MI-SF-transition-MI-SF相变
华北电力大学传热学精品课件
[ ] 物理量。 W (m2 ⋅ K)
华北电力大学
刘彦丰
传热学 Heat Transfer
三、热辐射与辐射换热
1 . 定义 辐射�物体通过电磁波来传递热量的方式。 热辐射�物体由于热的原因向外发出的辐射。 辐射换热�物体之间以辐射的形式交换热量。 2 . 特点
实际物体表面的辐射力可与黑体相比较而得到�
[ ] 表示为
E = εσ bT 4
W m2
ε — 实际物体表面的发射率�黑度��0 - 1 �与 物体的种类、表面状况和温度有关。
华北电力大学
刘彦丰
传热学 Heat Transfer 4 . 一个辐射换热计算的特例
物体表面间辐射换热的计算涉及到物体表面的辐 射能力、吸收能力、表面间的几何关系等多方面的 因素�因此�不同情况下�其计算公式不一样。
要解决的问题�
温度分布如何描述和表示� 温度分布和导热的热流存在什么关系� 如何得到导热体内部at Transfer
本章内容简介
2 - 1 导热基本定律
回答问题1 和2
2 - 2 导热微分方程式及定解条件 回答问题3
2 - 3 通过平壁、圆筒壁、球壳和其它变截面物体
�1 �不需要冷热物体的直接接触�即�不需要介 质的存在�在真空中就可以传递能量。
�2 �在辐射换热过程中伴随着能量形式的转换� 物体热力学能 电磁波能 物体热力学能。
华北电力大学
刘彦丰
传热学 Heat Transfer 3 . 物体的辐射能力与黑体 物体单位表面积向外辐射的总能量可用 E 表示�
Φ = Ah2 (tw2 − t f 2 )
h1, tf1
h2, tf2
Transition Networks N-FX-xx-03 PCI 100FX网络接口卡(NIC)
User GuideN-FX-xx-03100-Base-FX Network Interface Cards (NICs)IntroductionTransition Networks N‐FX‐xx‐03 PCI 100FX NICs provide a 100Base‐FX fiber port and delivers low cost, fiber optic connectivity to the desktop in fiber‐rich LAN environments.With standard‐ and low‐profile form factors, these NICs have driver support for most popular operating systems, and PCI 2.2 / 2.1 plug‐and‐play capabilities. These fast Ethernet NICs can be installed in virtually any PC on the network. The N‐FX‐xx‐03 modules include both Standard and Low Profile brackets. ContentsIntroduction (1)Contents (1)Models / Part Numbers (1)Installation (2)Description (2)Installation Procedure (2)Configuration (3)PCI Bus System and Configuration (3)Booting the System (4)Boot Options (4)To Change Boot Options (5)Wake‐on‐LAN (WoL) (6)LED Functions (6)Cable Specifications (7)Technical Specifications (8)Drivers Supported (8)Troubleshooting (9)Diagnostics LEDs (9)Contact Us (9)Compliance Information (10)Record of Revisions (11)Models / Part NumbersPart Number Duplex Fiber‐Optic PortN‐FX‐ST‐03 100Base‐FX 1300nm multimode (ST); [2 km/1.2 mi.]* Link Budget: 12.0 dBN‐FX‐SC‐03 100Base‐FX 1300nm multimode (SC); [2 km/1.2 mi.]* Link Budget: 12.0 dBN‐FX‐LC‐03 100Base‐FX 1300nm multimode (LC); [2 km/1.2 mi.]* Link Budget: 12.0 dBN‐FX‐MT‐03 100Base‐FX 1300nm multimode (MT‐RJ); [2 km/1.2 mi.]* Link Budget: 14.5 dB** Typical maximum cable distance. Actual distance depends on network physical characteristics.InstallationDescriptionThe N‐FX module has bootable ROM and Wake‐On LAN capabilities. The two LED indicators, LINK/ACT and FDX, located on the bracket, show network/board link, activities, collision, and full‐duplex statuses. See Figure 1 below.Figure 1: LEDs and Wake‐On LAN ConnectorInstallation ProcedureCAUTION: Wear a grounding strap and observe electrostatic discharge precautions when installing the N‐FX module. Failure to observe this caution could result in damage or failure of the N‐FX module. Perform the steps below to install the NIC. Important: Install the N‐FX NIC in a “master slot” only.1.Select one of the two options for WoL to match the host PC’s capabilities:a.via WoL 3‐pin connector (Fig. 1 above), orb.via PCI bus; see Wake‐on‐LAN (WoL) on page 6.2.Locate a master slot on the PC workstation or file server.3.Remove the cover from the PC workstation or file server ‐ keep all screws.4.Remove and keep the screws holding the cover to the installation slot.5.Carefully align the module to the slot guides and slide it into the “master slot.”6.Ensure that the module is firmly seated in the slot.e the screws saved in Step 4 above to secure the module to the workstation or file serverhousing.ConfigurationFor motherboards with automatic PCI configuration:∙No specific setup is needed. (You can enter the system BIOS setup menu to view or specify the interrupt (INT) line of the PCI slots.)For motherboards with bus master and interrupt jumpers:∙Enable bus master operation in a selected PCI slot and select an INT request line (IRQ) level, using the appropriate motherboard jumper.∙Enable I/O on the N‐FX, PCI slot.PCI Bus System and Configuration∙Ensure that the PCI machine supports master slots, INT multiple sharing, and timing compatibility.∙DO NOT install N‐FX in PCI slave slots. Please refer to your PC system manual and select the appropriate configuration settings.∙When installing multiple N‐FX modules in a server station, you can correctly configure the IRQ settings of the PCI slot.∙Up to four N‐FX modules can be installed in a PCI file server, running a NetWare operating system.∙N‐FX server modules share the same INT line with the driver supporting multiple INT services ata time. The IRQ of each N‐FX module should not conflict with other boards.∙Operation in full duplex (default) or half‐duplex mode is configured by LAN driver options.The operating mode should match the working status of the remote link device.∙Use EMM386 version 4.49 or higher, and install both DOS and EMM386 from the same DOS package to avoid software problems.Booting the SystemThe NIC can boot according to PXE (default) or RPL protocols. If you want to boot from BIOS you mustre‐configure the NIC according to BIOS settings.Boot OptionsThe NIC is capable of the following boot modes:Local Only: In this mode, network boot is disabled on the NIC. This option is useful for conserving Option ROM space or ensuring the network boot will not occur through this NIC.According to BIOS: In this mode, the NIC will follow the BIOS configuration for network boot. This option can be used when the user wants the host process to be controlled entirely by the BIOS.Network first, then Local (default): In this mode, the NIC takes over the boot process regardless of the BIOS boot configuration and the NIC attempts to force the PC to boot through its own network interface. If the network boot fails, the PC diverts back to booting according to the boot order configured in the BIOS. This mode is useful for enabling network boot on PCs that do not have network boot options in the BIOS.Local first, then Network: In this mode, the NIC allows booting according to the BIOS boot order configuration. If booting according to the BIOS boot order fails, the NIC attempts to force booting through its own network interface.To Change Boot Options1.At start‐up, a prompt displays to Press <Shift> + <Tab> key to display boot option menu.2.Press Shift and Tab keys together at the prompt. A screen displays with the NIC boot options:3.Change the Boot Option setting to the desired option.4.Save and exit.Wake-on-LAN (WoL)This section outlines the methods for configuring WOL based on the type of PCI bus in the PC.Wake‐on‐LAN is implemented using a special network message called a magic packet. The magic packet contains the MAC address of the destination computer. The listening computer waits for a magic packet addressed to it and then initiates system wake‐up. The magic packet is sent on the data link (OSI Layer 2) and is broadcast to all NICs using the network broadcast address (the IP‐address is not used).The Technical Specifications section of this manual shows:Wake‐ON‐LAN supports magic packets only:∙PCI 2.1 implemented via the 3‐PIN WOL connector (WOL cable needed)∙PCI 2.2 implemented directly via PME# signal (no WOL cable needed)Note that PCI 2.2 does not use the WOL cable; the WOL function is done via the PCI slot.For PCI 2.1, these slots do require the use of a WOL cable, and you are installing the N‐FX‐xx‐03 in a PCI 2.1 slot and you want to use the WOL feature, use the provided WOL cable The WOL cable TN part number is 4100 (included with the N‐FX‐xx‐03).Most versions of Microsoft Windows integrate WoL functionality into the Device Manager, available in the Power Management tab of each network device. Often, the correct BIOS configuration is also required for WoL to function. In Windows Vista and higher, you can determine how the OS was powered up by running the powercfg / lastwake command in a CMD prompt to list the "Wake Source". The WoL event should also be logged in the System Event log. In Linux, WoL may be changed with a subfunction of the ethtool command.LED FunctionsThe LED is a single green color.LED DescriptionFDX ON Full duplex. OFF Half duplex.Link/ACT ON Link OFF No link Blinking ActivityCable SpecificationsFiber cableBit error rate: <10‐9Single mode fiber (recommended): 9 μmMultimode fiber (recommended): 62.5/125 μmMultimode fiber (optional): 100/140, 85/140, 50/125 μmN‐FX‐ST‐03 and N‐FX‐SC‐03: 1310 nm multimodeFiber optic transmitter power: min: ‐19.0 dBm max: ‐14.0 dBm Fiber optic receiver sensitivity: min: ‐30.0 dBm max: ‐140 dBm Link budget: 11.0 dBN‐FX‐LC‐03: 1310 nm multimodeFiber optic transmitter power: min: ‐19.0 dBm max: ‐12.0 dBm Fiber optic receiver sensitivity: min: ‐30.0 dBm max: ‐8.0 dBm Link budget: 11.0 dBN‐FX‐MT‐03: 1300nm multimodeFiber optic transmitter power: min: ‐19.0 dBm max: ‐14.0 dBm Fiber optic receiver sensitivity: min: ‐30.0 dBm max: ‐140 dBm Link Budget: 14.5 dBA typical application is shown below.Technical SpecificationsTransition Networks Model N‐FX‐xx‐03 supports IEEE 802.1P/Q VLAN tagging.Expansion bus standard: PCI 2.1, PCI 2.2 compliantData rate: 100Mbps fiber mediaLEDs (on the bracket): • LINK/ACT• FDX (full/half duplex)Wake‐On LAN: Supports magic packets only:∙PCI 2.1 implemented via the 3‐Pin WOL connector∙PCI 2.2 implemented directly via PME# signal (no Wake‐On LAN cable needed)OS Support: Windows XP x32, Vista x32‐64, Win7 x32‐64, Win8 x32‐64 Boot server support: PXE (default)PCB dimensions: 2.2”W x 4.8”D x 0.9”H (55.9 mm x 121.9 mm x 23 mm) Shipping Weight: 1 lb (455 g) approximatelyPower consumption: 2.5 WattsMTBF: greater than 550,000 MIL‐HDBK‐217G hoursgreater than 1,520,000 Bellcore hoursOperating temp: 0°C to 50°C (32°F to 122°F)Storage temp: 40°C to 85°C (‐40°C to 185°F)Humidity: 5% to 90%, non‐condensingWarranty: LifetimeWARNING: Visible and invisible laser radiation when open: DO NOT stare into the beam or view directly with optical instruments. Failure to observe this warning could result in damage to your vision or blindness.CAUTION: Use of controls, adjustments, or the performance of procedures other than those specified herein may result in hazardous radiation exposure.The information in this manual is subject to change without further notice.Drivers SupportedThe set of drivers supported includes:∙Windows Server 2008 / Windows Server 2008 R2 NIC Drivers,∙Windows 2000 Server / Windows Server 2003,∙Windows 2000 / Windows XP, Windows XP 64‐bit,∙Windows Vista, Windows 7, Windows 8, and∙Solaris 10 Drivers.See the Contact Us section on page 9.TroubleshootingDiagnostics LEDsLEDSThe LINK/ACT LED lights when a fiber cable connection is good. It blinks to indicate activity.The collision and full‐duplex LED report PC board operating status.After power UP, the LINK/ACT LED should light; if not, check the following:1.Confirm that the N‐FX module is properly inserted into the master slot.2.Confirm that the PC is properly connected to a power source and that the power source isturned ON.3.Check the fiber cable for proper connection.4.If the system will not boot, you may need to reconfigure the NIC to start from a different bootoption. For example, if the PC will not boot with the NIC installed, and the NIC’s default bootoption is selected, try changing boot option to Local Only or According to BIOS. See Booting the System on page 4.5.Contact Tech Support; see ‘Contact Us’ below.Contact UsTechnical Support: Technical support is available 24‐hours a day:US and Canada: 1‐800‐260‐1312International: 00‐1‐952‐941‐7600Main Officetel: +1.952.941.7600 | toll free: 1.800.526.9267 | fax: 952.941.2322******************** | ************************** | ******************************AddressTransition Networks10900 Red Circle DriveMinnetonka, MN 55343, U.S.A.Web: https://Compliance InformationDeclaration of ConformityFCC RegulationsThis equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that the interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:∙Reorient or relocate the receiving antenna∙Increase the separation between the equipment and receiver∙Connect the equipment into an outlet on a circuit different from that of the receiver∙Consult the dealer or an experienced radio/TV technician for helpTransition Networks N‐FX‐xx‐03 NIC User GuideCanadian regulationsThis digital apparatus does not exceed the Class B limits for radio noise for digital apparatus set outon the radio interference regulations of the Canadian Department of Communications.Le présent appareil numérique n'émet pas de bruits radioélectriques dépassant les limites applicables aux appareils numériques de la Class B prescrites dans le Règlement sur le brouillage radioélectriqueédicté par le ministère des Communications du Canada.European regulationsCaution: This is a Class B product. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.Achtung! Dieses ist ein Gerät der Funkstörgrenzwertklasse B. In Wohnbereichen können bei Betrieb dieses Gerätes Rundfunkstörungen auftreten. In diesem Fäll ist der Benutzer für Gegenmaßnahmen verantwortlich.Attention! Ceci est un produit de Classe B. Dans un environment domestique, ce produit risque decréer des interférences radioélectriques, il appartiendra alors à l'utilsateur de prende les measuresspécifiques appropriées.In accordance with European Union Directive 2002/96/EC of the European Parliament and of the Council of 27 January 2003, Transition Networks will accept post usage returns of this product for proper disposal. The contact information for this activity can be found in the 'Contact Us' portion of this document.Record of RevisionsRev Date NotesA 3/25/11 Initial release revision.B 11/28/12 Add WoL information (PCI v 2.1 vs. 2.2) and 8-1/2x11” format.C 2/15/19 Add System Boot information and update contact information.All trademarks and registered trademarks are the property of their respective owners.Trademark noticeAll registered trademarks and trademarks are the property of their respective owners.Copyright restrictions© 2011‐2019 Transition Networks. All rights reserved. No part of this work may be reproduced or used in any form or by any means—graphic, electronic or mechanical—without written permission from Transition Networks.33498 Rev. B / Page 11 of 11。
焊接词典
焊接词典乙炔 acetylene电流安培 ampere角焊 angle welding电弧 arc氩弧焊接 argon arc welding光熔接条 bare electrode对接焊接 butt welding电弧弯曲 camber阶叠熔接法 cascade被覆熔接 clad weld熔接 fusion welding压接 pressure welding焊接过程 welding process焊接技术 welding technique焊接工艺 welding technology/procedure焊接操作 welding operation焊接顺序 welding sequence焊接方向 direction of welding焊接位置 welding position熔敷顺序 build-up sequence/deposition sequence焊缝倾角 weld slope/inclination of weld axis焊缝转角 weld rotation/angle of rotation平焊位置flat position of welding横焊位置horizontal position of welding立焊位置vertical position of welding仰焊位置overhead position of welding平焊downhand welding/flat position welding横焊horizontal position welding立焊vertical position welding仰焊overhead position welding全位置焊all position welding:熔焊时,焊件接逢所处空间位置包括平焊、横焊、仰焊等位置所进行的焊接。
如水平固定管所进行的环缝焊接向下立焊vertical down welding/downward welding in the vertical position向上立焊vertical up welding/upward welding in the vertical position倾斜焊inclined position welding上坡焊upward welding in the inclined position下坡焊downward welding in the inclined position对接焊butt welding角焊fillet welding搭接焊lap welding船形焊fillet welding in the downhand position/fillet welding in the flat position平角焊horizontal fillet welding立角焊fillet welding in the vertical position仰角焊fillet welding in the overhead position坡口焊groove weldingI形坡口对接焊square butt welding喇叭形坡口焊flare groove welding卷边焊flanged edge welding纵缝焊接welding of longitudinal seam横缝焊接welding of transverse seam环缝焊接girth welding/ circumferential螺旋缝焊接welding of spiral seam/welding of helical seam 环缝对接焊butt welding of circumferential seam定位焊tack welding单面焊welding by one side双面焊welding by both sides单道焊single pass welding/single run welding多道焊multi-pass welding单层焊single layer welding多层焊multi-layer welding分段多层焊block sequence/ block welding分层多道焊multi-layer and multi-pass welding连续焊continuous welding断续焊intermittent welding打底焊backing weld封底焊back sealing weld盖面焊cosmetic welding深熔焊deep penetration welding摆动焊welding with weaving/weave bead welding前倾焊foreward welding (英国)/ forehand welding (美国)后倾焊backward welding(英国)/ backhand welding(美国) 分段退焊backstep welding跳焊skip welding对称焊balanced welding/ balanced welding sequence左焊法leftward welding forehand welding右焊法rightward welding/backhand welding挑弧焊whipping method自动焊automatic welding手工焊manual welding/hand welding车间焊接shop welding工地焊接site welding(英国)/ field welding (美国)拘束焊接restraint welding堆焊surfacing/building up/overlaying隔离层堆焊buttering端部周边焊boxing/end return返修焊rewelding补焊repair welding塞焊plug welding槽焊slot welding衬垫焊welding with backing焊剂垫焊welding with flux backing窄间隙焊narrow-gap welding强制成形焊enclosed welding脉冲电弧焊pulsed are welding电弧点焊arc spot welding螺柱焊stud welding热风焊hot gas welding高能焊high grade energy welding固态焊接solid-state welding单面焊双面成形one-side welding with back formation 焊接条件welding condition焊接工艺参数welding parameter极性polarity正接electrode negative/straight polarity反接electrode positive/reversed polarity运条方式manipulation of electrode焊接电流welding current焊接电流增加时间welding current upslope time焊接电流衰减时间welding current downslope time电流密度current density短路电流short circuit current脉冲电流pulse level/pulse current level脉冲电流幅值pulse current amplitude基值电流background level脉冲频率pulse frequency脉冲焊接电流占空比duty cycle of pulse duration电弧电压arc voltage再引弧电压reignition voltage焊接速度welding speed行走速度rate of travel/travel speed送丝速度wire feed rate线能量heat input/energy input热输入heat input预热preheat后热postheat焊后热处理posweld heat treatment/postheat treatment 预热温度preheat temperature层间温度interpass temperature焊接终了温度finishing temperature后热温度postheating temperature焊丝伸出长度wire extension弧长arc length熔化速度melting rate熔化时间melting time熔化系数melting coefficient熔敷速度rate of deposition/deposition rate熔敷系数deposition coefficient熔敷效率deposition efficiency损失系数loss coefficient飞溅spatter飞溅率spatter loss coefficient融合比fusion ratio稀释dilution稀释率rate of dilution合金过度系数transfer efficiency/recovery (of an element) 坡口groove坡口面groove face坡口面角度angle of bevel (英国)/ bevel angle (美国)坡口角度included angle(英国)/groove angle(美国)坡口高度groove depth钝边root face钝边高度thickness of root face/width of root face根部间隙root gap(英国)/root opening (美国)根部半径root radius/groove radius根部锐边root edge卷边高度height of flange卷边半径radius of flange单面坡口single groove双面坡口double groove坡口形式groove typeI形坡口square grooveV形坡口single V grooveY形坡口single V groove with root face双Y形坡口double Vgroove with root face带钝边U形坡口single U groove带钝边双U形坡口double U grooveVY形坡口single compound angle groove带钝边J形坡口single J groove带钝边双J形坡口double J groove单边V形坡口single bevel groove双V形坡口double V groove不对称双V形坡口asymmetric double V groove双单边V形坡口double bevel groove/K groove带垫板V形坡口V groove with backing/ single V groove with backing 喇叭形坡口flare groove锁底坡口single bevel groove with backing locked坡形板边tapered edge焊缝weld接逢seam焊缝符号welding symbol焊缝金属weld metal填充金属filler metal熔敷金属deposited metal焊缝表面weld face/ face of weld焊缝背面back of weld焊缝轴线axis of weld焊缝尺寸size of weld焊缝宽度weld width/ width of weld焊缝长度weld length/ length of weld焊缝有效长度effective length of weld焊缝厚度throat depth/ throat thickness焊缝计算厚度theoretical throat焊缝实际厚度actual throat熔深penetration/ depth of penetration焊缝成形appearance of weld焊缝成形系数form factor of weld余高reinforcement/ excess weld metal背面余高root reinforcement削平焊缝flush weld/ weld machined flush对接焊缝butt weld角焊缝fillet焊脚leg/ fillet weld leg角焊缝断面形状profile of fillet weld平形角焊缝flat fillet凸形角焊缝convex fillet weld凹形角焊缝concave fillet weld角焊缝凹度concavity侧面角焊缝side fillet weld/ fillet weld in parallel shear 正面角焊缝front fillet weld/ fillet weld in normal shear 立角焊缝fillet weld in the vertical position横角焊缝fillet weld in the horizontal position平角焊缝fillet weld in the flat position斜角焊缝oblique fillet weld连续焊缝continuous weld断续焊缝intermittent weld连续角焊缝continuous fillet weld断续角焊缝intermittent fillet weld交错断续角焊缝staggered intermittent fillet weld并列断续角焊缝chain intermittent fillet weld端接焊缝edge weld卷边焊缝flanged edge weld塞焊焊缝plug weld纵向焊缝longitudinal weld横向焊缝transverse weld环行焊缝girth weld/ circumferential weld螺旋形焊缝spiral weld/ helical weld密封焊缝seal weld承载焊缝strength weld联系焊缝connective weld定位焊缝tack weld焊道bead/ run/ pass焊波ripple焊根weld root/ root of weld焊趾weld toe/ toe封底焊道sealing run (after making main weld)/ back weld打底焊道backing weld (before making main weld)/ back weld 根部焊道root pass/ root run填充焊道filling bead盖面焊道cosmetic bead/ cover pass回火焊道temper bead/ annealing bead熔透焊道penetration bead焊层layer焊接接头 welded joint接头形状 joint geometry等强匹配接头equalmatching weld joint低强匹配接头undermatching weld joint超强匹配接头overmatching weld joint接头根部root of joint对接接头butt jointI形对接接头square butt jointV形对接接头single V butt jointU形对接接头single U butt jointJ形坡口接头single J butt joint双V形对接接头double V butt joint双单边V形对接接头double bevel butt joint/ K groove butt joint 带钝边U形对接接头double U butt joint带钝边J形坡口接头double J joint角接接头corner jointT形接头T joint斜T形接头inclined T joint十字接头cruciform joint/ cross-shaped joint三联接头joint among three members搭接接头lap joint套管接头muff joint/ sleeve joint双盖板接头double strapped joint盖板接头strapped joint端接接头edge joint卷边接头flanged edge joint锁底对接接头lock butt joint斜对接接头oblique butt joint混合接头mixed joint/ composite joint有间隙接头open joint无间隙接头closed joint焊接电弧welding arc电弧形态arc shape电弧物理行为arc physics behaviour引弧striking arc引弧电压striking voltage电弧气氛arc atmosphere阴极cathode热阴极hot cathode冷阴极cold cathode阴极斑点cathode spot阴极区cathode region阴极区电场强度intensity of the electric field in the cathode region 阴极压降cathode drop阳极anode阳极斑点anode spot斑点压力spot pressure阳极区anode region阳极区电场强度intensity of the electric field in the anode region 阳极压降anode drop弧柱arc column/ arc stream弧柱压降voltage drop in arc column弧柱电位梯度potential gradient in the arc column弧焰arc flame弧心arc core(焊接网 )硬电弧forceful arc/ hard arc软电弧soft arc旋转电弧rotating arc脉冲电弧pulsed arc脉冲喷射电弧pulsed spray arc起皱现象puckering phenomena起皱电弧puckering arc起皱临界电流puckering critical current间接电弧indirect arc压缩电弧compressive arc磁控电弧magnetic controlling arc电弧力arc force电磁力electromagnectic force电磁收缩效应pinch effect电弧飘移wandering of arc电弧稳定性arc stability电弧静特性static characteristic of arc电弧动特性dynamic characteristic of arc最小电压原理principle of minimum voltage 电弧挺度arc stiffness电弧偏吹arc blow磁偏吹magnetic blow阴极清理作用cleaning action of the cathode 电弧自身调节arc self-regulation挖掘作用digging action极性效应polarity effect熔滴droplet熔滴比表面积specific surface of droplet熔滴过渡metal transfer过度频率transition frequency粗滴过渡globular transfer; drop transfer短路过渡short circuiting transfer喷射过渡spray transfer旋转喷射过渡rotating spray transfer脉冲喷射过渡pulsed spray transfer爆炸过渡explosive transfer渣壁过渡flux wall guided transfer熔池molten pool沸腾状熔池boiling molten pool弧坑crater熔渣slag渣系slag system渣系相图slag system diagram碱性渣basic slag酸性渣acid slag碱度basicity酸度acidity长渣long slag短渣short slag粘性熔渣viscous slag氧化物型熔渣oxide melting slag盐型熔渣salt melting slag盐-氧化物型熔渣salt-oxide melting slag熔渣流动性fluidity of the slag; slag fluidity 熔渣solidified slag多孔焊渣porous slag玻璃状焊渣vitreous slag自动脱落焊渣self-releasing slag脱渣性slag detachability焊接设备welding equipment; welding set焊机welding machine; welder电焊机electric welding machine; electric welder焊接电源welding power source焊接热循环weld thermal cycle焊接温度场field of weld temperature; weld temperature field 准稳定温度场quasi-stationary temperature field焊接热源welding heat source点热源point heat source线热源linear heat source面热源plane heat source瞬时集中热源instantaneous concentration heat source热效率thermal efficiency热能集中系数coefficient of heat flow concentration峰值温度peak temperature瞬时冷却速度momentary cooling rate冷却时间cooling time置换氧化substitutionary oxydation扩散氧化diffusible oxydation脱氧desoxydation先期脱氧precedent desoxydation扩散脱氧diffusible desoxydation沉淀脱氧precipitation desoxydation扩散氢diffusible hydrogen初始扩散氢initial diffusible hydrogen100℃残余扩散氢diffusible hydrogen remained at 100℃残余氢residual hydrogen去氢dehydrogenation去氢热处理heat treatment for dehydrogenation脱硫desulphurization脱磷dephosphorization渗合金alloying微量合金化microalloying一次结晶组织primary solidification structure二次结晶组织secondary solidification structure联生结晶epitaxial solidification焊缝结晶形态solidification mode in weld-bead结晶层状线ripple多边化边界polygonization boundary结晶平均线速度mean solidification rate针状铁素体acicular ferrite条状铁素体lath ferrite侧板条铁素体ferrite side-plate晶界欣素体grain boundary ferrite; polygonal ferrite; pro-entectoid ferrite 粒状贝氏体granular bainite板条马氏体lath martensite过热组织overheated structure魏氏组织Widmannst?tten structureM-A组元martensite-austenite constituent焊件失效分析failure analysis of weldments冷裂判据criterion of cold cracking冷裂敏感系数cold cracking susceptibity coefficient 脆性温度区间brittle temperature range氢脆hydrogen embrittlement层状偏析lamellar segregation愈合healing effect断口金相fractography断口fracture延性断口ductile fracture韧窝断口dimple fracture脆性断口brittle fracture解理断口cleavage fracture准解理断口quasi-cleavage fracture氢致准解理断口hydrogen-embrittlement induced 沿晶断口intergranular fracture穿晶断口transgranular fracture疲劳断口fatigue fracture滑移面断口glide plane fracture断口形貌fracture apperance断口试验fracture test宏观断口分析macrofractography放射区radical zone纤维区fibrous zone剪切唇区shear lip aone焊接性weldability使用焊接性service weldability工艺焊接性fabrication weldability冶金焊接性metallurgical weldability热焊接性thermal weldability母材base metal; parent metal焊接区weld zone焊态as-welded (AW)母材熔化区fusion zone半熔化区partial melting region未混合区unmixed zone熔合区bond area熔合线weld junction (英);bond line (美) 热影响区heat-affected zone (HAZ)过热区overheated zone粗晶区coarse grained region细晶区fine grained region过渡区transition zone硬化区hardened zone碳当量carbon equivalent铬当量chromium equivalent镍当量nickel equivalent舍夫勒组织图Schaeffler's diagram德龙组织图Delong’s diagram连续冷却转变图(CCT图)continuous cooling transformation 裂纹敏感性cracking sensibility焊接裂纹weld crack焊缝裂纹weld metal crack焊道裂纹bead crack弧坑裂纹crater crack热影响区裂纹heat-affected zone crack纵向裂纹longitudinal crack横向裂纹transverse crack微裂纹micro-crack; micro-fissure热裂纹hot crack凝固裂纹solidification crack晶间裂纹intercrystalline crack穿晶裂纹transcrystalline crack多边化裂纹polygonization crack液化裂纹liquation crack失延裂纹ductility-dip crack冷裂纹cold crack延迟裂纹delayed crack氢致裂纹hydrogen-induced crack焊道下裂纹underbead crack焊根裂纹root crack焊趾裂纹toe crack锯齿形裂纹chevron cracking消除应力处理裂纹stress relief annealing crack (SR crack)再热裂纹reheat crack焊缝晶间腐蚀weld intercryctalline corrosion刀状腐蚀knife line attack敏化区腐蚀weld decay层状撕裂lamellar tearing焊接性试验weldability裂纹试验cracking testIIW裂纹试验IIW cracking testY形坡口裂纹试验slit type cracking test分块形槽热裂纹试验segmented circular groove cracking testH形裂纹试验H-type cracking test鱼骨形裂纹试验fishbone cracking test指形裂纹试验finger (cracking) testT形裂纹试验Tee type cracking test环形槽裂纹试验circular-groove cracking test可调拘束裂纹试验varestraint testBWRA奥氏体钢裂纹试验BWRA cracking test for austenitie steel圆棒裂纹试验bar type cracking test; round bar cracking test里海裂纹试验Lehigh restraint cracking test圆形镶块裂纹试验circular-path cracking test十字接头裂纹试验cruciform cracking testZ向窗口拘束裂纹试验Z-direction window type restraint cracking testG-BOP焊缝金属裂纹试验G-BOP weld metal crack test巴特尔焊道下裂纹试验Battelle type underbead cracking testU形拉伸试验U-tension test缪雷克期热裂纹试验Murex hot cracking test菲斯柯裂纹试验FISCO (type) cracking testCTS裂纹试验controlled thermal severity拉伸拘束裂纹试验(TRC试验)tensile restraint cracking test 刚性拘束裂纹试验(RRC试验)rigid restraint cracking test (焊接网 )插销试验implant testTigamajig 薄板焊接裂纹试验Tigamajing thin plate cracking test 焊道纵向弯曲试验longitudinal-bead test柯麦雷尔弯曲试验Kommerell bead bend test肯泽尔弯曲试验Kinzel test缺口弯曲试验notch bend test热朔性试验hot-ductility test热影响区冲击试验impact test of HAZ热影响区模拟试验synthetic heat-affected zone test最高硬度试验maximum hardness test落锤试验NRL (Naval Research Laboratory)测氢试验Hydrogen test焊接材料welding consumables电极electrode熔化电极consumable electrode不熔化电极nonconsumable electrode钨电极tungsten electrode焊丝welding wire. Welding rod实心焊丝solid wire渡铜焊丝copper-plating welding wire自保护焊丝self-shielded welding wire药芯焊丝flux-cored wire复合焊丝combined wire堆焊焊丝surfacing welding rod填充焊丝filler wire焊条electrode/ covered electrode焊芯core wire药皮coating (of an electrode)/ covering (of an electrode) 涂料coating flux/coating material造气剂gas forming constituents造渣剂slag forming constituents合金剂alloying constituent脱氧剂dioxidizer稳弧剂arc stabilizer粘接剂binder水玻璃water glass水玻璃模数modules of water glass酸性焊条acid electrode高钛型焊条high titania (type) electrode钛钙型焊条lime titania type electrode钛铁矿形焊条ilmenite type electrode氧化铁型焊条iron oxide type electrode/ high iron oxide type electrode高纤维素型焊条high cellulose (type) electrode石墨型焊条graphite type electrode碱性焊条basic electrode/ lime type covered electrode低氢型焊条low hydrogen type electrode高韧性超低氢焊条high toughness super low hydrogen electrode奥氏体焊条austenitic electrode铁素体焊条ferritic electrode不锈钢焊条stainless steel electrode珠光体耐热钢焊条pearlitic heat resistant steel electrode低温钢焊条low temperature steel electrode/ steel electrode for low temperature 铝合金焊条aluminum alloy arc welding electrode铜合金焊条copper-alloy arc welding electrode铜芯铸铁焊条cast iron electrode with steel core纯镍铸铁焊条pure nickel cast iron electrode球墨铸铁焊条electrode for welding spheroidal graphite cast iron铸芯焊条electrode with cast core wire镍基合金焊条nickel base alloy covered electrode蒙乃尔焊条Monel electrode纯铁焊条pure iron electrode渗铝钢焊条alumetized steel electrode高效率焊条high efficiency electrode铁粉焊条iron powder electrode底层焊条backing welding electrode深熔焊条deep penetration electrode重力焊条gravity electrode立向下焊条electrode for vertical down position welding节能焊条saving energy electrode水下焊条underwater welding electrode耐海水腐蚀焊条seawater corrosion resistant steel electrode低尘低毒焊条low-fume and harmfulless electrode / low-fume and low-toxic electrode堆焊焊条surfacing electrode耐磨堆焊焊条hardfacing electrode钴基合金堆焊焊条cobalt base alloy surfacing electrode碳化钨堆焊焊条tungsten carbide surfacing electrode高锰钢堆焊焊条high manganese steel surfacing electrode双芯焊条twin electrode绞合焊条stranded electrode编织焊条braided electrode双层药皮焊条double coated electrode管状焊条flux-cored electrode气渣联合保护型药皮semi-volatile covering焊条工艺性usability of the electrode/ technicality of the electrode焊条使用性running characteristics of an electrode/ operating characteristics of an electrode 焊条熔化性melting characteristics of an electrode焊条直径core diameter焊条偏心度eccentricity (of an electrode)药皮重量系数gravity coefficient of coating焊条药皮含水量percentage of moisture for covering焊条夹吃持端bare terminal (of an electrode)焊条引弧端striking end (of an elcetrode)焊剂welding flux/ flux熔炼焊剂fused flux粘结焊剂bonded flux烧结焊剂sintered flux/ agglomerated flux窄间隙埋弧焊焊剂flux for narrow-gap submerged arc welding 低氢型焊剂low hydrogen type flux高速焊剂high speed welding flux无氧焊剂oxygen-free flux低毒焊剂low poison flux磁性焊剂magnetic flux电弧焊arc welding直流电弧焊direct current arc welding交流电弧焊alternating current arc welding三相电弧焊three phase arc welding熔化电弧焊arc welding with consumable金属极电弧焊metal arc welding不熔化极电弧焊arc welding with nonconsumable碳弧焊carbon arc welding明弧焊open arc welding焊条电弧焊shielded metal arc welding (SMAW)重力焊gravity welding躺焊fire cracker welding电弧堆焊arc surfacing自动堆焊automatic surfacing躺板极堆焊surfacing by fire cracker welding带极堆焊surfacing with band-electrode振动电弧堆焊vibratory arc surfacing耐磨堆焊hardfacing埋弧焊submerged arc welding (SAW)多丝埋弧焊multiple wire submerged arc welding纵列多丝埋弧焊Tandem sequence (submerged-arc welding) 横列多丝埋弧焊series submerged arc welding (SAW-S)横列双丝并联埋弧焊transverse submerged arc welding热丝埋弧焊hot wire submerged-arc welding窄间隙埋弧焊narrow-gap submerged arc welding弧压反馈电弧焊arc voltage feedback controlling arc welding 自调节电弧焊self-adjusting arc welding适应控制焊接adaptive control welding焊剂层burden; flux layer气体保护电弧焊gas shielded arc welding保护气体protective atmosphere惰性气体inert-gas活性气体active-gas惰性气体保护焊inert-gas (arc) welding氩弧焊argon arc welding熔化极惰性气体保护电弧焊metal inert-gas arc welding钨极惰性气体保护电弧焊tungsten inert-gas arc welding钨极氢弧焊argon tungsten arc welding脉冲氢弧焊pulsed argon arc welding熔化极脉冲氢弧焊argon metal pulsed arc welding钨极脉冲氢弧焊argon tungsten pulsed arc welding热丝MIG焊hot wire MIG welding热丝TIG焊hot wire TIG welding氨弧焊helium-arc welding活性气体保护电弧焊metal active-gas arc welding混合气体保护电弧焊mixed gas arc welding二氧化碳气体保护电弧焊carbon-dioxide arc welding; CO2 arc welding 细丝CO2焊CO2 arc welding with thin wire粗丝CO2焊CO2 arc welding with thick wire磁性焊剂CO2焊unionarc welding药芯焊丝CO2焊arcos arc process; dual shield arc welding气电立焊electrogas (arc) welding氮弧焊nitrogen-arc welding水蒸气保护电弧焊water vapour arc welding原子氢焊atomic hydrogen welding冲器室中电弧焊controlled atmosphere arc welding旋转电弧焊rotating arc welding短路过渡电弧焊short circuiting arc welding 焊丝横摆频率weaving speed of wire焊丝停摆时间electrode keep time of slider等离子弧焊plasma arc welding (PAW)等离子弧plasma arc等离子流plasma jet转移弧transferred arc非转移弧nontransferred arc联合型等离子弧combined plasma arc主弧main arc维弧pilot arc维弧电流pilot arc surrent双弧现象double arcing双弧临界电流critical current of double arcing 等离子弧焊枪plasma (welding) torch压缩喷嘴constricting nozzle单孔喷嘴single port nozzle多孔喷嘴multiport nozzle压缩喷嘴孔径orifice diameter孔道长度orifice throat length孔道比orifice throat ratio等离子气plasma gas; orifice gas电极内缩长度electrode setback小孔效应keyhole effect小孔型等离子弧焊keyhole-mode welding熔透型等离子弧焊fusion type plasma arc welding大电流等离子弧焊high-current plasma arc welding中电流等离子弧焊intermediate-current plasma arc welding 小电流等离子弧焊low-current plasma arc welding微束等离子弧焊micro-plasma arc welding交流等离子弧焊AC plasma arc welding脉冲等离子弧焊pulsed plasma arc welding等离子弧堆焊plasma arc surfacing热丝等离子弧堆焊hot wire plasma arc surfacing粉末等离子弧堆焊plasma arc powder surfacing等离子-熔化极惰性气体保护电弧焊plasma MIG welding 转移弧电源transferred arc power supply非转移弧电源nontransferred arc power supply电弧焊设备arc welding equipment电弧焊机arc welding machine直流弧焊机DC arc welding machine交流弧焊机AC arc welding machine交直流两用弧焊机AC/DC arc welding machine单站弧焊机single operator arc welding machine多站弧焊机multi-operator arc welding set固定式弧焊机stationary arc welding machine移动式弧焊机portable arc welding machine台式弧焊机bench arc welding machine内燃机驱动式弧焊机combustion engine driven arc welding set电动机驱动式弧焊机motor driven arc welding set熔化极弧焊机arc welding machine using a consumable electrode不熔化极弧焊机arc welding machine using a non-consumable electrode 脉冲弧焊机pulsed arc welding machine气体保护弧焊机gas shielded arc welding machine氩弧焊机argon arc welding machine二氧化碳弧焊机CO2 arc welding machine钨极惰性气体保护弧焊机tungsten inert-gas welding machine熔化仍惰性气体保护弧焊机metal inert-gas welding machine气电立焊机electrogas (arc) welding machine等离子弧焊机plasma arc welding machine微束等离子弧焊机micro-plasma welding equipment原子氢焊机atomic hydrogen welding apparatus埋弧焊机submerged arc welding machine弧焊电源arc welding power source直流弧焊电源DC arc welding power source交流弧焊电源AC arc welding power source交直流两用弧焊电源AC/DC arc welding power source脉冲弧焊电源pulsed arc welding power source上升特性弧焊电源rising characteristic arc welding power source平特性弧焊电源constant –voltage arc welding power source下降特性弧焊电源dropping characteristic arc welding power source垂降特性弧焊电源constant-current arc welding power source多特性弧焊电源slope-controlled arc welding power source逆变式焊接电源inverter welding power source晶体管弧焊电源transistor arc welding power source电源动特性dynamic characteristic电源外特性external characteristic弧焊变压器arc welding transformer弧焊整流器arc welding rectifier硅弧焊整流器silicon arc welding rectifier晶闸管弧焊整流器SCR arc welding rectifier; arc welding silicon controlled rectifier 脉冲弧焊整流器pulsed arc welding rectifier弧焊发电机arc welding generator焊车welding tractor焊接机头welding head行走机构traveller送丝机构wire feeder等速送丝方式constant wire-feed system变速送丝方式alternate wire-feed system跟踪装置tracer焊丝盘wire reel焊钳electrode holder焊枪welding gun电极夹electrode holder导电嘴tip; contact tube喷嘴nozzle焊剂漏斗flux-hopper高频振荡器oscillator; HF unit脉冲引弧器pulsed arc starter; surge injector脉冲稳弧器pulsed arc stabilizer脉冲激弧器pulsed arc exciter输出电抗器out put reactor镇定变阻器ballast rheostat直流分量抑制器direct current suppressor焊接回路welding circuit额定焊接电流rated welding current焊接电流调节范围range of welding current regulation 空载电压open circuit voltage(no load voltage)约定负载电压conventional load voltage负载持续率duty cycle额定负载持续率rated duty cycle; standard service手工弧焊机manual arc welding machine电焊渣electroslag welding (ESW)手工电渣焊manual electroslag welding丝极电渣焊electroslag welding with wire electrode板极电渣焊electroslag welding with plate electrode熔嘴电渣焊electroslag welding with consumable nozzle 管极电渣焊electroslag welding with tube electrode窄间隙电渣焊narrow-gap electroslag welding电渣堆焊electroslag surfacing电渣焊机electrosalg welding machine熔嘴consumable nozzle; consumable wire钢档板steel shoe (钢冷却板Cu-cooling plate铜滑板copper shoe渣池slag bath渣池深度depth of slag bath渣池电压voltage of slag bath电渣过程稳定性electroslag process stability焊丝间距distance between welding wires电子束焊electron beam welding (EBW)脉冲电子束焊pulsed electron beam welding加速电压acceleration voltage/ operating voltage电子束电流beam current电子束功率beam power电子束功率密度beam power density焦点focal spot焦距focal length工作距离work distance电子束焊机electron beam welding machine高真空电子束焊机full vacuum electron beam welder低真空电子束焊机partial vacuum electron beam welder 非真空电子束焊机nonvacuum electron beam welder真空度vacuum电子枪electron gun二极电子枪diode gun三极电子枪triode gun偏压电极bias electrode电磁透镜electromagnetic lens电子束偏转线圈electron beam deflection coils导流系数perveance钉尖spiking激光焊laser welding/ laser beam welding连续激光焊continuous laser welding脉冲激光焊impulsed laser welding激光焊机laser welding equipment气体激光器gas laser固体激光器solid laser焦斑直径focussed diameter of the beam离焦量clearance between focal point and (plate) surface 焊缝深宽比weld seam depth-to-width ratio焊疤 crator多余金属 excess metal焊条 filler rod填角焊接 fillet weld气体遮蔽 gas shield起槽熔接 groove weldinghand face shield 手握面罩硬表面堆焊 hard facing工模焊接 jig welding雷射光焊接 laser beam weldingMIG熔接 metal electrode insert gas welding 点焊熔核 nugget堆焊 overlaying珠击熔接法 peening of welding塞孔熔接 plug welding正向熔接 positioned welding压焊 pressure welding丙烷气切割 propane gas cutting纯镍熔接条 pure nickel electrode加强焊接 reinforcement of weld抗蚀护膜 resist背面熔接 root running焊缝 seam接合 seaming流缝熔接 seam welding串联缝熔接 series seam welding跳焊法 skip welding process火花 spark点焊接 spot welding针角焊接 stitch welding电弧焊接 stud arc welding下部焊层 under laying焊接空隙 void焊接流痕 weld flow mark焊缝凸起 weld flush焊接纹 weld line焊接痕 weld mark熔接透入 weld penetration焊接区 weld zone焊接 welding焊接泡 welding bead焊接方向 welding direction焊接变形 welding distortion焊剂 welding flux电熔接地 welding ground焊接周期 welding interval熔接应变 welding stress熔接气炬 welding torch电焊条生产线 welding electrode production line 焊条 welding electrode焊接夹具 welding fixture电焊机 welding generator焊工护目镜 welding goggles焊枪 welding gun电焊帽 welding helmet焊接检验尺 welding inspection ruler焊接机 welding machine焊管机 welding mill(焊接网 )电动焊接发电机 welding motor generator焊嘴 welding nozzle焊接药膏 welding paste焊接管 welding pipe焊粉 welding powder焊接整流器 welding rectifier焊接机器人 welding robot焊条挤压机 welding rod extrusion press酸性焊条 welding rod with acidic coating 碱性焊条 welding rod with alkaline coating 焊条 welding rod焊接模拟器 welding simulator不锈电焊条 welding stainless electrode焊接钢管 welding steel tube焊锡棒料 welding tin billet焊接夹钳 welding tongs焊炬 welding torch电焊变压器 welding transformer焊机 welding unit焊线机 welding wire machine焊丝 welding wire熔焊及切割胶管 welding-cutting hose焊割具 welding-cutting tool焊条芯 welding-rod core焊缝清理机 welding-seam cleaner无缝管 weldless pipe无缝钢管 weldless steel tube凿井机 well borer井式计数器 well counter井形甲板船 well deck vessel钻井机 well drill钻井平台 well platform钻井机 well rig试井车 well testing truck井温计 well thermometer井管滤管 well tube filter井式回火电炉 well type tempering electric furnace 矿井绞车 well winch测井探头 well-logging probe井型计数器 well-type counter质量合格证书 certification of fitness原材料 rawmaterial底板 bottom plate垫层 cushion侧壁 sidewall中心线 center line条形基础 strip footing附件 accessories型钢 profile steel钢板 steel plate熔渣 slag飞溅 welding spatter定位焊 tacking引弧 generating of arc熄弧 quenching of arc焊道 welding bead坡口 beveled edges外观检查 visual inspection重皮 doubleskin水平方向弧度 radian in horizontal direction 成型 molding直线度 straightness accuracy焊缝角变形 welding line angular distortion 水平度 levelness铅垂度 verticality翘曲变形 buckling deformation角尺 angle square对接焊缝 butt weld。
交通工程课后题答案—TrafficEngineering
L
1376 .87 ds
Sf 71.21 ft / s 48.44mi / h
t = 3.5s:
d r 308.70 ft
Sf 77.16 ft / s 52.49mi / h
t = 4.0s:
d r 352.80 ft
Sf 82.68 ft / s 56.24mi / h
t = 4.5s:
d r 396.90 ft
Sf 87.85 ft / s 59.76mi / h
tan 22.5
244.35 818.51 sin 8.6
462.21 ft
The distance between the origin and T.S. is : 1280 -Ts =1280 - 462.21 = 817.79 ft The station of T.S. is 800+17.79 The distance between the origin and S.C. is : 817.79 + Ls = 817.79 + 244.35 = 1062.14 ft
L.C. 2R sin
2 900 sin 26 789.07 ft
2
M R 1 cos 2
900 (1 cos26 ) 91.09 ft
E T sin
M 438.96 sin 26 91.09 101.34 ft
2
5729.58 5729.58
3-2.Answer: R
818.51 ft
D
7
The length of the spiral transition curve is :
allowable grade is 7%, the critical length of grade is seen to be approximately 610 ft.
纳米材料专业词汇
adj. 圆柱形的;圆柱体的
105, turbulent flow []
[流] 湍流;[流] 紊流
106, fluorescence [flʊə'res(ə)ns; flɔː-]
n. 荧光;荧光性
107, capillary force []
23, extinction [ɪk'stɪŋ(k)ʃ(ə)n; ek-]
n. 灭绝;消失;消灭;废止
24, graphite ['græfaɪt]
n. 石墨;黑铅
n. 用石墨涂(或掺入等)
25, preferred orientation []
[电子] 择优取向
26, phosphorous ['fɒsf(ə)rəs]
碳酸钠
5, monoclinic [mɒnə(ʊ)'klɪnɪk]
adj. [晶体] 单斜的;[晶体] 单斜晶体的
6, exothermic [,eksə(ʊ)'θɜːmɪk]
adj. 发热的;放出热量的;[热] 放热的
7, anion ['ænɪən]
n. 阴离子
8, diphenylamine [daɪ'fiːnaɪlə,miːn; -'fenɪl-]
101, MEMS []
abbr. 微电子机械系统(Micro-electromechanical Systems)
102, pharmacologist [,fa:mə'kɔlədʒist]
n. 药理学家
103, interferometer [,ɪntəfə'rɒmɪtə]
《半导体物理》习题答案第八章
第8章 半导体表面与MIS 结构2.对于电阻率为8cm Ω⋅的n 型硅,求当表面势0.24s V V =-时耗尽层的宽度。
解:当8cm ρ=Ω⋅时:由图4-15查得1435.810D N cm -=⨯∵22D d s rs qN x V εε=-,∴1022()rs s d D V x qN εε=-代入数据:11141352219145211.68.85100.24 4.9210()()7.3101.610 5.8109.2710d x cm -----⨯⨯⨯⨯⨯==⨯⨯⨯⨯⨯3.对由电阻率为5cm Ω⋅的n 型硅和厚度为100nm 的二氧化硅膜组成的MOS 电容,计算其室温(27℃)下的平带电容0/FB C C 。
解:当5cm ρ=Ω⋅时,由图4-15查得143910D N cm -=⨯;室温下0.026eV kT =,0 3.84r ε=(SiO 2的相对介电系数) 代入数据,得:1141/20002197722110.693.84(11.68.85100.026)11()11.6 1.61010010310FBr rs rs A C C kT q N d εεεε---===⨯⨯⨯+⋅+⨯⨯⨯⨯⨯此结果与图8-11中浓度为1⨯1015/cm 3的曲线在d 0=100nm 的值非常接近。
4. 导出理想MIS 结构的开启电压随温度变化的表示式。
解:按定义,开启电压U T 定义为半导体表面临界强反型时加在MOS 结构上的电压,而MOS结构上的电压由绝缘层上的压降U o 和半导体表面空间电荷区中的压降U S (表面势)两部分构成,即oST S Q U U C =-+ 式中,Q S 表示在半导体表面的单位面积空间电荷区中强反型时的电荷总数,C o 单位面积绝缘层的电容,U S 为表面在强反型时的压降。
U S 和Q S 都是温度的函数。
以p 型半导体为例,强反型时空间电荷区中的电荷虽由电离受主和反型电子两部分组成,且电子密度与受主杂质浓度N A 相当,但反型层极薄,反型电子总数远低于电离受主总数,因而在Q S 中只考虑电离受主。
HMX相变与热分解的模拟研究
HMX相变与热分解的模拟研究引言HMX (C4H8N8O8) 是一种高能量密度化合物,用于生产炸药和推进剂。
在许多军事和工业应用中,HMX都是一个重要的材料。
对HMX的研究非常重要,特别是关于其相变和热分解的研究。
相变和热分解是HMX在实际应用中起关键作用的两个重要过程,研究这些过程可以帮助我们更好地理解和预测HMX在实际应用中的性能。
本文将对HMX相变与热分解的模拟研究进行探讨。
HMX的相变HMX具有多种晶型,包括β-I、α、β-II和δ等。
其中以β-I型晶体为最稳定的晶型,在常温常压下HMX为β-I型晶体。
但在高温或高压条件下,HMX会发生相变,从β-I 型晶体转变为其他晶型。
这种相变会影响HMX的物理和化学性质,因此对HMX相变的研究非常重要。
目前,研究人员主要通过计算模拟的方法来研究HMX的相变过程。
计算模拟是利用计算机对分子或原子的运动进行模拟,从而揭示物质的性质和行为。
通过计算模拟,研究人员可以模拟HMX在不同温度和压力下的晶体结构和相变过程,从而深入了解HMX的相变机制。
一项研究发现,在高温和高压条件下,HMX会从β-I型晶体转变为α、β-II或δ型晶体。
通过计算模拟,研究人员可以准确地确定HMX相变的转变路径和转变温度压力条件,从而为控制HMX的相变提供重要参考。
计算模拟还可以揭示HMX在相变过程中的结构变化和能量变化,从而帮助我们更好地理解HMX的相变过程。
通过对HMX相变过程的深入研究,我们可以优化HMX的制备工艺,提高其稳定性和性能,从而更好地满足实际应用的需要。
HMX的热分解HMX的热分解是指在高温条件下,HMX分子内部发生化学反应,从而产生新的物质和释放能量。
HMX的热分解是炸药或推进剂在实际应用中释放能量的重要过程,因此对HMX热分解的研究也非常重要。
总结HMX相变与热分解的研究对于理解和预测HMX在实际应用中的性能非常重要。
目前,研究人员主要通过计算模拟和分子动力学模拟来研究HMX的相变和热分解过程,通过这些研究,我们可以深入了解HMX的结构和性质,从而更好地应用和控制HMX。
Transition M E-PSW-FX-02 独立媒体转换器用户指南说明书
User GuideM/E-PSW-FX-02Stand-Alone Media Converters•Copper to Fiber•10/100Base-TX to100Base-FX•Unit and Port LEDs allow for quick statusinformation •Auto-Negotiation•Fixed Full-Duplex on fiber•Auto-MDI/MDIX•Automatic LinkRestoration•Far-End-Fault (FEF)•Connect to legacy networkequipment•Eliminate CollisionDomainsContentsIntroduction (1)Ordering Information (2)Power Supply Included (2)Installation (3)Copper and Fiber Ports (3)Electrostatic Discharge (ESD) (3)Connect the Fiber Cable (3)Connect the Twisted-pair Copper Cable (4)Powering the Media Converter (4)Power Adapter (5)Operation (5)Status LEDs (5)Product Features (5)Optic and Cable Specifications (8)Fiber Optic Specs (8)Copper Cable Specs (8)Technical Specifications (9)Troubleshooting (10)Contact Us (10)Compliance Information (11)Declaration of Conformity (11)Record of Revisions (12)IntroductionThe M/E-PSW Series is a Fast Ethernet stand-alone Mini media converter that provides cost effective media conversion between 10/100Base-TX ports and 100Base-FX ports. With its fixed configuration, deployments are just plug-and-play, and its small size makes it ideal for locations where space is limited. Operating at Layer 2, the data link layer, this converter not only converts copper to fiber, it also provides rate conversion allowing legacy 10Base-T copper devices to connect to 100Base-FX fiber.Transition Networks M/E-PSW-FX-02 User GuideOrdering InformationSKU DescriptionM/E-PSW-FX-0210/100Base-TX (RJ-45) [100 m/328 ft.] to 100Base-FX 1300nm multimode(ST) [2 km/1.2 mi.]* Link Budget: 11.0 dBM/E-PSW-FX-02(SC) 10/100Base-TX (RJ-45) [100 m/328 ft.]* to 100Base-FX 1300nm multimode(SC) [2 km/1.2 mi.] Link Budget: 11.0 dBM/E-PSW-FX-02(SM) 10/100Base-TX (RJ-45) [100 m/328 ft.]* to 100Base-FX 1310nm single mode(SC) [20 km/12.4 mi.] Link Budget: 16.0 dBOptional Accessories (sold separately)SPS-2460-SA Stand-Alone Power Supply optionWMBM Wall Mount Bracket for Mini Media Converter optionM-MCR-01 18-Slot Powered Mini Chassis optionDRBM DIN Rail Mount Bracket for Mini Media Converter optionRMBM Rack Mount Bracket for Mini, use with RMS19-SA4-02 and/or E-MCR-05 * Typical maximum distance. Actual distance depends on network physical characteristics.M/E-PSW-FX-02 M/E-PSW-FX-02(SC) M/E-PSW-FX-02(SM) Power Supply IncludedTo order the corresponding country specific power supply, add the extension to the end of the SKU. For example: M/E-PSW-FX-02-NA = North America, -LA = Latin America, -EU = Europe, -UK = United Kingdom, -SA = South Africa, -JP = Japan, -OZ = Australia, -BR = Brazil.Transition Networks ME-PSW-FX-02 User Guide InstallationCopper and Fiber PortsThe illustration below shows the front panel of the M/E-PSW-FX-02 media converters.Electrostatic Discharge (ESD)Always observe the following ESD precautions when installing or handing the M/E-PSW-FX-02•Do not remove the converter from its protective packaging until you are ready to install it.•Wear an ESD wrist grounding strap before handling any module or component. If you do not havea wrist strap, maintain grounded contact with the unit throughout any procedure requiring ESDprotection.Connect the Fiber CableFull duplex (always ON) is on the fiber side only, therefore, the 512-Bit Rule does not apply. The cable lengths are constrained by the cable requirement.1.Locate or build IEEE 803.2 compliant 100Base-FX fiber cable with male, two- stranded TX to RXconnectors installed at both ends.2.Connect the fiber cable to the M/E-PSW-FX-02 media converter as follows:•Connect the male TX cable connector to the female TX port.•Connect the male RX cable connector to the female RX port.3.Connect the fiber cable to the other device (media converter, hub, etc.) as follows:•Connect the male TX cable connector to the female RX port.•Connect the male RX cable connector to the female TX port.Transition Networks M/E-PSW-FX-02 User GuideConnect the Twisted-pair Copper CableThe AutoCross feature allows either MDI (straight-through) or MDI-X (crossover) cable connections tobe configured automatically, according to network conditions.•If half-duplex mode is used, refer to the 512-Bit Rule.•If full-duplex mode is used, the 512-Bit Rule does not apply. The cable lengths are constrained by the cable requirements.1.Locate or build IEEE 803.2™ compliant 10Base-T or 100Base-TX cable, with RJ-45 connectorsinstalled at both ends.2.Connect the RJ-45 connector at one end of the cable to the RJ-45 port on the M/E-PSW-FX-02media converter.3.Connect the RJ-45 connector at the other end of the cable to the RJ-45 port on the other device(switch, workstation, etc.).Powering the Media ConverterThe power options for the M/E-PSW-FX-02 media converter are product dependent.The following shows the various power configurations associated with each model.M/E-PSW-FX-02 Back Panel PowerTransition Networks ME-PSW-FX-02 User GuidePower AdapterAC Power1.Connect the barrel connector of the power adapter to the media converter’s power port (locatedon the back panel of the media converter).2.Connect the power adapter plug to AC power.3.Verify that the media converter is powered up by observing the illuminated LED power indicatorlight on the front panel.DC PowerSee the Transition Networks SPS-1872-SA DC User Guide for the external power supply for powering the media converter.OperationStatus LEDsUse the status LEDs to monitor the media converter operation in the network. LED descriptions are PWR (Power): (below RJ-45)ON = Link; Flashing = ActivityFX-Link/Act (Fiber Link/Activity):(Upper Left on RJ-45)ON = Link; Flashing = ActivityTX-Link/Act (Copper Link/Activity):(Upper Right on RJ-45)ON = Link; Flashing = ActivityProduct FeaturesCongestion ReductionThe M/E-PSW-FX-02 media converters do not forward collision signals or error packets from one collision domain to another, resulting in improvements in baseline network performance. In addition, the media converter filters packets destined for local devices, which reduces network congestion. Auto-NegotiationThe Auto-Negotiation feature is ON permanently for the M/E-PSW-FX-02 media converters. Auto-Negotiation allows the media converter to configure itself automatically to achieve the best possible mode of operation over a link. It broadcasts speed (10 Mb/s or 100 Mb/s) and duplex capabilities (full or half) to the other device and negotiates the best mode of operation. Auto-Negotiation allows quick and easy installation because the optimal link is established automatically.In a scenario where an auto-negotiation device is linked to a non-negotiating device, the negotiating device via parallel detection recognizes the speed of that second device then establishes the best operating speed (10Mb/s or 100Mb/s) at half- duplex.Transition Networks M/E-PSW-FX-02 User Guide AutoCross™The AutoCross feature allows using either straight-through (MDI) or crossover (MDI-X) copper cables when connecting to 10Base-T or 100Base-TX devices. AutoCross determines the characteristics of the connection and automatically configures the device to link up, regardless of the copper cable configuration, MDI or MDI-X.Feature Summary - M/E-PSW-FX-02Automatic Link RestorationThe media converter will automatically re-establish the link when connected to switches if the link is lost, even with Auto-Negotiation and Link Pass-through (both directions) enabled.Full-Duplex Flow ControlIn a full-duplex network, maximum cable lengths are determined by the type of cables used. See front cover for M/E-PSW-FX-02 cable specifications. The 512-Bit Rule does not apply in a full-duplex network. Note: Full duplex is ON permanently for the fiber port only.Half-Duplex Flow Control (512-Bit Rule)In a half-duplex network, the maximum cable lengths are determined by the round- trip delay limitations of each Fast Ethernet collision domain. (A collision domain is the longest path between any two terminal devices; e.g., a terminal, switch, or router.) The 512-Bit Rule determines the maximum length of cable permitted by calculating the round-trip delay in bit-times (BT) of a particular collision domain. If the result is less than or equal to 512 BT, the path is good.Flow ControlThe process of adjusting the flow of data from one device to another ensures that the receiving device can handle all the incoming data. This is particularly important where the sending device is capable of transmitting data much faster than the receiving device can accept it.Distance ExtensionThe M/E-PSW-FX-02 media converters can segment one (1) 10Base-T copper Ethernet and/or 100Base-TX copper Fast Ethernet, and one (1)100Base-FX fiber Fast Ethernet collision domain:• In a half-duplex Ethernet or Fast Ethernet environment, the M/E-PSW-FX-02 media converters extend network distances by segmenting collision domains so that the 512-Bit Rule applies separately to each collision domain.• In a full-duplex Ethernet or Fast Ethernet environment, the M/E-PSW-FX-02 media converters extend network distances to the physical cable limitations imposed by the selected twisted-pair copper fiber cables.Rate ConversionThe M/E-PSW-FX-02 media converters allow connection of 10Mb/s terminal devices on a 10Base-T legacy Ethernet copper network to 100Mb/s terminal devices on a 100Base-TX Fast Ethernet copper network and/or to 100Mb/s terminal devices on a 100Base-FX Fast Ethernet fiber network.Transition Networks ME-PSW-FX-02 User Guide Far-End FaultWhen a fault occurs on an incoming fiber link (1), the media converter transmits a Far-End Fault signal on the outgoing fiber link (2). In addition the Far-End Fault signal also activates the Link Pass-Through, which in turn, disables the link on the copper portion of the network (3) and (4).Transition Networks M/E-PSW-FX-02 User Guide Optic and Cable SpecificationsThe physical characteristics must meet or exceed IEEE 802.3™ specifications.Fiber Optic SpecsBit Error Rate: <10-9Single mode fiber (recommended): 9 µmMultimode fiber (recommended): 62.5/125 µmMultimode fiber (optional): 100/140, 85/140, 50/125 µmM/E-PSW-FX-02 (SC)1300 nm multimodeFiber Optic Transmitter Power: min: -19.0 dBm max: -14.0 dBmFiber Optic Receiver Sensitivity: min: -30.0 dBm max: -14.0 dBmLink Budget: 11.0 dBM/E-PSW-FX-02 (SM)1300 nm single modeFiber Optic Transmitter Power: min: -15.0 dBm max: -8.0 dBmFiber Optic Receiver Sensitivity: min: -31.0 dBm max: -8.0 dBmThe fiber optic transceivers on this device meet Class I Laser safety requirements per IEC825/CDRH standards and comply with 21 CFR1040.10 and 21CFR1040.11Copper Cable SpecsCategory 3: Minimum requirement for 10 Mbps OperationGauge: 24 to 22 AWGAttenuation: 11.5 dB/100m @ 5-10 MHzMaximum Cable Distance: 100 metersCategory 5: Minimum requirement for 10 Mbps OperationGauge: 24 to 22 AWGAttenuation: 22 dB/100m @ 100 MHzMaximum Cable Distance: 100 meters•Straight-through or Cross-over twisted-pair cable may be used.•Shielded (STP) or unshielded (UTP) twisted-pair cable may be used.•Pins 1 & 2 and 3 & 6 are the two active pairs in an Ethernet network.•Use only dedicated wire pairs for active pins (e.g., blue/white, orange/white & white/orange, etc.) •Do not use flat or silver satin wire.Transition Networks ME-PSW-FX-02 User GuideTechnical SpecificationsThe information in this user guide is subject to change. For the most current information, view the online user guide online at https://.* MTBF (Mean Time Between Failure) is estimated using the predictability method. The computation is based on the MIL-HDBK-217 F and Bellcore standards.**Manufacturer’s rated ambient temperature.WARNING: If the media converter is an IEEE802.3-2005 Powered Device (PD) capable of receiving power via the Media Dependent Interface (MDI) leads, the power source, connector, and cable attached to the barrel power connector must meet the isolation requirement specified in IEEE802.3-2005. Failure to observe this warning could result in an electrical shock.CAUTION: Copper based media ports, e.g., Twisted Pair (TP) Ethernet, USB, RS232, RS422, RS485, DS1, DS3, Video Coax, etc., are intended to be connected to intra- building (inside plant) link segments that are not subject to lightening transients or power faults. Copper-based media ports, e.g., Twisted Pair (TP) Ethernet, USB, RS232, RS422, RS485, DS1, DS3, Video Coax, etc., are NOT to be connected to inter- building (outside plant) link segments that are subject to lightening transients or power faults. Failure to observe this caution could result in damage to equipment.WARNING: Visible and invisible laser radiation when open. Do not stare into the beam or view directly with optical instruments. Failure to observe this warning could result in an eye injury or blindness. WARNING: Use of controls, adjustments, or the performance of procedures other than those specified herein could result in hazardous radiation exposure.Transition Networks M/E-PSW-FX-02 User GuideTroubleshootingIf the media converter fails, isolate and correct the failure by determining the answers to the following questions, and then taking the indicated action:1.Is the power LED illuminated and did the TX and FX LEDs turn ON and then turn OFF?NO•Is the power adapter the proper type of voltage and cycle frequency for the AC outlet?•Is the power adapter properly installed in the media converter and in the outlet?•If PoE, is the RJ-45 jack receiving power from the input device? (See TechnicalSpecifications.)•Contact Technical Support: see Contact Us below.YES•Proceed to step 2.2.Are the “TX and FX-Link/ACT” LEDs lit on the RJ-45 port ?NO•Check the copper cables for proper connection.•Check the fiber cables for proper connection.•Contact Technical Support: see Contact Us below.YES•Contact Technical Support: see Contact Us below.Contact UsTechnical supportTechnical support is available 24-hours a day:+1.952.358.3601, 1.800.260.1312, **************************AddressTransition Networks10900 Red Circle DriveMinnetonka, MN 55343, U.S.A.tel: +1.952.941.7600 ********************toll free: 1.800.526.9267 **************************fax: 952.941.2322 ******************************Transition Networks ME-PSW-FX-02 User Guide Compliance InformationDeclaration of ConformityFCC regulationsThis equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications.Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at the user's own expense.Canadian regulationsThis digital apparatus does not exceed the Class A limits for radio noise for digital apparatus set out on the radio interference regulations of the Canadian Department of Communications.Le présent appareil numérique n'émet pas de bruits radioélectriques dépassant les limites applicables aux appareils numériques de la Class A prescrites dans le Règlement sur le brouillage radioélectrique édicté par le ministère des Communications du Canada.Transition Networks M/E-PSW-FX-02 User Guide European regulationsWarningThis is a Class A product. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.Achtung !Dieses ist ein Gerät der Funkstörgrenzwertklasse A. In Wohnbereichen können bei Betrieb dieses Gerätes Rundfunkstörungen auftreten. In diesem Fäll is der Benutzer für Gegenmaßnahmen verantwortlich.Attention !Ceci est un produit de Classe A. Dans un environment domestique, ce produit risque de créer des interférences radioélectriques, il appartiendra alors à l'utilsateur de prende les measures spécifiques appropriées.In accordance with European Union Directive 2002/96/EC of the European Parliament and of theCouncil of 27 January 2003, Transition Networks will accept post usage returns of this product forproper disposal. The contact information for this activity can be found in the 'Contact Us' portion ofthis document.CAUTION: RJ connectors are NOT INTENDED FOR CONNECTION TO THE PUBLIC TELEPHONENETWORK. Failure to observe this caution could result in damage to the public telephone network.Der Anschluss dieses Gerätes an ein öffentlickes Telekommunikationsnetz in den EGMitgliedstaaten verstösst gegen die jeweligen einzelstaatlichen Gesetze zur Anwendung der Richtlinie 91/263/EWG zur Angleichung der Rechtsvorschriften der Mitgliedstaaten über Telekommunikationsendeinrichtungen einschliesslich der gegenseitigen Anerkennung ihrer Konformität.Record of RevisionsRev Date NotesA 11-17-10 Initial release.B 3-20-15 Updated Technical Specifications.C 9-16-15 Updated Back Panel Power drawing on page 6.D 10/14/20 Updated description, features, and specifications.Trademark Notice: All trademarks and registered trademarks are the property of their respective owners.Copyright restrictions: © 2010-2020 Transition Networks. All rights reserved. No part of this work may be reproduced or used in any form or by any means - graphic, electronic or mechanical - without written permission from Transition Networks.。
芒果MiFRI1和MiFRI2基因的克隆与表达分析
热带作物学报2021,42(1):017-024Chinese Journal of Tropical Crops芒果MiFRIl和MiFRI2基因的克隆与表达分析黄方,罗聪*,余海霞,范志毅,谢小杰,刘源,莫啸,何新华杯广西大学农学院/亚热带农业生物资源保护与利用国家重点实验室,广西南宁530004摘要:FRIGIDA(FRI)是植物春化途径中影响成花的关键基因之一。
本研究克隆了2个芒果F7"基因,分别命名为MiFRH和MiFRI2。
序列生物信息学分析结果显示,MiFR刀和MZFR72基因的ORF长度分别为1752、1815bp,编码584、605个氨基酸,蛋白质分子量为64.98、66.86kDa…进化树分析结果显示,MiFRIl和MiFRI2分别属于FRIGIDA 和FRIGIDA-like两个分支。
表达模式分析结果显示,MiFRIl和MiFRI2基因在芒果的叶、茎和芽(花)中均表达。
MiFRIl在芒果的营养期和成花转变期之间的各个组织中表达水平均较低,而在花芽分化后期的叶片和芽中表达水平显著升高且达到顶峰。
的表达高峰在不同组织中出现的时间不同。
2个M迟换基因在营养芽转向花芽发育的过程中的顶芽中表达水平均下降,但在花芽分化后期的顶芽中表达水平又再次上升,而在叶片中2个基因的表达高峰均出现在花芽分化后期,但MiFRW的表达水平高于M7FAZ2。
说明MiFRfc与芒果的花发育有关,但2个基因发挥功能的程度可能存在差异。
关键词:芒果;FRIGIDA;克隆;生物信息学;表达模式中图分类号:S813.3文献标识码:ACloning and Expression Analysis of MiFRIl and MiFRI2Genes in MangoHUANG Fang,LUO Cong*,YU Haixia,FAN Zhiyi,XIE Xiaojie,LIU Yuan,MO Xiao,HE Xinhua**College of Agriculture,Guangxi University/State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources,Nanning,Guangxi530004,ChinaAbstract:FRIGIDA(FRI)is one of the key genes which influence flower formation in plant in response to vernalization pathway.In this study,two FRI genes named MiFRIl and MiFRI2were cloned in mango.Sequence analysis showed that the open reading frame of MiFRIl and MiFRI2genes was1752bp and1815bp in length,encoding584and605 amino acids with molecular weight64.98kDa and66.86kDa,respectively.Phylogenetic tree analysis showed that MiFRIl and MiFRI2belonged to FRIGIDA and FRIGIDA-like family,respectively.Expression analysis showed that MiFRIl and MiFRI2expressed in leaves,stems and buds/flowers.The expression level of MiFRIl was low in all tested tissues between vegetative stage and flowering transition stage,while MiFRIl increased transcriptional level to the peak in leaves and buds at the later stage of bud differentiation.The expression peak of MiFRI2varied among different tissues.The expression level of both MiFRIs genes decreased in the terminal bud during the vegetative bud transition to flower bud,but increased again in the bud at the later stage of flower bud differentiation.The peak of MiFRIs both occurred in leaves at the late stage of flower bud differentiation,but the transcriptional level of MiFRIl was higher than that of MIFRI2.It indicates that MiFRIs may play important roles to the flower development in mango.Keywords:mango;FRIGIDA;cloning;bioinfbrmatics;expression analysisDOI:10.3969/j.issn.l000-2561.2021.01.003收稿日期2020-03-19;修回日期2020-04-08基金项目国家自然科学基金项目(No.31860541);广西创新驱动发展专项资金项目(No.AA17204026-2);国家现代农业产业技术体系广西芒果创新团队栽培岗位项目(No.nycytxgxcxtd-06-02)0作者简介黄方(1994一),女,硕士研究生,研究方向:果树遗传育种与生物技术。
三元硝酸盐@二氧化硅微胶囊相变材料的制备及其性能研究
第 12 卷第 12 期2023 年 12 月Vol.12 No.12Dec. 2023储能科学与技术Energy Storage Science and Technology三元硝酸盐@二氧化硅微胶囊相变材料的制备及其性能研究水潭,吴玉庭,李传,李琦(北京工业大学环境与生命学部,传热强化与过程节能教育部重点实验室及传热与能源利用北京市重点实验室,北京100124)摘 要:针对当前无机熔盐相变材料在中低温储热领域研究的不足,本工作开发制备出一种相变温度为150~220 ℃的多元熔盐相变微胶囊复合材料,并对其微结构和热物性进行观察表征。
本工作首先进行三元混合硝酸盐的制备,STA测试结果表明纯三元盐的熔融点为156.04 ℃,相变潜热为95.5 kJ/kg,分解温度达到626.3 ℃;之后在其基础上利用凝胶-溶胶法进行熔盐胶囊化封装,采用SEM-EDS、FT-IR、XRD和DSC等手段对微胶囊复合材料的微观结构、化学成分、晶体结构、物理化学兼容性和相变特性进行测试分析。
结果显示三元硝酸盐可被有效地包覆在二氧化硅壳体中,所形成的微胶囊材料粒径范围为10~40 µm,最高包覆率可达90.9%,微胶囊化后的熔融焓为86.81 kJ/kg,储热利用效率达78.36%,研究结果证明三元硝酸盐@二氧化硅微胶囊在中低温热能储存方面具有较高的应用潜力。
关键词:储能;相变材料;多元硝酸盐;微胶囊;中低温温区doi: 10.19799/ki.2095-4239.2023.0621中图分类号:TK 519 文献标志码:A 文章编号:2095-4239(2023)12-3595-10 Preparation and properties of ternary nitrate-@silica microencapsulated phase change materialsSHUI Tan, WU Yuting, LI Chuan, LI Qi(MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Beijing Key Laboratory of Heat Transfer and Energy Conversion, Beijing University of Technology, Beijing 100124, China)Abstract:This study focuses on the development of a ternary salt-based microencapsulation phase change composite by the sol-gel approach. This composite exhibited a melting temperature range of 150-220 ℃and could be effectively used for thermal energy storage.The thermophysical properties of the pure ternary nitrate salt were first evaluated. The salt exhibited a melting point of 156.04 ℃, latent heat of 95.5 kJ/kg, and decomposition temperature of 626.3 ℃. Then, the microencapsulated composite was fabricated and investigated based on the results of the pure ternary salt. Various characteristic methods, including scanning electron microscopy with energy-dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and differential scanning calorimetry, were employed to evaluate the thermal energy storage performance of the microencapsulated composite. The results indicated that the nitrate salt could be efficiently encapsulated by SiO2.收稿日期:2023-09-11;修改稿日期:2023-09-29。
南京大学-晶体生长课件-Chapter 4-晶体生长的相变过程及其动力学
a. 若过程放热, H<0,则 T>0,即T <T0,必须过冷。 b.若过程吸热, H>0,则 T<0,即T > T0,必须过热。
结论:相变推动力可表示为过冷度 (T)。
b、相变过程的压力条件 从热力学可知,在恒温可逆不作有用功时: dG=VdP 对理想气体而言,在压强由P1 到P2过程中:
2 , 2 T T
2 (1) 2 ( 2)
, Tp Tp
2 (1)
2 , 2 p p
2 (1) 2 ( 2)
由于
s cp T T
p
2 1 v T , T 2 v T
p
1 2 1 v , v Tp v p
*二、按相变方式分类
成核-长大型相变:由程度大,但范围小的浓度起伏开始发生
相变,并形成新相核心。如结晶釉。 连续型相变(不稳分相):由程度小,范围广的浓度起伏连续长
大形成新相。 如微晶玻璃。
三、按质点迁移特征分类 扩散型:有质点迁移。
无扩散型:在低温下进行,如:同素异构转变、马氏体转变
马氏体转变特点:
单元系统相变过程图
亚稳区的特征 (1)亚稳区具有不平衡状态的特征,是物相在理论上 不能稳定存在,而实际上却能稳定存在的区域;
(2)在亚稳区内,物系不能自发产生新相,要产生新 相,必然要越过亚稳区,这就是过冷却的原因; (3)在亚稳区内虽然不能自发产生新相,但是当有外 来杂质存在时,或在外界能量影响下,也有可能在亚 稳区内形成新相,此时使亚稳区缩小。
系统自由能: G G1 G2 nVGV A(n)
式中:n — 新相的原子数(或分子数) V — 新相的原子体积; ∆GV — 单位体积旧相和新相之间的自由能之差; A(n) — 新相总表面积;
一种铁素体-奥氏体相变动力学模型
收稿日期:2022-07-14基金项目:国家自然科学基金面上资助项目(51774082).作者简介:蓝慧芳(1981-)ꎬ女ꎬ山东烟台人ꎬ东北大学副教授.第44卷第7期2023年7月东北大学学报(自然科学版)JournalofNortheasternUniversity(NaturalScience)Vol.44ꎬNo.7Jul.2023㊀doi:10.12068/j.issn.1005-3026.2023.07.004一种铁素体-奥氏体相变动力学模型蓝慧芳ꎬ柳泽阳ꎬ武梦如(东北大学轧制技术及连轧自动化国家重点实验室ꎬ辽宁沈阳㊀110819)摘㊀㊀㊀要:基于混合模型及吉布斯能量平衡模型思想ꎬ建立了一种简单的吉布斯能量平衡模型ꎬ应用于Fe-C-Mn低碳钢在780ħ两相区等温过程中的铁素体向奥氏体相变模拟ꎬ并分析了三种吉布斯自由能㊁有效晶粒尺寸㊁元素分布等对相变的影响.结果表明ꎬ有效晶粒尺寸及界面迁移率影响相变速率ꎬ但对最终奥氏体体积分数无影响ꎻ相变过程中相界面处锰元素的富集导致的能量耗散同时降低了相变速率及最终奥氏体体积分数.对模拟结果进行实验验证ꎬ表明模拟结果与实验结果吻合良好.关㊀键㊀词:相变动力学ꎻ吉布斯能量平衡ꎻ铁素体-奥氏体相变ꎻ溶质拖曳效应中图分类号:TG111 5㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:1005-3026(2023)07-0938-06AKineticModelforFerrite ̄AusteniteTransformationLANHui ̄fangꎬLIUZe ̄yangꎬWUMeng ̄ru(StateKeyLaboratoryofRollingandAutomationꎬNortheasternUniversityꎬShenyang110819ꎬChina.Correspondingauthor:LANHui ̄fangꎬE ̄mail:lanhf@ral.neu.edu.cn)Abstract:InthispaperꎬbasedontheconceptsofmixedmodelandGibbsenergybalancemodelꎬasimpleGibbsenergybalancemodelwasestablishedtosimulatetheferrite ̄austenitetransformationofFe ̄C ̄Mnlowcarbonsteelduringtheintercriticalannealingat780ħ.TheeffectsofGibbsfreeenergyꎬeffectivegrainsizeandalloyingdistributiononthetransformationwerestudied.Theresultsshowthattheinitialeffectivegrainsizeandinterfacialmobilitygreatlyaffectedthekineticsofphasetransformationꎬwhiletheyhadlittleeffectonthefinalvolumefractionoftheaustenite.ThedissipationenergycausedbytheMnenrichmentattheinterfaceduringphasetransformationsloweddownthetransformationkineticsandreducedthefinalvolumefractionoftheaustenite.Itisfoundthatthemodellingresultsaboveareingoodaccordancewiththeexperimentalones.Keywords:phasetransformationkineticsꎻGibbsenergybalanceꎻferrite ̄austenitetransformationꎻsolutedrageffect㊀㊀铁素体-奥氏体相变在钢铁行业的研究中具有非常重要的意义ꎬ工业钢的组织和性能依附于奥氏体冷却之后形成的各种相[1].关于奥氏体向铁素体相变的冷却过程已得到广泛研究[2]ꎻ相反的ꎬ对铁素体向奥氏体相变的加热过程研究相对较少.在加热过程中ꎬ奥氏体相变形核和长大受到诸多因素的影响.对于相变发生前的初始组织ꎬ如再结晶状态㊁第二相分布等ꎬ由于缺陷密度及空间碳分布差异ꎬ将在很大程度上影响奥氏体相变动力学[3-4]ꎬ导致奥氏体冷却后所形成的组织(例如铁素体晶粒尺寸㊁马氏体相变分数与分布等)出现差异.对于加热过程的晶粒长大来说ꎬ相变过程中组织难以实时观测ꎬ加之再结晶与奥氏体相变的相互作用[5-6]ꎬ使双相钢加热过程中对于相变及组织演变规律的研究具有挑战性.除了上述影响因素外ꎬ研究奥氏体的形成存在诸多挑战:加热时形成的奥氏体在冷却时又转化为不同的产物相ꎬ因此很难直接观察加热时形成的奥氏体ꎻ升温使奥氏体形成动力学的研究变得困难ꎬ初始组织的相分布和形态会影响奥氏体的形成过程ꎬ因此必须从不同的初始组织开始研究ꎬ这增加了所需的实验数量[7].这也是多年以来奥氏体逆相相对较少的原因.鉴于实验研究高温奥氏体化带来的不便ꎬ运用相关相变模型模拟相变过程成为可行之路.近些年来ꎬ人们已经提出了不同的生长模型来描述铁素体-奥氏体相变ꎬ其中运用较多的为:扩散控制模型[8]㊁界面控制模型[9]及混合模型[10].混合生长模型同时考虑了溶质扩散和界面迁移率的影响ꎬ与实验结果吻合较好[11].研究表明扩散控制模型与界面控制模型均为混合模型的一种极端情况[12-13]ꎬ因而在最近的研究中ꎬ混合生长模型被广泛使用[14].但是传统的混合模型主要考虑的是Fe-C二元体系ꎬ将其他合金元素的影响整合到了比例因子中ꎬ较难对其进行深入讨论.Mecozzi等[7]提出了基于Fe-C-Mn三元体系的等温铁素体向奥氏体转变的半解析混合模型ꎬ并对铁素体到奥氏体转变的扩散控制㊁界面控制和混合模型进行了比较研究.然而ꎬ他们没有对模型模拟结果进行实验验证.陈浩等提出了一个基于混合模型和溶质拖曳效应的吉布斯能量平衡(GibbsenergybalanceꎬGEB)模型[15]ꎬ该模型考虑了碳和其他替代元素的扩散ꎬ可以解释奥氏体ң贝氏体㊁奥氏体ң铁素体出现的停滞现象ꎬ但尚未应用于反向转变.安栋等基于混合模型的概念ꎬ建立了铁素体向奥氏体转变的吉布斯能量平衡模型[16]ꎬ并应用于Fe-C-Mn和Fe-C-Mn-Si合金在760ħ下的铁素体向奥氏体转变.模型预测的相变动力学与膨胀测量的结果比较接近ꎬ但未给出合金元素扩散对于相变过程影响的相关解释.本文基于半解析混合模型与吉布斯能量平衡模型ꎬ建立了一种简单的吉布斯能量平衡模型ꎬ模拟了Fe-0 1C-2Mn在加热过程中的相变动力学.将不同影响因素对奥氏体化相变过程的影响进行了讨论ꎬ并将模拟结果与实验进行了比较.1㊀GEB模型的建立吉布斯能量平衡模型的基本原理为[15]:相变过程的化学驱动力ΔGchem等于置换原子在相界面内再分配而引起的吉布斯自由能耗散ΔGdiff和界面移动带来的摩擦引起的吉布斯自由能耗散ΔGfricꎬ即ΔGchem=ΔGdiff+ΔGfric.(1)1 1㊀化学驱动力ΔGchem的计算铁素体向奥氏体加热过程相变的化学驱动力ΔGchem采用混合模型[7]进行计算.相关假设条件为:忽略奥氏体的形核过程ꎬ认为在计算区域(研究相变区域的一半长度为L)的最左边位置存在一个初始半径为sγꎬ0的奥氏体ꎬ该奥氏体由相变开始时具有共析碳成分为xPc的珠光体转变而来ꎬ其余部分为铁素体基体(L-sγꎬ0).随相变的进行ꎬ奥氏体长大ꎻ在t时刻时ꎬ界面迁移至z=sγ处(z为到奥氏体中心的距离)ꎬ此时奥氏体内部的碳分布如图1所示.由于碳在铁素体内部扩散速率远大于奥氏体ꎬ认为在相变过程中碳的摩尔分数始终等于平衡值xαꎬeqc.图1㊀碳的摩尔分数分布示意图Fig 1㊀Schematicofthemolarfractiondistributionofthecarbon㊀㊀根据半解析模型的假设ꎬ在奥氏体中存在与扩散距离z呈指数关系碳的摩尔分数为xc(tꎬz)=xγꎬhc+(xγꎬα/γc-xγꎬhc)cosh(z/z0)-1cosh(sγ/z0)-1.(2)式中:xγꎬhc为奥氏体中心碳的摩尔分数ꎻxγꎬα/γc为界面处奥氏体侧碳的摩尔分数ꎻxc(tꎬs)=xγꎬα/γcꎻz0为奥氏体相中碳分布曲线的宽度ꎬz0≫sγ.铁素体向奥氏体相变的化学驱动力ΔGchem可由式(3)计算[7]:ΔGchem=χ(xγꎬα/γc-xγꎬeqc).(3)新相奥氏体的生长速率v可由式(4)计算:v=MΔGchem.(4)式中:M为界面迁移率ꎬM的数值可由M=M0exp-QRTæèçöø÷计算ꎬM0为界面迁移率因子ꎻQ为激活能ꎻR为气体常数ꎻT为温度ꎬK.相变过程中界面处碳扩散通量守恒ꎬ即v(xγꎬα/γc-xαꎬeqc)=-Dγcdxcdzz=sγ.(5)为简化计算ꎬ假设z0≫sγ>sγꎬ0ꎬ结合式(1)~式(5)可推导出奥氏体相界面碳的摩尔分数xγꎬα/γc的解析表达式:939第7期㊀㊀㊀蓝慧芳等:一种铁素体-奥氏体相变动力学模型㊀㊀㊀㊀xγꎬα/γc=12Asγ[(AsγΔxc-3)+(AsγΔxc-3)2+12sγꎬ0A(xpc-xαꎬeqc)+xαꎬeqc.(6)式中:A=Mχ/DγcꎻΔxc=xγꎬeqc-xαꎬeqc.化学驱动力为ΔGchem=χ12Asγ[(AsγΔxc-3)+(AsγΔxc-3)2+12sγꎬ0A(xpc-xαꎬeqc)]+xαꎬeqc-xγꎬeqc{}.(7)1 2㊀自由能耗散ΔGdiff和ΔGfric的计算采用溶质拖曳模型[17]计算溶质原子在界面内再分配引起的吉布斯自由能耗散ΔGdiff.相变过程中ꎬ合金元素在界面处偏聚形成一个楔形的化学势阱ꎬ如图2所示ꎬ并且其深度与原子偏聚程度有关.其中μα和μγ分别为溶质原子在铁素体和图2㊀α/γ界面处Mn化学势阱示意图Fig 2㊀SchematicdiagramofthechemicpotentialwelloftheMnelementattheα/γinterface奥氏体相中的化学势ꎬΔE为Mn在铁素体和奥氏体中化学势之差的一半ꎬE0为结合能ꎬh为界面厚度的一半.根据上述假设ꎬ溶质原子耗散能ΔGdiff可由式(8)计算:ΔGdiff=-ʏ+h-h[C(y)-C0]dE(y)dydy.(8)式中:y为距界面的距离ꎻC0为合金中溶质Mn的标称分数ꎻC(y)为界面处溶质Mn随距离y变化的分数ꎻE(y)为图中随距离y变化的合金元素Mn的化学势.界面处置换元素的分布应满足菲克第二定律公式:∂∂yDint∂C(y)∂y+DintC(y)RT∂E(y)∂y+vC(y)[]=0.(9)式中ꎬDint为溶质原子在界面处的扩散系数.综合式(8)㊁式(9)可得到ΔGdiff的解析表达式:ΔGdiff=-RTC0-a2V1+a-b2V1+b+a2[1-exp(-V(1+a))](1+a)2+b2[1-exp(-V(1+b))](1+b)2-{ab[1-exp(-V(1+a))][1-exp(-V(1+b))](1+a)(1+b)}.(10)式中:Vꎬaꎬb为无量纲量ꎻV=vhDintꎻa=1V(ΔE-E0)RTꎻb=1V(ΔE+E0)RT.界面迁移造成的自由能耗散ΔGfric计算式为ΔGfric=vM.(11)式中:v为生长速率.1 3㊀模拟条件模拟选取质量分数为0 1%C-2%Mn的低碳钢.模拟工艺为:780ħ下铁素体向奥氏体的等温转变.碳在奥氏体中的扩散系数为1 5ˑ10-5ˑexp(-142100/RT)/(m2 s-1)[18].界面厚度2h为0 5nm[19].锰的结合能E0为9 9(kJ mol-1)[20].锰在界面的扩散系数DMn取Mn在奥氏体㊁铁素体内以及铁素体晶界处的锰元素扩散系数的几何平均值[20]ꎬ可由DICTRA[21]计算得到.碳平衡的摩尔分数xpcꎬxαꎬeqcꎬxγꎬeqcꎬMn的化学势差的一半ΔE㊁热力学比例因子χ均可由Thermo ̄calc计算[22].激活能Q为140(kJ mol-1)[23]ꎬ气体常数R=8 314J/(mol K).M0为0 5~0 005mol mJ-1s-1ꎬ在文献报道的取值范围内[24].计算区域长度L的大小由不同的奥氏体初始尺寸决定[7]ꎬ计算可知:L=xpc-xαꎬeqcx0c-xαꎬeqcsγꎬ0.(12)式中ꎬx0c为合金基体碳的摩尔分数.2㊀实验材料及方法实验材料选取质量分数为0 1%C-2%Mn㊁初始组织为铁素体+渗碳体的冷轧钢板.实验工艺如图3所示.分别以5ħ/s和80ħ/s的速度升至780ħꎬ等温300sꎬ随后加热至900ħꎬ保温30sꎬ以确定等温阶段奥氏体体积分数ꎬ随后以049东北大学学报(自然科学版)㊀㊀㊀第44卷㊀㊀80ħ/s的速度冷却至室温ꎬ如图3a所示ꎻ以5ħ/s的速度升至660ħꎬ保温100sꎬ使其发生再结晶ꎬ随后以5ħ/s的速度升至780ħꎬ等温300sꎬ再升温至900ħꎬ保温30sꎬ最后以80ħ/s的速度冷却至室温ꎬ如图3b所示.图3㊀奥氏体化工艺示意图Fig 3㊀Schematicdiagramofaustenitizationprocess(a) 加热等温ꎻ(b) 再结晶处理.3㊀结果与讨论3 1㊀模拟结果与实验结果对比80ħ/s加热等温工艺下模拟得到能量变化情况及模拟与实验得到不同时间下的新相奥氏体如图4所示.采用吉布斯自由能平衡模型及混合模型获得的80ħ/s加热至780ħ等温250s的模拟结果及实验结果如图4a所示.可知ꎬGEB模型的计算结果与实验结果吻合较好ꎬ而混合模型所计算的最终奥氏体体积分数偏高ꎬ可见GEB模型预测结果更加准确.对GEB模型的模拟结果进行分析发现ꎬ在0~25s阶段ꎬ相变进行迅速ꎬ奥氏体体积分数达到50%左右ꎻ25~100s阶段ꎬ相变速率较慢ꎬ奥氏体体积分数逐渐增大至60%ꎻ超过100s后ꎬ相变基本停止ꎬ奥氏体体积分数基本不再发生改变.而混合模型不论是相变速率还是奥氏体体积分数都要高于GEB模型.由于GEB模型是在混合模型的基础上加入溶质拖曳效应ꎬ导致合金元素在界面处扩散而引起的耗散能ΔGdiff成为相变过程的阻力ꎬ因此ΔGdiff不仅降低了相变速率ꎬ还导致最终奥氏体体积分数的降低.在GEB模型预测的等温转变过程中ꎬ化学驱动力ΔGchem(实线)㊁合金元素扩散引起的吉布斯自由能耗散ΔGdiff(点划线)㊁界面造成的自由能耗散ΔGfric(点线)与自由能耗散之和ΔGdiff+ΔGfric(虚线)随界面速率的变化ꎬ两曲线的交点即为发生相变时的驱动力及界面移动的临界速率ꎬ如图4b所示.可知ꎬ当奥氏体尺寸增大后ꎬΔGchem曲线向低能量㊁低界面迁移速率方向改变ꎬ即随相变的进行ꎬ奥氏体不断长大ꎬ相变的驱动力降低.对于ΔGdiff曲线ꎬ在低界面迁移速率(v<10-8m/s)下ꎬΔGdiff基本无变化(~10J mol-1)ꎻ随界面速率增大ꎬΔGdiff逐渐增大至3ˑ10-6m/s处的峰值ꎬ此后随界面速率增大ΔGdiff逐渐降低.对于ΔGfric曲线ꎬ在低界面迁移速率阶段约为0ꎬ随图4㊀奥氏体体积分数随时间变化及能量耗散随速度的变化Fig 4㊀Austenitevolumefractionwithtimeandenergydissipationwithvelocity(a) GEB模型㊁混合模型与实验结果ꎻ(b) 不同吉布斯自由能与界面速率的关系.149第7期㊀㊀㊀蓝慧芳等:一种铁素体-奥氏体相变动力学模型㊀㊀界面速率的增加ꎬΔGfric不断增加ꎬ呈上升趋势.对于总耗散能ΔGdiff+ΔGfric曲线ꎬ在低界面速率阶段ꎬ耗散能主要由ΔGdiff控制ꎻ在中界面迁移速率(10-6m/s<v<10-8m/s)阶段ꎬ总耗散能由两者共同控制ꎻ在高界面速率阶段(v>10-6m/s)ꎬ总耗散能主要由ΔGfric控制.分析ΔGchem曲线与ΔGdiff+ΔGfric曲线的交点可以发现ꎬ随奥氏体尺寸增加ꎬ交点处的界面迁移速率降低ꎬ这可以解释图4a中随相变的进行ꎬ相变速率越来越慢.3 2㊀有效晶粒尺寸的影响有效晶粒尺寸对相变的影响如图5所示.GEB模型计算的有效晶粒尺寸L不同时奥氏体体积分数随时间的变化如图5a所示ꎬ并与实验数据进行了对比.可知ꎬ随有效晶粒尺寸L的减小ꎬ相变速率加快ꎬ但其最终的稳定奥氏体体积分数基本不变.以80ħ/s的速度加热时ꎬ在加热阶段基本不发生或很少发生再结晶ꎬ有效晶粒尺寸最小ꎬ相变速率最快ꎻ经过660ħ等温100s后ꎬ再结晶比较充分ꎬ晶粒尺寸最大ꎬ等温阶段的相变速率最慢ꎻ5ħ/s的速率加热时ꎬ部分发生了再结晶ꎬ晶粒尺寸介于两者之间ꎬ因而相变速率介于两者之间.不同有效晶粒尺寸L对应的化学驱动力ΔGchem㊁耗散能之和ΔGdiff+ΔGfric随界面迁移速率的变化如图5b所示.分析不同L化学驱动力曲线与耗散能之和曲线的交点ꎬ可知ꎬL较小的奥氏体具有更高的化学驱动力及更快的界面迁移速率ꎬ这是因为随晶粒尺寸的减小ꎬ元素扩散距离减小ꎻ晶粒尺寸的减小会使单位面积内的晶粒数量增多ꎬ晶界面积更大ꎬ增加了形核的位置及数量ꎬ使得相变速率加快ꎬ这解释了有效晶粒尺寸较小的奥氏体相变速率相对更快的现象.图5㊀有效晶粒尺寸对相变的影响Fig 5㊀Effectoftheeffectivegrainsizeonphasetransformation(a) 奥氏体体积分数与等温时间的关系ꎻ(b) 吉布斯自由能与界面速度的关系.3 3㊀界面处合金元素的分布GEB模型同样可以预测相变过程中界面处合金元素(本文为锰)的分布ꎬ图6为GEB模型预测的780ħ等温相变过程中界面处Mn的质量分数随界面位置的变化.由图可知ꎬ在高界面迁移速率(v=10-5m/s)下ꎬ相变速率较快ꎬ相变主要由碳元素扩散控制ꎬ锰元素基本不发生扩散ꎬ界面处Mn的质量分数基本保持不变ꎻ在中界面迁移速率(v=4ˑ10-7m/s)下ꎬMn开始发生扩散ꎬ对相变有所影响ꎬ界面处出现了Mn的富集ꎬ从而导致Mn尖峰的形成ꎻ随相变继续进行ꎬ界面迁移速率进一步降低(v=10-9m/s)ꎬ此时相变已处于末期ꎬ主要由Mn扩散控制ꎬMn的尖峰也随之继续增高.这种相变过程中界面处出现的Mn元素富集导致产生较大的耗散能ꎬ从而抑制相变的进行.观察奥氏体侧Mn的质量分数可以发现ꎬ在高界面迁移速率情况下ꎬ奥氏体侧与基体Mn的质量分数接近ꎻ随相变速率进一步降低ꎬ相变接近停止时ꎬ奥氏体侧高于基体Mn的质量分数ꎬ即相变过程中出现了Mn的分配.图6㊀Mn元素在界面处分布情况Fig 6㊀DistributionoftheMnelementattheinterface249东北大学学报(自然科学版)㊀㊀㊀第44卷4㊀结㊀㊀论1)通过将混合模型与GEB模型相结合ꎬ建立了一个简单的GEB模型ꎬ并与实验进行了对比ꎬ模拟结果与实验结果吻合较好.2)合金元素扩散引起的自由能耗散不仅降低了相变速率ꎬ还导致最终奥氏体体积分数减少.3)不同的有效晶粒尺寸只影响了相变速率ꎬ对于最终的相变结果几乎没有影响.4)在相变过程中ꎬ锰在界面处出现了分布尖峰ꎬ离界面距离越远Mn的质量分数越低ꎬ最终趋近于一个稳定值.参考文献:[1]㊀GounéMꎬDanoixFꎬÅgrenJꎬetal.Overviewofthecurrentissuesinaustenitetoferritetransformationandtheroleofmigratinginterfacesthereinforlowalloyedsteels[J].MaterialsScienceandEngineeringsꎬ2015ꎬ92:1-38. [2]㊀vanBohemenSMCꎬSietsmaJ.Thekineticsofbainiteandmartensiteformationinsteelsduringcooling[J].MaterialsScienceandEngineering:Aꎬ2010ꎬ527(24/25):6672-6676.[3]㊀EtesamiSAꎬEnayatiMH.Microstructuralevolutionandrecrystallizationkineticsofacold ̄rolledꎬferrite ̄martensitestructureduringintercriticalannealing[J].MetallurgicalandMaterialsTransactionsAꎬ2016ꎬ47:3271-3276. [4]㊀KulakovMꎬPooleWJꎬMilitzerM.TheeffectoftheinitialmicrostructureonrecrystallizationandausteniteformationinaDP600steel[J].MetallurgicalandMaterialsTransactionsAꎬ2013ꎬ44:3564-3576.[5]㊀ZhengCWꎬRaabeD.Interactionbetweenrecrystallizationandphasetransformationduringintercriticalannealinginacold ̄rolleddual ̄phasesteel:acellularautomatonmodel[J].ActaMaterialiaꎬ2013ꎬ61(19):5504-5517. [6]㊀ChbihiAꎬBarbierDꎬGermainLꎬetal.Interactionsbetweenferriterecrystallizationandausteniteformationinhigh ̄strengthsteels[J].JournalofMaterialsScienceꎬ2014ꎬ49:3608-3621.[7]㊀MecozziMGꎬBosCꎬSietsmaJ.Amixed ̄modemodelfortheferrite ̄to ̄austenitetransformationinaferrite/pearlitemicrostructure[J].ActaMaterialiaꎬ2015ꎬ88:302-313. [8]㊀ZenerC.Theoryofgrowthofsphericalprecipitatesfromsolidsolution[J].JournalofAppliedPhysicsꎬ1949ꎬ20(10):950-953.[9]㊀HillertM.Diffusionandinterfacecontrolofreactionsinalloys[J].MetallurgicalTransactionsAꎬ1975ꎬ6:5-19. [10]SietsmaJꎬvanderZwaagS.Aconcisemodelformixed ̄modephasetransformationsinthesolidstate[J].ActaMaterialiaꎬ2004ꎬ52(14):4143-4152.[11]KrielaartGPꎬSietsmaJꎬvanderZwaagS.FerriteformationinFe ̄Calloysduringaustenitedecompositionundernon ̄equilibriuminterfaceconditions[J].MaterialsScienceandEngineering:Aꎬ1997ꎬ237(2):216-223.[12]ChenHꎬvanderZwaagS.Modelingofsoftimpingementeffectduringsolid ̄statepartitioningphasetransformationsinbinaryalloys[J].JournalofMaterialsScienceꎬ2011ꎬ46(5):1328-1336.[13]陈浩ꎬ张璁雨ꎬ朱加宁ꎬ等.奥氏体/铁素体界面迁移与元素配分的研究进展[J].金属学报ꎬ2018ꎬ54(2):217-227.(ChenHaoꎬZhangCong ̄yuꎬZhuJia ̄ningꎬetal.Austenite/ferriteinterfacemigrationandalloyingelementspartitioning:anoverview[J].ActaMetallurgicaSinicaꎬ2018ꎬ54(2):217-227.)[14]HuizengaRMꎬBosCꎬSietsmaJ.Interfaceconditionsduringmixed ̄modephasetransformationsinmetals[J].JournalofMaterialsScienceꎬ2008ꎬ43(11):3744-3749.[15]ChenHꎬvanderZwaagS.Ageneralmixed ̄modemodelfortheaustenite ̄to ̄ferritetransformationkineticsinFe ̄C ̄Malloys[J].ActaMaterialiaꎬ2014ꎬ72:1-12.[16]AnDꎬPanSꎬRenQꎬetal.AGibbsenergybalancemodelfortheisothermalferrite ̄to ̄austenitetransformation[J].ScriptaMaterialiaꎬ2020ꎬ178:207-210.[17]PurdyGRꎬBrechetY.Asolutedragtreatmentoftheeffectsofalloyingelementsontherateoftheproeutectoidferritetransformationinsteels[J].ActaMetallurgicaetMaterialiaꎬ1995ꎬ43(10):3763-3774.[18]MilitzerMꎬMeczziMꎬSietsmaJꎬetal.Three ̄dimensionalphasefieldmodellingoftheaustenite ̄to ̄ferritetransformation[J].ActaMaterialiaꎬ2006ꎬ54(15):3961-3972. [19]ChenHꎬBorgenstamAꎬOdqvistJꎬetal.Applicationofinterruptedcoolingexperimentstostudythemechanismofbainiticferriteformationinsteels[J].ActaMaterialiaꎬ2013ꎬ61(12):4512-4523.[20]ChenHꎬZhuKꎬZhaoLꎬetal.AnalysisoftransformationstasisduringtheisothermalbainiticferriteformationinFe ̄C ̄MnandFe ̄C ̄Mn ̄Sialloys[J].ActaMaterialiaꎬ2013ꎬ61(14):5458-5468.[21]BorgenstamAꎬHöglundLꎬÅgrenJꎬetal.DICTRAꎬatoolforsimulationofdiffusionaltransformationsinalloys[J].JournalofPhaseEquilibriaꎬ2000ꎬ21(3):269-280. [22]AnderssonJꎬHelanderTꎬHöglundLꎬetal.Thermo ̄Calc&DICTRAꎬcomputationaltoolsformaterialsscience[J].Calphadꎬ2002ꎬ26(2):273-312.[23]FazeliFꎬMilitzerM.Applicationofsolutedragtheorytomodelferriteformationinmultiphasesteels[J].MetallurgicalandMaterialsTransactionsAꎬ2005ꎬ36(6):1395-1405. [24]AnDꎬBaikSꎬPanSꎬetal.Evolutionofmicrostructureandcarbondistributionduringheattreatmentsofadual ̄phasesteel:modelingandatom ̄probetomographyexperiments[J].MetallurgicalandMaterialsTransactionsAꎬ2019ꎬ50(1):436-450.349第7期㊀㊀㊀蓝慧芳等:一种铁素体-奥氏体相变动力学模型㊀㊀。
高熵合金概述ppt课件.pptx
位错的移动,并导致材料的硬化增加。
④.HE合金中的析出强化 纳米晶体分散体将在铸态HE合金中提供有效的析出强化。
三.高熵合金特性与应用
①.出色的抗退火软化性 • 表1显示在1000℃退火12h后的
硬度。
②.高温强度 • AlXCoCrCuFeNi(Fcc)具有在
目录
1.高熵合金简介 2.高熵合金的强化机制 3.高熵合金特性与应用 4.高熵合金薄膜的制作
一.高熵合金简介
2004年多主元高熵合金被提出,并着重强调其固有的高混合熵。 1.合金的熵值较高。 2.合金中含有5-13个主要元素(5%≤X≤35%即不分主次)。 3.合金体系(7099)的数量大于传统合金(30)。 4.四个主要特性包括:高熵效应(热力学),迟缓扩散效应 (动力学),晶格扭曲效应(晶体结构),鸡尾酒效应。
高混合熵增强了元素间的互溶性,并防止相分离成有序相或 金属间化合物。
△Smix = RIn n
△Gmix = △Hmix -T△Smix
高熵合金的高熵显着降低了自由能,从而降低了其在合金凝固 过程中(特别是在高温下)的有序和偏析倾向(溶解度↑),使得 固溶体更容易形成并且比金属间化合物或其他有序相更稳定。
铝含量对相变的影响(AlxCoCrCuFeNi):
FCC 至 BCC
二.高熵合金的强化机理
①.固溶强化机理 当引入溶质原子时,会形成与位错相互作用的局部应力场,从而阻碍它
们的运动并导致材料屈服应力的增加。
②.高固溶强化 在HE合金中不存在基体元素,所以所有的原子都可以被认为是溶质原子。
同时,HE合金具有晶格畸变效应,可以增加位错运动的阻力。
First-principles study of the structural, vibrational, phonon and thermodynamic
1. Introduction Ultra-high temperature ceramics (UHTCs) with melting temperatures in excess of 3000 K are usually composed by the refractory borides, carbides and nitrides of early transition metals [1–7]. Among the UHTCs, transition metal carbides (TMC) such as TiC, ZrC and HfC are metallic compounds with unique physical and chemical properties including an extremely high melting point and hardness, chemical stability, corrosion resistance combined with metallic electrical and thermal conductivities [5–10]. These features give transition metal carbides the capability to withstand high temperatures in oxidizing environments, making them candidates for applications in the atmosphere of extreme thermal and chemical environments [6,7]. The structural, vibrational, phonon and thermodynamic properties of IVb group transition metal carbides have been investigated experimentally [10–17] and theoretically [13,18–28] in the earlier reports. In the 1970s, the phonon dispersion relations of TiC, ZrC and HfC were measured using inelastic neutron scattering by Pintschovius et al. [10] and Smith et al. [15–17]. Lattice dynamics calculation and the phonon dispersion relations of transition metal carbides such as ZrC and HfC were reported using a phenomenological ‘‘double-shell’’ model theory [18] where long-range interatomic interactions were taken into account in order to get a
超导体的相变与临界现象
超导体的相变与临界现象超导体是指在低温下电阻突然消失的物质。
当温度低于某个临界温度时,超导体会发生相变,从正常导体转变为超导体。
而这个相变的过程中,还伴随着一些临界现象的出现。
本文将详细探讨超导体的相变和临界现象。
一、超导体的相变1.相变的定义与分类相变是物质从一种状态转变为另一种状态的过程。
根据超导体的临界温度,可以将其相变分为一级相变和二级相变。
一级相变指的是超导体在临界温度下由正常态直接转变为超导态,其相变过程伴随着热力学性质的突变,如熵、焓和体积等。
二级相变指的是超导体在临界温度下经过一个连续的相变过程,其相变过程中热力学性质的导数存在间断点。
2.超导体相变的机制超导体相变的机制可以通过BCS理论来解释。
BCS理论认为,超导体的相变是由于电子之间的库伦相互作用引起的,主要包括两个过程:库伦相互作用导致电子之间的吸引以及库伦相互作用导致电子成对(库珀对)运动。
当温度降低到临界温度以下时,库珀对会以一种玻色状态的形式出现,形成超导态。
二、超导体的临界现象1.临界温度和临界磁场超导体的临界温度和临界磁场是超导体相变中的两个重要参数。
临界温度是指超导体从正常态转变为超导态的临界点温度,通常用Tc表示。
临界磁场是指在超导态下,超导体所能承受的最大磁场强度,通常用Hc表示。
2.临界态和Meissner效应在超导体临界温度以下,超导体处于临界态,这时超导体内部存在着超流体,超流体能够抵消外部磁场的影响。
这就产生了Meissner效应,即超导体在外加磁场下会排斥磁场的进入,表现为磁场被完全排斥在超导体的表面之外。
3.临界指数和临界准则超导体的临界现象还涉及到临界指数和临界准则。
临界指数描述了超导体相变时物理量的变化规律,如比热容、磁化率等。
临界准则则是指满足超导体临界现象的某些重要关系式,如Ginzburg-Landau方程和Laws-Kittle方程等。
三、应用前景与展望超导体的相变和临界现象不仅在基础物理学研究中具有重要地位,还具有广泛的应用前景。
带GST标签的人MIIP原核表达载体构建与鉴定-肿瘤学论文-临床医学论文-医学论文
带GST标签的人MIIP原核表达载体构建与鉴定-肿瘤学论文-临床医学论文-医学论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——近年来研究表明,迁移侵袭抑制蛋白(migra-tion and invasion inhibitor protein,MIIP)在肿瘤的侵袭和转移过程中发挥一定作用,能在体外抑制某些肿瘤细胞的迁移和侵袭能力。
2003 年Song等首次发现,MIIP 能与胰岛素样生长因子结合蛋白-2(insulin like growth factor binding protein -2,IGFBP - 2)特异性结合,抑制神经胶质母细胞瘤细胞的侵袭能力.但对MIIP 抗肿瘤侵袭转移能力的研究较少,其发挥作用的分子机制还不甚明确。
本研究利用重组DNA 技术构建了带有GST 标签的人MIIP 原核表达载体,并对其进行导表达及纯化,为进一步研究MIIP 在肿瘤发生发展中的作用和机制提供实验基础。
1 材料与方法1. 1 材料1. 1. 1 菌株和质粒大肠杆菌DH5 感受态和BL21 感受态为本实验室制备;pGEX - 4T - 1 质粒由大学肿瘤防治研究所生化与分子生物学研究室寿成超教授惠赠。
1. 1. 2 主要试剂质粒小量提取试剂盒、DNA凝胶回收试剂盒购自天根公司;限制性内切酶Xho I 和EcoR I 及T4 DNA 连接酶购自PRO-MEGA 公司;1kb DNA 分子量标准、蛋白分子量标准购自天根公司;DNA 分子量标准(DL15000)购自TaKaRa 公司。
Pfu 高保真DNA 聚合酶购自NEB 公司;Peasy - T1 载体为全式金生物公司产品;异丙基硫代-- D 半乳糖苷(isopropyl -- D -thiogalactoside,IPTG)、溶菌酶和PMSF 购自Amresco 公司;Glutathione Agarose 为Invitrogen公司产品,Anti -GST 抗体购自Proteintech 公司,羊抗小鼠IgG - HRP 购自中杉金桥生物公司。
26-css过渡效果(小米logo案例)
26-css过渡效果(⼩⽶logo案例)⼀、⼆、⼩⽶logo案例:<!DOCTYPE html><html lang="en"><head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><title>Document</title><style>/* .header-logo {position: relative;width: 55px;height: 55px;border: 1px solid red;background-color: #ff6700;margin: 200px auto;} *//* a::before {float: left;content: '';background: url(mi-logo.png) no-repeat 50% 50%;position: absolute;left: 0;top: 0;z-index: 1;width: 55px;height: 55px;}a::after {content: '';background: url(mi-home.png) no-repeat 50% 50%;position: absolute;left: 55px;top: 0;z-index: 1;width: 55px;height: 55px;}a::before:hover {left: -55px;} */.header-logo {position: relative;width: 55px;height: 55px;background-color: #ff6700;margin: 200px auto;overflow: hidden;}a::before {content: '';position: absolute;left: 0;top: 0;width: 55px;height: 55px;background: url(mi-logo.png) no-repeat center; }a::after {content: '';position: absolute;left: 55px;top: 0;width: 55px;height: 55px;background: url(mi-home.png) no-repeat center; }a {position: absolute;top: 0;left: 0;width: 110px;height: 55px;transition: left .3s;}a:hover {left: -55px;}</style></head><body><div class="header-logo"><a href="#" title="⼩⽶官⽹"></a></div></body></html>。
一级相变与高级相变
一级相变与高级相变first order Phase transi- tion and high order Phase transition一级相变与高级相变first order phase transi- tion and high order phase transition一级相变是相变发生时,系统热力学势吉布斯(Gibbs)自由能G或亥姆霍兹(Helmhoftz)自由能F的一级偏微商不连续的相变。
而相变发生时,系统热力学势的一级偏微商连续面二级或更高级偏微商不连续的相变,则为二级相变或更高级相变。
根据相变热力学理论,系统发生相变时,在相变点两相热力学势(G或F)应相等。
即系统的热力学势仍保持连续,但热力学势的各阶导数却可能发生不连续的跃变。
1933年P.厄任费斯脱(Ehrenfest)首先提出相变的分类方案:”级相变的定义为,在相变点,系统热力学势的(”一l)阶导数保持连续,而n 阶导数则是不连续的。
在一级相变中,系统由I相转变为H相时,热力学势G=偏或凡二凡,而热力学势的一阶偏微商如 (器)T一v,(器)一S 发生不连续的跃变。
即一级相变时,系统的体积和嫡 (及焙)发生突变;而烩的突变表示相变时,有潜热的吸收(升温时)或释放(降温时);有新旧两相(I 相、n相)共存;升降温时,相变在不同温度发生,即有热滞后现象,这是由于结构重组需要越过势垒或新相形成需要提供正值的界面能,结果导致升温与降温过程发生相变的温度不相等。
此外,在相变点,系统的序参量发生不连续的变化。
二级相变时,系统的热力学势及其一阶偏微商连续,即‘,二叹 (器)P一(器)· (黯)T一(令)·但其二阶偏微商 (一黔)P一c·/了,(令)一v/B“日ZG 口了刁尸 =Va 发生突变。
而。
一令(器,·,为材料的热膨胀系数; 刀一令(器)·,为材料的压缩系数;。
为比热容。
二级相变发生时,系统的嫡、体积、焙均无突变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Quantum phase transition from a Mott insulatorto a superfluid in bosonsMingwu LuDepartment of Physics(Dated: May 5, 2008)AbstractBose Hubbard model is presented and basic natures of Mott insulating phase and superfluid phase are studied in this essay. Also how and when this quantum phase transition occurs is discussed. Experimental supports from ultracold atoms physics are explained, while some miscellaneous topics are touched in the end.1.Introduction and backgroundFor many decades physicists focused on the phenomena of metal-insulator transition in Fermi systems, yet “the understanding of it remained fragmented” [1]. Instead M.Fisher et.al. [1] studied the possible similar transitions in Bose systems. Analogous to currents of charged Fermions they proposed the onset of supercurrent of Bosons at zero temperature as a new quantum phase transition. In this original paper, they wrote out the Bose Hubbard model and discussed the phase transition between two possible states: Mott insulating phase (MI) in which supercurrent is absent and excitation energy gap exists, and superfluid phase (SF) which possesses supercurrent and global coherence with no energy gap. Ever since then, the studies on such a peculiar phase transition in Bose systems have been carried out with great progress mainly due to two reasons: 1) Unlike Fermi analog, Bosons can have natural order parameter in form of off-diagonal long-ranged order in superfluid phase, which were studied with mature techniques to some extent compared with the less well-understood metal-insulator transitions; 2) experimentally optical lattice technique was widely available in late 90’ last century. Due to the excellent control over nearly all relevant parameters in the Hamiltonian, optical lattice is a perfect platform for observing this MI-SF phase transition and testing the predictions of theoretical work. Many interesting phenomena predicted such as the exotic interference pattern due to coherence, non-dissipative flow, particle-hole excitations etc. were observed in recent years. More over, the recent progress in experiment on supersolidty [2] is widely accepted to be associated with the disorder in Bose systems. The study on Bose Hubbard model with disorder analytically and numerically might shed light on the explanation of this peculiar yet elusive phenomenon. Therefore the research on MI-SF phase transition remains important nowadays. In this essay, I plan to introduce the theory in Bose Hubbard model mainly in frame work of mean field theory (MFT) and showed the corresponding experimental results. Also some interesting topic for Bose Hubbard model would be mentioned.2.Bose Hubbard modelConsider spinless Bosonic particles in a uniform lattice. The system is strongly correlated in that there’s a strong repulsive onsite interaction U analogous to that in common Hubbard model. Also due to virtual quantum exchange effect the energy of the system could be lowered by J, which we call hopping energy (or kinetic energy less rigorously, as in some paper). For theoretical convenience we choose to fix chemical potential (grand canonical ensemble) instead of total particle number (micro canonical ensemble). The latter is preferred in experiment and we shall return to this later. Therefore Bose Hubbard model has the following form:,1ˆˆˆˆˆˆ(.)()(1)2i j i i i i i j i i HJ a a c c n Un n εµ+<>=−++−+−∑∑∑ (2.1) The first term corresponds to hopping term and last term is interaction term, where particle number operator:i i i n a a += (2.2)is assumed. The middle term is chemical potential term with external potential εi , which could be for example, the trapping potential in optical lattice.Now let’s take a closer observation on the Hamiltonian in limiting cases heuristically. a) U/J >>1Notice that in the limit of U/J >>1, onsite interaction is dominated. Any hopping would bring an extra particle on one site and one particle loss on another. Since the interaction is quadratic this leads to a net increase in energy and the small negative hopping energy cannot compensate it, therefore hopping is energetically disfavored and particle number is pinned with certain integer on every site. Due to this lack of mobility we identify it as Mott insulating phase.Fig.1. Onsite interaction can raise total energy, so even distribution is preferred [3].Quantitatively we can determine the on-site particle number by minimizing energy when J is exactly zero. We introduce on-site energy E(n):1()(1)2E n n Un n µ=−+− (2.3) Notice that the system is homogeneous so we abandon the index for each site. By differentiating the on-site energy with respect to particle number, we find that for fixed chemical potential, the on-site particle number n 0 which minimizes energy must satisfy:0[/]n U µ= (2.4)where “[ ]” denotes floor function which gives the maximum integer smaller than argument. We immediately see that on-site particle number is a step function of chemical potential. As hopping energy J increases slightly from zero, but still small, as we stated above, energy gain in J can not balance the energy cost in hopping, so we expect the ground state still characterizes by this fixed integer. As we can see clearly in phase diagram Fig 2.b) U/J <<1In the opposite limit U/J <<1, hopping process can effectively lowered total energy which blurs on site particle number and makes phases on different sites coherent (notice the conjugation of particle number and phase), which we identify as superfluid phase. Hence we assume there would be a quantum phase transition in between these two limits due to the quantum fluctuations at zero temperature [4].Calculations based on MFT indeed show such a phase transition exists. We start from tight binding limit in which we treat hopping terms perturbatively and assume the infinite-range hopping [1]. We divided the Hamiltonian in two parts: H 1 corresponds to hopping terms and H 0 corresponds to the rest part. Hence we get partition function in the following way:{}010exp()exp[()]Z Tr H T d H ββττ=−−∫ (2.5) where all Hamiltonians are in the interaction representation and T is the ordering operator. Notice that all terms in H 1 are quadratic, we need to decouple them via introducing complex field ψi on each site. This is the standard Hubbard-Stratonovich transformation. In the end we obtained effective action:1,()()()ln exp[()..]ij i j i i i j iS d J T d a c c τψτψττψτ−+=−+∑∑∫∫ (2.6)We seek the lowest energy saddle point solution by assuming the filed is independent of time, and use cumulant expansion, we can transform the effective action in Landau energy form:2461()[(,)||||(||)]2S N r J u O ψβµψψψ=++ (2.7) Notice that change in sign of coefficient r in quadratic term leads to the phase transition in Landau theory. So by setting r =0, we can determine the phase boundary. This corresponds to the condition that:000011[1]n n zJ Un U n µµ+=+−−− (2.8) Notice that n 0 is a step function of chemical potential and U . Therefore we obtained phase diagram. From the diagram, we can see those “Mott lobes” in which is MI phase and the SF phase is outside. This is reasonable because if we start from very small J , as J/U increases, the probability of hopping increases, which makes the particle-hole excitation energy gap decrease but still finite, until eventually it reaches zero, indicating the onset of SF phase. The energy gap can be directly obtained by measuring the distance from the upper Mott lobe boundary to the lower Mott lobe boundary for a certain value of J. And since according to eqn.2.5, the top of Mott lobe is parabolic, based on scaling we conclude that:((/)(/)),1/2z C J U J U zv ν∆−=∼ (2.9)The dynamical critical exponent being 1/2 is what we expect in MFT. More rigorouscalculation based on Pade analysis of series gives a slightly larger value of critical exponent around 0.69 [5]. See Fig. 3.Fig.2. Phase diagram for homogeneous Bose lattice [1].Fig. 3. Local shape at near the top of Mott lobe. The left curve corresponds to lowest order of Pade approximant(4th order series), and right curves correspond to higher order of Pade approximant [5]. Notice that it gives sharper top of Mott lobes than the one from MFT.3.Observation the onset of phase transition in optical lattice Modern techniques in manipulating ultra-cold atoms in vacuum make the optical lattice available. Specifically we let two identical laser beams counter-propagating to set up a optical standing wave in direction. If we use six beams in x,y,z directions, 3D optical lattice can be realized. By carefully detuning the frequency of laser with respect to the resonant frequency of alkali atoms, we can exert attractive force on atoms in the direction of more-intense-field region. Therefore it is possible to controlthe effective potential on atoms by modulating the electromagnetic fields in laser beams arbitrarily and trap those cold atoms for a considerably long time. This brings a great advantage in studying condensed matter system in optical lattice.Fig 4. Illustration of optical lattice [3]Detailed calculations on cold atoms show that values of J and U in Bose Hubbard Hamiltonian can be determined:223()[()]()2ij i j h J w x x V x w x x d x m=−−−∇+−∫ (3.1) 243(4/)|()|U h a m w x d x π=∫ (3.2)Where w(x) is the single particle wannier function localized on one site, V is lattice potential and a is the scattering length of cold atoms. Therefore the ratio J/U is obtained as following:Fig 5. Relation between optical well depth V and ratio U/J . The energy is scaled by recoil energy E rNow we can dynamically change the values of J/U in a wide range, which is essential in observing the MI-SF phase transition. In 2002, Greiner et.al . [6] observed such a phase transition for the first time. They prepared cold atoms in condensate and transferred them adiabatically into optical lattice. They changed lattice potential V so as to control the values of J/U hence sampled different points in phase diagram. As they found, in small U/J region which theory gives superfluid phase, interference pattern due to the coherence among particles on all sites shows up. As U/J was tunedlarge enough, such an interference pattern disappears. This marks the onset of MI-SF phase transition.Fig 6. Without lattice potential only one central peak in momentum space is observable. As U/J is tuned up from a to h, we can see that the interference pattern will gradually disappear. Different colors represent different values of visibility [6]. Also in their experiment, they found such a transition is reversible as long as they crossed the phase boundary. They increased U/J to let system transform from SF phase to MI phase, kept the system in MI phase for a considerable long time and decreased U/J, and they found the interference pattern was recovered almost immediately on the time scale of h/J which is the tunneling time between two adjacent sites. They concluded the phase coherence over the entire lattice was restored with speed which is determined intrinsically by quantum mechanics, since all particles are identical and they act collectively. It makes no sense to tell which particle tunneled.4.More on Mott insulating phasea) particle-hole excitationIn M.Greiner et.al.’ paper [6], the excitation spectrum was also tested experimentally. They applied perturbations which could either be potential gradient or shaking the system by modulating the optical well to excite the system. They noticed that in the MI region the system is robust against perturbations because phase coherence could be readily reestablished when the lattice depth decreased so that the system came into SF phase. This can be well explained by the Mott gap. As perturbations increase to a certain value, particle-hole excitation sets in and MI phase is destroyed to some extent. This can be seen from the fact that as the system goes back into SF phase the width of central peak increases enormously which means a broader distribution of momenta or coherence is less well kept. Higher order of particle-hole excitations also show up if the perturbations are even larger. See Fig. 7.Fig. 7. Excitation spectra under external perturbations [6]. These peaks correspond to particle-hole excitations in MI phase and the background signal is from SF component which will be mentioned later.b) Ground state of MI phaseIn Guzwiller approximation [7] the many-body wavefuction is the product of single particle states. Hence the ground state of MI phase can be expressed as:ˆ()0n MF i ia+Ψ∏∼ (4.1) Since it is the eigenstate of local particle number operator, we see immediately there’s the order parameter of superfluid (condensate fraction) is zero:MF i MF a ψ=ΨΨ0i MF i MF a ψ=ΨΨ= (4.2)As we stated above that in MI region the onsite particle number is fixed while phase coherence is destroyed. Hence we shall expect interference vanishes immediately as we enter the Mott lobe. However close observation [8] indicates coherence may maintain even in MI phase.Fig. 8. Detailed detection on visibility of interference pattern shows that phase coherence does not vanish abruptly on the phase boundary of MI and SF phases. Visibility is one when there’s perfect SF and zero when there’s no SF component [8].This can be explained beyond Guzwiller’s approximation which is exact only when J= 0. Instead we have better guess of ground state in J/U expansion in the 1storder:(1)ˆˆMF ij MF ij J a a U +<>ΨΨ+Ψ∑∼ (4.3)Thus the ground state is not a pure eigenstate of onsite particle number and superfluid component is nonzero. Hence we conclude that in the Mott lobe the short ranged phasse coherence still persists while global phase coherence is destroyed. We can regard the ground state of MI with nonzero J as the mixture of mainly pure “Mott state” and additionally small amount of particle-hole excitations due to nonzero hopping. More detailed calculations based on this approximation can reproduce the visibility of interference which agrees with experiment quite well [9].5. More on Superfluid phaseIn Guzwiller’s approximation we can write out the ground state easily:ˆ()0N MF i ia+Ψ∏∼ (5.1) In order to have a well defined macroscopic phase the ground state must be coherentstate:,i a e ϕαααα== (5.2)Hence the coefficients of basis in Fork space follows the Poissonian distribution:2(1)/2()n iUn n t h n t e e n α−−Φ= (5.3)A simple prediction from this wave function form is that each ket would evolve with different speed so initial coherence could be destroyed until after the revival time t=h/U when each number state undergoes a phase shift of integer periods. Experiment directly proved this [3].Fig. 9. Quantum dynamics of a coherent state. The macroscopic field collapsed andfully revived as time elapses. The x,y coordinates are real and imaginary part of complex number β, similar to α in eqn. 5.2Once the ground state of SF phase is obtained from Guzwiller’s ansatz, we can calculate condensate fraction (superfluid order parameter ψ, see eqn.4.2). Detailed numerical calculations [10] based on variation method using mean field Hamiltonian yielded condensate fraction a long time ago. But only recent the accurate experimental plots were obtained from Kettle’s group [11] (Fig. 10.). They studied the stability of superfluid currents in a system of ultracold Bosons in a moving optical lattice. Unlike the method of observing the onset of interference pattern, the transition point were observed quite clearly and sharply in this approach.Fig. 10. a) Determination of the critical momentum of superfluid flow at U/U C= 0.61 for a variable number of cycles of the momentum modulation (blue, purple and red lines). b) Critical momentum for a 3D condensate. Notice that theory (solid line) fits well with experimental data.6.Even more on optical latticeAll the previous theoretical discussions were limited in homogeneous system. However in real practice this is not always possible. Since optical lattices are formed by Gaussian laser beams, the trapping potential is asymptotically simple harmonicpotential. Hence the translational invariance of lattice is broken and we need to introduce the so called local chemical potential:()()x V x µµ=− (6.1) Where V(x) is the harmonic potential. Our previous results can work again once we replace chemical potential by local counterpart. This is called local density approximation. Notice that now local chemical potential is no longer fixed, different sites correspond to different place in phase diagram, indicating a coexistence of MI and SF phases in the arrangement of wedding cake in real space. This fact gives a natural explanation of SF background signal in Fig.7.Fig. 11. a) Phase diagram of Bose Hubbard model in inhomogeneous lattice; b)arrangement of SI and MI phases correspondingly. Notice that mean particle number decreases from center towards outside with layers, so it looks like a wedding cake [3].7. Miscellaneous topicsa) Bose Hubbard model with disorderIn M.Fisher, et.al .’ original paper, the possibility of Bose glass phase in disordered lattice was discussed and phase diagram given based on physical argument. It is characterized as no gap, finite compressibility and yet an infinite superfluid susceptibility. Since then little progress was achieved in concrete calculations on its phase boundary. Recent work [12] using replica treatment and renormalization flow gave a possible phase boundary, which is quite different from Fisher’s however. More work is needed on Bose Hubbard model with disorder since it might shed light on understanding the origin of supersolidity. A very recent work [13] on this topic is quite intriguing and worth reading.b) Lower dimensionsUnlike MI phse which depends weakly on dimensionality, the physics of SF depends greatly on dimentsionality: in 3D it is conventional BEC; in 2D a Kosterlitz-Thouless SF; in 1D no true SF. Quantum Monte Carlo methods [14] give the most accurate results in these lower dimensions while MFT is worse. Experimentally MI-SF transitions have been observed in 3D[6] in 2002, 2D[15] in 2007, 1D[16] in 2005.Interested readers may find details in these references.c)Next nearest site hopping effectsThough the next nearest site hopping term is two orders of magnitude smaller than nearest site hopping term, the effects of the former was studied [17] via Bogoliubov method. The conclusion is that BEC termperature is enhanced due to this effect in sc lattice but decreases in bcc and fcc lattice.d)Bose Hubbard model with two different BosonsIf we set the number of species of Bosons to be two instead one, we may get five stable SF and MI ground states with rich nontrivial phase diagram [18]. Interested readers may find details in this reference.8.ConclusionIn this essay we studied Bose Hubbard Model mainly in MFT. We identified MI phase as finite gap, infinite compressibility, exact integer commensurate fillings of particles and none global phase coherence, while SF phase as gapless, arbitrary fillings of particles with phase coherence. We studied the particle-hole excitation in MI phase and condensate fraction, dissipative current in SF phase both theoretically and experimentally, pointing out the drawbacks of MFT. We mentioned some interesting topics relevant to traditional Bose Hubbard model and commented on the significance of some of them.9.Reference1)M.Fisher, et.al. Phys. Rev. B, 40, 546 (1989)2) E.Kim and M.Chan, Science, 305, 1941 (2004)3)M.Greiner, Ph.D. thesis, (2003)4)Sachdev, Quantum phase transitions (1999)5)N.Elstner and H.Monien, Phys. Rev. B, 59, 184 (1999)6)M.Greiner, et.al. Nature, 415, 39 (2002)7) D.Rokhsar, B.Kokhsar, Phys. Rev. B, 44, 328, (1991)8) F.Gerbier et.al., Phys. Rev. Lett. 95, 050404, (2005)9) F.Gerbier et.al., Phys. Rev. A, 72, 053606 (2005)10)K.Sheshadri, et.al., Europhys. Lett., 22, 257 (1993)11)J.Mun, et.al., Phys. Rev. Lett., 99, 150604 (2007)12)J.Wu, P.Phillips, arXiv:cond-mat/0612505 (2007)13)U.Bissbort, W. Hofstetter, arXiv:0804.0007v2 (2008)14)S.Wessel, et.al., Phys. Rev. A, 70, 053615 (2004)15)I.Spielman, et.al., Phys. Rev. Lett., 98, 080404 (2007)16)M.Kohl, et.al., Journal of Low Temp. phys., 138, 635 (2005)17)G.Chaudhary, R.Ramakurnar, arXiv: 0803.3888v1 (2008)18)A.Kuklov, et.al. Phys. Rev. Lett., 92, 050402 (2004)。