2018年度全国高级中学数学联赛一试,加试试题与详细解答道福
2018年全国高中数学联合竞赛一试参考答案(A卷)
祝君金榜题名2018 年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设 8 分和 0 分两档;其他各题的 评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可 参考本评分标准适当划分档次评分,解答题中第 9 小题 4 分为一个档次,第 10、 11 小题 5 分为一个档次,不得增加其他中间档次.一、填空题:本大题共 8 小题,每小题 8 分,满分 64 分.1. 设集合 A 1, 2, 3,, 99, B2x xA, Cx 2x A,则 BC 的元素个数为.答案:24 .1399解:由条件知,B C,2, 4, 6, , 198,1, , 2, ,2, 4, 6, , 48222故 B C 的元素个数为 24 .2. 设点 P 到平面 的距离为 3 ,点Q 在平面 上,使得直线 PQ 与 所成角不小于30且不大于60,则这样的点Q 所构成的区域的面积为.答案:8 .OP3解:设点 P 在平面上的射影为O .由条件知,tan OQP, 3 , OQ3即OQ[1, 3],故所求的区域面积为.318223. 将1, 2, 3, 4, 5, 6 随机排成一行,记为 a , b , c , d , e , f ,则 abc + def 是偶数的 概率为.答案:9 10.解:先考虑abc + def 为奇数的情况,此时abc , def 一奇一偶,若abc 为奇数,则a , b , c 为1, 3, 5的排列,进而d , e , f 为2, 4, 6的排列,这样有3!×3! = 36 种情况,由对称性可知,使abc + def 为奇数的情况数为36×2 = 72 种.从而abc + def 为偶 72 72 9 数的概率为1− = 1− = . 6! 720 10xy22ab4. 在平面直角坐标系 xOy 中,椭圆C :1(a b 0)的左、右焦点22分别是 F 、F ,椭圆C 的弦 ST 与UV 分别平行于 x 轴与 y 轴,且相交于点 P .已12知线段 PU , PS , PV , PT 的长分别为1, 2, 3, 6 ,则 PF F的面积为 .1 2答案: 15 .解:由对称性,不妨设 P (x , y ) 在第一象限,则由条件知PP1 1x PT PS y PV PU,2,1PP221祝君金榜题名即 P (2,1).进而由 1, 2xPU PS得U (2, 2), S (4, 1) ,代入椭圆C 的方程知 P1 1 1 14 4 161 2 20,25,解得 a b .abab22221从而15SF Fyaby .22PF F1 2PP21 25. 设 f (x ) 是定义在 R 上的以 2 为周期的偶函数,在区间[0, 1]上严格递减,1 x 2,且满足 f ()1, f (2) 2 ,则不等式组的解集为.1 f (x ) 2答案:[2, 82].解:由 f (x ) 为偶函数及在[0, 1]上严格递减知, f (x ) 在[1, 0] 上严格递增, 再结合 f (x ) 以 2 为周期可知,[1, 2]是 f (x ) 的严格递增区间.注意到f f ff f ,(2) ( ) 1, (8 2 )( 2 ) (2 ) 2 所以1f (x ) 2 f (2) f (x ) f (82) ,而1282 2 ,故原不等式组成立当且仅当 x[2, 82].6. 设复数 z 满足 z 1,使得关于 x 的方程 zxzx 有实根,则这样 22 2 0的复数 z 的和为.3答案:. 2解:设 z ab i (a , b R , a 2 b 21) .将原方程改为(a b i)x 22(ab i)x 2 0,分离实部与虚部后等价于axax ,①22 2 0bxbx . ②22 0若b 0,则 a,但当 a1时,①无实数解,从而 a 1,此时存在实21数 x1 3 满足①、②,故 z1满足条件.若b 0,则由②知 x{0, 2},但显然 x 0 不满足①,故只能是 x 2 ,代 115 1 15i入①解得 .a,进而b,相应有z4441 15i1 15i3 综上,满足条件的所有复数 z 之和为1.4427. 设O 为ABC 的外心,若 AO AB 2AC ,则sinBAC 的值为 .故10 答案: .4 解:不失一般性,设ABC 的外接圆半径 R 2 .由条件知,2AC AOAB BO,①1AC BO .122祝君金榜题名取 AC 的中点 M ,则OM AC ,结合①知OM BO ,且 B 与 A 位于直线MC1 OM 的同侧.于是cos BOC cos (90 MOC ) sin MOCOC4.在BOC 中,由余弦定理得BC OBOCOB OC BOC,222cos10BC10进而在ABC 中,由正弦定理得.sin BAC 2R48. 设整数数列 1, 2, , 10 10 3 1, 282 5 a a a 满足 a a a aa ,且aaa i,iii1 {1, 2 },1, 2, , 9则这样的数列的个数为.答案:80. 解:设baai ,则有 1{1, 2}( 1, 2, , 9)iii2aaabbb ,①1101129bbbaaaabbb . ②2345285567用t 表示b 2, b 3, b 4 中值为 2 的项数.由②知,t 也是 5, 6, 7b b b 中值为 2 的项数,2, 3,, 70 2 1 2 2 2 3 2 3333取定 2, 3, ,78, 9b b b 后,任意指定b b 的值,有 22 4 种方式. 最后由①知,应取 1 {1,2} b 的取法是b使得bbb 为偶数,这样的1291唯一的,并且确定了整数 1, 2, , 9a 的值,进而数列b bb 唯一对应一个满足条件的 1数列 1, 2, ,10a a a . 综上可知,满足条件的数列的个数为 204 80.二、解答题:本大题共 3 小题,满分 56 分.解答应写出文字说明、证明过 程或演算步骤.9.(本题满分 16 分)已知定义在 R 上的函数 f (x ) 为log x 1 , 0 x9, f (x )34 x , x 9.设 a , b , c 是三个互不相同的实数,满足 f (a ) f (b ) f (c ) ,求 abc 的取值范围.解:不妨假设ab c .由于 f (x ) 在(0, 3] 上严格递减,在[3, 9] 上严格递增,在[9,) 上严格递减,且 f (3) 0, f (9)1,故结合图像可知a,b (3, 9),c (9,),(0, 3)并且 f (a ) f (b ) f (c ) (0, 1) . …………………4 分由 f (a ) f (b ) 得1log a log b1,33即 39log alog b 2,因此 ab.于是 abc 9c . …………………8 分233又3祝君金榜题名0 f (c ) 4 c 1, …………………12 分故c (9, 16) .进而 abc 9c (81, 144) .所以, abc 的取值范围是(81, 144) .…………………16 分r注:对任意的 r (81, 144) ,取c = ,则c ∈ ,从而 0 90 (9,16)f (c )∈(0,1).过点(c , f (c ))作平行于 x 轴的直线l ,则l 与 f (x )的图像另有两个交点(a , f (a )) ,(b , f (b )) (其中a (0, 3), b (3, 9) ),满足 f (a ) f (b ) f (c ) ,并且ab 9 ,从 而abc = r .10.(本题满分 20 分)已知实数列 1, 2,3,a a a满足:对任意正整数 n ,有 a S a ,其中 (2 ) 1 S 表示数列的前 n 项和.证明: n n n n(1) 对任意正整数 n ,有 2an ;n(2) 对任意正整数 n ,有a a.11n n证明:(1) 约定S.由条件知,对任意正整数 n ,有 1(2) ( )(),aSaSSSSSS22nnnnn 1nn 1nn 1从而22Sn Sn ,即 Sn (当 n 0 时亦成立). …………………5 分nn显然,11 2aSSnnn . …………………10 分nnn(2) 仅需考虑 a a 同号的情况.不失一般性,可设 a a 均为正(否则, ,nn 1nn 1将数列各项同时变为相反数,仍满足条件),则SSSn ,故必有n 1nn 1S n Sn ,,1nn 1此时an nan n , 1,1nn 1从而a an n n nn n n n .n n1(1)(1) (1)(1) 1…………………20 分11.(本题满分 20 分)在平面直角坐标系 xOy 中,设 AB 是抛物线 y 24x 的过点 F (1, 0) 的弦,AOB 的外接圆交抛物线于点 P (不同于点O , A , B ).若 PF 平分APB ,求 PF 的所有可能值.AyB y Py1 ,,2 ,,3,1, 2, 3yyy222解:设,由条件知 y y y 两两不等且非零.1234 4 4设直线 AB 的方程为 x ty 1,与抛物线方程联立可得 yty ,故24 4 0y y. ①1 24注意到AOB 的外接圆过点O ,可设该圆的方程为 xydx ey ,与 22yyd 24x 联立得,y y y y这四个不1yey 0 .该四次方程有 1, 2,3, 0241644祝君金榜题名同的实根,故由韦达定理得y y y,从而1 2 3 0 0y yy.②3 ( 1 2 )…………………5 分PA FA y因PF平分APB,由角平分线定理知,PB FB y,结合①、②,有122y y2 23 1 2(y y)22 3 1 2 2 2y PA 4 42 (y y) y16(2y y)1 2 1 1 212 2 2y PB y y y y y y y2 2 2 2 2 2( ) 16(2 )2 3 2 2 1 2 2 2 1(y y)3 24 4(y8) 16(4y y16) y64y1922 2 2 2 4 22 1 2 2 1 ,………………10 分(y8) 16(4y y16) y64y1922 2 2 2 4 21 2 1 1 2即16 64 12 22192 12 2664 22 12192 22y y y y y y y y,故(y y)(y y y y192) 0 .2 2 4 2 24 1 2 1 1 22当 2 2 3 0y y时,y y,故y,此时P与O重合,与条件不符.1 2 2 1当14 122224192 0y y y y时,注意到①,有(y y) 192(y y) 208.…………………15 分2 2 22 1 2 1 2因12 22 4 13 8 2 1 2 1 2 4 13 1, 2y y y y,故满足①以及y y的实数2 2y y存在,对应可得满足条件的点A, B.此时,结合①、②知PF.y3 1 (y1 y2 ) 4 y1 y2 4 208 4 13 12 2 2 24 4 4 4…………………20 分5。
2018年全国高中数学联合竞赛试题及解答.(A卷)
{}{}{}{}∈⎢,3⎥,即OQ∈[1,3],6⨯6=36种,从而abc+def为奇数的概率为722018年全国高中数学联合竞赛一试(A卷)一、填空题:本大题共8个小题,每小题8分,共64分。
2018A1、设集合A=1,2,3, ,99,集合B=2x|x∈A,集合C=x|2x∈A,则集合B C 的元素个数为◆答案:24★解析:由条件知,B C=2,4,6, ,48,故B C的元素个数为24。
2018A2、设点P到平面α的距离为3,点Q在平面α上,使得直线PQ与平面α所成角不小于300且不大于600,则这样的点Q所构成的区域的面积为◆答案:8π★解析:设点P在平面α上的射影为O,由条件知tan∠OQP=OP⎡3⎤OQ⎣3⎦所以区域的面积为π⨯32-π⨯12=8π。
2018A3、将1,2,3,4,5,6随机排成一行,记为a,b,c,d,e,f,则abc+def是偶数的概率为◆答案:9 10★解析:先考虑abc+def为奇数时,abc,def一奇一偶,①若abc为奇数,则a,b,c为1,3,5的排列,进而d,e,f为2,4,6的排列,这样共有6⨯6=36种;②若abc为偶数,由对称性得,也有119=,故所求为1-=6!1010102018A4、在平面直角坐标系xOy中,椭圆C:x2y2+a2b2=1(a>b>0)的左右焦点分别是F,F,12椭圆C的弦ST与U V分别平行于x轴和y轴,且相交于点P,已知线段PU,PS,PV,PT的长分别为1,2,3,6,则∆PF F的面积为12★解析:由对称性,不妨设点 P x , y在第一象限,则 x = PT -PS 即 P 2,1 。
进 而 可 得 U2,2 , S 4,1 , 代 入 椭 圆 方 程 解 得 : a 2 = 20 , b 2 = 5 , 从 而 2 2[ ]◆答案: π - 2,8 - 2π ][ ] [ ][ ] 所以 π - 2 < x < 8 - 2π ,即不等式的解集为 π - 2,8 - 2π ] ⎩bx 2 - 2bx = 0◆答案: 15()2 = 2 ,y 0 =PV - PU2= 1( ) ( ) ( )S ∆PF 1F2=1 1F F ⨯ y = ⨯ 2 15 ⨯ 1 = 15 。
高三数学-2018年全国高中数学联合竞赛一试试卷及答案(word版) 精品
2018年全国高中数学联合竞赛一试试卷(考试时间:上午8:00—9:40)一、选择题(本题满分36分,每小题6分) 1. 如图,在正四棱锥P −ABCD 中,∠APC =60°,则二面角A −PB −C 的平面角的余弦值为( ) A. 71 B. 71- C. 21 D. 21- 2. 设实数a 使得不等式|2x −a |+|3x −2a |≥a 2对任意实数x 恒成立,则满足条件的a 所组成的集合是( ) A. ]31,31[- B. ]21,21[- C. ]31,41[- D. [−3,3] 3. 将号码分别为1、2、…、9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同。
甲从袋中摸出一个球,其号码为a ,放回后,乙从此袋中再摸出一个球,其号码为b 。
则使不等式a −2b +10>0成立的事件发生的概率等于( ) A. 8152 B. 8159 C. 8160 D. 8161 4. 设函数f (x )=3sin x +2cos x +1。
若实数a 、b 、c 使得af (x )+bf (x −c )=1对任意实数x 恒成立,则ac b cos 的值等于( ) A. 21- B. 21 C. −1 D. 1 5. 设圆O 1和圆O 2是两个定圆,动圆P 与这两个定圆都相切,则圆P 的圆心轨迹不可能是( )6. 已知A 与B 是集合{1,2,3,…,100}的两个子集,满足:A 与B 的元素个数相同,且为A ∩B 空集。
若n ∈A 时总有2n +2∈B ,则集合A ∪B 的元素个数最多为( )A. 62B. 66C. 68D. 74二、填空题(本题满分54分,每小题9分)7. 在平面直角坐标系内,有四个定点A (−3,0),B (1,−1),C (0,3),D (−1,3)及一个动点P ,则|PA |+|PB |+|PC |+|PD |的最小值为__________。
8. 在△ABC 和△AEF 中,B 是EF 的中点,AB =EF =1,BC =6,33=CA ,若2=⋅+⋅,则与的夹角的余弦值等于________。
2018年全国高中数学联赛试题与解析B卷
an1 an 2, n 1, 2, 3, an
,2 求满足 an 42018 的
设 a,b,c 是三个互不相同的实数,满足 f (a) f (b) f (c) ,求 abc 的取值范围.
3
r
而 abc = r.
点(句, f(Co )) 作平行于·x 抽的直线l,则l与 f(x) 的图像另有两个交点仰 , !(α )), (b, /(b)) c其中αε (0,匀, bε (3, 9) ),满足 !(α ) = f(b)= f(c) ,并且 ab=9 ,从
四本题满分50分给定整数2018年全国高中数学联合竞赛一试b卷参考答案及评分标准说明评阅试卷时请依据评分标填空题只设分和分两档其他各题评请严格按照本准次结不得增加他中间次如果考生解答方法本解答同只要思路合理步骤正确评卷时参考本评分标准适当划分档次评分解答题中第9小题分个档次小题分aub的所0124863解
’叫
一1.
显然{a.}单调递增.由于 a11 = 23012 1 < 24036 = 420 ,s, a = 26144 12 故满足题目条件的n的最小值是12.
..................... 8分 1 > 2喃36 = 420 1&' …………......... 16分
10. (本题满分20分)己知定义在R + 上的函数 f(x) 为 [ pog 3 x-11,。<λ三9, ) = ( /x { 卢 x>9. 14-..Jx,
f (9)=l ,故结合图像可知
cε (9, +oo),
..................... 5分
2018年全国高中数学联合竞赛一试B卷参考答案(含加试)
i·
�± ,
7
即
6. 设抛物线 C: y =2x 的准线与 x 轴交千点 A, 过点 B(-1,0) 作 一 直线 l 与
抛物线 C 相切千点 K, 过点 A 作 l 的平行线,与抛物线 C交千点 M,N, 则 �KMN 的面积为 I 答案: — . 2
I I I 解:设直线 l 与 MN 的斜率为 k, 则 l:x=— y-1, MN:x=— y-— .
将l 与 C 联立,得方程
2 五 l- — y+2=0, 由条件知其判别式为零,故 k =士 -. k 2
— 2 ——
k
k
2
将MN 与 C 联立,得方程 y IYM -yNI 结合l 与 MN 平行,可知
2
k
y+I=O, 千是
2—
气(yM +YN)
4yM凡
=
`口=2'
1 1 1 1 — — — — — — S�KMN= S归BMN= S�BAM s�BANI = ·IABI·YM YNI= · -2= . 2 2 2 2 7. 设 /(x) 是定义在 R 上的以 2 为周期的偶函数,在区间 [I,2] 上严格递减,
率为
汁
-3, tan[(3-¾l =5, 则tan(a -(3)的值为
.
7 答案: -— . 4 解:由两角差的正切公式可知 ran[[a 十
"l
3
—
-3 -5 [/l — "]]� 1 +(— 3)x5 6
tan[ 0: — /3+ 勹=*,从而 tan(a: — /3) = — cot[ 0: — /3+ 勹= —
答案: 31. 解:易知B= {4, 0,2,16}, 故AUB= {O,1,2,4,8,16}. AUB的所有元素之和
2018年全国高中数学联合竞赛一试参考答案(A卷)word版含解析
2018 年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准1. 评阅试卷时,请依据本评分标准. 填空题只设8 分和0 分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9 小题4 分为一个档次,第10、11 小题5 分为一个档次,不得增加其他中间档次.一、填空题:本大题共8 小题,每小题8 分,满分64 分.1. 设集合A 1, 2, 3, , 99 , B {}2x x A∈, C {}2x x A∈,则B C 的元素个数为.答案:24 .解:由条件知,B C 2, 4, 6, ,198 12, 1, 32,2, ,9922, 4, 6, , 48 ,故B C 的元素个数为24 .2. 设点P 到平面Q 在平面 上,使得直线PQ 与 所成角不小于30 且不大于60 ,则这样的点Q 所构成的区域的面积为.答案:8 .解:设点 P 在平面 上的射影为O.由条件知,tan[3OPOPQOQ=∠∈即OQ [1, 3],故所求的区域面积为 32 12 8 .3. 将1, 2, 3, 4, 5, 6 随机排成一行,记为a, b, c, d,e, f ,则abc +def是偶数的概率为答案:9 10解:先考虑abc +def 为奇数的情况,此时abc, def 一奇一偶,若abc 为奇数,则a, b, c 为1, 3, 5的排列,进而d , e, f 为2, 4, 6的排列,这样有3! ×3! = 36 种情况,由对称性可知,使abc +def 为奇数的情况数为36 ×2 = 72 种.从而abc +def 为偶数的概率为72729116!72010-=-=1 / 64. 在平面直角坐标系 xOy 中,椭圆 C :22221x y a b += (a b 0) 的左、右焦点分别是 F 1 、F 2 ,椭圆C 的弦 ST 与UV 分别平行于 x 轴与 y 轴,且相交于点 P .已 知线段 PU , PS , PV , PT 的长分别为1, 2, 3, 6 ,则 PF 1F 2 的面积为 .解:由对称性,不妨设 P ( x P , y P ) 在第一象限,则由条件知x 1()2PT PS - 2, y 1()2PV PU - 1即 P (2, 1) .进而由 x P PU 1, PS 2 得U (2, 2), S (4, 1) ,代入椭圆C 的方程知111144161a b a b ⋅+⋅=⋅+=,解得a 220, b 2 5 .从而121212PF F P P S F F y y ∆===5. 设 f ( x ) 是定义在 R 上的以 2 为周期的偶函数,在区间[0, 1] 上严格递减,且满足 f ( ) 1 f (2 ) 2 ,则不等式组121()2x f x ⎧⎨≤≤⎩的解集为 . 答案:[ 2, 8 2 ] .解:由 f ( x ) 为偶函数及在[0, 1] 上严格递减知, f ( x ) 在[ 1, 0] 上严格递增, 再结合 f ( x ) 以 2 为周期可知,[1, 2] 是 f ( x ) 的严格递增区间. 注意到f ( 2) f ( ) 1, f (8 2 ) f ( 2 ) f (2 ) 2 , 所以1 f ( x )2 f ( 2) f ( x ) f (8 2 ) ,而1 2 8 2 2 ,故原不等式组成立当且仅当 x [ 2, 8 2 ] .6. 设复数 z 满足z 1 ,使得关于 x 的方程 zx 2 2 z x 2 0 有实根,则这样 的复数 z 的和为.答案:32-解:设 z a b i (a , b R , a 2 b 2 1) .将原方程改为 (a b i) x 2 2(a b i) x 2 0 ,分离实部与虚部后等价于 ax 2 2ax 2 0 , ① bx 2 2bx 0 .②若b 0 ,则 a 2 1 ,但当 a 1 时,①无实数解,从而 a 1 ,此时存在实数 x 1 z 1 满足条件.若 b 0 ,则由②知 x {0, 2} ,但显然 x 0 不满足①,故只能是 x 2 ,代入①解得 a 14=-,进而b ,相应有 z综上,满足条件的所有复数 z 之和为 1=32- 7. 设O 为 ABC 的外心,若AO AB 2 AC ,则sin BAC 的值为.解:不失一般性,设 ABC 的外接圆半径 R 2 .由条件知, 2 AC AO AB -① 故 AC12BO 1 . 取 AC 的中点 M ,则 OM AC ,结合①知 OM BO ,且 B 与 A 位于直线 OM 的同侧.于是 cos BOC cos (90 MOC ) sin MOC MOOC14=-在 BOC 中,由余弦定理得BC =进而在 ABC 中,由正弦定理得sin BAC2BC R =8. 设整数数列 a 1 , a 2 , , a 10 满足 a 10 3a 1 , a 2 a 8 2a 5 ,且 a i 1 {1 a i ,2 a i }, i 1, 2, , 9 , 则这样的数列的个数为 .答案:80 .解:设b i a i 1 a i {1, 2}(i 1, 2, , 9) ,则有 2a 1 a 10 a 1 b 1 b 2 b 9 , ① b 2 b 3 b 4 a 5 a 2 a 8 a 5 b 5 b 6 b 7 .②用t 表示b 2 , b 3 , b 4 中值为 2 的项数.由②知,t 也是 b 5 , b 6 , b 7 中值为 2 的项数,其中t {0, 1, 2, 3} .因此 b 2 , b 3 , , b 7 的取法数为 (03C )2 (13C ) 2 (23C ) 2 (33C ) 2 20取定b 2 , b 3 , , b 7 后,任意指定 b 8 , b 9 的值,有 22 4 种方式.最后由①知,应取 b 1 {1, 2} 使得b 1 b 2 b 9 为偶数,这样的 b 1 的取法是 唯一的,并且确定了整数 a 1 的值,进而数列 b 1 , b 2 , , b 9 唯一对应一个满足条 件的 数列 a 1 , a 2 , , a 10 .综上可知,满足条件的数列的个数为 20 4 80 .二、解答题:本大题共 3 小题,满分 56 分.解答应写出文字说明、证明过 程或演算步骤.9.(本题满分 16 分)已知定义在 R上的函数 f ( x )为3log 109()49x x f x x⎧-≤⎪=⎨-⎪⎩设 a , b , c 是三个互不相同的实数,满足 f (a ) f (b ) f (c ) ,求 abc 的取值围. 解:不妨假设 a b c .由于 f ( x ) 在 (0, 3] 上严格递减,在[3, 9] 上严格递增, 在[9, ) 上严格递减,且 f (3) 0, f (9) 1,故结合图像可知 a (0, 3) , b (3, 9) , c (9, ) ,并且 f (a ) f (b ) f (c ) (0, 1) . …………………4 分由 f (a ) f (b ) 得 1 l og 3 a log 3 b 1 ,即 log 3 a log 3 b 2 ,因此 ab 32 9 .于是 abc 9c . …………………8 分又0 f (c ) 4 1, …………………12 分 故 c (9, 16) .进而 abc 9c (81, 144) . 所以, abc 的取值范围是 (81, 144) . …………………16 分注:对任意的 r (81, 144) ,取09r c =,则0c ∈ (9, 16) ,从而 f (0c ) ∈ (0, 1) .过 点 (c 0 , f (c 0 )) 作平行于 x 轴的直线 l ,则 l 与 f ( x ) 的图像另有两个交点 (a , f (a )) ,(b , f (b )) (其中 a (0, 3), b (3, 9) ),满足 f (a ) f (b ) f (c ) ,并且 ab 9 ,从 而 abc = r .10.(本题满分 20 分)已知实数列 a 1 , a 2 , a 3 , 满足:对任意正整数 n ,有 a n (2S n a n ) 1 ,其中 S n 表示数列的前 n 项和.证明:(1) 对任意正整数 n ,有 a n (2) 对任意正整数 n ,有 a n a n 1 1 .证明: (1) 约定 S 0 0 .由条件知,对任意正整数 n ,有1 a n (2S n a n ) (S n S n -1)(S n S n -1) S n2 S n -12 ,S n n S 0 n ,即 S n n 0 时亦成立). …………………5 分显然, a n S n S n 1 …………………10 分 (2) 仅需考虑 a n , a n 1 同号的情况.不失一般性,可设 a n , a n 1 均为正(否则将数列各项同时变为相反数,仍满足条件),则 S n 1 S n S n 1 此时从而a n a n 1 () 1. …………………20 分1 2 1 1 2 2 1 1 2 1 2 2 1 211.(本题满分 20 分)在平面直角坐标系 xOy 中,设 AB 是抛物线 y 2 4 x 的 过点 F (1, 0) 的弦, AOB 的外接圆交抛物线于点 P (不同于点O , A , B ).若 PF 平 分 APB ,求 PF 的所有可能值.解:设211(,)4y A y ,222(,)4y B y ,233(,)4y P y ,由条件知 y 1 , y 2 , y 3 两两不等且非零. 设直线 AB 的方程为 x ty 1 ,与抛物线方程联立可得 y 2 4ty 4 0 ,故y 1 y 2 4 . ①注意到 AOB 的外接圆过点O ,可设该圆的方程为 x 2 y 2 dx ey 0 ,与x 24y 联立得,42(1)0164y d y ey +++=.该四次方程有 y y 1 , y 2 , y 3,0 这四个不同的实根,故由韦达定理得 y 1 y 2 y 3 0 0 ,从而y 3 ( y 1 y 2 ) .②…………………5 分因 PF 平分 APB ,由角平分线定理知,12PA FA y PB FB y ==,结合①、②,有 222312231122322232232()()44()()44y y y y PA y y y y PB y y -+-==-+-222212112222212221[()]16(2)[()]16(2)y y y y y y y y y y +-++=+-++ 422142126419264192y y y y +-=+- 即 y 6 64 y 2 y 2 192 y 2 y 6 64 y 2 y 2 192 y 2,故( y 2 y 2 )( y 4 y 2 y 2 y 4192) 0 .当 y 2 y 2 时, y y ,故 y 0 ,此时 P 与 O 重合,与条件不符. 当 y 4 y 2 y 2 y 4 192 0 时,注意到①,有 (y 2 y 2 )2=192+(y y ) 2=208y 2 y 28 212y y ,故满足①以及 y 1 y 2的实数 y 1 , y 2 存在,对应可得满足条件的点 A , B .此时,结合①、②知222231212()4411444y y y y y PF +++-=+==== …………………20 分。
2018全国高中数学联赛试题
2018全国高中数学联赛试题2018年全国高中数学联合竞赛一试试题(A卷)一、填空题:本大题共8小题,每小题8分,共64分。
1.设集合A={1,2,3,……,99},BC={2,4,6,……,198},则B={2x|x∈A},C={x^2|x∈A},则BC的元素个数为48,共24个元素。
2.设点P到平面α的距离为3,点Q在平面α上,使得直线PQ与α所成角不小于30且不大于60,则这样的点Q所构成的区域的面积为8π。
解析:过点P作平面α的垂线,这垂足为O,则点Q的轨迹是以O为圆心,分别以ON=1和OM=3为半径的扇环,于是点Q所构成的区域的面积为S=S2-S1=9π-π=8π。
3.将1,2,3,4,5,6随机排成一行,记为a,b,c,d,e,f,则abc+def是偶数的概率为648/720=9/10.解析:(直接法)将1,2,3,4,5,6随机排成一行,共有A6^6=720种不同的排法,要使abc+def为偶数,abc为与def 同为偶数或abc与且def同为奇数。
(1)若a,b,c中一个偶数两个奇数且d,e,f中一个奇数两个偶数,共324种情形;(2)若a,b,c中一个奇数两个偶数且d,e,f中一个偶数两个奇数,共324种情形;共有648种情形。
综上所述,abc+def是偶数的概率为648/720=9/10.(间接法)“abc+def是偶数”的对立事件为“abc+def是奇数”,abc+def是偶数分成两种情况:“abc是偶数且def是奇数”或“abc是奇数且def是偶数”,每种情况有A3^3*A3^3=36种不同情形,共有72种不同情形,abc+def是偶数的概率为1-729/720=9/10.4.在平面直角坐标系xoy中,椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左、右焦点分别是F1,F2,椭圆C的弦ST与UV 分别平行于x轴和y轴,且相交于点P。
已知线段PU、PS、PV、PT的长分别为1,2,3,6,则ΔPF1F2的面积为4√(2/3)。
全国高中数学联合竞赛一试 含答案
则2������1 = ������10 − ������1 = ������1 + ������2 + ⋯ + ������9必为偶数,
则(������ + ������������)������2 + 2(������ − ������������)������ + 2 = 0,
整理得:(������������2 + 2������������ + 2) + (������������2 − 2������������)������ = 0
10. 已知实数列������1, ������2, ������3…,满足:对任意正整数 n,有 ������������(2������������ − ������������) = 1,其中������������表示数列有前 n 项和. 证明: (1) 对任意正整数 n,有������������ < 2√������; (2) 对任意正整数 n,有������������������������+1 < 1. 分析: (1)显然������1 = ±1 < 2√1,当������ ≥ 2时, 由������������(2������������ − ������������) = 1,得������������2 − ������������−12 = 1(������ ≥ 2) 所以������������2 = ������,得������������ = ±√������
2018 年全国高中数学联合竞赛A 卷试题及解析(含一试及加试)
而I<π - 2 < 8-2r. < 2 , 故原不等式组成立当且仅当xE[肯 - 2, 8-2肯}. 6.设复数z满足l= I=I , 使得关于,y的方程 x' + 2:x+2 =0有实根 , 则这样
=
的复数z的和为 答案:
分别是F;、凡,椭l2ll c 的弦 ST 与 UV 分别 -'¥· 行于 x 剿l与y轴 , 且相交子点P. 己 知线段PU,PS ‘ PV 、 PT 的长分另lj为L 2. 3. 6 , 则 MF., 凡的朋积为 答案: -Jl5. 解: 由对称性 , 不妨设 P (,飞·,,, )'p )在第 一 象限,则由条件知
主.
解:设们在平面。上的射影为。白条件知, 立 = tanLOQP |丘♂ I ' OQ I 3
ε
i己为 a, b,c, d, e,f ,则。be ÷d吃f ;是偶数的
概率为 答案: 解:先考虑。 bc+def :为奇数的俏况,此时 abc、 d吃f 一 奇一 {间,若 abc 为奇敛,
10
则。 , b,c 为l, 3, 5 的排列 , 避而 d‘ e,f 为2,4,6的排列,这样有3!×31=36种情况, 由对称性可知 , 使 abc+def 为奇数的情况数为 36 × 2 =72 种.从而 abc+d,电f 为偶 72 72 9 =I-一一=一. 数的概率为I-一 ' 6 720 JO
1. 设织合 A= {I, 2, 3、
2018年全国高中数学联合竞赛一试(A卷) 参考答案及评分标准
,99}‘B={2xjxE A}, C={xl2xε斗 , 则B门C的元
2018年度全国高中数学联赛一试加试试题详细解答道福
2018年全国高中数学联合童豪一« CA»)答軽评分时1・评阅试■时,请依括本评分标罹・填空册只设3分和0分网掛 其他各■的 押叭1#严格按RI 本怦分标准的评分档次的分,不1MT 加其他中闻档次. 人如果考生的解答方袪和本粋不同.只要思路含理、步鼻正祐 在时时可 參考本讲分标准适当划分档次押分.解劄■中第9>h«4分为一个档次,第10、 11小JS $分为一牛档肉不得堆加其他申间档况一.填空理;本大IB 共R 小IK,每小IB B 分,満分64分.1. 没集合 J={12,3, - ,99}, 0 = {2“卜丘咼,C = {*|2 耳 w/}, WlBCC 的元紊个也为 ______________ ■ffM : 24 ・ 1 1 gql料由条件知,Bnc = {2?4,6,.. ,l98)n 1,1,£,2,...,^ = {乙4.6,・・・,4町,> ・故〃 nt :的元素个敷为24.2. 设点尸到、卜面c 的和虑为方.点Q 在半面a I.,便得直找PQ 与a 所成和不小丁30。
且不人丁 60。
,则这样的点0所构成的区域的面积为 ________________ ・即Ofi€[13]・故所玫的区域面积为ff-3z -?r-l z = 8r.3・将1,厶二4,5,6随机排成一行・记为址b 、c 、d 、亡J,则血*即是偶敷的 概率为 ___________________ ■絡 先考克心十刼为奇数的情况.此时砧C ・刼一奇一偶,若“加为奇數,Wld.A.c 为1,3、5府排列,进rtjd.e./为2.4,6的扌#列,这样^3!x31=36种悄况,由对称祉可知.使abc^def 为奇徽的情况数为36x2 = 72种.从而如刚为偶 数的紳“普十珞嚅.4.在平血岂角坐标系幼中,IffiKlC:=l(u>6>0)的杏、右焦点 分别足耳、L 椭圆C 的弦ST^UV 分別平冇于xftlAij 轴,且柑交于点几 己 知块段PU t PE, PV r M 的长分别为l r 2, 3, 6・则的仙枳为 ___________________________林:卮»:由对称催・不妨设P(»,丹)在第一象限,刚由条件知»=£(1 円1-阀)",儿fit 设点P 在平面a 上的射形为0・宙集件知OP =tanZOQPe即屮⑵I)・进而由x P = \PU\ = L |PS| = 2 W U(2,2), S(41) r 代入捅MC的方程知 4— + 4・^~= 16"——】・解得 / — 20, b - = 5 .从而丹=自时用4川=J ^匸歹•丹=顶・5.设/(JC )足定义在R I 】的以2为同期的偶哄 CEfBJlOJJ 上严格遥减, 且满足几0 = 1打(2町=2,则不等式组|乎:严〜的解•集沟 ________________________________ ・\) < 加 < 2答案:[一2,—2育]・解,由/(朗为偶函数及在[叩]上严格递减如,/(巧任片1,01上严格递检 再給合/(珂以2为周期可如・[1,2] S /(r)的严格递増区间.注卓到/佃―2)=克町=1・/(8 —2时=/(—2?r) = f(2 町=2,所以l</(x><2^/(^r-2)< /(x)</(8-2^).而Ic?r — 2w8—去r<2,故贩不等式组成立当且仅当=£佃一2、g-2刃.6-设勺数?涌足卜|=】・便得关于工凶方框* + 2; + 2i 有实权,则这样的宜飲2的和为 _____________ •警案]——• 2脾:设 z = a-hbi (a, heR.a~ -J-A 2 — 1)・将耳力程改为(a + bi)F+2(a -新)工亠2 = 0・勿离实部与堆祁右绅价于ax' + -)-2=0, ①尿'_2Ax = 0.② 若b = o ・则/ = 1・但当。
2018年全国高中数学联合竞赛加a试试题(A卷)
2018年全国高中数学联合竞赛加试试题(A 卷)
一.(本题满分40分)设n 是正整数,B A b b b a a a n n ,,,,,,,,,2121 均为正实数,满足n i A a b a i i i ,,2,1,, =≤≤,且A
B a a a b b b n n ≤ 2121. 证明:
1
1)1()1)(1()1()1)(1(2121++≤++++++A B a a a b b b n n . 二.(本题满分40分)如图,ABC △为锐角三角形,,AC AB <M 为BC 边的中点,点D 和E 分别为ABC △的外接圆上弧BAC 和弧BC 的中点,F 为ABC △内切圆在AB 边上的切点,G 为AE 与BC 的交点,N 在线段EF 上,满足AB NB ⊥.
证明:若,EM BN =则FG DF ⊥.(答题时请将图画在答卷纸上)
三.(本题满分50分)设m k n ,,是正整数,满足2≥k ,且n k
k m n 12-<≤.设A 是{}m ,,2,1 的n 元子集.证明:区间⎪⎭
⎫ ⎝⎛-1,0k n 中的每个整数均可表示为a a '-,其中A a a ∈',.
四.(本题满分50分)数列{}n a 定义如下:1a 是任意正整数,对整数1≥n ,1+n a 是与
∑=n i i a 1互素,且不等于n a a a ,,,21 的最小正整数.证明:每个正整数均在数列{}n a 中出现
.。
2018年全国高中数学联合竞赛一试B卷参考答案(含加试)
三)叶
(9a+b+I) — ( 6矗+ b) 分 [1, 9], 均有 11cx)I<2, 则 ………………10 分 切 @ @
由句,@得, 2a-6 = /(2)-/(1); 又由@,@得, 6a-2 = /(3)-/(2). 由上述两式消去 a, 可知 但 /(3)-4/(2)+3/(1)<2+4 . 2+3. 2=16, 矛盾!从而命题得证.
2018年全国高中数学联合竞赛一试(B卷) 参考答案及评分标准
为
是0+1+ 2+ 4+8+16=31. 2. 已知 圆锥的 顶点为P, 底面半径长为2'高为1.在圆锥 底面 上取 一 点Q , ° 使得 直线PQ与底面所成角不大千45 , 则满足条件的点Q所构成的区域 的面积 解:圆锥顶点 P在底面上的投影即为底面中心, 记之为o. 由条件知, OP = tan乙OQP三1'即OQ之1'故所求 的区域面积为7r·22 -Jr-12 =31r. OQ 3. 将1,2,3,4,5,6随机排成 一 行,记为a,b,c,d,e ,f, 则abc+def是奇数的概 答案: 1 — 答案: 31r.
说明: 1. 评阅试卷时,请依据本评分标准.填空题只设8分和0分两档;其他各题的 评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次. 2. 如果考生的解答方法和本解答不同, 只要思路合理、步骤正确,在评卷时可 一 个档次 ,第10、 参考本评分标准适当划分档次评分,解答题中第9小题4分为 一 个档次 ,不得增加其他中间档次. 11小题5分为 一、填空题:本大题共8小题,每小题8分,满分64分. {2, 0,1,8}, B= {2a I a E A}, 则AUB的所有元素之和是 1. 设集合A= .
2018年全国高中数学联赛试题及答案详解(B卷)
说明: 1. 评阅试卷时,请严格按照本评分标准的评分档次给分. 2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可 参考本评分标准适当划分档次评分,10 分为一个档次,不得增加其他中间档次.
一、(本题满分 40 分)设 a, b 是实数,函数 f (x) = ax + b + 9 . x
知,满足条件的情况数为 36 × 2 =72 种.从而所求概率为= 72 7= 2 1 . 6! 720 10
4. 在平面直角坐标系 xOy 中,直线 l 通过原点, n (3, 1) 是 l 的一个法向
量.已知数列{an}满足:对任意正整数 n ,点 (an1, an ) 均在 l 上.若 a2 6 ,则
11.(本题满分 20 分)如图所示,在平面直角 坐 标 系 xOy 中 , A 、 B 与 C 、 D 分 别 是 椭 圆
x2 y2 : a2 b2 1 (a b 0) 的左、右顶点与上、下顶 A 点.设 P, Q 是 上且位于第一象限的两点,满足
y
R
P
C
M
Q
O
Bx
OQ ∥ AP , M 是线段 AP 的中点,射线 OM 与椭
是 0 1 2 4 8 16 31 .
2. 已知圆锥的顶点为 P ,底面半径长为 2 ,高为1.在圆锥底面上取一点 Q ,
使得直线 PQ 与底面所成角不大于 45 ,则满足条件的点 Q 所构成的区域的面积
为
.
答案: 3 .
解:圆锥顶点 P 在底面上的投影即为底面中心,记之为 O .由条件知, OP tan OQP 1 ,即 OQ 1 ,故所求的区域面积为 22 12 3 . OQ
2018年全国高中数学联赛福建省预赛试题与解答
一、填空题(共 10 小题,每小题 6 分,满分 60 分)
1 .将正偶数集合 2 ,4,6,L 从小到大按第 n 组有 3n 2 个数进行分组: 2 ,
4 ,6,8,10 , 12,14,16,18,20,22 ,24 ,…,则 2018 位于第
也不同 .
因此,可得 4 36 144 个直角顶点在矩形顶点的不同的直角三角形;
2
再算直角顶点不在矩形顶点: ( 1) 在 1 2 矩形中,有顶点不在矩形顶点, 边长分别为 2, 2,2 的直角三角形 2 个, 而 1 2 矩形横向、纵向各有 6 个,共 2 12=24 个; ( 2) 在 2 3 矩形中,有顶点不在矩形顶点,边长分别为 5,5, 10 的直角三角形 4 个,边长分别为 2, 2 2,10 的直角三角形 4 个,而 2 3 矩形横向、纵向各有 2 个,共( 4+4) 4=32 个;
依题意, r1 r2 4 , F1F2 8 .
由 G 、 I 分别为 △ F1PF2 的重心、内心, GI ∥x 轴 ,得 △F1PF2 内切圆半径 r
1 y0 . 3
∴
S△ F1PF2
1 ( F1P
2
F1 F2
F2P ) r
1 ( r1
r2
8) 1 y0 .
2
3
又 S△F1PF2
1 F1 F2
2
y0
则由 △ PAC 、 △ ABC 都是边长为 6 的等边三角形,得
C
PD AC ,BD AC , PDB 为二面角 P AC B 的平面角,
B
PDB 120 .
A
2018年全国高中数学联合竞赛一试参考答案(A卷)
2018年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 设集合 1,2,3,,99,2,2A B x x A C x x A ,则B C 的元素个数为 .答案:24.解:由条件知, 13992,4,6,,198,1,,2,,2,4,6,,48222B C,故B C 的元素个数为24.2. 设点P 到平面的距离为,点Q 在平面 上,使得直线PQ 与 所成角不小于30 且不大于60 ,则这样的点Q 所构成的区域的面积为 .答案:8 .解:设点P 在平面 上的射影为O .由条件知,tan OP OQP OQ ,即[1,3]OQ ,故所求的区域面积为22318 .3. 将1,2,3,4,5,6随机排成一行,记为,,,,,a b c d e f ,则abc def +是偶数的概率为 .答案:910.解:先考虑abc def +为奇数的情况,此时,abc def 一奇一偶,若abc 为奇数,则,,a b c 为1,3,5的排列,进而,,d e f 为2,4,6的排列,这样有3!3!36×=种情况,由对称性可知,使abc def +为奇数的情况数为36272×=种.从而abc def +为偶数的概率为72729116!72010−=−=.4. 在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b的左、右焦点分别是1F 、2F ,椭圆C 的弦ST 与UV 分别平行于x 轴与y 轴,且相交于点P .已知线段,,,PU PS PV PT 的长分别为1,2,3,6,则12PF F 的面积为 .答案解:由对称性,不妨设(,)P P P x y 在第一象限,则由条件知112,122P P x PT PS y PV PU ,即(2,1)P .进而由1,2P x PU PS 得(2,2),(4,1)U S ,代入椭圆C 的方程知2222111144161a b a b,解得2220,5a b .从而121212PF F P P S F F y y .5. 设()f x 是定义在R 上的以2为周期的偶函数,在区间[0,1]上严格递减,且满足()1,(2)2f f ,则不等式组12,1()2x f x的解集为 . 答案:[2,82] .解:由()f x 为偶函数及在[0,1]上严格递减知,()f x 在[1,0] 上严格递增,再结合()f x 以2为周期可知,[1,2]是()f x 的严格递增区间.注意到(2)()1,(82)(2)(2)2f f f f f ,所以1()2(2)()(82)f x f f x f ,而12822 ,故原不等式组成立当且仅当[2,82]x .6. 设复数z 满足1z ,使得关于x 的方程2220zx zx 有实根,则这样的复数z 的和为 .答案:32.解:设22i (,,1)R z a b a b a b .将原方程改为2(i)2(i)20a b x a b x ,分离实部与虚部后等价于2220ax ax ,① 220bx bx .②若0b ,则21a ,但当1a 时,①无实数解,从而1a ,此时存在实数1x 1z 满足条件.若0b ,则由②知{0,2}x,但显然0x 不满足①,故只能是2x ,代入①解得14a ,进而b,相应有z .综上,满足条件的所有复数z 之和为312.7. 设O 为ABC 的外心,若2AO AB AC,则sin BAC 的值为 .答案 解:不失一般性,设ABC 的外接圆半径2R .由条件知,2AC AO AB BO,①故112AC BO .取AC 的中点M ,则OM AC ,结合①知OM BO ,且B 与A 位于直线OM 的同侧.于是1cos cos(90)sin 4MC BOC MOC MOC OC . 在BOC 中,由余弦定理得BC ,进而在ABC中,由正弦定理得sin 2BC BAC R. 8. 设整数数列1210,,,a a a 满足1012853,2a a a a a ,且1{1,2},1,2,,9i i i a a a i ,则这样的数列的个数为 .答案:80.解:设1{1,2}(1,2,,9)i i i b a a i ,则有11011292a a a b b b ,① 2345285567b b b a a a a b b b .②用t 表示234,,b b b 中值为2的项数.由②知,t 也是567,,b b b 中值为2的项数,其中{0,1,2,3}t .因此237,,,b b b 的取法数为021222323333(C )(C )(C )(C )20 .取定237,,,b b b 后,任意指定89,b b 的值,有224 种方式.最后由①知,应取1{1,2}b 使得129b b b 为偶数,这样的1b 的取法是唯一的,并且确定了整数1a 的值,进而数列129,,,b b b 唯一对应一个满足条件的数列1210,,,a a a .综上可知,满足条件的数列的个数为20480 .二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)已知定义在R 上的函数()f x 为3log 1,09,()49.x x f x x设,,a b c 是三个互不相同的实数,满足()()()f a f b f c ,求abc 的取值范围.解:不妨假设a b c .由于()f x 在(0,3]上严格递减,在[3,9]上严格递增,在[9,) 上严格递减,且(3)0,(9)1f f ,故结合图像可知(0,3)a ,(3,9)b ,(9,)c ,并且()()()(0,1)f a f b f c . …………………4分由()()f a f b 得331log log 1a b ,即33log log 2a b ,因此239ab .于是9abc c . …………………8分又0()41f c , …………………12分故(9,16)c .进而9(81,144)abc c .所以,abc 的取值范围是(81,144). …………………16分注:对任意的(81,144)r ,取09rc =,则0(9,16)c ∈,从而0()(0,1)f c ∈.过点00(,())c f c 作平行于x 轴的直线l ,则l 与()f x 的图像另有两个交点(,())a f a ,(,())b f b (其中(0,3),(3,9)a b ),满足()()()f a f b f c ,并且9ab ,从而abc r =.10.(本题满分20分)已知实数列123,,,a a a 满足:对任意正整数n ,有(2)1n n n a S a ,其中n S 表示数列的前n 项和.证明:(1) 对任意正整数n ,有n a(2) 对任意正整数n ,有11n n a a .证明:(1) 约定00S .由条件知,对任意正整数n ,有221111(2)()()n n n n n n n n n a S a S S S S S S ,从而220n S n S n ,即n S (当0n 时亦成立). …………………5分显然,1n n n a S S . …………………10分 (2) 仅需考虑1,n n a a 同号的情况.不失一般性,可设1,n n a a 均为正(否则将数列各项同时变为相反数,仍满足条件),则11n n n S S S ,故必有1n n S S ,此时1n n a a从而11n n a a .…………………20分11.(本题满分20分)在平面直角坐标系xOy 中,设AB 是抛物线24y x 的过点(1,0)F 的弦,AOB 的外接圆交抛物线于点P (不同于点,,O A B ).若PF 平分APB ,求PF 的所有可能值.解:设222123123,,,,,444y y y A y B y P y,由条件知123,,y y y 两两不等且非零. 设直线AB 的方程为1x ty ,与抛物线方程联立可得2440y ty ,故124y y . ① 注意到AOB 的外接圆过点O ,可设该圆的方程为220x y dx ey ,与24y x 联立得,4210164y d y ey .该四次方程有123,,,0y y y y 这四个不同的实根,故由韦达定理得12300y y y ,从而312()y y y .②…………………5分因PF 平分APB ,由角平分线定理知,12PA FA yPB FB y ,结合①、②,有2222312222231212112122222222222321222132()()16(2)44()16(2)()44y y y y y y y y y PA yy PB y y y y y y y y y2222422122122224212112(8)16(416)64192(8)16(416)64192y y y y y y y y y y , ………………10分 即62226222112122126419264192y y y y y y y y ,故 224224121122()(192)0y y y y y y .当2212y y 时,21y y ,故30y ,此时P 与O 重合,与条件不符. 当422411221920y y y y 时,注意到①,有22221212()192()208y y y y . …………………15分因22121282y y y y ,故满足①以及2212y y 的实数12,y y 存在,对应可得满足条件的点,A B .此时,结合①、②知222231212()4411444y y y y y PF .…………………20分。
2018年全国高中数学联赛试题与解析B卷
o 二二 f(x ) 三1 仲 !( 却一6)三 f(x )三/(4-的,
(用含有r的式子表示〉.
z, =一,Z2 =一,Z3 =-,
因此 W= Z1 �2 +毛毛+勾引·于是
2
Z1
Z2
Z3
r = (z1 十Z2 + Z3 )(王+三十三) =lz.1 十lzJ + lz3 l + w十二=3+2Rew,
2 2
解得Rew=三三 2 二、解答题:本大题共3小题,满分56分.解答应写出立字说明、证明过 程或演算步骤. 9. (本题满分16分)己知数列{a,,}:α, =7, 满足 a. >4
川 生土L =
的最小正整数 n.
2
α
a,,十2 , n = 1, 2, 3, · · · .求
故。”=2 3烛
解:由生土L = α,,+2可知 G川 +1=(α,,+ 1) .因此 α,2 时 ”I 3x2"-1, α,,+l=(a1 +1)2 =82 = 2
AD BC ,以 AB 为直径的圆 与线段 DE 交于一点 F. DC 2CE
A
证明:B,C,F,D 四点共圆(答题时请将图画在答卷纸上)
D
F
B
C
E
三、 (本题满分 50 分)设集合 A {1, 2,
, n} ,X,Y 均为 A 的非空设空子集(允许 X = Y) .X
中的最大元与 Y 中的最小元分别记为 maxX,minY 求满足 maxX > minY 的有序集合对(X , Y) 的数目.
四、 (本题满分 50 分)给定整数 a 2 . 证明:对任意正整数 n,存在正整数 k,使得连续 n 个 数 ak 1, ak 2 , , a k n 均是合数.
2018年全国高中数学联赛试题及答案详解(A卷)
2,
4,
6,,
48
,
故 B C 的元素个数为 24 . 2. 设点 P 到平面 的距离为 3 ,点 Q 在平面 上,使得直线 PQ 与 所成
角不小于 30 且不大于 60 ,则这样的点 Q 所构成的区域的面积为
.
答案:8 .
解:设点 P 在平面 上的射影为 O .由条件知,OP OQ
tan
OQP
3, 3求的区域面积为 32 12 8 .
3. 将1, 2, 3, 4, 5, 6 随机排成一行,记为 a, b, c, d , e, f ,则 abc + def 是偶数的
概率为
.
答案: 9 . 10
在[9,) 上严格递减,且 f (3) 0, f (9) 1,故结合图像可知
a (0, 3) , b (3, 9) , c (9, ) ,
并且 f (a) f (b) f (c) (0, 1) .
…………………4 分
由 f (a) f (b) 得 1 log3 a log3 b 1,
注意到 f ( 2) f () 1, f (8 2) f (2) f (2) 2 ,
所以 1 f (x) 2 f ( 2) f (x) f (8 2) ,
而1 2 8 2 2 ,故原不等式组成立当且仅当 x [ 2, 8 2] . 6. 设复数 z 满足 z 1,使得关于 x 的方程 zx2 2zx 2 0 有实根,则这样
证明: (1) 约定 S0 0 .由条件知,对任意正整数 n ,有
1
an
(2Sn