机械密封端面温度近似解析计算的新方法
机械密封温度场及其热应力的有限元计算
机械密封温度场及其热应力的有限元计算机械密封是工业领域中常见的重要部件,用于防止流体或气体在管道中泄漏。
其中,温度是影响机械密封性能的一个关键因素。
通过有限元方法计算机械密封的温度场及其热应力分布,可以进一步理解机械密封的性能,为优化设计和选择材料提供有价值的参考。
一、机械密封热应力分析的重要性首先,机械密封在工作中会受到温度变化的影响。
在高温环境下,机械密封可能会发生膨胀、变形、破裂等现象,从而降低密封性能,甚至出现泄漏等危险。
因此,理解机械密封在不同温度下的热应力分布,有助于优化机械密封的设计和材料选择,提升其性能和稳定性。
其次,机械密封的热应力会影响密封面之间的接触压力分布。
接触面之间的压力分布又会影响机械密封的摩擦、磨损、寿命等方面的性能。
因此,通过对机械密封热应力分布的分析,可以为正确评估机械密封的性能提供依据。
最后,计算机械密封的热应力分布还可以为机械密封改进和优化、开发新型机械密封以及制定更可靠的维护保养计划提供帮助。
二、机械密封温度场及其热应力计算的方法1.基于有限元方法由于机械密封的几何形状和复杂工作环境的影响,直接通过实验方法进行温度场及热应力的测试是昂贵、费时并且可能存在不可避免的误差。
而有限元方法则可以通过数学模型和计算机模拟来模拟机械密封在不同温度下的工作状态,计算出对应的温度场及热应力分布。
有限元方法主要分为数值方法和解析方法两种。
数值方法是通过数学模型和数值计算来获得机械密封的温度场及热应力分布,其中常用的数值方法包括有限差分法、有限体积法和有限元法等。
解析方法则是通过解方程表达式,将机械密封的基本参数带入公式计算来获取温度场及热应力分布,例如Stefan-Boltzmann定律、Fourier定律等。
2.基于ANSYS软件ANSYS软件是目前工业领域中最常用的有限元分析软件之一。
该软件提供了一系列的功能模块和分析工具,如结构分析、流体动力学分析、热分析等,可以用于模拟机械密封在不同工作条件下的温度场及热应力分布,为机械密封的设计、优化和改进提供帮助。
机械密封变形计算方法综述
机械密封变形计算方法综述滕人博;刘建瑞;王鸿瑞;肖志杰【摘要】介绍数值分析方法在机械密封变形计算研究中的应用及国内外研究现状.综合国内外在机械密封性能理论研究的新成果,从结构静态分析、热-结构耦合分析两个角度介绍了常用的研究方法,比较了其优缺点,指出解析法是机械密封计算方法中较为精确的一种,但只适合密封截面为简单形状的情况.经验公式法虽可满足工程实际的需要,但无法给出机械密封变形与温度间的定量关系.有限元法是当今较好地使用计算机研究机械密封变形的方法,使用热-结构耦合稳态分析的理论可以根据端面的受力计算摩擦热并将热载荷施加在模型上,实现了结构分析与热分析结果的同时运算.有限元法作为较为有效的变形分析方法发展潜力很大.【期刊名称】《农机化研究》【年(卷),期】2009(031)001【总页数】4页(P237-239,242)【关键词】机械密封;有限元法;数值模拟;热-结构耦合分析【作者】滕人博;刘建瑞;王鸿瑞;肖志杰【作者单位】江苏大学,流体机械工程技术研究中心,江苏,镇江,212013;江苏大学,流体机械工程技术研究中心,江苏,镇江,212013;江苏大学,流体机械工程技术研究中心,江苏,镇江,212013;江苏大学,流体机械工程技术研究中心,江苏,镇江,212013【正文语种】中文【中图分类】TH1360 引言机械密封是目前旋转轴密封常用的一种形式,是流体机械和动力机械中不可缺少的零部件。
由于机械端面密封有着工作可靠、泄露量少、使用寿命长、适用范围广等优点,故在工业中获得了广泛的应用,尤其是在各类泵中应用最广。
传统的机械密封设计是一项以实验为基础的技术,密封性能最终需要根据具体试验来验证。
但是试验方法却具有长周期性、高成本性和不确定性等缺点,这些试验方法的不足都为理论研究开创了广阔的发展空间。
通过建立系统的机械密封模型,在其上施加各影响因素进行模拟仿真,能够对影响密封寿命和可靠性的根本原因做出判断,并准确预测密封性能,从而正确指导试验,提升试验结果的价值。
基于ANSYS的机械密封副的温度分析
( S c h o o l o f P o w e r E n g i n e e i r n g N a v a l U n i v e r s i t y o f E n g i n e e i r n g , Wu h a n 4 3 0 0 3 3 , C h i n a )
i f e l d i s e s t a b l i s h e d u n d e r r e a s o n a b l e a s s u mp t i o n s . By c a l c u l a t i o n, h e a t f l u x a n d c o n v e c t i v e h e a t t r a n s f e r c o e f i c i e n t i s o b t a i n e d . T h e n t h e t e mp e r a t u r e i f e l d o f t h e me c h a n i c a l s e a l i s c a l c u l a t e d b y ANS YS 1 3 . 0 . F o c u s o n c o n s i d e r i n g t h e me d i u m f l o w a n d s p r i n g p r e s s u r e o n t h e t e mp e r a t u r e i f e l d, wh i c h p r o v i d e s a t h e o r e t i c a l b a s i s o f t h e me c h a n i c l a s e a l ’ S d e s i g n .
Ke y wo r d s : me c h a n i c a l s e a l s ;f i n i t e e l e me n t ; me d i a f l o w; s p r i n g p r e s s u r e
机械密封温度问题研究方法综述
经验公 式 法 、 析 法 、 限 差 分 法 (1 、 限元 解 有 F M) 有 ) 法 (E 和 边界元 法 ( E , 限差 分 法 、 限元 F M) B M)有 有
温度时 , 效果较好 , 在混合摩擦状态下 , 测试数据
稳定性 较 差 。
法和边界元法合称为数值模拟法。
收 稿 日期 : 20— 1— 2 05 2 1
理论分析受到多方 面的制约 , 中最关键 的就是 其 边界 条件 的确定 。因此 , 今 为止 , 验测 量依 然 迄 试 在机 械密 封 的温 度研 究 中 占据 着重要 的位 置 [ 引。
当今 国 内外 学者 测量 机械 密封 端面温 度 的方
滑状态 , 端面的磨损和泄漏都会增加 ; 温度梯度还 会使密封环产生 内应力 , 当局部内应力超过材料 的许 用应 力 时 , 面 会 产 生 龟 裂 , 封 失 效 [2。 端 密 1] ,
维普资讯
20 第 3 06年 4卷第 8 期
文章编 号 : 10—02 (06O _ o3—o 05 39 2o )8_ o7 4
, ∈ ∈ x 旨
流
体
机
械
3 7
《 术 述l 技 综
}寻 { }j{ } { } ≥
机械密封温 度问题研究方法综述
n l W fc e l .F nt lme tme o st e m s p p lrme o e te tmp r tr ed o e h nc lfc e l . a O e sas i e ee n t d i h o t o u a t d t g th T a i h h o e eau e f l fm c a ia a e s a i s Ke r s y wo d : me h n c a e s a ;e e a r ; s ac to c a ia fc e l tmp rt e r e r h me d l u e h
基于Ansys的机械密封环温度场分析
An l sso m pe a ur ed o e ha ia c e l i g An y ay i n Te r t e Fil fM c n c lFa e S a sUsn s s
Sh a in Hu Yui an Xiol g a I
( r eo o e e N r w s P l eh i l n es y X ’ n S a n i 10 2 C ia Ma n f l g , o h et o t n a U i r t , ia h a x 7 0 7 , hn ) i C l t yc e v i
单 晓亮 胡 欲 立
陕西西安 707 ) 0 2 1
( 北 工 业 大 学航 海学 院 西
摘 要 :在合 理 的 假设 条 件下 ,建 立 了机 械 密 封环 温 度场 的 数学 模 型 ,利 用有 限元 分 析 软 件 A ss . 算 了特 定 工 ny 0计 8 况 下 的机 械 密封 环 的温 度 场 ,得 到 了端 面 温 度 的分 布 规律 及 密 封 环 内 温度 沿 轴 向 的变 化 趋 势 ,并 讨 论 了几 个 重 要参 数 , 发 现导 热 系数 对 端 面温 度 影 响显 著 ,密封 端 面温 度 随 密封 介质 压力 和 主轴 转 速 近似 呈线 性 变 化 。 关 键 词 :机 械 密封 ;稳 态 温度 场 ;数 学 模 型 ;有 限元 法 中图 分 类号 :T 17 1 文 献标 识 码 :A 文章 编 号 : 24— 10 (0 6 H 1. 0 5 0 5 20 )9—16— 1 4滑 与密封
L UBRI CATI ON ENGI NEERI NG
Sp20 e. 06
第 9期 ( 总第 1 1 ) 8期
基于ANSYS的机械密封环温度场计算方
基于ANSYS的机械密封环温度场计算方法于小丹1,孙 铁1,路永力2(1.辽宁石油化工大学机械工程学院,辽宁抚顺 113001;2.抚顺诚信石化工程建设监理公司,辽宁抚顺 113006) 摘 要:研究了机械密封环的稳态温度场,在合理的假设条件下,建立了机械密封环温度场的数学模型,并利用经验公式计算了密封介质与密封环间的对流换热系数。
然后利用ANSYS8.0软件计算了机械密封环的温度场,为研究机械密封环的热影响提供了参考依据。
关键词:机械密封环;稳态温度场;数学模型中图分类号:TE969 文献标识码:B 文章编号:100628805(2005)01200472031 前言机械密封在工作中,由于动静环的相对运动而产生摩擦热,导致密封环的温度升高。
密封环的温度升高会产生一系列的问题:端面的温度升高会使端面间的液膜汽化失稳,使磨损加剧,降低密封件的使用寿命;密封环间的导热不均,易使密封环间形成较大的温度梯度,而产生热变形,使接触面形成锥形表面,改变端面的接触和润滑状态,增加端面间的磨损和泄漏;当密封环的热应力过大时会导致端面热裂(热应力裂纹)。
所以,对机械密封环的温度场分析是非常重要的。
由于密封环的结构以及边界条件较复杂,依靠传统的解析方法要精确地确定温度,往往是不可能的,而采用有限元法却能有效地解决上述问题。
利用ANS YS软件对机械密封环的温度场进行的热分析,是基于能量守恒的热平衡方程,用有限元法计算各节点的温度,并导出其他的热物理参数。
2 密封环热分析的基本假设[1](1)由于机械密封环都具有或近似具有轴对称结构,边界条件也是对称的,所以,温度场的分布也是对称的;(2)系统在运行一段时间后处于热平衡状态,温度场的分布是稳态;(3)摩擦热全部由密封环传递,不考虑介质泄漏所带走的摩擦热;(4)分析时将动静环作为一个整体来考虑,这样可以忽略密封环间的热量分配的影响。
根据以上所做的假设,密封环的传热问题简化为二维问题,导热微分方程式是:52T2x+52T2r+1r×5Tr=0式中:T———密封环的温度函数,T=T(x,r);x———表示轴向;r———表示径向。
端面比压计算改(2)
s m v /238.81025360229703=⨯⨯⨯=-π金属波纹管机械密封端面比压计算如下:某聚酯公司生产时热媒泵使用工况:进口压力P 1=5.24bar=0.524MPa 出口压力P 2=11.9bar=1.19MPa介质温度:320℃,轴的转速n=2970r/min ,流量:253m 3/h实测该泵的机械密封数据如下:表1:机械密封数据实测值符号名称 实测值/mm d 1接触端面内径 61 d 2接触端面外径 69 d 3波纹管内径 56 d 4波纹管外径 70据《流体动密封》查得[1],波纹管机械密封的端面比压计算公式如下:p c =()s p k p λ+-其中,p c 为端面比压,MPa ;p s 为弹簧比压,MPa ;k 为载荷系数(平衡系数);λ为液膜反压系数;p 为介质压力,MPa现对上述公式中各项的取值进行分析或计算如下:1)λ:为密封面间的平均液膜压力与密封介质压力之比,λ值的大小与介质性质、转速、压力以及密封表面状态等有关。
当液膜静压力近似地按三角形分布考虑时,则可取λ=0.5。
但在高速条件下,液膜动压效应不能忽略,须通过实验确定λ值[1]。
根据本设计初始参数,实测轴外径为53mm ,近似认为轴外径为动环内径,则估算出端面平均线速度:即v=8.238<30,不属于高速,因此取λ=0.52) p: 密封腔处的介质压力[1]212.0p p p +=即p=0.762 MPa3)k :对于内流式:k=21222e 24d -d d -d其中,d 2为接触端面外径,d 2=69mm ;d 1为接触端面内径,d 1=61mm锯齿型金属波纹管有效直径d e 计算公式如下:d e =2231d d +d d 3+434() 式中,d 4为波纹管外径,d 4=70mm ;d 3为波纹管内径,d 3=56mm4)弹簧比压Ps端面平均线速度 v=8.238 m/s根据密封端面平均线速度的不同,弹簧比压的选择范围也不同,其范围可参考下表[2]。
机械密封性能的数值模拟与优化
机械密封性能的数值模拟与优化随着制造技术的不断进步和工业的快速发展,机械设备在现代生产中扮演着至关重要的角色。
而机械设备中的密封件是确保设备正常运行的关键部件之一。
机械密封性能的好坏直接影响设备的使用寿命和效率。
为了能够准确评估和优化机械密封的性能,数值模拟已经成为了一种重要的工具。
数值模拟可以通过数学方法和计算机程序,对机械密封在各种条件下的性能进行预测和分析。
通过这种方式,我们可以在实际生产前对机械密封的性能进行优化,减少试验测试的成本和时间。
在机械密封性能的数值模拟中,最常用的方法之一是CFD(ComputationalFluid Dynamics)技术。
CFD技术可以对流体力学问题进行数值求解,通过分析流体在机械密封中的流动情况,评估密封件的工作状态。
例如,在汽车发动机中,活塞与气缸壁之间的密封性能对发动机的性能和排放有重要的影响。
通过CFD技术,可以模拟活塞环与气缸壁之间的流动情况,优化密封设计,提高发动机的效率和可靠性。
除了CFD技术,还有一些其他的数值模拟方法可以应用于机械密封性能的评估。
比如,有限元分析(Finite Element Analysis)可以模拟机械密封在不同温度和压力条件下的变形情况,从而评估密封的可靠性。
此外,优化算法也可以结合数值模拟,通过调整密封件的几何形状或材料来提高其性能。
然而,仅仅进行数值模拟还不足以得出准确的结论。
数值模拟通常需要依赖于大量的实验数据来验证模拟结果的准确性。
因此,在进行数值模拟前,我们需要对机械密封的实际工作环境进行详细的调查和研究,收集实验数据,并与数值模拟的结果进行对比和分析。
另外,机械密封的性能还受到很多其他因素的影响,比如材料的选择、工作条件的变化等。
因此,在进行数值模拟时,我们还需要考虑这些因素,并进行全面的优化设计。
例如,在高温环境下,机械密封可能会出现热膨胀问题,这就需要选择合适的材料来解决这个问题。
总之,机械密封性能的数值模拟与优化是提高设备性能和可靠性的重要手段。
机械密封温度场及其热应力的有限元计算
机械密封温度场及其热应力的有限元计算机械密封是一种常用于工业设备中的密封装置,用于防止流体或气体泄露。
在使用过程中,由于受到高温环境的影响,机械密封会存在温度场分布不均和热应力产生的问题。
因此,进行机械密封温度场及其热应力的有限元计算对于设计和优化机械密封具有重要意义。
首先,我们需要了解机械密封的工作原理和结构。
机械密封通常由静环、动环、弹簧和密封面组成。
当设备运行时,旋转轴与静环之间形成一个密闭空间,通过压力控制介质不泄漏。
由于介质流动和机械磨擦等原因,机械密封存在一定的热量产生,导致温度升高,进而引起温度场分布和热应力的产生。
有限元计算是一种常用的工程分析方法,适用于求解复杂结构下温度场和热应力分布的问题。
在进行有限元计算之前,需要对机械密封进行几何建模和网格划分。
然后,根据机械密封的物理特性,如热导率、热膨胀系数等参数,建立热力学模型。
通过加热源边界条件加载热载荷,并引入温度和热应力的计算准则,如温度梯度和热应力极限等。
在有限元计算中,通常以微元为基本单元,将机械密封的几何模型划分为许多小单元,编制微元阵和节点力阵。
根据热力学模型,计算每个微元的温度场和热应力分布情况。
通过求解微元阵和节点力阵的问题,可以得到机械密封的整体温度场和热应力分布。
在实际计算中,可以通过有限元软件,如ANSYS、ABAQUS等,利用其强大的计算能力进行机械密封温度场及其热应力的有限元计算。
通过对模型的几何特征、材料特性和边界条件进行合理的设置,可以得到较为准确的计算结果。
机械密封温度场及其热应力的有限元计算在实际应用中具有广泛的意义。
通过计算结果的分析和对比,可以了解机械密封不同部位的温度场分布情况,进而揭示密封间隙的变化和热应力的分布规律。
在优化设计和改进制造过程中,可以通过调整结构、材料和工艺参数等方式,降低温度场和热应力对机械密封的影响,提高设备的可靠性和使用寿命。
综上所述,机械密封温度场及其热应力的有限元计算是一项重要工作,对于设计和优化机械密封具有重要意义。
jb∕t7369- 机械密封端面平面度检验方法
jb∕t7369- 机械密封端面平面度检验方法
机械密封端面平面度检验方法主要有以下几种:
1. 视觉检验法:用肉眼观察端面平面度,检查是否有明显的凹凸或不平整现象。
这种方法简单直观,适用于精度要求不高的情况,但对于细微的凹凸不易观察到,精度较高时需要配合其他测量方法。
2. 直尺法:用精度较高的直尺(如平面尺)平放在端面上,观察边缘与直尺之间的间隙,若间隙基本均匀,则端面平面度较好。
这种方法简单易行,但只能检测整个端面的平面度情况,不能确定局部区域的不平整情况。
3. 平面度仪检测法:使用平面度仪对密封端面进行测量。
平面度仪通过接触或光学测量的方式,能够精确地测量出端面的平面度。
这种方法适用于高精度要求的场合,能够同时检测整个端面和局部区域的平面度。
4. 坐标测量法:使用坐标测量仪或三坐标测量仪对端面进行测量,通过测量点的坐标数据来评估端面的平面度。
这种方法精度高,能够详细地记录端面的平面度情况,并可以生成三维图形或报告。
需要根据具体的要求和实际情况选择适合的检验方法,并在检测过程中注意操作规范,确保测量结果准确可靠。
机械密封动环变形对端面温度场的影响
式 中:Q 为摩擦热 ;∞为动环角速度 ; 为介质动力 黏度 ;r 为密封端 面外径 ;h为液膜 厚度 ;C为修 正 n 系数 ,根据文献 [ ] 7 ,取 0 9 。 .5 热流密度计算公式为
q = FA F Q/ () 2
圆筒体长度 ;A ,A 为动 、静环 当量 圆筒 端 面面积 ; 。 : C C 为动 、静环当量简体 外缘周 长。 系数 6。 .
1 边 界 条 件假 设及 模 型 建 立
1 1 边界条件假设 .
青 年学科 带头 人培养 计划 项 目 (0 1Q 09 ;西华 大学 人才 培 2 1J03 )
由于边界条件较 多 ,液体润滑机械密封温度场 的 计算相 当复杂 ,为简化起见 ,做如下假设 : ( )密封副及液膜温度场是轴对称分布 ; 1 ( ) 密 封 环 温 度 场 不 随 时 间变 化 ,是 稳 态 温 2 度场 ; ( )忽 略因热辐射导致的热损失 ; 3 ( )密封 环材 料 以及 密封 介质 的热 物理 性能 不 4
q =/ J h r , z (/ () r£ 22 对 流 换 热 系数 的 计 算 . () 4
密 封技术 研究 .
( ) 液 膜 与 密 封 端 面 、密 封 环 与 介 质 为对 流 5 传热 ; ( ) 密封环 与空气接触侧视为绝热 。 6
12 模 型 的 建 立 .
通讯作 者 :董 霖 (93 ) 17~ ,男 ,工 学 博 士 ,副 教 授 . Em i —a: l
R 2u e 为介质横 向绕流效应 ,R D/ ; e = ;R e =U v
D 为动环的外 周 当量 直径 ;U为 动环 外周 处介 质 的 轴 向流速 ; 为介质运动黏度 。
2 3 摩擦 热分配 系数的计算 .
机械密封端面力变形的解析计算
各 载荷 在密封 环上 的作 用及分 布见 图 1 。
封环变形 的分析 、 计算 . 对于控制变形 , 提高密封 性能 有很重 要 的指 导 意义 。过 去 , 密 封环 的 变 对 形多采用圆环理论或有限元法进行分析 、 计算, 本
%=( /pD) +( tp +( 】4e ) L Z ̄  ̄ 2D) G2 D Q + r
两边缘处还分别作用有一对未知的边缘力 、 o M 和 Q、 . .M 。于是 , 首先应用厚壁筒理 论分别求 出
每个筒节 在 已知外 载荷 作 用 下 两 边缘 处 的转 角 0
该方程 的解可 用包含一系列参数 的公式表
达:
w=(l2 ) +(l2 ̄) +(L2 )L o B, , D B/p 2 D G, FD Q +
( , D 2 )
一
由多个断面为单一矩形的筒节组合而成。在每个
筒节上 除作用 有 已知 的介 质 压力 、 弹簧 力 等外 . 在
( l 2D B2 p ) ,
式中, D为 圆筒 刚度 , D=
; E为弹 性 模
及位移 w 再按 上述 22节 的公式分别 列出每个 ; . 筒节在 未知边 缘力 系作用 下 两边 缘处 的转角 0 及 位移 w的表达式。由于在每 两段 简体结合部 的 截面上 ( 边缘 处 ) 满足转 角 0 应 及径 向位移 W相等
( , ) L 2 M w =( L2 ) +( 12 ) +( l 2 ) L L G. D , G2 D , Bl D Q + ,
( ̄2 DM B I )t #
一
=
( L 2 ̄ ) +( , ) +( l2 ) L G pD / 2 B2 D Q + ,
机械密封端面混合摩擦热计算分形模型
:10.11832/j.issn.1000-4858.2020.07.017机械密封端面混合摩擦热计算分形模型魏龙,张鹏高,房桂芳(南京科技职业学院江苏省流体密封与测控工程技术研究开发中心,江苏南京210048)摘要:为研究和掌握混合摩擦状态下机械密封端面摩擦热的变化规律,基于端面接触分形模型和平均膜厚分形模型,建立了机械密封端面混合摩擦热计算模型,并通过计算分析了端面混合摩擦热的影响因素。
结果表明,随着转速的增大,总摩擦热和液膜黏性剪切摩擦热比增大,微凸体接触摩擦热比减小;随着密封介质压力或弹簧比压的增大,总摩擦热近似呈线性增大,黏性剪切摩擦热比减小,接触摩擦热比增大;随着端面分形维数的增大和特征尺度系数的减小,总摩擦热和黏性剪切摩擦热比增大,接触摩擦热比减小,且端面越光滑,总摩擦热、黏性剪切摩擦热比、接触摩擦热比的变化幅度越大;当密封端面处于混合摩擦状态时,接触摩擦热大于黏性剪切摩擦热。
关键词:机械密封;端面;混合摩擦;摩擦热;计算;分形模型中图分类号:TH137;TH136&TH117.1文献标志码:B文章编号:1000电858(2020)07-0112-06Calculation Fractal Modd of Mixed Friction Heat Between the EndFaces for Mechanicoi SealsWEI Long,ZHANG Pcg电aa,FANG Gui-fang(FluiS Sealing Measurement and Control Engineering Research and Development Center of Jiangsu Province,Nanjing Polytechnic Institute,Nanjing,Jiangsu210048)Abstract:To study the veoation of foction heat generated between the end faces in mixed foction in a mechanmal seal,tOe mixed foction heat colculation modd was established based on the fractal models of contacO and averaae oclm Bhcckne s,and Bhecnoluenceoacoosoomcied oocccon heaBweoeanalyaed.Theoesulscndccaed BhaBBhe oal oocccon heaBand ecscoussheaooocccon heaBoacooolcqucd oclm cncoeased,buBcon acBoocccon heaBoacogeneoaed beween aspeoccesdecoeased wch cncoeascngooooacngspeed.The oaloocccon heaBcncoeased appooicmaely lcneaoly,ecscoussheaooocccon heaBoacodecoeased,and con acBoocccon heaBoacocncoeased wch cncoeascngoo spocngpoe s uoeand sealed medcum poe s uoe.The oaloocccon heaBand ecscoussheaooocccon heaBoacocncoeased, buBcon acBoocccon heaBoacodecoeased wch cncoeascngooooacaldcmenscon and decoeascngoochaoaceocscclengBh scale,and end oacewassmooBheo,Bheamplcudeoochangcngwasmooelaogeo.Thecon acBoocccon heaBwasbcggeo Bhan Bheecscoussheaooocccon heaBwhen Bhesealoacesweoecn mcied oocccon sae.Key wordt:mechanicoi seal,end faco,mixed foction,foction heat,colculation,fractal modd引言机械密封端面处于混合摩擦工况时,其端面间的液膜厚度基本上与表面粗糙度处于同一数量级,端面摩擦热由液膜黏性剪切摩擦热和微凸体接触摩擦热两部分组成[1-5]。
基于热传导角的机械密封环温度分布计算方法
S o n g P e n g y u n Ga o J i e Ma F a n g b o Z h a n g C h u n Ma o We n y u a n
s e li a n g p e r f o r ma n c e . Th e a p p r o x i ma t e a n a l y t i c a l c lc a u l a t i o n o f t h e e n d f a c e t e mp e r a t u r e c a n a n a l y z e t h e e f f e c t o f t e mp e r a -
Ab s t r a c t : Th e t e mp e r a t u r e d i s t ib r u t i o n o n t h e e n d f a c e s o f t h e me c h a n i c a l s e a l i s a n i mp o r t a n t f a c t o r wh i c h a fe c t s t h e
下 降趋 势 。
关键词 :机械密封;端面温度 ;数值计算
中图分 类 号 :T H 1 3 6 文献 标识 码 :A 文 章编 号 :0 2 5 4— 0 1 5 0( 2 0 1 3 )1 — 0 0 6— 4
Ca l c u l a io t n Me t h o d o f Me c h a n i c a l S e a l Te mp e r a t u r e Di s t r i b u t i o n
2 0 1 3年 1月
端面比压计算改(2).doc
s m v /238.81025360229703=⨯⨯⨯=-π金属波纹管机械密封端面比压计算如下: 某聚酯公司生产时热媒泵使用工况:进口压力P 1=5.24bar=0.524MPa 出口压力P 2=11.9bar=1.19MPa 介质温度:320℃ ,轴的转速n=2970r/min ,流量:253m 3/h 实测该泵的机械密封数据如下:表1:机械密封数据实测值符号 名称 实测值/mmd 1 接触端面内径 61 d 2 接触端面外径 69 d 3 波纹管内径 56 d 4波纹管外径70据《流体动密封》查得[1] ,波纹管机械密封的端面比压计算公式如下:p c =()s p k p λ+-其中 ,p c 为端面比压 ,MPa ; p s 为弹簧比压 ,MPa ; k 为载荷系数(平衡系数);λ为液膜反压系数;p 为介质压力 ,MPa现对上述公式中各项的取值进行分析或计算如下:1)λ:为密封面间的平均液膜压力与密封介质压力之比 ,λ值的大小与介质性质、转速、压力以及密封表面状态等有关。
当液膜静压力近似地按三角形分布考虑时 ,则可取λ=0.5。
但在高速条件下 ,液膜动压效应不能忽略 ,须通过实验确定λ值[1]。
根据本设计初始参数 ,实测轴外径为53mm ,近似认为轴外径为动环内径 ,则估算出端面平均线速度:即v=8.238<30 ,不属于高速 ,因此取λ=0.52) p: 密封腔处的介质压力[1]212.0p p p +=即p=0.762 MPa3)k :对于内流式:k=21222e24d -d d -d其中 ,d 2为接触端面外径 ,d 2=69mm ;d 1为接触端面内径 ,d 1=61mm锯齿型金属波纹管有效直径d e 计算公式如下:d e式中 ,d 4为波纹管外径 ,d 4=70mm ; d 3为波纹管内径 ,d 3=56mm4)弹簧比压Ps端面平均线速度 v=8.238 m/s根据密封端面平均线速度的不同 ,弹簧比压的选择范围也不同 ,其范围可参考下表[2]。
针对机械密封温度场的有限元信息化分析
针对机械密封温度场的有限元信息化分析摘要对机械密封温度场进行研究,可以看作为热力分析的基础,对机械密封性能以及寿命有着重要影响。
采用有限元模型来对机械密封温度场进行分析,掌握密封环温度分布规律,并确认各影响因素,作为后续工艺调整的依据。
关键词机械密封;温度场;有限元分析机械密封为现在旋转机械所应用的主要轴封装置,在介质存在腐蚀性、易燃易爆、毒性等特点时,机械密封是影响整个装置可靠性的关键因素。
为避免机械密封失效,需要确定会对其产生影响的各因素,尤其是接触式密封中,受到端面温度影响密封环会发生变形。
因此为提高机械密封稳定性,需要对其温度场进行研究,本文以有限元法作为对象进行分析。
1 机械密封温度场分析重要性机械密封作为现在常用的一种转轴密封装置,基本功能的实现主要是通过旋转环与浮动环端面之间的滑动摩擦。
由此便可确定持续工作过程中,动静环之间相互摩擦产热,便会造成密封环温度升高。
总结以往实践经验可知,当密封环温度升高到一定程度后,会因为导热不均造成密封环间产生较大温度梯度,加速接触面向锥形表面发展,导致断面接触与润滑状态降低,端面之间摩擦加剧,最终还会出现泄露问题[1]。
同时,密封环热应力也会持续增大,使得断面产生热应力裂纹,缩短密封件服务寿命。
基于温度升高对机械密封带来的影响,对其温度场进行分析对提高构件运行可靠性具有重要意义。
2 确定边界条件非稳定传热问题初始条件,即刚开始传热阶段(t=0),密封环内温度所呈现出的分布规律。
在密封环达到稳定传热边界条件时,可以直接反映出导热物体边界的温度分布特点,能够明确外界因素对物体内部温度场产生的影响。
一般可以从三个角度来进行分析:任何时刻物体边界温度分布,公式为:t>0,Tw=f(x,y,z,t)其中,Tw表示物体边界温度,其中最简单的分布状态即物体表面温度均匀分布,且保持一定量,即为Tw=常量。
任何时刻物体边界上热流密度分布,公式为:qw=f(x,y,z,t)其中,qw表示物体边界面法向热流密度,其中物体表面热流密度分布均匀并且为定值时,可得qw=常量。
流体静压型机械密封的三维传热数学模型及端面温度分析
流体静压型机械密封的三维传热数学模型及端面温度分析的报
告,600字
本文将介绍流体静压型机械密封的三维传热数学模型及其端面温度分析的报告。
首先,我们来介绍流体静压型机械密封的三维传热数学模型。
根据实际情况,认为流体静压型机械密封由一个径向张压部件和一个轴向壁体构成,并假设这两个部件是以可忽略的间隙相连的。
它由温度、粘性、热传导和密封损失四个考虑因素组成。
在应用中,流体静压型机械密封的三维传热数学模型可以使用如下方程来描述:
1、温度方程:
T_p = T_0 - P_g/P_m(-2/h_1) (T_1-T_0)
2、粘度方程:
u_p = u_0 + P_g/P_m(2/h_1)*u_1
3、热传导方程:
q_p = q_0 – h_2(T_2 – T_0)(P_g/P_r)
4、密封损失方程:
F_p = F_0 + (2/h_1)(P_g/P_r)(F_1-F_0)
其次,我们再来研究下流体静压型机械密封的端面温度分析。
在使用这种机械密封时,我们需要关注它的端面温度,因为这一参数是密封性能的主要影响因素。
可以使用这些组件的温度相对偏移正确估算出端面温度。
另外,对温度范围变化的分析也非常重要,因为这会影响到端面温度。
最后,我们概括一下,本报告主要介绍了流体静压型机械密封的三维传热数学模型及其端面温度分析的报告,包括温度方程、粘度方程、热传导方程、密封损失方程和端面温度分析等。
接触式机械密封端面平均温度耦合计算方法
接触式机械密封端面平均温度耦合计算方法魏龙;顾伯勤;刘其和;张鹏高;房桂芳【摘要】研究接触式机械密封端面平均温度与端面摩擦因数相耦合的计算方法问题。
将机械密封环简化为等截面当量筒体,推导出了接触式机械密封端面平均温度的计算式,给出了密封环简化为当量筒体的具体方法;基于分形理论,建立了接触式机械密封端面摩擦因数计算模型。
考虑端面平均温度与端面摩擦因数的相互耦合关系,提出了端面平均温度的具体计算方法。
通过模拟计算,对B104a-70型机械密封端面平均温度的影响因素进行了分析。
结果表明,端面平均温度随着弹簧比压或密封流体压力的增大,线性地增大;随着转速的增大,近似线性地增大,且端面越光滑,线性越好,增大的幅度也越大;随着端面分形维数的增大或特征尺度系数的减小,非线性地增大,当端面较粗糙时,端面平均温度的变化较小;当端面较光滑时,随着端面分形维数的增大或特征尺度系数的减小,端面平均温度迅速增大。
%Mutual coupling calculating method of average temperature and friction factor of end face for contact mechanical seal was studied. Simplifying the mechanical seal ring as equal cross-section equivalent cylinder, average temperature calculation equation of end face for contact mechanical seal was derived, and the method of simplifying the mechanical seal ring as equal cross-section equivalent cylinder was given. Friction factor calculation model of end face for mechanical seal was established based on fractal theory. Taking into account the mutual coupling relationship between average temperature and friction factor of end face, the calculation method of average temperature was proposed. Influence factors of average temperature for B104a-70 mechanical sealwere analyzed by simulation. Average temperature of end face increased linearly with increasing spring pressure and sealant pressure, and increased approximately linearly with increasing rotating speed, and the smootherthe end face, the better the linear relationship and the greater the increase. Average temperature of end face increased nonlinearly with increasing fractal dimension or decreasing characteristic length scale. The change of average temperature was small when end face was coarse. It increased rapidly with increasing fractal dimension or decreasing characteristic length scale when end face was smooth.【期刊名称】《化工学报》【年(卷),期】2014(000)009【总页数】8页(P3568-3575)【关键词】机械密封;表面;平均温度;摩擦因数;耦合计算;分形;模拟【作者】魏龙;顾伯勤;刘其和;张鹏高;房桂芳【作者单位】南京化工职业技术学院江苏省流体密封与测控工程技术研究开发中心,江苏南京210048;南京工业大学机械与动力工程学院,江苏南京211816;南京化工职业技术学院江苏省流体密封与测控工程技术研究开发中心,江苏南京210048;南京化工职业技术学院江苏省流体密封与测控工程技术研究开发中心,江苏南京210048; 南京工业大学机械与动力工程学院,江苏南京211816;南京化工职业技术学院江苏省流体密封与测控工程技术研究开发中心,江苏南京210048【正文语种】中文【中图分类】TH136;TH117.1引言接触式机械密封工作时,由于密封环的相互贴合及相对滑动产生的摩擦热会引起密封环特别是密封端面的温度升高。
基于Fluent对机械密封静环、动环温度的研究
基于Fluent对机械密封静环、动环温度的研究孙泽刚【摘要】机械密封作为重要的基础件之一被广泛地应用于各种旋转设备中,它的质量和性能直接影响并决定着设备的工作性能.影响机械密封性能的因素有很多,在机械密封工作中动环、静环的温度分布就是其中重要的一个.本文利用Fluent软件,以N-S方程为基础,采用现实K-ε双方程的湍流模型对机械密封的动环、静环在密封运转稳定状态下密封环温度场的分析.该分析误差小,为机械密封性能的改进及提高提供了一条便捷的途径.具有一定的实用性.【期刊名称】《机电产品开发与创新》【年(卷),期】2011(024)006【总页数】3页(P26-28)【关键词】机械密封;动环;静环;Fluent【作者】孙泽刚【作者单位】过程装备与控制工程四川省重点实验室,四川自贡643000;四川理工学院,四川自贡643000【正文语种】中文【中图分类】TK730.30 引言机械密封是一种先进的动密封产品,是机械设备防止泄漏、节约能源,控制环境污染的重要功能基础件,它靠介质压力及弹簧力,利用一对光滑平直并存有流体膜的表面达到密封效果。
与填料密封相比,具有密封效果好,不磨损转轴,使用寿命长,消耗功率小等优点。
机械密封技术直接影响配套主机产品的质量和运行可靠性,是制药石化重大装备实现国产化的重要因素之一。
据代表我国当代工业最新水平的石化行业统计,80%~90%的离心泵是采用机械密封。
机械密封的泄漏量是衡量其性能的一个重要指标,动环及静环的接触面的磨损及工作时的温度会对机械密封的泄漏有影响,因此有必要对动环及静环的温度分布情况有一定的了解。
当然也可以在静环上通过布置温度传感器来测试,安装温度传感器会影响其密封性能且温度传感器在信号传递的过程中可能有干扰影响测试精度。
本文是利用Fluent软件对其进行数值模拟,分析计算密封环温度场,了解运转过程中场内温度分布情况,为寻求一种更直观、更简捷的方法测试密封性能参数提供了依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a moe ra o a l e a p o i t n ltc lmeh d c lu aig t efc e e au ed srb t n o c a ia e lwa r e s n be n w p rxmae a ayia t o ac ltn h a et mp r tr itiu i fme h n c s a s o l d v lp d T i e meh df rc luai gt ee d fc e eau e i moe e p ii a d e se , n h ac lt g rs ls e eo e . h sn w to ac ltn h n a e tmp rt r s r x lct n a ir a dt e c lu ai e ut o n ae co e o te r ai c mp r d wi t e o r l srt h e l y, o ae t oh rc mmo l s d a p o i t n ltc t o s T e ifu n e fco sa d is t h n yu e p rx mae a ayia meh d . h n e c a tr n t l l
Te p r t r fM e h nia e l m e a u e o c a c lS as
Ga i So g Pe g u Ma F n b Zh o J n o Je n ny n a g o a u
( . aut o h mia E gn e n , u migU iesyo ce c n eh ooy K n n n a 5 5 0, 1 F c l fC e c l n ier g K n n nvri fS in ea dT c n lg , u migYu n n6 0 0 y i t
机械 密 封 端 面温 度 近 似 解 析计 算 的新 方 法
高
( .昆明理工大学化学工程学院 1
杰 宋鹏 云 马方波 赵
骏
云南昆明 6 0 0 ;2 昆 明嘉和科技股份有限公司 云南 昆明 6 00 ) 550 . 5 5 1
摘要 :常见的机械密封端 面温度近似解析法均将静环表面作为绝热边界处理 ,未考 虑热量从 静环 上的传递 ,计算
结果 存 在误 差 。根据 明确定 义 的 热传 导 角 ,考 虑 热量 在 机 械密 封 动静 环 端面 的分 配 ,建 立混 合 摩擦 状 况 及全 液 体 润 滑状 况下 机 械 密封 端 面温 度计 算 模 型 ,获 得 一 种更 合 理地 确 定 机械 密 封环 端 面温 度 分 布 的近 似解 析 方 法 。与 常见 的其 他 近 似 解析 方 法相 比 ,该方 法 概念 明确 、计 算 简 洁 ,计算 结 果更 接近 实 际 。分 析端 面 温度 分 布 的影 响 因 素及 其 影 响规 律 ,结 果 表 明角 速度 、导 热 系数 比 、努 赛 尔数 、微 凸体 接触 的 当量 压力 对 端 面温 度分 布 有 明显 影 响 。 关 键 词 :机 械密 封 ;端面 温 度 ;解 析 方法
21 0 2年 4月
润 滑 与 密 RI NG
Ap . 01 r2 2 Vo | 7 No 4 l3 .
第3 7卷 第 4期
DOI 0 3 6 /.sn 0 5 :1 . 9 9 ji . 2 4—0 5 . 0 2 0 . 1 s 10 2 1 . 4 O 1
中图分 类 号 :T 16 文献 标 识 码 :A 文章 编 号 :05 0 5 (0 2 H3 24— 10 2 1 )4— 4 5 0 8—
A w Ne App o i a e Ana y i a e h d f r Ca c l tn h c r x m t l tc lM t o o l u a i g t e Fa e
C ia2 K n ig i eSi c n eh o g o ,t , um n u nn60 0 ,hn ) hn ;. u m n a c neadT cnl C .Ld K n ig n a 55 1C ia Jh e o y Y
Ab ta tT o sr c : hec mmo p r xmae a lt a to sfrc luai g te fc e eau e o c a ia e l s al n a p o i t nayi lmeh d o ac lt h a e tmp rt r fme h nc ls asu u l c n y s p o e t a h u f c so h ttrrn r n u ain, to tc n i e n h e tta sestr u h t e sao ig, n u p s h tt e s ra e ft esao ga ei s lto wi u o sd r gt eh a r n fr h o g h ttrrn a d i h i te r s lse ite rr Ac od n o te d fn d h a o d cin a ge,o sd rn h e td srb t n o c a ia e l h e ut xs ro . c r i gt h e e e tc n u t n l c n i e gt e h a iti u i fme h nc ls a i o i o f c te tmp r tr ac lto d l fme h nc e lwa e p frmie rcin a d alfud l b c tn rcin, a e,h e eau e c luain mo eso c a ia s a ss tu o x d f t n l l i u r ai gf to l i o i i