山东省济南市长清区2017届九年级数学第一次模拟试题扫描版

合集下载

2017.03济南市市中区一模

2017.03济南市市中区一模
A.-2≤h≤B.-2≤h≤1C.-1≤h≤D.-1≤h≤
二、填空题(本大题共6小题,每小题3分,共18分)
16.因式分解:xy2-4x=____________.
17.计算:-(-1)2=____________.
18.小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是___________.
2017年济南市九年级第一次模拟考试数学试题(2017.03)
一、选择题(本大题共15小题,每小题3分,共45分)
1.-2的绝对值是()
A.-B.C.-2D.2
2.数字3300用科学计数法表示为()
A.0.33×104B.3.3×103C.3.3×104D.33×103
3.如图,直线a∥b,直线c与直线a,b相交,若∠1=56°,则∠2等于()
A.24°B.34°C.56°D.124°
4.若2(a+3)的值与4互为相反数,则a的值为()
A.B.-5C.-D.-1
5.如下左图的几何体是由一个圆柱体和一个长方体组成的,则这个几何体的俯视图是()
A.B.C.D.
6.下列运算正确的是()
A.x2+x3=x5B.(x-2)2=x2-4C.(x3)4=x7D.2x2x3=2x5
(2)如图2,过原点O作另一条直线l,交双曲线y=(k>0)于P,Q两点,点P在第一象限.
①四边形APBQ一定是___________;
②若点A的坐标为(3,1),点P的横坐标为1,求四边形APBQ的面积.,
(3)设点A,P的横坐标分别为m,n,四边形APBQ可能是矩形吗?可能是正方形吗?若可能,直接写出m,n应满足的条件;若不可能,请说明理由。

山东省济南市长清区九年级数学第一次模拟考试试题(扫

山东省济南市长清区九年级数学第一次模拟考试试题(扫

山东省济南市长清区2018届九年级数学第一次模拟考试试题九年级数学参考答案一、选择题(每题4分,共48分)二、填空题(每题4分,共24分)13.x(x+y) 14.> 15.6 16.7 17.100 18.-24 19、解:(1)原式=32……2分=1-…………3分(2) 原式=a2-6+2a-a2………2分,=2a-6………3分20.(1)解①得:x<4………1分≥………2分解②得:x2所以原不等式组的解集是2≤x<4………3分(2)由x2-4x+3=0得(x-1)(x-3)=0………1分∴x-1=0或x-3=0………2分∴x1=1,x2=3………3分21.(1)解:∵BC∥OD∴∠B=∠AOD………1分∵AB是直径,∴∠ACB=90。

,………2分(3)画树状图为:共有6种等可能的结果数,其中一男生一女生的结果数为4, ………6分所以刚好抽到一男生一女生的概率3264==P .………8分 23.解:设购买了荔枝x 千克,则购买芒果(30-x)千克.………1分根据题意列方程得:26x+22(30-x)=708,………4分,解得:x=12,30-x=18.………7分答:购买了无核荔枝12千克,购买鸡蛋芒果18千克.…8分24.解:∵∠CBF=60°, ∠CAF=30°,∠CBF=∠CAF+∠BFA∴∠BFA=30°……………………3分∴AB=BF ,∵AB=800米∴AB=BF=800米……………………4分∵∠BCF=90°,∠CBF=60°,答:竖直高度CF 约为680米.……………………8分25. (1)∵点A(2,3)在y=mx 的图象上∴m=6,∴反比例函数的解析式为:y=x6,............2分 ∵B(−3,n)在反比例函数图象上,∴n=6÷(-3)=−2,∵A(2,3),B(−3,−2)两点在y=kx+b 上,∴⎩⎨⎧+-=-+=b k b k 3223解得:⎩⎨⎧==11b k ∴一次函数的解析式为:y=x+1;……4分 (2)−3<x<0或x>2;……6分 (3)以BC 为底,则BC 边上的高AE 为3+2=5,∴S △ABC=21×2×5=5.……10分 26.(1)CE=AF ;……1分证明:在正方形ABCD,等腰直角三角形CEF 中,FD=DE,CD=CA,∠ADC=∠EDF=90∘ ∴∠ADF=∠CDE ,∴△ADF ≌△CDE ,∴CE=AF.……4分(2)∵DE=1,AE=7,CE=3,∴CE=AF=3,EF=2,……5分∵AE2+EF2=7+2=9,AF2=9,即AE2+EF2=AF2∴△AEF为直角三角形,……7分∴∠BEF=90∘∴∠AED=∠AEF+DEF=90∘+45∘=135∘;……8分(3)∵M是AB中点,∴MA=21AB=21AD,∵AB∥CD,∴21===DCAMOCOAODOM,……9分在Rt△DAM中,DM=5222=+AMAD∴DO=354,∵OF=35,∴DF=5,……10分∵∠DFN=∠DCO=45∘,∠FDN=∠CDO,∴△DFN∽△DCO,……11分373543535445,=-=-=∴=∴=∴=∴DNCDCNDNDNDODNDCDF……12分27.(1)∵C(0,4),∴OC=4.∵OA=OC=4OB,∴OA=4,OB=1,∴A(4,0),B(−1,0),设抛物线解析式:y=a(x+1)(x−4),∴4=−4a,∴a=−1.∴y=−x2+3x+4.……3分(2)存在. ……4分作PN⊥x轴交AC于N,求得AC的解析式为y=-x+4 ……5分设P(x,−x2+3x+4),则N(x,-x+4),得PN=(−x2+3x+4)-(-x+4)=−x2+4x……6分S△PAC=21PN×4=2PN=2(−x2+4x)=-2(x-2)2+8……7分∴P点坐标为(2,6)时ΔPAC面积的最大值,最大面积是8…………8分(3)Q(0,0),(-4,0),()()0,244,0,244-+. ……12分。

山东省济南市长清区九年级数学第一次模拟试题(扫描版)

山东省济南市长清区九年级数学第一次模拟试题(扫描版)

山东省济南市长清区2017届九年级数学第一次模拟试题2017长清一模参考答案一、选择题:二、填空题(每小题3分)16.3217、()21-mm 18、2119、-4 20.6 21、②③④三、解答题22、(1)解:原式=x2+2x+1-2x+ x2 …………………………2分 =2 x2+1 …………………………3分 (2)23、(1)∵AF=CE∴AF+EF=CE+EF即AE=CF …………………………1分∵ABCD是平行四边形∴AB∥CD且AB=CD ∴∠BAE=∠DCF在△BAE和△DCF中⎪⎩⎪⎨⎧=∠=∠=CFAEDCFBAECDAB∴DCF△B AE△≅…………………………2分∴∠1=∠2----------(3分)…………………………3分23(2) 试题解析:如图,连接OC.∵CD是⊙O的切线,∴∠OCD=90°.…………………………1分∵∠A=30°,∴∠COB=2∠A=60°.题号1 2 3 4 5 6 7 8 9 10 11 12 13 14 15答案A D A CB BCD B A C D D A D…………………………1分…………………………2分…………………………3分…………………………4分∵OC=OB ,∴△OBC 是等边三角形, …………………………3分 ∴∠OCB=60°,∴∠BCD=90°﹣∠OCB=30°. …………………………4分24、解:设杨老师骑自行车平均每小时行驶x 千米,则驾车每小时行驶4x 千米,由题意得4x1021-x 10=----------(4分)解得x=15----------(6分)经检验x=15是原方程的解且符合题意----------(7分)答:杨老师骑自行车平均每小时行驶15千米。

----------(8分)25.(1) 60 72…………………………2分(2)…………………………4分(3)26. 试题解析:(1)∵在Rt △OAB 中,OB=3,tan ∠AOB=34, ∴34=OB AB ∴AB=4.∴A 点的坐标为(3,4) …………………………2分 ∴k=xy=12; …………………………3分(2)∵DC 由AB 平移得到,DE :EC=3:1, ∴点E 的纵坐标为1. 又∵点E 在双曲线y=x12上, ∴点E 的坐标为(12,1 ). …………………………4分26.(1)∵在Rt△OAB 中,OB=3,tan∠AOB=,∴∴AB=4.∴A 点的坐标为(3,4)……..2分 ∴k=xy=12;……3分(2)设直线AE 的函数表达式为y=kx+b 则⎩⎨⎧+=+=b k bk 12134, …………………………5分……………………6分……………7分……………………8分(男,男)(男,女)(女,男)(女,女)(女,男)(女,女)解得⎪⎩⎪⎨⎧=-=531b k , ∴直线AE 的函数表达式为 y=-31x+5; …………………………6分(3)结论:AM=NE .理由:在表达式y=-31x+5中,令y=0可得x=15,令x=0可得y=5∴点M (0,5),N (15,0 ).延长DA 交y 轴于点F ,则AF ⊥OM ,且AF=3,OF=4,∴MF=OM-OF=1,∴由勾股定理得AM=10132222=+=+MF AF .∵CN=15-12=3,EC=1,∴根据勾股定理可得EN=10132222=+=+CE CN∴AM=NE . …………………………9分或由三角形全等证明。

2016-2017学年山东省济南市长清区九年级(上)数学期中试卷带解析答案

2016-2017学年山东省济南市长清区九年级(上)数学期中试卷带解析答案

2016-2017学年山东省济南市长清区九年级(上)期中数学试卷一、选择题(本大题共15个小题,每小题3分,共45分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列水平放置的几何体中,俯视图是矩形的为()A.圆柱B.长方体C.三棱柱D.圆锥2.(3分)若=,则的值为()A.1 B.C.D.3.(3分)用配方法解方程x2﹣2x﹣1=0时,原方程应变形为()A.(x﹣1)2=0 B.(x﹣1)2=1 C.(x﹣1)2=2 D.(x﹣1)2=54.(3分)东营市某学校组织知识竞赛,共设有20道试题,其中有关中国优秀传统文化试题10道,实践应用试题6道,创新能力试题4道.小婕从中任选一道试题作答,他选中创新能力试题的概率是()A.B.C.D.5.(3分)一元二次方程x2=2x的根是()A.x1=0,x2=2 B.x=0 C.x=2 D.x1=0,x2=﹣26.(3分)如图是小明一天上学、放学时看到的一根电线杆的影子的俯视图,按时间先后顺序进行排列正确的是()A.(1)(2)(3)(4)B.(4)(3)(1)(2)C.(4)(3)(2)(1)D.(2)(3)(4)(1)7.(3分)如图所示,该几何体的俯视图是()A.B.C.D.8.(3分)如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD 于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:29.(3分)△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为()A.1:4 B.1:3 C.1:2 D.1:1610.(3分)如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.11.(3分)同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是()A.B.C.D.12.(3分)如图,在平面直角坐标系中,已知点A(﹣3,6)、B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣1,2)B.(﹣9,18)C.(﹣9,18)或(9,﹣18)D.(﹣1,2)或(1,﹣2)13.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>514.(3分)如图,在▱ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为()A.B.4 C.2D.15.(3分)如图,在△ABC中,中线BE,CD相交于点O,连接DE,下列结论:①=;②=;③=;④=其中正确的个数有()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共6小题,每小题3分,满分18分)16.(3分)已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m=.17.(3分)如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.18.(3分)如图,上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子恰好在甲的影子里边,已知甲,乙同学相距1米.甲身高1.8米,乙身高1.5米,则甲的影长是米.19.(3分)已知点D是线段AB的黄金分割点,且线段AD的长为2厘米,则最短线段BD的长是厘米.20.(3分)如图,矩形EFGH内接于△ABC,且边FG落在BC上,若AD⊥BC,BC=3,AD=2,EF=EH,那么EH的长为.21.(3分)如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P 在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP=.三、解答题(本大题共6题,满分57分)22.(7分)解下列方程:(1)(2x﹣3)2=9(2)3x2﹣10x+6=0.23.(7分)已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.24.(8分)为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.25.(8分)甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.26.(9分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB 的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.27.(9分)如图,在矩形ABCD中,AB=12cm,BC=6cm.点P沿AB边从点A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1 cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤6)那么:(1)当t为何值时,△QAP为等腰直角三角形?(2)求四边形QAPC的面积,提出一个与计算结果有关的结论;(3)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?28.(9分)阅读下面材料:小昊遇到这样一个问题:如图1,在△ABC中,∠ACB=90°,BE是AC边上的中线,点D在BC边上,CD:BD=1:2,AD与BE相交于点P,求的值.小昊发现,过点A作AF∥BC,交BE的延长线于点F,通过构造△AEF,经过推理和计算能够使问题得到解决(如图2).请回答:的值为.参考小昊思考问题的方法,解决问题:如图3,在△ABC中,∠ACB=90°,点D在BC的延长线上,AD与AC边上的中线BE的延长线交于点P,DC:BC:AC=1:2:3.(1)求的值;(2)若CD=2,则BP=.2016-2017学年山东省济南市长清区九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共15个小题,每小题3分,共45分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列水平放置的几何体中,俯视图是矩形的为()A.圆柱B.长方体C.三棱柱D.圆锥【解答】解:A、圆柱的俯视图为圆,故本选项错误;B、长方体的俯视图为矩形,故本选项正确;C、三棱柱的俯视图为三角形,故本选项错误;D、圆锥的俯视图为圆且圆心处有一圆点,故本选项错误.故选:B.2.(3分)若=,则的值为()A.1 B.C.D.【解答】解:∵=,∴==.故选:D.3.(3分)用配方法解方程x2﹣2x﹣1=0时,原方程应变形为()A.(x﹣1)2=0 B.(x﹣1)2=1 C.(x﹣1)2=2 D.(x﹣1)2=5【解答】解:∵x2﹣2x=1,∴x2﹣2x+1=1+1,即(x﹣1)2=2,故选:C.4.(3分)东营市某学校组织知识竞赛,共设有20道试题,其中有关中国优秀传统文化试题10道,实践应用试题6道,创新能力试题4道.小婕从中任选一道试题作答,他选中创新能力试题的概率是()A.B.C.D.【解答】解:∵共设有20道试题,创新能力试题4道,∴他选中创新能力试题的概率==.故选:A.5.(3分)一元二次方程x2=2x的根是()A.x1=0,x2=2 B.x=0 C.x=2 D.x1=0,x2=﹣2【解答】解:x2﹣2x=0,x(x﹣2)=0,x=0或x﹣2=0,所以x1=0,x2=2.故选:A.6.(3分)如图是小明一天上学、放学时看到的一根电线杆的影子的俯视图,按时间先后顺序进行排列正确的是()A.(1)(2)(3)(4)B.(4)(3)(1)(2)C.(4)(3)(2)(1)D.(2)(3)(4)(1)【解答】解:根据平行投影的规律知:顺序为(4)(3)(1)(2).故选:B.7.(3分)如图所示,该几何体的俯视图是()A.B.C.D.【解答】解:从上往下看,可以看到选项C所示的图形.故选:C.8.(3分)如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD 于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2【解答】解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.9.(3分)△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为()A.1:4 B.1:3 C.1:2 D.1:16【解答】解:∵△ABC与△DEF的相似比为1:4,∴△ABC与△DEF的周长比为1:4.故选:A.10.(3分)如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.故选:C.11.(3分)同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是()A.B.C.D.【解答】解:由题意可得,所有的可能性为:∴至少有两枚硬币正面向上的概率是:=,故选:D.12.(3分)如图,在平面直角坐标系中,已知点A(﹣3,6)、B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣1,2)B.(﹣9,18)C.(﹣9,18)或(9,﹣18)D.(﹣1,2)或(1,﹣2)【解答】解:∵点A(﹣3,6),以原点O为位似中心,相似比为,把△ABO 缩小,∴点A的对应点A′的坐标是(﹣1,2)或(1,﹣2),故选:D.13.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>5【解答】解:∵关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,∴,即,解得:k<5且k≠1.故选:B.14.(3分)如图,在▱ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为()A.B.4 C.2D.【解答】解:∵∠ABC的平分线交CD于点F,∴∠ABE=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CBE=∠CFB=∠ABE=∠E,∴CF=BC=AD=8,AE=AB=12,∵AD=8,∴DE=4,∵DC∥AB,∴,∴,∴EB=6,∵CF=CB,CG⊥BF,∴BG=BF=2,在Rt△BCG中,BC=8,BG=2,根据勾股定理得,CG===2,故选:C.15.(3分)如图,在△ABC中,中线BE,CD相交于点O,连接DE,下列结论:①=;②=;③=;④=其中正确的个数有()A.1个 B.2个 C.3个 D.4个【解答】解:①∵BE、CD是△ABC的中线,即D、E是AB和AC的中点,∴DE是△ABC的中位线,∴DE=BC,即=,故①正确;②∵DE是△ABC的中位线,∴DE∥BC,∴△DOE∽△COB,∴=()2=()2=,故②错误;③∵DE∥BC∴△ADE∽△ABC∴=△DOE∽△COB∴=∴=,故③正确;④∵△ABC的中线BE与CD交于点O.∴点O是△ABC的重心,根据重心性质,BO=2OE,△ABC的高=3△BOC的高,且△ABC与△BOC同底(BC)=3S△BOC,∴S△ABC由②和③知,S△ODE=S△COB,S△ADE=S△BOC,∴=.故④正确.综上,①③④正确.故选:C.二、填空题(本大题共6小题,每小题3分,满分18分)16.(3分)已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m=6.【解答】解:∵m是关于x的方程x2﹣2x﹣3=0的一个根,∴m2﹣2m﹣3=0,∴m2﹣2m=3,∴2m2﹣4m=6,故答案为:6.17.(3分)如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.【解答】解:∵AG=2,GD=1,∴AD=3,∵AB∥CD∥EF,∴=,故答案为:.18.(3分)如图,上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子恰好在甲的影子里边,已知甲,乙同学相距1米.甲身高1.8米,乙身高1.5米,则甲的影长是6米.【解答】解:设甲的影长是x米,∵BC⊥AC,ED⊥AC,∴△ADE∽△ACB,∴=,∵CD=1m,BC=1.8m,DE=1.5m,∴=,解得:x=6.所以甲的影长是6米.19.(3分)已知点D是线段AB的黄金分割点,且线段AD的长为2厘米,则最短线段BD的长是﹣1厘米.【解答】解:由题意得,=,解得:BD=﹣1.故答案为:﹣1.20.(3分)如图,矩形EFGH内接于△ABC,且边FG落在BC上,若AD⊥BC,BC=3,AD=2,EF=EH,那么EH的长为.【解答】解:如图所示:∵四边形EFGH是矩形,∴EH∥BC,∴△AEH∽△ABC,∵AM⊥EH,AD⊥BC,∴,设EH=3x,则有EF=2x,AM=AD﹣EF=2﹣2x,∴,解得:x=,则EH=.故答案为:.21.(3分)如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP= 12.【解答】解:如图,延长BQ交射线EF于M,∵E、F分别是AB、AC的中点,∴EF∥BC,∴∠M=∠CBM,∵BQ是∠CBP的平分线,∴∠PBM=∠CBM,∴∠M=∠PBM,∴BP=PM,∴EP+BP=EP+PM=EM,∵CQ=CE,∴EQ=2CQ,由EF∥BC得,△MEQ∽△BCQ,∴==2,∴EM=2BC=2×6=12,即EP+BP=12.故答案为:12.三、解答题(本大题共6题,满分57分)22.(7分)解下列方程:(1)(2x﹣3)2=9(2)3x2﹣10x+6=0.【解答】解:(1)直接开平方,得2x﹣3=±3,∴2x﹣3=3或2x﹣3=﹣3,∴x1=3,x2=0;(2)方程两边同时除以3,得移项,得:x2﹣x=﹣2,配方,得x2﹣x+()2=﹣2+()2,即.∴,∴x1=,x2=.23.(7分)已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.【解答】解:(1)连接AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE的投影.(2)∵AC∥DF,∴∠ACB=∠DFE.∵∠ABC=∠DEF=90°∴△ABC∽△DEF.∴,∴∴DE=10(m).说明:画图时,不要求学生做文字说明,只要画出两条平行线AC和DF,再连接EF即可.24.(8分)为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.【解答】解:(1)设该县投入教育经费的年平均增长率为x,根据题意得:6000(1+x)2=8640解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去),答:该县投入教育经费的年平均增长率为20%;(2)因为2016年该县投入教育经费为8640万元,且增长率为20%,所以2017年该县投入教育经费为:y=8640×(1+0.2)=10368(万元),答:预算2017年该县投入教育经费10368万元.25.(8分)甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.【解答】解:(1)树状图如下:(2)∵共6种情况,两个数字之和能被3整除的情况数有2种,∴两个数字之和能被3整除的概率为,即P(两个数字之和能被3整除)=.26.(9分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB 的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.【解答】(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB•AD;(2)证明:∵E为AB的中点,∴CE=AB=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD;(3)解:∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF,∵CE=AB,∴CE=×6=3,∵AD=4,∴,∴.27.(9分)如图,在矩形ABCD中,AB=12cm,BC=6cm.点P沿AB边从点A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1 cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤6)那么:(1)当t为何值时,△QAP为等腰直角三角形?(2)求四边形QAPC的面积,提出一个与计算结果有关的结论;(3)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?【解答】解:(1)对于任何时刻t,AP=2t,DQ=t,QA=6﹣t.当QA=AP时,△QAP为等腰直角三角形,即:6﹣t=2t,解得:t=2(s),所以,当t=2s时,△QAP为等腰直角三角形.(2)在△QAC中,QA=6﹣t,QA边上的高DC=12,=QA•DC=(6﹣t)•12=36﹣6t.∴S△QAC在△APC中,AP=2t,BC=6,=AP•BC=•2t•6=6t.∴S△APC=S△QAC+S△APC=(36﹣6t)+6t=36(cm2).∴S四边形QAPC由计算结果发现:在P、Q两点移动的过程中,四边形QAPC的面积始终保持不变.(也可提出:P、Q两点到对角线AC的距离之和保持不变).(3)根据题意,可分为两种情况来研究,在矩形ABCD中:①当=时,△QAP∽△ABC,那么有:=,解得t==1.2(s),即当t=1.2s时,△QAP∽△ABC;②当=时,△PAQ∽△ABC,那么有:=,解得t=3(s),即当t=3s时,△PAQ∽△ABC;所以,当t=1.2s或3s时,以点Q、A、P为顶点的三角形与△ABC相似.28.(9分)阅读下面材料:小昊遇到这样一个问题:如图1,在△ABC中,∠ACB=90°,BE是AC边上的中线,点D在BC边上,CD:BD=1:2,AD与BE相交于点P,求的值.小昊发现,过点A作AF∥BC,交BE的延长线于点F,通过构造△AEF,经过推理和计算能够使问题得到解决(如图2).请回答:的值为.参考小昊思考问题的方法,解决问题:如图3,在△ABC中,∠ACB=90°,点D在BC的延长线上,AD与AC边上的中线BE的延长线交于点P,DC:BC:AC=1:2:3.(1)求的值;(2)若CD=2,则BP=6.【解答】解:的值为.提示:易证△AEF≌△CEB,则有AF=BC.设CD=k,则DB=2k,AF=BC=3k,由AF∥BC可得△APF∽△DPB,即可得到==.故答案为:;解决问题:(1)过点A作AF∥DB,交BE的延长线于点F,如图,设DC=k,由DC:BC=1:2得BC=2k,DB=DC+BC=3k.∵E是AC中点,∴AE=CE.∵AF∥DB,∴∠F=∠1.在△AEF和△CEB中,,∴△AEF≌△CEB,∴EF=BE,AF=BC=2k.∵AF∥DB,∴△AFP∽△DBP,∴====.∴的值为;(2)当CD=2时,BC=4,AC=6,∴EC=AC=3,EB==5,∴EF=BE=5,BF=10.∵=(已证),∴=,∴BP=BF=×10=6.故答案为6.。

2017年山东济南长清区初三一模数学试卷

2017年山东济南长清区初三一模数学试卷

2017年山东济南长清区初三一模数学试卷一、选择题(共15小题;共75分)1. −13的倒数是 A. −3B. 3C. 13D. −132. 钓鱼岛是中国的固有领土,位于中国东海,面积为4400000 m2,数据4400000用科学记数法表示为 A. 4.4×106B. 44×105C. 4×106D. 0.44×1073. 如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是 A. 图①B. 图②C. 图③D. 图④4. 下列计算,正确的是 A. a2⋅a2=2a2B. a2+a2=a4C. −a22=a4D. a+12=a2+15. 一个几何体的三视图如图所示,则这个几何体是 A. B.C. D.6. 下列运算结果为x−1的是 A. 1−1x B. x2−1x⋅xx+1C. x+1x÷1x−1D. x2+2x+1x+17. 下列四个手机 APP图标中,是轴对称图形的是 A. B.C. D.8. 如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是A. −2,−4B. −2,4C. 2,−3D. −1,−39. 如图,直线y1=x+b与y2=kx−1相交于点P,点P的横坐标为−1,则关于x的不等式x+b>kx−1的解集在数轴上表示正确的是 A. B.C. D.10. 济南园博园对2016年国庆黄金周七天假期的游客人数进行了统计,如表:日期10月1日10月2日10月3日10月4日10月5日10月6日10月7日旅游人数万 1.5 2.2 2.2 3.8 1.5 2.20.6其中平均数和中位数分别是 A. 2和2.2B. 2和2C. 1.5和2.2D. 2.2和3.811. 长清区政府准备在大学城修建一座高AB=6 m的过街天桥,已知天桥的坡面AC与地面BC的夹角∠ACB的正弦值为13,则坡面AC的长度为 m.A. 16B. 10C. 18D. 812. 关于x的一元二次方程m2−1x2−2m+1x+1=0有实数根,则m的取值范围是 A. m>1B. m≥1C. m≥−1且m≠1D. m>−1且m≠113. 如图,正方形ABCD中,AB=2,E为BC中点,两个动点M和N分别在边CD和AD上运动且MN=1,若△ABE与以D,M,N为顶点的三角形相似,则DM为 A. 13B. 55C. 13或23D. 55或25514. 如图,在直角坐标系xOy中,已知A0,1,B 0,以线段AB为边向上作菱形ABCD,且点D在y轴上.若菱形ABCD以每秒2个单位长度的速度沿射线AB滑行,直至顶点D落在x轴上时停止.设菱形落在x轴下方部分的面积为S,则表示S与滑行时间t的函数关系的图象为 A. B.C. D.15. 如图,在平面直角坐标系中有一菱形OABC且∠A=120∘,点O,B在y轴上,OA=1,现在把菱形向右无滑动翻转,每次翻转60∘,点B的落点依次为B1,B2,B3⋯,连续翻转2017次,则B2017的坐标为 A. 1345,0B. 1345,32C. 1345.5,0 D. 1345.5,32二、填空题(共6小题;共30分)16. 计算π−10+2−1= ______.17. 分解因式:m3−2m2+m= ______.18. 在一个不透明的纸箱中有四张形状大小完全相同的卡片,上面分别画有圆、等腰直角三角形、平行四边形、等边三角形,从中随机抽取一张,卡片上的图形是中心对称图形的概率为______.19. 若x2−4xy−y2=0,则yx −xy= ______.20. 如图,点A为函数y=9x x>0图象上一点,连接OA,交函数y=1xx>0的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为______.21. 在矩形ABCD中,点E为AD的中点,连接BE,AC,AC⊥BE于点F,连接DF,则下列结论正确的有______.①CF=3AF;②△AEF与△CAB相似;③DF=DC;④tan∠CAD=22.三、解答题(共8小题;共104分)22. (1)化简:x+12−x2−x;(2)解不等式组12x>1, ⋯⋯①1−x≥−3, ⋯⋯②并把不等式组的解集在数轴上表示出来.23. 四边形ABCD是平行四边形,AF=CE,求证:∠1=∠2.24. 如图,已知△ABC内接于⊙O,CD是⊙O的切线与半径OB的延长线交于点D,∠A=30∘,求∠BCD的度数.25. 2017年,长清区政府提出了倡导绿色出行的口号,为了响应区政府的号召,杨老师上班由驾车改为骑自行车.已知杨老师家距离学校10千米,他驾车速度是骑自行车速度的4倍,他从家出发到学校,骑自行车所用时间比驾车所用时间多30分钟.那么杨老师骑自行车平均每小时行驶多少千米?26. 为了提高科技创新意识,我市某中学在“2016年科技节”活动中举行科技比赛,包括“航模”、“机器人”、“环保”、“建模”四个类别(每个学生只能参加一个类别的比赛),各类别参赛人数统计如图,请根据以上信息,解答下列问题:(1)全体参赛的学生共有______ 人,“建模”在扇形统计图中的圆心角是______ ∘;(2)将条形统计图补充完整;(3)在比赛结果中,获得“环保”类一等奖的学生为1名男生和2名女生,获得“建模”类一等奖的学生为1名男生和1名女生,现从这两类获得一等奖的学生中各随机选取1名学生参加市级“环保建模”考察活动,问选取的两人中恰为1男生1女生的概率是多少?x>0的图象经过线段OA的端点A,O为原点,作AB⊥x轴于点B,27. 如图,反比例函数y=kx.点B的坐标为3,0,tan∠AOB=43(1)求k的值;x>0的图象恰好经(2)将线段AB沿x轴正方向平移到线段DC的位置,反比例函数y=kx过DC上一点E,且DE:EC=3:1,求直线AE的函数表达式;(3)若直线AE与x轴交于点N,与y轴交于点M,请你探索线段AM与线段NE的大小关系,写出你的结论并说明理由.28. 在△ABC中,AB=AC,∠BAC=2∠DAE=2α.(1)如图1,若点D关于直线AE的对称点为F,求证:△ADF∽△ABC;(2)如图2,在(1)的条件下,若α=45∘,求证:DE2=BD2+CE2;(3)如图3,若α=45∘,点E在BC的延长线上,则等式DE2=BD2+CE2还能成立吗?请说明由.29. 如图,抛物线y=14x2+bx+c与x轴交于点A−2,0,交y轴于点B0,−52.直线y=kx+32过点A与y轴交于点C,与抛物线的另一个交点是D.(1)求抛物线y=14x2+bx+c与直线y=kx+32的解析式;(2)设点P是直线AD下方的抛物线上一动点(不与点A,D重合),过点P作y轴的平行线,交直线AD于点M,作DE⊥y轴于点E.探究:是否存在这样的点P,使四边形PMEC是平行四边形?若存在请求出点P的坐标;若不存在,请说明理由;(3)在(2)的条件下,作PN⊥AD于点N,设△PMN的周长为m,点P的横坐标为x,求m与x的函数关系式,并求出m的最大值.答案第一部分1. A2. A3. A4. C5. D6. B7. C8. A9. A 10. A11. C 12. D 13. D 14. A 15. D第二部分16. 3217. m m−1218. 1219. −420. 621. ②③④第三部分22. (1)原式=x 2+2x+1−2x+x2=2x2+1.(2)解不等式①,得x>2.解不等式②,得x≤4.不等式①②的解集在数轴上表示为:2<x≤4.23. ∵AF=CE,∴AF+EF=CE+EF,即AE=CF,∵四边形ABCD是平行四边形,∴AB∥CD且AB=CD,∴∠BAE=∠DCF,在△BAE和△DCF中,AB=CD,∠BAE=∠DCF, AE=CF,∴△BAE≌△DCF SAS,∴∠1=∠2.24. 如图,连接OC,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90∘,∵∠A=30∘,∴∠COB=2∠A=60∘,∵OC=OB,∴△OBC是等边三角形,∴∠OCB=60∘,∴∠BCD=90∘−∠OCB=30∘.25. 设杨老师骑自行车平均每小时行驶x千米,则驾车每小时行驶4x千米,由题意得:10x −104x=12.解得:x=15.经检验x=15是原方程的解且符合题意.答:杨老师骑自行车平均每小时行驶15千米.26. (1)60;72(2)“环保”类人数为:60×25%=15(人),“建模”类人数为:60−15−18−15=12(人),补全条形图如图:(3)画树状图如图:6种等可能结果,其中两人中恰为1男生1女生的有3种结果,所以选取的两人中恰为1男生1女生的概率是:36=12.27. (1)∵在Rt△OAB中,OB=3,tan∠AOB=43,∴ABOB =43,∴AB=4,∴A点的坐标为3,4,∴k=xy=12.(2)∵DC由AB平移得到,DE:EC=3:1,∴点E的纵坐标为1,又∵点E在双曲线y=12x上,∴点E的坐标为12,1,设直线AE的函数表达式为y=ax+b,则4=3a+b,1=12a+b,解得a=−13,b=5,∴直线AE的函数表达式为y=−13x+5.(3)结论:AM=NE.理由:在表达式y=−13x+5中,令y=0可得x=15,令x=0可得y=5,∴点M0,5,N15,0.延长DA交y轴于点F,AF⊥OM,且AF=3,OF=4,∴MF=OM−OF=1,∴由勾股定理得AM= AF2+MF2=32+12=10,∵CN=15−12=3,EC=1,∴根据勾股定理可得EN= CN2+CE2=32+12=10.∴AM=NE.28. (1)∵点D关于直线AE的对称点为F,∴∠EAF=∠DAE,AD=AF,又∵∠BAC=2∠DAE,∴∠BAC=∠DAF,∵AB=AC,∴ABAD =ACAF.∴△ADF∽△ABC.(2)∵点D关于直线AE的对称点为F,∴EF=DE,AF=AD,∵α=45∘,∴∠BAD=90∘−∠CAD,∠CAF=∠DAE+∠EAF−∠CAD=45∘+45∘−∠CAD=90∘−∠CAD,∴∠BAD=∠CAF,在△ABD和△ACF中,AB=AC,∠BAD=∠CAF,AD=AF.∴△ABD≌△ACF SAS,∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=2α,α=45∘,∴△ABC是等腰直角三角形,∴∠B=∠ACB=45∘,∴∠ECF=∠ACB+∠ACF=45∘+45∘=90∘,在Rt△CEF中,由勾股定理得,EF2=CF2+CE2,所以,DE2=BD2+CE2.(3)DE2=BD2+CE2还能成立.理由如下:作点D关于AE的对称点F,连接EF,CF,EF=DE,AF=AD,∵α=45∘,∴∠BAD=90∘−∠CAD,∠CAF=∠DAE+∠EAF−∠CAD=45∘+45∘−∠CAD=90∘−∠CAD,∴∠BAD=∠CAF,在△ABD和△ACF中,AB=AC,∠BAD=∠CAF,AD=AF.∴△ABD≌△ACF SAS,∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=2α,α=45∘,∴△ABC是等腰直角三角形,∴∠B=∠ACB=45∘,∴∠BCF=∠ACB+∠ACF=45∘+45∘=90∘.∴∠ECF=180∘−∠BCF=180∘−90∘=90∘,在Rt△CEF中,由勾股定理得,EF2=CF2+CE2,所以,DE2=BD2+CE2.29. (1)∵y=14x2+bx+c经过点A−2,0和B0,−52,∴由此得1−2b+c=0,c=−52,解得b=−34,c=−52,∴抛物线的解析式是y=14x2−34x−52;∵直线y=kx+32经过点A−2,0,∴−2k+32=0,解得:k=34,∴直线的解析式是y=34x+32.(2)可求D的坐标是8,712,点C的坐标是0,32,∴CE=6,设P的坐标是 x,14x2−34x−52,则M的坐标是 x,34x+32,∵点P在直线AD的下方,此时PM=34x+32−14x2−34x−52=−14x2+32x+4,由于PM∥y轴,要使四边形PMEC是平行四边形,必有PM=CE,即−14x2+32x+4=6,解这个方程得:x1=2,x2=4,当x=2时,y=−3,当x=4时,y=−32,因此,直线AD下方的抛物线上存在这样的点P,使四边形PMEC是平行四边形,点P的坐标是2,−3和4,−32;(3)在Rt△CDE中,DE=8,CE=6,由勾股定理得:DC=82+62=10,∴△CDE的周长是24,∵PM∥y轴,∴∠PMN=∠DCE,∵∠PNM=∠DEC=90∘,∴△PMN∽△CDE,∴△PMN的周长△CDE的周长=PMDC,即m24=−14x2+32x+410,化简整理得:m与x的函数关系式是:m=−35x2+185x+485,m=−35x2+185x+485=−35x−32+15,∵−35<0,∴m有最大值,当x=3时,m的最大值是15.。

山东省济南市2017年初中综合素质测试模拟数学试卷

山东省济南市2017年初中综合素质测试模拟数学试卷

数学模拟试题注意事项:试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.Ⅰ卷满分为45分;Ⅱ卷满分为75分.本试题满分为120分.考试时间为120分钟.本考试不允许使用计算器.第Ⅰ卷(选择题共45分)一、选择题(每小题3分,共计45分) 1)A. 9 B .±9 C.3 D. ±32.下列图形中,是中心对称图形又是轴对称图形的是( )A. B. C. D.3.下列运算正确的是( )A .235a a a +=B .222()a b a b +=+C .235()a a =D .235x x x =·4.几个棱长为1的正方体组成的几何体的三视图如图所示,则这个几何体的体积是( )A .4B .5C .6D .75.下列说法正确的是( )A. 掷一枚均匀的骰子,骰子停止转动后,点数小于6是必然事件B .甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S 甲2=0.4,S 乙2=0.6,则甲的射击成绩较稳定 C .“明天降雨的概率为12”,表示明天有半天都在降雨 D. 了解一批电视机的使用寿命,适合用普查的方式6.如第6题图是婴儿车的平面示意图,其中AB ∥CD ,∠1=120°,∠3=40°,那么∠2的度数为( )A .80°B .90°C .100°D .102°7.已知24b ac ->0,下列方程①2ax bx c ++=0;②2x bx ac ++=0;③2cx bx a ++=0.其中一定有两个不等的实数根的方程有( ) A . 0个B .1个C .2个D .3个8.x 1,x 2是关于x 的一元二次方程x 2-bx +b -2=0的两个实数根,是否存在实数b 使 11x +21x =0成立,则正确的结论是() A .b =0时成立 B .b =2时成立 C .b =0或2时成立 D .不存在9.若关于x 的一元一次不等式组202x m x m -<⎧⎨+>⎩有解,则m 的取值范围为()A. m >23-B. m ≤23 C . m >23D. m ≤23- 10.如第10题图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1、∠2之间有一种数量关系始终保持不变,请找一找这个规律,你发现的规律是( ) A. ∠A =∠1+∠2 B.2∠A =∠1+∠2 C. 3∠A =2∠1+∠2 D. 3∠A =2(∠1+∠2)第6题图 第10题图 第11题图11.如第11题图,一张半径为1的圆形纸片在边长为a (a ≥3)的正方形内任意移动,则在该正方形内,这张圆形纸片“不能接触到的部分”的面积是( ) A .a 2﹣πB .4﹣πC .πD .(4﹣π)a 212.如第12题图,矩形ABCD 的周长为20cm ,两条对角线相交于O 点,过点O 作AC 的垂线EF ,分别交AD ,BC 于E ,F 点,连接CE .则△CDE 的周长为() A.5cmB.8cmC.9cmD.10cm13.在一次函数y =-x +3的图象上取一点P ,作PA ⊥x 轴,垂足为A ,作PB ⊥y轴,垂足为B ,且矩形OAPB 的面积为94,则这样的点P 共有( )A.4个B.3个C.2个D.1个14.如第14题图是二次函数y =ax 2+bx +c (a ≠0)图象的一部分,对称轴为x =12,且经过点(2,0).下列说法:①abc <0;②-2b+c =0;③4a +2b +c <0;④若(-52,y 1), (52,y 2)是抛物线上的两点,则y 1<y 2;⑤111()()422a b m am b m +>+≠其中.其中说法正确的是()A.①②④⑤B. ③④C.①③D. ①②⑤15.如第15题图,在△ABC 中,∠C =90°,点D 是BC 边上一动点,过点B 作BE ⊥AD 交AD 的延长线于E .若AC =6,BC =8,则DEAD的最大值为( )A .12B .13C .34D .2第12题图 第14题图 第15题图第Ⅱ卷(非选择题,共75分)二、填空题(本大题共6小题,每小题3分,共18分,把答案填写在题中横线上)16.分式33x x -+的值为零,则x = ____________.17.如图,已知二次函数y =-x 2+2x ,当-1<x <a 时,y 随x 的增大而增大,则实数a 的取值范围是.18.如图,P 是双曲线y =4x(x >0)的一个分支上的一点,以点P 为圆心,1个单位长度为半径作⊙P ,当⊙P 与直线x =4相切时,点P 的坐标为 .19.如图,⊙O 的半径为2,点O 到直线l 的距离为3,点P 是直线l 上的一个动点,PQ 切⊙O 于点Q ,则PQ 的最小值为________. 20.如图,双曲线y =kx经过第二象限的点B ,点P 在y 轴上,点A 在x 轴上,且点B 与点A 关于点P 对称,若OC =2OA ,△BCP 的面积为4,则k 的值是__________.21.已知一个圆心角为270°、半圆的半径为3m 的扇形工件,未搬动前如图所示,A 、B 两点触地放置,搬动时,先将扇形以B 为圆心,作如图所示的无滑动翻转,再使它紧贴地面滚动,当A 、B 两点再次触地时算一次,则n 次滚动以后,圆心O 所经过的路线长是 m . (结果用含π的式子表示)三、解答题(共7题,57分) 22.(本小题满分6分) 先化简,再求值:22151()939x x x x x x --÷----,其中x =3tan30°+123.(本小题满分7分)如图,在AC ⊥BC ,过点C 的直线MN ∥AB ,D 为AB 边上一点,且AD =4,过点D 作DE ⊥BC ,交直线MN 于E ,垂足为F ,连接CD 、BE . (1)求CE 的长;(2)当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由;24.(本小题满分7分)关于三角函数有如下的公式:sin (α+β)=sin αcos β+cos αsin β①;cos (α+β)=cos αcos β﹣sin αsin β②; tan (α+β)=tan tan 1tan tan αβαβ+-∙③利用这些公式可将某些不是特殊角的三角函数转化为特殊角的三角函数来求值,如:tan105°=tan (45°+60°)====﹣(2+).根据上面的知识,你可以选择适当的公式解决下面的实际问题:如图,直升飞机在一建筑物CD上方A点处测得建筑物顶端D点的俯角α=60°,底端C 点的俯角β=75°,此时直升飞机与建筑物CD的水平距离BC为42m,求建筑物CD的高.25.(本小题满分8分)为增强学生的身体素质,章丘区教体局规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?(2)求户外活动时间为1.5小时的人数,并补充频数分布直方图;(3)求表示户外活动时间1小时的扇形圆心角的度数;(4)本次调查中学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数是多少?26.(本小题满分8分)我区注重城市绿化提高市民生活质量,新建林荫公园计划购买甲、乙两种树苗共800株,甲种树苗每株12元,乙种树苗每株15元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.(1)若购买这两种树苗共用去10500元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.27.(本小题满分9分)如图,AB 为⊙O 直径,BC 为⊙O 切线,连接A 、C 两点,交⊙O 于点D ,BE =CE ,连接DE ,OE .(1)判断DE 与⊙O 的位置关系,并说明理由;(2)求证:BC 2=CD •2OE ;(3)若cos ∠BAD =35,BE =6,求OE 的长.28.(本小题满分12分) 已知二次函数y =x 2+2x +12k -与x 轴有两个交点,且k 为正整数. (1)求k 的值; (2)当二次函数y =x 2+2x +12k -图象经过原点时,直线y =3x +2与之交于A 、B 两点,若M 是抛物线上在直线y =3x +2下方的一个动点,△MAB 面积是否存在最大值?若存在,请求出M 点坐标,并求出△MAB 面积最大值;若不存在,请说明理由.(3)将(2)中的二次函数图象x 轴下方的部分沿x 轴翻折到x 轴上方,图象的其余部分保持不变,翻折后的图象与原图象x 轴上方的部分组成一个新图象.若直线y =kx +2(k >0)与该新图象恰好有三个公共点,求k 的值.数学试题参考答案一、选择题(本大题共15个小题,每小题3分,共45分)1. D2.D3. D4. B5. B6. A7. B8. A9. C 10.B 11. B 12. D 13. B 14. A 15.B二、填空题(本大题共6个小题,每小题3分,共18分.)16.3 17.-1<a≤1 18.19.20.21.6nπ三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.) 22. (本小题满分6分)解:÷(﹣)=÷[﹣]=÷=•=, ……3分当x=3tan30°+1=3×+1=+1时,原式===. ……6分23. (本小题满分7分)(1)解:∵DE ⊥BC ,∴90DFB ∠=︒ ∵90ACB ∠=︒,∴ACB DFB ∠=∠ ∴AC ∥DE 又∵MN ∥AB , 即CE ∥AD∴四边形ADEC 是平行四边形. ∴CE =AD ∵AD =4∴CE =4 ……3分 (2)解:四边形BECD 是菱形,理由: ∵D 为AB 中点, ∴AD =BD又由(1)得CE =AD ,∴BD =CE ,又∵BD ∥CE ,∴四边形BECD 是平行四边形 ∵90ACB ∠=︒,D 为AB 中点, ∴CD =BD∴四边形BECD 是菱形. ……7分 24. (本小题满分7分)解:由于α=60°,β=75°,BC=42,则AB=BC•tanβ=42tan75°=42•=42•=42(),……2分A 、D 垂直距离为BC•tanα=42, ……4分∴CD=AB ﹣42=84(米). ……6分答:建筑物CD 的高为84米. ……7分25. (本小题满分8分)解:(1)调查人数=10÷20%=50(人); ……2分 (2)户外活动时间为1.5小时的人数=50×24%=12(人); 补全频数分布直方图;……4分(3)表示户外活动时间1小时的扇形圆心角的度数=×360°=144°;……6分(4)户外活动的平均时间=(小时),∵1.18>1,∴平均活动时间符合上级要求;户外活动时间的众数和中位数均为1小时.……8分26. (本小题满分8分)解:(1)设购买甲种树苗x株,则乙种树苗y株,由题意得:解得答:购买甲种树苗500株,乙种树苗300株.……2分(2)设甲种树苗购买z株,由题意得:85%z+90%(800-z)≥800×88%,解得z≤320.答:甲种树苗至多购买320株.……5分(3)设购买两种树苗的费用之和为m,则m=12z+15(800-z)=12000﹣3z,在此函数中,m随z的增大而减小所以当z=320时,m取得最小值,其最小值为12000﹣3×320=11040元答:购买甲种树苗320株,乙种树苗480株,即可满足这批树苗的成活率不低于88%,又使购买树苗的费用最低,其最低费用为11040元.……8分BC=,即BAD=BAC==,OE=AC=.(本小题满分12分)解:(1)∵二次函数y=x2+2x+与x轴有两个交点∴.∴k﹣1<2.∴k<3.……2分∵k为正整数,∴k为1,2.……3分(2)把x=0代入方程得k=1,此时二次函数为y=x2+2x,此时直线y=3x+2与二次函数y=x2+2x的交点为A(﹣1,-1),B(2,8)设与直线y=3x+2平行的直线为y=3x+b,列方程组得:即:x2-x-b=0,△=b2-4ac=1+4b=0,所以b=时有一个交点,代入求得交点M坐标为. ……5分过点M作MN∥x轴交直线AB于点N,点N坐标为. ∴MN=.∴S△MAB=MN(y B-y A)=13279248⨯⨯=. ……7分(3)由于新图象的封闭部分与原图象的封闭部分关于x轴对称,所以其解析式为y=﹣x2﹣2x,……8分当直线与新图象有3个公共点(如图所示),直线为l1 、l2,其中l1 过点C,l2与翻转部分图象有一个交点.分为以下两种情况:①直线l1:y=kx+2过点C(-2,0),代入y=kx+2得:k=1. ……9分②直线l2:则有一组解,此时有两个相等的实数根,即△=0,解得:. ……11分综上所述k=1或时,与该新图象恰好有三个公共点.……12分。

2017年济南数学中考模拟真题及答案

2017年济南数学中考模拟真题及答案

2017年济南数学中考模拟真题及答案初三的学生备考的j阶段要多做数学中考模拟试题,并加以复习,这样能更快提升自己的成绩。

以下是小编精心整理的2017年济南数学中考模拟试题及答案,希望能帮到大家!2017年济南数学中考模拟试题一、选择题(本题共10个小题,每小题3分,共30分)1.﹣2,﹣1,0,四个数中,绝对值最小的数是( )A. B.﹣2 C.0 D.﹣12.下列图形中,是中心对称图形,但不是轴对称图形的是( )A. B. C. D.3.要使分式有意义,则x的取值应满足( )A.x≠﹣2B.x≠2C.x≠﹣1D.x=14.对“某市明天下雨的概率是80%”这句话,理解正确的是( )A.某市明天将有80%的时间下雨B.某市明天将有80%的地区下雨C.某市明天一定会下雨D.某市明天下雨的可能性较大5.在平面直角坐标系中,点P(﹣,2)在( )A.第一象限B.第二象限C.第三象限D.第四象限6.下列计算正确的是( )A.2a3•3a2=6a6B.a3+2a2=3a5C.a÷b× =aD.( ﹣)÷x﹣1=7.设函数y= (k≠0,x>0)的图象所示,若z= ,则z关于x的函数图象可能为( )A. B. C. D.8.已知a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是( )A.用两个相等的实数根B.有两个不相等的实数根C.不确定,与b的取值有关D.无实数根9.有以下四个命题:①半径为2的圆内接正三角形的边长为2 ;②有两边及其一个角对应相等的两个三角形全等;③从装有大小和质地完全相同的3个红球和2个黑球的袋子中,随机摸取1个球,摸到红色球和黑色球的可能性相等;④函数y=﹣x2+2x,当y>﹣3时,对应的x 的取值为x>3或x<﹣1,其中假命题的个数为( )A.4个B.3个C.2个D.1个10.,△ABC中AB=AC=4,∠C=72°,D是AB的中点,点E在AC上,DE⊥AB,则cos∠ABE的值为( )A. B. C. D.二、填空题(本大题共6小题,每小题3分,共18分)11.,已知a,b,c,d四条直线,a∥b,c∥d,∠1=110°,则∠2等于.12.某商品的进价为每件100元,按标价打八折售出后每件可获利20元,则该商品的标价为每件元.13.在数轴上从满足|x|<2的任意实数x对应的点中随机选取一点,则取到的点对应的实数大于1的概率为.14.分解因式:a3﹣6a2+5a= .15.如果一个圆锥的主视图是等边三角形,俯视图是面积为4π的圆,那么这个圆锥的左视图的面积是.16.,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为.三、解答题(本大题共9小题,共72分)17.(10分)计算、求值:(1)计算:| ﹣2|+( )﹣1﹣( +1)( ﹣1);(2)已知单项式2xm﹣1yn+3与﹣xny2m是同类项,求m,n的值.18.(7分),DE是△ABC的中位线,过点C作CF∥BD交DE的延长线于点F(1)求证:EF=DE;(2)若AC=BC,判断四边形ADCF的形状.19.(10分)为了解“足球进校园”活动开展情况,某中学利用体育课进行了定点射门测试,每人射门5次,所有班级测试结束后,随机抽取了某班学生的射门情况作为样本,对进球的人数进行整理后,绘制了不完整的统计图表,该班女生有22人,女生进球个数的众数为2,中位数为3.女生进球个数的统计表进球数(个) 人数0 11 22 x3 y4 45 2(1)求这个班级的男生人数,补全条形统计图,并计算出扇形统计图中进2个球的扇形的圆心角度数;(2)写出女生进球个数统计表中x,y的值;(3)若该校共有学生1880人,请你估计全校进球数不低于3个的学生大约多少人?20.(6分)所示,某学生在河东岸点A处观测到河对岸水边有一点C,测得C在A北偏西31°的方向上,沿河岸向北前行30米到达B处,测得C在B北偏西45°的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度.(结果用含非特殊角的三角函数和根式表示即可)21.(6分)已知关于x的不等式组有解,求实数a的取值范围,并写出该不等式组的解集.22.(7分)在直角坐标系中,直线y=kx+1(k≠0)与双曲线y= (x>0)相交于点P(1,m)(1)求k的值;(2)若双曲线上存在一点Q与点P关于直线y=x对称,直线y=kx+1与x轴交于点A,求△APQ的面积.23.(7分)春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并求出最大利润.24.(9分),已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BC•BG.25.(10分)抛物线y=ax2+c与x轴交于A,B两点,顶点C,点P 为抛物线上一点,且位于x轴下方.(1)1,若P(1,﹣3),B(4,0).D是抛物线上一点,满足∠DPO=∠POB,且D与B分布位于直线OP的两侧,求点C与点D的坐标;(2)2,A,B是抛物线y=ax2+c与x轴的两个交点,直线PA,PB 与y轴分别交于E,F两点,当点P在x轴下方的抛物线上运动时,是否为定值?若是,试求出该定值;若不是,请说明理由(记OA=OB=t) 2017年济南数学中考模拟试题答案一、选择题(本题共10个小题,每小题3分,共30分)1.﹣2,﹣1,0,四个数中,绝对值最小的数是( )A. B.﹣2 C.0 D.﹣1【考点】18:有理数大小比较;15:绝对值.【分析】首先求出每个数的绝对值各是多少;然后根据有理数大小比较的法则,判断出﹣2,﹣1,0,四个数中,绝对值最小的数是哪个即可.【解答】解:|﹣2|=2,|﹣1|=1,|0|=0,| |= ,∵2>1> >0,∴﹣2,﹣1,0,四个数中,绝对值最小的数是0.故选:C.【点评】此题主要考查了绝对值的含义和求法,以及有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.下列图形中,是中心对称图形,但不是轴对称图形的是( )A. B. C. D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形.故此选项正确;B、是轴对称图形,也是中心对称图形.故此选项错误;C、是轴对称图形,不是中心对称图形.故此选项错误;D、是轴对称图形,不是中心对称图形.故此选项错误.故选:A.【点评】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.要使分式有意义,则x的取值应满足( )A.x≠﹣2B.x≠2C.x≠﹣1D.x=1【考点】62:分式有意义的条件.【分析】分式有意义:分母不等于零.【解答】解:依题意得:﹣x+2≠0,解得x≠2.故选:B.【点评】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.4.对“某市明天下雨的概率是80%”这句话,理解正确的是( )A.某市明天将有80%的时间下雨B.某市明天将有80%的地区下雨C.某市明天一定会下雨D.某市明天下雨的可能性较大【考点】X3:概率的意义.【分析】根据概率的意义进行解答即可.【解答】解:“某市明天下雨的概率是80%”说明某市明天下雨的可能性较大,故选:D.【点评】本题考查的是概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.5.在平面直角坐标系中,点P(﹣,2)在( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】D1:点的坐标.【分析】根据各象限内点的坐标特征解答.【解答】解:∵﹣ >0,∴点P(﹣,2)在第一象限.故选A.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).6.下列计算正确的是( )A.2a3•3a2=6a6B.a3+2a2=3a5C.a÷b× =aD.( ﹣)÷x﹣1=【考点】6C:分式的混合运算;49:单项式乘单项式;6F:负整数指数幂.【分析】根据整式的运算以及分式的运算法则即可求出答案.【解答】解:(A)原式=6a5,故A错误;(B)a3与2a2不是同类项,不能合并,故B错误;(C)原式=a× × = ,故C错误;故选(D)【点评】本题考查学生的计算能力,解题的关键是熟练运用运算法则,本题属于基础题型.7.设函数y= (k≠0,x>0)的图象所示,若z= ,则z关于x的函数图象可能为( )A. B. C. D.【考点】G2:反比例函数的图象.【分析】根据反比例函数解析式以及z= ,即可找出z关于x的函数解析式,再根据反比例函数图象在第一象限可得出k>0,结合x的取值范围即可得出结论.【解答】解:∵y= (k≠0,x>0),∴z= = = (k≠0,x>0).∵反比例函数y= (k≠0,x>0)的图象在第一象限,∴k>0,∴ >0.∴z关于x的函数图象为第一象限内,且不包括原点的正比例的函数图象.故选D.【点评】本题考查了反比例函数的图象以及正比例函数的图象,解题的关键是找出z关于x的函数解析式.本题属于基础题,难度不大,解决该题型题目时,根据分式的变换找出z关于x的函数关系式是关键.8.已知a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是( )A.用两个相等的实数根B.有两个不相等的实数根C.不确定,与b的取值有关D.无实数根【考点】AA:根的判别式.【分析】利用完全平方的展开式将(a﹣c)2展开,即可得出ac<0,再结合方程ax2+bx+c=0根的判别式△=b2﹣4ac,即可得出△>0,由此即可得出结论.【解答】解:∵(a﹣c)2=a2+c2﹣2ac>a2+c2,∴ac<0.在方程ax2+bx+c=0中,∵△=b2﹣4ac≥﹣4ac>0,∴方程ax2+bx+c=0有两个不相等的实数根.故选B.【点评】此题考查了根的判别式,用到的知识点是一元二次方程根的情况与判别式△的关系:(1)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.也考查了完全平方公式.9.有以下四个命题:①半径为2的圆内接正三角形的边长为2 ;②有两边及其一个角对应相等的两个三角形全等;③从装有大小和质地完全相同的3个红球和2个黑球的袋子中,随机摸取1个球,摸到红色球和黑色球的可能性相等;④函数y=﹣x2+2x,当y>﹣3时,对应的x 的取值为x>3或x<﹣1,其中假命题的个数为( )A.4个B.3个C.2个D.1个【考点】O1:命题与定理.【分析】利用正多边形和圆、全等三角形的判定、概率公式及二次函数的性质分别判断后即可确定正确的选项.【解答】解:①半径为2的圆内接正三角形的边长为2 ,正确,是真命题;②有两边及其夹角对应相等的两个三角形全等,故错误,是假命题;③从装有大小和质地完全相同的3个红球和2个黑球的袋子中,随机摸取1个球,摸到红色球的可能性大于摸到黑色球的可能性,故错误,是假命题;④函数y=﹣x2+2x,当y>﹣3时,对应的x的取值为﹣1假命题有3个,故选B.【点评】本题考查了命题与定理的知识,解题的关键是了解正多边形和圆、全等三角形的判定、概率公式及二次函数的性质的知识,难度不大.10.,△ABC中AB=AC=4,∠C=72°,D是AB的中点,点E在AC上,DE⊥AB,则cos∠ABE的值为( )A. B. C. D.【考点】S3:黄金分割;KG:线段垂直平分线的性质;KH:等腰三角形的性质;T7:解直角三角形.【分析】根据三角形内角和定理求出∠A,根据等腰三角形的性质得到点E是线段AC的黄金分割点,根据余弦的概念计算即可.【解答】解:∵AB=AC,∠C=72°,∴∠A=36°,∵D是AB的中点,点E在AC上,DE⊥AB,∴EA=EB,∴∠ABE=∠A=36°,∴点E是线段AC的黄金分割点,∴BE=AE= ×4=2( ﹣1),∴cos∠ABE= = ,故选:C.【点评】本题考查的是等腰三角形的性质、线段垂直平分线的判定和性质、黄金分割的概念,掌握等腰三角形的性质、熟记黄金比值是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)11.,已知a,b,c,d四条直线,a∥b,c∥d,∠1=110°,则∠2等于70°.【考点】JA:平行线的性质.【分析】根据平行线的性质得到∠3=∠1,4=∠3,然后由邻补角的定义即可得到结论.【解答】解:∵a∥b,c∥d,∴∠3=∠1,∠4=∠3,∴∠1=∠4=110°,∴∠2=180°﹣∠4=70°,故答案为:70°.【点评】本题考查了平行线的性质,解题时注意:运用两直线平行,同位角相等是解答此题的关键.12.某商品的进价为每件100元,按标价打八折售出后每件可获利20元,则该商品的标价为每件150 元.【考点】8A:一元一次方程的应用.【分析】设该商品的标价为每件为x元,根据八折出售可获利20元,可得出方程:80%x﹣100=20,再解答即可.【解答】解:设该商品的标价为每件x元,由题意得:80%x﹣100=20,解得:x=150.答:该商品的标价为每件150元.故答案为:150.【点评】此题考查了一元一次方程的应用,关键是仔细审题,得出等量关系,列出方程,难度一般.13.在数轴上从满足|x|<2的任意实数x对应的点中随机选取一点,则取到的点对应的实数大于1的概率为.【考点】X5:几何概率;29:实数与数轴.【分析】直接利用数轴的性质,结合a的取值范围得出答案.【解答】解:∵|x|<2,∴﹣2当a>1时有1∴取到的点对应的实数大于1的概率为:,故答案为: .【点评】此题主要考查了几何概率,正确利用数轴,结合a的取值范围求解是解题关键.14.分解因式:a3﹣6a2+5a= a(a﹣5)(a﹣1) .【考点】57:因式分解﹣十字相乘法等;53:因式分解﹣提公因式法.【分析】原式提取公因式,再利用十字相乘法分解即可.【解答】解:原式=a(a2﹣6a+5)=a(a﹣5)(a﹣1).故答案是:a(a﹣5)(a﹣1).【点评】此题考查了提公因式法与十字相乘法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.如果一个圆锥的主视图是等边三角形,俯视图是面积为4π的圆,那么这个圆锥的左视图的面积是 4 .【考点】MP:圆锥的计算;U3:由三视图判断几何体.【分析】先利用圆的面积公式得到圆锥的底面圆的半径为2,再利用等边三角形的性质得母线长,然后根据勾股定理计算圆锥的高.【解答】解:设圆锥的底面圆的半径为r,则πr2=4π,解得r=2,因为圆锥的主视图是等边三角形,所以圆锥的母线长为4,所以它的左视图的高= =2 ,所以左视图的面积为×4×2 =4 .故答案为4 .。

中考数学一模考试试题练习2017年(附答案)

中考数学一模考试试题练习2017年(附答案)

中考数学一模考试试题练习2017年(附答案)初中的学习至关重要,广大中学生朋友们一定要掌握科学的学习方法,提高学习效率。

以下是精品学习网初中频道为大家提供的中考数学一模考试试题练习,供大家复习时使用A级基础题1.若二次函数y=ax2的图象经过点P(-2,4),则该图象必经过点( )A.(2,4)B.(-2,-4)C.(-4,2)D.(4,-2)2.抛物线y=x2+bx+c的图象先向右平移2个单位长度,再向下平移3个单位长度,所得图象的函数解析式为y=(x-1)2-4,则b,c的值为( )A.b=2,c=-6B.b=2,c=0C.b=-6,c=8D.b=-6,c=23.如图3 4 11,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是( )A.abc 0B.2a+b 0C.a-b+c 0D.4ac-b2 04.二次函数y=ax2+bx的图象如图3 4 12,那么一次函数y=ax+b的图象大致是( )5.若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是( )A.抛物线开口向上B.抛物线的对称轴是x=1C.当x=1时,y的最大值为-4D.抛物线与x轴的交点为(-1,0),(3,0)6.二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x -3 -2 -1 0 1y -3 -2 -3 -6 -11则该函数图象的顶点坐标为( )A.(-3,-3)B.(-2,-2)C.(-1,-3)D.(0,-6)7.若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为__________.8.请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式______________.9.已知抛物线y=-x2+bx+c经过点A(3,0),B(-1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.B级中等题10.已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两实数根是( )A.x1=1,x2=-1B.x1=1,x2=2C.x1=1,x2=0D.x1=1,x2=311.二次函数y=ax2+bx+c的图象如图3 4 13,给出下列结论:①2a+b ②b a ③若-1图3 4 1312.已知二次函数y=x2-2mx+m2-1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图3 4 14,当m=2时,该抛物线与y轴交于点C,顶点为D,求C,D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.C级拔尖题13.如图3 4 15,已知抛物线y=1a(x-2)(x+a)(a 0)与x轴交于点B,C,与y轴交于点E,且点B 在点C的左侧.(1)若抛物线过点M(-2,-2),求实数a的值;(2)在(1)的条件下,解答下列问题;①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.14已知二次函数y=mx2+nx+p图象的顶点横坐标是2,与x轴交于A(x1,0),B(x2,0),x1 0(1)求证:n+4m=0;(2)求m,n的值;(3)当p 0且二次函数图象与直线y=x+3仅有一个交点时,求二次函数的最大值.15.(2013年广东湛江)如图3 4 16,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴与B,C两点(点B在点C的左侧),已知A点坐标为(0,-5).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与△C的位置关系,并给出证明;(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形.若存在,求点P的坐标;若不存在,请说明理由.参考答案:1.A2.B 解析:利用反推法解答,函数y=(x-1)2-4的顶点坐标为(1,-4),其向左平移2个单位长度,再向上平移3个单位长度,得到函数y=x2+bx+c,又△1-2=-1,-4+3=-1,平移前的函数顶点坐标为(-1,-1),函数解析式为y=(x+1)2-1,即y=x2+2x,b=2,c=0.3.D4.C5.C6.B7.k=0或k=-1 8.y=x2+1(答案不唯一)9.解:(1)△抛物线y=-x2+bx+c经过点A(3,0),B(-1,0),抛物线的解析式为y=-(x-3)(x+1),即y=-x2+2x+3.(2)△y=-x2+2x+3=-(x-1)2+4,抛物线的顶点坐标为(1,4).10.B 11.①③④12.解:(1)将点O(0,0)代入,解得m= 1,二次函数关系式为y=x2+2x或y=x2-2x.(2)当m=2时,y=x2-4x+3=(x-2)2-1,D(2,-1).当x=0时,y=3,C(0,3).(3)存在.接连接C,D交x轴于点P,则点P为所求.由C(0,3),D(2,-1)求得直线CD为y=-2x+3.当y=0时,x=32,P32,0.13.解:(1)将M(-2,-2)代入抛物线解析式,得-2=1a(-2-2)(-2+a),解得a=4.(2)①由(1),得y=14(x-2)(x+4),当y=0时,得0=14(x-2)(x+4),解得x1=2,x2=-4.△点B在点C的左侧,B(-4,0),C(2,0).当x=0时,得y=-2,即E(0,-2).S△BCE=12 6 2=6.②由抛物线解析式y=14(x-2)(x+4),得对称轴为直线x=-1,根据C与B关于抛物线对称轴x=-1对称,连接BE,与对称轴交于点H,即为所求.设直线BE的解析式为y=kx+b,将B(-4,0)与E(0,-2)代入,得-4k+b=0,b=-2,解得k=-12,b=-2. 直线BE的解析式为y=-12x-2.将x=-1代入,得y=12-2=-32,则点H-1,-32.14.(1)证明:△二次函数y=mx2+nx+p图象的顶点横坐标是2,抛物线的对称轴为x=2,即-n2m=2,化简,得n+4m=0.(2)解:△二次函数y=mx2+nx+p与x轴交于A(x1,0),B(x2,0),x1 0OA=-x1,OB=x2,x1+x2=-nm,x1 x2=pm.令x=0,得y=p,C(0,p). OC=|p|.由三角函数定义,得tan CAO=OCOA=-|p|x1,tan CBO=OCOB=|p|x2.△tan CAO-tan CBO=1,即-|p|x1-|p|x2=1.化简,得x1+x2x1 x2=-1|p|.将x1+x2=-nm,x1 x2=pm代入,得-nmpm=-1|p|化简,得n=p|p|= 1.由(1)知n+4m=0,当n=1时,m=-14;当n=-1时,m=14.m,n的值为:m=14,n=-1(此时抛物线开口向上)或m=-14,n=1(此时抛物线开口向下).(3)解:由(2)知,当p 0时,n=1,m=-14,抛物线解析式为:y=-14x2+x+p.联立抛物线y=-14x2+x+p与直线y=x+3解析式得到-14x2+x+p=x+3,化简,得x2-4(p-3)=0.△二次函数图象与直线y=x+3仅有一个交点,一元二次方程根的判别式等于0,即=02+16(p-3)=0,解得p=3.y=-14x2+x+3=-14(x-2)2+4.当x=2时,二次函数有最大值,最大值为4.15.解:(1)设此抛物线的解析式为y=a(x-3)2+4,此抛物线过点A(0,-5),-5=a(0-3)2+4,a=-1.抛物线的解析式为y=-(x-3)2+4,即y=-x2+6x-5.(2)抛物线的对称轴与△C相离.证明:令y=0,即-x2+6x-5=0,得x=1或x=5,B(1,0),C(5,0).设切点为E,连接CE,由题意,得,Rt△ABO△Rt△BCE.ABBC=OBCE,即12+524=1CE,解得CE=426.△以点C为圆心的圆与直线BD相切,△C的半径为r=d=426.又点C到抛物线对称轴的距离为5-3=2,而2 426.则此时抛物线的对称轴与△C相离.(3)假设存在满足条件的点P(xp,yp),△A(0,-5),C(5,0),AC2=50,AP2=(xp-0)2+(yp+5)2=x2p+y2p+10yp+25,CP2=(xp-5)2+(yp-0)2=x2p+y2p-10xp+25.①当A=90 时,在Rt△CAP中,由勾股定理,得AC2+AP2=CP2,50+x2p+y2p+10yp+25=x2p+y2p-10xp+25,整理,得xp+yp+5=0.△点P(xp,yp)在抛物线y=-x2+6x-5上,yp=-x2p+6xp-5.xp+(-x2p+6xp-5)+5=0,解得xp=7或xp=0,yp=-12或yp=-5.点P为(7,-12)或(0,-5)(舍去).②当C=90 时,在Rt△ACP中,由勾股定理,得AC2+CP2=AP2,50+x2p+y2p-10xp+25=x2p+y2p+10yp+25,整理,得xp+yp-5=0.△点P(xp,yp)在抛物线y=-x2+6x-5上,yp=-x2p+6xp-5,xp+(-x2p+6xp-5)-5=0,解得xp=2或xp=5,yp=3或yp=0.点P为(2,3)或(5,0)(舍去)综上所述,满足条件的点P的坐标为(7,-12)或(2,3).这就是我们为大家准备的中考数学一模考试试题练习的内容,希望符合大家的实际需要。

山东省济南市 中考数学一模试卷

山东省济南市 中考数学一模试卷

中考数学一模试卷一、选择题(本大题共15小题,共45.0分)1.实数7的相反数是()A. B. C. D. 72.《2017中国共享单车行业研究报告》报告指出,2月20日至26日一周,摩拜单车的日均有效使用时间是1100万分钟,远远领先行业第二名ofo共享单车,使用量稳居行业首位,数字1100万用科学记数法表示为()A. B. C. D.3.如图是由4个大小相等的正方形搭成的几何体,其左视图是()A.B.C.D.4.如图,AB∥CD,AE交CD于点C,DE⊥AE于点E,若∠A=42°,则∠D=()A.B.C.D.5.下列计算正确的是()A. B. C. D.6.不等式组的解集在数轴上表示为()A. B.C. D.7.在x2□2xy□y2的空格□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是()A. 1B.C.D.8.已知x+y=﹣5,xy=3,则x2+y2=()A. 25B.C. 19D.9.抛物线y=x2+2x+m-1与x轴有交点,则m的取值范围是()A. B. C. D.10.下列命题是真命题的是()A. 对角线相等的四边形是矩形B. 对角线互相垂直的四边形是正方形C. 一组对边平行的四边形是平行四边形D. 四边相等的四边形是菱形11.小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家,妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程S(km)与北京时间t(时)的函数图象如图所示.根据图象得到小亮结论,其中错误的是()A. 小亮骑自行车的平均速度是B. 妈妈比小亮提前小时到达姥姥家C. 9:00妈妈追上小亮D. 妈妈在距家13km处追上小亮12.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc<0;②a+b+c<0;③4a+c>2b;④2a-b=0;⑤m(am+b)+b<a(m≠-1),其中,正确的结论有()A. 2个B. 3个C. 4个D. 5个13.对于实数a,b,先定义一种新运算“★”如下:a★b=当时当时.若2★m=36,则实数m等于()A. B. 4 C. 4或 D. 4或或14.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC-CD-DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()A. B.C. D.15.如图,正方形ABCD的边长为1,AC,BD是对角线.将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①△AED≌△GED;②四边形AEGF是菱形;③∠DFG=112.5°;④BC+FG=1.5,其中正确的结论是()A. ①②B. ①②③C. ②③④D. ①③④二、填空题(本大题共6小题,共18.0分)16.分解因式:x3-xy2=______.17.化简:的结果是______.18.仙桃市大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全市学校的设施和设备进行全面改造,2014年市政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,那么每年投资的增长率为______.19.如图,等边三角形AOB的顶点A的坐标为(-4,0),顶点B在反比例函数y=(x<0)的图象上,则k=______.20.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是______(填序号)21.如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,P是直径MN上一动点,则PA+PB的最小值为______.三、计算题(本大题共1小题,共8.0分)22.课前预习是学习的重要环节,为了了解所教班级学生完成课前预习的具体情况,某班主任对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类:A-优秀,B-良好,C-一般,D-较差,并将调查结果绘制成以下两幅不完整的统计图.请你根据统计图,解答下列问题:(1)本次一共调查了多少名学生?(2)C类女生有______ 名,D类男生有______ 名,并将条形统计图补充完整;(3)若从被调查的A类和C类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树状图的方法求出所选同学中恰好是一位男同学和一位女同学的概率.四、解答题(本大题共6小题,共49.0分)23.(1)+()-1-2sin45°-|1-|(2)解分式方程:=-2.24.(1)如图,在△ABC中,AD是中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.(2)如图,△ABC内接于⊙O,AB为⊙O的直径,∠BAC=2∠B,AC=6,过点A作⊙O的切线与OC的延长线交于点P,求PA的长.25.为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价-进价)26.如图,在平面直角坐标系中,已知点A(8,1),B(0,-3),反比例函数y=(x>0)的图象经过点A,动直线x=t(0<t<8)与反比例函数的图象交于点M,与直线AB交于点N.(1)求k的值;(2)求△BMN面积的最大值;(3)若MA⊥AB,求t的值.27.如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.28.如图,抛物线y=-x2+x+2与x轴交于点A、点B,与y轴交于点C、点D与点C关于x轴对称,点P是x轴上一动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求直线BD的解析式.(2)当点P在线段OB上运动时,直线l交BD于点M,试探究m为何值时四边形CQMD是平行四边形.(3)点P在运动过程中,是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,求出点Q坐标;若不存在,说明理由.答案和解析1.【答案】C【解析】解:7的相反数是-7,故选:C.根据只有符号不同的两个数互为相反数,可得答案.本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.2.【答案】D【解析】解:1100万=11000000,用科学记数法表示为:1.1×107.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】C【解析】解:从正面看易得第一层有2个正方形,第二层最左边有一个正方形.故选C.找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.【答案】D【解析】解:∵AB∥CD,∴∠ECD=∠A=42°,又∵DE⊥AE,∴直角△ECD中,∠D=90°-∠ECD=90°-42°=48°.故选:D.首先根据平行线的性质求得∠ECD的度数,然后在直角△ECD中,利用三角形内角和定理求解.本题考查了平行线的性质以及三角形内角和定理,正确运用定理是关键.5.【答案】D【解析】解:A、结果是2a6,故本选项不符合题意;B、结果是3,故本选项不符合题意;C、结果是a6,故本选项不符合题意;D、结果是a3,故本选项符合题意;故选D.根据合并同类项法则、单项式除以单项式法则、幂的乘方、同底数幂的乘法分别求出每个式子的值,再判断即可本题考查了合并同类项法则、单项式除以单项式法则、幂的乘方、同底数幂的乘法等知识点,能正确求出每个式子的值是解此题的关键.6.【答案】C【解析】解:,解不等式2x-1≥5,得:x≥3,解不等式8-4x<0,得:x>2,故不等式组的解集为:x≥3,故选:C.分别求出每一个不等式的解集,根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则即可得答案.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟悉在数轴上表示不等式解集的原则“大于向右,小于向左,包括端点用实心,不包括端点用空心”是解题的关键.7.【答案】C【解析】解:能够凑成完全平方公式,则2xy前可是“-”,也可以是“+”,但y2前面的符号一定是:“+”,此题总共有(-,-)、(+,+)、(+,-)、(-,+)四种情况,能构成完全平方公式的有2种,所以概率是.故选:C.让填上“+”或“-”后成为完全平方公式的情况数除以总情况数即为所求的概率.此题考查完全平方公式与概率的综合应用,注意完全平方公式的形式.用到的知识点为:概率=所求情况数与总情况数之比;a2±2ab+b2能构成完全平方式.8.【答案】C【解析】解:∵x+y=-5,xy=3,∴x2+y2=(x+y)2-2xy=25-6=19.故选:C.把x2+y2利用完全平方公式变形后,代入x+y=-5,xy=3求值.本题的关键是利用完全平方公式求值,把x+y=-5,xy=3当成一个整体代入计算.9.【答案】A【解析】解:由题意可知:△=4-4(m-1)≥0,∴m≤2,故选(A)根据抛物线与x轴有交点可知,△≥0,本题考查抛物线与x轴交点,解题的关键是列出不等式,本题属于基础题型.10.【答案】D【解析】解:A、对角线相等的四边形是矩形是假命题,应为对角线相等的平行四边形是矩形,故本选项不符合题意;B、对角线互相垂直的四边形是正方形是假命题,应为对角线互相垂直平分且相等的四边形是正方形,故本选项不符合题意;C、一组对边平行的四边形是平行四边形是假命题,应为两组对边平行的四边形是平行四边形,故本选项不符合题意;D、四边相等的四边形是菱形是真命题,故本选项符合题意.故选D.根据矩形、正方形、平行四边形、菱形的判定方法对各选项分析判断即可得解.本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理.11.【答案】D【解析】解:解:A、根据函数图象小亮去姥姥家所用时间为10-8=2小时,∴小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;B、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10-9.5=0.5(小时),∴妈妈比小亮提前0.5小时到达姥姥家,故正确;C、由图象可知,当t=9时,妈妈追上小亮,故正确;D、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9-8=1小时,∴小亮走的路程为:1×12=12km,∴妈妈在距家12km出追上小亮,故错误;故选D.根据函数图象可知根据函数图象小亮去姥姥家所用时间为10-8=2小时,进而得到小亮骑自行车的平均速度,对应函数图象,得到妈妈到姥姥家所用的时间,根据交点坐标确定妈妈追上小亮所用时间,即可解答.本题考查了一次函数的应用,解决本题的关键是读懂函数图象,获取相关信息.12.【答案】C【解析】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=-=-1<0,∴b=2a,∴b<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,所以①错误;∵x=1时,y<0,∴a+b+c<0,所以②正确;∵抛物线的对称轴为直线x=-1,抛物线与x轴的一个交点在点(0,0)和(1,0)之间,∴抛物线与x轴的一个交点在点(-3,0)和(-2,0)之间,∴当x=-2时,y>0,∴4a-2b+c>0,所以③正确;∵抛物线对称轴x=-=-1,∴b=2a,即2a-b=0,所以④正确;∵抛物线的对称轴为直线x=-1,∴当x=-1时,y有最大值,∴am2+bm+c<a-b+c(m≠-1),∴m(am+b)<a-b(m≠-1),所以⑤正确;综上,正确的结论有②③④⑤,故选:C.由抛物线开口向下得a<0,由抛物线的对称轴为直线x=-=-1得b=2a<0,由抛物线与y轴的交点在x轴上方得c>0,所以abc>0;由于x=1时,函数值小于0,所以a+b+c<0;根据抛物线的对称性得到抛物线与x轴的一个交点在点(-3,0)和(-2,0)之间,则当x=-2时,y>0,即4a-2b+c>0;根据抛物线的对称轴为直线x=-1,开口向下,得到当x=-1时,y有最大值,所以am2+bm+c<a-b+c(m≠-1),整理得到m(am+b)<a-b(m≠-1).本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=-;抛物线与y轴的交点坐标为(0,c);当b2-4ac>0,抛物线与x轴有两个交点;当b2-4ac=0,抛物线与x轴有一个交点;当b2-4ac<0,抛物线与x轴没有交点.13.【答案】B【解析】解:根据题意,得:①当2≥m时,2★m=4m+2=36,即4m+2=36,解得,m=>2(不合题意,舍去);②当2<m时,2★m=2m2+m=36,即2m2+m-36=0,∴(m-4)(2m+9)=0,∴m-4=0或2m+9=0,∴m=4,或m=-4.5<2,(不合题意,舍去),综合①②,m=4.故选B.分类讨论:①当2≥m时,将2★m代入新定义运算a★b=a2b+a;②当2<m时,将2★m代入新定义运算a★b=ab2+b.本题考查了一元一次方程的解法、因式分解法解一元二次方程.利用因式分解解方程时,采用了“十字相乘法”分解因式:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数.14.【答案】C【解析】【分析】首先根据正方形的边长与动点P、Q的速度可知动点Q始终在AB边上,而动点P可以在BC边、CD边、AD边上,再分三种情况进行讨论:①0≤x≤1;②1<x≤2;③2<x≤3;分别求出y关于x的函数解析式,然后根据函数的图象与性质即可求解.本题考查了动点问题的函数图象,正方形的性质,三角形的面积,利用数形结合、分类讨论是解题的关键.【解答】解:由题意可得BQ=x.①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=BP•BQ,解y=•3x•x=x2;故A选项错误;②1<x≤2时,P点在CD边上,则△BPQ的面积=BQ•BC,解y=•x•3=x;故B选项错误;③2<x≤3时,P点在AD边上,AP=9-3x,则△BPQ的面积=AP•BQ,解y=•(9-3x)•x=x-x2;故D选项错误.故选:C.15.【答案】B【解析】证明:∵四边形ABCD是正方形,∴AD=DC=BC=AB,∠DAB=∠ADC=∠DCB=∠ABC=90°,∠ADB=∠BDC=∠CAD=∠CAB=45°,∵△DHG是由△DBC旋转得到,∴DG=DC=AD,∠DGE=∠DCB=∠DAE=90°,在RT△ADE和RT△GDE中,,∴AED≌△GED,故①正确,∴∠ADE=∠EDG=22.5°,AE=EG,∴∠AED=∠AFE=67.5°,∴AE=AF,同理△AEF≌△GEF,可得EG=GF,∴AE=EG=GF=FA,∴四边形AEGF是菱形,故②正确,∵∠DFG=∠GFC+∠DFC=∠BAC+∠DAC+∠ADF=112.5°,故③正确.∵AE=FG=EG=BG,BE=AE,∴BE>AE,∴AE<,∴CB+FG<1.5,故④错误.故选B.首先证明△ADE≌△GDE,再求出∠AEF、∠AFE、∠GEF、∠GFE的度数,推出AE=EG=FG=AF,由此可以一一判断.本题考查正方形的性质、全等三角形的判定和性质、菱形的判定和性质、等腰直角三角形的性质等知识,解题的关键是通过计算发现角相等,学会这种证明角相等的方法,属于中考常考题型.16.【答案】x(x+y)(x-y)【解析】解:x3-xy2=x(x2-y2)=x(x+y)(x-y).故答案为:x(x+y)(x-y).首先提取公因式x,进而利用平方差公式分解因式得出答案.此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.17.【答案】m+3【解析】解:====m+3.故答案为:m+3.首先将原式变为同分母的分式:,然后利用同分母的分式相加减的运算法则求解即可答案,注意运算结果需化为最简.此题考查了分式的加减运算法则.此题比较简单,注意运算要细心,注意运算结果需化为最简.18.【答案】20%【解析】解:设每年投资的增长率为x,由题意得,5×(1+x)2=7.2,解得:x=0.2或x=-1.2(不合题意,舍去),答:每年投资的增长率为20%.故答案为:20%.设每年投资的增长率为x,根据题意可得,2014年投资额×(1+x)2=2016年的投资额,据此列方程求解.本题考查了一元二次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.19.【答案】-4【解析】解:过点B作BD⊥x轴于点D,∵△AOB是等边三角形,点A的坐标为(-4,0),∴∠AOB=60°,OB=OA=AB=4,∴OD=OB=2,BD=OB•sin60°=4×=2,∴B(-2,2),∴k=-2×2=-4,故答案为-4.过点B作BD⊥x轴于点D,因为△AOB是等边三角形,点A的坐标为(-4,0),所∠AOB=60°,根据锐角三角函数的定义求出BD及OD的长,可得出B点坐标,进而得出反比例函数的解析式;本题考查了反比例函数图象上点的坐标特点、等边三角形的性质、解直角三角函数等知识,难度适中.20.【答案】①④【解析】解:由折叠可得PE=BE,PF=BF,∠PEF=∠BEF,∠EFB=∠EFP,∵AE=AB,∴BE=PE=2AE,∴∠APE=30°,∴∠PEF=∠BEF=60°,∴∠EFB=∠EFP=30°,∴EF=2BE,PF=PE,∴①正确,②不正确;又∵EF⊥BP,∴EF=2BE=4EQ,∴③不正确;又∵PF=BF,∠BFP=2∠EFP=60°,∴△PBF为等边三角形,∴④正确;所以正确的为①④,故答案为:①④.由条件可得∠APE=30°,则∠PEF=∠BEF=60°,可得EF=2BE,PF=PE,EF=2BE=4EQ,从而可判断出正确的结论.本题主要考查矩形的性质和轴对称的性质、等边三角形的判定、直角三角形的性质等知识,综合性较强,掌握直角三角形中30°角所对的直角边是斜边的一半是解题的关键.21.【答案】【解析】解:作点B关于MN的对称点C,连接AC交MN于点P,则P点就是所求作的点.此时PA+PB最小,且等于AC的长.连接OA,OC,根据题意得:∵∠AMN=30°,∴弧AN的度数是60°,∵B为AN弧的中点,∴弧BN的度数是30°,∵NO⊥BC,∴=,∴弧CN的度数是30°,∴=+=90°∴∠AOC=90°,又∵OA=OC=1,∴AC==.即PA+PB的最小值为:,故答案为:.首先利用在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点P的位置,然后根据弧的度数发现一个等腰直角三角形计算.此题主要考查了利用轴对称求最短路线问题,解答此题的关键是找到点B的对称点,把题目的问题转化为两点之间线段最短解答.22.【答案】3;1【解析】解:(1)本次调查的学生数=10÷50%=20(名);(2)C类学生数=20×25%=5,则C类女生数=5-2=3(名);D类学生数=20-3-10-5=2(名),则D类男生有1名,条形统计图为:(3)画树状图为:共有15种等可能的结果数,其中恰好是一位男同学和一位女同学的结果数为7种,所以所选同学中恰好是一位男同学和一位女同学的概率=.故答案为3,1.(1)用B类的人数除以它所占的百分比即可得到本次调查的学生数;(2)先利用调查的总人数乘以C类所占百分比得到C类人数,然后减去男生人数即可得到C类女生人数,同样可求出D类男生人数,然后补全条形统计图;(3)先画树状图展示15种等可能的结果数,再找出恰好是一位男同学和一位女同学的结果数,然后根据概率公式计算.本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了统计图.23.【答案】解:(1)原式=2+2-2×-(),=2+2-+1,=3;(2)去分母得:1-x=-1-2(x-3),1-x=-1-2x+6,-x+2x=-1+6-1,x=4,检验:把x=4代入x-3得:x-3=4-3=1≠0,∴x=4是原分式方程的解.【解析】(1)首先分别计算二次根式、负整数指数幂、特殊角的三角函数和绝对值,再合并同类二次根式,进行加减计算即可;(2)首先乘以x-3去分母,然后再解方程可得x的值,最后要进行检验.此题主要考查了实数运算和解分式方程,关键是掌握负整数指数幂、绝对值的性质以及特殊角的三角函数.24.【答案】解:(1)∵分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F,∴∠E=∠CFD=90°,∵AD是中线,∵BD=CD,在△BED和△CFD中,∵ ,∴△BED≌△CFD(AAS),∴BE=CF;(2)∵AB为⊙O的直径∴∠ACB=90°∴∠B+∠BAC=90°又∵∠BAC=2∠B∴∠B=30°,∠BAC=60°∵OA=OC∴△OAC是等边三角形.∴OA=AC=6,∠AOC=60°∵AP是⊙O的切线.∴∠OAP=90°∴在直角△OAP中,∠P=90°-∠AOC=90°-60°=30°∴OP=2OA=2×6=12,∴PA===6.【解析】(1)由垂直定义得∠E=∠CFD=90°,根据中线知BD=CD,利用“AAS”证△BED≌△CFD可得答案;(2)根据AB是圆的直径,则△ABC是直角三角形,根据∠BAC=2∠B即可求得∠BAC的度数,证得△OAC是等边三角形.再根据PA是圆的切线,可以证得∠P=30°,则可求得OP的长,在直角△OAP中,利用勾股定理即可求得PA的长.本题主要考查了全等三角形的判定与性质及切线的性质定理,勾股定理以及直角三角形中,30度的锐角所对的直角边等于斜边的一半,正确证明△AOC 是等边三角形是解决本题的关键.25.【答案】解:(1)设A种型号家用净水器购进了x台,B种型号家用净水器购进了y台,由题意得,解得.答:A种型号家用净水器购进了100台,B种型号家用净水器购进了60台.(2)设每台A型号家用净水器的毛利润是a元,则每台B型号家用净水器的毛利润是2a元,由题意得100a+60×2a≥11000,解得a≥50,150+50=200(元).答:每台A型号家用净水器的售价至少是200元.【解析】(1)设A种型号家用净水器购进了x台,B种型号家用净水器购进了y台,根据“购进了A、B两种型号家用净水器共160台,购进两种型号的家用净水器共用去36000元.”列出方程组解答即可;(2)设每台A型号家用净水器的毛利润是a元,则每台B型号家用净水器的毛利润是2a元,根据保证售完这160台家用净水器的毛利润不低于11000元,列出不等式解答即可.此题考查一元一次不等式组的实际运用,二元一次方程组的实际运用,找出题目蕴含的数量关系与不等关系是解决问题的关键.26.【答案】解:(1)把点A(8,1)代入反比例函数y=(x>0)得:k=1×8=8,y=,∴k=8;(2)设直线AB的解析式为:y=kx+b,根据题意得:,解得:k=,b=-3,∴直线AB的解析式为:y=x-3;设M(t,),N(t,t-3),则MN=-t+3,∴△BMN的面积S=(-t+3)t=-t2+t+4=-(t-3)2+,∴△BMN的面积S是t的二次函数,∵-<0,∴S有最大值,当t=3时,△BMN的面积的最大值为;(3)∵MA⊥AB,∴设直线MA的解析式为:y=-2x+c,把点A(8,1)代入得:c=17,∴直线AM的解析式为:y=-2x+17,解方程组得:或(舍去),∴M的坐标为(,16),∴t=.【解析】(1)把点A坐标代入y=(x>0),即可求出k的值;(2)先求出直线AB的解析式,设M(t,),N(t,t-3),则MN=-t+3,由三角形的面积公式得出△BMN的面积是t的二次函数,即可得出面积的最大值;(3)求出直线AM的解析式,由反比例函数解析式和直线AM的解析式组成方程组,解方程组求出M的坐标,即可得出结果.本题是反比例函数综合题目,考查了用待定系数法求反比例函数和一次函数的解析式、二次函数的最值问题、垂线的性质等知识;本题难度较大,综合性强,特别是(3)中,需要确定一次函数的解析式,由反比例函数解析式和直线AM的解析式组成方程组,解方程组才能得出结果.27.【答案】(1)证明:如图1,∵EN∥AD,∴∠MAD=∠MNE,∠ADM=∠NEM.∵点M为DE的中点,∴DM=EM.在△ADM和△NEM中,∴ .∴△ADM≌△NEM.∴AM=MN.∴M为AN的中点.(2)证明:如图2,∵△BAD和△BCE均为等腰直角三角形,∴AB=AD,CB=CE,∠CBE=∠CEB=45°.∵AD∥NE,∴∠DAE+∠NEA=180°.∵∠DAE=90°,∴∠NEA=90°.∴∠NEC=135°.∵A,B,E三点在同一直线上,∴∠ABC=180°-∠CBE=135°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.(3)△ACN仍为等腰直角三角形.证明:如图3,延长AB交NE于点F,∵AD∥NE,M为中点,∴易得△ADM≌△NEM,∴AD=NE.∵AD=AB,∴AB=NE.∵AD∥NE,∴AF⊥NE,在四边形BCEF中,∵∠BCE=∠BFE=90°∴∠FBC+∠FEC=360°-180°=180°∵∠FBC+∠ABC=180°∴∠ABC=∠FEC在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.【解析】(1)由EN∥AD和点M为DE的中点可以证到△ADM≌△NEM,从而证到M为AN的中点.(2)易证AB=DA=NE,∠ABC=∠NEC=135°,从而可以证到△ABC≌△NEC,进而可以证到AC=NC,∠ACN=∠BCE=90°,则有△ACN为等腰直角三角形.(3)延长AB交NE于点F,易得△ADM≌△NEM,根据四边形BCEF内角和,可得∠ABC=∠FEC,从而可以证到△ABC≌△NEC,进而可以证到AC=NC,∠ACN=∠BCE=90°,则有△ACN为等腰直角三角形.本题考查了全等三角形的判定与性质、平行线的性质、等腰直角三角形的判定与性质、多边形的内角与外角等知识,渗透了变中有不变的辩证思想,是一道好题.28.【答案】解:(1)在y=-x2+x+2中,令x=0可得y=2,∴C(0,2),∵C与D关于x轴对称,∴D(0,-2),令y=0可得-x2+x+2=0,解得x1=-1,x2=4,∴B(4,0),设BD解析式为y=kx+b,则,解得,∴直线BD解析式为y=x-2;(2)∵P(m,0),∴M(m,m-2),Q(m,-m2+m+2),∵CQMD是平行四边形,∴QM∥CD,∴QM=CD=4,当点P在OB上运动时QM=-m2+m+2-(m-2)=-m2+m+4=4,解得m1=0(舍去),m2=2,∴当m=2时,四边形CQMD为平行四边形;(3)由(2)可知Q(m,-m2+m+2),且B(4,0),D(0,-2),∴BQ2=(m-4)2+(-m2+m+2)2,DQ2=m2+[(-m2+m+2)+2]2,BD2=20,①当以点B为直角顶点时,则有DQ2=BQ2+BD2,∴m2+[(-m2+m+2)+2]2=(m-4)2+(-m2+m+2)2+20,解得m1=3,m2=4,∴点Q坐标为(4,0)(舍)或(3,2);②当以D为直角顶点时,同理可求m3=-1,m4=8,∴点Q坐标为(-1,0)或(8,-18);综上可知存在满足条件的点Q,其坐标为(3,2)(-1,0)或(8,-18).【解析】(1)可先求得C点坐标,再根据对称可求得D点坐标,再结合抛物线解析可求得B点坐标,利用待定系数法可求得直线BD解析式;(2)用P点坐标可分别表示出M、Q的坐标,利用平行四边形的性质可得到关于m的方程,可求得m的值;(3)由(2)中点Q的坐标,利用勾股定理可分别表示出BQ、BD、DQ,再利用直角三角形的判定可得到关于m的方程,可求得点Q的坐标.本题为二次函数的综合应用,涉及待定系数法、平行四边形的性质、勾股定理、方程思想及分类讨论思想等知识点.在(1)中求得B、D坐标是解题的关键,在(2)中用m表示出QM的长是解题的关键,在(3)中用m分别表示出BQ、DQ的长是解题的关键.本题考查知识点较多,综合性较强,难度较大.。

2017中考数学一模试卷含答案解析

2017中考数学一模试卷含答案解析

2017年中考数学一模试卷一、选择题1.的平方根是()A.±3 B.3 C.±9 D.92.用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是()A.B.C.D.3.下面计算一定正确的是()A.b3+a3=2b6B.(﹣3pq)2=﹣9p2q2C.5y3+3y5=15y8D.b9÷b3=b34.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140° D.40°5.若反比例函数y=的图象过点(﹣2,1),则一次函数y=kx﹣k的图象过()A.第一、二、四象限B.第一、三、四象限C.第二、三、四象限D.第一、二、三象限6.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4 B.5 C.6 D.87.不等式组的解集在数轴上表示正确的是()A. B.C.D.8.在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4) B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)9.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣.下列结论中,正确的是()A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b二、填空题11.分解因式:ab2﹣4ab+4a=.12.如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP面积为2,则这个反比例函数的解析式为.13.如图,已知点P是半径为1的⊙A上一点,延长AP到C,使PC=AP,以AC为对角线作▱ABCD.若AB=,则▱ABCD面积的最大值为.[选做题]请从以下两个小题中任选一个作答,若多选,则按第一题计分14.若一个正n边形的每个内角为156°,则这个正n边形的边数是.15.用科学计算器计算:cos32°≈.(精确到0.01)三、解答题16.计算:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+.17.解分式方程:﹣=1.18.小明家的房前有一块矩形的空地,空地上有三棵树A、B、C,小明想建一个圆形花坛,使三棵树都在花坛的边上.请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹).19.在某市开展的“读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计该市12000名初二学生中日人均阅读时间在0.5~1.5小时的多少人.20.如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.21.高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改进行驶,试问:消防车是否需要改道行驶?请说明理由.(取1.732)22.A、B两城间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回.如图是它们离A城的路程y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车返回过程中y与x之间的函数解析式,并写出函数的定义域;(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.23.在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=﹣x+5图象上的概率.24.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.25.如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连结AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.26.【问题探究】(1)如图①,点E是正△ABC高AD上的一定点,请在AB上找一点F,使EF= AE,并说明理由;(2)如图②,点M是边长为2的正△ABC高AD上的一动点,求AM+MC的最小值;【问题解决】(3)如图③,A、B两地相距600km,AC是笔直地沿东西方向向两边延伸的一条铁路.点B到AC的最短距离为360km.今计划在铁路线AC上修一个中转站M,再在BM间修一条笔直的公路.如果同样的物资在每千米公路上的运费是铁路上的两倍.那么,为使通过铁路由A到M再通过公路由M到B的总运费达到最小值,请确定中转站M的位置,并求出AM的长.(结果保留根号)2016年陕西省西安市XX中学中考数学一模试卷参考答案与试题解析一、选择题1.的平方根是()A.±3 B.3 C.±9 D.9【考点】平方根;算术平方根.【分析】根据平方运算,可得平方根、算术平方根.【解答】解:∵,9的平方根是±3,故选:A.2.用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】左视图是从左边看得到的视图,结合选项即可得出答案.【解答】解:所给图形的左视图为C选项说给的图形.故选C.3.下面计算一定正确的是()A.b3+a3=2b6B.(﹣3pq)2=﹣9p2q2C.5y3+3y5=15y8D.b9÷b3=b3【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方.【分析】利用合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;同底数幂的除法法则:底数不变,指数相减进行分析即可.【解答】解:A、b3+a3=2b6,计算错误;B、(﹣3pq)2=﹣9p2q2,计算错误;C、5y3+3y5=15y8,计算错误;D、b9÷b3=b3,计算正确;故选:D.4.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140° D.40°【考点】平行线的判定与性质.【分析】首先根据同位角相等,两直线平行可得a∥b,再根据平行线的性质可得∠3=∠5,再根据邻补角互补可得∠4的度数.【解答】解:∵∠1=∠2,∴a∥b,∴∠3=∠5,∵∠3=40°,∴∠5=40°,∴∠4=180°﹣40°=140°,故选:C.5.若反比例函数y=的图象过点(﹣2,1),则一次函数y=kx﹣k的图象过()A.第一、二、四象限B.第一、三、四象限C.第二、三、四象限D.第一、二、三象限【考点】一次函数图象与系数的关系;反比例函数图象上点的坐标特征.【分析】首先利用反比例函数图象上点的坐标特征可得k的值,再根据一次函数图象与系数的关系确定一次函数y=kx﹣k的图象所过象限.【解答】解:∵反比例函数y=的图象过点(﹣2,1),∴k=﹣2×1=﹣2,∴一次函数y=kx﹣k变为y=﹣2x+2,∴图象必过一、二、四象限,故选:A.6.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4 B.5 C.6 D.8【考点】等腰三角形的判定;坐标与图形性质.【分析】分别以O、A为圆心,以OA长为半径作圆,与坐标轴交点即为所求点M,再作线段OA的垂直平分线,与坐标轴的交点也是所求的点M,作出图形,利用数形结合求解即可.【解答】解:如图,满足条件的点M的个数为6.故选C.分别为:(﹣2,0),(2,0),(0,2),(0,2),(0,﹣2),(0,).7.不等式组的解集在数轴上表示正确的是()A. B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先求出每个不等式的解集再求出其公共解集.【解答】解:该不等式组的解集为1<x≤2,故选C.8.在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4) B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)【考点】坐标与图形变化﹣旋转.【分析】如图,把线段OP绕点O逆时针旋转90°到OP′位置看作是把Rt△OPA 绕点O逆时针旋转90°到RtOP′A′,再根据旋转的性质得到OA′、P′A′的长,然后根据第二象限点的坐标特征确定P′点的坐标.【解答】解:如图,OA=3,PA=4,∵线段OP绕点O逆时针旋转90°到OP′位置,∴OA旋转到x轴负半轴OA′的位置,∠P′A′0=∠PAO=90°,P′A′=PA=4,∴P′点的坐标为(﹣3,4).故选C.9.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°【考点】菱形的性质.【分析】连接BF,利用SAS判定△BCF≌△DCF,从而得到∠CBF=∠CDF,根据已知可注得∠CBF的度数,则∠CDF也就求得了.【解答】解:如图,连接BF,在△BCF和△DCF中,∵CD=CB,∠DCF=∠BCF,CF=CF∴△BCF≌△DCF∴∠CBF=∠CDF∵FE垂直平分AB,∠BAF=×80°=40°∴∠ABF=∠BAF=40°∵∠ABC=180°﹣80°=100°,∠CBF=100°﹣40°=60°∴∠CDF=60°.故选D.10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣.下列结论中,正确的是()A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b【考点】二次函数图象与系数的关系.【分析】由二次函数的性质,即可确定a,b,c的符号,即可判定A是错误的;又由对称轴为x=﹣,即可求得a=b;由当x=1时,a+b+c<0,即可判定C错误;然后由抛物线与x轴交点坐标的特点,判定D正确.【解答】解:A、∵开口向上,∴a>0,∵抛物线与y轴交于负半轴,∴c<0,∵对称轴在y轴左侧,∴﹣<0,∴b>0,∴abc<0,故A选项错误;B、∵对称轴:x=﹣=﹣,∴a=b,故B选项错误;C、当x=1时,a+b+c=2b+c<0,故C选项错误;D、∵对称轴为x=﹣,与x轴的一个交点的取值范围为x1>1,∴与x轴的另一个交点的取值范围为x2<﹣2,∴当x=﹣2时,4a﹣2b+c<0,即4a+c<2b,故D选项正确.故选D.二、填空题11.分解因式:ab2﹣4ab+4a=a(b﹣2)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.【解答】解:ab2﹣4ab+4a=a(b2﹣4b+4)﹣﹣(提取公因式)=a(b﹣2)2.﹣﹣(完全平方公式)故答案为:a(b﹣2)2.12.如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP面积为2,则这个反比例函数的解析式为.【考点】反比例函数系数k的几何意义.【分析】由于同底等高的两个三角形面积相等,所以△AOB的面积=△ABP的面积=2,然后根据反比例函数中k的几何意义,知△AOB的面积=|k|,从而确定k的值,求出反比例函数的解析式.【解答】解:设反比例函数的解析式为.∵△AOB的面积=△ABP的面积=2,△AOB的面积=|k|,∴|k|=2,∴k=±4;又∵反比例函数的图象的一支位于第一象限,∴k>0.∴k=4.∴这个反比例函数的解析式为.13.如图,已知点P是半径为1的⊙A上一点,延长AP到C,使PC=AP,以AC为对角线作▱ABCD.若AB=,则▱ABCD面积的最大值为2.【考点】平行四边形的性质;三角形的面积.【分析】由已知条件可知AC=2,AB=,应该是当AB、AC是直角边时三角形的面积最大,根据AB⊥AC即可求得.【解答】解:由已知条件可知,当AB⊥AC时▱ABCD的面积最大,∵AB=,AC=2,==,∴S△ABC∴S▱ABCD=2S△ABC=2,∴▱ABCD面积的最大值为2.故答案为:2.[选做题]请从以下两个小题中任选一个作答,若多选,则按第一题计分14.若一个正n边形的每个内角为156°,则这个正n边形的边数是15.【考点】多边形内角与外角.【分析】根据多边形内角和定理列出方程,解方程即可.【解答】解:由题意得,=156°,解得,n=15,故答案为:15.15.用科学计算器计算:cos32°≈ 2.68.(精确到0.01)【考点】计算器—三角函数;近似数和有效数字;计算器—数的开方.【分析】熟练应用计算器,对计算器给出的结果,根据精确度的概念用四舍五入法取近似数.【解答】解:cos32°=3.1623×0.8480≈2.68,故答案为2.68.三、解答题16.计算:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+.【考点】特殊角的三角函数值;零指数幂;负整数指数幂.【分析】涉及绝对值、特殊角的三角函数值、0指数幂、负整数指数幂、二次根式的运算等考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+,=|2﹣|﹣1+4+,=2﹣﹣1+4+,=5.17.解分式方程:﹣=1.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2﹣5x+6﹣3x﹣9=x2﹣9,解得:x=,经检验x=是分式方程的解.18.小明家的房前有一块矩形的空地,空地上有三棵树A、B、C,小明想建一个圆形花坛,使三棵树都在花坛的边上.请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹).【考点】三角形的外接圆与外心.【分析】要使三棵树都在花坛的边上则应使花坛为△ABC的外接圆,故只要作出三角形两边垂直平分线的交点即为△ABC的外接圆圆心,再以此点为圆心,以此点到点A的长度为半径画圆,此圆即为花坛的位置.【解答】解:①分别以A、B为圆心,以大于AB为半径画圆,两圆相交于D、E两点,连接DE;②分别以A、C为圆心,以大于AC为半径画圆,两圆相交于G、F两点,连接GF;③直线DE与GF相交于点O,以O为圆心,以OA的长为半径画圆,则此圆即为花坛的位置.19.在某市开展的“读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计该市12000名初二学生中日人均阅读时间在0.5~1.5小时的多少人.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据第一组的人数是30,占20%,即可求得总数,即样本容量;(2)利用总数减去另外两段的人数,即可求得0.5~1小时的人数,从而作出直方图;(3)利用360°乘以日人均阅读时间在1~1.5小时的所占的比例;(4)利用总人数12000乘以对应的比例即可.【解答】解:(1)样本容量是:30÷20%=150;(2)日人均阅读时间在0.5~1小时的人数是:150﹣30﹣45=75(人).;(3)人均阅读时间在1~1.5小时对应的圆心角度数是:360°×=108°;(4)12000×=9600(人).20.如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)由四边形ABCD为正方形,得到AB=AD,∠B=∠D=90°,DC=CB,由E、F分别为DC、BC中点,得出DE=BF,进而证明出两三角形全等;=S正方形ABCD﹣S△ADE﹣S△ABF﹣S△CEF得(2)首先求出DE和CE的长度,再根据S△AEF出结果.【解答】(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠D=∠B=90°,DC=CB,∵E、F为DC、BC中点,∴DE=DC,BF=BC,∴DE=BF,在△ADE和△ABF中,,∴△ADE≌△ABF(SAS);(2)解:由题知△ABF、△ADE、△CEF均为直角三角形,且AB=AD=4,DE=BF=×4=2,CE=CF=×4=2,=S正方形ABCD﹣S△ADE﹣S△ABF﹣S△CEF∴S△AEF=4×4﹣×4×2﹣×4×2﹣×2×2=6.21.高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改进行驶,试问:消防车是否需要改道行驶?请说明理由.(取1.732)【考点】解直角三角形的应用﹣方向角问题.【分析】首先过点A作AH⊥CF于点H,易得∠ACH=60°,然后利用三角函数的知识,求得AH的长,继而可得消防车是否需要改进行驶.【解答】解:如图:过点A作AH⊥CF于点H,由题意得:∠MCF=75°,∠CAN=15°,AC=125米,∵CM∥AN,∴∠ACM=∠CAN=15°,∴∠ACH=∠MCF﹣∠ACM=75°﹣15°=60°,∴在Rt△ACH中,AH=AC•sin∠ACH=125×≈108.25(米)>100米.答:消防车不需要改道行驶.22.A、B两城间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回.如图是它们离A城的路程y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车返回过程中y与x之间的函数解析式,并写出函数的定义域;(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.【考点】一次函数的应用.【分析】(1)设出一次函数解析式,代入图象上的两个点的坐标,即可解答;(2)把x=6代入(1)中的函数解析式,求得路程(甲、乙距A城的距离),进一步求得速度即可解答.【解答】解:(1)设甲车返回过程中y与x之间的函数解析式y=kx+b,∵图象过(5,450),(10,0)两点,∴, 解得,∴y=﹣90x +900.函数的定义域为5≤x ≤10;(2)当x=6时,y=﹣90×6+900=360,(千米/小时).23.在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x ,小敏从剩下的3个小球中随机取出一个小球,记下数字为y ,这样确定了点P 的坐标(x ,y ).(1)请你运用画树状图或列表的方法,写出点P 所有可能的坐标;(2)求点P (x ,y )在函数y=﹣x +5图象上的概率.【考点】列表法与树状图法;一次函数图象上点的坐标特征.【分析】(1)首先根据题意画出表格,即可得到P 的所以坐标;(2)然后由表格求得所有等可能的结果与数字x 、y 满足y=﹣x +5的情况,再利用概率公式求解即可求得答案【解答】解:列表得:(1)点P所有可能的坐标有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种;(2)∵共有12种等可能的结果,其中在函数y=﹣x+5图象上的有4种,即:(1,4),(2,3),(3,2),(4,1)∴点P(x,y)在函数y=﹣x+5图象上的概率为:P=.24.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.【考点】切线的判定.【分析】(1)连接OA,根据圆周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=30°,再由AP=AC得出∠P=30°,继而由∠OAP=∠AOC﹣∠P,可得出OA ⊥PA,从而得出结论;(2)利用含30°的直角三角形的性质求出OP=2OA,可得出OP﹣PD=OD,再由PD=,可得出⊙O的直径.【解答】(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥PA,∴PA是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD,又∵OA=OD,∴PD=OA,∵,∴.∴⊙O的直径为.25.如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连结AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.【考点】二次函数综合题.【分析】(1)根据平移规律写出抛物线解析式,再求出M、A、B坐标即可.(2)首先证明△ABE∽△AMF,推出的值,∠BAM=90°,根据tan∠ABM=即可解决问题.(3)分点P在x轴上方或下方两种情形解决问题.【解答】解:(1)∵抛物线y=x2﹣3向右平移一个单位后得到的函数解析式为y=(x﹣1)2﹣3,∴顶点M(1,﹣3),令x=0,则y=(0﹣1)2﹣3=﹣2,∴点A(0,﹣2),x=3时,y=(3﹣1)2﹣3=4﹣3=1,∴点B(3,1),(2)过点B作BE⊥AO于E,过点M作MF⊥AO于M,∵EB=EA=3,∴∠EAB=∠EBA=45°,同理可求∠FAM=∠FMA=45°,∴△ABE∽△AMF,∴==,又∵∠BAM=180°﹣45°×2=90°,∴tan∠ABM==,(3)过点P作PH⊥x轴于H,∵y=(x﹣1)2﹣3=x2﹣2x﹣2,∴设点P(x,x2﹣2x﹣2),①点P在x轴的上方时,=,整理得,3x2﹣7x﹣6=0,解得x1=﹣(舍去),x2=3,∴点P的坐标为(3,1);②点P在x轴下方时,=,整理得,3x2﹣5x﹣6=0,解得x1=(舍去),x2=,x=时,y=x2﹣2x﹣2=,∴点P的坐标为(,),综上所述,点P的坐标为(3,1)或(,).26.【问题探究】(1)如图①,点E是正△ABC高AD上的一定点,请在AB上找一点F,使EF= AE,并说明理由;(2)如图②,点M是边长为2的正△ABC高AD上的一动点,求AM+MC的最小值;【问题解决】(3)如图③,A、B两地相距600km,AC是笔直地沿东西方向向两边延伸的一条铁路.点B到AC的最短距离为360km.今计划在铁路线AC上修一个中转站M,再在BM间修一条笔直的公路.如果同样的物资在每千米公路上的运费是铁路上的两倍.那么,为使通过铁路由A到M再通过公路由M到B的总运费达到最小值,请确定中转站M的位置,并求出AM的长.(结果保留根号)【考点】作图—应用与设计作图.【分析】(1)根据等边三角形的性质得出∠BAD=30°,得出EF=AE;(2)根据题意得出C,M,N在一条直线上时,此时最小,进而求出即可;(3)作BD⊥AC,垂足为点D,在AC异于点B的一侧作∠CAN=30°,作BF⊥AN,垂足为点F,交AC于点M,点M即为所求,在Rt△ABD中,求出AD的长,在Rt△MBD中,得出MD的长,即可得出答案.【解答】解:(1)如图①,作EF⊥AB,垂足为点F,点F即为所求.理由如下:∵点E是正△ABC高AD上的一定点,∴∠BAD=30°,∵EF⊥AB,∴EF=AE;(2)如图②,作CN⊥AB,垂足为点N,交AD于点M,此时最小,最小为CN的长.∵△ABC是边长为2的正△ABC,∴CN=BC•sin60°=2×=,∴MN+CM=AM+MC=,即的最小值为.(3)如图③,作BD⊥AC,垂足为点D,在AC异于点B的一侧作∠CAN=30°,作BF⊥AN,垂足为点F,交AC于点M,点M即为所求.在Rt△ABD中,AD===480(km),在Rt△MBD中,∠MBD=∠MAF=30°,得MD=BD•tan30°=(km),所以AM=km.2017年3月19日。

山东省济南市长清区2017届九年级(上)期末数学试卷(解析版)

山东省济南市长清区2017届九年级(上)期末数学试卷(解析版)

2016-2017学年山东省济南市长清区九年级(上)期末数学试卷一、选择题(每题3分,共45分)1.方程x(x﹣1)=0的解是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=﹣12.已知反比例函数y=,则在这个反比例函数图象上的点是()A.(﹣2,1)B.(1,2) C.(1,﹣2)D.(﹣2,﹣2)3.三角形在正方形网格纸中的位置如图所示,则cosα的值是()A.B.C.D.4.如图,在▱ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF:CF=()A.1:2 B.1:3 C.2:3 D.2:55.已知∠A是锐角,且cosA=,那么∠A等于()A.30°B.45°C.60°D.75°6.如图中三幅图是在我国北方某地某天上午不同时刻的同一位置拍摄的,则按时间先后顺序可排列为()A.③②①B.②①③C.①②③D.②③①7.有下列四个说法:①半径确定了,圆就确定了;②直径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆.其中错误说法的个数是()A.1 B.2 C.3 D.48.已知关于x的方程ax2+bx+c=0(a>0,b>0)有两个不相等的实数根,则抛物线y=ax2+bx+c的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限9.如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC的面积比为()A.1:3 B.1:4 C.1:5 D.1:910.如图,A是反比例函数y=图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP的面积为2,则k的值为()A.1 B.2 C.3 D.411.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为()A.50°B.80°C.100° D.130°12.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()A.1个 B.2个 C.3个 D.4个13.如图所示,在圆⊙O内有折线OAB,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为()A.20 B.19 C.18 D.1614.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:从上表可知,下列说法中正确的是()①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是直线x=;④在对称轴左侧,y随x增大而增大.A.①②③B.①③④C.①②④D.②③④15.如图,直线y=4﹣x交x轴、y轴于A、B两点,P是反比例函数图象上位于直线下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F,则AF•BE=()A.2 B.4 C.6 D.二、填空题(共6个小题,每小题3分,共18分)16.某人沿倾斜角为β的斜坡走了100米,则他上升的高度是米.17.已知AB是直径,∠C等于15度,∠BAD的度数=.18.如图,测量小玻璃管口径的量具ABC,AB的长为10cm,AC被分为60等份.如果小玻璃管口DE正好对着量具上20等份处(DE∥AB),那么小玻璃管口径DE 是cm.19.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球个.20.如图,点A的坐标是(2,0),△ABO是等边三角形,点B在第一象限,若反比例函数y=的图象经过点B,则k的值是.21.如图,济南建邦大桥有一段抛物线型的拱梁,抛物线的表达式为y=ax2+bx,小强骑自行车从拱梁一端O匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶8秒时和24秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需秒.三、解答题(本题共7个小题,共57分)22.(1)sin60°﹣tan30°•cos60°(2)cos245°+sin30°•tan260°.23.如图,,D、E分别是半径OA和OB的中点,CD与CE的大小有什么关系?为什么?24.经过我区的济南市第一条地铁R1线正紧锣密鼓施工,施工单位为了提醒司机注意绕行,在某路口设立了交通路况指示牌(如图),已知立杆AB高度是3m,从侧面D点测得显示牌顶端C点和底端B点的仰角分别是60°和45°,求路况指示牌BC的高度(可保留根号).25.有一个不透明口袋,装有分别标有数字1,2,3,4的4个小球(小球除数字不同外,其余都相同).另有3张背面完全一样,正面分别写有数字1,2,3的卡片,小敏从口袋中任意摸出一个小球,小颖从这3张背面朝上的卡片中任意摸出一张,然后计算小球和卡片上的两个数的积.(1)请你用列表或画树状图的方法,求摸出的这两个数的积为6的概率;(2)小敏和小颖做游戏,她们约定:若这两个数的积为奇数,小敏赢;否则,小颖赢,你认为该游戏公平吗?为什么?26.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件;(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天赢利最多?27.如图,已知一次函数y1=k1x+b的图象与x轴、y轴分别交于A、B两点,与反比例函数y2=的图象分别交于C、D两点,点D(2,﹣3),点B是线段AD 的中点.(1)求一次函数y1=k1x+b与反比例函数y2=的解析式;(2)求△COD的面积;(3)直接写出y1>y2时自变量x的取值范围.28.如图,已知抛物线y=﹣x2+bx+c轴交于A(﹣1,0)、B(3,0)两点,与y 轴交于点C,抛物线的对称轴与抛物线交于点P,与直线BC相交于点M,连接PB.(1)求该抛物线的解析式;(2)在(1)中位于第一象限内的抛物线上是否存在点D,使得△BCD的面积最大?若存在,求出D点坐标及△BCD面积的最大值;若不存在,请说明理由.(3)直线l经过A、C两点,点Q在抛物线位于y轴的左侧部分上运动,直线m 经过点B和点Q是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.2016-2017学年山东省济南市长清区九年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分,共45分)1.方程x(x﹣1)=0的解是()A.x=0 B.x=1 C.x=0或x=1 D.x=0或x=﹣1【考点】解一元二次方程﹣因式分解法;解一元一次方程.【分析】一元二次方程转化成两个一元一次方程x=0或x﹣1=0,求出方程的解即可.【解答】解:x(x﹣1)=0,x=0 或x﹣1=0,x1=0 或x2=1,故选:C.2.已知反比例函数y=,则在这个反比例函数图象上的点是()A.(﹣2,1)B.(1,2) C.(1,﹣2)D.(﹣2,﹣2)【考点】反比例函数图象上点的坐标特征.【分析】若点(x,y)在y=上,则xy=k.【解答】解:(A)﹣2×1=﹣2,故A不在图象上,(B)1×2=2,故B在图象上,(C)1×(﹣2)=﹣2,故C不在图象上,(D)﹣2×(﹣2)=4,故D不在图象上,故选(B)3.三角形在正方形网格纸中的位置如图所示,则cosα的值是()A.B.C.D.【考点】锐角三角函数的定义;勾股定理.【分析】根据锐角三角函数的定义得出cosα=进而求出即可.【解答】解:如图所示:∵AC=3,BC=4,∴AB=5,∴cosα==.故选:D.4.如图,在▱ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF:CF=()A.1:2 B.1:3 C.2:3 D.2:5【考点】相似三角形的判定与性质;平行四边形的性质.【分析】根据四边形ABCD是平行四边形,证出△AEF∽△BCF,然后利用其对应边成比例即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴△AEF∽△BCF,∴AF:CF=AE:BC,∵点E为AD的中点,∴AE=AD=BC,∴AF:CF=1:2;故选:A.5.已知∠A是锐角,且cosA=,那么∠A等于()A.30°B.45°C.60°D.75°【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值直接求解.【解答】解:∵△ABC中,∠A是锐角,cosA=,∴∠A=30°.故选A.6.如图中三幅图是在我国北方某地某天上午不同时刻的同一位置拍摄的,则按时间先后顺序可排列为()A.③②①B.②①③C.①②③D.②③①【考点】平行投影.【分析】根据某天上午不同时刻物体影子的指向是:西﹣西北﹣北,影长由长变短.【解答】解:西为③,西北为②,北为①,∴将它们按时间先后顺序排列为③②①.故选:A.7.有下列四个说法:①半径确定了,圆就确定了;②直径是弦;③弦是直径;④半圆是弧,但弧不一定是半圆.其中错误说法的个数是()A.1 B.2 C.3 D.4【考点】圆的认识.【分析】根据弦的定义、弧的定义、以及确定圆的条件即可解决.【解答】解:①圆确定的条件是确定圆心与半径,是假命题,故此说法错误;②直径是弦,直径是圆内最长的弦,是真命题,故此说法正确;③弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误;④半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧.但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确.其中错误说法的是①③两个.故选:B.8.已知关于x的方程ax2+bx+c=0(a>0,b>0)有两个不相等的实数根,则抛物线y=ax2+bx+c的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】抛物线与x轴的交点.【分析】由抛物线的解析式可求出顶点的横纵坐标,结合已知条件即可判断抛物线y=ax2+bx+c的顶点所在象限.【解答】解:∵关于x的方程ax2+bx+c=0(a>0,b>0)有两个不相等的实数根,∴b2﹣4ac>0,即b2>4ac,∵顶点的横坐标为﹣,纵坐标为,a>0,b>0,∴﹣<0,<0,∴抛物线y=ax2+bx+c的顶点在第三象限,故选C.9.如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC的面积比为()A.1:3 B.1:4 C.1:5 D.1:9【考点】位似变换.【分析】先求出位似比,根据位似比等于相似比,再由相似三角形的面积比等于相似比的平方即可.【解答】解:∵OB=3OB′,∴,∵以点O为位似中心,将△ABC缩小后得到△A′B′C′,∴△A′B′C′∽△ABC,∴=.∴=,故选D10.如图,A是反比例函数y=图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP的面积为2,则k的值为()A.1 B.2 C.3 D.4【考点】反比例函数系数k的几何意义.【分析】在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变,由此可得出答案.==2,【解答】解:根据反比例函数的几何意义可得,S△ABP又∵函数图象在第一象限,∴k=4.故选:D.11.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为()A.50°B.80°C.100° D.130°【考点】圆周角定理;圆内接四边形的性质.【分析】首先根据圆周角与圆心角的关系,求出∠BAD的度数;然后根据圆内接四边形的对角互补,用180°减去∠BAD的度数,求出∠BCD的度数是多少即可.【解答】解:∵∠BOD=100°,∴∠BAD=100°÷2=50°,∴∠BCD=180°﹣∠BAD=180°﹣50°=130°故选:D.12.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()A.1个 B.2个 C.3个 D.4个【考点】二次函数图象与系数的关系.【分析】首先根据二次函数y=ax2+bx+c的图象经过原点,可得c=0,所以abc=0;然后根据x=1时,y<0,可得a+b+c<0;再根据图象开口向下,可得a<0,图象的对称轴为x=﹣,可得﹣,b<0,所以b=3a,a>b;最后根据二次函数y=ax2+bx+c图象与x轴有两个交点,可得△>0,所以b2﹣4ac>0,4ac﹣b2<0,据此解答即可.【解答】解:∵二次函数y=ax2+bx+c图象经过原点,∴c=0,∴abc=0∴①正确;∵x=1时,y<0,∴a+b+c<0,∴②不正确;∵抛物线开口向下,∴a<0,∵抛物线的对称轴是x=﹣,∴﹣,b<0,∴b=3a,又∵a<0,b<0,∴a>b,∴③正确;∵二次函数y=ax2+bx+c图象与x轴有两个交点,∴△>0,∴b2﹣4ac>0,4ac﹣b2<0,∴④正确;综上,可得正确结论有3个:①③④.故选:C.13.如图所示,在圆⊙O内有折线OAB,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为()A.20 B.19 C.18 D.16【考点】垂径定理;等边三角形的判定与性质.【分析】延长AO交BC于D,根据∠A、∠B的度数易证得△ABD是等边三角形,由此可求出OD、BD的长;过O作BC的垂线,设垂足为E;在Rt△ODE中,根据OD的长及∠ODE的度数易求得DE的长,进而可求出BE的长;由垂径定理知BC=2BE,由此得解.【解答】解:延长AO交BC于D,作OE⊥BC于E;∵∠A=∠B=60°,∴∠ADB=60°;∴△ADB为等边三角形;∴BD=AD=AB=12;∴OD=4,又∵∠ADB=60°,∴DE=OD=2;∴BE=10;∴BC=2BE=20.故选A.14.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:从上表可知,下列说法中正确的是()①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是直线x=;④在对称轴左侧,y随x增大而增大.A.①②③B.①③④C.①②④D.②③④【考点】抛物线与x轴的交点;二次函数的最值.【分析】根据表格的数据首先确定抛物线的对称轴,然后利用抛物线的对称性可以确定抛物线与x轴的另一个交点坐标,也可以确定抛物线的最大值的取值范围,也可以确定其增减性.【解答】解:根据表格数据知道:抛物线的开口方向向下,∵x=0,x=1的函数值相等,∴对称轴为x=,所以选项③正确,符合题意;∴抛物线与x轴的另一个交点坐标为:(3,0),所以选项①正确,不合题意;在对称轴左侧,y随x增大而增大,最大值大于6.所以选项④正确,符合题意;选项②错误,不符合题意;故选B.15.如图,直线y=4﹣x交x轴、y轴于A、B两点,P是反比例函数图象上位于直线下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F,则AF•BE=()A.2 B.4 C.6 D.【考点】反比例函数综合题.【分析】首先作辅助线:过点E作EC⊥OB于C,过点F作FD⊥OA于D,然后由直线y=4﹣x交x轴、y轴于A、B两点,求得点A与B的坐标,则可得OA=OB,即可得△AOB,△BCE,△ADF是等腰直角三角形,则可得AF•BE=CE•DF=2CE•DF,又由四边形CEPN与MDFP是矩形,可得CE=PN,DF=PM,根据反比例函数的性质即可求得答案.【解答】解:过点E作EC⊥OB于C,过点F作FD⊥OA于D,∵直线y=4﹣x交x轴、y轴于A、B两点,∴A(4,0),B(0,4),∴OA=OB,∴∠ABO=∠BAO=45°,∴BC=CE,AD=DF,∵PM⊥OA,PN⊥OB,∴四边形CEPN与MDFP是矩形,∴CE=PN,DF=PM,∵P是反比例函数图象上的一点,∴PN•PM=2,∴CE•DF=2,在Rt△BCE中,BE==CE,在Rt△ADF中,AF==DF,∴AF•BE=CE•DF=2CE•DF=4.故选B.二、填空题(共6个小题,每小题3分,共18分)16.某人沿倾斜角为β的斜坡走了100米,则他上升的高度是100sinβ米.【考点】解直角三角形的应用﹣坡度坡角问题.【分析】作出图来,在直角三角形ABC中,利用三角函数从而计算出高度.【解答】解:如图由已知AB=100米,求AC则在直角三角形ABC中,利用三角函数得AC=100sinβ.故填100sinβ.17.已知AB是直径,∠C等于15度,∠BAD的度数=75°.【考点】圆周角定理.【分析】连接BD,根据圆周角定理得到∠B=∠C=15°,根据直角三角形的性质计算即可.【解答】解:连接BD,∠B=∠C=15°,∵AB是直径,∴∠ADB=90°,∴∠BAD=90°﹣15°=75°,故答案为:75°.18.如图,测量小玻璃管口径的量具ABC,AB的长为10cm,AC被分为60等份.如果小玻璃管口DE正好对着量具上20等份处(DE∥AB),那么小玻璃管口径DE是cm.【考点】相似三角形的应用.【分析】根据题意易证△CDE∽△CAB,根据相似比即可得出DE的长度.【解答】解:∵DE∥AB,∴△CDE∽△CAB.∴DE:AB=CD:AC.∴40:60=DE:10.∴DE=cm.∴小玻璃管口径DE是cm.故答案为:.19.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球8个.【考点】利用频率估计概率.【分析】根据摸到红球的频率,可以得到摸到黑球和白球的概率之和,从而可以求得总的球数,从而可以得到红球的个数.【解答】解:由题意可得,摸到黑球和白球的频率之和为:1﹣0.4=0.6,∴总的球数为:(8+4)÷0.6=20,∴红球有:20﹣(8+4)=8(个),故答案为:8.20.如图,点A的坐标是(2,0),△ABO是等边三角形,点B在第一象限,若反比例函数y=的图象经过点B,则k的值是.【考点】反比例函数图象上点的坐标特征;等边三角形的性质.【分析】首先过点B作BC垂直OA于C,根据AO=2,△ABO是等边三角形,得出B点坐标,进而求出反比例函数解析式.【解答】解:过点B作BC垂直OA于C,∵点A的坐标是(2,0),∴AO=2,∵△ABO是等边三角形,∴OC=1,BC=,∴点B的坐标是(1,),把(1,)代入y=,得k=.故答案为:.21.如图,济南建邦大桥有一段抛物线型的拱梁,抛物线的表达式为y=ax2+bx,小强骑自行车从拱梁一端O匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶8秒时和24秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需32秒.【考点】二次函数的应用.【分析】根据题意可以求得抛物线的对称轴,从而可以得到a与b的关系,然后令y=0,即可得到抛物线与x轴的交点,从而可以得到OC的长,本题得以解决.【解答】解:∵当小强骑自行车行驶8秒时和24秒时拱梁的高度相同,∴抛物线的对称轴是直线x=,∴﹣=16,得b=﹣32a,令y=0,则0=ax2+bx,解得,x1=0,x2=32,∴小强骑自行车通过拱梁部分的桥面OC共需:32﹣0=32秒,故答案为:32.三、解答题(本题共7个小题,共57分)22.(1)sin60°﹣tan30°•cos60°(2)cos245°+sin30°•tan260°.【考点】实数的运算;特殊角的三角函数值.【分析】原式各项利用特殊角的三角函数值计算即可得到结果.【解答】解:(1)原式=×﹣×=﹣;(2)原式=+=2.23.如图,,D、E分别是半径OA和OB的中点,CD与CE的大小有什么关系?为什么?【考点】圆心角、弧、弦的关系;全等三角形的判定与性质.【分析】应该是相等的关系,可通过构建全等三角形来实现,连接OC,只要证明三角形OCD和OEC全等即可.有了一条公共边,根据圆心角定理我们可得出∠AOB=∠BOC,又有OD=OE(同为半径的一半),这样就构成了SAS的条件.因此便可得出两三角形全等.【解答】解:CD=CE.理由是:连接OC,∵D、E分别是OA、OB的中点,∴OD=OE,又∵,∴∠DOC=∠EOC,OC=OC,∴△CDO≌△CEO,∴CD=CE.24.经过我区的济南市第一条地铁R1线正紧锣密鼓施工,施工单位为了提醒司机注意绕行,在某路口设立了交通路况指示牌(如图),已知立杆AB高度是3m,从侧面D点测得显示牌顶端C点和底端B点的仰角分别是60°和45°,求路况指示牌BC的高度(可保留根号).【考点】解直角三角形的应用﹣仰角俯角问题.【分析】根据等腰直角三角形的性质得到DA=3,根据正切的定义求出CA,计算即可.【解答】解:∵在Rt△ADB中,∠BDA=45°,AB=3,∴DA=3,在Rt△ADC中,∠CDA=60°,∴tan∠CDA=,∴CA=3,∴BC=CA﹣BA=3﹣3,答:路况显示牌BC的高度是(3﹣3)米.25.有一个不透明口袋,装有分别标有数字1,2,3,4的4个小球(小球除数字不同外,其余都相同).另有3张背面完全一样,正面分别写有数字1,2,3的卡片,小敏从口袋中任意摸出一个小球,小颖从这3张背面朝上的卡片中任意摸出一张,然后计算小球和卡片上的两个数的积.(1)请你用列表或画树状图的方法,求摸出的这两个数的积为6的概率;(2)小敏和小颖做游戏,她们约定:若这两个数的积为奇数,小敏赢;否则,小颖赢,你认为该游戏公平吗?为什么?【考点】游戏公平性;列表法与树状图法.【分析】(1)列表列出所有等可能结果,根据概率公式解答即可;(2)由积为偶数的有8种情况,而积为奇数的有4种情况,即可判断.【解答】解:(1)列表如下:由表格可知,总结果有12种,可能性是相同的,其中积为6的有2种,==.∴P(积为6)(2)游戏不公平,因为积为偶数的有8种情况,而积为奇数的有4种情况.26.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件;(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天赢利最多?【考点】二次函数的应用;一元二次方程的应用.【分析】此题属于经营问题,若设每件衬衫应降价x元,则每件所得利润为(40﹣x)元,但每天多售出2x件即售出件数为(20+2x)件,因此每天赢利为(40﹣x)(20+2x)元,进而可根据题意列出方程求解.【解答】解:(1)设每件衬衫应降价x元,根据题意得(40﹣x)(20+2x)=1200,整理得2x2﹣60x+400=0解得x1=20,x2=10.因为要尽量减少库存,在获利相同的条件下,降价越多,销售越快,故每件衬衫应降20元.答:每件衬衫应降价20元.(2)设商场平均每天赢利y元,则y=(20+2x)(40﹣x)=﹣2x2+60x+800=﹣2(x2﹣30x﹣400)=﹣2[(x﹣15)2﹣625]=﹣2(x﹣15)2+1250.∴当x=15时,y取最大值,最大值为1250.答:每件衬衫降价15元时,商场平均每天赢利最多,最大利润为1250元.27.如图,已知一次函数y1=k1x+b的图象与x轴、y轴分别交于A、B两点,与反比例函数y2=的图象分别交于C、D两点,点D(2,﹣3),点B是线段AD 的中点.(1)求一次函数y1=k1x+b与反比例函数y2=的解析式;(2)求△COD的面积;(3)直接写出y1>y2时自变量x的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)把点D的坐标代入y2=利用待定系数法即可求得反比例函数的解析式,作DE⊥x轴于E,根据题意求得A的坐标,然后利用待定系数法求得一次函数的解析式;=S△AOC+S△AOD即可求得△COD的面(2)联立方程求得C的坐标,然后根据S△COD积;(3)根据图象即可求得.【解答】解:∵点D(2,﹣3)在反比例函数y2=的图象上,∴k2=2×(﹣3)=﹣6,∴y2=﹣;作DE⊥x轴于E,∵D(2,﹣3),点B是线段AD的中点,∴A(﹣2,0),∵A(﹣2,0),D(2,﹣3)在y1=k1x+b的图象上,∴,解得k1=﹣,b=﹣,∴y1=﹣x﹣;(2)由,解得,,∴C(﹣4,),=S△AOC+S△AOD=×+×2×3=;∴S△COD(3)当x<﹣4或0<x<2时,y1>y2.28.如图,已知抛物线y=﹣x2+bx+c轴交于A(﹣1,0)、B(3,0)两点,与y 轴交于点C,抛物线的对称轴与抛物线交于点P,与直线BC相交于点M,连接PB.(1)求该抛物线的解析式;(2)在(1)中位于第一象限内的抛物线上是否存在点D,使得△BCD的面积最大?若存在,求出D点坐标及△BCD面积的最大值;若不存在,请说明理由.(3)直线l经过A、C两点,点Q在抛物线位于y轴的左侧部分上运动,直线m 经过点B和点Q是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)由B、C两点的坐标,利用待定系数法可求得抛物线的解析式;=S梯形OCDH+S△BDH﹣S△(2)设D(t,﹣t2+2t+3),过点D作DH⊥x轴,根据S△BCD构建二次函数,利用二次函数的性质即可解决问题.BOC(3)设直线m与y轴交于点N,交直线l于点G,由于∠AGP=∠GNC+∠GCN,所以当△AGB和△NGC相似时,必有∠AGB=∠CGB=90°,则可证得△AOC≌△NOB,可求得ON的长,可求出N点坐标,利用B、N两的点坐标可求得直线m 的解析式.【解答】解:(1)∵抛物线y=﹣x2+bx+c轴交于A(﹣1,0)、B(3,0)两点,则有解得,∴抛物线的解析式为y=﹣x2+2x+3.(2)设D(t,﹣t2+2t+3),过点D作DH⊥x轴,,=S梯形OCDH+S△BDH﹣S△BOC则S△BCD=(﹣t2+2t+3+3)t+(3﹣t)(﹣t2+2t+3)﹣×3×3=﹣t2+t=﹣(t﹣)2+∵﹣<0,∴当t=﹣=时,D点坐标是(,),△BCD面积的最大值是.(3)①如图,设直线m与y轴交于点N,交直线l于点G,由于∠AGP=∠GNC+∠GCN,所以当△AGB和△NGC相似时,必有∠AGB=∠CGB=90°,∵∠CNG=∠BNO,∠CGN=∠NOB=90°,∴∠ACO=∠OBN,在△AOC和△NOB中,,∴△AOC≌△NOB,∴ON=AO=1,∴N(0,1),设直线BG的解析式为y=kx+b,则有解得,∴直线BG的解析式为y=﹣x+1,②当点Q在x轴上方时,此时直线m与①中的直线m关于x轴对称,∴解析式为y=x+1;综上可知存在满足条件的直线m,其解析式为y=x﹣1或y=﹣x+1.2017年3月20日。

山东省济南市长清区2017届九年级理综第一次模拟试题扫描版

山东省济南市长清区2017届九年级理综第一次模拟试题扫描版

山东省济南市长清区2017届九年级理综第一次模拟试题九年级阶段性测试化学试题答案一、单项选择题(每小题2分,共22分)1.C2.C3.D4.D5.B6.C7.D8.B9.A 10.D 11.A27. (4分)(1)O2(2)HCl (3)Ca(OH)2 (4)(NH4)2SO428. (4分)(1)4:1(2)氮(3)用纸包好扔掉(不要任意丢弃在地面,应放回垃圾桶内)(合理答案均可)(4)D29.(4分)(1)分子是不断运动的(2)在洁净干燥的玻璃片或白瓷板上放一片pH试纸,用洁净干燥的玻璃棒蘸取待测溶液,滴到试纸上,立即将试纸显示的颜色与pH标准比色卡对照,读出对应的pH(3)蔬菜水果(4)增大可燃物与氧气的接触面积30.(5分)(1)④②①③⑤(2)NH3 2NaHCO3 △ Na2CO3+H2O+CO2↑(3)①蒸发结晶②2531. (7分)(1)①AGEF②CaCO3+2HC1=CaCl2+H2O+CO2↑③关闭分液漏斗的活塞,将导管一端放入水中,两手紧贴锥形瓶的外壁,若水中有气泡出现,则装置气密性良好(没关闭活塞、不是先插再握本题不得分)(2)① 2H2O2MnO22H2O+O2↑②吸收氧气中的水蒸气(吸收水分,干燥氧气等,答案合理即可)③澄清石灰水变浑浊(浑浊字错不给分)④ 3(m1+m2)/1132. (7分)(1)Cu 红色石蕊试纸变蓝色(2)NO3—、Cl—(3)Fe (4)NaCl+AgNO3=AgCl↓+NaNO3(5)NH4NO3、MgCl2因为在过程②中加入氢氧化钠溶液有产生白色沉淀,所以存在氯化镁;或在过程②中加入氢氧化钠溶液有气体产生,所以存在硝酸铵(答案合理即可)33.(7分)有气体(气泡)生成有白色沉淀生成溶液由红色逐渐变为无色(红色逐渐消失);解:设样品中含有Na2CO3的质量为xN a2C O3+2H C l== 2N a C l+H2O+C O2↑(1分)10644x 0.88g106:44 = x:0.88g (106:x = 44:0.88g)(1分)x =2.12g (1分)NaOH的质量分数为(5g-2.12g )/5g=57.6% (1分)答:样品中所含NaOH的质量分数为57.6% 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省济南市长清区2017届九年级数学第一次模拟试题
2017长清一模参考答案
一、选择题:
二、填


(每小题3分)
16.3
2
17、()21-m
m 18、
2
1
19、-4 20.6 21、②③④
三、解答题
22、(1)解:原式=x2+2x+1-2x+ x2 …………………………2分 =2 x2+1 …………………………3分 (2)
23、(1)∵AF=CE
∴AF+EF=CE+EF
即AE=CF …………………………1分
∵ABCD是平行四边形∴AB∥CD且AB=CD ∴∠BAE=∠DCF
在△BAE和△DCF中





=

=

=
CF
AE
DCF
BAE
CD
AB
∴DCF

B AE
△≅…………………………2分
∴∠1=∠2----------(3分)…………………………3分
23(2) 试题解析:如图,连接OC.
∵CD是⊙O的切线,
∴∠OCD=90°.…………………………1分
∵∠A=30°,
∴∠COB=2∠A=60°.


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15


A D A C
B B
C
D B A C D D A D
…………………………1分
…………………………2分
…………………………3分
…………………………4分
∵OC=OB ,
∴△OBC 是等边三角形, …………………………3分 ∴∠OCB=60°,
∴∠BCD=90°﹣∠OCB=30°. …………………………4分
24、解:设杨老师骑自行车平均每小时行驶x 千米,则驾车每小时行驶4x 千米,由题意得
4x
10
21-x 10=
----------(4分)
解得x=15----------(6分)
经检验x=15是原方程的解且符合题意----------(7分)
答:杨老师骑自行车平均每小时行驶15千米。

----------(8分)
25.(1) 60 72
…………………………2分
(2)
…………………………4分
(3)
26. 试题解析:(1)∵在Rt △OAB 中,OB=3,tan ∠AOB=3
4
, ∴
3
4
=OB AB ∴AB=4.
∴A 点的坐标为(3,4) …………………………2分 ∴k=xy=12; …………………………3分
(2)∵DC 由AB 平移得到,DE :EC=3:1, ∴点E 的纵坐标为1. 又∵点E 在双曲线y=
x
12
上, ∴点E 的坐标为(12,1 ). …………………………4分
26.(1)∵在Rt△OAB 中,OB=3,tan∠AOB=,∴∴AB=4.
∴A 点的坐标为(3,4)……..2分 ∴k=xy=12;……3分
(2)设直线AE 的函数表达式为y=kx+b 则⎩

⎧+=+=b k b
k 12134, …………………………5分
……………………6分
……………7分
……………………8分
(男,男)(男,女)(女,男)(女,女)(女,男)(女,女)
解得
⎪⎩



=
-
=
5
3
1
b
k

∴直线AE的函数表达式为 y=-
3
1
x+5;…………………………6分(3)结论:AM=NE.
理由:在表达式y=-
3
1
x+5中,令y=0可得x=15,令x=0可得y=5
∴点M(0,5),N(15,0 ).
延长DA交y轴于点F,则AF⊥OM,且AF=3,OF=4,
∴MF=OM-OF=1,
∴由勾股定理得AM=10
1
32
2
2
2=
+
=
+MF
AF.
∵CN=15-12=3,EC=1,
∴根据勾股定理可得EN=10
1
32
2
2
2=
+
=
+CE
CN
∴AM=NE.…………………………9分
或由三角形全等证明。

27.【解答】证明:(1)∵点D关于直线AE的对称点为F,
∴∠EAF=∠DAE,AD=AF,
又∵∠BAC=2∠DAE,
∴∠BAC=∠DAF,…………………………2分∵AB=AC,
∴=,
∴△ADF∽△ABC;…………………………3分(2)∵点D关于直线AE的对称点为F,
∴EF=DE,AF=AD,
∵α=45°,
∴∠BAD=90°﹣∠CAD,
∠CAF=∠DAE+∠EAF﹣∠CAD=45°+45°﹣∠CAD=90°﹣∠CAD,
∴∠BAD=∠CAF,
在△ABD和△ACF中,,
∴△ABD≌△ACF(SAS),…………………………4分
∴CF=BD,∠ACF=∠B,
∵AB=AC,∠BAC=2α,α=45°,
∴△ABC是等腰直角三角形,
∴∠B=∠ACB=45°,
∴∠ECF=∠ACB+∠ACF=45°+45°=90°,…………………………5分
在Rt△CEF中,由勾股定理得,EF2=CF2+CE2,
所以,DE2=BD2+CE2;…………………………6分(3)DE2=BD2+CE2还能成立.
理由如下:作点D关于AE的对称点F,连接EF、CF,
由轴对称的性质得,EF=DE,AF=AD,
∵α=45°,
∴∠BAD=90°﹣∠CAD,
∠CAF=∠DAE+∠EAF﹣∠CAD=45°+45°﹣∠CAD=90°﹣∠CAD,
∴∠BAD=∠CAF,
在△ABD和△ACF中,,
∴△ABD≌△ACF(SAS),…………………………7分
∴CF=BD,∠ACF=∠B,
∵AB=AC,∠BAC=2α,α=45°,
∴△ABC是等腰直角三角形,
∴∠B=∠ACB=45°,
∴∠ECF=∠ACB+∠ACF=45°+45°=90°,…………………………8分在Rt△CEF中,由勾股定理得,EF2=CF2+CE2,
所以,DE2=BD2+CE2.…………………………9分
28.试题解析:(1).抛物线的解析式是. …………………2分
∵直线经过点A(—2,0),∴,解得:.
∴直线的解析式是. …………………………3分(2)存在.
设P的坐标是(x,),则M的坐标是(x,),
∴. …………………………4分解方程得:或.
∵点D在第三象限,∴点D的坐标是(8,).
由令x=0得点C的坐标是(0,).
∴. …………………………5分
∵PM∥y轴,∴要使四边形PMEC是平行四边形,必有PM=CE,即.
解这个方程得:x1=2,x2=4.
当x=2时,y="—3;" 当x=4时,y=.
∴直线AD上方的抛物线上存在这样的点P,使四边形PMEC是平行四边形,点P的坐标是(2,-3)
和(4,). …………………………6分
(3)在Rt△CDE中,DE=8,CE=6 由勾股定理得:DC=10.
∴△CDE的周长是24.
∵PM∥y轴,∴∠PMN=∠DCE.
∵∠PNM=∠DEC,∴△PMN∽△CDE. …………………………7分
∴,即.
化简整理得:m与x的函数关系式是:…………………………8分.
∵<0,∴m有最大值,当x=3时,m的最大值是15. …………………9分。

相关文档
最新文档