2018江苏高考数学总复习要点——知识篇(全套)
江苏高考数学总复习要点——知识篇(全套)_图文
n
1
⑶ 常用性质
公差d,前n项和Sn .
① 若m n p q(m, n, p, q N*)
则am an ap aq (反之,不一定成立)
② an,bn都是等差数列,则pan qbn
(p, q为常数)也是等差数列;
③ 在an中,每隔k项抽出一项,按原来的
Hale Waihona Puke S奇n3 等比数列 (C)
⑴ 相关概念
① 公比q对数列的影响
当a1 0, q 1或a1 0,0 q 1时;an是递增数列 当a1 0,0 q 1或a1 0, q 1时;an是递减数列 当q 1时;an是(非零)常数数列 当q 0时;an是摆动数列
江苏高考数学总复习要点——知识篇(全套)_图 文.pptx
• 3指数函数ax 的图像和性质
a的取值 图像
定义域 值域 单调性 定点 渐近线
• 4对数函数logax 的图像和性质
a的取值(a>0且a≠1) 图像
定义域 值域 单调性 定点 渐近线
• 5幂函数的图像和性质 • (1)研究幂函数,主要靠图像; • ①确定定义域 一般为R或者(0,+∞) • ②确定奇偶性 可能会起到事半功倍的效果 • ③次幂α与±1的比较 判断图像的形状 • (2)几点说明: • ①图像必过点(1,1) • ②在第四象限没有图像
an 2
,
an 都是等比数列
③ 在an中,每隔k项抽出一项,按原来的
次序排成新的数列,也是等比数列;
⑶ 常用性质
④ an中,若m, n, p成等比数列,则
am , an , ap成等比数列;
⑤ 有S2k Sk 2 Sk S3k S2k 成立,
2018版高考数学理江苏专用大一轮复习讲义教师版文档第
1.集合与元素(1)集合中元素的三个特征:确定性、互异性、无序性. (2)元素与集合的关系是属于或不属于两种,用符号∈或∉表示. (3)集合的表示法:列举法、描述法、图示法. (4)常见数集的记法2.集合间的基本关系A B (或B A )3.集合的基本运算【知识拓展】1.若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1.2.A ⊆B ⇔A ∩B =A ⇔A ∪B =B .3.A ∩∁U A =∅;A ∪∁U A =U ;∁U (∁U A )=A . 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)任何一个集合都至少有两个子集.( × )(2){x |y =x 2+1}={y |y =x 2+1}={(x ,y )|y =x 2+1}.( × ) (3)若{x 2,1}={0,1},则x =0,1.( × ) (4){x |x ≤1}={t |t ≤1}.( √ )(5)对于任意两个集合A ,B ,关系(A ∩B )⊆(A ∪B )恒成立.( √ ) (6)若A ∩B =A ∩C ,则B =C .( × )1.(教材改编)设A ={x |x 2-4x -5=0},B ={x |x 2=1},则A ∪B =__________. 答案 {-1,1,5}解析 ∵A ={-1,5},B ={-1,1}, ∴A ∪B ={-1,1,5}.2.已知集合A ={x |x 2-6x +5≤0},B ={x |y =x -3},则A ∩B =__________. 答案 {x |3≤x ≤5}3.(教材改编)设全集U =R ,A ={x |x <1},B ={x |x ≥m }.若A ∩B =∅,A ∪B =R ,则m =________. 答案 1解析 ∵A ∩B =∅,A ∪B =R ,∴B =∁U A ,故m =1.4.(2016·天津改编)已知集合A ={1,2,3,4},B ={y |y =3x -2,x ∈A },则A ∩B =________. 答案 {1,4}解析 因为集合B 中,x ∈A ,所以当x =1时,y =3-2=1; 当x =2时,y =3×2-2=4;当x =3时,y =3×3-2=7; 当x =4时,y =3×4-2=10; 即B ={1,4,7,10}.又因为A ={1,2,3,4},所以A ∩B ={1,4}.5.集合A ={x |x -2<0},B ={x |x <a },若A ∩B =A ,则实数a 的取值范围是____________. 答案 [2,+∞)解析 由A ∩B =A ,知A ⊆B ,从数轴观察得a ≥2.题型一 集合的含义例1 (1)(2016·南京模拟)设P ,Q 为两个非空实数集合,定义集合P +Q ={a +b |a ∈P ,b ∈Q },若P ={0,2,5},Q ={1,2,6},则P +Q 中元素的个数是________. (2)若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =________. 答案 (1)8 (2)0或98解析 (1)当a =0时,a +b =1,2,6; 当a =2时,a +b =3,4,8; 当a =5时,a +b =6,7,11.由集合中元素的互异性知P +Q 中有1,2,3,4,6,7,8,11,共8个元素.(2)若a =0,则A =⎩⎨⎧⎭⎬⎫23,符合题意;若a ≠0,则由题意得Δ=9-8a =0,解得a =98.综上,a 的值为0或98.思维升华 (1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型是数集、点集还是其他类型的集合;(2)集合中元素的互异性常常容易忽略,求解问题时要特别注意.分类讨论的思想方法常用于解决集合问题.(1)(2016·盐城模拟)已知A ={x |x =3k -1,k ∈Z },则下列表示正确的是________.①-1∉A②-11∈A ③3k 2-1∈A (k ∈Z )④-34∉A(2)设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =________.答案 (1)③ (2)2解析 (1)∵k ∈Z ,∴k 2∈Z ,∴3k 2-1∈A . (2)因为{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,a ≠0,所以a +b =0,得ba =-1,所以a =-1,b =1,所以b -a =2. 题型二 集合的基本关系例2 (1)设A ,B 是全集I ={1,2,3,4}的子集,A ={1,2},则满足A ⊆B 的B 的个数是________.(2)已知集合A ={x |x 2-2 017x +2 016<0},B ={x |x <a },若A ⊆B ,则实数a 的取值范围是__________________. 答案 (1)4 (2)[2 016,+∞)解析 (1)∵{1,2}⊆B ,I ={1,2,3,4},∴满足条件的集合B 有{1,2},{1,2,3},{1,2,4},{1,2,3,4},共4个. (2)由x 2-2 017x +2 016<0,解得1<x <2 016, 故A ={x |1<x <2 016},又B ={x |x <a },A ⊆B ,如图所示,可得a ≥2 016. 引申探究本例(2)中,若将集合B 改为{x |x ≥a },其他条件不变,则实数a 的取值范围是____________. 答案 (-∞,1]解析 A ={x |1<x <2 016},B ={x |x ≥a },A ⊆B ,如图所示,可得a ≤1.思维升华 (1)空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解;(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系,常用数轴、Venn 图等来直观解决这类问题.(1)已知集合A ={x ∈R |x 2+x -6=0},B ={x ∈R |ax -1=0},若B ⊆A ,则实数a的值为____________.(2)(2016·连云港模拟)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是____________. 答案 (1)-13或12或0 (2)(-∞,4]解析 (1)由题意知A ={2,-3}. 当a =0时,B =∅,满足B ⊆A ; 当a ≠0时,ax -1=0的解为x =1a ,由B ⊆A ,可得1a =-3或1a =2,∴a =-13或a =12.综上,a 的值为-13或12或0.(2)当B =∅时,有m +1≥2m -1,则m ≤2; 当B ≠∅时,若B ⊆A ,如图,则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4. 综上,m 的取值范围为(-∞,4]. 题型三 集合的基本运算 命题点1 集合的运算例3 (1)(2016·江苏前黄中学月考)设全集U ={n ∈N |1≤n ≤10},A ={1,2,3,5,8},B ={1,3,5,7,9},则(∁U A )∩B =________.(2)设全集U 是实数集R ,M ={x |x <-2或x >2},N ={x |1≤x ≤3}.如图所示,则阴影部分所表示的集合为________.答案 (1){7,9} (2){x |-2≤x <1}解析 (1)U ={1,2,3,4,5,6,7,8,9,10},画出Venn 图,如图所示,阴影部分就是所要求的集合,即(∁U A )∩B ={7,9}.(2)阴影部分所表示的集合为∁U (M ∪N )=(∁U M )∩(∁U N )={x |-2≤x ≤2}∩{x |x <1或x >3}={x |-2≤x <1}.命题点2 利用集合的运算求参数例4 (1)设集合A ={x |-1≤x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是____________. (2)集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为________. 答案 (1)(-1,+∞) (2)4解析 (1)因为A ∩B ≠∅,所以集合A ,B 有公共元素,作出数轴,如图所示,易知a >-1.(2)由题意可得{a ,a 2}={4,16},∴a =4.思维升华 (1)一般来讲,集合中的元素若是离散的,则用Venn 图表示;集合中的元素若是连续的实数,则用数轴表示,此时要注意端点的情况.(2)运算过程中要注意集合间的特殊关系的使用,灵活使用这些关系,会使运算简化.(1)已知A ={x |2a ≤x ≤a +3},B ={x |x >5},若A ∩B =∅,则实数a 的取值范围为__________.(2)已知集合A ={x |x 2-x -12≤0},B ={x |2m -1<x <m +1},且A ∩B =B ,则实数m 的取值范围为________.答案 (1)a ≤2或a >3 (2)[-1,+∞)解析 (1)要使A ∩B =∅,则⎩⎪⎨⎪⎧2a ≤a +3,a +3≤5,或2a >a +3,∴a ≤2或a >3.(2)由x 2-x -12≤0,得(x +3)(x -4)≤0,即-3≤x ≤4,所以A ={x |-3≤x ≤4}.又A ∩B =B ,所以B ⊆A .①当B =∅时,有m +1≤2m -1,解得m ≥2. ②当B ≠∅时,有⎩⎪⎨⎪⎧-3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2.综上,m 的取值范围为[-1,+∞). 题型四 集合的新定义问题例5 已知集合A ={(x ,y )|x 2+y 2≤1,x ,y ∈Z },B ={(x ,y )||x |≤2,|y |≤2,x ,y ∈Z },定义集合A B ={(x 1+x 2,y 1+y 2)|(x 1,y 1)∈A ,(x 2,y 2)∈B },则AB 中元素的个数为________.答案 45解析 如图,集合A 表示如图所示的所有圆点“”,集合B 表示如图所示的所有圆点“”+所有圆点“”,集合AB 显然是集合{(x ,y )||x |≤3,|y |≤3,x ,y ∈Z }中除去四个点{(-3,-3),(-3,3),(3,-3),(3,3)}之外的所有整点(即横坐标与纵坐标都为整数的点),即集合A B 表示如图所示的所有圆点“”+所有圆点“”+所有圆点“”,共45个.故AB 中元素的个数为45.思维升华 解决以集合为背景的新定义问题,要抓住两点(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在;(2)用好集合的性质.解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的运算与性质.定义一种新的集合运算△:A △B ={x |x ∈A ,且x ∉B }.若集合A ={x |x 2-4x +3<0},B ={x |2≤x ≤4},则按运算△,B △A =____________. 答案 {x |3≤x ≤4}解析 A ={x |1<x <3},B ={x |2≤x ≤4},由题意知B △A ={x |x ∈B ,且x ∉A }={x |3≤x ≤4}.1.集合关系及运算典例 (1)已知集合A ={1,3,m },B ={1,m },A ∪B =A ,则m =____________. (2)设集合A ={0,-4},B ={x |x 2+2(a +1)x +a 2-1=0,x ∈R }.若B ⊆A ,则实数a 的取值范围是________. 错解展示解析 (1)由A ∪B =A 得B ⊆A ,∴m =3或m =m , 故m =3或m =0或m =1. (2)∵B ⊆A ,讨论如下:①当B =A ={0,-4}时,⎩⎪⎨⎪⎧Δ=4(a +1)2-4(a 2-1)>0,-2(a +1)=-4,a 2-1=0,解得a =1.②当B A 时,由Δ=0得a =-1, 此时B ={0}满足题意,综上,实数a 的取值范围是{1,-1}. 答案 (1)1或3或0 (2){1,-1} 现场纠错解析 (1)A ={1,3,m },B ={1,m },A ∪B =A ,故B ⊆A ,所以m =3或m =m ,即m =3或m =0或m =1,其中m =1不符合题意,所以m =0或m =3. (2)因为A ={0,-4},所以B ⊆A 分以下三种情况:①当B =A 时,B ={0,-4},由此知0和-4是方程x 2+2(a +1)x +a 2-1=0的两个根,由根与系数的关系,得 ⎩⎪⎨⎪⎧Δ=4(a +1)2-4(a 2-1)>0,-2(a +1)=-4,a 2-1=0,解得a =1;②当B ≠∅且B A 时,B ={0}或B ={-4}, 并且Δ=4(a +1)2-4(a 2-1)=0, 解得a =-1,此时B ={0}满足题意; ③当B =∅时,Δ=4(a +1)2-4(a 2-1)<0, 解得a <-1.综上所述,所求实数a 的取值范围是(-∞,-1]∪{1}. 答案 (1)0或3 (2)(-∞,-1]∪{1}纠错心得 (1)集合的元素具有互异性,参数的取值要代入检验. (2)当两个集合之间具有包含关系时,不要忽略空集的情况.1.(2016·江苏苏州暑期检测)已知集合A ={0,1},B ={-1,0},则A ∪B =________. 答案 {0,-1,1}解析 由集合并集的定义可得A ∪B ={0,-1,1}.2.(2017·扬州月考)已知集合A ={x |x 2-2x <0},B ={0,1,2},则A ∩B =__________. 答案 {1}解析 因为A ={x |0<x <2},B ={0,1,2},所以A ∩B ={1}.3.(2016·盐城模拟)已知集合A ={1,2,3,4,5},B ={1,3,5,7,9},C =A ∩B ,则集合C 的子集的个数为________. 答案 8解析 因为A ∩B ={1,3,5},所以C ={1,3,5},故集合C 的子集的个数为23=8. 4.已知全集U =R ,集合A ={1,2,3,4,5},B ={x ∈R |x ≥2},则下图中阴影部分所表示的集合为__________.解析 因为A ∩B ={2,3,4,5},而图中阴影部分为A 去掉A ∩B ,所以阴影部分所表示的集合为{1}.5.已知集合A ={x |-1<x <0},B ={x |x ≤a },若A ⊆B ,则a 的取值范围为__________. 答案 [0,+∞)解析 用数轴表示集合A ,B (如图),由A ⊆B ,得a ≥0.6.(2016·无锡模拟)已知U 为全集,集合A ={x |x 2-2x -3>0},B ={x |2<x <4},那么集合B ∩(∁U A )=______________.答案 {x |2<x ≤3}解析 ∵A ={x <-1或x >3},∴∁U A ={x |-1≤x ≤3},B ={x |2<x <4}, ∴B ∩(∁U A )={x |2<x ≤3}.7.已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是__________. 答案 [1,+∞)解析 由题意知,A ={x |y =lg(x -x 2)}={x |x -x 2>0}=(0,1),B ={x |x 2-cx <0,c >0}=(0,c ).由A ⊆B ,画出数轴,如图所示,得c ≥1.8.(2015·浙江改编)已知集合P ={x |x 2-2x ≥0},Q ={x |1<x ≤2},则(∁R P )∩Q =__________. 答案 {x |1<x <2}解析 ∵P ={x |x ≥2或x ≤0},∁R P ={x |0<x <2}, ∴(∁R P )∩Q ={x |1<x <2}.9.已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为________. 答案 4解析 由x 2-3x +2=0,得x =1或x =2,∴A ={1,2}. 由题意知B ={1,2,3,4}.∴满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4},共4个.*10.设集合M =⎩⎨⎧⎭⎬⎫x |m ≤x ≤m +34,N =⎩⎨⎧⎭⎬⎫x |n -13≤x ≤n ,且M ,N 都是集合{x |0≤x ≤1}的子集,如果把b -a 叫做集合{x |a ≤x ≤b }的“长度”,那么集合M ∩N 的“长度”的最小值是答案112解析 由已知,可得⎩⎪⎨⎪⎧ m ≥0,m +34≤1,即0≤m ≤14;⎩⎪⎨⎪⎧n -13≥0,n ≤1,即13≤n ≤1,取m 的最小值0,n 的最大值1,可得M =⎣⎡⎦⎤0,34,N =⎣⎡⎦⎤23,1,所以M ∩N =⎣⎡⎦⎤0,34∩⎣⎡⎦⎤23,1=⎣⎡⎦⎤23,34,此时集合M ∩N 的“长度”的最小值为34-23=112.11.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为__________. 答案 -32解析 ∵3∈A ,∴m +2=3或2m 2+m =3.当m +2=3,即m =1时,2m 2+m =3,此时集合A 中有重复元素3,不符合集合的互异性,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),当m =-32时,m +2=12≠3,符合题意,∴m =-32.12.(2016·南通模拟)设全集U =R ,集合A ={x |y =x 2-2x -3},B ={y |y =e x +1},则A ∪B =__________.答案 (-∞,-1]∪(1,+∞)解析 因为A ={x |x ≥3或x ≤-1},B ={y |y >1}, 所以A ∪B ={x |x >1或x ≤-1}.13.(2016·江苏无锡新区期中)设P 、Q 为两个非空实数集合,定义集合P *Q ={z |z =ab ,a ∈P ,b ∈Q },若P ={-1,0,1},Q ={-2,2},则集合P *Q 中元素的个数是________. 答案 3解析 按P *Q 的定义,P *Q 中元素为2,-2,0,共3个.*14.设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A ,且k +1∉A ,那么称k 是A 的一个“孤立元”.给定S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“孤立元”的集合共有________个. 答案 6解析 依题意可知,由S 的3个元素构成的所有集合中,不含“孤立元”时,这三个元素一定是连续的三个自然数.故这样的集合共有6个.*15.已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m=________,n=________.答案-1 1解析A={x∈R||x+2|<3}={x∈R|-5<x<1},由A∩B=(-1,n),可知m<1,则B={x|m<x<2},画出数轴,可得m=-1,n=1.。
2018版高考数学理江苏专用大一轮复习讲义教师版文档第
1.仰角和俯角与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方叫仰角,目标视线在水平视线下方叫俯角(如图①).2.方向角相对于某正方向的水平角,如南偏东30°,北偏西45°等. 3.方位角指从正北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②). 【知识拓展】 1.三角形的面积公式S =p (p -a )(p -b )(p -c ) (p =a +b +c 2),S =abc4R =rp (R 为三角形外接圆半径,r 为三角形内切圆半径,p =a +b +c 2).2.坡度(又称坡比):坡面的垂直高度与水平长度之比. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α+β=180°.( × ) (2)俯角是铅垂线与视线所成的角,其范围为[0,π2].( × )(3)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.( √ )(4)方位角大小的范围是[0,2π),方向角大小的范围一般是[0,π2).( √ )1.(教材改编)如图所示,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为________ m. 答案 50 2解析 由正弦定理得AB sin ∠ACB =AC sin B ,又∵B =30°,∴AB =AC sin ∠ACBsin B =50×2212=502(m).2.轮船A 和轮船B 在中午12时同时离开海港C ,两船航行方向的夹角为120°,两船的航行速度分别为25 n mile /h ,15 n mile/h ,则下午2时两船之间的距离是________n mile. 答案 70解析 设两船之间的距离为d ,则d 2=502+302-2×50×30×cos 120°=4 900, ∴d =70,即两船相距70 n mile.3.(教材改编)海面上有A ,B ,C 三个灯塔,AB =10 n mile ,从A 望C 和B 成60°视角,从B 望C 和A 成75°视角,则BC =________ n mile. 答案 5 6解析 如图,在△ABC 中,AB =10,A =60°,B =75°, ∴BC sin 60°=10sin 45°, ∴BC =5 6.4.如图所示,D ,C ,B 三点在地面的同一直线上,DC =a ,从C ,D 两点测得A 点的仰角分别为60°,30°,则A 点离地面的高度AB =________.答案32a 解析 由已知得∠DAC =30°,△ADC 为等腰三角形,AD =3a ,又在Rt △ADB 中,AB =12AD=32a . 5.在一次抗洪抢险中,某救生艇发动机突然发生故障停止转动,失去动力的救生艇在洪水中漂行,此时,风向是北偏东30°,风速是20 km /h ;水的流向是正东,流速是20 km/h ,若不考虑其他因素,救生艇在洪水中漂行的方向为北偏东________,速度的大小为________ km/h. 答案 60° 20 3解析 如图,∠AOB =60°,由余弦定理知OC 2=202+202-800cos 120°=1 200,故OC =203,∠COY =30°+30°=60°.题型一 求距离、高度问题例1 (1)如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高AD 是60 m ,则河流的宽度BC =________ m.(2)如图,A ,B 是海平面上的两个点,相距800 m ,在A 点测得山顶C 的仰角为45°,∠BAD =120°,又在B 点测得∠ABD =45°,其中D 是点C 到水平面的射影,则山高CD =________ m. 答案 (1)120(3-1) (2)800(3+1)解析 (1)如图,在△ACD 中,∠CAD =90°-30°=60°,AD =60 m ,所以CD =AD ·tan 60°=603(m).在△ABD 中,∠BAD =90°-75°=15°, 所以BD =AD ·tan 15°=60(2-3)(m). 所以BC =CD -BD =603-60(2-3) =120(3-1) (m).(2)在△ABD 中,∠BDA =180°-45°-120°=15°. 由AB sin 15°=AD sin 45°,得AD =AB ·sin 45°sin 15°=800×226-24=800(3+1)(m).∵CD ⊥平面ABD ,∠CAD =45°, ∴CD =AD =800(3+1) m.思维升华 求距离、高度问题应注意(1)理解俯角、仰角的概念,它们都是视线与水平线的夹角;理解方向角的概念.(2)选定或确定要创建的三角形,要首先确定所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定三角形中求解.(3)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.(1)一船以每小时15 km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°,行驶4 h 后,船到达C 处,看到这个灯塔在北偏东15°,这时船与灯塔的距离为________ km. (2)如图所示,为测一树的高度,在地面上选取A ,B两点,从A ,B 两点分别测得树尖的仰角为30°,45°,且A ,B 两点间的距离为60 m ,则树的高度为________m.答案 (1)302 (2)30+30 3解析 (1)如图,由题意,∠BAC =30°,∠ACB =105°,∴B =45°,AC =60 km ,由正弦定理BC sin 30°=ACsin 45°,∴BC =30 2 km.(2)在△P AB 中,∠P AB =30°,∠APB =15°,AB =60, sin 15°=sin(45°-30°)=sin 45°cos 30°-cos 45°sin 30°=22×32-22×12=6-24, 由正弦定理得PB sin 30°=AB sin 15°,∴PB =12×606-24=30(6+2),∴树的高度为PB ·sin 45°=30(6+2)×22=(30+303)(m). 题型二 求角度问题例2 甲船在A 处,乙船在A 处的南偏东45°方向,距A 有9海里的B 处,并以20海里每小时的速度沿南偏西15°方向行驶,若甲船沿南偏东θ的方向,并以28海里每小时的速度行驶,恰能在C 处追上乙船.问用多少小时追上乙船,并求sin θ的值.(结果保留根号,无需求近似值) 解 设用t 小时,甲船追上乙船,且在C 处相遇,那么在△ABC 中,AC =28t ,BC =20t ,AB =9,∠ABC =180°-15°-45°=120°, 由余弦定理,得(28t )2=81+(20t )2-2×9×20t ×(-12),128t 2-60t -27=0, 解得t =34或t =-932(舍去),所以AC =21(海里),BC =15(海里), 根据正弦定理,得sin ∠BAC =BC sin ∠ABC AC =5314,cos ∠BAC =1-75142=1114. 又∠ABC =120°,∠BAC 为锐角, 所以θ=45°-∠BAC , sin θ=sin(45°-∠BAC )=sin 45°cos ∠BAC -cos 45°sin ∠BAC=112-5628. 思维升华 解决测量角度问题的注意事项 (1)首先应明确方位角或方向角的含义;(2)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步; (3)将实际问题转化为可用数学方法解决的问题后,注意正弦、余弦定理的“联袂”使用.(1)(2016·苏州模拟)如图所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向沿直线CB 前往B 处救援,则cos θ的值为________. 答案2114解析 在△ABC 中,AB =40,AC =20,∠BAC =120°, 由余弦定理得BC 2=AB 2+AC 2-2AB ·AC ·cos 120°=2 800⇒BC =207. 由正弦定理,得AB sin ∠ACB =BC sin ∠BAC⇒sin ∠ACB =AB BC ·sin ∠BAC =217.由∠BAC =120°,知∠ACB 为锐角,则cos ∠ACB =277.由θ=∠ACB +30°,得cos θ=cos(∠ACB +30°) =cos ∠ACB cos 30°-sin ∠ACB sin 30°=2114. 题型三 三角形与三角函数的综合问题例3 (2016·扬州调研)在斜三角形ABC 中,tan A +tan B +tan A tan B =1. (1)求C 的值;(2)若A =15°,AB =2,求△ABC 的周长.解 (1)方法一 因为tan A +tan B +tan A tan B =1,即tan A +tan B =1-tan A tan B , 因为在斜三角形ABC 中,1-tan A tan B ≠0, 所以tan(A +B )=tan A +tan B 1-tan A tan B =1,即tan(180°-C )=1,即tan C =-1, 因为0°<C <180°,所以C =135°.方法二 由tan A +tan B +tan A tan B =1,得sin A cos A +sin B cos B +sin A sin Bcos A cos B=1, 化简得sin A cos B +sin B cos A +sin A sin B =cos A cos B ,即sin(A +B )=cos(A +B ), 所以sin C =-cos C ,因为斜三角形ABC ,所以C =135°.(2)在△ABC 中,A =15°,C =135°,则B =180°-A -C =30°. 由正弦定理BC sin A =CA sin B =AB sin C 得BC sin 15°=CA sin 30°=2sin 135°=2, 故BC =2sin 15°=2sin(45°-30°) =2(sin 45°cos 30°-cos 45°sin 30°)=6-22, CA =2sin 30°=1.所以△ABC 的周长为AB +BC +CA =2+6-22+1 =2+6+22. 思维升华 三角形与三角函数的综合问题,要借助三角函数性质的整体代换思想,数形结合思想,还要结合三角形中角的范围,充分利用正弦定理、余弦定理解题.(2016·南京学情调研)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a cosB =b cos A . (1)求ba的值;(2)若sin A =13,求sin(C -π4)的值.解 (1)方法一 由a cos B =b cos A , 结合正弦定理得sin A cos B =sin B cos A , 即sin(A -B )=0.因为A ,B ∈(0,π),所以A -B ∈(-π,π), 所以A -B =0,即A =B ,所以a =b ,即ba =1.方法二 由a cos B =b cos A ,结合余弦定理得a ·a 2+c 2-b 22ac =b ·b 2+c 2-a 22bc,即2a 2=2b 2,即ba=1.(2) 因为sin A =13,由(1)知A =B ,因此A 为锐角,所以cos A =223. 所以sin C =sin(π-2A )=sin 2A =2sin A cos A =429,cos C =cos(π-2A )=-cos 2A =-1+2sin 2A =-79.所以sin(C -π4)=sin C cos π4-cos C sin π4=429×22+79×22=8+7218.10.函数思想在解三角形中的应用典例 (14分)某港口O 要将一件重要物品用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口O 北偏西30°且与该港口相距20海里的A 处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v 海里/小时的航行速度匀速行驶,经过t 小时与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假设小艇的最高航行速度只能达到30海里/小时,试设计航行方案(即确定航行方向和航行速度的大小),使得小艇能以最短时间与轮船相遇,并说明理由.思想方法指导 已知两边和其中一边的对角解三角形时,可以设出第三边,利用余弦定理列方程求解;对于三角形中的最值问题,可建立函数模型,转化为函数最值问题解决. 规范解答解 (1)设相遇时小艇航行的距离为S 海里,[1分]则S =900t 2+400-2·30t ·20·cos (90°-30°) =900t 2-600t +400=900(t -13)2+300.[3分] 故当t =13时,S min =103,v =10313=30 3.[6分]即小艇以303海里/小时的速度航行,相遇时小艇的航行距离最小. [7分](2)设小艇与轮船在B 处相遇.则v 2t 2=400+900t 2-2·20·30t ·cos(90°-30°), 故v 2=900-600t +400t 2.[10分]∵0<v ≤30,∴900-600t +400t 2≤900,即2t 2-3t ≤0,解得t ≥23.又t =23时,v =30,故v =30时,t 取得最小值,且最小值等于23.此时,在△OAB 中,有OA =OB =AB =20.[13分]故可设计航行方案如下:航行方向为北偏东30°,航行速度为30海里/小时.[14分]1.(2017·苏北四市联考)一艘海轮从A 处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是________海里. 答案 10 2解析 如图所示,易知,在△ABC 中,AB =20海里,∠CAB =30°,∠ACB =45°, 根据正弦定理得BC sin 30°=AB sin 45°,解得BC =102(海里).2.在高出海平面200 m 的小岛顶上A 处,测得位于正西和正东方向的两船的俯角分别是45°与30°,此时两船间的距离为________ m. 答案 200(3+1)解析 过点A 作AH ⊥BC 于点H ,由图易知∠BAH =45°,∠CAH =60°,AH =200 m ,则BH =AH =200 m ,CH =AH ·tan 60°=200 3 (m). 故两船距离BC =BH +CH =200(3+1) (m).3.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距____m. 答案 10 3解析 如图,OM =AO tan 45°=30 (m),ON =AO tan 30°=30×33=10 3 (m),在△MON 中,由余弦定理得, MN =900+300-2×30×103×32=300=10 3 (m).4.(2016·南京模拟)如图,两座相距60 m 的建筑物AB ,CD 的高度分别为20 m ,50 m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角为________.答案 45°解析 依题意可得AD =2010(m),AC =305(m), 又CD =50(m),所以在△ACD 中, 由余弦定理得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD=(305)2+(2010)2-5022×305×2010= 6 0006 0002=22,又0°<∠CAD <180°,所以∠CAD =45°, 所以从顶端A 看建筑物CD 的张角为45°.5.如图所示,测量河对岸的塔高AB 时可以选与塔底B 在同一水平面内的两个测点C 与D ,测得∠BCD =15°,∠BDC =30°,CD =30,并在点C 测得塔顶A 的仰角为60°,则塔高AB =________.答案 15 6解析 在△BCD 中,∠CBD =180°-15°-30°=135°. 由正弦定理得BC sin 30°=30sin 135°,所以BC =15 2.在Rt △ABC 中,AB =BC tan ∠ACB =152×3=15 6.6.某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度为15°的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为106米(如图所示),旗杆底部与第一排在一个水平面上.若国歌长度约为50秒,升旗手应以________(米/秒)的速度匀速升旗.答案 0.6解析 在△BCD 中,∠BDC =45°,∠CBD =30°,CD =106(米). 由正弦定理,得BC =CD sin 45°sin 30°=203(米).在Rt △ABC 中,AB =BC sin 60°=203×32=30(米). 所以升旗速度v =AB t =3050=0.6(米/秒).7.如图,CD 是京九铁路线上的一条穿山隧道,开凿前,在CD 所在水平面上的山体外取点A ,B ,并测得四边形ABCD 中,∠ABC =π3,∠BAD =23π,AB=BC =400米,AD =250米,则应开凿的隧道CD 的长为________米. 答案 350解析 在△ABC 中,AB =BC =400米,∠ABC =π3,∴AC =AB =400米,∠BAC =π3.∴∠CAD =∠BAD -∠BAC =2π3-π3=π3.∴在△CAD 中,由余弦定理,得 CD 2=AC 2+AD 2-2AC ·AD ·cos ∠CAD =4002+2502-2·400·250·cos π3=122 500.∴CD =350米.8.如图,一艘船上午9∶30在A 处测得灯塔S 在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午10∶00到达B 处,此时又测得灯塔S 在它的北偏东75°处,且与它相距8 2 n mile.此船的航速是______ n mile/h.答案 32解析 设航速为v n mile/h ,在△ABS 中,AB =12v ,BS =82,∠BSA =45°,由正弦定理得82sin 30°=12v sin 45°,∴v =32.9.如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C 是该小区的一个出入口,且小区里有一条平行于AO 的小路CD .已知某人从O 沿OD 走到D 用了2分钟,从D 沿DC 走到C 用了3分钟.若此人步行的速度为每分钟50米,则该扇形的半径为________米.答案 507解析 如图,连结OC ,在△OCD 中,OD =100,CD =150,∠CDO =60°.由余弦定理得OC 2=1002+1502-2×100×150×cos 60°=17 500,解得OC =507.*10.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且满足a +b =cx ,则实数x 的取值范围是________. 答案 (1,2]解析 x =a +b c =sin A +sin B sin C =sin A +cos A=2sin ⎝⎛⎭⎫A +π4.又A ∈⎝⎛⎭⎫0,π2, ∴sin π4<sin ⎝⎛⎭⎫A +π4≤sin π2,即x ∈(1,2]. 11.要测量电视塔AB 的高度,在C 点测得塔顶A 的仰角是45°,在D 点测得塔顶A 的仰角是30°,并测得水平面上的∠BCD =120°,CD =40 m ,求电视塔的高度.解 如图,设电视塔AB 高为x m ,则在Rt △ABC 中,由∠ACB =45°,得BC =x . 在Rt △ADB 中,∠ADB =30°, 则BD =3x .在△BDC 中,由余弦定理得, BD 2=BC 2+CD 2-2BC ·CD ·cos 120°, 即(3x )2=x 2+402-2·x ·40·cos 120°, 解得x =40,所以电视塔高为40 m.12.(2015·天津)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为315,b -c =2,cos A =-14.(1)求a 和sin C 的值; (2)求cos ⎝⎛⎭⎫2A +π6的值. 解 (1)在△ABC 中,由cos A =-14,可得sin A =154. 由S △ABC =12bc sin A =315,得bc =24,又由b -c =2,解得b =6,c =4. 由a 2=b 2+c 2-2bc cos A ,可得a =8. 由a sin A =c sin C ,得sin C =158. (2)cos ⎝⎛⎭⎫2A +π6=cos 2A ·cos π6-sin 2A ·sin π6=32(2cos 2A -1)-12×2sin A ·cos A =15-7316. *13.在海岸A 处发现北偏东45°方向,距A 处(3-1)海里的B 处有一艘走私船.在A 处北偏西75°方向,距A 处2海里的C 处的我方缉私船奉命以103海里/小时的速度追截走私船,此时走私船正以10海里/小时的速度从B 处向北偏东30°方向逃窜.问:缉私船沿什么方向行驶才能最快截获走私船?并求出所需时间.解 如图,设缉私船应沿CD 方向行驶t 小时,才能最快截获走私船(在D 点),则CD =103t 海里,BD =10t 海里,在△ABC 中,由余弦定理,得 BC 2=AB 2+AC 2-2AB ·AC ·cos A =(3-1)2+22-2·(3-1)·2·cos 120° =6, 解得BC = 6. 又BC sin ∠BAC =ACsin ∠ABC,∴sin ∠ABC =AC ·sin ∠BAC BC =2·sin 120°6=22,∴∠ABC =45°,故B 点在C 点的正东方向上, ∴∠CBD =90°+30°=120°,在△BCD 中,由正弦定理,得BD sin ∠BCD =CDsin ∠CBD ,∴sin ∠BCD =BD ·sin ∠CBDCD=10t ·sin 120°103t=12. ∴∠BCD =30°,∴缉私船沿北偏东60°的方向行驶.又在△BCD 中,∠CBD =120°,∠BCD =30°, ∴∠D =30°,∴BD =BC ,即10t =6, 解得t =610小时≈15分钟. ∴缉私船应沿北偏东60°的方向行驶,才能最快截获走私船,大约需要15分钟.14.(教材改编)如图,有两条相交成60°角的直路X ′X ,Y ′Y ,交点是O ,甲、乙两人分别在OX 、OY 上,甲的起始位置离点O 3 km ,乙的起始位置离点O 1 km.后来甲沿XX ′的方向,乙沿YY ′的方向,同时以4 km/h 的速度步行.(1) 求甲、乙在起始位置时两人之间的距离;(2) 设t h 后甲、乙两人的距离为d (t ),写出d (t )的表达式.当t 为何值时,甲、乙两人之间的距离最短?并求出两人之间的最短距离. 解 (1) 由余弦定理,得起初两人的距离为 12+32-2×1×3×cos 60°=7(km). (2)设t h 后两人的距离为d (t ),则 当0≤t ≤14时,d (t )=(1-4t )2+(3-4t )2-2×(1-4t )×(3-4t )×cos 60° =16t 2-16t +7; 当t >34时,d (t )=(4t -1)2+(4t -3)2-2×(4t -1)×(4t -3)×cos 60° =16t 2-16t +7; 当14<t ≤34时, d (t )=(4t -1)2+(3-4t )2-2×(4t -1)×(3-4t )×cos 120° =16t 2-16t +7. 所以d (t )=16t 2-16t +7 =16(t -12)2+3 (t ≥0),当t =12时,两人的距离最短.答当t =12时,两人的最短距离为 3 km.。
2018版高考数学理江苏专用大一轮复习讲义课件第十四章
由f(x)的表达式及图象,当f(x)=1时,可得x=1或x=3;
1 当 f(x)=-1 时,可得 x=3或 x=5,
1 故 f(x)>1 的解集为{x|1<x<3};f(x)<-1 的解集为xx<3或x>5 . 1 所以|f(x)|>1 的解集为xx<3或1<x<3或x>5 .
解答
∵|x-a|+|x-1|≥|(x-a)-(x-1)|=|a-1|, 要使|x-a|+|x-1|≤3有解, 可使|a-1|≤3,∴-3≤a-1≤3,∴-2≤a≤4.
1 2 3.若不等式|2x-1|+|x+2|≥a +
取值范围.
解答
+2对任意实数x恒成立,求实数a的 a 2
题型分类
深度剖析
题型一 绝对值不等式的解法 例1 (2015· 课标全国Ⅰ)已知函数f(x)=|x+1|-2|x-a|,a>0. (1)当a=1时,求不等式f(x)>1的解集; 解答
(2)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围. 解答
x-1-2a,x<-1, 由题设可得,f(x)=3x+1-2a,-1≤x≤a, -x+1+2a,x>a.
所 以 函 数 f(x) 的 图 象 与 x 轴 围 成 的 三 角 形 的 三 个 顶 点 分 别 为
2 a -1 ,B(2a+1,0),C(a,a+1), A , 0 3
2 △ABC 的面积为3(a+1)2. 2 由题设得3(a+1)2>6,故 a>2. 所以a的取值范围为(2,+∞).
思维升华
解绝对值不等式的基本方法有
(1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普
2018版高考数学理江苏专用大一轮复习讲义教师版文档第四章 三角函数、解三角形 4.2 含答案 精品
1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1.(2)商数关系:sin αcos α=tan α.2.各角的终边与角α的终边的关系3.六组诱导公式【知识拓展】1.诱导公式的记忆口诀:奇变偶不变,符号看象限.2.同角三角函数基本关系式的常用变形 (sin α±cos α)2=1±2sin αcos α; (sin α+cos α)2+(sin α-cos α)2=2; (sin α+cos α)2-(sin α-cos α)2=4sin αcos α. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)若α,β为锐角,则sin 2α+cos 2β=1.( × ) (2)若α∈R ,则tan α=sin αcos α恒成立.( × )(3)sin(π+α)=-sin α成立的条件是α为锐角.( × )(4)诱导公式的记忆口诀中“奇变偶不变,符号看象限”,其中的奇、偶是指π2的奇数倍和偶数倍,变与不变指函数名称的变化.( √ )1.(2015·福建改编)若sin α=-513,且α为第四象限角,则tan α的值为 .答案 -512解析 ∵sin α=-513,且α为第四象限角,∴cos α=1213,∴tan α=sin αcos α=-512.2.(教材改编)已知cos θ=35,且3π2<θ<2π,那么tan θ的值为 .答案 -43解析 因为θ为第四象限角,所以tan θ<0,sin θ<0, sin θ=-1-cos 2θ=-45,所以tan θ=sin θcos θ=-43.3.(2016·连云港模拟)计算:sin116π+cos 103π= .答案 -1 解析 ∵sin 116π=sin(π+56π)=-sin 5π6=-12, cos103π=cos(2π+4π3)=cos 4π3=-12, ∴sin116π+cos 103π=-1. 4.(教材改编)已知tan α=1,则2sin α-cos αsin α+cos α= .答案 12解析 原式=2tan α-1tan α+1=2-11+1=12.5.(教材改编)化简:tan (3π-α)sin (π-α)sin (3π2-α)+sin (2π-α)cos (α-7π2)sin (3π2+α)cos (2π+α)= .答案 1解析 因为tan(3π-α)=-tan α,sin(π-α)=sin α, sin(3π2-α)=-cos α,sin(2π-α)=-sin α,cos(α-7π2)=cos(α+π2)=-sin α,sin(3π2+α)=-cos α,cos(2π+α)=cos α,所以原式=-tan αsin α(-cos α)+-sin α(-sin α)-cos αcos α=1cos 2α-sin 2αcos 2α =1-sin 2αcos 2α=cos 2αcos 2α=1.题型一 同角三角函数关系式的应用例1 (1)已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为 .(2)(2016·苏州期末)已知θ是第三象限角,且sin θ-2cos θ=-25,则sin θ+cos θ= .答案 (1)32 (2)-3125解析 (1)∵5π4<α<3π2,∴cos α<0,sin α<0且cos α>sin α, ∴cos α-sin α>0.又(cos α-sin α)2=1-2sin αcos α=1-2×18=34,∴cos α-sin α=32. (2)由⎩⎪⎨⎪⎧sin θ-2cos θ=-25,sin 2θ+cos 2θ=1,得5cos 2θ-85cos θ-2125=0,解得cos θ=35或-725.因为θ是第三象限角,所以cos θ=-725,从而sin θ=-2425,所以sin θ+cos θ=-3125.思维升华 (1)利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.(2)应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.(3)注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α.已知sin α-cos α=2,α∈(0,π),则tan α= .答案 -1解析 由⎩⎨⎧sin α-cos α=2,sin 2α+cos 2α=1,消去sin α得2cos 2α+22cos α+1=0, 即(2cos α+1)2=0, ∴cos α=-22. 又α∈(0,π),∴α=3π4,∴tan α=tan 3π4=-1.题型二 诱导公式的应用例2 (1)(2016·宿迁模拟)已知f (x )=sin (2π-x )·cos (32π+x )cos (3π-x )·sin (112π-x ),则f (-21π4)= .(2)已知A =sin (k π+α)sin α+cos (k π+α)cos α(k ∈Z ),则A 的值构成的集合是 .答案 (1)-1 (2){2,-2}解析 (1)f (x )=-sin x ·sin x-cos x ·(-cos x )=-tan 2x ,f (-21π4)=-tan 2(-21π4)=-tan 234π=-1.(2)当k 为偶数时,A =sin αsin α+cos αcos α=2;当k 为奇数时,A =-sin αsin α-cos αcos α=-2.∴A 的值构成的集合是{2,-2}. 思维升华 (1)诱导公式的两个应用①求值:负化正,大化小,化到锐角为终了. ②化简:统一角,统一名,同角名少为终了. (2)含2π整数倍的诱导公式的应用由终边相同的角的关系可知,在计算含有2π的整数倍的三角函数式中可直接将2π的整数倍去掉后再进行运算,如cos(5π-α)=cos(π-α)=-cos α.(1)化简:tan (π+α)cos (2π+α)sin (α-3π2)cos (-α-3π)sin (-3π-α)= .(2)(2016·南京模拟)已知角α终边上一点P (-4,3),则 cos (π2+α)·sin (-π-α)cos (11π2-α)·sin (9π2+α)的值为 .答案 (1)-1 (2)-34解析 (1)原式=tan αcos αsin[-2π+(α+π2)]cos (3π+α)[-sin (3π+α)]=tan αcos αsin (π2+α)(-cos α)sin α=tan αcos αcos α(-cos α)sin α=-tan αcos αsin α=-sin αcos α·cos αsin α=-1.(2)原式=(-sin α)sin α(-sin α)cos α=tan α,根据三角函数的定义得tan α=-34.题型三 同角三角函数关系式、诱导公式的综合应用例3 (1)已知α为锐角,且有2tan(π-α)-3cos(π2+β)+5=0,tan(π+α)+6sin(π+β)-1=0,则sin α的值是 . 答案31010解析 2tan(π-α)-3cos(π2+β)+5=0化简为-2tan α+3sin β+5=0,①tan(π+α)+6sin(π+β)-1=0化简为 tan α-6sin β-1=0.②由①②消去sin β,解得tan α=3. 又α为锐角,根据sin 2α+cos 2α=1, 解得sin α=31010.(2)已知-π<x <0,sin(π+x )-cos x =-15.①求sin x -cos x 的值; ②求sin 2x +2sin 2x 1-tan x的值.解 ①由已知,得sin x +cos x =15,sin 2x +2sin x cos x +cos 2x =125,整理得2sin x cos x =-2425.∵(sin x -cos x )2=1-2sin x cos x =4925.由-π<x <0,知sin x <0, 又sin x +cos x >0, ∴cos x >0,sin x -cos x <0,故sin x -cos x =-75.②sin 2x +2sin 2x 1-tan x=2sin x (cos x +sin x )1-sin x cos x=2sin x cos x (cos x +sin x )cos x -sin x=-2425×1575=-24175.引申探究本题(2)中,若将条件“-π<x <0”改为“0<x <π”,求sin x -cos x 的值. 解 若0<x <π,又2sin x cos x =-2425,∴sin x >0,cos x <0,∴sin x -cos x >0,又(sin x -cos x )2=1-2sin x cos x =4925,故sin x -cos x =75.思维升华 (1)利用同角三角函数关系式和诱导公式求值或化简时,关键是寻求条件、结论间的联系,灵活使用公式进行变形. (2)注意角的范围对三角函数符号的影响.已知sin α是方程5x 2-7x -6=0的根,求sin (α+3π2)sin (3π2-α)tan 2(2π-α)tan (π-α)cos (π2-α)cos (π2+α)的值.解 由于方程5x 2-7x -6=0的两根为2和-35,所以sin α=-35,再由sin 2α+cos 2α=1,得cos α=±1-sin 2α=±45,所以tan α=±34,所以原式=-cos α(-cos α)·tan 2α(-tan α)sin α·(-sin α)=tan α=±34.7.分类讨论思想在三角函数中的应用典例 (1)已知sin α=255,则tan(α+π)+sin ⎝⎛⎭⎫5π2+αcos ⎝⎛⎭⎫5π2-α= .(2)已知k ∈Z ,化简:sin (k π-α)cos[(k -1)π-α]sin[(k +1)π+α]cos (k π+α)= .思想方法指导 (1)在利用同角三角函数基本关系式中的平方关系时,要根据角的范围对开方结果进行讨论.(2)利用诱导公式化简时要对题中整数k 是奇数或偶数进行讨论. 解析 (1)∵sin α=255>0,∴α为第一或第二象限角.tan(α+π)+sin ⎝⎛⎭⎫5π2+αcos ⎝⎛⎭⎫5π2-α=tan α+cos αsin α=sin αcos α+cos αsin α=1sin αcos α. ①当α是第一象限角时,cos α=1-sin 2 α=55, 原式=1sin αcos α=52.②当α是第二象限角时,cos α=-1-sin 2α=-55, 原式=1sin αcos α=-52.综合①②知,原式=52或-52.(2)当k =2n (n ∈Z )时,原式=sin (2n π-α)cos[(2n -1)π-α]sin[(2n +1)π+α]cos (2n π+α)=sin (-α)·cos (-π-α)sin (π+α)·cos α=-sin α(-cos α)-sin α·cos α=-1;当k =2n +1(n ∈Z )时,原式=sin[(2n +1)π-α]·cos[(2n +1-1)π-α]sin[(2n +1+1)π+α]·cos[(2n +1)π+α]=sin (π-α)·cos αsin α·cos (π+α)=sin α·cos αsin α(-cos α)=-1.综上,原式=-1. 答案 (1)52或-52(2)-11.(2016·盐城模拟)已知cos α=45,α∈(0,π),则tan α的值为 .答案 34解析 ∵α∈(0,π), ∴sin α= 1-cos 2α=1-(45)2=35,由tan α=sin αcos α,得tan α=34. 2.已知cos α=13,且-π2<α<0,则cos (-α-π)sin (2π+α)tan (2π-α)sin (3π2-α)cos (π2+α)= .答案 -2 2解析 原式=(-cos α)·sin α·(-tan α)(-cos α)·(-sin α)=tan α,∵cos α=13,-π2<α<0,∴sin α=-1-cos 2α=-223,∴tan α=sin αcos α=-2 2.3.若角α的终边落在第三象限,则cos α1-sin 2α+2sin α1-cos 2α的值为 .答案 -3解析 由角α的终边落在第三象限, 得sin α<0,cos α<0,故原式=cos α|cos α|+2sin α|sin α|=cos α-cos α+2sin α-sin α=-1-2=-3.4.若sin(π-α)=-2sin(π2+α),则sin α·cos α的值为 .答案 -25解析 由sin(π-α)=-2sin(π2+α),可得sin α=-2cos α,则tan α=-2,sin α·cos α=sin α·cos αsin 2α+cos 2α=tan α1+tan 2α=-25. 5.已知函数f (x )=a sin(πx +α)+b cos(πx +β),且f (4)=3,则f (2 017)的值为 . 答案 -3解析 ∵f (4)=a sin(4π+α)+b cos(4π+β) =a sin α+b cos β=3,∴f (2 017)=a sin(2 017π+α)+b cos(2 017π+β) =a sin(π+α)+b cos(π+β) =-a sin α-b cos β =-3.*6.(2016·扬州模拟)若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为 . 答案 1- 5解析 由题意知sin θ+cos θ=-m 2,sin θcos θ=m 4,又(sin θ+cos θ)2=1+2sin θcos θ, ∴m 24=1+m2, 解得m =1±5,又Δ=4m 2-16m ≥0, ∴m ≤0或m ≥4,∴m =1- 5.7.已知α为钝角,sin(π4+α)=34,则sin(π4-α)= .答案 -74解析 因为α为钝角,所以cos(π4+α)=-74,所以sin(π4-α)=cos[π2-(π4-α)]=cos(π4+α)=-74.8.(2016·江苏如东高级中学期中)若sin α=2cos α,则sin 2α+2cos 2α的值为 . 答案 65解析 由sin α=2cos α,得tan α=2,因此sin 2α+2cos 2α=sin 2α+2cos 2αsin 2α+cos 2α =tan 2α+2tan 2α+1=4+24+1=65. 9.已知角θ的顶点在坐标原点,始边与x 轴正半轴重合,终边在直线2x -y =0上,则sin (3π2+θ)+cos (π-θ)sin (π2-θ)-sin (π-θ)= . 答案 2解析 由题意可得tan θ=2,原式=-cos θ-cos θcos θ-sin θ=-21-tan θ=2. 10.(2016·无锡模拟)已知α为第二象限角,则cos α1+tan 2α+sin α 1+1tan 2α= . 答案 0解析 原式=cos α sin 2α+cos 2αcos 2α+sin α sin 2α+cos 2αsin 2α =cos α1|cos α|+sin α1|sin α|, 因为α是第二象限角,所以sin α>0,cos α<0,所以cos α1|cos α|+sin α1|sin α|=-1+1=0,即原式等于0. 11.已知sin(3π+α)=2sin ⎝⎛⎭⎫3π2+α,求下列各式的值: (1)sin α-4cos α5sin α+2cos α; (2)sin 2α+sin 2α.解 由已知得sin α=2cos α.(1)原式=2cos α-4cos α5×2cos α+2cos α=-16. (2)原式=sin 2α+2sin αcos αsin 2α+cos 2α=sin 2α+sin 2αsin 2α+14sin 2α=85. 12.已知在△ABC 中,sin A +cos A =15.(1)求sin A cos A 的值;(2)判断△ABC 是锐角三角形还是钝角三角形;(3)求tan A 的值.解 (1)∵(sin A +cos A )2=125, ∴1+2sin A cos A =125, ∴sin A cos A =-1225. (2)∵sin A cos A <0,又0<A <π,∴cos A <0,∴A 为钝角,∴△ABC 为钝角三角形.(3)(sin A -cos A )2=1-2sin A cos A =4925. 又sin A -cos A >0,∴sin A -cos A =75, ∴sin A =45,cos A =-35, 故tan A =-43. *13.已知关于x 的方程2x 2-(3+1)x +m =0的两根为sin θ和cos θ,θ∈(0,2π).求:(1)sin 2θsin θ-cos θ+cos θ1-tan θ的值; (2)m 的值;(3)方程的两根及此时θ的值.解 (1)原式=sin 2θsin θ-cos θ+cos θ1-sin θcos θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ=sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ. 由条件知sin θ+cos θ=3+12, 故sin 2θsin θ-cos θ+cos θ1-tan θ=3+12. (2)由sin 2θ+2sin θcos θ+cos 2θ=1+2sin θcos θ=(sin θ+cos θ)2,得m =32. (3)由⎩⎪⎨⎪⎧ sin θ+cos θ=3+12,sin θ·cos θ=34,知⎩⎨⎧sin θ=32,cos θ=12或⎩⎨⎧ sin θ=12,cos θ=32.又θ∈(0,2π),故θ=π3或θ=π6.。
2018版高考数学理江苏专用大一轮复习讲义教师版文档第
1.等差数列的定义一般地,如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示. 2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d . 3.等差中项由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列.这时,A 叫做a 与b 的等差中项.4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (6)数列S m ,S 2m -S m ,S 3m -S 2m ,…构成等差数列. 5.等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =n (a 1+a n )2或S n =na 1+n (n -1)2d .6.等差数列的前n 项和公式与函数的关系 S n =d2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).7.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.【知识拓展】等差数列的四种判断方法(1)定义法:a n +1-a n =d (d 是常数)⇔{a n }是等差数列. (2)等差中项法:2a n +1=a n +a n +2 (n ∈N *)⇔{a n }是等差数列. (3)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列. (4)前n 项和公式:S n =An 2+Bn (A ,B 为常数)⇔{a n }是等差数列.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( × )(2)等差数列{a n }的单调性是由公差d 决定的.( √ )(3)等差数列的前n 项和公式是常数项为0的二次函数.( × ) (4)已知等差数列{a n }的通项公式a n =3-2n ,则它的公差为-2.( √ )1.(教材改编)设S n 为等差数列{a n }的前n 项和,若a 3=3,S 9-S 6=27,则该数列的首项a 1=________. 答案 35解析 由⎩⎪⎨⎪⎧a 1+2d =3,9a 1+36d -(6a 1+15d )=27,得⎩⎪⎨⎪⎧a 1+2d =3,a 1+7d =9, 解得a 1=35.2.(教材改编)已知五个数成等差数列,它们的和为5,平方和为859,则这五个数的积为________.答案 -3581解析 设第三个数为a ,公差为d ,则这五个数分别为a -2d ,a -d ,a ,a +d ,a +2d ,由已知条件得⎩⎪⎨⎪⎧(a -2d )+(a -d )+a +(a +d )+(a +2d )=5,(a -2d )2+(a -d )2+a 2+(a +d )2+(a +2d )2=859, 解得⎩⎪⎨⎪⎧a =1,d =±23.所求5个数分别为-13,13,1,53,73或73,53,1,13,-13.故它们的积为-3581.3.(2016·全国乙卷)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=________. 答案 98解析 由等差数列性质,知S 9=9(a 1+a 9)2=9×2a 52=9a 5=27,得a 5=3,而a 10=8,因此公差d =a 10-a 510-5=1,∴a 100=a 10+90d =98.4.设数列{a n }是等差数列,若a 3+a 4+a 5=12,则a 1+a 2+…+a 7=________. 答案 28解析 ∵a 3+a 4+a 5=3a 4=12,∴a 4=4, ∴a 1+a 2+…+a 7=7a 4=28.5.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 答案 8解析 因为数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,所以a 8>0.又a 7+a 10=a 8+a 9<0,所以a 9<0.故当n =8时,其前n 项和最大.题型一 等差数列基本量的运算例1 (1)(2016·北京)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.(2)(2016·徐州、宿迁模拟)已知公差为d 的等差数列{a n }的前n 项和为S n ,若S 5S 3=3,则a 5a 3的值为________. 答案 (1)6 (2)179解析 (1)∵a 3+a 5=2a 4=0,∴a 4=0. 又a 1=6,∴a 4=a 1+3d =0,∴d =-2. ∴S 6=6×6+6×(6-1)2×(-2)=6.(2)设等差数列{a n }的首项为a 1,则由S 5S 3=3得5a 1+10d 3a 1+3d =3,所以d =4a 1,所以a 5a 3=a 1+4d a 1+2d =17a 19a 1=179. 思维升华 等差数列运算问题的通性通法(1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2016·江苏)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是______. 答案 20解析 设等差数列{a n }的公差为d , 则由题设可得⎩⎪⎨⎪⎧a 1+(a 1+d )2=-3,5a 1+5×42d =10, 解得⎩⎪⎨⎪⎧d =3,a 1=-4, 从而a 9=a 1+8d =20.题型二 等差数列的判定与证明例2 已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由. (1)证明 因为a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1(n ∈N *),所以b n +1-b n =1a n +1-1-1a n -1=1(2-1a n)-1-1a n -1=a n a n -1-1a n -1=1. 又b 1=1a 1-1=-52.所以数列{b n }是以-52为首项,1为公差的等差数列.(2)解 由(1)知b n =n -72,则a n =1+1b n =1+22n -7.设f (x )=1+22x -7,则f (x )在区间(-∞,72)和(72,+∞)上为减函数.所以当n =3时,a n 取得最小值-1,当n =4时,a n 取得最大值3. 引申探究例2中,若条件变为a 1=35,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式.解 由已知可得a n +1n +1=a nn +1,即a n +1n +1-a n n=1,又a 1=35,∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列,∴a n n =35+(n -1)·1=n -25, ∴a n =n 2-25n .思维升华 等差数列的四个判定方法(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数.(2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2后,可递推得出a n +2-a n +1=a n +1-a n =a n -a n -1=a n -1-a n -2=…=a 2-a 1,根据定义得出数列{a n }为等差数列.(3)通项公式法:得出a n =pn +q 后,得a n +1-a n =p 对任意正整数n 恒成立,根据定义判定数列{a n }为等差数列.(4)前n 项和公式法:得出S n =An 2+Bn 后,根据S n ,a n 的关系,得出a n ,再使用定义法证明数列{a n }为等差数列.(1)在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为________.(2)已知等差数列{a n }中,a 4+a 6=10,若前5项的和S 5=5,则其公差为________. 答案 (1)a n =1n(2)2解析 (1)由已知式2a n +1=1a n +1a n +2可得1a n +1-1a n =1a n +2-1a n +1,知{1a n }是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n =n ,即a n =1n.(2)因为a 4+a 6=10,所以2a 5=10, 则a 5=5,又S 5=5(a 1+a 5)2=5a 3=5,故a 3=1,从而2d =a 5-a 3=4,故d =2.(3)数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2. ①设b n =a n +1-a n ,证明{b n }是等差数列; ②求{a n }的通项公式.①证明 由a n +2=2a n +1-a n +2, 得a n +2-a n +1=a n +1-a n +2, 即b n +1=b n +2. 又b 1=a 2-a 1=1,所以{b n }是首项为1,公差为2的等差数列. ②解 由①得b n =1+2(n -1)=2n -1, 即a n +1-a n =2n -1.于是∑n k =1(a k +1-a k )=∑n k =1(2k -1), 所以a n +1-a 1=n 2,即a n +1=n 2+a 1.又a 1=1,所以{a n }的通项公式为a n =n 2-2n +2. 题型三 等差数列性质的应用 命题点1 等差数列项的性质例3 (1)(2015·广东)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________. (2)已知{a n },{b n }都是等差数列,若a 1+b 10=9,a 3+b 8=15,则a 5+b 6=________.答案 (1)10 (2)21解析 (1)因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25,所以a 5=5,故a 2+a 8=2a 5=10.(2)因为{a n },{b n }都是等差数列,所以2a 3=a 1+a 5,2b 8=b 10+b 6,所以2(a 3+b 8)=(a 1+b 10)+(a 5+b 6),即2×15=9+(a 5+b 6),解得a 5+b 6=21. 命题点2 等差数列前n 项和的性质例4 (1)设等差数列{a n }的前n 项和为S n ,且S 3=-12,S 9=45,则S 12=________. (2)在等差数列{a n }中,a 1=-2 018,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 018的值为_____.答案 (1)114 (2)-2 018解析 (1)因为{a n }是等差数列,所以S 3,S 6-S 3,S 9-S 6,S 12-S 9成等差数列,所以2(S 6-S 3)=S 3+(S 9-S 6),即2(S 6+12)=-12+(45-S 6),解得S 6=3. 又2(S 9-S 6)=(S 6-S 3)+(S 12-S 9),即2×(45-3)=(3+12)+(S 12-45),解得S 12=114. (2)由题意知,数列{S nn }为等差数列,其公差为1,∴S 2 0182 018=S 11+(2 018-1)×1 =-2 018+2 017=-1. ∴S 2 018=-2 018.思维升华 等差数列的性质(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n =d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差. (2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n .(1)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=________.(2)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7=________.答案 (1)88 (2)3727解析 (1)S 11=11(a 1+a 11)2=11(a 4+a 8)2=11×162=88. (2)a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727.6.等差数列的前n 项和及其最值考点分析 公差不为0的等差数列,求其前n 项和与最值在高考中时常出现,题型有小题,也有大题,难度不大.典例1 (1)在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 7+a 9)=54,则此数列前10项的和S 10=________。
2018版高考数学(理)(苏教版江苏专用)大一轮复习讲义(课件)第十四章 选修 14.4 第1课时
(2)对于实数x,y,若|x-1|≤1,|y-2|≤1,求|x-2y+1|的最大值.
解答
|x - 2y + 1| = |(x - 1) - 2(y - 1)|≤|x - 1| + |2(y - 2) + 2|≤1 + 2|y - 2| + 2≤5, 即|x-2y+1|的最大值为5.
思维升华
求含绝对值的函数最值时,常用的方法有三种 (1)利用绝对值的几何意义. (2)利用绝对值三角不等式,即|a|+|b|≥|a±b|≥|a|-|b|. (3)利用零点分区间法.
解答
①当x≤1时,原不等式可化为1-x-(5-x)<2, ∴-4<2,不等式恒成立,∴x≤1. ②当1<x<5时,原不等式可化为x-1-(5-x)<2, ∴x<4,∴1<x<4, ③当x≥5时,原不等式可化为x-1-(x-5)<2,该不等式不成立. 综上,原不等式的解集为(-∞,4).
2.若存在实数x使|x-a|+|x-1|≤3成立,求实数a的取值范围.
通不等式;
(2)当不等式两端均为正号时,可通过两边平方的方法,转化为解不
含绝对值符号的普通不等式;
(3)利用绝对值的几何意义,数形结合求解.
跟踪训练1
(1)(2016· 全国乙卷)已知函数f(x)=|x+1|-|2x-3|.
(1)在图中画出y=f(x)的图象; 解答
(2)求不等式|f(x)|>1的解集.
2.含有绝对值的不等式的性质 (1)如果a,b是实数,则|a|-|b| ≤|a±b|≤ |a|+|b| ,当且仅当 ab≥0 时 , 等号成立. (2)如果a,b,c是实数,那么 |a-c|≤|a-b|+|b-c| ,当且仅当 (a-b)
(b-c)≥0 时,等号成立.
2018版高考数学(理)(苏教版江苏专用)大一轮复习讲义(课件)第一章 集合与常用逻辑用语1.1
3.集合的基本运算 运算 自然语言 符号语言 Venn图
交集
由所有属于集合A且属于集 A∩B={x|x∈A,
合B的元素构成的集合 且x∈B}
并集
由所有属于集合A或者属于 A∪B={x|x∈A,
集合B的元素构成的集合 或x∈B}
设A⊆S,由S中不属于A的
补集 所有元素组成的集合称为
S的子集A的补集
考点自测
1.( 教 材 改 编 ) 设 A = {x|x2 - 4x - 5 = 0} , B = {x|x2 = 1} , 则 A∪B = {-1,1,5} ____________.
答案 解析
∵A={-1,5},B={-1,1},
∴A∪B={-1,1,5}.
2. 已 知 集 合 A = {x|x2 - 6x + 5≤0} , B = {x|y = x-3 } , 则 A∩B = {x|3≤x≤5} ____________.
Q ___
2.集合间的基本关系
关系
自然语言
如果集合A的任意一个元素都是
符号语言
A⊆B _____ (或B⊇A) ________ A B _____
Venn图
子集
集合B的元素(若a∈A则a∈B)
真子集
如果A⊆B,并且A≠B
( 或B A) ________
如果两个集合所含的元素完 集合相等 全相同(即A中的元素都是B 的元素,B中的元素也都是 A的元素) A=B ______
答案 解析
因为集合B中,x∈A,所以当x=1时,y=3-2=1; 当x=2时,y=3×2-2=4; 当x=3时,y=3×3-2=7; 当x=4时,y=3×4-2=10; 即B={1,4,7,10}. 又因为A={1,2,3,4},所以A∩B={1,4}.
2018版高考数学理江苏专用大一轮复习讲义教师版文档第
1.命题p∧q,p∨q,綈p的真假判断2.全称量词和存在量词3.4.【知识拓展】1.含有逻辑联结词的命题真假的判断规律(1)p∨q:p、q中有一个为真,则p∨q为真,即有真为真;(2)p∧q:p、q中有一个为假,则p∧q为假,即有假即假;(3)綈p:与p的真假相反,即一真一假,真假相反.2.含一个量词的命题的否定的规律是“改量词,否结论”.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)命题p∧q为假命题,则命题p、q都是假命题.(×)(2)命题p和綈p不可能都是真命题.(√)(3)若命题p、q至少有一个是真命题,则p∨q是真命题.(√)(4)命题綈(p∧q)是假命题,则命题p,q中至少有一个是真命题.(×)(5)“长方形的对角线相等”是存在性命题.(×)(6)命题“对顶角相等”的否定是“对顶角不相等”.(×)1.(2016·江苏泰州中学月考)命题“∃x>-1,x2+x-2 016>0”的否定是______________.答案∀x>-1,x2+x-2 016≤0解析命题“∃x>-1,x2+x-2 016>0”的否定是“∀x>-1,x2+x-2 016≤0”.2.已知命题p,q,“綈p为真”是“p∧q为假”的______________条件.答案充分不必要解析綈p为真知p为假,可得p∧q为假;反之,若p∧q为假,则可能是p真q假,从而綈p为假,故“綈p为真”是“p∧q为假”的充分不必要条件.3.(教材改编)若不等式x2-x>x-a对∀x∈R都成立,则a的取值范围是________.答案a>1解析方法一不等式x2-x>x-a对∀x∈R都成立,即不等式x2-2x+a>0恒成立.结合二次函数图象得其Δ<0,即4-4a<0,所以a>1.方法二不等式x2-x>x-a对∀x∈R都成立,也可看作a>-x2+2x对∀x∈R都成立,所以a>(-x2+2x)max,而二次函数f(x)=-x2+2x的最大值为0-224×(-1)=1,所以a>1.4.已知实数a满足1<a<2,命题p:y=log a(2-ax)在[0,1]上是减函数,命题q:|x|<1是x<a 的充分不必要条件,则下列命题:①p∨q为真;②p∧q为假;③(綈p)∧q为真;④(綈p)∧(綈q)为假.其中正确的命题是________. 答案①④解析由y=log a(2-ax)在[0,1]上是减函数,得a>1且2-a>0,即1<a<2.所以p是真命题.由|x|<1,得-1<x<1.又1<a<2,所以|x|<1是x<a的充分不必要条件.所以q也是真命题.从而①④正确.5.(2015·山东)若“∀x ∈⎣⎡⎦⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为________. 答案 1解析 ∵函数y =tan x 在⎣⎡⎦⎤0,π4上是增函数, ∴y max =tan π4=1.依题意,m ≥y max ,即m ≥1. ∴m 的最小值为1.题型一 含有逻辑联结词的命题的真假判断例1 (1)已知命题p :对任意x ∈R ,总有2x >0;q :“x >1”是“x >2”的充分不必要条件,则下列命题为真命题的是________.(填序号) ①p ∧q ②(綈p )∧(綈q ) ③(綈p )∧q ④p ∧(綈q )(2)(2016·盐城模拟)若命题“p ∨q ”是真命题,“綈p 为真命题”,则p ________,q ________.(填“真”或“假”) 答案 (1)④ (2)假 真解析 (1)∵p 是真命题,q 是假命题, ∴p ∧(綈q )是真命题.(2)∵綈p 为真命题,∴p 为假命题, 又∵p ∨q 为真命题,∴q 为真命题.思维升华 “p ∨q ”“p ∧q ”“綈p ”等形式命题真假的判断步骤 (1)确定命题的构成形式; (2)判断其中命题p 、q 的真假;(3)确定“p ∧q ”“p ∨q ”“綈p ”等形式命题的真假.已知命题p :若x >y ,则-x <-y ;命题q :若x >y ,则x 2>y 2.在命题①p ∧q ;②p ∨q ;③p ∧(綈q );④(綈p )∨q 中,真命题是________. 答案 ②③解析 当x >y 时,-x <-y ,故命题p 为真命题,从而綈p 为假命题. 当x >y 时,x 2>y 2不一定成立,故命题q 为假命题,从而綈q 为真命题.由真值表知:①p ∧q 为假命题;②p ∨q 为真命题;③p ∧(綈q )为真命题;④(綈p )∨q 为假命题.题型二 含有一个量词的命题命题点1 全称命题、存在性命题的真假例2 不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的解集记为D ,有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2,p 2:∃(x ,y )∈D , x +2y ≥2,p 3:∀(x ,y )∈D ,x +2y ≤3,p 4:∃(x ,y )∈D ,x +2y ≤-1. 其中的真命题是________. 答案 p 1,p 2解析 画出不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的可行域D 如图阴影部分所示,两直线交于点A (2,-1),设直线l 0的方程为x +2y =0.由图象可知,∀(x ,y )∈D ,x +2y ≥0,故p 1为真命题,p 2为真命题,p 3,p 4为假命题.命题点2 含一个量词的命题的否定例3 (1)(2016·盐城模拟)命题“∃x ∈R ,x 2-2x >0”的否定是____________. (2)(2015·浙江改编)命题“∀n ∈N *,f (n )∈N *且f (n )≤n ”的否定形式是________. 答案 (1)∀x ∈R ,x 2-2x ≤0 (2)∃n ∈N *,f (n )∉N *或f (n )>n .解析 (1)将“∃”改为“∀”,对结论中的“>”进行否定. (2)由全称命题与存在性命题之间的互化关系可知.思维升华 (1)判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每一个元素x ,证明p (x )成立;要判断存在性命题是真命题,只要在限定集合内至少找到一个x ,使p (x )成立. (2)对全称、存在性命题进行否定的方法①找到命题所含的量词,没有量词的要结合命题的含义先加上量词,再改变量词. ②对原命题的结论进行否定.下列命题的否定为假命题的是________.(填序号)①∀x ∈R ,-x 2+x -1<0; ②∀x ∈R ,|x |>x ;③∀x ,y ∈Z ,2x -5y ≠12;④∀x ∈R ,sin 2x +sin x +1=0. 答案 ①解析 命题的否定为假命题亦即原命题为真命题,只有①为真命题. 题型三 求含参数命题中参数的取值范围例4 (1)已知命题p :关于x 的方程x 2-ax +4=0有实根;命题q :关于x 的函数y =2x 2+ax +4在[3,+∞)上是增函数,若p ∧q 是真命题,则实数a 的取值范围是________________. (2)已知f (x )=ln(x 2+1),g (x )=(12)x -m ,若对∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围是__________.答案 (1)[-12,-4]∪[4,+∞) (2)[14,+∞)解析 (1)若命题p 是真命题,则Δ=a 2-16≥0, 即a ≤-4或a ≥4;若命题q 是真命题,则-a4≤3,即a ≥-12.∵p ∧q 是真命题,∴p ,q 均为真, ∴a 的取值范围是[-12,-4]∪[4,+∞).(2)当x ∈[0,3]时,f (x )min =f (0)=0,当x ∈[1,2]时, g (x )min =g (2)=14-m ,由f (x )min ≥g (x )min ,得0≥14-m ,所以m ≥14.引申探究在例4(2)中,若将“∃x 2∈[1,2]”改为“∀x 2∈[1,2]”,其他条件不变,则实数m 的取值范围是________________. 答案 [12,+∞)解析 当x ∈[1,2]时,g (x )max =g (1)=12-m ,由f (x )min ≥g (x )max ,得0≥12-m ,∴m ≥12.思维升华 (1)已知含逻辑联结词的命题的真假,可根据每个命题的真假利用集合的运算求解参数的取值范围;(2)含量词的命题中参数的取值范围,可根据命题的含义,利用函数值域(或最值)解决.(1)已知命题p :“∀x ∈[0,1],a ≥e x ”,命题q :“∃x ∈R ,x 2+4x +a =0”.若命题“p ∧q ”是真命题,则实数a 的取值范围是____________.(2)已知函数f(x)=x2-2x+3,g(x)=log2x+m,对任意的x1,x2∈[1,4]有f(x1)>g(x2)恒成立,则实数m的取值范围是________________.答案(1)[e,4](2)(-∞,0)解析(1)由题意知p与q均为真命题,由p为真,可知a≥e,由q为真,知x2+4x+a=0有解,则Δ=16-4a≥0,∴a≤4.综上可知e≤a≤4.(2)f(x)=x2-2x+3=(x-1)2+2,当x∈[1,4]时,f(x)min=f(1)=2,g(x)max=g(4)=2+m,则f(x)min>g(x)max,即2>2+m,解得m<0,故实数m的取值范围是(-∞,0).1.常用逻辑用语考点分析有关四种命题及其真假判断、充分必要条件的判断或求参数的取值范围、量词等问题几乎在每年高考中都会出现,多与函数、数列、立体几何、解析几何等知识相结合,难度中等以下.解决这类问题应熟练把握各类内在联系.一、命题的真假判断典例1(1)已知命题p:∃x0∈R,x20+1<2x0;命题q:若mx2-mx-1<0恒成立,则-4<m<0,那么下列说法正确的是________.(填序号)①綈p为假命题②q为真命题③p∨q为假命题④p∧q为真命题(2)下列命题中错误的个数为________.①若p∨q为真命题,则p∧q为真命题;②“x>5”是“x2-4x-5>0”的充分不必要条件;③命题p:∃x∈R,x2+x-1<0,则綈p:∀x∈R,x2+x-1≥0;④命题“若x2-3x+2=0,则x=1或x=2”的逆否命题为“若x≠1或x≠2,则x2-3x+2≠0”.解析(1)由于x2-2x+1=(x-1)2≥0,即x2+1≥2x,所以p为假命题;对于命题q,当m=0时,-1<0恒成立,所以命题q为假命题.综上可知,綈p为真命题,p∧q为假命题,p∨q为假命题.(2)对于①,若p∨q为真命题,则p,q至少有一个为真,即可能有一个为假,所以p∧q不一定为真命题,所以①错误;对于②,由x 2-4x -5>0可得x >5或x <-1,所以“x >5”是“x 2-4x -5>0”的充分不必要条件,所以②正确;对于③,根据存在性命题的否定为全称命题,可知③正确;对于④,命题“若x 2-3x +2=0,则x =1或x =2”的逆否命题为“若x ≠1且x ≠2,则x 2-3x +2≠0”,所以④错误,所以错误命题的个数为2. 答案 (1)③ (2)2 二、求参数的取值范围典例2 (1)已知p :x ≥k ,q :3x +1<1,如果p 是q 的充分不必要条件,则实数k 的取值范围是__________.(2)已知函数f (x )=x +4x ,g (x )=2x +a ,若∀x 1∈[12,3],∃x 2∈[2,3]使得f (x 1)≥g (x 2),则实数a 的取值范围是__________.解析 (1)由3x +1<1,得3x +1-1=2-x x +1<0,即(x -2)(x +1)>0,解得x <-1或x >2, 由p 是q 的充分不必要条件,知k >2. (2)∵x ∈[12,3],∴f (x )≥2x ·4x=4,当且仅当x =2时,f (x )min =4,当x ∈[2,3]时,g (x )min =22+a =4+a ,依题意f (x )min ≥g (x )min ,∴a ≤0. 答案 (1)(2,+∞) (2)(-∞,0] 三、利用逻辑推理解决实际问题典例3 (1)甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一城市. 由此可判断乙去过的城市为________.(2)对于中国足球队参与的某次大型赛事,有三名观众对结果作如下猜测: 甲:中国非第一名,也非第二名; 乙:中国非第一名,而是第三名; 丙:中国非第三名,而是第一名.竞赛结束后发现,一人全猜对,一人猜对一半,一人全猜错,则中国足球队得了第________名.解析 (1)由题意可推断:甲没去过B 城市,但比乙去的城市多,而丙说“三人去过同一城市”,说明甲去过A ,C 城市,而乙“没去过C 城市”,说明乙去过A 城市,由此可知,乙去过的城市为A .(2)由题意可知:甲、乙、丙均为“p 且q ”形式,所以猜对一半者也说了错误“命题”,即只有一个为真,所以可知丙是真命题,因此中国足球队得了第一名. 答案 (1)A (2)一1.命题p :若sin x >sin y ,则x >y ;命题q :x 2+y 2≥2xy .下列命题为假命题的是________.(填序号) ①p ∨q ②p ∧q ③q④綈p答案 ②解析 命题p 假,q 真,故命题p ∧q 为假命题.2.已知命题“∃x ∈R ,使2x 2+(a -1)x +12≤0”是假命题,则实数a 的取值范围是__________.答案 (-1,3)解析 依题意可知“∀x ∈R ,2x 2+(a -1)x +12>0”为真命题,所以Δ=(a -1)2-4×2×12<0,即(a +1)(a -3)<0,解得-1<a <3.3.(2016·淮安模拟)已知命题p :∃x ∈R ,log 2(3x +1)≤0,则下列说法正确的是________. ①p 是假命题;綈p :∀x ∈R ,log 2(3x +1)≤0; ②p 是假命题;綈p :∀x ∈R ,log 2(3x +1)>0; ③p 是真命题;綈p :∀x ∈R ,log 2(3x +1)≤0; ④p 是真命题;綈p :∀x ∈R ,log 2(3x +1)>0. 答案 ②解析 ∵3x >0,∴3x +1>1,则log 2(3x +1)>0,∴p 是假命题;綈p :∀x ∈R ,log 2(3x +1)>0. 4.已知p :∀x ∈R ,x 2-x +1>0,q :∃x 0∈(0,+∞),sin x 0>1,则下列命题为真命题的是________.(填序号) ①p ∨(綈q ) ②(綈p )∨q ③p ∧q④(綈p )∧(綈q )答案 ①解析 因为x 2-x +1=(x -12)2+34>0恒成立,所以命题p 是真命题;∀x ∈R ,sin x ≤1,所以命题q 是假命题,所以p ∨(綈q )是真命题.5.(2016·泰州期末)若命题“∃x ∈R ,ax 2+4x +a ≤0”为假命题,则实数a 的取值范围是________. 答案 (2,+∞)解析 “∃x ∈R ,ax 2+4x +a ≤0”为假命题,则其否定“∀x ∈R ,ax 2+4x +a >0”为真命题,当a =0,4x >0不恒成立,故不成立;当a ≠0时,⎩⎪⎨⎪⎧a >0,Δ=16-4a 2<0, 解得a >2,所以实数a 的取值范围是(2,+∞).6.已知命题p 1:∀x ∈(0,+∞),有3x >2x ,p 2:∃θ∈R ,sin θ+cos θ=32,则在命题q 1:p 1∨p 2;q 2:p 1∧p 2;q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是__________. 答案 q 1,q 4解析 因为y =(32)x 在R 上是增函数,即y =(32)x >1在(0,+∞)上恒成立,所以p 1是真命题;sin θ+cos θ=2sin(θ+π4)≤2,所以命题p 2是假命题,綈p 2是真命题,所以命题q 1:p 1∨p 2,q 4:p 1∧(綈p 2)是真命题.7.(2107·江苏淮安中学月考)已知命题:“∃x ∈[1,2],使x 2+2x +a ≥0”是真命题,则a 的取值范围是________. 答案 [-8,+∞)解析 由已知得,∃x ∈[1,2],使a ≥-x 2-2x 成立;若记f (x )=-x 2-2x (1≤x ≤2),则a ≥f (x )min .而结合二次函数f (x )=-x 2-2x (1≤x ≤2)的图象得f (x )的最小值为f (2)=-22-2×2=-8,所以a ≥-8.8.设p :方程x 2+2mx +1=0有两个不相等的正根;q :方程x 2+2(m -2)x -3m +10=0无实根.则使p ∨q 为真,p ∧q 为假的实数m 的取值范围是__________. 答案 (-∞,-2]∪[-1,3)解析 p :x 2+2mx +1=0有两个不相等的正根,⎩⎪⎨⎪⎧Δ=4m 2-4>0,-2m >0,即m <-1. q :x 2+2(m -2)x -3m +10=0无实根,Δ=[2(m -2)]2-4(-3m +10)=4(m 2-m -6)<0, 即-2<m <3.分两种情况:①p 真q 假,m ≤-2;②p 假q 真,-1≤m <3.综上可知,使p ∨q 为真,p ∧q 为假的实数m 的取值范围是(-∞,-2]∪[-1,3). 9.下列命题中的假命题是________.(填序号) ①∀x ∈R ,2x -1>0②∀x ∈N *,(x -1)2>0 ③∃x 0∈R ,lg x 0<1④∃x 0∈R ,tan ⎝⎛⎭⎫x 0+π4=5 答案 ②解析 ①中,∵x ∈R ,∴x -1∈R ,由指数函数性质得2x -1>0;②中,∵x ∈N *,∴当x =1时,(x -1)2=0与(x -1)2>0矛盾;③中,当x 0=110时,lg 110=-1<1;④中,当x ∈R 时,tanx ∈R ,∴∃x 0∈R ,tan ⎝⎛⎭⎫x 0+π4=5. 10.(2016·泰州模拟)已知函数f (x )的定义域为(a ,b ),若“∃x ∈(a ,b ),f (x )+f (-x )≠0”是假命题,则f (a +b )=________. 答案 0解析 若“∃x ∈(a ,b ),f (x )+f (-x )≠0”是假命题,则“∀x ∈(a ,b ),f (x )+f (-x )=0”是真命题,即f (-x )=-f (x ),则函数f (x )是奇函数,则a +b =0,即f (a +b )=0. 11.下列结论:①若命题p :∃x 0∈R ,tan x 0=1;命题q :∀x ∈R ,x 2-x +1>0.则命题“p ∧(綈q )”是假命题;②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是ab =-3;③命题“若x 2-3x +2=0,则x =1”的逆否命题是:“若x ≠1,则x 2-3x +2≠0”. 其中正确结论的序号为________. 答案 ①③解析 ①中命题p 为真命题,命题q 为真命题, 所以p ∧(綈q )为假命题,故①正确; ②当b =a =0时,有l 1⊥l 2,故②不正确; ③正确,所以正确结论的序号为①③. 12.已知命题p :x 2+2x -3>0;命题q :13-x>1,若“(綈q )∧p ”为真,则x 的取值范围是________________.答案 (-∞,-3)∪(1,2]∪[3,+∞)解析 因为“(綈q )∧p ”为真,即q 假p 真,而q 为真命题时,x -2x -3<0,即2<x <3,所以q为假命题时,有x ≥3或x ≤2;p 为真命题时,由x 2+2x -3>0,解得x >1或x <-3,由⎩⎪⎨⎪⎧x >1或x <-3,x ≥3或x ≤2,得x ≥3或1<x ≤2或x <-3, 所以x 的取值范围是{x |x ≥3或1<x ≤2或x <-3}.13.(2016·连云港模拟)已知命题p :∃x 0∈R ,(m +1)·(x 20+1)≤0,命题q :∀x ∈R ,x 2+mx +1>0恒成立.若p ∧q 为假命题,则实数m 的取值范围为____________. 答案 (-∞,-2]∪(-1,+∞)解析 由命题p :∃x 0∈R ,(m +1)(x 20+1)≤0可得m ≤-1,由命题q :∀x ∈R ,x 2+mx +1>0恒成立,可得-2<m <2,因为p ∧q 为假命题,所以m ≤-2或m >-1.14.已知命题p :“∀x ∈R ,∃m ∈R ,4x -2x +1+m =0”,若命题綈p 是假命题,则实数m 的取值范围是________.答案 (-∞,1]解析 若綈p 是假命题,则p 是真命题,即关于x 的方程4x -2·2x +m =0有实数解,由于m =-(4x -2·2x )=-(2x -1)2+1≤1,∴m ≤1.*15.已知函数f (x )=x 2-x +1x -1(x ≥2),g (x )=a x (a >1,x ≥2). (1)若∃x 0∈[2,+∞),使f (x 0)=m 成立,则实数m 的取值范围为________________;(2)若∀x 1∈[2,+∞),∃x 2∈[2,+∞)使得f (x 1)=g (x 2),则实数a 的取值范围为________________.答案 (1)[3,+∞) (2)(1,3]解析 (1)因为f (x )=x 2-x +1x -1=x +1x -1=x -1+1x -1+1≥2+1=3,当且仅当x =2时等号成立,所以若∃x 0∈[2,+∞),使f (x 0)=m 成立,则实数m 的取值范围为[3,+∞).(2)因为当x ≥2时,f (x )≥3,g (x )≥a 2,若∀x 1∈[2,+∞),∃x 2∈[2,+∞)使得f (x 1)=g (x 2),则⎩⎪⎨⎪⎧a 2≤3,a >1, 解得a ∈(1,3].。
2018版高考数学理江苏专用大一轮复习讲义课件第十一章 统计 11.1 精品
设应从高二年级抽取x名学生,则x∶50=3∶10,解得x=15.
题型分类
深度剖析
题型一 简单随机抽样 ④ 例1 (1)以下抽样方法是简单随机抽样的有___. 答案 抽取的方式确定号码的后四位为2709的为三等奖;
解析
①在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机 ②某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产
§11.1 随机抽样Fra bibliotek容索引基础知识
自主学习
题型分类
课时作业
深度剖析
基础知识
自主学习
知识梳理
1.简单随机抽样
(1) 定义:一般地,从个体为N的总体中逐个不放回地取出 n 个个体作为
样本(n∈N),如果每个个体都有相同的机会被取到,那么这样的抽样方
法,称为简单随机抽样.
(2)最常用的简单随机抽样方法有两种——抽签法和 随机数表法 .
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”) (1)简单随机抽样是一种不放回抽样.( √ ) (2)简单随机抽样每个个体被抽到的机会不一样,与先后有关.( × ) (3)抽签法中,先抽的人抽中的可能性大.( × ) (4)系统抽样在第1段抽样时采用简单随机抽样.( √ ) (5)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要 剔除2个学生,这样对被剔除者不公平.( × ) (6)分层抽样中,每个个体被抽到的可能性与层数及分层有关.( × )
解析
由题意可知,第一组随机抽取的编号l=15,
N 1 000 分段间隔数 k= n = 50 =20,
则抽取的第35个编号为15+(35-1)×20=695.
5.某学校高一,高二,高三年级的学生人数之比为3∶3∶4,现用分层 抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应 15 名学生. 从高二年级抽取___
2018版高考数学理江苏专用大一轮复习讲义课件第九章
思考辨析 判断下列结论是否正确(请在括号中打“√”或“×”)
(1)确定圆的几何要素是圆心与半径.( √ )
(2)已知点A(x1,y1),B(x2,y2),则以AB为直径的圆的方程是(x-x1)(x-x2)
+(y-y1)(y-y2)=0.( √ )
(3) 方程 Ax 2+ Bxy + Cy 2 + Dx + Ey + F = 0 表示圆的充要条件是 A = C ≠ 0 ,
B=0,D2+E2-4AF>0.( √ )
(4)方程x2+2ax+y2=0一定表示圆.( × )
2 (5)若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则 x2 + y 0 0+Dx0+Ey0+F>0.
( √ )
考点自测
1.( 教 材 改 编 ) 圆 心 是 ( - 2,3) , 且 经 过 原 点 的 圆 的 标 准 方 程 为
思维升华
(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出
方程. (2)待定系数法 ①若已知条件与圆心 (a,b)和半径r有关,则设圆的标准方程,依据已 知条件列出关于a,b,r的方程组,从而求出a,b,r的值; ②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据 已知条件列出关于D,E,F的方程组,进而求出D,E,F的值.
答案 解析
1 易知OP= AB=m. 2 要求m的最大值,
即求圆C上的点P到原点O的最大距离.
2 2 3 + 4 因为OC= =5,所以(OP)max=OC+r=6,即m的最大值为6.
3.(2016· 扬州检测)当a为任意实数时,直线(a-1)x-y+a+1=0恒过定
x2+y2+2x-4y=0 点C,则以点C为圆心, 5 为半径的圆的方程为__________________.
2018届江苏高考数学第一轮知识梳理复习课件18 最新
(1)求椭圆 E 的标准方程; (2)证明点 D 在一条定直线上运动,并求出该直线的方程; (3)求△BCD 面积的最大值.
c 5 a2 4 5 [解] (1)由题意得 = , -c= , a 3 c 5 解得 a=3,c= 5,所以 b= a2-c2=2, x2 y 2 所以椭圆 E 的标准方程为 + =1. 9 4
b x2 y 2 1.直线 y= x+3 与双曲线 2- 2=1 的交点个数是 a a b 1 ________ .
b b 解析: 因为直线 y= x+3 与双曲线的渐近线 y= x 平行, 所 a a 以它与双曲线只有 1 个交点.
2.已知椭圆的中心在坐标原点,焦点在 x 轴上,以其两个 焦点和短轴的两个端点为顶点的四边形是一个面积为 4 的正 方形,设 P 为该椭圆上的动点,C,D 的坐标分别是(- 2, 0),( 2,0),则 PC· PD 的最大值为________ . 4 x2 y 2 解析: 设椭圆的标准方程为 2+ 2=1(a>b>0),c2=a2-b2. a b
2.常用的 1 个结论 设斜率为 k(k≠0)的直线 l 与圆锥曲线 C 相交于 A,B 两点, A(x1,y1),B(x2,y2),则 AB= 1+k2|x1-x2|= 1+k2· (x1+x2)2-4x1x2 = = 1 1+ 2·|y1-y2| k 1 1+ 2· (y1+y2)2-4y1y2. k
(2)设 B(x0,y0),C(-x0,y0),显然直线 AB,AC,BD,CD y0 y0 的斜率都存在, 设为 k1, k2, k3, k4, 则 k1 = , k= , x 0 + 3 2 - x0 + 3 x0+3 x0 - 3 k3=- , k4 = , y0 y0 x0 + 3 x0 - 3 所以直线 BD, CD 的方程为: y=- (x-x0)+y0, y= y0 y0 (x+x0)+y0, x0 + 3 x0 - 3 消去 y 得- (x-x0)+y0= (x+x0)+y0,化简得 x=3, y0 y0 故点 D 在定直线 x=3 上运动.
2018届江苏高考数学第一轮知识梳理复习课件2 最新
[解析](1)依题意,注意到直线 ax+3y+3=0 和直线 x+(a-
2)y+1=0 平行的充要条件是 1 ≠1, a-2
故选 C.
a 1 - =- , 3 a-2
解得 a=-1,
x- 2y+ 4= 0, x= 0, (2)法一:由方程组 得 x+ y- 2= 0, y= 2,
第八章
平面解析几何
第 2讲
两直线的位置关系
1.两直线的平行、垂直与其斜率的关系
条 件
两直线位
置关系
平 行
斜率的关系 k1=k2 ____________ k1与k2都不存在 k1k2=-1 ____________ k1与k2一个为零、 另一个不存在
两条不重合的直线 l1,l2,斜率分别
为k1,k2
由一般式确定两直线位置关系的方法 直线方程 l1 与 l2 垂直 的充要条件 l1 与 l2 平行 的充分条件 l1 与 l2 相交 的充分条件 l1 与 l2 重合 的充分条件 l1 : A1 x+ B1 y+ C1= 0(A1 + B1 ≠ 0) 2 2 l2 : A2 x+ B2 y+ C2= 0(A2 + B2 ≠ 0) A1 A2 + B1 B2= 0 A1 B1 C1 = ≠ (A2 B2 C2 ≠ 0) A2 B2 C2 A1 B1 ≠ (A2 B2 ≠ 0) A2 B2 A1 B1 C1 = = (A2 B2 C2 ≠ 0) A2 B2 C2
将本例 (2)中条件“与直线 l3: 3x- 4y+ 5= 0 垂直”改为“与直线 l3:3x- 4y+ 5=0 平行”,求此时直线 l 的方程.
x- 2y+ 4= 0, x= 0, 解:法一:由方程组 得 即 P(0, 2). x+ y- 2= 0, y= 2,
江苏省高考数学总复习要点——知识篇(全套)精选课件
AB
② 字母表示法 a
⑶ 向量的模:
向量的大小称为向量的长度(模) 记作:AB
五 平面向量
⑷ 两个特殊向量:
① 零向量:长度为 0 的向量. 记作 0 .
零向量模为0,方向不确定. ② 单位向量:长度为 1 个单位长度的向量.
单位向量模为1,方向不一定相同. ⑸ 平行向量、共线向量:
① 平行向量又称共线向量; ② 规定零向量与任一向量平行。
⑴ 半角公式
sinx 1cosx cosx 1cosx
2
2
2
2
tanx 1cosx sinx 1coxs 2 1cosx 1coxs sinx
⑵ 万能代换公式
设tan x t 2 sinx 2t 1t2 cosx 1t2 1 t 2
tanx
2t 1t
三 基本初等函数(2)三角恒等变换
7 二倍角的正弦、余弦和正切 (B)
si2x n2sixc no xs co 2x sco 2x ssi2x n
2 cos2 x 1 1 2sin2 x
tan2x12ttaann2xx
三 基本初等函数(2)三角恒等变换
8 几个三角恒等式 (A)
⑵ 垂直 记作a:b
ab 0
a ( x 1 ,y 1 )b ( x 2 ,y 2 )x 1 x 2 y 1 y 2 0
五 平面向量
6 平面向量的应用 (A)
六 数列
1 数列的有关概念 (A)
六 数列
2 等差数列 (C)
⑴ 相关概念
① 公差d对数列的影响
② 通项公式
若d>0,则为递增数列 若d=0,则为常数数列 若d>0,则为递减数列
2018届江苏高考数学第一轮知识梳理复习课件12 最新
5x+3y-1=0 . 为_____________
(2)定义:曲线 C 上的点到直线 l 的距离的最小值称为曲线 C 到直线 l 的距离.已知曲线 C1:y=x2+a 到直线 l:y=x 的 距离等于曲线 C2:x2+(y+4)2=2 到直线 l:y=x 的距离, 9 则实数 a=________ . 4
所以 m+3+5=0,得 m=-8.
1.必明辨的 3 个易错点 (1)在判断两直线的位置关系时,易忽视斜率是否存在. (2)运用平行的充要条件时,忽视直线重合的情况. (3)运用两平行直线间的距离公式时,易忽视两方程中的 x, y 的系数分别相等这一条件.
2.必会的 2 种方法 (1)与直线 Ax+By+C=0(A2+B2≠0)垂直和平行的直线方程 可设为: ①垂直:Bx-Ay+m=0; ②平行:Ax+By+n=0(n≠C). (2)对称问题一般是将线与线的对称转化为点与点的对称, 利 用坐标转移法.
1.已知直线 l1:x+ay+6=0 和 l2:(a-2)x+3y+2a=0,
-1 则 l1∥l2 的充要条件是 a=________ .
1 a 6 解析: 由题意知,l1∥l2⇔ = ≠ ,即 a=-1. a-2 3 2a
2.已知直线 3x+4y-3=0 与直线 6x+my+14=0 平行,则
5 1.点(0,-1)到直线 x+2y=3 的距离为________ .
|0+2×(-1)-3| 解析: d= = 5. 5
2.若 l1:x-y=0 与 l2:2x-3y+1=0 的交点在直线 mx+
-8 3y+5=0 上,则 m=________ .
解析:
x-y=0, 由 得 l1 与 l2 的交点坐标为(1,1). 2x-3y+1=0,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、基本初等函数(2)三角恒等变 换
• 3正余弦正切的诱导公式 • 公式三(仅正弦不变号) • Sin(π-α)=sin α , • coS(π-α)=—cos α , • tan(π-α)=—tan α ,周期函数
三、基本初等函数(2)三角恒等变 换
• 3正余弦正切的诱导公式 • 公式四(仅正切不变号)
• 1函数的有关概念 • (1)概念 • ①非空数集 • ②“每一个”到“唯一” • (2)分段函数 • (3)表示方法 • 解析式 列表法 图像法和语言描述法
二、函数概念与基本初等函数
• 2函数的基本性质 • (1)定义域 • (2)值域 • (3)单调性 • ①任取—作差—化简、变形—定号 • ②两个单调区间一般不能用“U”连接 • (4)奇偶性 • ①考察定义域是否关于原点对称 • ②奇函数特有 f(0)=0
Ax2+bx+c≥0(a>0)
二、函数概念与基本初等函数
• (2)二分法 • ①函数的图像是连续的 • ②通过图像初步确定根所在的区间 • ③利用二分法解决问题
二、函数概念与基本初等函数
• 7函数模型及其应用 • (1)实际问题中的自变量取值的合理性
• (2)对函数 y=x+1/x 的认识 • 定义域 (-∞,0)U(0,+ ∞) • 值域 (- ∞,-2]U[2,+ ∞) • 单调性:增区间(-∞,-1),(1,+ ∞)
三角函数 图像
定义域 值域 单调性 奇偶性 周期性 对称轴 对称中心
Y=sinx
R [-1,1] 奇函数 T=2π
Y=cosx
R [-1,1] 偶函数 T=2π
Y=tanx
{X|x≠kπ+π/2,k∈Z} R
奇函数 T=π
三、基本初等函数(2)三角恒等变 换
• 5函数y=Asin(ωx+ϕ)的图形和性质 • (1)初相变换(相位变换) • (2)振幅变换 • (3)周期变换
三、基本初等函数(2)三角恒等变 换
• 3正余弦正切的诱导公式 • 公式六(正余互变) • Sin(π/2+α)=cos α , • coS(π/2+α)=—sin α, • tan(π/2+α)=—1/tan α ,
• 诱导公式:(奇变偶不变,符号看象限)
• 特殊锐角(0°,30°,45°,60°,90°) 的三角函数值
二、函数概念与基本初等函数
• 3指数函数ax 的图像和性质
a的取值 图像
定义域 值域 单调性 定点 渐近线
二、函数概念与基本初等函数
• 4对数函数logax 的图像和性质
a的取值(a>0且a≠1) 图像
定义域 值域 单调性 定点 渐近线
二、函数概念与基本初等函数
• 5幂函数的图像和性质 • (1)研究幂函数,主要靠图像; • ①确定定义域 一般为R或者(0,+∞) • ②确定奇偶性 可能会起到事半功倍的效果 • ③次幂α与±1的比较 判断图像的形状 • (2)几点说明: • ①图像必过点(1,1) • ②在第四象限没有图像
• 所谓奇偶指是整数k的奇偶性(k·/2+a)
• 所谓符号看象限是看原函数的象限(将a看 做锐角,k·/2+a之和所在象限) 注:
• ①:诱导公式应用原则:负化正、大化小, 化到锐角为终了
常见角度的三角函数值
正弦、余弦、正切图像
y
+
+
y
—
+
x
—
—
x
—
+
y
—
+
+
x —
三、基本初等函数(2)三角恒等变 换
二、函数概念与基本初等函数
• (5)周期性 f(x+T)=f(x) • ①f(x+a)=-f(x) T=2a • ②f(x+a)=1/f(x) T=2a • ③ f(x+a)=[1+f(x)]/[1-f(x)] T=4a • (6)对称性 • ①f(a-x)=f(a+x) 对称轴:x=a • ②f(2a-x)=f(x) 对称轴: x=a
三、基本初等函数(2)三角恒等变 换
• 3正余弦正切的诱导公式 • 公式一(相同) • Sin(α+2kπ)=sin α (k∈Z), • coS(α+2kπ)=cos α (k∈Z), • tan(α+2kπ)=tan α (k∈Z),
三、基本初等函数(2)三角恒等变 换
• 3正余弦正切的诱导公式 • 公式二(余弦不变号) • Sin(-α)=—sin α , 奇 • coS(-α)=cos α , 偶 • tan(-α)=—tan α ,奇 • Sin(2π-α)=—sin α , 奇,周期函数 • coS(2π-α)=cos α , 偶,周期函数 • tan(2π-α)=—tan α ,奇,周期函数
三、基本初等函数(2)三角恒等变 换
5幂函数的图像和性质
幂函数y=xα α值的大小决 定了函数图 像的形状
二、函数概念与基本初等函数
• 6函数与方程
• (1)当a>0时,一元二次方程根与函数图 像的关系
Δ=b2-4ac
Δ>0
Δ=0
Δ<0
Ax2+bx+c=0(a>0) Y=ax2+bx+c(a>0)
X1=x2=-b/(2a) 无实数根
2018江苏高考数学总复习要 点——知识篇(全套)
lyj
一、集合
• 1集合及其表示(A) • 列举法 描述法 • 元素:确定性 互异性 无序性 • 2子集(B) • (1)∅是任何集合的子集 • (2)集合{a1,a2,…,an}有2n个子集 • 3交集、并集、补集(B)
二、函数概念与基本初等函数
•
减区间[-1,0),(0,1]
• 奇偶性:奇函数
三、基本初等函数(2)三角恒等变 换
• 1三角函数的有关概念
• (1)定义
抓住x,y,r
• (2)符号 一全二正三切四余
• (3)三角函数线 正切线的起点特殊
• 2同角三角函数的基本关系式
• Sin2x+cos2x=1
• Tanx=sinx/cosx (x≠kπ+π/2)
• Sin(π+α)=—sin α (k∈Z), • coS(π+α)=—cos α (k∈Z), • tan(π+α)=tan α正切的诱导公式 • 公式五(正余互变) • Sin(π/2-α)=cos α , • coS(π/2-α)=sin α, • tan(π/2-α)=1/tan α ,