利川市2007—2008学年九年级第一学期期末考试数学试卷
2007—2008学年度上学期期末考试九年级数学试卷
2007—2008学年度上学期期末考试九年级数学试卷注意:选择题和填空题的答案填在解答题前的答题栏内一、选择题(每小题3分,共24分)1.下列计算:①3838-=-;②9494+=+;③22223=-其中正确的有 A .0个B .1个C .2个D .3个2. 已知x 、y 是实数,0)3(432=-++y x ,则xy 的值是A . 4B .-4C .49D .49-3. 如果2是方程02=-c x 的一个根,那么c 的值是 A .4B .-4C .2D .-24. 方程0562=-+x x 的左边配成完全平方后所得方程为A.14)3(2=+xB. 14)3(2=-xC. 4)3(2=+xD. 4)3(2=-x 5. 万花筒是由三块等宽等长的玻璃片围成的,如图所示是看到的万花筒的一个图案,图中所有小三角形均是全等的等边三角形,其中的菱形AEFG 可以看成是把菱形ABCD 以A 为中心 A .顺时针旋转60°得到B .顺时针旋转120°得到C .逆时针旋转60°得到D .逆时针旋转120°得到6. 已知两圆得半径分别为5cm 和4cm ,圆心距为7cm ,那么两圆的位置关系是 A.相交 B.内切 C.外切 D.外离7. 在△ABC 中,已知∠C =90°,BC =3,AC =4,则它的内切圆半径是 A .23B .32C .2D .18. 下列成语所描述的事件是必然发生的是( ).A. 水中捞月B. 拔苗助长C. 守株待免D. 瓮中捉鳖二、填空题(每小题3分,共18分)9. 若式子xx-1有意义,则x 的取值范围是 10. 已知x =-1是方程062=+-mx x 的一个根,则12-m 等于 11. 点P (3,-2)关于原点中心对称的点的坐标是12. 如图,一条公路的转弯处是一段圆弧(图中的AB 弧),点O 是这段弧的圆心,AB =120m ,C 是AB 弧是一点,OC ⊥AB 于D ,CD =20m ,则该弯路的半径为13. 若用半径为r 的圆形桌布将边长为60 cm 的正方形餐桌盖住,则r 的最小值为 14.选择题和填空题的答题栏一、选择题二、填空题9. 10. 11. 12. 13. 14. 三、解答题(共58分)15.(5分)计算:22)8321464(÷+-16.(5分)解方程:22)25(96x x x -=+-P A17.(5分)把正方形ABCD 绕着点A ,按顺时针方向旋转得到正方形AEFG ,边FG 与BC 交于点H (如图).试问线段HG 与线段HB 相等吗?请先观察猜想,然后再证明你的猜想.18.(6分)为了测量一个圆形铁环的半径,某同学采用了如下办法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一个刻度尺,按如图所示的方法得到相关数据,进而可求得铁环的半径,若测得PA=5cm ,求铁环的半径.19.(6分)如图是从一副扑克牌中取出的两组牌,分别是黑桃1、•2、3、4和方块1、2、3、4,将它们背面朝上分别重新洗牌后,•从两组牌中各摸出一张,那么摸出的两张牌的牌面数字之和等于5的概率是多少?请你用列举法(列表或画树状图)加以分析说明.20.(6分)先阅读,后解答:63)2()3(63)23)(23()23(323322+=-+=+-+=-像上述解题过程中,2323+-与相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,上述解题过程也称为分母有理化,(1)3 的有理化因式是 ,25+的有理化因式是 (2)将下列式子进行分母有理化:52= ,633+=(3)已知2a b ==a 与b 的大小关系。
湖北省恩施州利川市九年级数学上学期期末试卷(含解析)
九年级(上)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.二次函数y=﹣x2﹣2x+1的二次项系数是()A.1 B.﹣1 C.2 D.﹣22.已知点A(1﹣a,2a),点B(b,4)与点A关于原点O对称,则点A的坐标是()A.(3,﹣4)B.(﹣1,﹣4)C.(1,﹣4)D.(﹣3,﹣4)3.一元二次方程x2=4的解是()A.±2 B.2 C.﹣2 D.±4.已知,在同圆中有两条互相平分的弦,那么下列结论中正确的是()A.这两条弦都是直径 B.这两条弦最多有一条是直径C.这两条弦都不是直径D.这两条弦至少有一条是直径5.下列图案中,既是中心对称图形又是轴对称图形的是()A. B. C.D.6.用配方法解方程x2﹣2x+1=0,则方程可变形为()A.(x﹣)2=1 B.(x﹣)2=0 C.(x﹣)2=﹣1 D.(x﹣)2=﹣17.如图,在⊙O中,CD是直径,弦AB⊥CD于E,顺次连接AC,CB,BD,DA,则下列结论中错误的是()A.B.AE=EB C.CD平分∠ACB D.BA平分∠CBD8.如图,在带有正方形网格的平面直角坐标系xOy中,一条圆弧经过A(0,3),B(2,3),C(3,2)三点,那么这条圆弧所在圆的圆心坐标是()A.(0,0)B.(1,1)C.(0,1)D.(1,0)9.根据下列表格中的对应值,判断关于x的一元二次方程ax2+bx+c=0(a,b,c为常数,a ≠0)的一个根x1的范围正确的是()A.﹣0.02<x1<0.03 B.3.24<x1<3.25C.﹣0.02≤x1≤0.03 D.3.24≤x1≤3.2510.抛物线y=﹣2x2﹣6x+1与x轴的交点个数是()A.0个B.1个C.2个D.3个11.口袋中共有5个大小相同的红球和黄球,任意摸出一球为红球的概率是,则任意摸出两球均为红球的概率是()A.B.C.D.12.某公司第一季度的收入为60万元,第三季度的收入为216万元.如果从第一季度到第三季度收入的增产率相同,那么公司平均每季度收入的增长率是多少?设平均每季度收入的增长率为x,则可列方程()A.60+2x=216 B.60(1+2x)=216 C.60(1+x)2=216 D.216(1+x)2=60二、填空题(共4小题,每小题3分,满分12分)13.抛物线y=x2﹣4x+1与y轴的交点坐标是.14.关于x的一元二次方程x2﹣2kx+1+k2=0的根的情况是.15.如图,四边形ABCD的四个顶点都在⊙O上,∠ADC=85°,在探究“四点共圆的条件”的活动中,知道∠ADC与∠ABC互补,若∠EBC是ABCD的一个外角,则∠EBC= .16.如图,⊙O是等腰直角三角形ACB的内切圆,∠ACB=90°,AC=4,则⊙O的半径等于.三、解答题(共8小题,满分72分)17.在同一直角坐标系xOy内,作出二次函数y=x2和y=x2+1的草图,这两个函数的图象间有什么联系?18.解方程:(1)x2+2x﹣1=0(2)(x﹣3)2+2x(x﹣3)=0.19.已知,关于x的方程2x2﹣3mx+m2=0的一个根与方程x﹣=﹣x的根相同,求m的值.20.如图,在⊙O中,AB,BC为互相垂直且相等的两条弦,连接AC.求证:(1)AC是⊙O的直径;(2)作OD⊥AB于D,OE⊥BC于E,则四边形ODBE是正方形.21.甲、乙两个同学玩“石头、剪刀、布”游戏.游戏规则:两人同时随机出手一次,石头胜(砸)剪刀,剪刀胜(剪)布,布胜(包)石头,出手相同时为平局,游戏继续进行.(1)求随机出手一次甲获胜的概率;(2)设计一个摸球游戏代替上面的游戏,使得甲、乙两个同学“获胜”和“平局”的概率都不变.22.列方程解应用题:如图,有一块长方形土地,长xm,宽90m(x大于90),建筑商把它分成甲、乙、丙三部分,其中甲和乙都是正方形,现在计划甲处修建广场,乙处修建商场,丙处修建住宅.已知丙的面积为1800m2,试求出原长方形土地的面积.23.已知:如图,以Rt△ABC的边AB为直径的⊙O交斜边AC于点D,E是BC边的中点,连接DE.(1)求证:DE是⊙O的切线;(2)当AC=5,DE=2时,求⊙O的半径.24.如图,已知抛物线y=﹣x2﹣2x+m+1与x轴交于A(x1,0)、B(x2,0)两点,且x1<0,x2>0,与y轴交于点C,顶点为P.(提示:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两个实根,则x1+x2=﹣,x1•x2=)(1)求m的取值范围;(2)若OA=3OB,求抛物线的解析式;(3)在(2)中抛物线的对称轴PD上,存在点Q使得△BQC的周长最短,试求出点Q的坐标.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.二次函数y=﹣x2﹣2x+1的二次项系数是()A.1 B.﹣1 C.2 D.﹣2【考点】二次函数的定义.【分析】形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中a是二次项系数.【解答】解:二次函数y=﹣x2﹣2x+1的二次项系数是﹣1.故选:B.2.已知点A(1﹣a,2a),点B(b,4)与点A关于原点O对称,则点A的坐标是()A.(3,﹣4)B.(﹣1,﹣4)C.(1,﹣4)D.(﹣3,﹣4)【考点】关于原点对称的点的坐标.【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数列方程求出a、b的值,然后求解即可.【解答】解:∵点A(1﹣a,2a),点B(b,4)与点A关于原点O对称,∴1﹣a=﹣b,2a=﹣4,解得a=﹣2,b=﹣3,∴1﹣a=1﹣(﹣2)=1+2=3,2a=2×(﹣2)=﹣4,∴点A的坐标是(3,﹣4).故选A.3.一元二次方程x2=4的解是()A.±2 B.2 C.﹣2 D.±【考点】解一元二次方程﹣直接开平方法.【分析】利用直接开平方法,将方程两边直接开平方即可.【解答】解;x2=4,两边直接开平方得:x=±2,∴x1=2,x2=﹣2,故选A.4.已知,在同圆中有两条互相平分的弦,那么下列结论中正确的是()A.这两条弦都是直径 B.这两条弦最多有一条是直径C.这两条弦都不是直径D.这两条弦至少有一条是直径【考点】圆的认识.【分析】利用圆的直径的定义和垂径定理可对各选项进行判断.【解答】解:在同圆中有两条互相平分的弦,则两弦中至少有一条直径.故选D.5.下列图案中,既是中心对称图形又是轴对称图形的是()A. B. C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,又是中心对称图形,故此选项正确;D、不是轴对称图形,不是中心对称图形,故此选项错误.故选:C.6.用配方法解方程x2﹣2x+1=0,则方程可变形为()A.(x﹣)2=1 B.(x﹣)2=0 C.(x﹣)2=﹣1 D.(x﹣)2=﹣1【考点】解一元二次方程﹣配方法.【分析】在本题中,把常数项1移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.【解答】解:移项,得x2﹣2x=﹣1,方程两边同时加上一次项系数一半的平方,得x2﹣2x+2=﹣1+2,即x2﹣2x+2=1,配方得(x﹣)2=1.故选A.7.如图,在⊙O中,CD是直径,弦AB⊥CD于E,顺次连接AC,CB,BD,DA,则下列结论中错误的是()A.B.AE=EB C.CD平分∠ACB D.BA平分∠CBD【考点】圆心角、弧、弦的关系;垂径定理.【分析】直接根据垂径定理及圆心角、弧、弦的关系对各选项进行逐一解答即可.【解答】解:A、∵CD是⊙O的直径,AB为弦,CD⊥AB于E,∴CD垂直平分AB,∴.故本选项错误;B、∵CD是⊙O的直径,AB为弦,CD⊥AB于E,∴CD垂直平分AB,∴AE=EB.故本选项错误;C、∵CD是⊙O的直径,AB为弦,CD⊥AB于E,∴CD垂直平分AB,∴.∴CD平分∠ACB,故本选项错误;D、当AB是直径时,BA平分∠CBD,故本选项正确;故选:D.8.如图,在带有正方形网格的平面直角坐标系xOy中,一条圆弧经过A(0,3),B(2,3),C(3,2)三点,那么这条圆弧所在圆的圆心坐标是()A.(0,0)B.(1,1)C.(0,1)D.(1,0)【考点】垂径定理;坐标与图形性质.【分析】根据图形作线段AB和BC的垂直平分线,两线的交点即为圆心,根据图形得出即可.【解答】解:如图线段AB的垂直平分线即x=1,和线段CD的垂直平分线的交点即为弧的圆心.即圆心的坐标是(1,1),故选B.9.根据下列表格中的对应值,判断关于x的一元二次方程ax2+bx+c=0(a,b,c为常数,a ≠0)的一个根x1的范围正确的是()A.﹣0.02<x1<0.03 B.3.24<x1<3.25C.﹣0.02≤x1≤0.03 D.3.24≤x1≤3.25【考点】估算一元二次方程的近似解.【分析】观察表格可知,随x的值逐渐增大,ax2+bx+c的值在3.24~3.25之间由负到正,故可判断ax2+bx+c=0时,对应的x的值在3.24~3.25之间.【解答】解:根据表格可知,ax2+bx+c=0时,对应的x的值在3.24~3.25之间.故选C.10.抛物线y=﹣2x2﹣6x+1与x轴的交点个数是()A.0个B.1个C.2个D.3个【考点】抛物线与x轴的交点.【分析】根据判别式的值即可判断.【解答】解:∵a=﹣2,b=﹣6,c=1,∴△=b2﹣4ac=36+8=44>0,∴抛物线与x轴有两个交点.故选C.11.口袋中共有5个大小相同的红球和黄球,任意摸出一球为红球的概率是,则任意摸出两球均为红球的概率是()A.B.C.D.【考点】列表法与树状图法;概率公式.【分析】先利用概率公式求出口袋中红球的个数为2个,黄球为3个,再画树状图展示所有20种等可能的结果数,然后找出任意摸出两球均为红球的结果数,再利用概率公式求解.【解答】解:设口袋中红球的个数为x,根据题意得=,解得x=2,所以口袋中红球的个数为2个,黄球为3个,画树状图为:共有20种等可能的结果数,其中任意摸出两球均为红球的结果数为2,所以任意摸出两球均为红球的概率==.故选C.12.某公司第一季度的收入为60万元,第三季度的收入为216万元.如果从第一季度到第三季度收入的增产率相同,那么公司平均每季度收入的增长率是多少?设平均每季度收入的增长率为x,则可列方程()A.60+2x=216 B.60(1+2x)=216 C.60(1+x)2=216 D.216(1+x)2=60【考点】由实际问题抽象出一元二次方程.【分析】设增长率为x,则第二季度的利润为60(1+x)万元,第三季度的利润为60(1+x)2万元,由第三季度利润为60(1+x)2=216万元建立方程即可.【解答】解:设增长率为x,由题意,得60(1+x)2=216,故选C.二、填空题(共4小题,每小题3分,满分12分)13.抛物线y=x2﹣4x+1与y轴的交点坐标是(0,1).【考点】二次函数图象上点的坐标特征.【分析】令x=0,求出y的值即可解决问题.【解答】解:令x=0,y=1,所以抛物线与y轴的交点为(0,1).故答案为(0,1).14.关于x的一元二次方程x2﹣2kx+1+k2=0的根的情况是无实数根.【考点】根的判别式.【分析】先计算△=(﹣2k)2﹣4×1×(1+k2)=4k2﹣4﹣4k2=﹣4<0,根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac的意义即可判断方程根的情况.【解答】解:∵△=(﹣2k)2﹣4×1×(1+k2)=4k2﹣4﹣4k2=﹣4<0,∴方程无实数根,故答案为:无实数根.15.如图,四边形ABCD的四个顶点都在⊙O上,∠ADC=85°,在探究“四点共圆的条件”的活动中,知道∠ADC与∠ABC互补,若∠EBC是ABCD的一个外角,则∠EBC= 85°.【考点】圆内接四边形的性质.【分析】直接根据圆内接四边形的性质即可得出结论.【解答】解:∵四边形ABCD的四个顶点都在⊙O上,∠ADC=85°,∴∠ADB+∠ABC=180°.∵∠ABC+∠EBC=180°,∴∠EBC=∠ADC=85°.故答案为:85°.16.如图,⊙O是等腰直角三角形ACB的内切圆,∠ACB=90°,AC=4,则⊙O的半径等于4﹣2.【考点】三角形的内切圆与内心;等腰直角三角形.【分析】由于等腰直角三角形与圆O相内切,所以可设切点为E、F,连接OE、OF,可证明四边形CEOF是正方形,利用切线长定理即可求出圆O的半径.【解答】解:设⊙O与等腰直角三角形相切于E、F、G,连接OE、OF,∴∠CEO=∠CFO=90°,又∵∠C=90°,OE=OF,∴四边形CEOF是正方形,设⊙O的半径为r,∴CE=CF=r,∴AE=BF=4﹣r,由切线长定理可得:AG=AE=4﹣r,BG=BF=4﹣r,由勾股定理可得:AB=4,∴AG+BG=AB,∴4﹣r+4﹣r=4,∴r=4﹣2,故答案为:4﹣2.三、解答题(共8小题,满分72分)17.在同一直角坐标系xOy内,作出二次函数y=x2和y=x2+1的草图,这两个函数的图象间有什么联系?【考点】二次函数的图象.【分析】利用描点法分别得出函数y=x2和y=x2+1的图象,根据所画图象得出这两个函数的图象间的联系.【解答】解:画出函数y=x2和y=x2+1的图象如图所示:二次函数y=﹣x2的图象向上平移一个单位得到二次函数y=x2+1的图象.18.解方程:(1)x2+2x﹣1=0(2)(x﹣3)2+2x(x﹣3)=0.【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣配方法.【分析】(1)利用配方法解方程;(2)利用因式分解法解方程.【解答】解:(1)x2+2x﹣1=0,x2+2x=1,x2+2x+1=2,(x+1)2=2,x+1=±,所以x1=﹣1+,x2=﹣1﹣.(2)(x﹣3)2+2x(x﹣3)=0,(x﹣3)(x﹣3+2x)=0,x﹣3=0或3x﹣3=0,所以x1=3,x2=1.19.已知,关于x的方程2x2﹣3mx+m2=0的一个根与方程x﹣=﹣x的根相同,求m的值.【考点】一元二次方程的解.【分析】首先解得第二个方程的解,然后代入第一个方程得到有关m的方程求得m的值即可.【解答】解:由x﹣=﹣x得:x=1,将x=1代入2x2﹣3mx+m2=0得:2﹣3m+m2=0,解得:m=2或m=1.20.如图,在⊙O中,AB,BC为互相垂直且相等的两条弦,连接AC.求证:(1)AC是⊙O的直径;(2)作OD⊥AB于D,OE⊥BC于E,则四边形ODBE是正方形.【考点】圆周角定理;正方形的判定;垂径定理.【分析】(1)由AB,BC为互相垂直且相等的两条弦可知∠ABC=90°,从而可知AC是直径;(2)先证明四边形ODBE是矩形,然后证明BD=BE即可得证.【解答】解:(1)∵AB⊥BC,∴∠ABC=90°,∴AC是⊙O的直径,(2)∵OD⊥AB,OE⊥BC,∴四边形ODBE是矩形,由垂径定理可知:BD=AB,BE=BC,∵AB=BC,∴BD=BE,∴矩形ODBE是正方形,21.甲、乙两个同学玩“石头、剪刀、布”游戏.游戏规则:两人同时随机出手一次,石头胜(砸)剪刀,剪刀胜(剪)布,布胜(包)石头,出手相同时为平局,游戏继续进行.(1)求随机出手一次甲获胜的概率;(2)设计一个摸球游戏代替上面的游戏,使得甲、乙两个同学“获胜”和“平局”的概率都不变.【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果,由树状图可得一次游戏中两人出同种手势的有3种情况,甲获胜的有3种情况,然后利用概率公式求解即可求得答案;(2)直接利用两人获胜概率得出符合题意的游戏.【解答】解:(1)石头用S表示、剪刀用J表示、布用B表示,画树状图得:则有9种等可能的结果;甲胜出的可能性有3种,故甲胜出的概率为:;(2)答案不唯一,如:不透明的袋内装有红、黄、蓝的小球个1个(只有颜色不同),红、黄、蓝小球分别代表甲胜、乙胜和平局,随机摸出1球,小球是蓝色时放回,游戏继续进行.22.列方程解应用题:如图,有一块长方形土地,长xm,宽90m(x大于90),建筑商把它分成甲、乙、丙三部分,其中甲和乙都是正方形,现在计划甲处修建广场,乙处修建商场,丙处修建住宅.已知丙的面积为1800m2,试求出原长方形土地的面积.【考点】一元二次方程的应用.【分析】可设这块土地的长为x米,根据叙述可以得到甲是边长是90米的正方形,乙是边长是(x﹣90)米的正方形,丙的长是(x﹣90)米,宽是90﹣(x﹣90),根据矩形的面积公式即可列方程求解.【解答】解:设这块土地的长为x米,因为甲和乙为正方形,结合图形可得丙的长为:x﹣90同样乙的边长也为x﹣90,丙的宽为,所以丙的面积为:(x﹣90)=1800,解方程得:x1=120,x2=150,故这块土地的面积为10800平方米或13500平方米.23.已知:如图,以Rt△ABC的边AB为直径的⊙O交斜边AC于点D,E是BC边的中点,连接DE.(1)求证:DE是⊙O的切线;(2)当AC=5,DE=2时,求⊙O的半径.【考点】切线的判定.【分析】(1)如图,连接OD、OE、BD.只要证明△OED≌△OEB,得∠ODE=∠OBE即可解决问题.(2)首先求出BC,在Rt△ABC中,利用勾股定理即可解决问题.【解答】(1)证明:如图,连接OD、OE、BD.∵AB是直径,∴∠ADB=90°,在Rt△BDC中,∵∠CDB=90°,BE=CE,∴DE=EB=EC,在△OED和△OEB中,,∴△OED≌△OEB,∴∠ODE=∠OBE=90°,∴ED⊥OD,∴DE是⊙O的切线.(2)∵DE=2,BC=2DE=4,在Rt△ABC中,∵∠ABC=90°,AC=5,BC=4,∴AB===3,∴OA=1.5.∴⊙O的半径为1.5.24.如图,已知抛物线y=﹣x2﹣2x+m+1与x轴交于A(x1,0)、B(x2,0)两点,且x1<0,x2>0,与y轴交于点C,顶点为P.(提示:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两个实根,则x1+x2=﹣,x1•x2=)(1)求m的取值范围;(2)若OA=3OB,求抛物线的解析式;(3)在(2)中抛物线的对称轴PD上,存在点Q使得△BQC的周长最短,试求出点Q的坐标.【考点】二次函数综合题.【分析】(1)将抛物线的问题转化到一元二次方程中,利用一元二次方程根的判别式和根与系数的关系解决;(2)先用一元二次方程的两根表示出OA,OB,再用根与系数的关系即可;(3)先由于点A,B关于抛物线的对称轴PD对称,连接AC与PD的交点就是使△BQC的周长最短,然后确定出直线AC解析式,最后将抛物线的对称轴代入直线AC解析式中即可.【解答】解:(1)令y=0,则有﹣x2﹣2x+m+1=0,即:x1,x2是一元二次方程x2+2x﹣(m+1)=0,∵抛物线y=﹣x2﹣2x+m+1与x轴交于A(x1,0)、B(x2,0)两点,∴x1•x2=﹣(m+1),x1+x2=﹣2,△=4+4(m+1)>0,∴m>﹣2∵x1<0,x2>0,∴x1•x2<0,∴﹣(m+1)<0,∴m>﹣1,即:m>﹣1;(2)∵A(x1,0)、B(x2,0)两点,且x1<0,x2>0,∴OA=﹣x1,OB=x2,∵OA=3OB,∴﹣x1=3x2,①由(1)知,x1+x2=﹣2,②x1•x2=﹣(m+1),③联立①②③得,x1=﹣3,x2=1,m=2,∴抛物线的解析式y=﹣x2﹣2x+3;(3)存在点Q,理由:如图,连接AC交PD于Q,点Q就是使得△BQC的周长最短,(∵点A,B关于抛物线的对称轴PD 对称,)连接BQ,由(2)知,抛物线的解析式y=﹣x2﹣2x+3;x1=﹣3,∴抛物线的对称轴PD为x=﹣1,C(0,3),A(﹣3,0),∴用待定系数法得出,直线AC解析式为y=x+3,当x=﹣1时,y=2,∴Q(﹣1,2),∴点Q(﹣1,2)使得△BQC的周长最短.。
2007--2008学年度第一学期学期考初三数学试卷(1
2007--2008学年度第一学期学期考初三数学试卷(1)班级_________座号__________姓名______________成绩_____________ 一. 选择题(共30分,每小题3分,共10题)1. 解一元二次方程x 2-x-12=0,结果正确的是( )A.x 1=-4,x 2=3B.x 1=4,x 2=-3C.x 1=-4,x 2=-3D.x 1=4,x 2=32.如图1,在⊙O 中,AB 、AC 是互相垂直的两条弦,O D ⊥AB 于D,OE ⊥AC 于E, 且AB=8cm,AC=6cm,那么半径OA 的长为( ) A.4cm B.5cm C.6cm D.8cm3.把抛物线y=-3x 2向上平移2个单位,得到的抛物线是( ) A.y=-3(x+2)2B.y=-3(x-2)2C.y=-3x 2+2 D.y=-3x 2-24.如图2,已知△ABC 内接于⊙O,∠C=450,AB=4,则⊙O 的半径为( )5.32.4.D C B 2A.25.正三角形的高h 、外接圆半径R 、边心距的比为( ) A.4:2:1 B.4:3:2 C.3:2:1 D.6:4:36.已知关于x 的方程x 2-(2k-1)x+k 2=0有两个不相等的实数根,那么k 的最大整数值是( )A.-2B.-1C.0D.17.一个口袋里有相同的红、绿、蓝三种颜色的小球,其中有6个红球,3个绿球.若任意摸出一个绿球的概率为41,则任意摸出一个蓝球的概率是( )61.51.41..D C B A 318.已知二次函数的图象过(1,0),(2,0)和(0,2)三点,则该函数的表达式是( )A.y=2x 2+x+2B.y=x 2+3x+2C.y=x 2-2x+3D.y=x 2-3x+2 9.如图3,△PQR 是⊙O 的内接正三角形,四边形ABCD 是⊙O 的内接正方形, BC//QR,则∠AOQ=( )A.600B.650C.720D.750图1图2OR Q PD CBA 图310.抛掷红、绿两枚分别标有数字1,2,3,4,5,6的质地均匀的正方体骰子,将红色和绿色骰子正面朝上的编号分别作为二次函数y=x 2+bx+c 的一次项系数b 和常数项c 的值,那么抛掷红、绿骰子各一次,得到二次函数的图象顶点恰好在x 轴上的概率是( )61.91.121.D C B 181A. 二. 填空题(28分,每小题4分,共7题)11.已知点P(2a,3)与点Q(8,b)关于原点对称,则a=____,b=_____. 12.将根式32,18,12,8化成最简二次根式后,随机抽取其中一个根式,能与2的被开方数相同的概率是_________.13.已知⊙O 的半径为5,点P 是⊙O 外的一点,OP=12,以P 为圆心作一个圆与⊙O 相切,则这个圆的半径为________14.用一个半径为36cm,面积为2cm 324的扇形纸板,制作一个圆锥,那么这个圆锥的底面半径r=________cm.15.如图4,已知△ABC 的顶点坐标分别为A(3,6),B(1,3),C(4,2), 如果将△ABC 绕C 点顺时针旋转900,得到△A /B /C /,那么A 点的 对应点A /的坐标为_________.16.抛物线y=-2x 2-4x+1的顶点关于x 轴的对称点的坐标为_______17.如图5,已知四边形OABC 为菱形,点B 、C 在以点O 为圆心的 上,若OA=3,∠1=∠2,则扇形OEF 的面积为________.三. 解答题:18.用适当的方法解下列方程(8分)(1)(x-3)2=(5x+2)2(2)x 2-32x+2=0EF EFCBA O图519.(10分)已知二次函数y=ax 2+bx+c 的图象经过一次函数3+=x 23-y 的图象与x 轴、y 轴的交点,并且经过点(1,1),求这个二次函数的解析式.20.(10分) 小明、小华用4张扑克牌(黑桃2,3,4,5)玩游戏,他俩将扑克牌洗均后,背面朝上放置在桌面上,小明先抽,小华后抽,抽出的牌不放回. (1)若小明恰好抽到了黑桃4.①请你在图(2)中的方框绘制这种情况的树形图; ②求小华抽出的牌的牌面数字比4大的概率.(2)小明、小华约定:若小明抽到的牌的牌面数字比小华的大,则小明胜;反之,则小明输,你认为这个游戏是否公平?(2)21(12分)如图,在平面直角坐标系xOy 中,△AOB 三个顶点的坐标分别为O(0,0),A(1,3),B(2,2),将△AOB 绕点O 逆时针旋转900,点A 、O 、B 分别落在点A 1,O 、B 1处.(1)在所给的直角坐标系中画出旋转后的△A 1OB 1; (2)求点B 旋转到点B 1所经过的弧形路线的长.22.(12分)已知AB 是⊙O 的切线,B 为切点,AB=32,AO 交⊙O 于P,∠A=300,过点P 作AO 的垂线交AB 于C,求图中阴影部分的面积.P O C B A23(12分)如图,已知等边三角形ABC,以边BC为直径的圆与边AB、AC分别交于点D、E.过点D作DF⊥AC,垂足为点F.(1)证明:DF是⊙O的切线;(2)如果等边三角形的边长为4a,过点F作FH⊥BC,垂足为点H,求△FCH的面积.24.(12分)某商店经销一种销售成本为每千克40元的水产品,据市场调查,若按每千克50元销售,一个月可售出125kg,销售单价每涨2元,月销售量就减少5kg,针对这种水产品的销售情况,请回答以下问题:(1)当销售单价定为每千克54元时,计算月销售量和月销售利润;(2)设销售单价为每千克x元,月销售利润为y元,求y与x的函数关系式;(3)如果商店想在月销售成本不超过3500元的情况下,使得月销售利润达到2000元,销售单价应定为多少?25.(13分)在矩形ABCD中,AB=20cm,BC=4cm,点P从一开始沿着A→B→C→D以4cm/s的速度移动,点Q从开始沿着C→D以1cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点达到D时,另一点也随之停止运动,设运动时间为t(s)。
恩施州利川市九年级上册期末数学模拟试卷(含解析)
湖北省恩施州利川市九年级(上)期末数学模拟试卷一.选择题(共12小题,满分36分,每小题3分)1.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为()A.1B.C.D.2.方程2=4的根是()A.=4B.=0C.1=0,2=4D.1=0,2=﹣43.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()A.﹣3B.3C.﹣1D.14.抛物线y=2(+1)2﹣2与y轴的交点的坐标是()A.(0,﹣2)B.(﹣2,0)C.(0,﹣1)D.(0,0)5.下列图形是中心对称图形的是()A.B.C.D.6.用配方法解一元二次方程22﹣4﹣2=1的过程中,变形正确的是()A.2(﹣1)2=1B.2(﹣2)2=5C.D.7.用配方法将y=2﹣6+11化成y=a(﹣h)2+的形式为()A.y=(+3)2+2B.y=(﹣3)2﹣2C.y=(﹣6)2﹣2D.y=(﹣3)2+28.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为()A.100°B.110°C.120°D.130°9.如图,AB是⊙O的直径,弦CD⊥AB,∠C=30°,CD=6,则S阴影等于()A.B.πC.D.2π10.如图,在△ABO中,AB⊥OB,OB=,AB=1.将△ABO绕O点旋转90°后得到△A1B1O,则点A1的坐标为()A.(﹣1,)B.(﹣1,)或(1,﹣)C.(﹣1,﹣)D.(﹣1,﹣)或(﹣,1)11.已知方程22﹣﹣3=0的两根为1,2,那么+=()A.﹣B.C.3D.﹣312.二次函数y=2+(a﹣2)+3的图象与一次函数y=(1≤≤2)的图象有且仅有一个交点,则实数a的取值范围是()A.a=3±2B.﹣1≤a<2C.a=3或﹣≤a<2D.a=3﹣2或﹣1≤a<﹣二.填空题(共4小题,满分12分,每小题3分)13.已知关于的方程(m+2)2+4m+1=0是一元二次方程,则m的取值范围是.14.若二次函数y=a2+2a﹣3的图象与轴的一个交点是(2,0),则与轴的另一个交点坐标是.15.如图,图1是由若干个相同的图形(图2)组成的美丽图案的一部分,图2中,图形的相关数据:半径OA=2cm,∠AOB=120°.则图2的周长为cm(结果保留π).16.用同样大小的黑色棋子按如图所示的规律摆放,按照这样的规律摆下去,则第n个图形有颗黑色棋子(用含n的代数式表示).三.解答题(共8小题,满分72分)17.已知抛物线y=a(﹣h)2向右平移3个单位后,得到抛物线y=2(+1)2,求a、h的值.18.用公式法解方程:2﹣﹣2=0.19.经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.20.如图,AB是⊙O的直径点F、C是半圆弧ABC上的三等份点,连接AC,AF,过点C作CD⊥AF交AF的延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为4,求CD的长.21.已知关于的一元二次方程:2﹣2﹣﹣2=0有两个不相等的实数根.(1)求的取值范围;(2)给取一个负整数值,解这个方程.22.(10分)俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为元.(1)请直接写出y与之间的函数关系式和自变量的取值范围;(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?23.(10分)如图,AB是⊙O的直径,BC交⊙O于点D,E是的中点,AE与BC交于点F,∠C=2∠EAB.(1)求证:AC是⊙O的切线;(2)已知CD=4,CA=6,①求CB的长;②求DF的长.24.(12分)抛物线y=a2+b+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE ⊥AC,当△DCE与△AOC相似时,求点D的坐标.湖北省恩施州利川市九年级(上)期末数学模拟试卷参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为()A.1B.C.D.【分析】直接利用概率的意义分析得出答案.【解答】解:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是,故选:B.【点评】此题主要考查了概率的意义,明确概率的意义是解答的关键.2.方程2=4的根是()A.=4B.=0C.1=0,2=4D.1=0,2=﹣4【分析】原式利用因式分解法求出解即可.【解答】解:方程整理得:(﹣4)=0,可得=0或﹣4=0,解得:1=0,2=4,故选:C.【点评】此题考查了一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.3.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()A.﹣3B.3C.﹣1D.1【分析】根据关于原点对称的点横坐标互为相反数,纵坐标互为相反数,可得答案.【解答】解:由题意,得a=﹣2,b=﹣1.a+b=﹣2+(﹣1)=﹣3,故选:A.【点评】本题考查了关于原点对称的点的坐标,利用关于原点对称的点横坐标互为相反数,纵坐标互为相反数得出a,b的值是解题关键.4.抛物线y=2(+1)2﹣2与y轴的交点的坐标是()A.(0,﹣2)B.(﹣2,0)C.(0,﹣1)D.(0,0)【分析】根据y轴上点的坐标特征,把=0代入抛物线解析式计算出对应的函数值即可得到交点坐标.【解答】解:把=0代入y=2(+1)2﹣2得y=2﹣2=0.所以抛物线的顶点为(0,0),故选:D.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.5.下列图形是中心对称图形的是()A.B.C.D.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原的图形重合,那么这个图形就叫做中心对称图形可得答案.【解答】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D.【点评】此题主要考查了中心对称图形,关键是要寻找对称中心,旋转180度后两部分重合.6.用配方法解一元二次方程22﹣4﹣2=1的过程中,变形正确的是()A.2(﹣1)2=1B.2(﹣2)2=5C.D.【分析】将常数项移到方程的右边后,把二次项系数化为1后两边配上一次项系数一半的平方即可得.【解答】解:∵22﹣4=3,∴2﹣2=,则2﹣2+1=1+,即(﹣1)2=,故选:C.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.7.用配方法将y=2﹣6+11化成y=a(﹣h)2+的形式为()A.y=(+3)2+2B.y=(﹣3)2﹣2C.y=(﹣6)2﹣2D.y=(﹣3)2+2【分析】由于二次项系数是1,利用配方法直接加上一次项系数一半的平方凑完全平方式,可把一般式转化为顶点式.【解答】解:y=2﹣6+11,=2﹣6+9+2,=(﹣3)2+2.故选:D.【点评】二次函数的解析式有三种形式:(1)一般式:y=a2+b+c(a≠0,a、b、c为常数);(2)顶点式:y=a(﹣h)2+;(3)交点式(与轴):y=a(﹣1)(﹣2).8.如图,AB是半圆的直径,O为圆心,C是半圆上的点,D是上的点,若∠BOC=40°,则∠D的度数为()A.100°B.110°C.120°D.130°【分析】根据互补得出∠AOC的度数,再利用圆周角定理解答即可.【解答】解:∵∠BOC=40°,∴∠AOC=180°﹣40°=140°,∴∠D=,故选:B.【点评】此题考查圆周角定理,关键是根据互补得出∠AOC的度数.9.如图,AB是⊙O的直径,弦CD⊥AB,∠C=30°,CD=6,则S阴影等于()A.B.πC.D.2π【分析】根据垂径定理求得CE=ED;然后由圆周角定理知∠AOD=60°,然后通过解直角三角形求得线段AE、OE的长度;最后将相关线段的长度代入S阴影=S扇形OAD﹣S△OED+S△ACE.【解答】解:∵CD⊥AB,CD=6,∴CE=DE=CD=3,在Rt△ACE中,∠C=30°,则AE=CEtan30°=,在Rt△OED中,∠DOE=2∠C=60°,则OD==2,∴OE=OA﹣AE=OD﹣AE=,S阴影=S扇形OAD﹣S△OED+S△ACE=.故选:D.【点评】本题考查了垂径定理、扇形面积的计算.求得阴影部分的面积时,采用了“分割法”,关键是求出相关线段的长度.10.如图,在△ABO中,AB⊥OB,OB=,AB=1.将△ABO绕O点旋转90°后得到△A1B1O,则点A1的坐标为()A.(﹣1,)B.(﹣1,)或(1,﹣)C.(﹣1,﹣)D.(﹣1,﹣)或(﹣,1)【分析】需要分类讨论:在把△ABO绕点O顺时针旋转90°和逆时针旋转90°后得到△A1B1O 时点A1的坐标.【解答】解:∵△ABO中,AB⊥OB,OB=,AB=1,∴∠AOB=30°,当△ABO绕点O顺时针旋转90°后得到△A1B1O,则易求A1(1,﹣);当△ABO绕点O逆时针旋转90°后得到△A1B1O,则易求A1(﹣1,).故选:B.【点评】本题考查了坐标与图形变化﹣旋转.解题时,注意分类讨论,以防错解.11.已知方程22﹣﹣3=0的两根为1,2,那么+=()A.﹣B.C.3D.﹣3【分析】根据根与系数的关系得到1+2=,12=﹣,再通分得到+=,然后利用整体代入的方法计算.【解答】解:根据题意得1+2=,12=﹣,所以+===﹣.故选:A.【点评】本题考查了根与系数的关系:若1,2是一元二次方程a2+b+c=0(a≠0)的两根时:1+2=﹣,12=.12.二次函数y=2+(a﹣2)+3的图象与一次函数y=(1≤≤2)的图象有且仅有一个交点,则实数a的取值范围是()A.a=3±2B.﹣1≤a<2C.a=3或﹣≤a<2D.a=3﹣2或﹣1≤a<﹣【分析】根据二次函数的图象性质即可求出答案.【解答】解:由题意可知:方程2+(a﹣2)+3=在1≤≤2上只有一个解,即2+(a﹣3)+3=0在1≤≤2上只有一个解,当△=0时,即(a﹣3)2﹣12=0a=3±2当a=3+2时,此时=﹣,不满足题意,当a=3﹣2时,此时=,满足题意,当△>0时,令y=2+(a﹣3)+3,令=1,y=a+1,令=2,y=2a+1(a+1)(2a+1)≤0解得:﹣1≤a≤,当a=﹣1时,此时=1或3,满足题意;当a=﹣时,此时=2或=,不满足题意,综上所述,a=3﹣2或﹣1≤a<,故选:D.【点评】本题考查二次函数的综合问题,解题的关键是将问题转化为2+(a﹣3)+3=0在1≤≤2上只有一个解,根据二次函数的性质即可求出答案,本题属于中等题型.二.填空题(共4小题,满分12分,每小题3分)13.已知关于的方程(m+2)2+4m+1=0是一元二次方程,则m的取值范围是m≠﹣2.【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程进行解答即可.【解答】解:由题意得:m+2≠0,解得:m≠﹣2,故答案为:m≠﹣2.【点评】此题主要考查了一元二次方程的定义,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.14.若二次函数y=a2+2a﹣3的图象与轴的一个交点是(2,0),则与轴的另一个交点坐标是(﹣4,0).【分析】先求出抛物线的对称轴,再根据轴对称性求出与轴的另一个交点坐标.【解答】解:二次函数y=a2+2a﹣3的对称轴为:=﹣=﹣1,∵二次函数y=a2+2a﹣3的图象与轴的一个交点为(2,0),∴它与轴的另一个交点坐标是(﹣4,0).故答案为(﹣4,0).【点评】本题主要考查抛物线与轴的交点,解题的关键是熟练掌握抛物线的对称性.15.如图,图1是由若干个相同的图形(图2)组成的美丽图案的一部分,图2中,图形的相关数据:半径OA=2cm,∠AOB=120°.则图2的周长为cm(结果保留π).【分析】先根据图1确定:图2的周长=2个的长,根据弧长公式可得结论.【解答】解:由图1得:的长+的长=的长∵半径OA=2cm,∠AOB=120°则图2的周长为:=故答案为:.【点评】本题考查了弧长公式的计算,根据图形特点确定各弧之间的关系是本题的关键.16.用同样大小的黑色棋子按如图所示的规律摆放,按照这样的规律摆下去,则第n个图形有(6n﹣1)颗黑色棋子(用含n的代数式表示).【分析】由图形可知:第1个图形的黑色棋子的颗数为5=6×1﹣1,第2个图形的黑色棋子的颗数为11=6×2﹣1,第3个图形的黑色棋子的颗数为17=6×3﹣1,…由此得出第n个图形的黑色棋子的颗数为6n﹣1.【解答】解:∵第1个图形的黑色棋子的颗数为5=6×1﹣1,第2个图形的黑色棋子的颗数为11=6×2﹣1,第3个图形的黑色棋子的颗数17=6×3﹣1,…∴第n个图形的黑色棋子的颗数为6n﹣1.故答案为(6n﹣1).【点评】本题考查了图形的变化类问题,解题的关键是仔细观察图形并发现其图形的变化规律.三.解答题(共8小题,满分72分)17.已知抛物线y=a(﹣h)2向右平移3个单位后,得到抛物线y=2(+1)2,求a、h的值.【分析】根据二次函数图象左加右减,上加下减的平移规律知抛物线y=a(﹣h)2向右平移3个单位后得y=a(﹣h﹣3)2,然后(﹣h﹣3)2=2(+1)2,解得a和h的值.【解答】解:∵抛物线y=a(﹣h)2向右平移3个单位,∴得到的抛物线解析式y=a(﹣h﹣3)2,即a=2,又﹣h﹣3=+1,∴h=﹣4,∴a=2,h=﹣4.【点评】本题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.18.用公式法解方程:2﹣﹣2=0.【分析】套用求根公式计算可得.【解答】解:∵a=1、b=﹣1、c=﹣2,∴△=1﹣4×1×(﹣2)=9>0,∴==,即=﹣1或=2.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键19.经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.【分析】画树状图展示所有9种等可能的结果数,找出“至少有一人直行”的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有9种等可能的结果数,其中两人之中至少有一人直行的结果数为5,所以两人之中至少有一人直行的概率为.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.如图,AB是⊙O的直径点F、C是半圆弧ABC上的三等份点,连接AC,AF,过点C作CD⊥AF交AF的延长线于点D,垂足为D.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为4,求CD的长.【分析】(1)连接OC,由OA=OC,利用等边对等角得到一对角相等,再由等弧所对的圆周角相等得到一对角相等,等量代换得到一对内错角相等,确定出OC与AD平行,由CD与AD垂直,得到CD与OC垂直,即可得证;(2)连接OF,利用等弧所对的圆心角相等及平角定义求出∠OCB的度数,在直角三角形OCE 中,求出CE的长,利用角平分线性质得到CD=CE,即可求出CD的长.【解答】(1)证明:连接OC,∵OA=OC,∴∠OAC=∠OCA,∵=,∴∠DAC=∠CAB,∴∠OCA=∠DAC,∴OC∥AD,∵CD⊥AD,∴CD⊥OC,则CD为圆O的切线;(2)解:连接OF,过C作CE⊥AB,∵==,∴∠AOF=∠FOC=∠COB=60°,在Rt△OCE中,OC=4,∠OCE=30°,∴CE=2,∵AC平分∠DAB,CD⊥AD,CE⊥AB,∴CD=CE=2.【点评】此题考查了切线的判定,圆心角、弧及弦之间的关系,等腰三角形的性质,平行线的判定与性质,熟练掌握切线的判定方法是解本题的关键.21.已知关于的一元二次方程:2﹣2﹣﹣2=0有两个不相等的实数根.(1)求的取值范围;(2)给取一个负整数值,解这个方程.【分析】(1)利用判别式的意义得到△=(﹣2)2﹣4(﹣﹣2)>0,然后解不等式即可;(2)在(1)中的的范围内取﹣2,方程变形为2﹣2=0,然后利用因式分法解方程即可.【解答】解:(1)根据题意得△=(﹣2)2﹣4(﹣﹣2)>0,解得>﹣3;(2)取=﹣2,则方程变形为2﹣2=0,解得1=0,2=2.【点评】本题考查了根的判别式:一元二次方程a2+b+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.22.(10分)俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为元.(1)请直接写出y与之间的函数关系式和自变量的取值范围;(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?【分析】(1)售单价每上涨1元,每天销售量减少10本,则售单价每上涨(﹣44)元,每天销售量减少10(﹣44)本,所以y=300﹣10(﹣44),然后利用销售单价不低于44元,且获利不高于30%确定的范围;(2)利用每本的利润乘以销售量得到总利润得到(﹣40)(﹣10+740)=2400,然后解方程后利用的范围确定销售单价;(3)利用利用每本的利润乘以销售量得到总利润得到w=(﹣40)(﹣10+740),再把它变形为顶点式,然后利用二次函数的性质得到=52时w最大,从而计算出=52时对应的w的值即可.【解答】解:(1)y=300﹣10(﹣44),即y=﹣10+740(44≤≤52);(2)根据题意得(﹣40)(﹣10+740)=2400,解得1=50,2=64(舍去),答:当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)w=(﹣40)(﹣10+740)=﹣102+1140﹣29600=﹣10(﹣57)2+2890,当<57时,w随的增大而增大,而44≤≤52,所以当=52时,w有最大值,最大值为﹣10(52﹣57)2+2890=2640,答:将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.【点评】本题考查了二次函数的应用:利用二次函数解决利润问题,解此类题的关键是通过题意,确定出二次函数的解析式,然后利用二次函数的性质确定其最大值;在求二次函数的最值时,一定要注意自变量的取值范围.也考查了一元二次方程的应用.23.(10分)如图,AB是⊙O的直径,BC交⊙O于点D,E是的中点,AE与BC交于点F,∠C=2∠EAB.(1)求证:AC是⊙O的切线;(2)已知CD=4,CA=6,①求CB的长;②求DF的长.【分析】(1)连结AD,如图,根据圆周角定理,由E是的中点得到∠EAB=∠EAD,由于∠ACB=2∠EAB,则∠ACB=∠DAB,再利用圆周角定理得到∠ADB=90°,则∠DAC+∠ACB=90°,所以∠DAC+∠DAB=90°,于是根据切线的判定定理得到AC是⊙O的切线;(2)①在Rt△ABC中,根据cosC===,可得AC=6;②作FH⊥AB于H,由BD=BC﹣CD=5,∠EAB=∠EAD,FD⊥AD,FH⊥AB,推出FD=FH,设FB=,则DF=FH=5﹣,根据cos∠BFH=cos∠C==,构建方程即可解决问题;【解答】(1)证明:连结AD,如图,∵E是的中点,∴==,∴∠EAB=∠EAD,∵∠ACB=2∠EAB,∴∠ACB=∠DAB,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAC+∠ACB=90°,∴∠DAC+∠DAB=90°,即∠BAC=90°,∴AC⊥AB,∴AC是⊙O的切线;(2)①在Rt△ACB中,∵cosC===,AC=6,∴BC=9.②作FH⊥AB于H,∵BD=BC﹣CD=5,∠EAB=∠EAD,FD⊥AD,FH⊥AB,∴FD=FH,设FB=,则DF=FH=5﹣,∵FH∥AC,∴∠HFB=∠C,在Rt△BFH中,∵cos∠BFH=cos∠C==,∴=,解得=3,即BF的长为3,∴DF=2【点评】本题考查了切线的判定:经过半径的外端且垂直于条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了解直角三角形.24.(12分)抛物线y=a2+b+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE ⊥AC,当△DCE与△AOC相似时,求点D的坐标.【分析】(1)先求得点C(0,3)的坐标,然后设抛物线的解析式为y=a(+1)(﹣),最后,将点C的坐标代入求得a的值即可;(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.先求得AC的解析式,然后再求得BM的解析式,从而可求得点M的坐标,依据两点间的距离公式可求得MC=BM,最后,依据等腰直角三角形的性质可得到∠ACB的度数;(3)如图2所示:延长CD,交轴与点E.依据题意可得到∠ECD>45°,然后依据相似三角形的性质可得到∠CAO=∠ECD,则CE=AE,设点E的坐标为(a,0),依据两点间的距离公式可得到(a+1)2=32+a2,从而可得到点E的坐标,然后再求得CE的解析式,最后求得CE与抛物线的交点坐标即可.【解答】解:(1)当=0,y=3,∴C(0,3).设抛物线的解析式为y=a(+1)(﹣).将C(0,3)代入得:﹣a=3,解得:a=﹣2,∴抛物线的解析式为y=﹣22++3.(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.∵OC=3,AO=1,∴tan∠CAO=3.∴直线AC的解析式为y=3+3.∵AC⊥BM,∴BM的一次项系数为﹣.设BM的解析式为y=﹣+b,将点B的坐标代入得:﹣×+b=0,解得b=.∴BM的解析式为y=﹣+.将y=3+3与y=﹣+联立解得:=﹣,y=.∴MC=BM═=.∴△MCB为等腰直角三角形.∴∠ACB=45°.(3)如图2所示:延长CD,交轴与点F.∵∠ACB=45°,点D是第一象限抛物线上一点,∴∠ECD>45°.又∵△DCE与△AOC相似,∠AOC=∠DEC=90°,∴∠CAO=∠ECD.∴CF=AF.设点F的坐标为(a,0),则(a+1)2=32+a2,解得a=4.∴F(4,0).设CF的解析式为y=+3,将F(4,0)代入得:4+3=0,解得:=﹣.∴CF的解析式为y=﹣+3.将y=﹣+3与y=﹣22++3联立:解得:=0(舍去)或=.将=代入y=﹣+3得:y=.∴D(,).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式、两点间距离公式的应用、相似三角形的性质、等腰三角形的判定,依据相似三角形的性质、等腰三角形的判定定理得到AF=CF是解题的关键.。
2007—2008学年九年级上学期期末数学试题
B A 2007—2008学年九年级上学期期末数学试题一、细心填一填:1.=0)21( ; 24- = ;当x 时,分式x x --21无意义。
2.计算:84273x x ÷= ,1111a a ++-= . 3. 函数42-=x y 中,自变量x 的取值范围是 。
4. 关于220x x x k -+=的方程有两个不相等的实数根21,x x ,则实数k 的取值范围是,21x x +等于 。
5.半径分别为6cm 和3cm 的⊙O 1和⊙O 2有两个公共点,则⊙O 1与⊙O 2的位置关系是 ,圆心距0102的长度范围是 。
6.一个骰子,六个面上的数字分别为1、2、3、4、5、6,投掷一次,向上的面出现数字3的概率是_____。
7.某工人在规定时间内可加工50个零件。
如果每小时多加工5个零件,那么用同样时间可加工60个零件,设原来每小时可加工x 个零件,可得方程 . 8.如图,已知A 、B 、C 、D 、E 均在⊙O 上,且AC 为⊙O 的直径,则∠A+∠B+∠C= ____度。
9.如图一块等边三角形的木板,边长为1,现将木板沿水平线翻滚,那么B 点从开始至结束所走过的路径长度为 .C B B A B C A10.下面是小王同学在一次测验中解答的填空题,其中答对的序号是 (要求:把正确的序号都填上) ①若2x =9则x =-3. ②方程 x (5-2x )=5-2x 的解为x =1.③若方程2x +2x + k = 0有两个相等的实数根,则k =1.④若分式2541x x x -+-的值为 0,则x =1或4. 二、精心选一选:(本大题共有6小题,每小题2分,共12分) 16.方程2650x x +-=的左边配成完全平方后所得方程为 ( ) A. 2(3)14x += B. 2(3)14x -= C. 21(6)2x += D. 以上答案都不对17. 下列说法正确的是 ( )A.垂直于半径的直线是圆的切线B.经过三点一定可以作圆C.圆的切线垂直于圆的半径D.每个三角形都有一个内切圆18.下列运算正确的是 ( )A .2x +3y =5xyB .4x 4y 2-5xy 2=-x 2yC .3x -2·2x 3=6x -6D .4x 4y 2÷(-2xy 2)=-2x319.某型号的手机连续两次降价,每个售价由原来的1185元降到了580元.设平均每次降价的百分率为x ,则列出方程正确的是( )A .()118515802=+x B .()580111852=+x C .()118515802=-x D .()580111852=-x20..如图,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中和△ABC 全等的图形是( )A.甲、乙B.甲、丙C.乙、丙D.乙21.Rt △ABC 中,∠C=90°,AC=3cm,BC=4cm.给出下列三个结论: ①以点C 为圆心,2.3cm 长为半径的圆与AB 相离;②以点C 为圆心,2.4cm 长为半径的圆与AB 相切;③以点C 为圆心,2.5cm 长为半径的圆与AB 相交;则上述结论中正确的个数是( )A.0个 B.1个 C.2个 D.3个 三、认真答一答:22.先化简,再选取一个使原式有意义,而你又喜爱的数代入求值: x x x x x x x x 4)44122(22-÷+----+.23.等腰梯形ABCD 中,AD ∥BC ,AB =CD ,DE ⊥BC 于E ,AE =BE ,BF ⊥AE 于F ,线段BF 与图中的哪一条线段相等。
九年级数学上册期末试卷综合测试(Word版 含答案)
九年级数学上册期末试卷综合测试(Word 版 含答案)一、选择题1.入冬以来气温变化异常,在校学生患流感人数明显增多,若某校某日九年级8个班因病缺课人数分别为2、6、4、6、10、4、6、2,则这组数据的众数是( ) A .5人B .6人C .4人D .8人2.若点()10,A y ,()21,B y 在抛物线()213y x =-++上,则下列结论正确的是( ) A .213y y <<B .123y y <<C .213y y <<D .213y y <<3.下图是甲、乙两人2019年上半年每月电费支出的统计,则他们2019年上半年月电费支出的方差2S 甲和2S 乙的大小关系是( )A .2S 甲>2S 乙B .2S 甲=2S 乙C .2S 甲<2S 乙D .无法确定4.某篮球队14名队员的年龄如表: 年龄(岁) 18 19 20 21 人数5432则这14名队员年龄的众数和中位数分别是( ) A .18,19B .19,19C .18,4D .5,45.10件产品中有2件次品,从中任意抽取1件,恰好抽到次品的概率是( ) A .12B .13C .14D .156.关于2,6,1,10,6这组数据,下列说法正确的是( ) A .这组数据的平均数是6 B .这组数据的中位数是1 C .这组数据的众数是6D .这组数据的方差是10.27.方程2210x x --=的两根之和是( ) A .2-B .1-C .12D .12-8.抛物线2(1)2y x =-+的顶点坐标是( ) A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2)9.如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,∠BAC=50°,则∠ADC 为( )A .40°B .50°C .80°D .100°10.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3π-C .23π-D .223π-11.袋中装有5个白球,3个黑球,除颜色外均相同,从中一次任摸出一个球,则摸到黑球的概率是( ) A .35B .38C .58D .3412.下列方程中,有两个不相等的实数根的是( ) A .x 2﹣x ﹣1=0B .x 2+x +1=0C .x 2+1=0D .x 2+2x +1=0二、填空题13.如图,⊙O 是△ABC 的外接圆,∠A =30°,BC =4,则⊙O 的直径为___.14.关于x 的一元二次方程20x a +=没有实数根,则实数a 的取值范围是 . 15.若m 是方程2x 2﹣3x =1的一个根,则6m 2﹣9m 的值为_____.16.三角形的两边长分别为3和6,第三边的长是方程x 2﹣6x+8=0的解,则此三角形的周长是_____.17.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)的图像上部分点的横坐标x 和纵 坐标y 的对应值如下表 x … -1 0123 … y…-3 -3 -1 39…关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.18.二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,当y <3时,x 的取值范围是____.19.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,D 是以点A 为圆心2为半径的圆上一点,连接BD ,M 为BD 的中点,则线段CM 长度的最小值为__________.20.如图,已知正方ABCD 内一动点E 到A 、B 、C 三点的距离之和的最小值为13+,则这个正方形的边长为_____________21.在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该生此次实心球训练的成绩为_______米.22.如图,在Rt ABC ∆中,90ACB ∠=,6AC =,8BC =,D 、E 分别是边BC 、AC 上的两个动点,且4DE =,P 是DE 的中点,连接PA ,PB ,则14PA PB +的最小值为__________.23.如图,C 、D 是线段AB 的两个黄金分割点,且CD =1,则线段AB 的长为_____.24.如图,在□ABCD 中,E 、F 分别是AD 、CD 的中点,EF 与BD 相交于点M ,若△DEM 的面积为1,则□ABCD 的面积为________.三、解答题25.如图,在矩形纸片ABCD 中,已知2AB =,6=BC ,点E 在边CD 上移动,连接AE ,将多边形ABCE 沿AE 折叠,得到多边形AB C E '',点B 、C 的对应点分别为点B ',C '.(1)连接AC .则AC =______,DAC ∠=______°; (2)当B C ''恰好经过点D 时,求线段CE 的长;(3)在点E 从点C 移动到点D 的过程中,求点C '移动的路径长.26.已知二次函数y =ax 2+bx +c (a ≠0)中,函数y 与自变量x 的部分对应值如下表:(1)求该二次函数的表达式;(2)该二次函数图像关于x 轴对称的图像所对应的函数表达式 ;27.已知关于的方程,若方程的一个根是–4,求另一个根及的值.28.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同. (1)搅匀后从袋子中任意摸出1个球,摸到红球的概率是多少?(2)搅匀后先从袋子中任意摸出1个球,记录颜色后不放回,再从袋子中任意摸出1个球,用画树状图或列表的方法列出所有等可能的结果,并求出两次都摸到白球的概率. 29.如图,四边形ABCD 内接于⊙O ,AC 为⊙O 的直径,D 为AC 的中点,过点D 作DE ∥AC ,交BC 的延长线于点E .(1)判断DE 与⊙O 的位置关系,并说明理由; (2)若CE =163,AB =6,求⊙O 的半径.30.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =.()1求一次函数y kx b =+的表达式;()2若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?31.如图①,在矩形ABCD 中,BC =60cm .动点P 以6cm /s 的速度在矩形ABCD 的边上沿A →D 的方向匀速运动,动点Q 在矩形ABCD 的边上沿A →B →C 的方向匀速运动.P 、Q 两点同时出发,当点P 到达终点D 时,点Q 立即停止运动.设运动的时间为t (s ),△PDQ 的面积为S (cm 2),S 与t 的函数图象如图②所示. (1)AB = cm ,点Q 的运动速度为 cm /s ;(2)在点P 、Q 出发的同时,点O 也从CD 的中点出发,以4cm /s 的速度沿CD 的垂直平分线向左匀速运动,以点O 为圆心的⊙O 始终与边AD 、BC 相切,当点P 到达终点D 时,运动同时停止.①当点O 在QD 上时,求t 的值;②当PQ 与⊙O 有公共点时,求t 的取值范围.32.如图,抛物线265y ax x =+-交x 轴于A 、B 两点,交y 轴于点C ,点B 的坐标为()5,0,直线5y x =-经过点B 、C .(1)求抛物线的函数表达式;(2)点P 是直线BC 上方抛物线上的一动点,求BCP ∆面积S 的最大值并求出此时点P 的坐标;(3)过点A 的直线交直线BC 于点M ,连接AC ,当直线AM 与直线BC 的一个夹角等于ACB ∠的3倍时,请直接写出点M 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】找出这组数据出现次数最多的那个数据即为众数. 【详解】解:∵数据2、6、4、6、10、4、6、2,中数据6出现次数最多为3次, ∴这组数据的众数是6. 故选:B. 【点睛】本题考查众数的概念,出现次数最多的数据为这组数的众数.2.A解析:A 【解析】 【分析】将x=0和x=1代入表达式分别求y 1,y 2,根据计算结果作比较. 【详解】当x=0时,y 1= -1+3=2, 当x=1时,y 2= -4+3= -1, ∴213y y <<. 故选:A. 【点睛】本题考查二次函数图象性质,对图象的理解是解答此题的关键.3.A解析:A 【解析】 【分析】方差的大小反映数据的波动大小,方差越小,数据越稳定,根据题意可判断乙的数据比甲稳定,所以乙的方差小于甲. 【详解】解:由题意可知,乙的数据比甲稳定,所以2S 甲>2S 乙 故选:A 【点睛】本题考查方差的定义与意义,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4.A解析:A 【解析】 【分析】根据众数和中位数的定义求解可得. 【详解】∵这组数据中最多的数是18, ∴这14名队员年龄的众数是18岁, ∵这组数据中间的两个数是19、19, ∴中位数是19192+=19(岁), 故选:A . 【点睛】本题考查众数和中位数,将一组数据从小到大的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数的平均数称为这组数据的中位数;一组数据中出现次数最多的数据称为这组数据的众数;熟练掌握定义是解题关键.5.D解析:D 【解析】 【分析】由于10件产品中有2件次品,所以从10件产品中任意抽取1件,抽中次品的概率是21105=. 【详解】解:()21P 105==次品 . 故选:D . 【点睛】本题考查的知识点是用概率公式求事件的概率,根据题目找出全部情况的总数以及符合条件的情况数目是解此题的关键.6.C解析:C 【解析】 【分析】先把数据从小到大排列,然后根据算术平均数,中位数,众数的定义得出这组数据的平均数、中位数、众数,再利用求方差的计算公式求出这组数据的方差,再逐项判定即可. 【详解】解:数据从小到大排列为:1,2,6,6,10, 中位数为:6; 众数为:6;平均数为:()112661055⨯++++=;方差为:()()()()()2222211525656510510.45⎡⎤⨯-+-+-+-+-=⎣⎦.故选:C . 【点睛】本题考查的知识点是平均数,中位数,众数,方差的概念定义,熟记定义以及方差公式是解此题的关键.7.C解析:C 【解析】利用两个根和的关系式解答即可. 【详解】 两个根的和=1122b a , 故选:C. 【点睛】此题考查一元二次方程根与系数的关系式, 1212,b c x x x x a a+=-=. 8.D解析:D 【解析】 【分析】根据顶点式2()y a x h k =-+,顶点坐标是(h ,k ),即可求解.【详解】∵顶点式2()y a x h k =-+,顶点坐标是(h ,k ), ∴抛物线2(1)2y x =-+的顶点坐标是(1,2). 故选D .9.A解析:A 【解析】试题分析:先根据圆周角定理的推论得到∠ACB=90°,再利用互余计算出∠B=40°,然后根据圆周角定理求解. 解:连结BC ,如图, ∵AB 为⊙O 的直径, ∴∠ACB=90°, ∵∠BAC=50°, ∴∠B=90°﹣50°=40°, ∴∠ADC=∠B=40°. 故选A .考点:圆周角定理.10.D解析:D【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【详解】过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,33∴△ABC的面积为12BC•AD=1232⨯3S扇形BAC=2602360π⨯=23π,∴莱洛三角形的面积S=3×23π﹣3﹣3,故选D.【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.11.B解析:B【解析】【分析】先求出球的总个数,根据概率公式解答即可.【详解】因为白球5个,黑球3个一共是8个球,所以从中随机摸出1个球,则摸出黑球的概率是38.故选B.【点睛】本题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.12.A解析:A【解析】【分析】逐项计算方程的判别式,根据根的判别式进行判断即可.【详解】解:在x2﹣x﹣1=0中,△=(﹣1)2﹣4×1×(﹣1)=1+4=5>0,故该方程有两个不相等的实数根,故A符合题意;在x2+x+1=0中,△=12﹣4×1×1=1﹣4=﹣3<0,故该方程无实数根,故B不符合题意;在x2+1=0中,△=0﹣4×1×1=0﹣4=﹣4<0,故该方程无实数根,故C不符合题意;在x2+2x+1=0中,△=22﹣4×1×1=0,故该方程有两个相等的实数根,故D不符合题意;故选:A.【点睛】本题考查根的判别式,解题的关键是记住判别式,△>0有两个不相等实数根,△=0有两个相等实数根,△<0没有实数根,属于中考常考题型.二、填空题13.8【解析】【分析】连接OB,OC,依据△BOC是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O的直径为8.【详解】解:如图,连接OB,OC,∵∠A=30°,∴∠BOC=解析:8【解析】【分析】连接OB,OC,依据△BOC是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O的直径为8.【详解】解:如图,连接OB,OC,∵∠A=30°,∴∠BOC=60°,∴△BOC是等边三角形,又∵BC=4,∴BO=CO=BC=BC=4,∴⊙O的直径为8,故答案为:8.【点睛】本题主要考查了三角形的外接圆以及圆周角定理的运用,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.14.a>0.【解析】试题分析:∵方程没有实数根,∴△=﹣4a<0,解得:a>0,故答案为a>0.考点:根的判别式.解析:a>0.【解析】试题分析:∵方程20+=没有实数根,∴△=﹣4a<0,解得:a>0,故答案为a>0.x a考点:根的判别式.15.3【解析】【分析】把m代入方程2x2﹣3x=1,得到2m2-3m=1,再把6m2-9m变形为3(2m2-3m),然后利用整体代入的方法计算.【详解】解:∵m是方程2x2﹣3x=1的一个根,解析:3【解析】【分析】把m代入方程2x2﹣3x=1,得到2m2-3m=1,再把6m2-9m变形为3(2m2-3m),然后利用整体代入的方法计算.【详解】解:∵m是方程2x2﹣3x=1的一个根,∴2m2﹣3m=1,∴6m2﹣9m=3(2m2﹣3m)=3×1=3.故答案为3.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.16.14【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0解析:14【解析】【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【详解】解:x2﹣6x+8=0,(x﹣2)(x﹣4)=0,x﹣2=0,x﹣4=0,x1=2,x2=4,当x=2时,2+3<6,不符合三角形的三边关系定理,所以x=2舍去,当x=4时,符合三角形的三边关系定理,三角形的周长是3+6+4=13,故答案为:13.【点睛】本题考查了因式分解法解一元二次方程以及三角形的三边关系,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯,熟练掌握一元二次方程的解法是解法本题的关键.17.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得3 1 3ca b c a b c-=⎧⎪-=++⎨⎪-=-+⎩,解得113abc=⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b2-4ac=12-4×1×(-3)=13,∴=,∵1x<0,∴1x=−1-2<0,∵-4≤-3,∴322 -≤≤-,∴-≤ 2.5 -,∵整数k满足k<x1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式. 18.-1<x<3【解析】【分析】根据图象,写出函数图象在y=3下方部分的x的取值范围即可.【详解】解:如图,根据二次函数的对称性可知,-1<x<3时,y<3,故答案为:-1<x<3.【点睛解析:-1<x<3【解析】【分析】根据图象,写出函数图象在y=3下方部分的x的取值范围即可.【详解】解:如图,根据二次函数的对称性可知,-1<x<3时,y<3,故答案为:-1<x<3.【点睛】本题考查了二次函数与不等式和二次函数的对称性,此类题目,利用数形结合的思想求解更简便.19.【解析】【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【解析:3 2【解析】【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【详解】解:如图,取AB的中点E,连接CE,ME,AD,∵E是AB的中点,M是BD的中点,AD=2,∴EM为△BAD的中位线,∴112122EM AD ,在Rt△ACB中,AC=4,BC=3,由勾股定理得,5==∵CE为Rt△ACB斜边的中线,∴1155222 CE AB,在△CEM中,551122CM ,即3722CM,∴CM的最大值为3 2 .故答案为:3 2 .【点睛】本题考查了圆的性质,直角三角形的性质及中位线的性质,利用三角形三边关系确定线段的最值问题,构造一个以CM为边,另两边为定值的的三角形是解答此题的关键和难点.20.【解析】【分析】将△ABE绕点A旋转60°至△AGF的位置,根据旋转的性质可证△AEF和△ABG为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+E 解析:2【解析】【分析】将△ABE绕点A旋转60°至△AGF的位置,根据旋转的性质可证△AEF和△ABG为等边三角形,即可证明EF=AE,GF=BE,所以根据两点之间线段最短EA+EB+EC=GF+EF+EC≥GC,表示Rt△GMC的三边,根据勾股定理即可求出正方形的边长.【详解】解:如图,将△ABE绕点A旋转60°至△AGF的位置,连接EF,GC,BG,过点G作BC 的垂线交CB的延长线于点M.设正方形的边长为2m,∵四边形ABCD为正方形,∴AB=BC=2m,∠ABC=∠ABM=90°,∵△ABE绕点A旋转60°至△AGF,∴,,60,AG AB AF AE BAG EAF BE GF ==∠=∠=︒=,∴△AEF 和△ABG 为等边三角形,∴AE=EF,∠ABG=60°,∴EA+EB+EC=GF+EF+EC≥GC ,∴GC=1∵∠GBM=90°-∠ABG =30°,∴在Rt △BGM 中,GM=m ,,Rt △GMC 中,勾股可得222GC GM CM =+,即:2222)(1m m ++=+,解得:2m =,∴边长为2m =.【点睛】 本题考查正方形的性质,旋转的性质,等边三角形的性质和判定,含30°角的直角三角形,两点之间线段最短,勾股定理.能根据旋转作图,得出EA+EB+EC=GF+EF+EC≥GC 是解决此题的关键.21.10【解析】【分析】根据铅球落地时,高度,把实际问题可理解为当时,求x 的值即可.【详解】解:当时,,解得,(舍去),.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自解析:10【解析】【分析】根据铅球落地时,高度0y =,把实际问题可理解为当0y =时,求x 的值即可.【详解】解:当0y =时,212501233y x x =-++=, 解得,2x =-(舍去),10x =.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自变量与函数表达的实际意义;结合题意,选取函数或自变量的特殊值,列出方程求解是解题关键.22.【解析】【分析】先在CB 上取一点F ,使得CF=,再连接PF 、AF ,然后利用相似三角形的性质和勾股定理求出AF ,即可解答.【详解】解:如图:在CB 上取一点F ,使得CF=,再连接PF 、AF ,解析:2 【解析】【分析】先在CB 上取一点F ,使得CF=12,再连接PF 、AF ,然后利用相似三角形的性质和勾股定理求出AF ,即可解答.【详解】解:如图:在CB 上取一点F ,使得CF=12,再连接PF 、AF , ∵∠DCE=90°,DE=4,DP=PE ,∴PC=12DE=2, ∵14CF CP =,14CP CB = ∴CF CP CP CB= 又∵∠PCF=∠BCP ,∴△PCF ∽△BCP , ∴14PF CF PB CP == ∴PA+14PB=PA+PF ,∵PA+PF≥AF ,2==∴PA+14PB ≥.2∴PA+14PB 的最小值为2,故答案为1452.【点睛】本题考查了勾股定理、相似三角形的判定和性质等知识,正确添加常用辅助线、构造相似三角形是解答本题的关键.23.2+【解析】【分析】设线段AB=x,根据黄金分割点的定义可知AD=AB,BC=AB,再根据CD=AB﹣AD﹣BC可列关于x的方程,解方程即可【详解】∵线段AB=x,点C、D是AB黄金分割点解析:5【解析】【分析】设线段AB=x,根据黄金分割点的定义可知AD=352AB,BC=352AB,再根据CD=AB﹣AD﹣BC可列关于x的方程,解方程即可【详解】∵线段AB=x,点C、D是AB黄金分割点,∴较小线段AD=BC 35x -,则CD=AB﹣AD﹣BC=x﹣35x-=1,解得:x=5故答案为:5【点睛】本题考查黄金分割的知识,解题的关键是掌握黄金分割中,较短的线段=原线段的35倍.24.16【解析】【分析】【详解】延长EF交BC的延长线与H,在平行四边形ABCD中,∵AD=BC,AD∥BC∴△DEF∽△CHF, △DEM∽△BHM ∴ ,∵F是CD的中点∴DF解析:16【解析】【分析】【详解】延长EF交BC的延长线与H,在平行四边形ABCD中,∵AD=BC,AD∥BC∴△DEF∽△CHF, △DEM∽△BHM∴DE DFCH CF= ,2()DEMBMHS DES BH∆∆=∵F是CD的中点∴DF=CF∴DE=CH∵E是AD中点∴AD=2DE∴BC=2DE∴BC=2CH∴BH=3CH∵1DEMS∆=∴211()3BMH S ∆= ∴9BMH S ∆= ∴9CFH BCFM S S ∆+=四边形∴9DEF BCFM S S ∆+=四边形∴9DME DFM BCFM S S S ∆∆++=四边形∴19BCD S ∆+=∴8BCD S ∆=∵四边形ABCD 是平行四边形∴2816ABCD S =⨯=四边形故答案为:16.三、解答题25.(1)22,30;(2)2322CE =-;(3)CC '的长223π=【解析】【分析】(1)直接利用勾股定理可求出AC 的长,再利用特殊角的三角函数值可得出∠DAC 的度数(2)设CE=x ,则DE=2x -,根据已知条件得出AD B DEC '',再利用相似三角形对应线段成比例求解即可.(3)点C?运动的路径长为´CC 的长,求出圆心角,半径即可解决问题.【详解】解:(1)连接AC22AC 2622AB BC +=+=∵21sin 30222AB AC ===︒ ∴ACB DAC 30∠∠==︒(2)由已知条件得出,A 2B '=,D 2B '=,D 62C '=易证AB D DC E ''∆∆∽∴C E DC B D AB ''='' ∴6222CE -= ∴2322CE =-(3)如图所示,C'运动的路径长为CC '的长由翻折得:30C AD DAC '∠=∠=︒∴60CAC '∠=︒∴CC '的长60221803π⋅== 【点睛】本题考查的知识点有相似三角形的判定与性质,特殊的三角函数值,弧长的相关计算等,解题的关键是弄清题意,综合利用各知识点来求解.26.(1)y =(x -1)2-4或y =x 2-2x -3;(2)y =-(x -1)2+4【解析】【分析】(1)由表格中的数据,得出顶点坐标,设出函数的顶点式,将(0,-3)代入顶点式即可;(2)由(1)得顶点坐标和顶点式,再根据关于x 轴对称的点的横坐标相同,纵坐标互为相反数求出抛物线的顶点坐标,然后根据新抛物线与原抛物线形状相同,开口方向向下写出解析式即可.【详解】(1)根据题意,二次函数图像的顶点坐标为(1,-4),设二次函数的表达式为 y =a (x -1)2-4把(0,-3)代入y =a (x -1)2-4得,a =1∴y =(x -1)2-4或y =x 2-2x -3(2)解:∵y= y =(x -1)2-4,∴原函数图象的顶点坐标为(1,-4),∵描出的抛物线与抛物线y =x 2-2x -3关于x 轴对称,∴新抛物线顶点坐标为(1,4),∴这条抛物线的解析式为y=-(x-1)2+4,故答案为:y=-(x-1)2+4.【点睛】本题考查了本题考查了待定系数法求二次函数解析式、二次函数的图象、二次函数的性质以及二次函数图象与几何变换,根据顶点的变化确定函数的变化,根据关于x轴对称的点的坐标特征求出描出的抛物线的顶点坐标是解题的关键.27.1,-2【解析】【分析】把方程的一个根–4,代入方程,求出k,再解方程可得.【详解】【点睛】考察一元二次方程的根的定义,及应用因式分解法求解一元二次方程的知识.28.(1)13;(2)13,见解析【解析】【分析】(1)袋中一共有3个球,有3种等可能的抽取情况,抽取红球的情况只有1种,摸到红球的概率即可求出;(2)分别使用树状图法或列表法将抽取球的结果表示出来,第一次共有3种不同的抽取情况,第二次有2种不同的抽取情况,所有等可能出现的结果有6种,找出两次都是白球的的抽取结果,即可算出概率.【详解】解:(1)∵袋中一共有3个球,有3种等可能的抽取情况,抽取红球的情况只有1种,∴1P=3(摸到红球);(2)画树状图,根据题意,画树状图结果如下:一共有6种等可能出现的结果,两次都抽取到白球的次数为2次,∴21P==63(两次白球);用列表法,根据题意,列表结果如下:一共有6种等可能出现的结果,两次都抽取到白球的次数为2次,∴21P==63(两次白球).【点睛】本题考查了列表法或树状图法求概率,用图表的形式将第一次、第二次抽取所可能发生的情况一一列出,避免遗漏.29.(1)DE与⊙O相切;理由见解析;(2)4.【解析】【分析】(1)连接OD,由D为AC的中点,得到AD CD=,进而得到AD=CD,根据平行线的性质得到∠DOA=∠ODE=90°,求得OD⊥DE,于是得到结论;(2)连接BD,根据四边形对角互补得到∠DAB=∠DCE,由AD CD=得到∠DAC=∠DCA =45°,求得△ABD∽△CDE,根据相似三角形的性质即可得到结论.【详解】(1)解:DE与⊙O相切证:连接OD,在⊙O中∵D为AC的中点∴AD CD=∴AD=DC∵AD=DC,点O是AC的中点∴OD⊥AC∴∠DOA=∠DOC=90°∵DE∥AC∴∠DOA=∠ODE=90°∵∠ODE=90°∴OD⊥DE∵OD⊥DE,DE经过半径OD的外端点D∴DE与⊙O相切.(2)解:连接BD∵四边形ABCD是⊙O的内接四边形∴∠DAB+∠DCB=180°又∵∠DCE+∠DCB=180°∴∠DAB=∠DCE∵AC为⊙O的直径,点D、B在⊙O上,∴∠ADC=∠ABC=90°∵AD CD=,∴∠ABD=∠CBD=45°∵AD=DC,∠ADC=90°∴∠DAC=∠DCA=45°∵DE∥AC∴∠DCA=∠CDE=45°在△ABD和△CDE中∵∠DAB=∠DCE,∠ABD=∠CDE=45°∴△ABD∽△CDE∴ABCD=ADCE∴6CD=163AD∴AD=DC=2, CE=163,AB=6,在Rt△ADC中,∠ADC=90°,AD=DC=2,∴AC22AD DC+8∴⊙O的半径为4.【点睛】本题考查了直线与圆的位置关系,等腰直角三角形的性质,圆周角定理,相似三角形的判定和性质,正确的识别图形是解题的关键.30.(1)120y x =-+;(2)销售单价定为87元时,商场可获得最大利润,最大利润是891元.【解析】【分析】(1)根据题意将(65,55),(75,45)代入解二元一次方程组即可;(2)表示出利润解析式,化成顶点式讨论即可解题.【详解】解:()1根据题意得65557545k b k b +=⎧⎨+=⎩, 解得1120k b =-⎧⎨=⎩. 所求一次函数的表达式为y x 120=-+.(2)()()w x 60x 120=--+2x 180x 7200=-+-2(x 90)900=--+,∵抛物线的开口向下,∴当x 90<时,w 随x 的增大而增大,又因为获利不得高于45%,60 1.4587⨯=,所以60x 87≤≤,∴当x 87=时,2w (8790)900891=--+=.∴当销售单价定为87元时,商场可获得最大利润,最大利润是891元.【点睛】本题考查了二次函数的实际应用,中等难度,表示出二次函数的解析式是解题关键.31.(1)30,6;(2)①457;②15322-≤t ≤15322+. 【解析】【分析】(1)设点Q 的运动速度为a ,则由图②可看出,当运动时间为5s 时,△PDQ 有最大面积450,即此时点Q到达点B处,可列出关于a的方程,即可求出点Q的速度,进一步求出AB的长;(2)①如图1,设AB,CD的中点分别为E,F,当点O在QD上时,用含t的代数式分别表示出OF,QC的长,由OF=12QC可求出t的值;②设AB,CD的中点分别为E,F,⊙O与AD,BC的切点分别为N,G,过点Q作QH⊥AD 于H,如图2﹣1,当⊙O第一次与PQ相切于点M时,证△QHP是等腰直角三角形,分别用含t的代数式表示CG,QM,PM,再表示出QP,由QP QH可求出t的值;同理,如图2﹣2,当⊙O第二次与PQ相切于点M时,可求出t的值,即可写出t的取值范围.【详解】(1)设点Q的运动速度为a,则由图②可看出,当运动时间为5s时,△PDQ有最大面积450,即此时点Q到达点B处,∵AP=6t,∴S△PDQ=12(60﹣6×5)×5a=450,∴a=6,∴AB=5a=30,故答案为:30,6;(2)①如图1,设AB,CD的中点分别为E,F,当点O在QD上时,QC=AB+BC﹣6t=90﹣6t,OF=4t,∵OF∥QC且点F是DC的中点,∴OF=12 QC,即4t=12(90﹣6t),解得,t=457;②设AB,CD的中点分别为E,F,⊙O与AD,BC的切点分别为N,G,过点Q作QH⊥AD 于H,如图2﹣1,当⊙O第一次与PQ相切于点M时,∵AH+AP=6t,AB+BQ=6t,且BQ=AH,∴HP=QH=AB=30,∴△QHP是等腰直角三角形,∵CG=DN=OF=4t,∴QM=QG=90﹣4t﹣6t=90﹣10t,PM=PN=60﹣4t﹣6t=60﹣10t,∴QP=QM+MP=150﹣20t,∵QP QH,∴150﹣20t=,∴t=15322-;如图2﹣2,当⊙O第二次与PQ相切于点M时,∵AH+AP=6t,AB+BQ=6t,且BQ=AH,∴HP=QH=AB=30,∴△QHP是等腰直角三角形,∵CG=DN=OF=4t,∴QM=QG=4t﹣(90﹣6t)=10t﹣90,PM=PN=4t﹣(60﹣6t)=10t﹣60,∴QP=QM+MP=20t﹣150,∵QP=2QH,∴20t﹣150=302,∴t=15322+,综上所述,当PQ与⊙O有公共点时,t的取值范围为:1532-≤t≤1532+.【点睛】 本题考查了圆和一元一次方程的综合问题,掌握圆切线的性质、解一元一次方程的方法、等腰直角三角形的性质是解题的关键.32.(1)265y x x =-+-;(2)1258S =,点P 坐标为515,24⎛⎫ ⎪⎝⎭;(3)点M 的坐标为7837,2323⎛⎫- ⎪⎝⎭, 6055,2323⎛⎫- ⎪⎝⎭ 【解析】【分析】(1)利用B (5,0)用待定系数法求抛物线解析式;(2)作PQ ∥y 轴交BC 于Q ,根据12PBC S PQ OB ∆=⋅求解即可; (3)作∠CAN=∠NAM 1=∠ACB ,则∠A M 1B=3∠ACB, 则∆ NAM 1∽∆ A C M 1,通过相似的性质来求点M 1的坐标;作AD ⊥BC 于D,作M 1关于AD 的对称点M 2, 则∠A M 2C=3∠ACB,根据对称点坐标特点可求M 2的坐标.【详解】(1)把()5,0B 代入265y ax x =+-得253050a +-=1a =-.∴265y x x =-+-;(2)作PQ ∥y 轴交BC 于Q ,设点()2,65P x x x -+-,则∵()5,0B∴OB=5, ∵Q 在BC 上,∴Q 的坐标为(x ,x-5),∴PQ=2(65)(5)x x x -+---=25x x -+, ∴12PBC S PQ OB ∆=⋅ =21(5)52x x -+⨯ =252522x x -+ ∴当52x =时,S 有最大值,最大值为1258S =, ∴点P 坐标为515,24⎛⎫ ⎪⎝⎭. (3)如图1,作∠CAN=∠NAM 1=∠ACB ,则∠A M 1B=3∠ACB,∵∠CAN=∠NAM 1,∴AN=CN,∵265y x x =-+-=-(x-1)(x-5),∴A 的坐标为(1,0),C 的坐标为(0,-5), 设N 的坐标为(a,a-5),则∴2222(1)(5)(55)a a a a -+-=+-+, ∴a= 136, ∴N 的坐标为(136,176-), ∴AN 2=221317(1)()66-+-=16918,AC 2=26, ∴22169113182636AN AC =⨯=, ∵∠NAM 1=∠ACB ,∠N M 1A=∠C M 1A , ∴∆ NAM 1∽∆ A C M 1,∴11AMANAC CM=,∴21211336 AMCM=,设M1的坐标为(b,b-5),则∴222236[(1)(5)]13[(55)]b b b b-+-=+-+,∴b1= 7823,b2=6(不合题意,舍去),∴M1的坐标为7837(,)2323-,如图2,作AD⊥BC于D,作M1关于AD的对称点M2, 则∠A M2C=3∠ACB,易知∆ADB是等腰直角三角形,可得点D的坐标是(3,-2),∴M2横坐标= 7860232323⨯-=,M2纵坐标=3755 2(2)()2323⨯---=-,∴M2的坐标是6055(,)2323-,综上所述,点M的坐标是7837(,)2323-或6055(,)2323-.【点睛】本题考查了二次函数与几何图形的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质及相似三角形的判定与性质,会运用分类讨论的思想解决数学问题.。
2007-2008年上学期九年级数学期末试卷人教新课标九年级上
2007—2008年度上学期九年级数学期未试卷命题人:东江初中 刘兴旺 友情提示:本试卷满分120分,共有六个大题,25个小题,考试时间为120分钟。
亲爱的同学,你好!今天是展示你才能的时候了,只要你仔细审题、认真答题,把平常的水平发挥出来,你就会有出色的表现,放松一点,相信自己的实力!(注:一、填空题(每题3分,共30分)1.已知一元二次方程ax 2+x-b=0的一根为1,则a-b 的值是____________. 2、写出一个无理数使它与32+的积是有理数3. 中任取其中两个数相乘.积为有理数的概率为 。
4.直线y =x +3上有一点P (m -5,2m ),则P 点关于原点的对称点P ′为______. 5.若式子xx+1有意义,则x 的取值范围是 . 6= .7、如图同心圆,大⊙O 的弦AB 切小⊙O 于P且AB=6,则圆环的面积为 。
8.如图,P 是射线y =53x(x >0)上的一点,以圆心的圆与y 轴相切于C 点,与x A 、B 两点,若⊙P 的半径为5,则A 点坐标是9.在半径为2的⊙O 中,弦AB 的长为2,则弦AB 所对的圆周角的度数为 。
10、如图,在△ABC 中,BC =4,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上的一点,且∠EPF =40°,则图中阴影部分的面积是__________(结果保留π)二、选择题(每题3分,共18分)11. 下列成语所描述的事件是必然发生的是( ).A. 水中捞月B. 拔苗助长C. 守株待免D. 瓮中捉鳖12.如图,点A 、C 、B 在⊙O 上,已知∠AOB =∠ACB = a .则a 的值为( ). A. 135° B. 120° C. 110° D. 100°13.圆心在原点O ,半径为5的⊙O ,则点P (-3,4)与⊙O 的位置关系是( ). A. 在OO 内 B. 在OO 上 C. 在OO 外 D. 不能确定 14、已知两圆的半径是方程01272=+-x x 两实数根,圆心距为8,那么这两个圆的位置关系是( )A.内切B.相交C.外离D.外切15.一个均匀的立方体骰子六个面上标有数1,2,3,4,5,6,若以连续掷两次骰子得到的数m n 和作为点P 的坐标,则点P 落在反比例函数6y x=图象与坐标轴所围成区域内(含落在此反比例函数的图象上的点)的概率是( )A. 18B. 29C. 1118D. 71816、三角形三边垂直平分线的交点是三角形的( ) A .外心 B.内心 C.重心 D.垂心三、解答题(共3小题,第17小题6分,第18、19小题各7分)17.计算: 12-1-⎝⎭+)13(3--20080-23-18.已知a 、b 、c 均为实数,且2-a +︳b+1︳+ ()23+c =0求方程02=++c bx ax 的根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利川市2007—2008学年九年级第一学期期末考试
数学试卷
考生须知:全卷满分为120分,考试时间120分钟.
一、你能填得又快又准吗?
(共10小题,每题3分,共30分) 1.方程x 2
-3x+2=0的解是 ____________
2.若点(2,1)在双曲线k
y x
=
上,则k 的值为_______。
3.命题“等腰梯形的对角线相等”。
它的逆命题是。
4.小红、小芳、小明在一起做游戏时需要确定作游戏的先后顺序,他们约定用“锤子、剪子、布”的方式确定。
请问在一个回合中三个人都出“布”的概率是 。
5.菱形的面积为24,其中的一条较短的对角线长为6,则此菱形的周长为_______。
6.已知一元二次方程
043712
2=-+++-a a ax x a )(有一个根为零,则a 的值 为 _。
7.等腰三角形的底角为15°,腰长为20cm ,则此三角形的面积为 。
8.请写出一个根为1=x ,另一根满足11<<-x 的一元二次方程 。
9.如图,反比例函数图像上一点A ,过A 作AB ⊥x 轴于B ,若S △AOB =5, 则反比例函
数解析式为______ ___。
10.如下图,边长为3的正方形ABCD 绕点C 按顺时针方向旋转30º后得到正方形EFCG ,EF 交AD 于点H
温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现!
D
B
C
A
H
G
E
F
9题图
10题图
二、你一定能选对!(本题共10小题,每题3分,共30分)
11.如右图摆放的几何体的左视图是( )
12.下列四幅图形中,表示两颗小树在同一时刻阳光下的影子的图形可能是( )。
13.有一对酷爱运动的年轻夫妇给他们12个月大的婴儿3块分别写有“
20”, “08”和
“北京”的字块,如果婴儿能够拼排成“2008北京”或者“北京2008”,则他们就给婴儿奖励.假设婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率是 ( ) (A)
16 (B)14 (C)13 (D)12
14.小明用两根同样长的竹棒做对角线,制作四边形的风筝,则该风筝的形状一定是( )
A 、矩形
B 、正方形
C 、等腰梯形
D 、无法确定
15.到三角形各顶点的距离相等的点是三角形 ( )
A 、三边的垂直平分线的交点
B 、三条高的交点
C 、三条角平分线的交点
D 、三条中线的交点
16. 电影院呈阶梯或下坡形状的主要原因是( ).
A.为了美观
B. 减小盲区
C.增大盲区
D. 盲区不变 17.学生冬季运动装原来每套的售价是100元,后经连续两次降价,现在的售价是81
元,则平均每次降价的百分数是( )
A
B
C
D
A 、9%
B 、8.5%
C 、9.5%
D 、10% 18.已知正比例函数y =k 1x (k 1≠0)与反比例函数y =
2
k x
(k 2≠0)的图像有一个交点的坐标为(-2,-1),则它的另一个交点的坐标是( )
A 、 (2,1)
B 、 (-1,-2)
C 、 (-2,1)
D 、 (2,-1)
19.甲、乙两地相距60km ,则汽车由甲地行驶到乙地所用时间y (小时)与行驶速度x (千米/时)之间的函数图像大致是( )
20.元旦节班上数学兴趣小组的同学,互赠新年贺卡,每两个同学都相互赠送一张, 小明统计出全组共互送了90张贺年卡,那么数学兴趣小组的人数是多少?设数学兴
趣小组人数为x 人,则可列方程为( )
A 、x(x-1)=90
B 、x(x-1)=2×90
C 、x(x-1)=90÷2
D 、x(x+1)=90
三、解答题:
21.解方程(每题5分,共10分)
①2
2510x x +-= ② (x-3)2
=2(3-x)
22.(本题6分)如下图,路灯下,一墙墩(用线段AB 表示)的影子是BC ,小明 (用线段DE 表示)的影子是EF ,在M 处有一颗大树,它的影子是MN 。
B
C
(1) 试确定路灯的位置(用点P 表示)。
(2) 在图中画出表示大树高的线段。
(3) 若小明的眼睛近似地看成是点D ,试画图分析小明能否看见大树。
23.(本题满分6分)
已知:如图,Rt △ABC ≌Rt △ADE ,∠ABC =∠ADE=90°,试以图中标有字母的点为端点,连结两条线段,如果你所连结的两条线段满足相等、垂直或平行关系中的一种,那么请你把它写出来并证明.
24.(本题满分6分)如图,四边形ABCD 中,对角线相交于点O ,E 、F 、G 、H 分别 是AB ,BD , BC ,AC 的中点。
N
M
F
E
D
C
B
A
D
A
C
E
B
F
(1)求证:四边形EFGH 是平行四边形; (2)当四边形ABCD 满足一个什么条件时,四边
形EFGH 是菱形?并证明你的结论。
25.(本题满分7分)如图,E 是正方形ABCD 的对角线BD 上一点,EF ⊥BC ,EG ⊥CD ,垂足分别是F 、G.求证:AE =FG .
26.(本题满分7分)你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积) s (mm 2)的反比例函数,其图像如图所示。
A D
C
B
E
G
F
图9
⑴写出y与s的函数关系式;
⑵求当面条粗1.6mm2时,面条的总长度
是多少米?
27.(本题满分8分)宏达水果商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,出售价格每涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?
28.(本题满分10分)已知一次函数y= 2x-k 与反比例函数x
k y 2
+=的图像相交于A 和B 两点.,如果有一个交点A 的横坐标为3, (1) 求k 的值;
(2) 求A 、B 两点的坐标;
(3) 求△AOB 的面积;
利川市2007—2008学年九年级第一学期期末考试
参考答案
一、填空题(每小题3分,30分) 二、选择题(每小题3分,共30分)
21.①x 1=
4
33
5,43352--=
+-x ②x 1=3, x 2=1 22.(1)如图 (2)树高为MN 。
(3)连接AD 与树MN 相交,所以小明能看到大树。
23
、答案不唯一,只要学生做对即可
24.(1)证明:∵E 、F 分别是AD ,BD 的中点,G 、H 分别中BC ,AC 的中点
∴EF ∥AB ,EF =
21AB ;GH ∥AB ,GH =2
1
AB ∴EF ∥GH ,EF =GH ∴四边形EFGH 是平行四边形
(2)当AB=CD 时,四边形EFGH 是菱形。
理由: ∵E 、F 分别是AD ,BD 的中点,G 、F 分别是BC ,AC 的中点
N
M
F
E
D
C
B
A
P
N
∴EF =
21AB , FG =2
1
CD ∵AB=CD ∴EF =FG ∴平行四边形EFGH 是菱形
25. 解:连结EC.
∵EF ⊥BC ,EG ⊥CD ,∴四边形EFCG 为矩形.∴FG=CE. 又BD 为正方形ABCD 的对角线,∴∠ABE=∠CBE. 又BE=BE ,AB=CB ,∴△ABE ≌△CBE. ∴AE=EC. ∴AE=FG. 26.解:(1)设y 与s 的函数关系式为s
k
y =
, 将s=4,y=32代入上式,解得k=4×32=128
所以y 与s 的函数关系式s
y 128
=
(2)当s=1.6时,806
.1128
==
y 所以当面条粗1.6mm 2
时,面条的总长度是80米
27.解:设每千克应涨价x 元,根据题意,得
(10+x )(500-20x)=6000解得x 1=5, x 2=10 ∵要使顾客得到实惠∴x 1=10舍去 答:每千克应涨价5元。
28.解:(1)由已知x=3,2×3-k=
3
2
+k ,解得k=4 (2) k=4时,一次函数为y= 2x-4,反比例函数为x
y 6=
2x-4x
6
=
解得x 1=3, x 2=-1∴A (3,2)B (-1,-6) (3)直线AB 与x 轴交点坐标为(2,0) ∴S △AOB =
21×2×2+2
1
×2×6=8。