高三一轮复习讲义第6章第4节数列求和及答案

合集下载

2020版高考数学(文)新创新一轮复习通用版讲义:第六章第四节数列求和含答案

2020版高考数学(文)新创新一轮复习通用版讲义:第六章第四节数列求和含答案

第四节 数列求和 题型一 分组转化法求和若数列的通项为分段函数或几个特殊数列通项的和或差的组合等形式,则求和时可用分组转化法,就是对原数列的通项进行分解,分别对每个新的数列进行求和后再相加减.[典例] (2019·吉林调研)已知数列{a n }是等比数列,a 1=1,a 4=8,{b n }是等差数列,b 1=3,b 4=12.(1)求数列{a n }和{b n }的通项公式;(2)设c n =a n +b n ,求数列{c n }的前n 项和S n .[解] (1)设数列{a n }的公比为q ,由a 4=a 1q 3得8=1×q 3,所以q =2,所以a n =2n -1.设{b n }的公差为d ,由b 4=b 1+3d 得12=3+3d ,所以d =3,所以b n =3n .(2)因为数列{a n }的前n 项和为a 1(1-q n )1-q =1×(1-2n )1-2=2n -1,数列{b n }的前n 项和为b 1n +n (n -1)2d =3n +n (n -1)2×3=32n 2+32n , 所以S n =2n -1+32n 2+32n .[方法技巧]分组转化法求和的常见类型[提醒] 某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论.[针对训练](2018·焦作四模)已知{a n }为等差数列,且a 2=3,{a n }前4项的和为16,数列{b n }满足b 1=4,b 4=88,且数列{b n -a n }为等比数列.(1)求数列{a n }和{b n -a n }的通项公式; (2)求数列{b n }的前n 项和S n .解:(1)设{a n }的公差为d ,因为a 2=3,{a n }前4项的和为16, 所以⎩⎪⎨⎪⎧a 1+d =3,4a 1+4×32d =16,解得⎩⎪⎨⎪⎧a 1=1,d =2, 所以a n =1+(n -1)×2=2n -1. 设{b n -a n }的公比为q , 则b 4-a 4=(b 1-a 1)q 3, 因为b 1=4,b 4=88,所以q 3=b 4-a 4b 1-a 1=88-74-1=27,解得q =3,所以b n -a n =(4-1)×3n -1=3n .(2)由(1)得b n =3n +2n -1,所以S n =(3+32+33+…+3n )+(1+3+5+…+2n -1) =3(1-3n )1-3+n (1+2n -1)2=32(3n -1)+n 2=3n +12+n 2-32.题型二 错位相减法求和如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用错位相减法来求,如等比数列的前n 项和公式就是用此法推导的.[典例] (2019·南昌模拟)已知数列{a n }满足a 12+a 222+a 323+…+a n 2n =n 2+n .(1)求数列{a n }的通项公式;(2)若b n =(-1)n a n2,求数列{b n }的前n 项和S n .[解] (1)∵a 12+a 222+a 323+…+a n2n =n 2+n ,∴当n ≥2时,a 12+a 222+a 323+…+a n -12n -1=(n -1)2+n -1,两式相减得a n 2n =2n (n ≥2),∴a n =n ·2n +1(n ≥2).又∵当n =1时,a 12=1+1,∴a 1=4,满足a n =n ·2n +1.∴a n =n ·2n +1.(2)∵b n =(-1)n a n 2=n (-2)n ,∴S n =1×(-2)1+2×(-2)2+3×(-2)3+…+n ×(-2)n .-2S n =1×(-2)2+2×(-2)3+3×(-2)4+…+(n -1)×(-2)n +n (-2)n +1,∴两式相减得3S n =(-2)+(-2)2+(-2)3+(-2)4+…+(-2)n -n (-2)n +1=-2[1-(-2)n ]1-(-2)-n (-2)n +1=-(-2)n +1-23-n (-2)n +1=-(3n +1)(-2)n +1+23,∴S n =-(3n +1)(-2)n +1+29.[方法技巧]错位相减法求和的策略(1)如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法,一般是和式两边同乘以等比数列{b n }的公比,然后作差求解.(2)在写“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式.(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.[针对训练]1.数列12,34,58,716,…的前10项之和为________.解析:因为S 10=12+34+58+…+19210,①所以12S 10=14+38+…+17210+19211.②①-②得12S 10=12+⎝⎛⎭⎫24+28+…+2210-19211 =12+12⎣⎡⎦⎤1-⎝⎛⎭⎫1291-12-19211 =32-129-19211=3×210-23211, 所以S 10=3×210-23210=3 0491 024.答案:3 0491 0242.(2019·临川一中质检)已知等差数列{a n }满足a 3=5,其前6项和为36,等比数列{b n }的前n 项和S n =2-12n -1(n ∈N *).(1)求数列{a n },{b n }的通项公式; (2)求数列{a n b n }的前n 项和T n .解:(1)设等差数列{a n }的公差为d ,由已知得⎩⎪⎨⎪⎧ a 1+2d =5,6a 1+15d =36,解得⎩⎪⎨⎪⎧a 1=1,d =2,所以a n =2n -1(n ∈N *).对于数列{b n },因为S n =2-12n -1,所以当n =1时,b 1=S 1=2-1=1,当n ≥2时,b n =S n -S n -1=⎝⎛⎭⎫2-12n -1-⎝⎛⎭⎫2-12n -2=12n -1,综上所述,b n =12n -1(n ∈N *).(2)由(1)得a n b n =2n -12n -1,所以T n =1+321+522+…+2n -32n -2+2n -12n -1,①12T n =12+322+523+…+2n -32n -1+2n -12n ,② ①-②得,12T n =1+1+12+122+…+12n -2-2n -12n=3-2n +32n ,所以T n =6-4n +62n =6-2n +32n -1.题型三 裂项相消法求和如果一个数列的通项为分式或根式的形式,且能拆成结构相同的两式之差,那么通过累加将一些正、负项相互抵消,只剩下有限的几项,从而求出该数列的前n 项和.[典例] (2019·湖南十三校联考)已知数列{a n }的前n 项和为S n ,且S n =2a n -n . (1)证明:数列{a n +1}是等比数列,并求数列{a n }的通项公式; (2)记b n =1a n +1+1a n a n +1,求数列{b n }的前n 项和T n . [解] (1)由a 1=S 1=2a 1-1,得a 1=1,由n ≥2时,a n =S n -S n -1=(2a n -n )-(2a n -1-n +1), 即a n =2a n -1+1,所以a n +1=2(a n -1+1)(n ≥2),又a 1+1=2,所以数列{a n +1}是以2为首项,2为公比的等比数列, 所以a n +1=2n ,a n =2n -1. (2)由(1)知,b n =1a n +1+1a n a n +1=a n +1a n a n +1=2n (2n -1)(2n +1-1)=12n -1-12n +1-1, 则T n =⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-17+…+( 12n -1-12n +1-1 ) =1-12n +1-1.[方法技巧]1.用裂项法求和的裂项原则及规律(1)裂项原则:一般是前边裂几项,后边就裂几项直到发现被消去项的规律为止. (2)消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项. 2.几种常见的裂项方式[针对训练]1.(2019·成都检测)在递减的等差数列{a n }中,a 1a 3=a 22-4.若a 1=13,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n项和的最大值为( )A.24143 B .1143C.2413D .613解析:选D 设等差数列{a n }的公差为d ,则d <0,因为a 1a 3=a 22-4,a 1=13,所以13(13+2d )=(13+d )2-4,解得d =-2或d =2(舍去),所以a n =a 1+(n -1)d =13-2(n -1)=15-2n ,则1a n a n +1=1(15-2n )(13-2n )=12( 12n -15-12n -13 ),所以数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和S n =12( 1-13-1-11+1-11-1-9+…+12n -15-12n -13 )=12( -113-12n -13 ),易知当n =6时,S n 取得最大值,最大值为12×⎝⎛⎭⎫-113+1=613,故选D. 2.(2018·潍坊二模)已知等比数列{a n }的前n 项和为S n ,a 1=2,a n >0(n ∈N *),S 6+a 6是S 4+a 4,S 5+a 5的等差中项.(1)求数列{a n }的通项公式;(2)设b n =log 12a 2n -1,数列⎩⎨⎧⎭⎬⎫2b n b n +1的前n 项和为T n ,求T n .解:(1)因为S 6+a 6是S 4+a 4,S 5+a 5的等差中项, 所以2(S 6+a 6)=S 4+a 4+S 5+a 5, 所以2S 6-S 4-S 5=a 4+a 5-2a 6, 化简得4a 6=a 4,设等比数列{a n }的公比为q ,则q 2=a 6a 4=14,因为a n >0,所以q =12,又a 1=2,所以a n =2·⎝⎛⎭⎫12n -1=⎝⎛⎭⎫12n -2. (2)b n =log 12a 2n -1=log 12⎝⎛⎭⎫122n -3=2n -3,2b n b n +1=2(2n -3)(2n -1)=12n -3-12n -1, 则T n =-1-1+1-13+…+12n -3-12n -1=-2n 2n -1.[课时跟踪检测]1.(2019·河北“五个一名校联盟”模拟)已知数列{a n }满足:a n +1=a n -a n -1(n ≥2,n ∈N *),a 1=1,a 2=2,S n 为数列{a n }的前n 项和,则S 2 018=( )A .3B .2C .1D .0解析:选A ∵a n +1=a n -a n -1,a 1=1,a 2=2,∴a 3=1,a 4=-1,a 5=-2,a 6=-1,a 7=1,a 8=2,…,故数列{a n }是周期为6的周期数列,且每连续6项的和为0,故S 2 018=336×0+a 2 017+a 2 018=a 1+a 2=3.故选A.2.在数列{a n }中,若a n +1+(-1)n a n =2n -1,则数列{a n }的前12项和等于( ) A .76 B .78 C .80D .82解析:选B 由已知a n +1+(-1)n a n =2n -1,得a n +2+(-1)n +1a n +1=2n +1,得a n +2+a n =(-1)n (2n -1)+(2n +1),取n =1,5,9及n =2,6,10,结果相加可得S 12=a 1+a 2+a 3+a 4+…+a 11+a 12=78.故选B.3.(2019·开封调研)已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 018等于( ) A .22 018-1 B .3×21 009-3 C .3×21 009-1D .3×21 008-2解析:选B ∵a 1=1,a 2=2a 1=2,又a n +2·a n +1a n +1·a n=2n +12n =2,∴a n +2a n =2.∴a 1,a 3,a 5,…成等比数列;a 2,a 4,a 6,…成等比数列,∴S 2 018=a 1+a 2+a 3+a 4+a 5+a 6+…+a 2 017+a 2 018=(a 1+a 3+a 5+…+a 2 017)+(a 2+a 4+a 6+…+a 2 018)=1-21 0091-2+2(1-21 009)1-2=3×21 009-3.故选B.4.已知数列{a n }的通项公式是a n =2n -3⎝⎛⎭⎫15n,则其前20项和为( ) A .380-35⎝⎛⎭⎫1-1519 B .400-25⎝⎛⎭⎫1-1520 C .420-34⎝⎛⎭⎫1-1520 D .440-45⎝⎛⎭⎫1-1520 解析:选C 令数列{a n }的前n 项和为S n ,则S 20=a 1+a 2+…+a 20=2(1+2+…+20)-3⎝⎛⎭⎫15+152+…+1520=2×20×(20+1)2-3×15⎝⎛⎭⎫1-15201-15=420-34⎝⎛⎭⎫1-1520. 5.1-4+9-16+…+(-1)n +1n 2=( )A.n (n +1)2B .-n (n +1)2C .(-1)n+1n (n +1)2D .以上均不正确解析:选C 当n 为偶数时,1-4+9-16+…+(-1)n +1n 2=-3-7-…-(2n -1)=-n2(3+2n -1)2=-n (n +1)2;当n 为奇数时,1-4+9-16+…+(-1)n +1n 2=-3-7-…-[2(n -1)-1]+n 2=-n -12[3+2(n -1)-1]2+n 2=n (n +1)2.综上可得,原式=(-1)n +1n (n +1)2.6.(2019·郑州质量预测)已知数列{a n }的前n 项和为S n ,a 1=1,a 2=2,且a n +2-2a n +1+a n =0(n ∈N *),记T n =1S 1+1S 2+…+1S n(n ∈N *),则T 2 018=( )A.4 0342 018 B .2 0172 018C.4 0362 019D .2 0182 019解析:选C 由a n +2-2a n +1+a n =0(n ∈N *),可得a n +2+a n =2a n +1,所以数列{a n }为等差数列,公差d =a 2-a 1=2-1=1,通项公式a n =a 1+(n -1)×d =1+n -1=n ,则其前n 项和S n =n (a 1+a n )2=n (n +1)2,所以1S n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1,T n =1S 1+1S 2+…+1S n =2( 1-12+12-13+…+1n -1n +1 )=2⎝⎛⎭⎫1-1n +1=2nn +1,故T 2 018=2×2 0182 018+1=4 0362 019,故选C.7.已知数列{a n }的前n 项和S n =n 2+n +1,则数列⎩⎨⎧⎭⎬⎫4a n a n +1的前n 项和T n =________.解析:∵数列{a n }的前n 项和S n =n 2+n +1,∴S n -1=n 2-n +1(n ≥2),两式作差得到a n =2n (n ≥2).故a n =⎩⎪⎨⎪⎧3,n =1,2n ,n ≥2.∴4a n a n +1=1n (n +1)=1n -1n +1(n ≥2),∴T n =13+12-13+13-14+…+1n -1n +1=56-1n +1. 答案:56-1n +18.(2019·安徽十大名校联考)在数列{a n }中,a 1=-2,a 2=3,a 3=4,a n +3+(-1)n a n +1=2(n ∈N *).记S n 是数列{a n }的前n 项和,则S 20的值为________.解析:由题意知,当n 为奇数时,a n +3-a n +1=2,又a 2=3,所以数列{a n }中的偶数项是以3为首项,2为公差的等差数列,所以a 2+a 4+a 6+…+a 20=10×3+10×92×2=120.当n 为偶数时,a n +3+a n +1=2,又a 3+a 1=2, 所以数列{a n }中的相邻的两个奇数项之和均等于2,所以a 1+a 3+a 5+…+a 17+a 19=(a 1+a 3)+(a 5+a 7)+…+(a 17+a 19)=2×5=10,所以S 20=120+10=130.答案:1309.(2019·益阳、湘潭调研)已知S n 为数列{a n }的前n 项和,若a 1=2且S n +1=2S n ,设b n =log 2a n ,则1b 1b 2+1b 2b 3+…+1b 2 018b 2 019的值是________. 解析:由S n +1=2S n 可知,数列{S n }是首项为S 1=a 1=2,公比为2的等比数列,所以S n =2n .当n ≥2时,a n =S n -S n -1=2n -2n -1=2n -1,b n =log 2a n =⎩⎪⎨⎪⎧1,n =1,n -1,n ≥2,当n ≥2时,1b n b n +1=1(n -1)n =1n -1-1n ,所以1b 1b 2+1b 2b 3+…+1b 2 018b 2 019=1+1-12+12-13+…+12 017-12 018=2-12 018=4 0352 018. 答案:4 0352 01810.(2019·大连模拟)设数列{a n }的前n 项和为S n ,已知a 1=1,a n +1=3S n +1,n ∈N *. (1)求数列{a n }的通项公式;(2)记T n 为数列{n +a n }的前n 项和,求T n . 解:(1)由a n +1=3S n +1, 得当n ≥2时,a n =3S n -1+1, 两式相减,得a n +1=4a n (n ≥2). 又a 1=1,a 2=4,a 2a 1=4,所以数列{a n }是首项为1,公比为4的等比数列, 所以数列{a n }的通项公式是a n =4n -1(n ∈N *).(2)T n =(1+a 1)+(2+a 2)+(3+a 3)+…+(n +a n ) =(1+2+…+n )+(1+4+42+…+4n -1)=n (1+n )2+1×(1-4n )1-4=n +n 22+4n -13.11.(2019·广州调研)已知数列{a n }满足a 1+4a 2+42a 3+…+4n -1a n =n 4(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =4n a n2n +1,求数列{b n b n +1}的前n 项和T n .解:(1)当n =1时,a 1=14.因为a 1+4a 2+42a 3+…+4n -2a n -1+4n -1a n =n 4,①所以a 1+4a 2+42a 3+…+4n -2a n -1=n -14(n ≥2,n ∈N *),② ①-②得4n -1a n =14(n ≥2,n ∈N *),所以a n =14n (n ≥2,n ∈N *).当n =1时也适合上式,故a n =14n (n ∈N *).(2)由(1)得b n =4n a n 2n +1=12n +1,所以b n b n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎫12n +1-12n +3,故T n =12⎝⎛⎭⎫13-15+15-17+…+12n +1-12n +3=12⎝⎛⎭⎫13-12n +3 =n6n +9. 12.已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由已知b 2+b 3=12,得b 1(q +q 2)=12, 而b 1=2,所以q 2+q -6=0. 又因为q >0,解得q =2. 所以b n =2n .由b 3=a 4-2a 1,可得3d -a 1=8.① 由S 11=11b 4,可得a 1+5d =16.②由①②,解得a 1=1,d =3,由此可得a n =3n -2.所以数列{a n }的通项公式为a n =3n -2,数列{b n }的通项公式为b n =2n . (2)设数列{a 2n b 2n -1}的前n 项和为T n , 由a 2n =6n -2,b 2n -1=2×4n -1,得a 2n b 2n -1=(3n -1)×4n ,故T n =2×4+5×42+8×43+…+(3n -1)×4n ,4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1,上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n -(3n -1)×4n +1=12×(1-4n)1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8. 故T n =3n -23×4n +1+83. 所以数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83.。

2023版高考数学一轮总复习第六章数列第四讲数列求和及数列的综合应用课件文

2023版高考数学一轮总复习第六章数列第四讲数列求和及数列的综合应用课件文
• 所以{bn}是以1为首项,2为公差的等差数列,

(1+2−1)
所以Tn=
=n2.
2

4
2 ·2
若选条件③bn=
,则bn=
+1
(+1)(+2)·2 ·2 ·2

1 1 1
故Tn= ( 2 2 3
+
=
1 1
1
1
1 1 1

- +…++1-+2)=2(2-+2)=
.
• 考向
1
• 数列求和
, ≤ 10,
• (2)因为bn=ቊ
所以b16+…+b20=b11+…+b15=b6+…+b10,
−5 , > 10,
• 所以{bn}的前20项和
T20=(b1+b2+…+b5)+(b6+…+b10)+(b11+…+b15)+
• (b16+…+b20)=(b1+b2+…+b5)+3(b6+…+b10)=(a1+a2+…+a5)+3(a6+
数列(n为正整数)
裂项方法
• 考向
1
• 数列求和
• 考向
1
• 数列求和
• 考向
1
• 数列求和
-8 082
• 考向
1
• 数列求和
• 考向1 • 数列求和
• 方法技巧
利用倒序相加法求和的技巧
• 已知数列的特征是“与首末两端等距离的两项之和等于同一常数”,可

2020届高考数学一轮复习通用版讲义数列求和

2020届高考数学一轮复习通用版讲义数列求和

第四节数列求和一、基础知识批注——理解深一点1.公式法(1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d2. 推导方法:倒序相加法.(2)等比数列{a n }的前n 项和S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q ,q ≠1.推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n =n (n +1)2; ②2+4+6+…+2n =n (n +1); ③1+3+5+…+2n -1=n 2. 2.几种数列求和的常用方法(1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.二、基础小题强化——功底牢一点(一)判一判(对的打“√”,错的打“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( ) (2)当n ≥2时,1n 2-1=12⎝⎛⎭⎫1n -1-1n +1.( )(3)求S n =a +2a 2+3a 2+…+na n 之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )(4)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.( )答案:(1)√ (2)√ (3)× (4)√ (二)选一选1.已知等差数列{a n }的前n 项和为S n ,若S 3=9,S 5=25,则S 7=( ) A .41 B .48 C .49D .56解析:选C 设S n =An 2+Bn ,由题知⎩⎪⎨⎪⎧S 3=9A +3B =9,S 5=25A +5B =25,解得A =1,B =0,∴S 7=49.2.在数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0192 020,则项数n 为( )A .2 016B .2 017C .2 018D .2 019解析:选D 因为a n =1n (n +1)=1n -1n +1,所以S n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1=2 0192 020,所以n =2 019.3.数列{1+2n -1}的前n 项和为( )A .1+2nB .2+2nC .n +2n -1D .n +2+2n解析:选C 由题意得a n =1+2n -1, 所以S n =n +1-2n1-2=n +2n -1.(三)填一填4.数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -1·n ,则S 17=________.解析:S 17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9.答案:95.已知数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧11-2n ,n ≤5,2n -11,n >5,则{a n }的前10项和S 10=________.解析:S 10=5×9+12×5×4×(-2)+5×1+12×5×4×2=50.答案:50方法一 分组转化法求和[典例] 已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和. [解] (1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .又a 1=1也满足a n =n ,故数列{a n }的通项公式为a n =n . (2)由(1)知a n =n ,故b n =2n +(-1)n n . 记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ). 记A =21+22+…+22n ,B =-1+2-3+4-…+2n , 则A =2(1-22n )1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n . 故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.[解题技法]1.分组转化求和的通法数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差数列或等比数列或可求数列的前n 项和的数列求和.2.分组转化法求和的常见类型[题组训练]1.已知数列{a n }的通项公式是a n =2n -⎝⎛⎭⎫12n,则其前20项和为( )A .379+1220B .399+1220C .419+1220D .439+1220解析:选C 令数列{a n }的前n 项和为S n ,则S 20=a 1+a 2+a 3+…+a 20=2(1+2+3+…+20)-⎝⎛⎭⎫12+122+123+…+1220=420-⎝⎛⎭⎫1-1220=419+1220. 2.(2019·资阳诊断)已知数列{a n }中,a 1=a 2=1,a n +2=⎩⎪⎨⎪⎧a n +2,n 是奇数,2a n,n 是偶数,则数列{a n }的前20项和为( )A .1 121B .1 122C .1 123D .1 124解析:选C 由题意可知,数列{a 2n }是首项为1,公比为2的等比数列,数列{a 2n -1}是首项为1,公差为2的等差数列,故数列{a n }的前20项和为1×(1-210)1-2+10×1+10×92×2=1 123.选C.方法二 裂项相消法求和 考法(一) 形如a n =1n (n +k )型[典例] (2019·南宁摸底联考)已知等差数列{a n }满足a 3=7,a 5+a 7=26. (1)求等差数列{a n }的通项公式; (2)设c n =1a n a n +1,n ∈N *,求数列{c n }的前n 项和T n . [解] (1)设等差数列的公差为d ,则由题意可得⎩⎪⎨⎪⎧ a 1+2d =7,2a 1+10d =26,解得⎩⎪⎨⎪⎧a 1=3,d =2.所以a n =3+2(n -1)=2n +1. (2)因为c n =1a n a n +1=1(2n +1)(2n +3), 所以c n =12⎝⎛⎭⎫12n +1-12n +3,所以T n =12⎝⎛⎭⎫13-15+15-17+…+12n +1-12n +3=12⎝⎛⎭⎫13-12n +3=n 6n +9. 考法(二) 形如a n =1n +k +n型[典例] 已知函数f (x )=x α的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 019=( )A. 2 018-1B. 2 019-1C. 2 020-1D. 2 020+1[解析] 由f (4)=2可得4α=2,解得α=12,则f (x )=x 12. ∴a n =1f (n +1)+f (n )=1n +1+n=n +1-n ,S 2 019=a 1+a 2+a 3+…+a 2 019=(2-1)+(3-2)+(4-3)+…+( 2 019-2 018)+( 2 020- 2 019)= 2 020-1. [答案] C[解题技法]1.用裂项法求和的裂项原则及消项规律哪些项,避免遗漏.2.常见的拆项公式 (1)1n (n +1)=1n -1n +1; (2)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1;(3)1n +n +1=n +1-n ;(4)2n (2n -1)(2n +1-1)=12n -1-12n +1-1.分式差分最常见,指数根式来镶嵌; 取长补短巧改变,裂项求和公式算.[题组训练]1.(口诀第1、4句)在等差数列{a n }中,a 3+a 5+a 7=6,a 11=8,则数列⎩⎨⎧⎭⎬⎫1a n +3·a n +4的前n 项和为( )A.n +1n +2B.nn +2C.n n +1D.2n n +1解析:选C 因为a 3+a 5+a 7=6, 所以3a 5=6,a 5=2,又a 11=8, 所以等差数列{a n }的公差d =a 11-a 511-5=1, 所以a n =a 5+(n -5)d =n -3, 所以1a n +3·a n +4=1n (n +1)=1n -1n +1,因此数列⎩⎨⎧⎭⎬⎫1a n +3·a n +4的前n 项和为1-12+12-13+…+1n -1n +1=1-1n +1=n n +1,故选C.2.(口诀第2、4句)各项均为正数的等比数列{a n }中,a 1=8,且2a 1,a 3,3a 2成等差数列. (1)求数列{a n }的通项公式; (2)若数列{b n }满足b n =1n log 2a n,求{b n }的前n 项和S n .解:(1)设等比数列{a n }的公比为q (q >0). ∵2a 1,a 3,3a 2成等差数列,∴2a 3=2a 1+3a 2,即2a 1q 2=2a 1+3a 1q , ∴2q 2-3q -2=0,解得q =2或q =-12(舍去),∴a n =8×2n -1=2n +2.(2)由(1)可得b n =1n log 22n +2=1n (n +2)=12⎝⎛⎭⎫1n -1n +2, ∴S n =b 1+b 2+b 3+…+b n=12⎝⎛⎭⎫1-13+12-14+13-15+…+1n -1n +2 =12⎝⎛⎭⎫1+12-1n +1-1n +2 =34-12⎝⎛⎭⎫1n +1+1n +2 =34-2n +32(n +1)(n +2). 方法三 错位相减法求和[典例] (2017·山东高考)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n项和T n .[解] (1)设{a n }的公比为q ,由题意知:a 1(1+q )=6,a 21q =a 1q 2.又a n >0,解得a 1=2,q =2, 所以a n =2n . (2)由题意知, S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)b n +1,又S 2n +1=b n b n +1,b n +1≠0, 所以b n =2n +1.令c n =b na n,则c n =2n +12n ,因此T n =c 1+c 2+…+c n =32+522+723+…+2n -12n -1+2n +12n ,又12T n =322+523+724+…+2n -12n +2n +12n +1, 两式相减得12T n =32+⎝⎛⎭⎫12+122+…+12n -1-2n +12n +1=32+1-⎝⎛⎭⎫12n -1-2n +12n +1=52-2n +52n +1, 所以T n =5-2n +52n.[变透练清]1.(变结论)若本例中a n ,b n 不变,求数列{a n b n }的前n 项和T n . 解:由本例解析知a n =2n ,b n =2n +1, 故T n =3×21+5×22+7×23+…+(2n +1)×2n , 2T n =3×22+5×23+7×24+…+(2n +1)×2n +1,上述两式相减,得,-T n =3×2+2×22+2×23+…+2×2n -(2n +1)2n +1=6+8(1-2n -1)1-2-(2n +1)2n +1=(1-2n )2n +1-2得T n =(2n -1)×2n +1+2.2.已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.(1)求{a n }和{b n }的通项公式; (2)求数列{a 2n b n }的前n 项和(n ∈N *).解:(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得b1(q+q2)=12,而b1=2,所以q2+q-6=0.因为q>0,解得q=2,所以b n=2n.由b3=a4-2a1,可得3d-a1=8.①由S11=11b4,可得a1+5d=16.②联立①②,解得a1=1,d=3,由此可得a n=3n-2.所以{a n}的通项公式为a n=3n-2,{b n}的通项公式为b n=2n. (2)设数列{a2n b n}的前n项和为T n,由a2n=6n-2,有T n=4×2+10×22+16×23+…+(6n-2)×2n,2T n=4×22+10×23+16×24+…+(6n-8)×2n+(6n-2)×2n+1,上述两式相减,得-T n=4×2+6×22+6×23+…+6×2n-(6n-2)×2n+1=12×(1-2n)1-2-4-(6n-2)×2n+1=-(3n-4)2n+2-16,得T n=(3n-4)2n+2+16.所以数列{a2n b n}的前n项和为(3n-4)2n+2+16.[解题技法]错位相减法求和的4个步骤[易误提醒](1)两式相减时最后一项因为没有对应项而忘记变号.(2)对相减后的和式的结构认识模糊,错把中间的n-1项和当作n项和.(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比q=1和q≠1两种情况求解.[课时跟踪检测]A级——保大分专练1.数列{a n }的通项公式为a n =1n +n -1,若该数列的前k 项之和等于9,则k =( )A .80B .81C .79D .82解析:选B a n =1n +n -1=n -n -1,故S n =n ,令S k =k =9,解得k =81,故选B.2.若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=( ) A .15 B .12 C .-12D .-15解析:选A a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8+a 9+a 10=-1+4-7+10-13+16-19+22-25+28=5×3=15,故选A.3.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为( )A.158或5 B.3116或5C.3116D.158解析:选C 设{a n }的公比为q ,显然q ≠1,由题意得9(1-q 3)1-q =1-q 61-q ,所以1+q 3=9,得q =2,所以⎩⎨⎧⎭⎬⎫1a n 是首项为1,公比为12的等比数列,前5项和为1-⎝⎛⎭⎫1251-12=3116.4.在等差数列{a n }中,a 4=5,a 7=11.设b n =(-1)n ·a n ,则数列{b n }的前100项之和S 100=( )A .-200B .-100C .200D .100解析:选D 设数列{a n }的公差为d ,由题意可得⎩⎪⎨⎪⎧ a 1+3d =5,a 1+6d =11⇒⎩⎪⎨⎪⎧a 1=-1,d =2⇒a n =2n -3⇒b n =(-1)n (2n -3)⇒S 100=(-a 1+a 2)+(-a 3+a 4)+…+(-a 99+a 100)=50×2=100,故选D.5.已知T n 为数列⎩⎨⎧⎭⎬⎫2n+12n 的前n 项和,若m >T 10+1 013恒成立,则整数m 的最小值为( )A .1 026B .1 025C .1 024D .1 023解析:选C ∵2n +12n =1+⎝⎛⎭⎫12n, ∴T n =n +1-12n ,∴T 10+1 013=11-1210+1 013=1 024-1210, 又m >T 10+1 013, ∴整数m 的最小值为1 024.6.已知数列:112,214,318,…,⎝⎛⎭⎫n +12n ,…,则其前n 项和关于n 的表达式为________. 解析:设所求的前n 项和为S n ,则S n =(1+2+3+…+n )+⎝⎛⎭⎫12+14+…+12n =n (n +1)2+12⎝⎛⎭⎫1-12n 1-12=n (n +1)2-12n +1. 答案:n (n +1)2-12n +1 7.(2017·全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k =1n1S k=________.解析:设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧ a 1+2d =3,4a 1+6d =10,解得⎩⎪⎨⎪⎧a 1=1,d =1,所以S n =n (n +1)2,1S n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1, 因此∑k =1n 1S k =2⎝⎛⎭⎫1-12+12-13+…+1n -1n +1=2nn +1.答案:2nn +18.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 018=________. 解析:∵数列{a n }满足a 1=1,a n +1·a n =2n ,① ∴n =1时,a 2=2,n ≥2时,a n ·a n -1=2n -1,②由①÷②得a n +1a n -1=2,∴数列{a n }的奇数项、偶数项分别成等比数列, ∴S 2 018=1-21 0091-2+2(1-21 009)1-2=3·21 009-3.答案:3·21 009-39.(2019·成都第一次诊断性检测)已知等差数列{a n }的前n 项和为S n ,a 2=3,S 4=16,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和T n . 解:(1)设数列{a n }的公差为d ,∵a 2=3,S 4=16,∴a 1+d =3,4a 1+6d =16,解得a 1=1,d =2.∴a n =2n -1.(2)由题意知,b n =1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1, ∴T n =b 1+b 2+…+b n=12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1=12⎝⎛⎭⎫1-12n +1 =n 2n +1. 10.(2018·南昌摸底调研)已知数列{a n }的前n 项和S n =2n +1-2,记b n =a n S n (n ∈N *).(1)求数列{a n }的通项公式;(2)求数列{b n }的前n 项和T n .解:(1)∵S n =2n +1-2, ∴当n =1时,a 1=S 1=21+1-2=2; 当n ≥2时,a n =S n -S n -1=2n +1-2n =2n . 又a 1=2=21,∴a n =2n .(2)由(1)知,b n =a n S n =2·4n -2n +1, ∴T n =b 1+b 2+b 3+…+b n =2(41+42+43+…+4n )-(22+23+…+2n +1)=2×4(1-4n )1-4-4(1-2n )1-2=23·4n +1-2n +2+43. B 级——创高分自选 1.(2019·潍坊统一考试)若数列{a n }的前n 项和S n 满足S n =2a n -λ(λ>0,n ∈N *).(1)证明数列{a n }为等比数列,并求a n ;(2)若λ=4,b n =⎩⎪⎨⎪⎧a n ,n 为奇数,log 2a n ,n 为偶数(n ∈N *),求数列{b n }的前2n 项和T 2n . 解:(1)∵S n =2a n -λ,当n =1时,得a 1=λ,当n ≥2时,S n -1=2a n -1-λ,∴S n -S n -1=2a n -2a n -1,即a n =2a n -2a n -1,∴a n =2a n -1,∴数列{a n }是以λ为首项,2为公比的等比数列, ∴a n =λ·2n -1. (2)∵λ=4,∴a n =4·2n -1=2n +1, ∴b n =⎩⎪⎨⎪⎧2n +1,n 为奇数,n +1,n 为偶数, ∴T 2n =22+3+24+5+26+7+…+22n +2n +1 =(22+24+…+22n )+(3+5+…+2n +1) =4-4n ·41-4+n (3+2n +1)2 =4n +1-43+n (n +2), ∴T 2n =4n +13+n 2+2n -43. 2.已知首项为2的数列{a n }的前n 项和为S n ,且S n +1=3S n -2S n -1(n ≥2,n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =n +1a n,求数列{b n }的前n 项和T n . 解:(1)因为S n +1=3S n -2S n -1(n ≥2), 所以S n +1-S n =2S n -2S n -1(n ≥2),即a n +1=2a n (n ≥2),所以a n +1=2n +1,则a n =2n ,当n =1时,也满足,故数列{a n }的通项公式为a n =2n .(2)因为b n =n +12n =(n +1)⎝⎛⎭⎫12n , 所以T n =2×12+3×⎝⎛⎭⎫122+4×⎝⎛⎭⎫123+…+(n +1)×⎝⎛⎭⎫12n ,① 12T n =2×⎝⎛⎭⎫122+3×⎝⎛⎭⎫123+4×⎝⎛⎭⎫124+…+n ×⎝⎛⎭⎫12n +(n +1)×⎝⎛⎭⎫12n +1,② ①-②得12T n =2×12+⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n -(n +1)⎝⎛⎭⎫12n +1 =12+⎝⎛⎭⎫121+⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n -(n +1)⎝⎛⎭⎫12n +1 =12+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12-(n +1)⎝⎛⎭⎫12n +1=12+1-⎝⎛⎭⎫12n-(n+1)⎝⎛⎭⎫12n+1=32-n+32n+1.故数列{b n}的前n项和为T n=3-n+3 2n.。

北师版高考总复习一轮数学精品课件 第6章数列 第4节数列求和

北师版高考总复习一轮数学精品课件 第6章数列 第4节数列求和
(+1)
=
+1-(+1)
=0,所以 bn+1=bn,所以{bn}是常数数列.
(+1)
(2)解 因为 a1=1,所以
因为
1+1
1+
bn=b1= 1 =2,所以 =2,所以 an=2n-1.
π
π
2n-1
cn=sin[2(2n-1)]+2 =sin(nπ-2)+22n-1,所以
π

(3)利用倒序相加法可求得
sin21°+sin22°+sin23°+…+sin288°+sin289°=44.5.(
)
(4)若在数列{an}中,an=(-1)n(3n-1),则其前30项的和等于45.(
)
1
2. 在数列{an}中,an=
,则{an}的前n项和为
( + 1)
解析 因为

.
+1
1
第4节 数列求和
课标解读
1.巩固等差数列、等比数列前n项和公式.
2.掌握数列求和的裂项相消求和法、错位相减求和法、拆项分组求和法、
并项转化求和法、倒序相加求和法,能够解决数列的求和问题.
目录索引
1 强基础 固本增分
知识梳理
1.特殊数列的求和公式
( 1 + )
(-1)
(1)等差数列求和公式:Sn=
①-②得(1-x)Sn=1+x+x +…+
2

∴Sn=
2 − 1- .
(1-)
1-
-1
-nx
n
1-
= -nxn,

2025版高考数学一轮总复习考点突破第6章数列第4讲数列求和考点1分组求和法

2025版高考数学一轮总复习考点突破第6章数列第4讲数列求和考点1分组求和法

分组求和法1.已知数列{a n }的通项公式为a n =n 2sin ⎝ ⎛⎭⎪⎫2n +12π,则a 1+a 2+…+a 2 020=( B ) A.2 019×2 0202 B .2 021×2 0202 C.2 019×2 0192D .2 020×2 0202 [解析] 由a n =n 2sin ⎝⎛⎭⎪⎫2n +12π得,当n 为奇数时,a n =-n 2,当n 为偶数时,a n =n 2,故S n =-12+22-32+42+…-2 0192+2 0202=1+2+3+4+…+2 019+2 020=2 0201+2 0202=2 020×2 0212.故选B. 2.(2024·新高考全国Ⅰ卷)已知数列{a n }满足a 1=1,a n +1=⎩⎪⎨⎪⎧ a n +1,n 为奇数,a n +2,n 为偶数.(1)记b n =a 2n ,写出b 1,b 2,并求数列{b n }的通项公式;(2)求{a n }的前20项和.[解析] (1)因为b n =a 2n ,所以b 1=a 2=a 1+1=2,b 2=a 4=a 3+1=a 2+2+1=a 1+1+3=a 1+4=5.由题意得a 2n +1=a 2n +2,a 2n +2=a 2n +1+1,所以a 2n +2=a 2n +3,即b n +1=b n +3,所以数列{b n }是以2为首项,3为公差的等差数列,所以b n =2+(n -1)×3=3n -1.(2)当n 为奇数时,a n =a n +1-1.设数列{a n }的前n 项和为S n ,则S 20=a 1+a 2+…+a 20=(a 1+a 3+…+a 19)+(a 2+a 4+…+a 20)=[(a 2-1)+(a 4-1)+…+(a 20-1)]+(a 2+a 4+…+a 20)=2(a 2+a 4+…+a 20)-10,由(1)可知a 2+a 4+…+a 20=b 1+b 2+…+b 10=10×2+10×92×3=155, 故S 20=2×155-10=300,即{a n }的前20项和为300.名师点拨:分组转化法求和的常见类型1.若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可接受分组求和法求{a n }的前n 项和.2.通项公式为a n =⎩⎪⎨⎪⎧ b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可接受分组求和法求和.【变式训练】1.已知数列{a n }的通项公式为a n =(-1)n (n 2-n ),前n 项和为S n ,则满足S 2n +1≤-2 023的最小正整数n 的值为( D )A.28B .30C .31D .32 [解析] 用分组(并项)求和法求得和S 2n +1,然后解不等式S 2n +1<-2 023,结合n 是正整数得解.由题意,得S 2n +1=(22-12)+(42-32)+…+[(2n )2-(2n -1)2]-(2n +1)2-[-1+2-3+4-5+…+2n -(2n +1)]=(2-1)×(1+2)+(4-3)×(3+4)+…+[2n -(2n -1)][(2n -1)+2n ]-(2n +1)2-[n -(2n +1)]=1+2+3+4+…+2n -(2n +1)2+n +1=2n 1+2n 2-(2n +1)2+n +1=-2(n 2+n ),由S 2n +1≤-2 023,得-2(n 2+n )≤-2 023,即n 2+n ≥2 0232,结合n ∈N *,解得n ≥32,故n 的最小值为32.故选D. 2.(2024·信阳模拟)已知数列{a n }中,a 1=a 2=1,a n +2=⎩⎪⎨⎪⎧ a n +2,n 是奇数,2a n ,n 是偶数,则数列{a n }的前20项和为( C )A.1 121B .1 122C .1 123D .1 124[解析] 由题意知,数列{a 2n }是首项为1,公比为2的等比数列,数列{a 2n -1}是首项为1,公差为2的等差数列,故数列{a n }的前20项和为1×1-2101-2+10×1+10×92×2=1 123.。

2025届高考数学一轮总复习第六章数列第四节数列求和

2025届高考数学一轮总复习第六章数列第四节数列求和
4×3
41 + 2 ×
= 32,
1 = 5,
S4=32,T3=16,得
解得
所以
= 2.
(1 -6) + 2(1 + ) + (1 + 2-6) = 16,
an=a1+(n-1)d=2n+3.
(2)证明 由(1)可得
[5+(2+3)]
Sn=
=n2+4n.
2
当 n 为奇数时,Tn=a1-6+2a2+a3-6+2a4+a5-6+2a6+…+an-2-6+2an-1+an-6
×…× ×a2= × ×…× ×1=n-1.
-2
2
1
-2 -3
显然 a1=0 满足,∴an=n-1(n∈N*).
(2)由(1)可知 an=n-1(n∈N*),
+1
1
1 1
1 2
1 3
1
∴an+1=n,∴ =n· ,∴Tn=1×
+2×
+3×
+…+n· ,
2
2
2
2
2
2
1
1 2
1 3
1
2
2
+(
1
2
2

1
2 )+…+
3
1
1
1
2 - 2 =1-81
8 9
=
80
.
81
=
1
2

1
(+1)
2,
增素能 精准突破

2018届高三数学一轮复习:第六章 数列第四节 数列求和 含解析

2018届高三数学一轮复习:第六章 数列第四节 数列求和 含解析

第四节数列求和A组基础题组1.数列{a n},{b n}(n∈N*)都是等差数列,a1=2,b1=8,且a20+b20=50.则{a n+b n}的前20项的和为()A.600B.610C.620D.6302.已知数列{a n}的通项公式是a n=2n-3,则其前20项和为()A.380-B.400-C.420-D.440-3.(2016德州模拟)数列{a n}的通项公式为a n=ncos,其前n项和为S n,则S2016等于()A.1008B.2016C.504D.04.已知函数f(x)=x2+bx的图象在点A(1,f(1))处的切线的斜率为3,数列的前n项和为S n,则S2016的值为()A. B. C. D.5.已知数列{a n}中,a n=-4n+5.等比数列{b n}中,公比q满足q=a n-a n-1(n≥2)且b1=a2,则|b1|+|b2|+|b3|+…+|b n|=()A.1-4nB.4n-1C.D.6.(2016重庆第一次适应性测试)在数列{a n}中,若a1=2,且对任意正整数m,k,总有a m+k=a m+a k,则{a n}的前n项和S n=.7.在数列{a n}中,a2=4,a3=15,若S n为{a n}的前n项和,且数列{a n+n}是等比数列,则S n=.8.(2015课标Ⅱ,16,5分)设S n是数列{a n}的前n项和,且a1=-1,a n+1=S n S n+1,则S n=.9.(2016天津,18,13分)已知{a n}是等比数列,前n项和为S n(n∈N*),且-=,S6=63.(1)求{a n}的通项公式;(2)若对任意的n∈N*,b n是log2a n和log2a n+1的等差中项,求数列{(-1)n}的前2n项和.10.(2016郑州模拟)在公差为d的等差数列{a n}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(1)求d,a n.(2)若d<0,求|a1|+|a2|+|a3|+…+|a n|.B组提升题组11.(2016江西高安中学等九校联考)已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S16等于()A.5B.6C.7D.1612.(2016南昌模拟)已知数列{a n},{b n}满足a1=1,a2=2,b1=2,且对任意的正整数i,j,k,l,当i+j=k+l时,都有a i+b j=a k+b l,则(a1+b1)+(a2+b2)+(a3+b3)+…+(a2017+b2017)]的值为()A.2016B.2017C.2018D.201913.(2016广西高三适应性测试)已知数列{}的前n项和S n=n2,则数列的前n项和T n=.14.已知数列{a n}满足a n+1=+,且a1=,则该数列的前2016项的和等于.15.已知数列{a n}的前n项和S n=-n2+kn(其中k为常数,且k∈N*),且S n的最大值为8.(1)确定常数k,并求a n;(2)求数列的前n项和T n.16.(2016济南模拟)已知公比q不为1的等比数列{a n}的首项a1=,前n项和为S n,且a4+S4,a5+S5,a6+S6成等差数列.(1)求数列{a n}的通项公式;(2)对n∈N*,在a n与a n+1之间插入n个数,使这n+2个数成等差数列,记插入的这n个数的和为b n,求数列{b n}的前n项和T n.答案全解全析A组基础题组1.A由题意知{a n+b n}也为等差数列,所以{a n+b n}的前20项和为S20===600.2.C由a n=2n-3,得其前20项和S20=2(1+2+…+20)-3=2×-3×=420-.3.A易知a1=cos=0,a2=2cosπ=-2,a3=0,a4=4,…….所以数列{a n}的所有奇数项为0,前2016项中所有偶数项(共1008项)依次为-2,4,-6,8,…,-2014,2016.故S2016=0+(-2+4)+(-6+8)+…+(-2014+2016)=1008.4.D因为f'(x)=2x+b,所以f'(1)=2+b=3,所以b=1,所以f(x)=x2+x,所以==-,所以S2016=1-+-+…+-=1-=.5.B由已知得b1=a2=-3,q=-4,∴b n=(-3)×(-4)n-1,∴|b n|=3×4n-1,即{|b n|}是以3为首项,4为公比的等比数列.∴|b1|+|b2|+…+|b n|==4n-1.6.答案n(n+1)解析依题意得a n+1=a n+a1,即有a n+1-a n=a1=2,所以数列{a n}是以2为首项,2为公差的等差数列,a n=2+2(n-1)=2n,S n==n(n+1).7.答案3n--1解析∵{a n+n}是等比数列,∴数列{a n+n}的公比q====3,则{a n+n}的通项为a n+n=(a2+2)·3n-2=6·3n-2=2·3n-1,则a n=2·3n-1-n,∴S n=-=3n--1.8.答案-解析由已知得a n+1=S n+1-S n=S n+1S n,又由a1=-1知S n≠0,则有-=-1,故数列是以-1为首项,-1为公差的等差数列,则=-1+(n-1)×(-1)=-n,所以S n=-.9.解析(1)设数列{a n}的公比为q.由已知,有-=,解得q=2,或q=-1.又由S6=a1·=63,知q≠-1,所以a1·=63,得a1=1.所以a n=2n-1.(2)由题意,得b n=(log2a n+log2a n+1)=(log22n-1+log22n)=n-,即{b n}是首项为,公差为1的等差数列.设数列{(-1)n}的前n项和为T n,则T2n=(-+)+(-+)+…+(-+)=b1+b2+b3+b4+…+b2n-1+b2n==2n2.10.解析(1)由题意得,5a3·a1=(2a2+2)2,将a3=a1+2d,a2=a1+d及a1=10代入,并化简得d2-3d-4=0,解得d=-1或d=4,所以a n=-n+11,n∈N*或a n=4n+6,n∈N*.(2)设数列{a n}的前n项和为S n,因为d<0,所以由(1)得d=-1,a n=-n+11,则当n≤11时,|a1|+|a2|+|a3|+…+|a n|=S n=-n2+n;当n≥12时,|a1|+|a2|+|a3|+…+|a n|=-S n+2S11=n2-n+110.综上所述,|a1|+|a2|+|a3|+…+|a n|=B组提升题组11.C根据题意,这个数列的前8项分别为5,6,1,-5,-6,-1,5,6,易得从第7项起,数字重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.又因为16=2×6+4,所以这个数列的前16项之和S16=2×0+7=7.故选C.12.D由题意易知a1+b2=a2+b1,∴b2=2+2-1=3,又b1+a3=a2+b2,∴a3=2+3-2=3,又a3+b2=a2+b3,∴b3=3+3-2=4.同理可得a4=4,b4=5,……,a2017=2017,b2017=2018,所以(a1+b1)+(a2+b2)+(a3+b3)+…+(a2017+b2017)]=(1+2018)×2017]=2019.13.答案解析由题意得==∴=2n-1.∴==,∴T n===.14.答案1512解析因为a1=,a n+1=+,所以a2=1,从而a3=,a4=1,……,即得a n=故数列的前2016项的和S2016=1008×=1512.15.解析(1)当n=k时,S n=-n2+kn取最大值,即8=S k=-k2+k2=k2,故k2=16,因此k=4,从而a n=S n-S n-1=-n(n≥2).又a1=S1=,所以a n=-n(n∈N*).(2)令b n==,则T n=b1+b2+…+b n=1+++…++,所以T n=2T n-T n=2+2++…++-1+++…++=2+1++…+-=4--=4-.16.解析(1)因为a4+S4,a5+S5,a6+S6成等差数列,所以2(a5+S5)=a4+S4+a6+S6,化简得2a6-3a5+a4=0,∴2q2-3q+1=0,解得q=(q=1舍去),故a n=.(2)记插入的n个数为x i(i=1,2,…,n),由(1)及等差数列的性质及前n项和公式可知x1+x n=a n+a n+1,b n==n×,所以T n=1×+2×+3×+…+(n-1)×+n×,①T n=1×+2×+3×+…+(n-1)×+n×,②①-②得T n=+++…+-n=⇒T n==.。

2025年高考数学一轮复习 第六章 数列-第四节 数列求和【课件】

2025年高考数学一轮复习 第六章 数列-第四节 数列求和【课件】

6
7
C.
=



+


D.



+ ⋯+







=− =

.故选D.

3.若数列{ }满足1 = 2, + +1 + +2 = 2( ∈ N ∗ ),则其前2 023项和为( C )
A.1 360
B.1 358
C.1 350
D.1 348
[解析] ∵ = , + + + + = ,
如果一个数列{ }中,与首末两端等“距离”的两项的和相等或等于同一个常数,那么求
这个数列的前项和可用倒序相加法求解.
知识拓展
1
(1)
+1
1

1
= −
.
+1
1
1
1
1
(2)
=

.
2−1 2+1
2 2−1
2+1
1
1
1
1
(3)
= [

+1 +2
2 +1
+1 +2
1
1
[解析] 因为数列{ }的通项公式为 = − ⋅ ,
所以数列{ }的前项和为
= × + × + × + ⋯ + − ⋅ ①,
则 = × + × + × + ⋯ + − ⋅ + ②,
∴ = + + + + + + + ⋯ + + + =

高三理科数学一轮复习讲义,复习补习资料:第六章数列6.4数列求和(解析版)

高三理科数学一轮复习讲义,复习补习资料:第六章数列6.4数列求和(解析版)

§6.4 数列求和考纲展示►1.熟练掌握等差、等比数列的前n 项和公式.2.掌握非等差、等比数列求和的几种常见方法.考点1 公式法求和1.公式法直接利用等差数列、等比数列的前n 项和公式求和. (1)等差数列的前n 项和公式:S n =n a 1+a n 2=na 1+n n -2d .(2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1-q n1-q ,q ≠1.2.倒序相加法与并项求和法 (1)倒序相加法:如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和可用倒序相加法,如等差数列的前n 项和公式即是用此法推导的.(2)并项求和法:在一个数列的前n 项和中,可两两结合求解,则称之为并项求和. 形如a n =(-1)nf (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(1002-992)+(982-972)+…+(22-12)=(100+99)+(98+97)+…+(2+1)=5 050.非等差、等比数列求和的常用方法:倒序相加法;并项求和法.(1)[教材习题改编]一个球从100 m 高处自由落下,着地后又跳回到原高度的一半再落下,当它第10次着地时,经过的路程是( )A .100+200×(1-2-9) B .100+100(1-2-9) C .200(1-2-9)D .100(1-2-9)答案:A(2)[教材习题改编]已知函数f (n )=n 2cos n π,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=________.答案:-100解析:因为f (n )=n 2cos n π=⎩⎪⎨⎪⎧-n 2,n 为奇数,n 2,n 为偶数,所以f (n )=(-1)n ·n 2,由a n =f (n )+f (n +1)=(-1)n ·n 2+(-1)n +1·(n +1)2=(-1)n [n 2-(n +1)2]=(-1)n +1·(2n +1),得a 1+a 2+a 3+…+a 100=3+(-5)+7+(-9)+…+199+(-201)=50×(-2)=-100.数列求和的两个易错点:公比为参数;项数的奇偶数.(1)设数列{a n }的通项公式是a n =x n,则数列{a n }的前n 项和S n =________.答案:S n =⎩⎪⎨⎪⎧n ,x =1,x -xn1-x,x ≠1解析:当x =1时,S n =n ;当x ≠1时,S n =x-xn1-x.(2)设数列{a n }的通项公式是a n =(-1)n,则数列{a n }的前n 项和S n =________.答案:S n =⎩⎪⎨⎪⎧0,n 为偶数,-1,n 为奇数解析:若n 为偶数,则S n =0;若n 为奇数,则S n =-1.[典题1] (1)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.[答案] 27[解析] 由a 1=1,a n =a n -1+12(n ≥2),可知数列{a n }是首项为1,公差为12的等差数列,故S 9=9a 1+-2×12=9+18=27.(2)若等比数列{a n }满足a 1+a 4=10,a 2+a 5=20,则{a n }的前n 项和S n =________. [答案]109(2n-1) [解析] 由题意a 2+a 5=q (a 1+a 4),得20=q ×10,故q =2,代入a 1+a 4=a 1+a 1q 3=10,得9a 1=10,即a 1=109.故S n =109-2n1-2=109(2n-1). [点石成金] 数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差或等比或可求数列前n 项和的数列来求之.考点2 分组转化法求和分组求和法若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.(1)数列112,314,518,…,⎣⎢⎡⎦⎥⎤n -+12n 的前n 项和S n =________________. 答案:n 2+1-12n(2)已知数列{a n }中,a n =⎩⎪⎨⎪⎧2n -1,n 为正奇数,2n -1,n 为正偶数, 设数列{a n }的前n 项和为S n ,则S 9=________.答案:377[典题2] 已知数列{a n }的通项公式是a n =2·3n -1+(-1)n ·(ln 2-ln 3)+(-1)nn ln 3,求其前n 项和S n .[解] 由通项公式知,S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n]·(ln 2-ln 3)+[-1+2-3+…+(-1)nn ]ln 3,所以当n 为偶数时,S n =2×1-3n1-3+n 2ln 3=3n+n 2ln 3-1;当n 为奇数时,S n =2×1-3n 1-3-(ln 2-ln 3)+⎝ ⎛⎭⎪⎫n -12-n ln 3=3n-n -12ln 3-ln 2-1.综上知,S n=⎩⎪⎨⎪⎧3n +n2ln 3-1,n 为偶数,3n-n -12ln 3-ln 2-1,n 为奇数.[点石成金] 分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组转化法求{a n }的前n 项和. (2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比或等差数列,可采用分组转化法求和.[提醒] 某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论.在等差数列{a n }中,已知公差d =2,a 2是a 1 与a 4 的等比中项. (1)求数列{a n }的通项公式; (2)设b n =a nn +2,记T n =-b 1+b 2-b 3+b 4-…+(-1)nb n ,求T n .解:(1)由题意知,(a 1+d )2=a 1(a 1+3d ), 即(a 1+2)2=a 1(a 1+6), 解得a 1=2.所以数列{a n }的通项公式为a n =2n . (2)由题意知,b n =a nn +2=n (n +1).所以T n =-1×2+2×3-3×4+…+(-1)nn ×(n +1). 因为b n +1-b n =2(n +1), 可得当n 为偶数时,T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n -1+b n )=4+8+12+ (2)=n2+2n 2=n n +2;当n 为奇数时,T n =T n -1+(-b n )=n -n +2-n (n +1)=-n +22.所以T n=⎩⎪⎨⎪⎧-n +22,n 为奇数,nn +2,n 为偶数.考点3 错位相减法求和错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的.(1)[教材习题改编]数列1,11+2,11+2+3,…,11+2+…+n的前n 项和为________. 答案:2n n +1解析:因为11+2+…+n =2n n +=2⎝ ⎛⎭⎪⎫1n -1n +1, 所以数列的前n 项和为2×⎝ ⎛⎭⎪⎫1-12+12-13+13-14+…+1n -1n +1=2×⎝ ⎛⎭⎪⎫1-1n +1=2n n +1. (2)[教材习题改编]数列22,422,623, (2)2n ,…的前n 项的和为________.答案:4-n +22n -1解析:设该数列的前n 项和为S n , 由题可知,S n =22+422+623+ (2)2n ,①12S n =222+423+624+ (2)2n +1,② ①-②,得⎝ ⎛⎭⎪⎫1-12S n =22+222+223+224+…+22n -2n 2n +1=2-12n -1-2n 2n +1, ∴S n =4-n +22n -1.[典题3] [2018·山东模拟]设数列{a n }的前n 项和为S n .已知2S n =3n+3. (1)求{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n . [解] (1)因为2S n =3n+3, 所以2a 1=3+3,故a 1=3, 当n ≥2时,2S n -1=3n -1+3,此时2a n =2S n -2S n -1=3n-3n -1=2×3n -1,即a n =3n -1,所以a n =⎩⎪⎨⎪⎧3,n =1,3n -1,n ≥2.(2)因为a n b n =log 3a n ,所以b 1=13,当n ≥2时,b n =31-nlog 33n -1=(n -1)·31-n.所以T 1=b 1=13;当n ≥2时,T n =b 1+b 2+b 3+…+b n=13+[1×3-1+2×3-2+…+(n -1)×31-n], 所以3T n =1+[1×30+2×3-1+…+(n -1)×32-n],两式相减,得2T n =23+(30+3-1+3-2+…+32-n )-(n -1)×31-n=23+1-31-n1-3-1-(n -1)×31-n =136-6n +32×3n , 所以T n =1312-6n +34×3n ,经检验,n =1时也适合. 综上知,T n =1312-6n +34×3n .[点石成金] 用错位相减法求和的三个注意事项(1)要善于识别题目类型,特别是等比数列公比为负数的情形.(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式.(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.[2018·天津模拟]已知{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 1=b 1=1,b 2+b 3=2a 3,a 5-3b 2=7.(1)求{a n }和{b n }的通项公式;(2)设c n =a n b n ,n ∈N *,求数列{c n }的前n 项和.解:(1)设数列{a n }的公比为q ,数列{b n }的公差为d ,由题意知q >0.由已知,有⎩⎪⎨⎪⎧2q 2-3d =2,q 4-3d =10,消去d ,整理得q 4-2q 2-8=0,解得q 2=4. 又因为q >0,所以q =2,所以d =2. 所以数列{a n }的通项公式为a n =2n -1,n ∈N *;数列{b n }的通项公式为b n =2n -1,n ∈N *. (2)由(1)有c n =(2n -1)·2n -1,设{c n }的前n 项和为S n ,则S n =1×20+3×21+5×22+…+(2n -3)×2n -2+(2n -1)×2n -1,2S n =1×21+3×22+5×23+…+(2n -3)×2n -1+(2n -1)×2n,上述两式相减,得-S n =1+22+23+…+2n -(2n -1)×2n =2n +1-3-(2n -1)·2n =-(2n -3)·2n-3,所以S n =(2n -3)·2n+3,n ∈N *.考点4 裂项相消法求和裂项相消法(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. (2)常见的裂项技巧: ①1n n +=1n -1n +1. ②1nn +=12⎝ ⎛⎭⎪⎫1n -1n +2. ③1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1.④1n +n +1=n +1-n .[考情聚焦] 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.裂项相消法求和是历年高考的重点,命题角度凸显灵活多变,在解题中要善于利用裂项相消的基本思想,变换数列a n 的通项公式,达到求解目的.主要有以下几个命题角度: 角度一 形如a n =1nn +k型 [典题4] [2019·重庆模拟]设S n 为等差数列{a n }的前n 项和,已知S 3=a 7,a 8-2a 3=3. (1)求a n ;(2)设b n =1S n ,数列{b n }的前n 项和为T n ,求证:T n >34-1n +1(n ∈N *).(1)[解] 设数列{a n }的公差为d ,由题意,得⎩⎪⎨⎪⎧3a 1+3d =a 1+6d ,a 1+7d -a 1+2d =3,解得a 1=3,d =2,∴a n =a 1+(n -1)d =2n +1.(2)[证明] 由(1),得S n =na 1+n n -2d =n (n +2),∴b n =1nn +=12⎝ ⎛⎭⎪⎫1n -1n +2. ∴T n =b 1+b 2+…+b n -1+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+…+⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2 =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2,∴T n =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2>12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +1=34-1n +1. 故T n >34-1n +1.角度二 形如a n =1n +k +n型[典题5] [2019·江南十校联考]已知函数f (x )=x a的图象过点(4,2),令a n =1f n ++f n,n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 014=( )A. 2 013-1B. 2 014-1C. 2 015-1D. 2 015+1[答案] C[解析] 由f (4)=2可得4a=2,解得a =12,则f (x )=x 12.∴a n =1f n ++f n=1n +1+n=n +1-n ,S 2 014=a 1+a 2+a 3+…+a 2 014=(2-1)+(3-2)+(4-3)+…+( 2 014- 2 013)+( 2 015- 2 014) = 2 015-1. 角度三形如a n =n +1n 2n +2型[典题6] 正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0. (1)求数列{a n }的通项公式a n ; (2)令b n =n +1n +2a 2n ,数列{b n }的前n 项和为T n .证明:对于任意的n ∈N *,都有T n <564. (1)[解] 由S 2n -(n 2+n -1)S n -(n 2+n )=0,得 [S n -(n 2+n )](S n +1)=0.由于{a n }是正项数列,所以S n >0,S n =n 2+n . 于是a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n . 综上,数列{a n }的通项公式为a n =2n . (2)[证明] 由于a n =2n , 故b n =n +1n +2a 2n =n +14n 2n +2=116⎣⎢⎡⎦⎥⎤1n 2-1n +2.T n =116⎣⎢⎡⎦⎥⎤1-132+122-142+132-152+…+1n -2-1n +2+1n2-1n +2=116⎣⎢⎡⎦⎥⎤1+122-1n +2-1n +2<116×⎝ ⎛⎭⎪⎫1+122=564. [点石成金] 利用裂项相消法求和的注意事项(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项. (2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,1a n a n +2=12d ⎝ ⎛⎭⎪⎫1a n -1a n +2.[方法技巧] 非等差、等比数列的一般数列求和,主要有两种思想:(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成.(2)不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和.[易错防范] 1.在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n,an +1的式子应进行合并.2.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项,特别是隔项相消.真题演练集训1.[2018·北京模拟]已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.答案:6解析:设等差数列{a n }的公差为d ,由已知,得⎩⎪⎨⎪⎧ a 1=6,2a 1+6d =0,解得⎩⎪⎨⎪⎧ a 1=6,d =-2,所以S 6=6a 1+12×6×5d =36+15×(-2)=6.2.[2018·四川模拟]设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________.答案:-1n解析:∵ a n +1=S n +1-S n ,a n +1=S n S n +1,∴ S n +1-S n =S n S n +1.∵ S n ≠0,∴ 1S n -1S n +1=1,即1S n +1-1S n =-1. 又1S 1=-1,∴ ⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列. ∴ 1S n=-1+(n -1)×(-1)=-n , ∴ S n =-1n. 3.[2018·山东模拟]已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.(1)求数列{b n }的通项公式; (2)令c n =a n +n +1b n +n ,求数列{c n }的前n 项和T n .解:(1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5,当n =1时,a 1=S 1=11,所以a n =6n +5.设数列{b n }的公差为d ,由⎩⎪⎨⎪⎧ a 1=b 1+b 2,a 2=b 2+b 3,得⎩⎪⎨⎪⎧ 11=2b 1+d ,17=2b 1+3d ,可解得b 1=4,d =3.所以b n =3n +1.(2)由(1)知,c n =n +n +1n +n =3(n +1)·2n +1.又T n =c 1+c 2+…+c n ,所以T n =3×[2×22+3×23+…+(n +1)×2n +1], 2T n =3×[2×23+3×24+…+(n +1)×2n +2], 两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+-2n 1-2-n +n +2=-3n ·2n +2, 所以T n =3n ·2n +2. 4.[2018·重庆模拟]S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3.(1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和. 解:(1)由a 2n +2a n =4S n +3,①可知a 2n +1+2a n +1=4S n +1+3.②②-①,得a 2n +1-a 2n +2(a n +1-a n )=4a n +1,即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ). 由a n >0,得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1.(2)由a n =2n +1可知, b n =1a n a n +1=1n +n +=12⎝ ⎛⎭⎪⎫12n +1-12n +3. 设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3=n n +.课外拓展阅读数列求和[典例] 已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n 的最大值为8. (1)确定常数k ,并求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和T n .[审题视角][解析] (1)当n =k ,k ∈N *时,S n =-12n 2+kn 取得最大值, 即8=S k =-12k 2+k 2=12k 2,故k 2=16,k =4. 当n =1时,a 1=S 1=-12+4=72, 当n ≥2时,a n =S n -S n -1=92-n . 当n =1时,上式也成立,故a n =92-n . (2)因为9-2a n 2n =n 2n -1, 所以T n =1+22+322+…+n -12n -2+n 2n -1,① 所以2T n =2+2+32+…+n -12n -3+n 2n -2,② ②-①,得2T n -T n =2+1+12+…+12n -2-n 2n -1 =4-12n -2-n 2n -1=4-n +22n -1. 故T n =4-n +22n -1. 方法点睛1.根据数列前n 项和的结构特征和最值确定k 和S n ,求出a n 后再根据⎩⎨⎧⎭⎬⎫9-2a n 2n 的结构特征确定利用错位相减法求T n .在审题时,要审题目中数式的结构特征判定解题方案.2.利用S n 求a n 时不要忽视当n =1的情况;错位相减时不要漏项或算错项数.3.可以通过当n =1,2时的特殊情况对结果进行验证.。

2020届高三理数一轮讲义:6.4-数列求和(含答案)

2020届高三理数一轮讲义:6.4-数列求和(含答案)
3
=364. 9
答案 364 9
4.(2018·东北三省四校二模)已知数列{an}满足 an+1-an=2,a1=-5,则|a1|+|a2|
+…+|a6|=( )
A.9
B.15
C.18
D.30
解析 由题意知{an}是以 2 为公差的等差数列,又 a1=-5,所以|a1|+|a2|+…+
|a6|=|-5|+|-3|+|-1|+1+3+5=5+3+1+1+3+5=18.
[思维升华] 非等差、等比数列的一般数列求和,主要有两种思想 1.转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通 过通项分解或错位相消来完成; 2.不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序 相加法等来求和. [易错防范] 1.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母) 时,应对其公比是否为 1 进行讨论.
解 (1)设等差数列{an}的公差为 d, 由 S3+S4=S5 可得 a1+a2+a3=a5,即 3a2=a5, ∴3(1+d)=1+4d,解得 d=2. ∴an=1+(n-1)×2=2n-1. (2)由(1)可得 bn=(-1)n-1·(2n-1). ∴T2n=1-3+5-7+…+(2n-3)-(2n-1)=(-2)×n=-2n. 考点二 裂项相消法求和
(4)倒序相加法
如果一个数列{an}的前 n 项中与首末两端等“距离”的两项的和相等或等于同一
个常数,那么求这个数列的前 n 项和即可用倒序相加法求解.
[微点提醒]
1.1+2+3+4+…+n=n(n+1). 2
2.12+22+…+n2=n(n+1)(2n+1). 6
3.裂项求和常用的三种变形
(1) 1 =1- 1 . n(n+1) n n+1

2025版高考数学一轮总复习第6章数列第4讲数列求和课件

2025版高考数学一轮总复习第6章数列第4讲数列求和课件

裂项相消法——多维探究 角度 1 形如 bn=ana1n+1({an}为等差数列)型
求和: (1)Sn=1+1+1 2+1+12+3+…+1+2+1…+n; (2)Sn=1×1 3+2×1 4+…+nn1+2; (3)Sn=1×1 3+3×1 5+…+2n-112n+1.
[解析] (1)∵an=nn2+1=21n-n+1 1, ∴ Sn = a1 + a2 + … + an = 2 1-12+12-13 21-n+1 1=n2+n1.
3.(选修 2P56T11 改编)已知数列{an}的通项公式为 an=nsin n3π,则 a1
+a2+a3+…+a2 021=( D )
A.1 011 3
B.-52 3
C.52 3
D.-1 011 3
[解析] 因为 f(n)=sin n3π的周期为 T=2ππ=6,所以 a6k-5+a6k-4+ 3
a6k-3+a6k-2+a6k-1+a6k=(6k-5)× 23+(6k-4)× 23+(6k-3)×0+(6k-
2)×-
23+(6k-1)×-
23+6k×0=-3
3,然后求和即可.因为 f(n)=
sin n3π的周期为 T=2ππ=6,a6k-5+a6k-4+a6k-3+a6k-2+a6k-1+a6k=(6k- 3
(3)求Sn=a+2a2+3a3+…+nan时只要把上式等号两边同时乘以a即 可根据错位相减法求得.( × )
(4)当 n≥2 时,n2-1 1=12n-1 1-n+1 1.( √ ) (5)求数列21n+2n+3的前 n 项和可用分组求和.( √ )
[解析] (1)因为数列{an}为等比数列,且公比不等于 1.则其前 n 项和 为 Sn=a111--qqn=a11--aq1qn=a11--aqn+1.

高考数学一轮复习第六章第4讲数列求和文(含解析)

高考数学一轮复习第六章第4讲数列求和文(含解析)

高考数学一轮复习第六章第4讲数列求和文(含解析)第4讲数列求和一、多项选择题1.在等差数列{an}中,a2?1,a4?5,则{an}的前5项和s5=()a.7b.15c.20d.25分析a2?1,a4?5?s5?a1?a5a?a4?5?2?5?1522.N答案B2.若数列{an}的通项公式是an=(-1)(3n-2),则a1+a2+…+a10=().a.15b、十二c.-12d、-15解析设bn=3n-2,则数列{bn}是以1为首项,3为公差的等差数列,所以a1+a2+…+a9+a10=(-b1)+b2+…+(-b9)+b10=(b2-b1)+(b4-b3)+…+(b10-b9)=5×3=15.答案a3.在序列{an}中,an=A.2022分析∵ A=答案C4.数列{an}满足an+1+(-1)an=2n-1,则{an}的前60项和为().a.3690b、 3660c.1845d、 1830年nn1n+2022,若{an}的前n项和为,则项数n为().二千零一十四c.2013d、 2022年b.20121n+N111n2022=-,‡Sn=1-==,解为n=2022 nn+1n+1n+12022解析当n=2k时,a2k+1+a2k=4k-1,当n=2k-1时,a2k-a2k-1=4k-3,∴a2k+1+a2k-1=2,∴a2k+1+a2k+3=2,∴a2k-1=a2k+3,∴a1=a5=…=a61.∴a1+a2+a3+…+a60=a2+a3+(a4+a5)+…+(a60+a61)=3+7+11+…+(4×30-1)=答案D15.已知序列{an}的通项公式是an=2n+1,设BN=(a1+A2+…+an),然后是序列{BN}的前10项+2=30 × 61=1830.n和t10=()a、 70b.75c.80d.851从已知的an=2n+1,我们可以得到A1=3,A1+A2+…+an=BN=n+2,T10=答案B+2=75,所以选择B+2n+2=n(n+2)1*6.如果序列{an}满足an+an+1=(n∈ n),A1=1,Sn是序列{an}的前n项之和,然后是S21=()221a.2b、六,c.10d、 11根据问题的意思,an+an+1=an+1+an+2=,然后an+2=an,即序列{an}中的奇偶项2别相等,则a21=a1=1,s21=(a1+a2)+(a3+a4)+…+(a19+a20)+a21=10(a1+a2)+a211=10×1=6,所以选择B2答案b二、填空题一7.在等比数列{an}中,若a1=,a4=-4,则公比q=________;|a1|+|a2|+…+|an|=2________.解析设等比数列{an}的公比为q,则a4=a1q,代入数据解得q=-8,所以q=-2;11n-1如果等比序列{an}的公共比为| Q |=2,则| an=×2。

2021版高考文科数学(人教A版)一轮复习教师用书:第六章 第4讲 数列求和 Word版含答案

2021版高考文科数学(人教A版)一轮复习教师用书:第六章 第4讲 数列求和 Word版含答案

第4讲数列求和一、知识梳理1.基本数列求和方法 (1)等差数列求和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d . (2)等比数列求和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1.2.数列求和的几种常用方法 (1)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. (3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解.(4)倒序相加法如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.常用结论1.一些常见数列的前n 项和公式 (1)1+2+3+4+…+n =n (n +1)2.(2)1+3+5+7+…+(2n -1)=n 2. (3)2+4+6+8+…+2n =n 2+n . 2.常用的裂项公式 (1)1n (n +1)=1n -1n +1. (2)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1.(3)1n +n +1=n +1-n .二、习题改编1.(必修5P47B 组T4改编)在数列{a n }中,a n =1n (n +1),则数列{a n }的前n 项和S n= .解析:a n =1n (n +1)=1n -1n +1,S n =1-12+12-13+…+1n -1n +1=1-1n +1=nn +1.答案:nn +12.(必修5P61A 组T4改编)已知数列:112,214,318,…,⎝⎛⎭⎫n +12n ,…,则其前n 项和关于n 的表达式为 .解析:设所求的前n 项和为S n ,则S n =(1+2+3+…+n )+12+14+…+12n =n (n +1)2+1-12n .答案:n (n +1)2+1-12n一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)当n ≥2时,1n 2-1=1n -1-1n +1.( )(2)利用倒序相加法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.( )(3)若S n =a +2a 2+3a 3+…+na n ,当a ≠0,且a ≠1时,求S n 的值可用错位相减法求得.( )答案:(1)× (2)√ (3)√ 二、易错纠偏常见误区(1)并项求和时不能准确分组;(2)用错位相减法求和时易出现符号错误,不能准确“错项对齐”.1.数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -1·n ,则S 17=( ) A .9 B .8 C .17D .16解析:选A.S 17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9.2.已知数列{a n }的前n 项和为S n 且a n =n ·2n ,则S n = . 解析:S n =1×2+2×22+3×23+…+n ×2n ,① 所以2S n =1×22+2×23+3×24+…+n ×2n +1,②①-②得-S n =2+22+23+…+2n -n ×2n +1=2×(1-2n )1-2-n ×2n +1,所以S n =(n -1)2n +1+2. 答案:(n -1)2n +1+2分组转化法求和(师生共研)已知数列{a n }的前n 项和S n =n 2+n2,n∈N *.(1)求数列{a n }的通项公式;(2)设b n =2an +(-1)n a n ,求数列{b n }的前2n 项和. 【解】 (1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .a 1也满足a n =n ,故数列{a n }的通项公式为a n =n . (2)由(1)知a n =n ,故b n =2n +(-1)n n . 记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ).记A =21+22+…+22n ,B =-1+2-3+4-…+2n , 则A =2(1-22n )1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n . 故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和.(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组转化法求和.1.(2020·资阳诊断)已知数列{a n }中,a 1=a 2=1,a n +2=⎩⎪⎨⎪⎧a n +2,n 是奇数,2a n ,n 是偶数,则数列{a n }的前20项和为( )A .1 121B .1 122C .1 123D .1 124解析:选C.由题意可知,数列{a 2n }是首项为1,公比为2的等比数列,数列{a 2n -1}是首项为1,公差为2的等差数列,故数列{a n }的前20项和为1×(1-210)1-2+10×1+10×92×2=1 123.选C.2.(2020·吉林长春质量监测(二))各项均为整数的等差数列{a n },其前n 项和为S n ,a 1=-1,a 2,a 3,S 4+1成等比数列.(1)求{a n }的通项公式;(2)求数列{(-1)n ·a n }的前2n 项和T 2n . 解:(1)设等差数列{a n }的公差为d , 因为a 1=-1,a 2,a 3,S 4+1成等比数列, 所以a 23=a 2·(S 4+1),即(-1+2d )2=(-1+d )(-3+6d ),解得d =2⎝⎛⎭⎫d =12舍去, 所以数列{a n }的通项公式为a n =2n -3. (2)由(1)可知a n -a n -1=2(n ≥2),所以T 2n =(-a 1+a 2)+(-a 3+a 4)+…+(-a 2n -1+a 2n )=2n .错位相减法求和(师生共研)(2020·郑州市第二次质量预测)已知数列{a n }中,a 1=1,a n >0,前n 项和为S n ,若a n =S n +S n -1(n ∈N *,且n ≥2).(1)求数列{a n }的通项公式;(2)记c n =a n ·2a n ,求数列{c n }的前n 项和T n . 【解】 (1)在数列{a n }中,a n =S n -S n -1(n ≥2) ①,因为a n =S n +S n -1 ②,且a n >0,所以①÷②得S n -S n -1=1(n ≥2), 所以数列{S n }是以S 1=a 1=1为首项,公差为1的等差数列, 所以S n =1+(n -1)×1=n ,所以S n =n 2. 当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1, 当n =1时,a 1=1,也满足上式, 所以数列{a n }的通项公式为a n =2n -1.(2)由(1)知,a n =2n -1,所以c n =(2n -1)×22n -1, 则T n =1×2+3×23+5×25+…+(2n -1)×22n -1,4T n =1×23+3×25+5×27+…+(2n -3)×22n -1+(2n -1)×22n +1, 两式相减得,-3T n =2+2(23+25+…+22n -1)-(2n -1)22n +1, =2+2×8(1-22n -2)1-4-(2n -1)22n +1=-103+⎝⎛⎭⎫53-2n 22n +1, 所以T n =(6n -5)22n +1+109.用错位相减法求和的策略和技巧(1)掌握解题“3步骤”(2)注意解题“3关键”①要善于识别题目类型,特别是等比数列公比为负数的情形.②在写出“S n”与“qS n”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n-qS n”的表达式.③在应用错位相减法求和时,若等比数列的公比为参数,应分公比q=1和q≠1两种情况求解.已知{a n }为正项等比数列,a 1+a 2=6,a 3=8.(1)求数列{a n }的通项公式a n ;(2)若b n =log 2a na n,且{b n }的前n 项和为T n ,求T n .解:(1)依题意,设等比数列{a n }的公比为q ,则有⎩⎪⎨⎪⎧a 1+a 1q =6,a 1q 2=8,则3q 2-4q -4=0,而q >0,所以q =2.于是a 1=2,所以数列{a n }的通项公式为a n =2n . (2)由(1)得b n =log 2a n a n =n2n ,所以T n =12+222+323+…+n2n ,12T n =122+223+…+n -12n +n2n +1, 两式相减得,12T n =12+122+123+…+12n -n2n +1,所以T n =1+12+122+…+12n -1-n2n=1-12n -1·121-12-n 2n=2-n +22n .裂项相消法求和(典例迁移)(2020·武汉部分学校调研)已知等差数列{a n }的前三项的和为-9,前三项的积为-15.(1)求等差数列{a n }的通项公式;(2)若{a n }为递减数列,求数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和S n .【解】 (1)设等差数列{a n }的公差为d ,依题意知a 2=-3,a 1=-3-d ,a 3=-3+d , 所以(-3-d )×(-3)×(-3+d )=-15,d 2=4,d =±2, 所以a n =-2n +1或a n =2n -7.(2)由题意得a n =-2n +1,所以1a n a n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1,所以S n =12⎝⎛⎭⎫1-13+13-15+…+12n -1-12n +1=12⎝⎛⎭⎫1-12n +1=n2n +1.【迁移探究】 (变设问)在本例条件下,若{a n }为递增数列,求数列{|a n |}的前n 项和S n .解:由本例(1)知a n =2n -7,所以|a n |=⎩⎪⎨⎪⎧7-2n ,n ≤32n -7,n ≥4,①n ≤3时,S n =-(a 1+a 2+…+a n )=5+(7-2n )2n =6n -n 2;②n ≥4时,S n =-a 1-a 2-a 3+a 4+…+a n =-2(a 1+a 2+a 3)+(a 1+a 2+…+a n )=18-6n +n 2.综上,数列{|a n |}的前n 项和S n =⎩⎪⎨⎪⎧-n 2+6n ,n ≤3,n 2-6n +18,n ≥4.裂项相消法求和的实质和解题关键裂项相消法求和的实质是先将数列中的通项分解,然后重新组合,使之能消去一些项,最终达到求和的目的,其解题的关键就是准确裂项和消项.(1)裂项原则:一般是前边裂几项,后边就裂几项,直到发现被消去项的规律为止. (2)消项规律:消项后前边剩几项,后边就剩几项,前边剩第几项,后边就剩倒数第几项.[注意] 利用裂项相消法求和时,既要注意检验通项公式裂项前后是否等价,又要注意求和时,正负项相消消去了哪些项,保留了哪些项,切不可漏写未被消去的项.1.(2020·湖北八校联考)已知等差数列{a n }的前n 项和为S n ,且a 9=12a 12+6,a 2=4,则数列⎩⎨⎧⎭⎬⎫1S n 的前10项和为( )A.1112 B.1011 C.910D .89解析:选B.设等差数列{a n }的公差为d ,由a 9=12a 12+6及等差数列的通项公式得a 1+5d =12,又a 2=4,所以a 1=2,d =2,所以S n =n 2+n ,所以1S n =1n (n +1)=1n -1n +1,所以1S 1+1S 2+…+1S 10=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫110-111=1-111=1011. 2.(2020·郑州市第一次质量测试)已知等差数列{a n }的前n 项和为S n ,且a 2+a 5=25,S 5=55.(1)求数列{a n }的通项公式;(2)设a n b n =13n -1,求数列{b n }的前n 项和T n .解:(1)设等差数列{a n }的公差为d ,由题意⎩⎪⎨⎪⎧a 2+a 5=2a 1+5d =25,S 5=5a 3=5a 1+10d =55,解得⎩⎪⎨⎪⎧a 1=5,d =3,所以数列{a n }的通项公式为a n =3n +2.(2)由a n b n =13n -1,得b n =1a n (3n -1)=1(3n -1)(3n +2)=13⎝⎛⎭⎫13n -1-13n +2,T n =b 1+b 2+…+b n=13⎝⎛⎭⎫12-15+15-18+…+13n -1-13n +2 =13⎝⎛⎭⎫12-13n +2 =16-19n +6=n 2(3n +2).[基础题组练]1.1-4+9-16+…+(-1)n +1n 2等于( ) A.n (n +1)2B .-n (n +1)2C .(-1)n+1n (n +1)2D .以上答案均不对解析:选C.当n 为偶数时,1-4+9-16+…+(-1)n +1n 2=-3-7-…-(2n -1) =-n2(3+2n -1)2=-n (n +1)2;当n 为奇数时,1-4+9-16+…+(-1)n +1n 2=-3-7-…-[2(n -1)-1]+n 2 =-n -12[3+2(n -1)-1]2+n 2=n (n +1)2,综上可得,原式=(-1)n+1n (n +1)2. 2.在数列{a n }中,a n =2n -12n ,若{a n }的前n 项和S n =32164,则n =( )A .3B .4C .5D .6解析:选D.由a n =2n -12n =1-12n 得,S n =n -⎝⎛⎭⎫12+122+…+12n =n -⎝⎛⎭⎫1-12n , 则S n =32164=n -⎝⎛⎭⎫1-12n ,将各选项中的值代入验证得n =6. 3.已知函数f (n )=⎩⎪⎨⎪⎧n 2,当n 为奇数时,-n 2,当n 为偶数时,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( )A .0B .100C .-100D .10 200解析:选B.由题意,得a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012 =-(1+2)+(3+2)-(4+3)+…-(99+100)+(101+100) =-(1+2+…+99+100)+(2+3+…+100+101) =-50×101+50×103=100.4.(2020·江西省五校协作体试题)设S n 是数列{a n }的前n 项和,若a n +S n =2n ,2b n =2a n+2-a n +1,则1b 1+12b 2+…+1100b 100=( )A.9798 B.9899 C.99100D .100101解析:选D.因为a n +S n =2n ①,所以a n +1+S n +1=2n +1②,②-①得2a n +1-a n =2n ,所以2a n +2-a n +1=2n +1,又2b n =2a n +2-a n +1=2n +1,所以b n =n +1,1nb n =1n (n +1)=1n -1n +1,则1b 1+12b 2+…+1100b 100=1-12+12-13+…+1100-1101=1-1101=100101,故选D. 5.在数列{a n }中,若a n +1+(-1)n a n =2n -1,则数列{a n }的前12项和等于( ) A .76 B .78 C .80D .82解析:选B.由已知a n +1+(-1)n a n =2n -1,得a n +2+(-1)n +1·a n +1=2n +1,得a n +2+a n =(-1)n (2n -1)+(2n +1),取n =1,5,9及n =2,6,10,结果相加可得S 12=a 1+a 2+a 3+a 4+…+a 11+a 12=78.故选B.6.等比数列{a n }中,若a 1=27,a 9=1243,q >0,S n 是其前n 项和,则S 6= .解析:由a 1=27,a 9=1243知,1243=27·q 8,又由q >0,解得q =13,所以S 6=27⎣⎡⎦⎤1-⎝⎛⎭⎫1361-13=3649. 答案:36497.(2020·九江联考)若{a n },{b n }满足a n b n =1,a n =n 2+3n +2,则{b n }的前18项和为 .解析:因为a n b n =1,且a n =n 2+3n +2,所以b n =1n 2+3n +2=1(n +2)(n +1)=1n +1-1n +2,所以{b n }的前18项和为12-13+13-14+14-15+…+119-120=12-120=10-120=920.答案:9208.已知数列{a n }满足a n +1=12+a n -a 2n ,且a 1=12,则该数列的前 2 018项的和等于 .解析:因为a 1=12,又a n +1=12+a n -a 2n , 所以a 2=1,从而a 3=12,a 4=1,即得a n =⎩⎪⎨⎪⎧12,n =2k -1(k ∈N *),1,n =2k (k ∈N *),故数列的前2 018项的和等于S 2 018=1 009×⎝⎛⎭⎫1+12=3 0272.答案:3 02729.已知数列{a n }满足a 1=12,且a n +1=2a n2+a n .(1)求证:数列{1a n}是等差数列;(2)若b n =a n ·a n +1,求数列{b n }的前n 项和S n . 解:(1)证明:因为a n +1=2a n 2+a n ,所以1a n +1=2+a n 2a n, 所以1a n +1-1a n =12,所以数列{1a n }是首项为2,公差为12的等差数列.(2)由(1)知1a n =1a 1+(n -1)×12=n +32,所以a n =2n +3,所以b n =4(n +3)(n +4)=4×(1n +3-1n +4),S n =4×[(14-15)+(15-16)+…+(1n +3-1n +4)]=4×(14-1n +4)=nn +4.10.(2020·广州市综合检测(一))已知{a n }是等差数列,且lg a 1=0,lg a 4=1. (1)求数列{a n }的通项公式;(2)若a 1,a k ,a 6是等比数列{b n }的前3项,求k 的值及数列{a n +b n }的前n 项和. 解:(1)因为lg a 1=0,lg a 4=1, 所以a 1=1,a 4=10. 设等差数列{a n }的公差为d , 则d =a 4-a 14-1=3.所以a n =a 1+3(n -1)=3n -2. (2)由(1)知a 1=1,a 6=16,因为a 1,a k ,a 6是等比数列{b n }的前3项. 所以a 2k =a 1a 6=16. 又a n =3n -2>0, 所以a k =4. 因为a k =3k -2, 所以3k -2=4,得k =2.所以等比数列{b n }的公式q =b 2b 1=a 2a 1=4.所以b n =4n -1.所以a n +b n =3n -2+4n -1.所以数列{a n +b n }的前n 项和为S n =n (3n -1)2+1-4n 1-4=32n 2-12n +13(4n-1).[综合题组练]1.(2020·黑龙江牡丹江一中模拟)已知数列{a n }满足a 1=2,4a 3=a 6,⎩⎨⎧⎭⎬⎫a n n 是等差数列,则数列{(-1)n a n }的前10项的和S 10是( )A .220B .110C .99D .55解析:选B.设等差数列⎩⎨⎧⎭⎬⎫a n n 的公差为d ,则a 66=a 1+5d ,a 66=a 33+3d ,将已知值和等量关系代入,计算得d =2,所以a nn =a 1+(n -1)d =2n ,a n =2n 2,所以S 10=-a 1+a 2-a 3+a 4-…+a 10=2(1+2+…+10)=110,故选B.2.设数列{a n }的前n 项和为S n ,且a 1=1,a n +a n +1=12n (n =1,2,3,…),则S 2n -1= .解析:因为a 1=1,a n +a n +1=12n (n =1,2,3,…),所以S 2n -1=a 1+(a 2+a 3)+…+(a 2n-2+a 2n -1)=1+122+124+…+122n -2=43⎣⎡⎦⎤1-⎝⎛⎭⎫14n . 答案:43⎣⎡⎦⎤1-⎝⎛⎭⎫14n3.(2019·高考天津卷)设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3.(1)求{a n }和{b n }的通项公式;(2)设数列{c n }满足c n =⎩⎪⎨⎪⎧1,n 为奇数,b n 2,n 为偶数.求a 1c 1+a 2c 2+…+a 2n c 2n (n ∈N *).解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .依题意,得⎩⎪⎨⎪⎧3q =3+2d ,3q 2=15+4d ,解得⎩⎪⎨⎪⎧d =3,q =3,故a n =3+3(n -1)=3n ,b n =3×3n -1=3n .所以{a n }的通项公式为a n =3n ,{b n }的通项公式为b n =3n . (2)a 1c 1+a 2c 2+…+a 2n c 2n=(a 1+a 3+a 5+…+a 2n -1)+(a 2b 1+a 4b 2+a 6b 3+…+a 2n b n ) =⎣⎡⎦⎤n ×3+n (n -1)2×6+(6×31+12×32+18×33+…+6n ×3n )=3n 2+6(1×31+2×32+…+n ×3n ). 记T n =1×31+2×32+…+n ×3n ,① 则3T n =1×32+2×33+…+n ×3n +1,②②-①得,2T n =-3-32-33- (3)+n ×3n +1=-3(1-3n )1-3+n ×3n +1=(2n -1)3n +1+32.所以a 1c 1+a 2c 2+…+a 2n c 2n=3n 2+6T n =3n 2+3×(2n -1)3n +1+32=(2n -1)3n +2+6n 2+92(n ∈N *).4.(2020·安徽省考试试题)已知等差数列{a n }中,a 5-a 3=4,前n 项和为S n ,且S 2,S 3-1,S 4成等比数列.(1)求数列{a n }的通项公式;(2)令b n =(-1)n 4n a n a n +1,求数列{b n }的前n 项和T n .解:(1)设{a n }的公差为d ,由a 5-a 3=4,得2d =4,d =2. 所以S 2=2a 1+2,S 3-1=3a 1+5,S 4=4a 1+12,又S 2,S 3-1,S 4成等比数列,所以(3a 1+5)2=(2a 1+2)·(4a 1+12), 解得a 1=1, 所以a n =2n -1.(2)b n =(-1)n 4n a n a n +1=(-1)n ⎝⎛⎭⎫12n -1+12n +1,当n 为偶数时,T n =-⎝⎛⎭⎫1+13+⎝⎛⎭⎫13+15-⎝⎛⎭⎫15+17+…-⎝⎛⎭⎫12n -3+12n -1+⎝⎛⎭⎫12n -1+12n +1,所以T n =-1+12n +1=-2n 2n +1. 当n 为奇数时,T n =-⎝⎛⎭⎫1+13+⎝⎛⎭⎫13+15-⎝⎛⎭⎫15+17+…+⎝⎛⎭⎫12n -3+12n -1-⎝⎛⎭⎫12n -1+12n +1,所以T n =-1-12n +1=-2n +22n +1.所以T n =⎩⎪⎨⎪⎧-2n2n +1,n 为偶数-2n +22n +1,n 为奇数.。

2021届高三数学(理)一轮复习学案:第六章第四节 数列求和含解析

2021届高三数学(理)一轮复习学案:第六章第四节 数列求和含解析

第四节数列求和[最新考纲][考情分析][核心素养]1.掌握等差、等比数列的前n 项和公式.2.能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决与前n 项和相关的问题.数列分组求和、错位相减求和、裂项相消求和仍是2021年高考考查的热点,题型仍将是以解答题为主,分值为12分. 1.数学运算2.逻辑推理 1.等差数列的前n 项和公式S n =n (a 1+a n )2=1na 1+n (n -1)2d .2.等比数列的前n 项和公式 S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q =2a 1(1-q n )1-q ,q ≠1. 3.数列求和的常用方法 (1)倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的.(2)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和就是用此法推导的.(3)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. (4)分组转化法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转化法,分别求和后再相加减.(5)并项求和法一个数列的前n 项和,可两两结合求解,则称之为并项求和,形如a n =(-1)n f (n )类型,可采用两项合并求解.►常用结论1.一些常见的前n 项和公式 (1)1+2+3+4+…+n =n (n +1)2.(2)1+3+5+7+…+2n -1=n 2. (3)2+4+6+8+…+2n =n 2+n . 2.常用的裂项公式 (1)1n (n +1)=1n -1n +1. (2)1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1. (3)1n +n +1=n +1-n .3.使用裂项相消法求和时,要注意正负项相消时,消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点.‖基础自测‖一、疑误辨析1.判断下列结论是否正确(请在括号中打“√”或“×”).(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q .( )(2)当n ≥2时,1n 2-1=12⎝⎛⎭⎫1n -1-1n +1.( )(3)求S n =a +2a 2+3a 3+…+na n 时只要把上式等号两边同时乘a 即可根据错位相减法求得.( )答案:(1)√ (2)√ (3)× 二、走进教材2.(必修5P 47B 4改编)在数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为20192020,则项数n 为( )A .2018B .2019C .2020D .2021答案:B3.(必修5P 56例1改编)在等比数列{a n }中,若a 1=27,a 9=1243(q >0),S n 是其前n 项和,则S 6=________.答案:3649三、易错自纠4.(2019届天津红桥检测)已知数列{a n }的前n 项和S n =n 2-6n ,则数列{|a n |}的前n 项和T n 等于( )A .6n -n 2B .n 2-6n +18C .⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3),n 2-6n +18(n >3)D .⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3),n 2-6n (n >3)解析:选C 由S n =n 2-6n 得{a n }是等差数列,且首项为-5,公差为2,∴a n =-5+(n -1)×2=2n -7,∴当n ≤3时,a n <0,T n =(-a 1)+(-a 2)+(-a 3)=-S n =6n -n 2;当n >3时,a n >0,T n =(-a 1)+(-a 2)+(-a 3)+a 4+…+a n =S n -2S 3=n 2-6n +18.∴T n =⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3),n 2-6n +18(n >3).5.已知数列{a n }中,a 1=1,a n +1=(-1)n (a n +1),记S n 为{a n }的前n 项和,则S 2017=________. 解析:由a 1=1,a n +1=(-1)n (a n +1),可得该数列是周期为4的数列,且a 1=1,a 2=-2,a 3=-1,a 4=0,所以S 2017=504(a 1+a 2+a 3+a 4)+a 1=504×(-2)+1=-1007.答案:-10076.若数列{a n }的前n 项和为S n 且a n =n ·2n ,则S n =________. 解析:S n =1×21+2×22+3×23+…+n ×2n ,① 2S n =1×22+2×23+3×24+…+n ×2n +1,② ①-②得-S n =1×21+22+33+…+2n -n ×2n +1 =2×(1-2n )1-2-n ×2n +1=2n +1-2-n ×2n +1 =(1-n )×2n +1-2. ∴S n =(n -1)×2n +1+2. 答案:(n -1)×2n +1+2 考点一分组转化法求和问题【例1】(2019届南昌市重点中学测试)已知数列{a n }是等差数列,{b n }是等比数列,a 1=1,b 1=2,a 2+b 2=7,a 3+b 3=13.(1)求{a n }和{b n }的通项公式;(2)若c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,求数列{c n }的前2n 项和S 2n .[解] (1)设数列{a n }的公差为d ,数列{b n }的公比为q (q ≠0),依题意有⎩⎪⎨⎪⎧1+d +2q =7,1+2d +2q 2=13,解得⎩⎪⎨⎪⎧d =2,q =2,所以a n =2n -1,b n =2n .(2)由已知得c 2n -1=a 2n -1=4n -3,c 2n =b 2n =4n , 所以数列{c n }的前2n 项和S 2n =(a 1+a 3+…+a 2n -1)+(b 2+b 4+…+b 2n ) =n (1+4n -3)2+4(1-4n )1-4=2n 2-n +43(4n -1).►名师点津分组转化法求和的常见类型[提醒]某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论.|跟踪训练|1.(2019届焦作模拟)已知{a n }为等差数列,且a 2=3,{a n }前4项的和为16,数列{b n }满足b 1=4,b 4=88,且数列{b n -a n }为等比数列.(1)求数列{a n }和{b n -a n }的通项公式; (2)求数列{b n }的前n 项和S n . 解:(1)设等差数列{a n }的公差为d , 因为a 2=3,{a n }前4项的和为16, 所以⎩⎪⎨⎪⎧a 1+d =3,4a 1+4×32d =16,解得⎩⎪⎨⎪⎧a 1=1,d =2, 所以a n =1+(n -1)×2=2n -1. 所以a 4=2×4-1=7. 设{b n -a n }的公比为q , 则b 4-a 4=(b 1-a 1)q 3, 因为b 1=4,b 4=88, 所以q 3=b 4-a 4b 1-a 1=88-74-1=27,解得q =3,所以b n -a n =(4-1)×3n -1=3n . (2)由(1)得b n =3n +2n -1, 所以S n =(3+32+33+…+3n )+(1+3+5+…+2n -1)=3(1-3n )1-3+n (1+2n -1)2=32(3n -1)+n 2 =3n +12+n 2-32.考点二裂项相消法求和问题【例2】(2020届合肥调研)已知在等差数列{a n }中,a 2=12,a 5=24,数列{b n }满足b 1=4,b n +1-b n =a n (n ∈N *).(1)求数列{a n },{b n }的通项公式;(2)求使得1b 1+1b 2+1b 3+…+1b n >817成立的最小正整数n 的值.[解] (1)设等差数列{a n }的公差为d ,则a 5-a 2=3d =12,解得d =4,∴a n =a 2+(n -2)d =4n +4,∴b n +1-b n =4n +4,∴b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1) =4+8+12+…+[4(n -1)+4] =2n 2+2n (n >1),b 1=4也适合. ∴a n =4n +4,b n =2n 2+2n (n ∈N *).(2)由(1)得1b n =12n 2+2n =12n (n +1)=121n -1n +1,∴1b 1+1b 2+1b 3+…+1b n =121-12+12-13+…+1n -1n +1=121-1n +1=n 2(n +1),即n 2(n +1)>817,解得n >16,∴满足条件的最小正整数n 的值为17. ►名师点津利用裂项相消法求和的注意事项(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项;或者前面剩几项,后面也剩几项.(2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝⎛⎭⎫1a n -1a n +1,1a n a n +2=12d ⎝⎛⎭⎫1a n -1a n +2.|跟踪训练|2.(2019届安徽模拟)已知数列{a n }满足a 1=1,a n +1=2a n +1.(1)证明:{a n +1}是等比数列,并求{a n }的通项公式; (2)求证:a 1+1a 1a 2+a 2+1a 2a 3+…+a n +1a n a n +1<1.证明:(1)由a n +1=2a n +1,得a n +1+1=2(a n +1).又a 1+1=2,所以{a n +1}是首项为2,公比为2的等比数列. 所以a n +1=2n ,因此{a n }的通项公式为a n =2n -1.(2)由(1)知a n +1a n a n +1=2n (2n -1)(2n +1-1)=12n -1-12n +1-1,于是a 1+1a 1a 2+a 2+1a 2a 3+…+a n +1a n a n +1=⎝⎛⎭⎫121-1-122-1+⎝⎛⎭⎫122-1-123-1+…+12n -1-12n +1-1=1-12n +1-1,所以a 1+1a 1a 2+a 2+1a 2a 3+…+a n +1a n a n +1<1. 考点三 错位相减求和法问题【例3】(2020届四川五校联考)设数列{a n }是等差数列,数列{b n }的前n 项和S n 满足2S n=3(b n -1),a 1=b 1,a 4=b 2.(1)求数列{a n }和{b n }的通项公式; (2)求{a n ·b n }的前n 项和T n .[解] (1)由2S n =3(b n -1)知,当n =1时,b 1=3,当n ≥2时,2S n -1=3(b n -1-1),两式相减得,2b n =2S n -2S n -1=3(b n -1)-3(b n -1-1),即b n =3b n -1,所以数列{b n }是首项为3,公比为3的等比数列,所以数列{b n }的通项公式为b n =3n .又数列{a n }是等差数列,a 1=b 1=3,a 4=b 2=9,所以公差d =a 4-a 13=2,所以数列{a n }的通项公式为a n =2n +1.(2)由(1)知,T n =3×31+5×32+7×33+9×34+…+(2n +1)×3n ,① 3T n =3×32+5×33+7×34+9×35+…+(2n +1)×3n +1,② ①-②得,-2T n =3×31+2(32+33+34+…+3n )-(2n +1)×3n+1,即-2T n =3×31+2×9(1-3n -1)1-3-(2n +1)×3n +1,整理得T n =n ×3n +1.►名师点津1.一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法.2.用错位相减法求和时,应注意:(1)要善于识别题目类型,特别是等比数列公比为负数的情形.(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n -qS n ”的表达式.|跟踪训练|3.(2019届信阳模拟)已知数列{a n }满足a 1=1,a n +1=2a n +λ(λ为常数). (1)试探究数列{a n +λ}是不是等比数列,并求a n ; (2)当λ=1时,求数列{n (a n +λ)}的前n 项和T n . 解:(1)因为a n +1=2a n +λ, 所以a n +1+λ=2(a n +λ).又a 1=1,所以当λ=-1时,a 1+λ=0,数列{a n +λ}不是等比数列,此时a n +λ=a n -1=0,即a n =1;当λ≠-1时,a 1+λ≠0,所以a n +λ≠0,所以数列{a n +λ}是以1+λ为首项,2为公比的等比数列,此时a n +λ=(1+λ)2n -1,即a n=(1+λ)2n -1-λ.(2)由(1)知当λ=1时,a n =2n -1,所以n (a n +1)=n ×2n , 所以T n =2+2×22+3×23+…+n ×2n ,① 2T n =22+2×23+3×24+…+n ×2n +1,② ①-②得:-T n=2+22+23+…+2n -n ×2n +1=2(1-2n )1-2-n ×2n +1=2n +1-2-n ×2n +1=(1-n )2n +1-2.所以T n =(n -1)2n +1+2.考点 数列与函数、不等式的交汇应用问题【例】已知递增的等比数列{a n }满足:a 2+a 3+a 4=28,且a 3+2是a 2和a 4的等差中项. (1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>62成立的正整数n 的最小值.[解] (1)设数列{a n }的公比为q ,由题意,得⎩⎪⎨⎪⎧a 1q +a 1q 2+a 1q 3=28,a 1q +a 1q 3=2(a 1q 2+2), 解得⎩⎪⎨⎪⎧a 1=2,q =2或⎩⎪⎨⎪⎧a 1=32,q =12.∵{a n }是递增数列,∴a 1=2,q =2, ∴数列{a n }的通项公式为a n =2·2n -1=2n . (2)∵b n =a n log 12a n =2n ·log 122n =-n ·2n ,∴S n =b 1+b 2+…+b n =-(1×2+2×22+…+n ·2n ),① 则2S n =-(1×22+2×23+…+n ·2n +1),②②-①,得S n =(2+22+…+2n )-n ·2n +1=2n +1-2-n ·2n +1, 则S n +n ·2n +1=2n +1-2.由2n +1-2>62,得n >5, ∴n 的最小值为6. ►名师点津解决数列与不等式的综合问题时,若是证明题,则要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等;若是含参数的不等式恒成立问题,则可分离参数,转化为研究最值问题来解决.|跟踪训练|(2019届新疆昌吉月考)在1和17之间插入n -2(n ≥4,n ∈N *)个数,使这n 个数成等差数列.若这n -2个数中第一个为a ,第n -2个为b ,当1a +25b取最小值时,n 的值为( )A .6B .7C .8D .9解析:选D 由已知得a >0,b >0,a +b =18,则1a +25b =⎝⎛⎭⎫1a +25b ·a +b 18=118⎝⎛⎭⎫1+25+b a +25a b ≥118×(26+10)=2,当且仅当b =5a 时取等号,此时a =3,b =15,所以等差数列的公差d =3-1=2,所以17=1+2(n -1),解得n =9.故选D .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列求和1.等差数列的前n 项和公式S n =n (a 1+a n )2=na 1+n (n -1)2d . 2.等比数列的前n 项和公式S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1(1-q n )1-q ,q ≠1. 3.一些常见数列的前n 项和公式(1)1+2+3+4+…+n =n (n +1)2. (2)1+3+5+7+…+2n -1=n 2. (3)2+4+6+8+…+2n =n (n +1). (4)12+22+…+n 2=n (n +1)(2n +1)6. 【知识拓展】数列求和的常用方法(1)公式法等差、等比数列或可化为等差、等比数列的可直接使用公式求和.(2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.常见的裂项公式①1n (n +1)=1n -1n +1;②1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1; ③1n +n +1=n +1-n . (4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.(6)并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5050.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( ) (2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( ) (3)求S n =a +2a 2+3a 3+…+na n 之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )(4)数列{12n +2n -1}的前n 项和为n 2+12n .()(5)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.( )考点自测1.设{a n }是公差不为0的等差数列,a 1=2,且a 1,a 3,a 6成等比数列,则{a n }的前n 项和S n 等于() A.n 2+7n 4 B.n 2+5n 3 C.2n 2+3n 4D .n 2+n2.(教材改编)数列{a n }中,a n =1n (n +1),若{a n }的前n 项和S n =20172018,则n 等于( )A .2016B .2017C .2018D .20193.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( )A .200B .-200C .400D .-4004.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和S n =________.5.数列{a n }的通项公式为a n =n cos n π2,其前n 项和为S n ,则S 2017=________.题型分类深度剖析题型一分组转化法求和例1已知数列{a n }的前n 项和S n =n 2+n 2,n ∈N *.(1)求数列{a n }的通项公式; (2)设b n =2n a +(-1)n a n ,求数列{b n }的前2n 项和.已知数列{a n }的通项公式是a n =2·3n -1+(-1)n ·(ln2-ln3)+(-1)n n ln3,求其前n 项和S n .题型二错位相减法求和例2已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.(1)求数列{b n }的通项公式; (2)令c n =(a n +1)n +1(b n +2)n ,求数列{c n }的前n 项和T n .设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100.(1) 求数列{a n },{b n }的通项公式;(2) 当d >1时,记c n =a n b n,求数列{c n }的前n 项和T n .题型三裂项相消法求和命题点1形如a n =1n (n +k )型 例3S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3.(1)求{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和.命题点2形如a n =1n +n +k 型例4已知函数f (x )=x a 的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n , 则S 2017=________.在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎫S n -12. (1)求S n 的表达式; (2)设b n =S n 2n +1,求{b n }的前n 项和T n .四审结构定方案典例已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n 的最大值为8. (1)确定常数k ,并求a n ;(2)设数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和为T n ,求证:T n <4.课时作业1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于( ) A .n 2+1-12n B .2n 2-n +1-12n C .n 2+1-12n -1D .n 2-n +1-12n2.设等比数列{a n }的前n 项和为S n ,已知a 1=2016,且a n +2a n +1+a n +2=0(n ∈N *),则S 2016等于( )A .0B .2016C .2015D .20143.等差数列{a n }的通项公式为a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项的和为( ) A .120B .70C .75D .1004.在数列{a n }中,若a n +1+(-1)n a n =2n -1,则数列{a n }的前12项和等于( )A .76B .78C .80D .825.已知函数f (n )=⎩⎪⎨⎪⎧n 2 (当n 为奇数时),-n 2(当n 为偶数时),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( ) A .0B .100C .-100D .102006.设数列{a n }的通项公式为a n =2n -7,则|a 1|+|a 2|+…+|a 15|等于( )A .153B .210C .135D .1207.已知数列{a n }的通项公式为a n =1n +n +1,若前n 项和为10,则项数n 为________.8.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是________.9.若已知数列的前四项是112+2,122+4,132+6,142+8,则数列的前n 项和为______________.*10.已知正项数列{a n }的前n 项和为S n ,∀n ∈N *,2S n =a 2n +a n .令b n =1a n a n +1+a n +1a n,设{b n }的前n 项和为T n ,则在T 1,T 2,T 3,…,T 100中有理数的个数为________.11.已知数列{a n }中,a 1=3,a 2=5,且{a n -1}是等比数列.(1)求数列{a n }的通项公式;(2)若b n =na n ,求数列{b n }的前n 项和T n .12.已知{a n }是等比数列,前n 项和为S n (n ∈N *),且1a 1-1a 2=2a 3,S 6=63. (1)求数列{a n }的通项公式;(2)若对任意的n ∈N *,b n 是log 2a n 和log 2a n +1的等差中项,求数列{(-1)n b 2n }的前2n 项和.*13.若数列{a n }的前n 项和为S n ,点(a n ,S n )在y =16-13x 的图象上(n ∈N *). (1)求数列{a n }的通项公式;(2)若c 1=0,且对任意正整数n 都有c n +1-c n =12log n a .求证:对任意正整数n ≥2,总有13≤1c 2+1c 3+1c 4+…+1c n <34.数列求和1.等差数列的前n 项和公式S n =n (a 1+a n )2=na 1+n (n -1)2d . 2.等比数列的前n 项和公式S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1(1-q n )1-q ,q ≠1. 3.一些常见数列的前n 项和公式(1)1+2+3+4+…+n =n (n +1)2.(2)1+3+5+7+…+2n -1=n 2. (3)2+4+6+8+…+2n =n (n +1).(4)12+22+…+n 2=n (n +1)(2n +1)6. 【知识拓展】数列求和的常用方法(1)公式法等差、等比数列或可化为等差、等比数列的可直接使用公式求和.(2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.常见的裂项公式①1n (n +1)=1n -1n +1;②1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1; ③1n +n +1=n +1-n . (4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广.(6)并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5050.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.(√) (2)当n ≥2时,1n 2-1=12(1n -1-1n +1).(√) (3)求S n =a +2a 2+3a 3+…+na n 之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.(×)(4)数列{12n +2n -1}的前n 项和为n 2+12n .(×) (5)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.(√)考点自测1.设{a n }是公差不为0的等差数列,a 1=2,且a 1,a 3,a 6成等比数列,则{a n }的前n 项和S n 等于()A.n 2+7n 4B.n 2+5n 3C.2n 2+3n 4D .n 2+n 答案A解析设等差数列的公差为d ,则a 1=2,a 3=2+2d ,a 6=2+5d .又∵a 1,a 3,a 6成等比数列,∴a 23=a 1·a 6. 即(2+2d )2=2(2+5d ),整理得2d 2-d =0.∵d ≠0,∴d =12.∴S n =na 1+n (n -1)2d =n 24+74n . 2.(教材改编)数列{a n }中,a n =1n (n +1),若{a n }的前n 项和S n =20172018,则n 等于() A .2016B .2017C .2018D .2019答案B解析a n =1n (n +1)=1n -1n +1, S n =a 1+a 2+…+a n=(1-12+12-13+…+1n -1n +1)=1-1n +1=n n +1. 令n n +1=20172018,得n =2017. 3.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于()A .200B .-200C .400D .-400答案B解析S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.4.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和S n =________.答案2n +1-2+n 2 解析S n =2(1-2n )1-2+n (1+2n -1)2=2n +1-2+n 2. 5.数列{a n }的通项公式为a n =n cos n π2,其前n 项和为S n ,则S 2017=________. 答案1008解析因为数列a n =n cos n π2呈周期性变化,观察此数列规律如下:a 1=0,a 2=-2,a 3=0,a 4=4. 故S 4=a 1+a 2+a 3+a 4=2.a 5=0,a 6=-6,a 7=0,a 8=8,故a 5+a 6+a 7+a 8=2,∴周期T =4.∴S 2017=S 2016+a 2017=20164×2+2017·cos 20172π=1008.题型分类深度剖析题型一分组转化法求和例1已知数列{a n }的前n 项和S n =n 2+n 2,n ∈N *. (1)求数列{a n }的通项公式;(2)设b n =2n a+(-1)n a n ,求数列{b n }的前2n 项和.解(1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n . a 1也满足a n =n ,故数列{a n }的通项公式为a n =n .(2)由(1)知a n =n ,故b n =2n +(-1)n n .记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ).记A =21+22+…+22n ,B =-1+2-3+4-…+2n ,则A =2(1-22n )1-2=22n +1-2, B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n .故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2. 引申探究本例(2)中,求数列{b n }的前n 项和T n .解由(1)知b n =2n +(-1)n ·n .当n 为偶数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -1)+n ]=2-2n +11-2+n 2=2n +1+n 2-2; 当n 为奇数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -2)+(n -1)-n ]=2n +1-2+n -12-n =2n +1-n 2-52. ∴T n =⎩⎨⎧ 2n +1+n 2-2,n 为偶数,2n +1-n 2-52,n 为奇数.思维升华分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和.(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.提醒:某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论.已知数列{a n }的通项公式是a n =2·3n -1+(-1)n ·(ln2-ln3)+(-1)n n ln3,求其前n 项和S n . 解S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n ]·(ln 2-ln 3)+[-1+2-3+…+(-1)n n ]ln 3, 所以当n 为偶数时,S n =2×1-3n 1-3+n 2ln3=3n +n 2ln3-1; 当n 为奇数时,S n =2×1-3n 1-3-(ln2-ln3)+(n -12-n )ln3 =3n -n -12ln3-ln2-1. 综上所述,S n=⎩⎨⎧ 3n +n 2ln3-1,n 为偶数,3n -n -12ln3-ln2-1,n 为奇数.题型二错位相减法求和例2已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.(1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n ,求数列{c n }的前n 项和T n . 解(1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5,当n =1时,a 1=S 1=11,满足上式,所以a n =6n +5.设数列{b n }的公差为d .由⎩⎪⎨⎪⎧ a 1=b 1+b 2,a 2=b 2+b 3, 即⎩⎪⎨⎪⎧ 11=2b 1+d ,17=2b 1+3d ,可解得⎩⎪⎨⎪⎧b 1=4,d =3,所以b n =3n +1. (2)由(1)知,c n =(6n +6)n +1(3n +3)n =3(n +1)·2n +1, 又T n =c 1+c 2+…+c n ,得T n =3×[2×22+3×23+…+(n +1)×2n +1], 2T n =3×[2×23+3×24+…+(n +1)×2n +2]. 两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2] =3×⎣⎢⎡⎦⎥⎤4+4(1-2n)1-2-(n +1)×2n +2=-3n ·2n +2, 所以T n =3n ·2n +2. 思维升华错位相减法求和时的注意点(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100.(1) 求数列{a n },{b n }的通项公式;(2) 当d >1时,记c n =a n b n,求数列{c n }的前n 项和T n . 解(1)由题意有⎩⎪⎨⎪⎧ 10a 1+45d =100,a 1d =2即⎩⎪⎨⎪⎧2a 1+9d =20,a 1d =2, 解得⎩⎪⎨⎪⎧ a 1=1,d =2或⎩⎪⎨⎪⎧ a 1=9,d =29.故⎩⎪⎨⎪⎧ a n =2n -1,b n =2n -1或⎩⎨⎧ a n =19(2n +79),b n =9·⎝⎛⎭⎫29n -1.(2)由d >1,知a n =2n -1,b n =2n -1,故c n =2n -12n -1,于是T n =1+32+522+723+924+…+2n -12n -1,① 12T n =12+322+523+724+925+…+2n -12n .② ①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n ,故T n =6-2n +32n -1. 题型三裂项相消法求和命题点1形如a n =1n (n +k )型 例3S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3.(1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和. 解(1)由a 2n +2a n =4S n +3,可知a 2n +1+2a n +1=4S n +1+3.即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ).由a n >0,可得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1.(2)由a n =2n +1可知b n =1a n a n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎫12n +1-12n +3. 设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n=12⎣⎡⎦⎤⎝⎛⎭⎫13-15+⎝⎛⎭⎫15-17+…+⎝⎛⎭⎫12n +1-12n +3=n 3(2n +3).命题点2形如a n =1n +n +k 型例4已知函数f (x )=x a 的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n , 则S 2017=________.答案2018-1解析由f (4)=2,可得4a =2,解得a =12,则f (x )=12x . ∴a n =1f (n +1)+f (n )=1n +1+n=n +1-n , S 2017=a 1+a 2+a 3+…+a 2017=(2-1)+(3-2)+(4-3)+…+(2017-2016)+(2018-2017)=2018-1.思维升华(1)用裂项相消法求和时,要对通项进行变换,如:1n +n +k =1k(n +k -n ),1n (n +k )=1k (1n -1n +k),裂项后可以产生连续相互抵消的项.(2)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎫S n -12. (1)求S n 的表达式;(2)设b n =S n 2n +1,求{b n }的前n 项和T n . 解(1)∵S 2n =a n ⎝⎛⎭⎫S n -12, a n =S n -S n -1 (n ≥2),∴S 2n =(S n -S n -1)⎝⎛⎭⎫S n -12, 即2S n -1S n =S n -1-S n ,①由题意得S n -1·S n ≠0,①式两边同除以S n -1·S n ,得1S n -1S n -1=2, ∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列. ∴1S n =1+2(n -1)=2n -1,∴S n =12n -1. (2)∵b n =S n 2n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1, ∴T n =b 1+b 2+…+b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12⎝⎛⎭⎫1-12n +1=n 2n +1. 四审结构定方案典例已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n 的最大值为8. (1)确定常数k ,并求a n ;(2)设数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和为T n ,求证:T n <4.(1)S n =-12n 2+kn ――――――→S n 是关于n 的二次函数n =k 时,S n 最大――――――――→根据S n 的结构特征确定k 的值k =4;S n =-12n 2+4n ――→根据S n 求a n a n =92-n (2)9-2a n 2n =n 2n -1―――――――――→根据数列结构特征确定求和方法 T n =1+22+322+…+n -12n -2+n 2n -1――――――→错位相减法求和 计算可得T n ―→证明:T n <4 规范解答(1)解当n =k ∈N *时,S n =-12n 2+kn 取得最大值, 即8=S k =-12k 2+k 2=12k 2,故k 2=16,k =4. 当n =1时,a 1=S 1=-12+4=72,[3分] 当n ≥2时,a n =S n -S n -1=92-n .当n =1时,上式也成立. 综上,a n =92-n .[6分] (2)证明∵9-2a n 2n =n 2n -1, ∴T n =1+22+322+…+n -12n -2+n 2n -1,① 2T n =2+2+32+…+n -12n -3+n 2n -2.② ②-①,得2T n -T n =2+1+12+…+12n -2-n 2n -1 =4-12n -2-n 2n -1=4-n +22n -1.[11分] ∴T n =4-n +22n -1.∴T n <4. 课时作业1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于() A .n 2+1-12n B .2n 2-n +1-12n C .n 2+1-12n -1D .n 2-n +1-12n答案A解析该数列的通项公式为a n =(2n -1)+12n , 则S n =[1+3+5+…+(2n -1)]+(12+122+…+12n )=n 2+1-12n . 2.设等比数列{a n }的前n 项和为S n ,已知a 1=2016,且a n +2a n +1+a n +2=0(n ∈N *),则S 2016等于()A .0B .2016C .2015D .2014答案A解析∵a n +2a n +1+a n +2=0(n ∈N *),∴a n +2a n q +a n q 2=0,q 为等比数列{a n }的公比,即q 2+2q +1=0,∴q =-1.∴a n =(-1)n -1·2016, ∴S 2016=(a 1+a 2)+(a 3+a 4)+…+(a 2015+a 2016)=0.3.等差数列{a n }的通项公式为a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项的和为() A .120B .70C .75D .100答案C解析因为S n n =n +2,所以⎩⎨⎧⎭⎬⎫S n n 的前10项和为10×3+10×92=75. 4.在数列{a n }中,若a n +1+(-1)n a n =2n -1,则数列{a n }的前12项和等于()A .76B .78C .80D .82答案B解析由已知a n +1+(-1)n a n =2n -1,得a n +2+(-1)n +1·a n +1=2n +1,得a n +2+a n =(-1)n (2n -1)+(2n +1),取n =1,5,9及n =2,6,10,结果相加可得S 12=a 1+a 2+a 3+a 4+…+a 11+a 12=78.故选B.5.已知函数f (n )=⎩⎪⎨⎪⎧n 2 (当n 为奇数时),-n 2(当n 为偶数时),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于() A .0B .100C .-100D .10200答案B解析由题意,得a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)-(4+3)+…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-50×101+50×103=100.故选B.6.设数列{a n }的通项公式为a n =2n -7,则|a 1|+|a 2|+…+|a 15|等于()A .153B .210C .135D .120答案A解析令a n =2n -7≥0,解得n ≥72.∴从第4项开始大于0, ∴|a 1|+|a 2|+…+|a 15|=-a 1-a 2-a 3+a 4+a 5+…+a 15=5+3+1+1+3+…+(2×15-7)=9+12×(1+23)2=153. 7.已知数列{a n }的通项公式为a n =1n +n +1,若前n 项和为10,则项数n 为________.答案120解析∵a n =1n +n +1=n +1-n , ∴S n =a 1+a 2+…+a n =(2-1)+(3-2)+…+(n +1-n )=n +1-1.令n +1-1=10,得n =120.8.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是________.答案60解析由a 1>0,a 10·a 11<0可知d <0,a 10>0,a 11<0,∴T 18=a 1+…+a 10-a 11-…-a 18=S 10-(S 18-S 10)=60.9.若已知数列的前四项是112+2,122+4,132+6,142+8,则数列的前n 项和为______________. 答案34-2n +32(n +1)(n +2)解析由前四项知数列{a n }的通项公式为a n =1n 2+2n , 由1n 2+2n =12(1n -1n +2)知, S n =a 1+a 2+a 3+…+a n -1+a n=12[1-13+12-14+13-15+…+(1n -2-1n )+(1n -1-1n +1)+(1n -1n +2)]=12[1+12-1n +1-1n +2] =34-2n +32(n +1)(n +2). *10.已知正项数列{a n }的前n 项和为S n ,∀n ∈N *,2S n =a 2n +a n .令b n =1a n a n +1+a n +1a n,设{b n }的前n 项和为T n ,则在T 1,T 2,T 3,…,T 100中有理数的个数为________.答案9解析∵2S n =a 2n +a n ,①∴2S n +1=a 2n +1+a n +1,②②-①,得2a n +1=a 2n +1+a n +1-a 2n -a n ,a 2n +1-a 2n -a n +1-a n =0,(a n +1+a n )(a n +1-a n -1)=0.又∵{a n }为正项数列,∴a n +1-a n -1=0,即a n +1-a n =1.在2S n =a 2n +a n 中,令n =1,可得a 1=1.∴数列{a n }是以1为首项,1为公差的等差数列.∴a n =n ,∴b n =1n n +1+(n +1)n=(n +1)n -n n +1[n n +1+(n +1)n ][(n +1)n -n n +1]=(n +1)n -n n +1n (n +1)=1n -1n +1, ∴T n =1-1n +1, ∴T 1,T 2,T 3,…,T 100中有理数的个数为9.11.已知数列{a n }中,a 1=3,a 2=5,且{a n -1}是等比数列.(1)求数列{a n }的通项公式;(2)若b n =na n ,求数列{b n }的前n 项和T n .解(1)∵{a n -1}是等比数列且a 1-1=2,a 2-1=4,a 2-1a 1-1=2, ∴a n -1=2·2n -1=2n ,∴a n =2n +1. (2)b n =na n =n ·2n +n ,故T n =b 1+b 2+b 3+…+b n =(2+2×22+3×23+…+n ·2n )+(1+2+3+…+n ). 令T =2+2×22+3×23+…+n ·2n ,则2T =22+2×23+3×24+…+n ·2n +1. 两式相减,得-T =2+22+23+…+2n -n ·2n +1 =2(1-2n )1-2-n ·2n +1, ∴T =2(1-2n )+n ·2n +1=2+(n -1)·2n +1. ∵1+2+3+…+n =n (n +1)2,∴T n =(n -1)·2n +1+n 2+n +42. 12.已知{a n }是等比数列,前n 项和为S n (n ∈N *),且1a 1-1a 2=2a 3,S 6=63. (1)求数列{a n }的通项公式;(2)若对任意的n ∈N *,b n 是log 2a n 和log 2a n +1的等差中项,求数列{(-1)n b 2n }的前2n 项和. 解(1)设数列{a n }的公比为q .由已知,有1a 1-1a 1q =2a 1q 2, 解得q =2或q =-1.又由S 6=a 1·1-q 61-q=63,知q ≠-1, 所以a 1·1-261-2=63,得a 1=1.所以a n =2n -1. (2)由题意,得b n =12(log 2a n +log 2a n +1)=12(log 22n -1+log 22n )=n -12, 即{b n }是首项为12,公差为1的等差数列. 设数列{(-1)n b 2n }的前n 项和为T n ,则T 2n =(-b 21+b 22)+(-b 23+b 24)+…+(-b 22n -1+b 22n )=b 1+b 2+b 3+b 4+…+b 2n -1+b 2n =2n (b 1+b 2n )2=2n 2. *13.若数列{a n }的前n 项和为S n ,点(a n ,S n )在y =16-13x 的图象上(n ∈N *). (1)求数列{a n }的通项公式;(2)若c 1=0,且对任意正整数n 都有c n +1-c n =12log n a .求证:对任意正整数n ≥2,总有13≤1c 2+1c 3+1c 4+…+1c n <34. (1)解∵S n =16-13a n , ∴当n ≥2时,a n =S n -S n -1=13a n -1-13a n ,∴a n =14a n -1. 又∵S 1=a 1=16-13a 1,∴a 1=18,∴a n =18⎝⎛⎭⎫14n -1=⎝⎛⎭⎫122n +1. (2)证明由c n +1-c n =12log n a =2n +1,得当n ≥2时,c n =c 1+(c 2-c 1)+(c 3-c 2)+…+(c n -c n -1)=0+3+5+…+(2n -1)=n 2-1=(n +1)(n -1), 1c n =1(n +1)(n -1)=12(1n -1-1n +1), ∴1c 2+1c 3+1c 4+…+1c n=12×⎣⎡ ⎝⎛⎭⎫1-13+⎝⎛⎭⎫12-14+⎝⎛⎭⎫13-15+…+ ⎦⎤⎝⎛⎭⎫1n -1-1n +1=12⎣⎡⎦⎤⎝⎛⎭⎫1+12-⎝⎛⎭⎫1n +1n +1 =34-12⎝⎛⎭⎫1n +1n +1<34. 又∵1c 2+1c 3+1c 4+…+1c n ≥1c 2=13,∴原式得证.。

相关文档
最新文档