所以.则PQ的中点M的横坐标为.因为△FMO是以OF为底边的等腰三角形,所以.解得:.所以直线l的方程为.故答案为.点评:本题考查了直线与圆锥曲线的关系,考查了设而不求的方法,解答此题的关键是由△FMO是以OF为底边的等腰三角形得到M点的横坐标,此题是中档题.三、解答题:本大题共5小题,共72分.解答应给出文字说明,证明过程或演算步骤.18.(14分)(2012•杭州一模)在△ABC中,a,b,c分别为内角A,B,C的对边,且2cos (B﹣C)=4sinB•sinC﹣1.(1)求A;(2)若a=3,sin=,求b.考点:正弦定理;三角函数中的恒等变换应用.专题:计算题.分析:(1)由已知利用两角和的余弦公式展开整理,cos(B+C)=﹣.可求B+C,进而可求A(2)由sin,可求cos=,代入sinB=2sin cos可求B,然后由正弦定理,可求b解答:解:(1)由2cos(B﹣C)=4sinBsinC﹣1 得,2(cosBcosC+sinBsinC)﹣4sinBsinC=﹣1,即2(cosBcosC﹣sinBsinC)=﹣1.从而2cos(B+C)=﹣1,得cos(B+C)=﹣.…4分∵0<B+C<π∴B+C=,故A=.…6分(2)由题意可得,0<B<π∴,由sin,得cos=,∴sinB=2sin cos=.…10分由正弦定理可得,∴,解得b=.…12分.点评:本题主要考查了两角和三角公式的应用,由余弦值求解角,同角基本关系、二倍角公式、正弦定理的应用等公式综合应用.19.(14分)已知数列{a n}满足:a1=20,a2=7,a n+2﹣a n=﹣2(n∈N*).(Ⅰ)求a3,a4,并求数列{a n}通项公式;(Ⅱ)记数列{a n}前2n项和为S2n,当S2n取最大值时,求n的值.考点:数列的求和;等差数列的通项公式.专题:计算题;等差数列与等比数列.分析:(I)由a1=20,a2=7,a n+2﹣a n=﹣2,分布令n=1,2即可求解a3,a4,由题意可得数列{a n}奇数项、偶数项分布是以﹣2为公差的等差数列,结合等差数列的通项公式,分n为奇数,n为偶数两种情况可求a n,(II)由s2n=a1+a2+…+a2n=(a1+a3+…+a2n﹣1)+(a2+…+a2n),分组利用等差数列的求和公式可求解答:解:(I)∵a1=20,a2=7,a n+2﹣a n=﹣2∴a3=18,a4=5由题意可得数列{a n}奇数项、偶数项分布是以﹣2为公差的等差数列当n为奇数时,=21﹣n当n为偶数时,=9﹣n∴a n=(II)s2n=a1+a2+…+a2n=(a1+a3+…+a2n﹣1)+(a2+…+a2n)==﹣2n2+29n结合二次函数的性质可知,当n=7时最大点评:本题主要考查了等差数列的通项公式及求和公式的简单应用及二次函数的性质的应用,体现了分类讨论思想的应用20.(14分)如图,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AD=1,AB=2,CD=3,F为AB 中点,且EF∥AD.将梯形沿EF折起,使得平面ADEF⊥平面BCEF.(Ⅰ)求证:BC⊥平面BDE;(Ⅱ)求CE与平面BCD所成角的正弦值.考点:直线与平面垂直的判定;直线与平面所成的角.专题:空间位置关系与距离;空间角.分析:(Ⅰ)由题意可得DE⊥平面BCEF,进而可得BC⊥DE.结合BC⊥BE,由线面垂直的判定可得答案;(Ⅱ)过E点作取EH⊥BD于H,连结HC.可证∠ECH是CE与平面BCD所成的角.在三角形中有已知数据可得其正弦值.解答:证明:(Ⅰ)∵DE⊥EF,平面ADEF⊥平面BCEF,∴DE⊥平面BCEF,∴BC⊥DE.由F为AB中点,可得BC⊥BE,又∵DE∩BE=E,∴BC⊥平面BDE.(Ⅱ)过E点作取EH⊥BD于H,连结HC.∵BC⊥平面BDE,∴平面BDE⊥平面BCD,∴EH⊥平面BCD,∴∠ECH是CE与平面BCD所成的角.由,得,∴.∴CE与平面BCD所成角的正弦值为.点评:本题考查直线与平面垂直的判定,以及直线与平面所成的角,属中档题.21.(15分)已知函数f(x)=e x(ax2+a+1)(a∈R).(Ⅰ)若a=﹣1,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若在区间[﹣2,﹣1]上,恒成立,求实数a的取值范围.考点:利用导数研究曲线上某点切线方程;利用导数求闭区间上函数的最值.专题:导数的综合应用.分(Ⅰ)把a=﹣1代入曲线方程,求出x=1的点的坐标,把原函数求导后求出f′(1),析:直接由点斜式写出切线方程;(Ⅱ)由在区间[﹣2,﹣1]上,恒成立,取x=﹣2时求出a的初步范围,然后把函数f(x)求导,经分析导函数大于0恒成立,得到函数f(x)在[﹣2,﹣1]上为增函数,由其在[﹣2,﹣1]上的最小值f(﹣2)大于等于解出a的范围.解答:解:(Ⅰ)当a=﹣1时,f(x)=﹣e x x2,f(1)=﹣e.f′(x)=﹣(x2+2x)e x,则k=f′(1)=﹣3e.∴切线方程为:y+e=﹣3e(x﹣1),即y=﹣3ex+2e.(Ⅱ)由,得:a.f′(x)=e x(ax2+2ax+a+1)=e x[a(x+1)2+1].∵a,∴f′(x)>0恒成立,故f(x)在[﹣2,﹣1]上单调递增,要使恒成立,则,解得a.点评:本题考查了利用导数研究曲线在某点处的切线方程,考查了利用导数求函数在闭区间上的最值,处理(Ⅱ)时运用了特值化思想,是该题的难点所在,此题属中档题.22.(15分)如图,已知抛物线C:y2=2px(p>0)的准线与x轴交于M点,过M点斜率为k 的直线l与抛物线C交于A、B两点.(Ⅰ)F为抛物线C的焦点,若,求k的值;(Ⅱ)是否存在这样的k,使得对任意的p,抛物线上C总存在点Q,使得QA⊥QB,若存在,求出k的取值范围;若不存在,说明理由.考点:直线与圆锥曲线的关系;抛物线的简单性质.专题:压轴题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)设出直线l的倾斜角,借助于抛物线的定义,利用平面几何知识求出直线倾斜角的余弦值,则可求正切值,直线的斜率可求;(Ⅱ)假设存在斜率为k的直线,使得对任意的p,抛物线上总存在点Q,使得QA⊥QB,写出过M点,斜率为k的直线方程,和抛物线联立后,由判别式大于0得到k的一个取值范围,再由QA⊥QB,即得三点Q,A,B的坐标的关系,进一步转化为Q点纵坐标的方程,再由判别式大于等于0求出k的取值范围,取交集后最终得到k的范围.解答:解(Ⅰ)记A点到准线距离为d,直线l的倾斜角为α,由抛物线的定义知|AM|=,∴,则,∴k=±tanα=.(Ⅱ)存在k,k的取值范围为,使得对任意的p,抛物线上C总存在点Q,使得QA⊥QB.事实上,假设存在这样的k,使得对任意的p,抛物线上C总存在点Q,使得QA⊥QB,设点Q(x0,y0),A(x1,y1),B(x2,y2),联立,得ky2﹣2py+p2k=0.则,得:﹣1<k<1且k≠0..又Q、A、B三点在抛物线上,所以则.同理.由QA⊥QB得:,即.∴,即.△=4p2﹣20k2p2≥0,解得,又﹣1<k<1且k≠0.所以k的取值范围为.点评:本题考查了抛物线的简单几何性质,考查了直线与圆锥曲线的位置关系,解答的关键是利用直线和圆锥曲线相交转化为方程有根,再利用方程的判别式大于0(或大于等于0)求解.此题属有一定难度类型题.。
2013年浙江省高考数学试卷(文科)及解析
2013年浙江省高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)(2013•浙江)设集合S={x|x>﹣2},T={x|﹣4≤x≤1},则S∩T=()A.[﹣4,+∞)B.(﹣2,+∞)C.[﹣4,1]D.(﹣2,1]2.(5分)(2013•浙江)已知i是虚数单位,则(2+i)(3+i)=()A.5﹣5i B.7﹣5i C.5+5i D.7+5i3.(5分)(2013•浙江)若α∈R,则“α=0"是“sinα<cosα”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)(2013•浙江)设m、n是两条不同的直线,α、β是两个不同的平面,()A.若m∥α,n∥α,则m∥n B.若m∥α,m∥β,则α∥β C.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β5.(5分)(2013•浙江)已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3B.100 cm3C.92cm3D.84cm36.(5分)(2013•浙江)函数f(x)=sinxcos x+cos2x的最小正周期和振幅分别是()A.π,1 B.π,2 C.2π,1 D.2π,27.(5分)(2013•浙江)已知a、b、c∈R,函数f(x)=ax2+bx+c.若f(0)=f(4)>f(1),则()A.a>0,4a+b=0 B.a<0,4a+b=0 C.a>0,2a+b=0 D.a<0,2a+b=08.(5分)(2013•浙江)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是()A.B.C.D.9.(5分)(2013•浙江)如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A.B.C.D.10.(5分)(2013•浙江)设a,b∈R,定义运算“∧”和“∨”如下:a∧b=a∨b=若正数a、b、c、d满足ab≥4,c+d≤4,则()A.a∧b≥2,c∧d≤2 B.a∧b≥2,c∨d≥2 C.a∨b≥2,c∧d≤2 D.a∨b≥2,c∨d≥2二、填空题:本大题共7小题,每小题4分,共28分。
高三数学试题浙江省重点中学2013届高三第一次调研考试--文.doc
浙江省重点中学协作体 2013届高三摸底测试数学(文)试题本卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,时间120分钟选择题部分(共50分) 1.答题前,考生务必将自己的姓名、准备考证号用黑色字迹的签字笔或钢笔分别填写在试卷个答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
参考公式:如果事件A , B 互斥, 那么 棱柱的体积公式 P (A +B )=P (A )+P (B ) V =Sh 如果事件A , B 相互独立, 那么 其中S 表示棱柱的底面积, h 表示棱柱的高 P (A ·B )=P (A )·P (B ) 棱锥的体积公式如果事件A 在一次试验中发生的概率是p , 那么nV =31Sh次独立重复试验中事件A 恰好发生k 次的概率 其中S 表示棱锥的底面积, h 表示棱锥的高P n (k ) =C k n p k (1-p )n -k (k = 0,1,2,…, n ) 球的表面积公式棱台的体积公式S = 4πR 2)2211(31S S S S h V ++=球的体积公式其中S 1, S 2分别表示棱台的上、下底面积, V =34πR 3h 表示棱台的高 其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分,每小题给出的四个选项,只有一项是符合题目要求的。
1.已知=⎩⎨⎧≤≤<<-=-=+)3(,)10(0)01(1)()()1(f x x x f x f x f 则且A .-1B .0C .1D .1或02.投掷两颗骰子,得到其向上的点数分别为m 和n,则复数2()m ni +为纯虚数的概率为A .13B .14C .16D .1123.已知0<a <1,log (1)log a a x x -<则A .01x <<B . 1x <C .10x <<D .11x <<4.函数ln xy x=的图像大致是A .B .C .D .5.已知,m n 分别是两条不重合的直线,,a b 分别垂直于两不重合平面,αβ,有以下四个命题:①若,//m a n b ⊥,且αβ⊥,则//m n ;②若//,//m a n b ,且αβ⊥,则m n ⊥; ③若//,,m a n b ⊥且//αβ,则m n ⊥;④若,,m a n b ⊥⊥且αβ⊥,则//m n .其中真命题的序号是A .①②B .③④C .①④D .②③6.从A B A C ⋂=⋂能够推出 A .B C =B .A B AC ⋃=⋃C .U U A C B A C C ⋃=⋃D .()()U U C A B C A C ⋃=⋃7.一个几何体的正视图、侧视图、俯视图如图所示,则该几何体的表面积和体积分别为 A . 422243πππ++和B .222ππ+和43πC .4223ππ和D .8223ππ和8.若2222(0)a b c c +=≠,则直线0ax by c ++=被圆221x y +=所截得的弦长为A .12B .1C .22D .29.已知定义在R 上的函数)(x f 是奇函数且满足)()23(x f x f =-,3)2(-=-f ,数列{}n a 满足11-=a ,且n a S n n +=2,(其中n S 为{}n a 的前n 项和)。
考前练兵浙江省2013届高考压轴卷数学文试题
页
2第
直线方 在x轴
上,离心率为
2 2 .过
F1 的直线
l 交 C 于 A ,B 两点,且△ ABF 2的周长为
16,那么 C 的方程为 ________________ .
14.下图是样本容量为 200 的频率分布直方图.
第 14 题图
根据样本的频率分布直方图估计,数据落在 [2,10) 内的概率约为 ________.
非选择题部分(共 100 分)
二、填空题:本大题共 7 小题,每小题 4 分,共 28 分。 11.经过点 A( - 5,2)且在 x 轴上的截距等于在 y 轴上的截距的 2 倍的 程 ________.
12.执行右面的框图,若输出结果为
1 ,则输入的实数 x 的值是 ____。 2
13.在平面直角坐标系 xOy 中,椭圆 C 的中心为原点,焦点 F1, F2
2013 浙江省高考压轴卷 数学文试题
参考公式: 球的表面积公式 S 4πR2 球的体积公式 V 4 πR3
3
其中 R 表示球的半径
棱锥的体积公式 V 1 Sh 3
其中 S表示棱锥的底面积, h 表示棱锥的高 如果事件 A , B 互斥,那么 P( A B) P ( A)
P(B)
棱柱的体积公式 V Sh 其中 S表示棱柱的底面积, h 表示棱柱的高
17.若函数 f(x)=(2 x2-a2x-a)lgx 的值域为 0,
,则 a=_________
三、解答题本大题共 5 小题.共 72 分。解答应写出文字说明、证明过程或演算步骤。
18.(本小题满分 14 分)已知函数 f ( x) m sin x 2 cos x(m 0) 的最大值为 2.
( 1)求函数 f ( x) 在 [0, ] 上的单调递减区间 ;
浙江省2013届高考压轴数学试题 文
2013浙江省高考压轴卷 数学文试题参考公式:球的表面积公式24S πR = 棱柱的体积公式 Sh V =球的体积公式343V πR = 其中S 表示棱柱的底面积,h 表示棱柱的高其中R 表示球的半径棱台的体积公式 11221()3V h S S S S =++棱锥的体积公式Sh V 31= 其中1S ,2S 分别表示棱台的上底、下底面积, 其中S 表示棱锥的底面积,h 表示棱锥的高 h 表示棱台的高 如果事件A ,B 互斥,那么()()()P A B P A P B +=+选择题部份(共50分)一.选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四项中,只有一项是符合题目要求的。
1.复数22()i i+= A .-3 -4i B .-3+4iC .3-4iD .3+4i2.设集合{sin ,}3n M x x n Z π==∈,则满足条件33{,}22P M -=的集合P 的个数是A . 1B .3C .4D .83.已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,则该几何体的体积是( )A .8B .203C .173D .1434.等比数列{a n }中,“公比q>1”是“数列{a n }单调递增”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件5.函数21()x xe f x e +=的图象 ( )A .关于原点对称B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称6.设变量x 、y 满足1,0,220,x y x y x y +≥⎧⎪-≥⎨⎪--≥⎩则目标函数z=2x+y 的最小值为A .6B .4C . 2D .327.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a ,b∈{1,2,3,4,5,6},若|a -b |≤1,就称甲乙“心相近”.现任意找两人玩这个游戏,则他们“心相近”的概率为 ( ) A .19 B .29 C .718 D .498.已知直线l m 、,平面βα、,且βα⊂⊥l m ,,给出下列命题: ①若α∥β,则m⊥l ; ②若α⊥β,则m∥l ; ③若m⊥l ,则α∥β; ④若m∥l ,则α⊥β 其中正确命题的个数是( ) A .1 B .2C .3D .49.若数列}{n a 的通项公式是()()n a n =-13-2,则a a a 1210++= ( )A .15B . 12C . -12D .-1510.已知直线1sin cos :=+θθy x l ,且l OP ⊥于P ,O 为坐标原点,则点P 的轨迹方程为( )A .122=+y xB .122=-y xC .1=+y xD .1=-y x非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分。
浙江省考试院2013届高三数学上学期测试试题 文(含解析)新人教A版
2013年浙江省考试院高考数学测试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.22.(5分)(2013•浙江模拟)已知a∈R,则“a>0”是“a+≥2”的()≥2,再根据充分必要条件的定义进行a+>“a+∴“a>0”是“a+4.(5分)(2013•浙江模拟)若函数f(x)(x∈R)是奇函数,函数g(x)(x∈R)是偶函数,5.(5分)(2013•浙江模拟)在某学校组织的校园十佳歌手评选活动中,八位评委为某学生的演出打出的分数的茎叶统计图如图所示.去掉一个最高分和一个最低分后,所剩数据的平均数与方差分别为()6.(5分)(2013•浙江模拟)函数y=sin (2x+)的图象可由函数y=cos 2x的图象()向左平移向右平移向左平移向右平移2x+2x+)的图象,向右平移﹣+2x+2x+7.(5分)(2013•浙江模拟)如图,在四边形ABCD中,AB⊥BC,AD⊥DC.若||=a,||=b,则=()解:∵AD⊥DC,∴=﹣﹣﹣﹣|=a|=b﹣8.(5分)(2013•浙江模拟)设函数f(x)=x3﹣4x+a,0<a<2.若f(x)的三个零点为x1,x2,3123x=<﹣;在(﹣;在(故函数在(∞,﹣,)上是减函数,在((﹣(<﹣,﹣(9.(5分)(2013•浙江模拟)已知双曲线x2﹣=1,点A(﹣1,0),在双曲线上任取两点P,Q满﹣,则由),=,=)﹣)10.(5分)(2013•浙江模拟)如图,函数y=f(x)的图象为折线ABC,设g (x)=f[f(x)],则函数y=g(x)的图象为()B C D0≤x≤二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)(2013•浙江模拟)已知i是虚数单位,a∈R.若复数的实部为1,则a= 9 .解:复数=,的实部为,所以12.(4分)(2013•浙江模拟)某四棱柱的三视图(单位:cm)如图所示,则该四棱柱的体积为12 cm3.=1213.(4分)(2013•浙江模拟)若某程序框图如图所示,则该程序运行后输出的值是.+…++的值,+…++=1=故答案为:14.(4分)(2013•浙江模拟)从3男2女这5位舞蹈选手中,随机(等可能)抽出2人参加舞蹈比赛,恰有一名女选手的概率是.人参加舞蹈比赛共有名,故有P=故答案为:15.(4分)(2013•浙江模拟)当实数x,y满足不等式组(m为常数)时,2x+y的最大值为4,则m= .m)此时故答案为:16.(4分)(2013•浙江模拟)设F1,F2是椭圆C:(a>b>0)的左、右焦点,过F1的直线l与C交于A,B两点.若AB⊥AF2,|AB|:|AF2|=3:4,则椭圆的离心率为.+=1中,+.e=故答案为:17.(4分)(2013•浙江模拟)已知函数f(x)=,a∈R.若对于任意的x∈N*,f (x)≥4恒成立,则a的取值范围是[,+∞).=a≥==﹣)取最大值[,+∞)三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.(2013•浙江模拟)在△ABC中,内角A,B,C的对边分别为a,b,c,已知2acosA=bcosC+ccosB.(14分)18.(Ⅰ)求A的大小;(Ⅱ)求cosB﹣sinC的取值范围.cosA=C=﹣==∴cosA=…7C=﹣﹣﹣(﹣[sin sinB]﹣)cosB sinBB+<<,B+B+)<﹣.∴cosB﹣]19.(14分)(2013•浙江模拟)已知等比数列{a n}的前n项和S n=2n﹣a,n∈N*.设公差不为零的等差数列{b n}满足:b1=a1+2,且b2+5,b4+5,b8+5成等比.(Ⅰ)求a及b n;(Ⅱ)设数列{a n}的前n项和为T n.求使T n>b n的最小正整数n的值.(Ⅱ)由,知n=(Ⅱ)∵,∴n={20.(15分)(2013•浙江模拟)如图,四棱锥P﹣ABCD,PA⊥底面ABCD,AB∥CD,AB⊥AD,AB=AD=CD=2,PA=2,E,F分别是PC,PD的中点.(Ⅰ)证明:EF∥平面PAB;(Ⅱ)求直线AC与平面ABEF所成角的正弦值.EM=AC=MH==所成角的正弦为21.(15分)(2013•浙江模拟)已知函数f (x)=x3﹣3ax+1,a∈R.(Ⅰ)求f (x)的单调区间;(Ⅱ)求所有的实数a,使得不等式﹣1≤f (x)≤1对x∈[0,]恒成立.,(﹣∞,((,,,],(,即解得:a≤22.(14分)(2013•浙江模拟)如图,A,B是焦点为F的抛物线y2=4x上的两动点,线段AB的中点M在定直线x=t(t>0)上.(Ⅰ)求|FA|+|FB|的值;(Ⅱ)求|AB|的最大值.。
2013年浙江高考数学模拟卷文10
秘密★启用前2013年普通高等学校招生全国统一考试(浙江卷)模拟卷十数学(文科)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.参考公式:如果事件A 、B 互斥,那么()()()P A B P A P B +=+如果事件A 、B 相互独立,那么()()()P A B P A P B ⋅=⋅ 如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率(1)k k n k n n P C P P -=-(k=0,1,2,…,n )球的表面积公式 24R S π=,球的体积公式334R V π=,其中R 表示球的半径 棱柱的体积公式V Sh =,其中S 表示棱柱的底面积,h 表示棱柱的高 棱锥的体积公式13V Sh =,其中S 表示棱锥的底面积,h 表示棱锥的高 棱台的体积公式11221()3V h S S S S =,其中12,S S 分别表示棱台的上、下底面积,h 表示棱台的高 第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.请在答题卡指定区域内作答1.复数z=11-i 在复平面上所对应的点处在第()象限 A . Ⅰ B . Ⅱ C . Ⅲ D . Ⅳ2.设λ∈R ,M={a |a =(-1+3λ,-2+4λ)} ,N={b |b =(1-λ,3+λ)} ,则M ∩N=()A . φB .{2}C . {(2,2)}D . {(-2,2),(2,2)}3.用min{a ,b ,c}表示a ,b ,c 三个数中的较少者,设f (x )=min{x+2,14-x ,x 2}(x ≥0),则f (x )的最大值是()A .6B .7C .8D .94.把菱形ABCD 沿对角线AC 折起,当A 、B C 、D 四点为顶点的三棱锥体积最大时,直线BD 与平面ABC 所成的角的大小为 ( )A .30°B .45°C .60°D .90°5.若0 <x <2π,则2x 与4sinx 的大小关系是() A .2x >4sinx B .2x <4sinx C .2x=4sinx D .与x 的值有关6.设P (a ,b )是单位圆x 2+y 2=1内一动点,Q 是直线ax+by=1上一动点,则|OQ |的取值范围是()A . (0,+∞)B . (0,1)C .(1,+∞)D .[)∞+,17.将正方形ABCD 沿对角线AC 折成一个直二面角D 1—AC —B ,则异面直线AB 与CD 1所成的角为()A .30°B . 45°C .60°D .90°8.已知直线x=2,x=4与函数y=log 3x 图象的交点分别为A 、B ,与函数y=log 5x 图象的交点分别为C 、D ,则直线AB 与CD ()A .平行B . 相交且交点在第二象限C .相交且交点在第三象限D .相交且交点在原点9.张老师给出一个函数y=f (x ),请四名学生各指出其中一个性质:学生甲:对于x ∈R ,都有f (x )= f (π-x );学生乙:函数y= f (x )的图象关于原点对称;学生丙:函数y= f (x )满足f (x +y)= f (x )·f (y)-f (2π-x )·f (2π-y);学生丁:函数y= f (x )有最大值m和最小值n,且m≠n.张老师说:你们四名同学中恰有3人说的是正确的,则张老师给出的函数可能是()A .f (x )=cosxB .f (x )=sinxC .f (x )=tanxD .f (x )=sin3x 10.P 是双曲线92x -162y =1右支上一动点,F 1,F 2是焦点,从右焦点F 2向∠F 1PF 2的平分线引垂线,交∠F 1PF 2的平分线于Q 点,某学生判断Q 点轨迹是圆;另一学生从左焦点F 1向∠F 1PF 2的平分线引垂线,交∠F 1PF 2的平分线于M 点,则M 点轨迹方程是()A . x=3B .y 2=6xC .x 2+y 2=16D .x 2+y 2=9第Ⅱ卷(非选择题 共100分)二、填空题 :本大题共7小题,每小题4分,共28分,请在答题卡指定区域内作答11.设f (x )为R 上的奇函数,且满足f (x+1007)=-f (x ),则f (2014n )=____(n ∈N )12.已知f (x )=x 2+(m+1)x+m+n+1,若f (0)>0,f (1)<0,则mn n m 22+的取值范围是______13.设n a 是以-1为首项,以7为公差的等差数列的第n 项,n b 是该等差数列的第2n 项,定义1n n n b b b +∆=-({}n b ∆叫做数列{}n b 的“一阶差分”),则n b ∆与1n a +之间的关系是1n n b x a y +∆=⋅+(x 、y 是常数),且x y +等于____14.向量OA 与OB 满足|OA |=1,|OB |=2,OP =(1-t )OA ,OQ =t OB ,01t ≤≤.|PQ |在0t 时取得最小值,问当0105t <<时,OA 与OB 夹角的取值范围是()15.椭圆22a x +22b y =1(a >b >0)与曲线22ax -22b y =λ有四个交点,则λ的取值范围是____ 16.正三棱锥的侧棱长与底面边长之比为λ,则侧面与底面所成的二面角的平面角的余弦值是 ,其中λ的取值范围是17.已知函数2()()f x ax bx c x R =++∈)0(>a 的零点为)(,2121x x x x <,函数)(x f 的最小值为0y ,且),[210x x y ∈,则函数))((x f f y =的零点个数是______三、解答题 :本大题共5小题,共72分,解答应写出文字说明、证明过程或演算过程,请在答题卡指定区域内作答 18.(本小题满分14分) 设给定平面区域M :⎪⎩⎪⎨⎧≥≥≤-+111y x m y x ,其边界为M ′,曲线C :(x -2)2+(y -2)2=1,(1)若card (M ′∩C )=3,求m ;(2)若抛掷两枚骰子出现的点数落入平面区域M 的概率为61,求m 的取值范围19. (本小题满分14分) 已知函数5()(1).x f x x x +=≠-+设数列n a {}满足)(,111n n a f a a ==+,数列n b{}满足*12|().n n n n ba Sb b b n N ==+++∈(Ⅰ)求证11)2nn n b -≤; (Ⅱ)证明1n S < 20. (本小题满分14分) 三棱柱111C B A ABC -的底面是边长为a 的正三角形,侧面11A ABB 是菱形且垂直于底面,∠AB A 1=60°,M 是11B A 的中点.(1)求证:BM ⊥AC ;(2)求直线AC 1与平面11A ABB 所成角正切值;(3)求二面角111A C B B --的正切值;21.(本小题满分15分) 已知一次函数()g x ax b =+对应的图象是函数2()ln ln f x x x =-在点(1,0)处的切线,(1)求,a b 的值;(2)令F (x )=x (f ′(x )+g ′(x )),求F(x)在(0,)+∞内极值;(3)若G (x )=x (f ′(x )+λg ′(x ))在(0,e 2)内恒为负,求λ的取值范围22.(本小题满分15分) 已知抛物线L 的方程为()022>=p py x ,直线x y =截抛物线L 所得弦24=AB .(1)求p 的值;(2)抛物线L 上是否存在异于点A 、B 的点C ,使得经过A 、B 、C 三点的圆和抛物线L 在点C 处有相同的切线.若存在,求出点C 的坐标;若不存在,请说明理由.感谢您的阅读,祝您生活愉快。
2013年浙江高考数学模拟试卷10(文)参考答案
2013年浙江高考数学模拟试卷10文科数学参考答案与评分标准说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则。
二、对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定后续部分的给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分。
三、解答右端所注分数,表示考生正确做到这一步应得的累加分数。
四、只给整数分数。
选择题和填空题不给中间分。
五、未在规定区域内答题,每错一个区域扣卷面总分1分。
一、选择题: 本题考查基本知识和基本运算.每小题5分, 满分50分. 1.C 【解析】 复数z=11-i =-21i+,所以对应点处在第Ⅲ象限,选择C 2. C 【解析】令(-1+3λ1,-2+4λ1)=(1-λ2,3+λ2),得⎩⎨⎧+=+--=+-2121342131λλλλ,解得⎩⎨⎧-==1121λλ,所以M ∩N= {(2,2)}3. C 【解析】f (x )=⎪⎩⎪⎨⎧≥-≤≤+≤≤614622202x x x x x x ,当x=6时,f (x )的最大值是8,选择C 4.B 【解析】设菱形中心为O ,则折起后,当面ABC ⊥面ADC 时,三棱锥的体积最大,此时,△BOD 为等腰直角三角形,所以BD 与面ABC 所成的角为45°,选B 5. B 【解析】在同一个平面直角坐标系中,分别作直线y=21x 与曲线y=sinx 的图象,可知0 <x <2π时,有21x <sinx ,从而2x <4sinx 6.C 【解析】P (a ,b )是单位圆x 2+y 2=1内,所以a 2+b 2<1,Q 是直线ax+by=1上一动点,所以|OQ |=221ba +>1,选择C7.C 【解析】因AB ∥CD ,所以∠D 1CD 就是异面直线AB 与CD 1所成的角,由于△D 1CD 是正三角形,所以∠D 1CD=60°,选择C 8. D 【解析】因A (2,log 32),B (4,log 34),C (2,log 52),D (4,log 34),则k AB =242log 4log 33--=202log 3--=k OA ,所以O 、A 、B 三点共线,同理O 、C 、D 三点也共线,选择D9.B 【解析】f (x )=sinx 满足学生甲、乙、丁提出的性质,选择B10.D 【解析】 画图,自F 2作∠F 1PF 2平分线的对称点为M ,∵MF 1=PF 1-PF 2=6为定值,2OQ =MF 1=6,OQ=3,∴Q 点轨迹为圆,同理,M 点轨迹也是同一个圆,圆的方程为x 2+y 2=9,选择D二、填空题:本题考查基本知识和基本运算.每小题4分,共28分. 11. 0【解析】f (x )为R 上的奇函数,所以f (0)=0,又f (x+1007)=-f (x ),所以f (x+2014)=-f (x+1007)=f (x ),故f (x )是周期为2014的周期函数,所以f (2014n )=0 12.[―25,―2] 【解析】 ⎩⎨⎧++++03201 n m n m ,由线性规划知,n m ∈(―2,―21), mn n m 22+=n m +m n∈[―25,―2] 13.11 【解析】n a =7n -8,n b =2n a =7n 2-8,1n n n b b b +∆=-=14n+7=x (7n -1)+y ,所以x=2,y=9,x+y=11, 14.(2π,32π)【解析】不妨设OA ,OB 夹角为α,则||=1-t ,||=2t ,令222()(1)42(1)2cos g t PQ t t t t α==-+-⋅-⋅2(54cos )(24cos )1t t αα=++--+.其对称轴为12cos 54cos t αα+=+.而12()54x f x x +=+在5(,)4-+∞上单调增加,-1≤cos α≤1故12cos 1154cos 3αα+-+≤≤.当12cos 1054cos 3αα++≤≤时,012cos 1(0,)54cos 5t αα+=∈+,解得223αππ<<.当12cos 1054cos αα+-<+≤时,()g t 在[0,1]上单调增,于是00t =.不合题意.于是夹角的范围为(2π,32π).15.(-1,1) 【解析】λ=0时,显然满足题设条件;λ>0时,λa <a ,∴0<λ<1; λ<0时,λ-b <b ,-1<λ<0, 16.14312-λ,⎫+∞⎪⎪⎝⎭【解析】设底边长为a ,侧棱长为λa ,cos θ=42324143222222222a a a a a a a ---+λλλ=14312-λ,因为θ>0,14312-λ<1,λ∈⎫+∞⎪⎪⎝⎭17.2,3 【解析】因为x 1≤y 0<x 2,由f (f (x ))=0,且f (x )有两个零点)(,2121x x x x <,所以f (x )=x 1,或f (x )=x 2,若y 0=x 1,则f (x )=x 1有一个零点或f (x )=x 2有两个零点,f (f (x ))有3个零点; 若y 0>x 1,则f (x )=x 1有0个零点或f (x )=x 2有两个零点,f (f (x ))有2个零点; 三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤. 18. 解:∵平面区域M :⎪⎩⎪⎨⎧≥≥≤-+111y x my x ,其边界为M ′,曲线C :(x -2)2+(y -2)2=1,(1)若card (M ′∩C )=3,则直线x+y -1-m=0与圆(x -2)2+(y -2)2=1相切, 于是2|3|m -=1,m=3±2; 7分(2)抛掷两枚骰子的基本事件有36个,则落入平面区域⎪⎩⎪⎨⎧≥≥≤-+111y x my x 的点数为6个时,其概率为61,于是直线x+y -1-b=0在y 轴上的截距满足4≤1+m <5,即3≤m <4 14分 19. 解:(Ⅰ)证明:当40,()1 1.1x f x x ≥=+≥+ 因为a 1=1,所以*).(1N n a n ∈≥ 2分下面用数学归纳法证明不等式n b ≤(1)当n=1时,b 11,不等式成立,(2)假设当n=k时,不等式成立,即k b ≤ 那么111)||1k k k ka b a a ++==+k ≤≤ 所以,当n=k+1时,不等式也成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013浙江省高考压轴卷 数学文试题参考公式:球的表面积公式24S πR = 棱柱的体积公式 Sh V =其中S 表示棱柱的底面积,h 表示棱柱的高其中R 表示球的半径棱台的体积公式其中1S ,2S 分别表示棱台的上底、下底面积, 其中S 表示棱锥的底面积,h 表示棱锥的高 h 表示棱台的高 如果事件A ,B 互斥,那么()()()P A B P A P B +=+选择题部份(共50分)一.选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四项中,只有一项是符合题目要求的。
1A .-3 -4i B .-3+4iC .3-4iD .3+4i2P 的个数是A . 1B .3C .4D .83.已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,则该几何体的体积是( )A .8 BC D4.等比数列{a n }中,“公比q>1”是“数列{a n }单调递增”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件5 ( ) A .关于原点对称 B .关于直线y =x 对称 C .关于x 轴对称 D .关于y 轴对称6.设变量x 、y 满足1,0,220,x y x y x y +≥⎧⎪-≥⎨⎪--≥⎩则目标函数z=2x+y 的最小值为A .6B .4C .2D7.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a ,b ∈{1,2,3,4,5,6},若|a -b |≤1,就称甲乙“心相近”.现任意找两人玩这个游戏,则他们“心相近”的概率为 ( ) ABCD8.已知直线l m 、,平面βα、,且βα⊂⊥l m ,,给出下列命题: ①若α∥β,则m ⊥l ; ②若α⊥β,则m ∥l ; ③若m ⊥l ,则α∥β; ④若m ∥l ,则α⊥β 其中正确命题的个数是( )A .1B .2C .3D .49.若数列}{n a 的通项公式是()()n a n =-13-2g ,则a a a 1210++=L ( ) A .15 B . 12 C . -12 D .-1510.已知直线1sin cos :=+θθy x l ,且l OP ⊥于P ,O 为坐标原点,则点P 的轨迹方程为( )A .122=+y xB .122=-y xC .1=+y xD .1=-y x非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分。
11.经过点A(-5,2)且在x 轴上的截距等于在y 轴上的截距的2倍的直线方程________.12.,则输入的实数x 的值是____。
13.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么C 的方程为________________.14.下图是样本容量为200的频率分布直方图.根据样本的频率分布直方图估计,数据落在[2,10)内的概率约为________.15.a ,t 均为正实数),则类比以上等式,可推测a ,t 的值,a+t = .16. P 是圆C,则OP OA的最小值为______17.若函数f (x )=(2x 2-a 2x-a )lg x 的值域为[)0,+∞,则a =_________三、解答题本大题共5小题.共72分。
解答应写出文字说明、证明过程或演算步骤。
18.(本小题满分142. (1)求函数()f x 在[0,]π上的单调递减区间; (2)△ABC 中角A 、B 、C 所对的边分别是a 、b 、c ,且C=60︒,c=3,求△ABC 的面积。
19.(本小题满分14分)已知数列{}n a 的前n 项和为n S ,且*22()n n S a n N =-∈,数列{}n b 满足11b =,且12n n b b +=+.(Ⅰ)求数列{}n a 、{}n b 的通项公式,并求数列{}n n a b ⋅的前n 项的和n D ;求数列{}n c 的前2n 项和2n T .第14题图20.(本小题满分14分)如图,在斜三棱柱111ABC A B C -中,侧面11AA B B ⊥底面ABC ,侧棱1AA 与底的角,12AA =.底面ABC 是边长为2的正三角形,其重心为G 点, E 是线段1BC 上一侧面11AA B B ;与底面ABC 所成锐二面角的正切值;T ,使得AG T B ⊥1?若存在,指出点T 的位置;若不存在,说明理由.21.(本小题满分15分)已知函数32()(63)xf x x x x t e =-++,t R ∈.若函数()y f x =依次在,,()x a x b x c a b c ===<<处取到极值。
(1)求t 的取值范围;(2)若22a c b +=,求t 的值。
第20题图22.(本小题满分15分)设抛物线C :22(0)y px p =>的焦点为F ,经过点F 的直线与抛物线交于A 、B 两点.(1) 若直线AB 的斜率为2时,求OAB ∆的面积; (2) 若M 是抛物线C 准线上的点,求证:直线MA 、MF 、MB 的斜率成等差数列.2013浙江省高考压轴卷 数学文试题一、选择题:本大题共有10小题,每小题5分,共50分.二、填空题:本大题共有7小题,每小题4分,共28分.11. 12. 13. 14. 15. 16. 17.三、解答题:本大题共5小题,共72分.解答应写出文字说明,证明过程或演算步骤.第20题图请在各题目的答题区域内作答,超出边框限定区域的答案无效请在各题目的答题区域内作答,超出边框限定区域的答案无效请在各题目的答题区域内作答,超出边框限定区域的答案无效2013浙江省高考压轴卷数学文答案1.【答案】AA2.【答案】C【解析】0∈P ,这样的集合P 共有4个,故选C 3.【答案】C【解析】几何体是正方体截去一个三棱台, 4. 【答案】D【解析】a 1<0,q>1时,{a n }递减。
a 1<0,0<q<1时,{a n }递增 5. 【答案】D)(x f ∴是偶函数,图像关于y 轴对称.6.【答案】 C【解析】由题意可得,在点B 处取得最小值,所以z=2,故选C7. 【答案】D 【解析】:试验包含的所有事件共有6×6=36种猜数的结果。
其中满足题设条件的有如下情形:若a=1,则b=1,2;他们“心相近”的概率为 若a=2,则b=1,2,3; 若a=3,则b=2,3,4; 若a=4,则b=3,4,5; 若a=5,则b=4,5,6; 若a=6,则b=5,6 共16种。
故他们“心相近”的概率为P=16/36=4/9,选D .8. 【答案】B【解析】①④对,②③错 9.【答案】A【解析】a 1+a 2=a 3+a 4=……=a 9+a 10=3,故所求和=3×5=15.选A 10. 【答案】A【解析】设),(00y x P ,l OP ⊥ 于P ,,即12020=+y x ,选A 11.【答案】2x +5y =0或x +2y +1=00或不为0两种情况可求2x +5y =0或x +2y +1=0.12. [来源:全,品…中&高*考+网] 【解析】若执行1y x =-,则 若执行2log y x =,则13.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么C 的方程为________________.【答案】x 216+y 28=1【解析】 设椭圆方程为x 2a 2+y 2b 2=1(a>b>0),因为离心率为22,所以22=1-b 2a 2,解得b 2a 2=12,即a 2=2b 2.又△ABF 2的周长为|AB|+|AF 2|+|BF 2|=|AF 1|+|BF 1|+|BF 2|+|AF 2|=(|AF 1|=22,所以+|AF 2|)+(|BF 1|+|BF 2|)=2a +2a =4a ,,所以4a =16,a =4,所以b椭圆方程为x 216+y28=1.14.【答案】0.4 解析 (0.02+0.08)×4=0.4.15.【答案】41【解析】照此规律:a=6,t=a 2-1=3516.【答案】【解析】如图:作PQ ⊥OA 于Q ,CD ⊥OA 于D ,根据向量数量积的几何意义得OP OA min =|OA|∙|OQ|min =|OA|∙17.【答案】1【解析】显然h(x)= 2x 2-a 2x-a ,g(x)= lgx 正负号一致,且h(1)=g(1)=0,∴a=-2或1经检验得a= 118.【解析】(1)由题意,()f x 的最大值为而0m >,于是()f x 为递减函数,则x 满足()k ∈Z ,所以()f x 在[]0π,上的单调递减区间为 (2)设△ABC 的外接圆半径为R ,由题意,得① 由余弦定理,得229a b ab +-=,即()2390a b ab +--=. ②将①式代入②,得()22390ab ab --=..19.【解析】 (Ⅰ)当1=n ,21=a ;当2≥n 时,1122n n n n n a S S a a --=-=- ,∴ 12n n a a -=, ∴{}n a 是等比数列,公比为2,首项12a =, ∴2n n a = 由12n n b b +=+,得{}n b 是等差数列,公差为2 又首项11=b ,∴21n b n =- ∴(21)2n n n a b n ⋅=-⨯∴1231123252(23)2(21)2n n n D n n -=⨯+⨯+⨯++-⨯+-⨯ ① ①×2得23412123252(23)2(21)2n n n D n n +=⨯+⨯+⨯++-⨯+-⨯ ② ①—②得:123112222222(21)2n n n D n +-=⨯+⨯+⨯++⨯--⨯12(32)6n n +=--,1(23)26n n D n +=-+(Ⅱ)2(21)n n c n ⎧=⎨--⎩为偶数为奇数n n321222[37(41)]n n T n -=+++-+++-20.【解析】解法1:(1)延长B 1E 交BC 于点F ,11B EC ∆ ∽△FEB ,1,∴1C 1, 从而点F 为BC 的中点.∵G 为△ABC 的重心,∴A 、G 、F又GE ⊄侧面AA 1B 1B ,∴GE//侧面AA 1B 1B .(2)在侧面AA 1B 1B 内,过B 1作B 1H ⊥AB ,垂足为H ,∵侧面AA 1B 1B ⊥底面ABC ,∴B 1H ⊥底面ABC .又侧棱AA 1与底面ABC 成60°的角,AA 1=2,∴∠B 1BH=60°,BH=1,B 1在底面ABC 内,过H 作HT ⊥AF ,垂足为T ,连B 1T ,由三垂线定理有B 1T ⊥AF , 又平面B 1CE 与底面ABC 的交线为AF∴AH=AB+BH=3,∠HA T=30°,∴Rt△B 1HT 从而平面B 1GE 与底面ABC (3)(2)问中的T 点即为所求,T 在AG 的延长线上,距离A . 21. 【解析】(1)①23232()(3123)(63)(393)xxxf x x x e x x x t e x x x t e '=-++-++=--++32()3,39303,,.f x x x x t a b c ∴--++= 有个极值点有个根 322()393,'()3693(1)(3)g x x x x t g x x x x x =--++=--=+-令()(-,-1),(3,+)(-1,3)g x ∞∞在上递增,上递减.()3824.(3)0g x t g ⎧∴∴-<<⎨<⎩ g(-1)>0有个零点 ②,,()a b c f x 是的三个极值点3232393(x-a)(x-b)(x-c)=x ()()x x x t a b c x ab bc ac x abc ∴--++=-+++++-22. 【解析】设抛物线C :22(0)y px p =>的焦点为F ,经过点F 的直线与抛物线交于A 、B 两点. (1)若2p =,求线段AF 中点M 的轨迹方程;(2)若直线AB 的方向向量为(1,2)n = ,当焦点为时,求OAB ∆的面积;(3) 若M 是抛物线C 准线上的点,求证:直线MA 、MF 、MB 的斜率成等差数列. 解:(1) 22y x =,5分由2221y x y x ⎧=⎨=-⎩得,210y y --=, 7分……………………………………………8分……………………………………………9分 (2)显然直线MA 、MB 、MF 的斜率都存在,分别设为123k 、k 、k . 点A 、B 、M 的坐标为 设直线AB……………………11分 所以212y y p =-,……………………………………………12分 又2112y px =,2222y px =,14分,故1232k k k +=.。