高二数学第二课堂训练十概率(汇编)
概率难题汇编及答案解析0001
概率难题汇编及答案解析一、选择题1 .布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出第二个球,两次都摸出白球的概率是(4 A.-92C.—31D.-3【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果, 的情况,再利用概率公式求解即可求得答案.【详解】可求得两次都摸到白球开蜡白E1红/K A\/T\S白红白白红白白红则共有9种等可能的结果,两次都摸到白球的有4种情况,4• ••两次都摸到白球的概率为-9故选A.【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.2.在一个不透明的袋中,装有3个红球和1个白球,这些球除颜色外其余都相同.搅均后从中随机一次模出两个球,这两个球都是红球的概率是(1 A. 21B. 31D. 4【答案】A【解析】【分析】列举出所有情况,看两个球都是红球的情况数占总情况数的多少即可. 【详解】画树形图得:解:画树状图得:一共有12种情况,两个球都是红球的有 6种情况,故这两个球都是红球相同的概率是12=1 故选A . 【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结 果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此 题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.3.岐山县各学校开展了第二课堂的活动 ,在某校国学诗词组、篮球足球组、陶艺茶艺组三个活动组织中,若小斌和小宇两名同学每人随机选择其中一个活动参加 ,则小斌和小宇选到同一活动的概率是(等可能的结果数,再找出小斌和小宇两名同学的结果数,然后根据概率公式计算即可. 【详解】所以小斌和小宇两名同学选到同一课程的概率 故选B. 【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列 出所有可能的结果,列表法适合于两步完成的事件,树状图法适用于两步或两步以上完成 的事件.用到的知识点为:概率 =所求情况数与总情况数之比.4.下列事件是必然事件的是()A .某彩票中奖率是1%,买100张一定会中奖/1\A\ A\ A\白红红白红红白红红红红红 1B.-3 1C.-61A.-2【答案】B 【解析】 【分析】1D.-9A 、B 、C 表示)展示所有9种(国学诗词组、 B/1\ A B CC共有9种等可能的结果数,'篮球足球组、陶艺茶艺组分别用A. B. C 表示)C/1\ABC3,画树状图为:A/"TVS 直右•• •这两辆汽车行驶方向共有 种,2• ••一辆向右转,一辆向左转的概率为-9故选:B .B .长度分别是3cm,5cm,6cm 的三根木条能组成一个三角形 C. 打开电视机,正在播放动画片 D. 2018年世界杯德国队一定能夺得冠军【答案】B 【解析】 【分析】必然事件就是一定发生的事件,即发生的概率是 【详解】1的事件.A 、 某彩票中奖率是1%,买100张一定会中奖,属于随机事件,不符合题意;B 、 由于6-5< 3< 5+6,所以长度分别是 3cm , 5cm , 6cm 的三根木条能组成一个三角形, 属于必然事件,符合题意;C 打开电视机,正在播放动画片,属于随机事件,不符合题意;D 、2018年世界杯德国队可能夺得冠军,属于随机事件,不符合题意. 故选:B .【点睛】此题考查必然事件、不可能事件、随机事件的概念,理解概念是解题关键.5.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相 同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是2A -■ 3【答案】B 【分析】可以采用列表法或树状图求解•可以得到一共有 种结果数,根据概率公式计算可得. 【详解】画树形图”如图所示:9种情况,一辆向右转, 一辆向左转有2左宣右I9种可能的结果, 其中一辆向右转,一辆向左转的情况有【点睛】此题考查了树状图法求概率•解题的关键是根据题意画出树状图,再由概率=所求情况数 与总情况数之比求解6.在一个不透明的布袋中,红色、黑色、白色的小球共有 同•乐乐通过多次摸球试验后发现, 则口袋中白色球的个数很可能是(白色球的个数是50? (1 27%- 43%)= 15个, 故选:B. 【点睛】此题考查概率的计算公式,频率与概率的关系,正确理解频率即为概率是解题的关键7.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加 其中一个社团,那么征征和舟舟选到同一社团的概率是(3 9考点:简单事件的概率.&如图,在菱形 ABCD 中,AC 与BD 相交于点0•将菱形沿EF 折叠,使点C 与点0重 合.若在菱形ABCD 内任取一点,则此点取自阴影部分的概率为()50个,除颜色外其他完全相摸到红色球、黑色球的频率分别稳定在27%和 43%,A . 20【答案】B 【解析】 【分析】由频率得到红色球和黑色球的概率, 【详解】B . 15 C. 10 D . 5用总数乘以白色球的概率即可得到个数2 A .3【答案】C 【解析】 1 B .21C.-3 1D.-4【分析】 【详解】用数组(X , Y )中的X 表示征征选择的社团, 丫表示舟舟选择的社团. A , B , C 分别表示航模、彩绘、泥塑三个社团, 于是可得到(A ,A ),( A ,A ),( C ,B ),(A ,A ),( B , (C , C ),B ),(c, B ) ,( A ,C ),( B, A ),( B ,B ),( B ,C ),( C , 共9中不同的选择结果,而征征和舟舟选到同一社团的只有C )三种, 所以,所求概率为1,故选C.9•••此点取自阴影部分的概率为-AC BD 2故选C.. 【点睛】本题考查了几何概率的计算方法:用整个几何图形的面积 某个事件所占有的面积 m 表示这个事件发生的结果数, 件的概率为:Pmn9.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出 一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球•两次都摸到黄球的概 率是( )c.5D.-8【解析】 【分析】根据菱形的表示出菱形 ABCD 的面积,由折叠可知 形CEOF 的面积,然后根据概率公式计算即可 .【详解】EF 是△BCD 的中位线,从而可表示出菱1 菱形ABCD 的面积=—AC BD ,2•••将菱形沿EF 折叠,使点C 与点0重合,••• EF 是△BCD 的中位线,••• EF=1BD,11•••菱形 CEOF 的面积=—0C EF -AC BD ,2 - •••阴影部分的面积=1AC 2 BD 1AC BD8|ACBD3-AC BD .8 n 表示所有等可能的结果数,用然后利用概率的概念计算出这个事4A.-1B.-32 C.-91D.-9B.-5A.-3【答【答案】A 【解析】【分析】 首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然 后利用概率公式求解即可求得答案•注意此题属于放回实验. 【详解】 画树状图如下:共有 9种等可能结果,其中两次都摸到黄球的有 4种结果,•••两次都摸到黄球的概率为49故选A . 【点睛】此题考查的是用列表法或树状图法求概率的知识•注意画树状图与列表法可以不重复不遗 漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上 完成的事件;解题时要注意此题是放回实验还是不放回实验.10.动物学家通过大量的调查估计:某种动物活到 20岁的概率为0.8,活到25岁的概率为0.5,活到30岁的概率为0.3,现在有一只20岁的动物,它活到30岁的概率是( )【解析】 【分析】先设出所有动物的只数,根据动物活到各年龄阶段的概率求出相应的只数,再根据概率公 式解答即可. 【详解】 解:设共有这种动物 x 只,则活到20岁的只数为0.8X ,活到30岁的只数为0.3X , 故现年20岁到这种动物活到30岁的概率为 故选:B .【点睛】本题考查概率的简单应用,用到的知识点为:概率3A.-5【答案】BB .35C.-83D.—10=所求情况数与总情况数之比. 由树状图可知,11.下列事件中,属于不可能事件的是( )A. 某个数的绝对值大于 0B.某个数的相反数等于它本身C.任意一个五边形的外角和等于540 ° D.长分别为3, 4, 6的三条线段能围成一个三角形【答案】C 【解析】 【分析】直接利用随机事件以及确定事件的定义分析得出答案. 【详解】故答案选C. 【点睛】本题考查的知识点是随机事件以及确定事件,解题的关键是熟练的掌握随机事件以及确定 事件.12. 有大小、形状、颜色完全相同的四个乒兵球,球上分别标有数字 个球放入不透明的袋中搅匀, 为奇数的概率是(【分析】根据题意先画出树状图,得出所有等可能的情况数和两个球上的数字之积为奇数的情况 数,然后根据概率公式即可得出答案. 【详解】根据题意画树状图如下:•••一共有12种等可能的情况数,这两个球上的数字之积为奇数的有2 1•••这两个球上的数字之积为奇数的概率是—=1 12 6故选A . 【点睛】此题考查的是树状图法求概率;树状图法适合两步或两步以上完成的事件;解题时要注意A 、B 、C 、D 、 某个数的绝对值大于 0,是随机事件,故此选项错误; 某个数的相反数等于它本身,是随机事件,故此选项错误; 任意一个五边形的外角和等于 540 °是不可能事件,故此选项正确; 长分别为3,4, 6的三条线段能围成一个三角形,是必然事件,故此选项错误. 2,3,5,6,将这四 不放回地从中随机连续抽取两个,则这两个球上的数字之积1A.-6【答案】A B .2 C.—31 D.—4木木3 563562362种情况,此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.181 11113. 由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动 两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说A. 两个转盘转出蓝色的概率一样大B. 如果A 转盘转出了蓝色,那么 B 转盘转出蓝色的可能性变小了C. 先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率不同 1 6【答案】D 【解析】由于共有6种等可能结果,而出现红色和蓝色的只有 1种,所以游戏者配成紫色的概率为16故选D .14•小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字 1, 2, 3, 4, 5, 6).记甲立方体朝上一面上的数字为X 、乙立方体朝上一面朝上的数字为y ,这6y=-上的概率为()XD .游戏者配成紫色的概率为A 、 A 盘转出蓝色的概率为 如果A 转盘转出了蓝色,由于A 、B 两个转盘是相互独立的,先转动 游戏者配成紫色的概率相同,此选项错误; D 、画树状图如下:B 、C 、 1 1 —、B 盘转出蓝色的概率为 -,此选项错误;23那么 B 转盘转出蓝色的可能性不变,此选项错误;X 、 样就确定点P 的一个坐标(X , y ),那么点P 落在双曲线【答案】C 【解析】 画树状图如下:6•••一共有36种等可能结果,点 P 落在双曲线y=—上的有(1, 6),( 2, 3),( 3,x2),( 6, 1),•••点P 落在双曲线y=—上的概率为: —=-•故选C.x 36 915.下列说法:① “明天降雨的概率是 50%”表示明天有半天都在降雨; ② 无理数是开方开不尽的数;其中正确的个数有(A . 1个【答案】A 【解析】 【分析】① 根据概率的定义即可判断;② 根据无理数的概念即可判断;③ 根据不可能事件的概念即可判断;④根据平方根的表示方法即可判断. 【详解】① “明天降雨的概率是 50%”表示明天有50%的可能会降雨,而不是半天都在降雨,故错 误;③若a 为实数,则 a 0是不可能事件; ④16的平方根是4,用式子表示是用B . 2个D . 4个②无理数是无限不循环小数,不只包含开方开不尽的数,故错误;【分析】直接利用概率公式进行求解,即可得到答案. 【详解】解:•••共准备了 100张抽奖券,设一等奖••• 1张抽奖券中奖的概率是:10 20 30= 0.6,100故选:D . 【点睛】本题考查了概率公式:随机事件 A 的概率P (A )=事件A 可能出现的结果数除以所有可能 出现的结果数.17.向一个半径为2的圆中投掷石子(假设石子全部投入圆形区域内),那么石子落在此 圆的内接正方形中的概率是().A. d2【答案】D 【解析】 【分析】先得出圆内接正方形的边长,再用正方形的面积除以圆的面积即可得. 【详解】•••半径为2的圆内接正方形边长为 2^2,•••圆的面积为4n 正方形的面积为 8, 故选D .④16的平方根是 综上,正确的只有 故选:A . 【点睛】本题主要考查概率, 4,用式子表示是 护64,故错误;③,无理数的概念,绝对值的非负性,平方根的形式,掌握概率,无理数 的概念,绝对值的非负性,平方根的形式是解题的关键.16.某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.若每张抽奖券获奖的可能性相同,则 1张抽奖券中奖的概率是()A . 0.1【答案】D【解析】B . 0.2 C. 0.3 D . 0.610个,二等奖20个,三等奖 30个.B. 2则石子落在此圆的内接正方形中的概率是旦_24【点睛】本题考查了几何概率的求法:求某事件发生在某个局部图形的概率等于这个局部的面积与整个图形的面积的比.18.如图,在AABC中,AB= AC, / BAC= 90°直角/ EPF的顶点P是BC的中点,两边PE PF分别交AB, AC于点E, F,现给出以下四个结论:(1 )AE= CF; (2)AEPF是等1腰直角三角形;(3)S四边形AEPF=—S ABC;(4)当/ EPF在AABC内绕顶点P旋转时始终有2EM AP.(点E不与A、B重合),上述结论中是正确的结论的概率是(【答案】D【解析】△AEP^A CFP然后能推理得到选项A, B, C都是正确的,当EF= APAP2 2PF2,由AP的长为定值,而PF的长为变化值可知选项正确•从而求出正确的结论的概率.【详解】解:••• AB= AC, / BAC= 90°1•- EAP - BAC 45 ,2(1 )在△AEP 与ACFP 中,•••/ EAP=/ C= 45°, AP= CP•••△ AEP^A CFPAP 丄BC CP .2/ APE=/ CPF= 90° -/ APF,••• AE= CF. ( 1)正确;(2)由(1)知,△AEP^A CFP, ••• PE= PF,又•••/ EPF= 90°•••△ EPF是等腰直角三角形.(2)正确;(3)•••△ AEP^^ CFP 同理可证△APF^△ BPE1…S四边形AEPF ^/AEP S vAPF Sg PF S B PE? S VABC •A. 1个B. 3个1C.-43D.—4【分析】根据题意,容易证明始终相等时,可推出点P是BC的中点,(3)正确;(4)当EF = AP 始终相等时,由勾股定理可得:EF22PF 2则有:AP22PF 2,••• AP 的长为定值,而 PF 的长为变化值, ••• AP 2与2PF 2不可能始终相等,即EF 与AP 不可能始终相等,(4)错误, 综上所述,正确的个数有 3个,3故正确的结论的概率是 一4故选:D . 【点睛】用到的知识点为:概率 =所求情况数与总情况数之比;解决本题的关键是利用证明三角形全 等的方法来得到正确结论.【答案】D 【解析】试题分析:分别根据必然事件的定义,方差的性质,众数的定义及抽样调查的定义进行判断,、打开电视,正在播放《新闻联播》 ”是随机事件,故本选项错误; B 、一组数据的波 动越大,方差越大,故本选项错误; C 数据1 , 1, 2, 2, 3的众数是1和2,故本选项错 误;D 、想了解某种饮料中含色素的情况,宜采用抽样调查,故本选项正确. 故选D .考点:全面调查与抽样调查;众数;方差;随机事件.).打开电视,正在播放《新闻联播》 ”是必然事件一组数据的波动越大,方差越小数据1, 1, 2, 2, 3的众数是3想了解某种饮料中含色素的情况,宜采用抽样调查19.下列说法中正确的是(A .B . D .20.从一副(54张)扑克牌中任意抽取一张,正好为 2 A . 一 27 【答案】A 【解析】 【分析】用K 的扑克张数除以一副扑克的总张数即可求得概率.1 B.-4C.K 的概率为()1541D.-2【详解】解:•一副扑克共54张,有4张K, •••正好为K的概率为—=-2.54 27故选:A.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件mA出现m种结果,那么事件A的概率P (A)=—n。
部编版高中数学必修二第十章概率带答案重点知识点大全
(名师选题)部编版高中数学必修二第十章概率带答案重点知识点大全单选题1、某制药厂正在测试一种减肥药的疗效,有1000名志愿者服用此药,体重变化结果统计如下:C .0.5D .0.62、若连续抛掷两次质地均匀的骰子,得到的点数分别为m ,n ,则满足m 2+n 2<25的概率是( ) A .12B .1336C .49D .5123、甲、乙两个气象站同时作气象预报,如果甲站、乙站预报的准确率分别为0.8和0.7,那么在一次预报中两站恰有..一次准确预报的概率为( ) A .0.8B .0.7C .0. 56D .0. 384、某人打靶时连续射击两次,下列事件中与事件“至少一次中靶”互为对立的是( ) A .至多一次中靶B .两次都中靶C .只有一次中靶D .两次都没中靶5、已知袋中有大小、形状完全相同的5张红色、2张蓝色卡片,从中任取3张卡片,则下列判断不正确的是( )A .事件“都是红色卡片”是随机事件B .事件“都是蓝色卡片”是不可能事件C .事件“至少有一张蓝色卡片”是必然事件D .事件“有1张红色卡片和2张蓝色卡片”是随机事件6、掷一枚骰子一次,设事件A :“出现偶数点”,事件B :“出现3点或6点”,则事件A ,B 的关系是 A .互斥但不相互独立B .相互独立但不互斥 C .互斥且相互独立D .既不相互独立也不互斥7、甲、乙两人练习射击,甲击中目标的概率为0.9,乙击中目标的概率为0.7,若两人同时射击一目标,则他们都击中的概率是( ) A .0.3B .0.63C .0.7D .0.98、分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图:则下列结论中错误的是()A.甲同学周课外体育运动时长的样本中位数为7.4B.乙同学周课外体育运动时长的样本平均数大于8C.甲同学周课外体育运动时长大于8的概率的估计值大于0.4D.乙同学周课外体育运动时长大于8的概率的估计值大于0.6多选题9、袋子里有4个大小、质地完全相同的球,其中有2个红球、2个白球,从中不放回地依次随机摸出2个球,事件A=“两个球颜色相同”,事件B=“两个球颜色不同”,事件C=“第二次摸到红球”,事件D=“两个球都是红球”.下列说法正确的是()A.P(A∪B)=1B.C与D互斥C.D⊆C D.P(B)=P(C)+P(D)10、(多选题)在25件同类产品中,有2件次品,从中任取3件产品,其中是随机事件的是()A.3件都是正品B.至少有1件次品C.3件都是次品D.至少有1件正品11、下列说法错误的是()A.随着试验次数的增大,随机事件发生的频率会逐渐稳定于该随机事件发生的概率,买1000张这种彩票一定能中奖B.某种福利彩票的中奖概率为11000C.连续100次掷一枚硬币,结果出现了49次反面,则掷一枚硬币出现反面的概率为49100D.某市气象台预报“明天本市降水概率为70%”,指的是:该市气象台专家中,有70%认为明天会降水,30%认为明天不会降水填空题12、为防控新冠疫情,很多公共场所要求进人的人必须佩戴口罩.现有3人在一次外出时需要从蓝、白、红、黑、绿5种颜色各1只的口罩中随机选3只不同颜色的口罩,则蓝、白口罩同时被选中的概率为____________.部编版高中数学必修二第十章概率带答案(三十二)参考答案1、答案:D分析:由表中数据,用频率估计概率求解.由表中数据得:=0.6估计这个人体重减轻的概率约为p=6001000故选:D小提示:本题主要考查用频率估计概率,属于基础题.2、答案:B分析:利用列举法列出所有可能结果,再根据古典概型的概率公式计算可得.解:设连续投掷两次骰子,得到的点数依次为m、n,两次抛掷得到的结果可以用(m,n)表示,则结果有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有36种.其中满足m2+n2<25有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(4,1),(4,2),共13种,.所以满足m2+n2<25的概率P=1336故选:B3、答案:D解析:利用相互独立事件概率乘法公式和互斥事件概率加法公式运算即可得解.因为甲、乙两个气象站同时作气象预报,甲站、乙站预报的准确率分别为0.8和0.7,所以在一次预报中两站恰有一次准确预报的概率为:P=0.8×(1−0.7)+(1−0.8)×0.7=0.38.故选:D.4、答案:D分析:利用对立事件的定义判断可得出结论.对于A,“至多一次中靶”包含:一次中靶、两次都不中靶,“至少一次中靶”包含:一次中靶、两次都中靶,A选项不满足条件;对于B,“两次都中靶”与“至少一次中靶”是包含关系,B选项不满足条件;对于C,“只有一次中靶”与“至少一次中靶”是包含关系,C选项不满足条件;对于D,“两次都没有中靶”与“至少一次中靶”对立,D选项满足条件.故选:D.5、答案:C分析:根据随机事件、必然事件、不可能事件的定义判断.袋中有大小、形状完全相同的5张红色、2张蓝色卡片,从中任取3张卡片,在A中,事件“都是红色卡片”是随机事件,故A正确;在B中,事件“都是蓝色卡片”是不可能事件,故B正确;在C中,事件“至少有一张蓝色卡片”是随机事件,故C错误;在D中,事件“有1张红色卡片和2张蓝色卡片”是随机事件,故D正确.故选:C.6、答案:B事件A={2,4,6},事件B={3,6},事件AB={6},基本事件空间Ω={1,2,3,4,5,6},所以P(A)=36=12,P(B)=2 6=13,P(AB)=16=12×13,即P(AB)=P(A)P(B),因此,事件A与B相互独立.当“出现6点”时,事件A,B同时发生,所以A,B不是互斥事件.故选B.7、答案:B分析:结合相互独立事件直接求解即可.设甲击中为事件A,乙击中为事件B,则P(AB)=P(A)⋅P(B)=0.9×0.7=0.63.故选:B8、答案:C分析:结合茎叶图、中位数、平均数、古典概型等知识确定正确答案.对于A选项,甲同学周课外体育运动时长的样本中位数为7.3+7.52=7.4,A选项结论正确. 对于B选项,乙同学课外体育运动时长的样本平均数为:6.3+7.4+7.6+8.1+8.2+8.2+8.5+8.6+8.6+8.6+8.6+9.0+9.2+9.3+9.8+10.116=8.50625>8,B选项结论正确.对于C选项,甲同学周课外体育运动时长大于8的概率的估计值616=0.375<0.4,C选项结论错误.对于D选项,乙同学周课外体育运动时长大于8的概率的估计值1316=0.8125>0.6,D选项结论正确.故选:C9、答案:ACD分析:根据事件的概率、互斥事件、事件的包含关系对选项逐一分析,由此确定正确选项. A,由于A∪B=Ω,所以P(A∪B)=1,A正确.B,事件C与事件D都包括“第1次是红球,第2次是红球”,所以C,D不是互斥事件,B错误. C,由于事件C=“第二次摸到红球”包含了事件D=“两个球都是红球”,所以D⊆C,C正确.D,P(B)=24×23+24×23=23,P(C)=12,P(D)=24×13=16,所以P(B)=P(C)+P(D),D正确.故选:ACD10、答案:AB分析:根据题意25件产品中只有2件次品,所以不可能取出3件都是次品,且至少有1件正品,即可得解.25件产品中只有2件次品,所以不可能取出3件都是次品,则“3件都是次品”不是随机事件,是不可能事件,又25件产品中只有2件次品,从中任取3件产品,则“至少有1件正品”为必然事件,而A,B是随机事件.故选:AB11、答案:BCD分析:根据概率的定义和生活中的概率判断各选项的对错.由频率和概率的关系可知随着试验次数的增大,随机事件发生的频率会逐渐稳定于该随机事件发生的概率,A正确,,买1000张这种彩票不一定能中奖,B错误,某种福利彩票的中奖概率为11000掷一枚硬币出现反面的概率为1,C错误,2某市气象台预报“明天本市降水概率为70%”,指的是明天有70%的可能会降水,D错误,故选:BCD.12、答案:3##0.310分析:利用列举法和古典概型的概率计算公式可得答案.从蓝、白、红、黑、绿5种颜色各1只的口罩中选3只不同颜色的口罩,样本点列举如下:(蓝,白,红),(蓝,白,黑),(蓝,白,绿),(蓝,红,黑),(蓝,红,绿),(蓝,黑,绿),(白,红,黑),(白,红,绿),(白,黑,绿),(红,黑,绿),共有10个样本点,其中蓝、白色口罩同时被选中的样本点有(蓝,白,红),(蓝,白,黑),(蓝,白,绿),共3个样本点,所以蓝、白色口罩同时被选中.的概率为310.所以答案是:310。
高中数学人教A版必修二第十章《概率》知识点题目
高中数学人教A版必修二第十章《概率》知识点题目学校:___________姓名:___________班级:___________考号:___________一、单选题1.集合A=,,从A,B中各取一个数,则这两数之和等于5的概率是()A.B.C.D.2.分别投掷两枚质地均匀的骰子,设事件A=“两枚骰子的点数都是奇数”,事件B=“两枚骰子的点数都是偶数”,事件C=“两枚骰子点数之和为奇数”,则事件与事件C()A.不互斥B.互斥但不对立C.互为对立D.以上说法都不对3.下列事件中随机事件的个数为()①明天是阴天;②方程x2+2x+5=0有两个不相等的实根;③明年长江武汉段的最高水位是29.8 m;④一个三角形的大边对小角,小边对大角.A.1 B.2 C.3 D.44.“不怕一万,就怕万一”这句民间谚语说明().A.小概率事件虽很少发生,但也可能发生,需提防;B.小概率事件很少发生,不用怕;C.小概率事件就是不可能事件,不会发生;D.大概率事件就是必然事件,一定发生.5.九龙壁位于北京故宫紫禁城宁寿官区皇极门外,背倚宫墙而建的单面疏璃影壁,乾隆三十七年(1772年)改建宁寿宫时烧造.壁上9龙以高浮雕手法制成,纵贯壁心的山崖奇石将9条蟠龙分隔于5个空间,黄色正龙居中,左右两侧各有蓝白两龙,再向外两侧各有双龙,一紫一黄,现从三黄两蓝两白两紫九条龙中任选两条深入研究,则所选取的两条龙颜色不同的概率为()A.B.C.1 D.6.如图是一个正方体的展开图,如果将它还原为正方体,在AB,CD,EF,GH 这四条线段中任意选择两条,那么所在直线是异面直线的概率是()A.B.C.D.7.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设“两次都击中飞机”,“两次都没击中飞机”,“恰有一次击中飞机”,“至少有一次击中飞机”,下列关系不正确的是()A.B.C.D.8.设,是两个事件,以下说法正确的是()A.若,则事件与事件对立B.若,则事件与事件互斥C.若,则事件与事件互斥D.若,则事件与事件相互独立二、多选题9.从分别写有、、、、以及、、、的张纸条中任意抽取两张,有如下随机事件:“恰有一张写有数字”,“恰有一张写有字母”,“至少有一张写有数字”,“两张都写有数字”,“至多有一张写有字母”.下列结论正确的有()A.B.C.D.10.连掷一枚均匀的骰子两次,向上的点数分别为m,n,记,则下列说法错误的是()A.事件“”的概率为B.事件“是奇数”与“”互为对立事件C.事件“”与“”为互斥事件 D.事件“且”的概率为11.盒子里有形状大小都相同的4个球,其中2个红球、2个白球,从中先后不放回地任取2个球,每次取1个.设“两个球颜色相同”为事件A,“两个球颜色不同”为事件B,“第1次取出的是红球”为事件C,“第2次取出的是红球”为事件D.则()A.A与B互为对立事件B.A与C相互独立C.C与D互斥D.B与C相互独立12.袋中装有2个红球,2个蓝球,1个白球和1个黑球,这6个球除颜色外完全相同.从袋中不放回的依次摸取3个,每次摸1个,则下列说法正确的是()A.“取到的3个球中恰有2个红球”与“取到的3个球中没有红球”是互斥事件但不是对立事件B.“取到的3个球中有红球和白球”与“取到的3个球中有蓝球和黑球”是互斥事件C.取到的3个球中有红球和蓝球的概率为0.8D.取到的3个球中没有红球的概率为0.2三、填空题13.现有语文、数学、英语、物理和化学共5本书,从中任取1本,取出的是理科书的概率为___________.14.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.设ξ为取出的4个球中红球的个数,则P(ξ=2)=________.15.一个数字不重复的三位数的百位、十位、个位上的数字依次记为,,,当且仅当,,中有两个不同数字的和等于剩下的一个数字时,称这个三位数为“有缘数”(如213,341等).现从1,2,3,4这四个数字中任取三个数组成一个数字不重复的三位数,则这个三位数为“有缘数”的概率是______.16.同时转动如图所示的两个转盘,记转盘①得到的数为x,转盘②得到的数为y,则所有数对中满足的概率为___________.17.抛掷两枚质地均匀的骰子(标注为①号和②号),事件“①号骰子的点数大于②号骰子的点数”发生的概率为___________.18.把一个正方体的表面涂上红色,在它的长、宽、高上等距离地各切三刀,则大正方体被分割成了个大小相等的小正方体,将这些小正方体均匀地搅混在一起.如果你从这些小正方体中随意地取出个,则这个小正方体至少有一个面涂有红色的概率为_______.四、解答题19.抛掷一枚骰子和一枚硬币,写出样本空间.20.一个工人看管三台自动机床,在一小时内第一、二、三台机床不需要照顾的概率为,,,在一小时的过程中,试求:(1)三台机床都不需要照顾的概率;(2)恰有两台机床需要照顾的概率;(3)至少有一台机床需要照顾的概率.21.袋子里有6个大小、质地完全相同且带有不同编号的小球,其中有1个红球,2个白球,3个黑球,从中任取2个球.(1)写出样本空间;(2)求取出两球颜色不同的概率;(3)求取出两个球中至多一个黑球的概率.22.某工厂生产一种汽车的元件,该元件是经过、、三道工序加工而成的,、、三道工序加工的元件合格率分别为、、.已知每道工序的加工都相互独立,三道工序加工都合格的元件为一等品;恰有两道工序加工合格的元件为二等品;其它的为废品,不进入市场.(1)生产一个元件,分别求该元件为一等品和二等品的概率;(2)若从该工厂生产的这种元件中任意取出3个元件进行检测,求至少有2个元件是一等品的概率.23.奋发学习小组共有3名学生,在某次探究活动中,他们每人上交了1份作业,现各自从这3份作业中随机地取出了一份作业.(1)每个学生恰好取到自己作业的概率是多少?(2)每个学生不都取到自己作业的概率是多少?(3)每个学生取到的都不是自己作业的概率是多少?24.高一年级疫情期间举行全体学生的数学竞赛,成绩最高分为100分,随机抽取100名学生进行了数据分析,将他们的分数分成以下几组:第一组,第二组,第三组,第四组,第五组,得到频率分布直方图,如图所示.(1)试估计这次竞赛成绩的众数和平均数;(2)已知100名学生落在第二组的平均成绩是32,方差为7,落在第三组的平均成绩为50,方差为4,求两组学生成绩的总平均数和总方差;(3)已知年级在第二组和第五组两个小组按等比例分层抽样的方法,随机抽取4名学生进行座谈,之后从这4人中随机抽取2人作为学生代表,求这两名学生代表都来自第五组的概率。
新人教版高中数学必修第二册-第10章 概率(5年高考3年模拟)
第1讲 描述运动的基本第概十念章 概率
(1)将一枚骰子先后抛掷两次,观察它落地时朝上的面的点数,试写出这个试验的样 本空间; (2)连续抛掷3枚硬币,观察落地时这3枚硬币朝上的面的情况,试写出这个试验的样 本空间.
第1讲 描述运动的基本第概十念章 概率
解析 (1)两次掷出的点数列表如下:
第二次
1
第1讲 描述运动的基本第概十念章 概率
3.假设猜数方案为“是4的倍数”或“不是4的倍数”,乙猜“是4的倍数”,若将甲 获胜记为事件N,则N中包含哪些样本点? 提示:N={1,2,3,5,6,7,9,10}.
பைடு நூலகம் 第1讲 描述运动的基本第概十念章 概率
理解随机事件的两个关键点 1.条件:事件发生与否是相对条件而言的,随着条件的改变,结果可能也发生改 变,如“常温常压下,水沸腾”是不可能事件,而“100 ℃常压下,水沸腾”是必然事 件. 2.结果:有时样本空间较复杂,要准确理解事件结果包含的各种情况,列举该事 件包含的样本点时,可借助集合知识进行求解.
由图可知,A+C与B+D是互斥事件,且是对立事件,故结论错误.
第1讲 描述运动的基本第概十念章 概率
互斥事件与对立事件的判断
扑克牌中的秘密 一副扑克牌共有54张,其中52张正牌表示一年有52个星期,2张副牌中的大王代 表太阳,小王代表月亮;黑桃、红桃、梅花、方块表示春、夏、秋、冬四季,红色牌 代表白昼,黑色牌代表黑夜;每一季13个星期与扑克牌每一花色13张正好一致,52张 牌的点数相加是364,再加上小王的一点,是365,与一般年份天数相同;如果再加上大 王的一点,那就正好是闰年的天数.扑克牌中的K、Q、J共有12张,既表示一年有12 个月,又表示太阳在一年中经过12个星座. 现从52张扑克牌(除去大王和小王)中任抽1张.
人教版A版(2019)高中数学必修第二册:第十章 概率 综合测试(附答案与解析)
6 B. 1
13.一个袋子中有 5 个红球,4 个绿球,8 个黑球,如果随机地摸出一个球,记事件 A = 摸出黑球 ,事件
B = 摸出绿球 ,事件 C = 摸出红球 ,则 P( A) = ________; P(B UC) = ________.(本题第一空 2 分,
第二空 3 分)
14.袋子中有四个小球,分别写有“和、平、世、界”四个字,有放回地从中任取一个小球,直到“和”“平” 两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生 0 到 3 之间取整 数值的随机数,分别用 0,1,2,3 代表“和、平、世、界”这四个字,以每三个随机数为一组,表示取球
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
第十章综合测试
一、单项选择题(本大题共 10 小题,每小题 5 分,共 50 分.在每小题给出的四个选项中,只有一项是符合 题目要求的) 1.从含有 10 件正品、2 件次品的 12 件产品中任意抽取 3 件,则必然事件是( ) A.3 件都是正品 B.3 件都是次品 C.至少有 1 件次品 D.至少有 1 件正品 2.下列说法正确的是( ) A.甲、乙两人比赛,甲胜的概率为 3 ,则比赛 5 场,甲胜 3 场
3 / 13
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
“第二次摸到白球”
C.袋中有 3 白、2 黑共 5 个大小相同的小球,依次不放回地摸两球,事件 M “第一次摸到白球”,事件 N “第二次摸到黑球”
高中数学第十章概率 概率的基本性质课后提能训练新人教A版必修第二册
第十章 10.1 10.1.4A 级——基础过关练1.某射手在一次射击中,射中10环,9环,8环的概率分别是0.20,0.30,0.10.则此射手在一次射击中不够8环的概率为( )A .0.40B .0.30C .0.60D .0.90【答案】A【解析】依题意,射中8环及以上的概率为0.20+0.30+0.10=0.60,故不够8环的概率为1-0.60=0.40.故选A .2.(2021年南昌月考)下列说法中正确的是( ) A .对立事件一定是互斥事件B .若A ,B 为随机事件,则P (A ∪B )=P (A )+P (B )C .若事件A ,B ,C 两两互斥,则P (A )+P (B )+P (C )=1D .若事件A ,B 满足P (A )+P (B )=1,则A 与B 是对立事件 【答案】A【解析】A 说法显然正确;B 说法错误,当事件A ,B 能同时发生时,不满足P (A ∪B )=P (A )+P (B );C 说法错误,P (A )+P (B )+P (C )不一定等于1,还可能小于1;D 说法错误,例如:袋中有除颜色外其余均相同的红球、黄球、黑球、绿球各1个,从袋中任意摸1个球,设事件A ={摸到红球或黄球},事件B ={摸到黄球或黑球},显然事件A 与B 不是对立事件,但P (A )+P (B )=12+12=1.3.(2021年沈阳月考)(多选)口袋里装有1红、2白、3黄共6个形状相同的小球,从中取出2球,事件A =“取出的两球同色”,B =“取出的2球中至少有一个黄球”,C =“取出的2球中至少有一个白球”,D =“取出的两球不同色”,E =“取出的2球中至多有一个白球”.下列判断中正确的是( )A .A 与D 为对立事件B .C 与E 是对立事件 C .P (C ∪E )=1D .P (B )=P (C )【答案】AC【解析】因为口袋里装有1红、2白、3黄共6个形状相同的小球,从中取出2球,由对立事件定义得A 与D 为对立事件,故A 正确;C 与E 有可能同时发生,不是对立事件,故B 错误;P (C )=1-615=35,P (E )=1415,P (CE )=815,从而P (C ∪E )=P (C )+P (E )-P (CE )=1,故C 正确;黄球与白球的个数不同,从而P (B )≠P (C ),故D 错误.4.抛掷一枚质地均匀的骰子,事件A 表示“向上的点数是奇数”,事件B 表示“向上的点数不超过3”,则P (A ∪B )=( )A .12B .23C .56D .1【答案】B【解析】(方法一)A 包含向上点数是1,3,5的情况,B 包含向上的点数是1,2,3的情况,所以A ∪B 包含了向上点数是1,2,3,5的情况,故P (A ∪B )=46=23.(方法二)P (A ∪B )=P (A )+P (B )-P (AB )=12+12-26=1-13=23.故选B .5.从1,2,3,…,30这30个数中任意摸出一个数,则事件“摸出的数是偶数或能被5整除的数”的概率是( )A .710 B .35 C .45 D .110【答案】B【解析】(方法一)这30个数中“是偶数”的有15个,“能被5整除的数”有6个,这两个事件不互斥,既是偶数又能被5整除的数有3个,所以事件“是偶数或能被5整除的数”包含的样本点是18个,而样本点共有30个,所以所求的概率为1830=35.(方法二)设事件A “摸出的数为偶数”,事件B “摸出的数能被5整除”,则P (A )=12,P (B )=630=15,P (A ∩B )=330=110,所以P (A ∪B )=P (A )+P (B )-P (A ∩B )=12+15-110=35.故选B . 6.(2021年毕节期末)如图所示,靶子由一个中心圆面Ⅰ和两个同心圆环Ⅱ、Ⅲ构成,射手命中Ⅰ、Ⅱ、Ⅲ的概率分别为0.35,0.30,0.25,则不命中靶的概率是________.【答案】0.10【解析】“射手命中圆面Ⅰ”为事件A ,“命中圆环Ⅱ”为事件B ,“命中圆环Ⅲ”为事件C ,“不中靶”为事件D ,则A ,B ,C 彼此互斥,故射手中靶的概率为P (A ∪B ∪C )=P (A )+P (B )+P (C )=0.35+0.30+0.25=0.90.因为中靶和不中靶是对立事件,故不命中靶的概率为P (D )=1-P (A ∪B ∪C )=1-0.90=0.10.7.已知事件A ,B 互斥,它们都不发生的概率为25,且P (A )=2P (B ),则P (A )=________.【答案】25【解析】因为事件A ,B 互斥,它们都不发生的概率为25,所以P (A )+P (B )=1-25=35.又因为P (A )=2P (B ),所以P (A )+12P (A )=35,所以P (A )=25.8.经统计,在某储蓄所一个营业窗口等候的人数及相应概率如下表所示:. 【答案】0.68【解析】由题意知至多3人排队等候的概率为0.72,则a +b +0.3+0.1=0.72,从而得到a +b =0.32,故至少2人排队等候的概率为1-a -b =0.68.9.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为x ,y ,则log 2x y =1的概率为________.【答案】112【解析】易知试验样本点的总数为36,由log 2x y =1,得2x =y ,其中x ,y ∈{1,2,3,4,5,6},所以⎩⎪⎨⎪⎧x =1,y =2或⎩⎪⎨⎪⎧x =2,y =4或⎩⎪⎨⎪⎧x =3,y =6共3个样本点,所以p =336=112.10.某饮料公司对一名员工进行测试以便确定其考评级别.公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中3杯为A 饮料,另外2杯为B 饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A 饮料.若该员工3杯都选对,则评为优秀;若3杯选对2杯,则评为良好;否则评为不合格.假设此人对A 和B 两种饮料没有鉴别能力.(1)求此人被评为优秀的概率; (2)求此人被评为良好及以上的概率.解:将5杯饮料编号为1,2,3,4,5,编号1,2,3表示A 饮料,编号4,5表示B 饮料,则从5杯饮料中选出3杯的所有可能情况为(123),(124),(125),(134),(135),(145),(234),(235),(245),(345),共有10种.令D 表示“此人被评为优秀”的事件,E 表示“此人被评为良好”的事件,F 表示“此人被评为良好及以上”的事件.(1)P (D )=110.(2)P (E )=610=35,P (F )=P (D )+P (E )=710.B 级——能力提升练11.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17,从中取出2粒都是白子的概率是1235.则从中任意取出2粒恰好是同一色的概率是( )A .17B .1235C .1735D .1【答案】C【解析】易知事件“从中取出2粒都是黑子”和“从中取出2粒都是白子”为互斥事件,故所求的概率为17+1235=1735.故选C .12.(多选)张明与李华两人做游戏,则下列游戏规则中公平的是( )A .抛掷一枚质地均匀的骰子,向上的点数为奇数则张明获胜,向上的点数为偶数则李华获胜B .同时抛掷两枚质地均匀的硬币,恰有一枚正面向上则张明获胜,两枚都正面向上则李华获胜C .从一副不含大小王的扑克牌中抽一张,扑克牌是红色的则张明获胜,扑克牌是黑色的则李华获胜D .张明、李华两人各写一个数字6或8,两人写的数字相同则张明获胜,否则李华获胜 【答案】ACD【解析】选项A 中,向上的点数为奇数与向上的点数为偶数的概率相等,A 符合题意;选项B 中,张明获胜的概率是12,而李华获胜的概率是14,故游戏规则不公平,B 不符合题意;选项C 中,扑克牌是红色与扑克牌是黑色的概率相等,C 符合题意;选项D 中,两人写的数字相同与两人写的数字不同的概率相等,D 符合题意.13.中国乒乓球队甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为37,乙夺得冠军的概率为14,那么中国队夺得女子乒乓球单打冠军的概率为________. 【答案】1928【解析】由题意知事件“甲夺得冠军”与“乙夺得冠军”互斥,故所求事件的概率为37+14=1928. 14.(2021年合肥调研)甲、乙、丙、丁四人参加4×100米接力赛,他们跑每一棒的概率均为14,则甲跑第一棒或乙跑第四棒的概率为________.【答案】512【解析】设事件A =“甲跑第一棒”,事件B =“乙跑第四棒”,则P (A )=14,P (B )=14.记甲跑第x 棒,乙跑第y 棒为(x ,y ),则共有可能结果12种:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).甲跑第一棒,乙跑第四棒只有一种结果,即(1,4),故P (A ∩B )=112,所以甲跑第一棒或乙跑第四棒的概率为P (A ∪B )=P (A )+P (B )-P (A ∩B )=14+14-112=512.15.口袋中有若干个大小形状完全相同的红球、黄球、蓝球,随机摸出一球,是红球的概率为0.45,是红球或黄球的概率为0.64,则摸出是红球或蓝球的概率是________.【答案】0.81【解析】因为摸出是红球的概率为0.45,是红球或黄球的概率为0.64,所以摸出黄球的概率为0.64-0.45=0.19,所以摸出是红球或蓝球的概率为1-0.19=0.81.16.某商店试销某种商品20天,获得如下数据:3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充至3件,否则不进货,将频率视为概率,则当天商店不进货的概率为________.【答案】310【解析】商店不进货即日销售量少于2件,显然“日销售量为1件”与“日销售量为0件”不可能同时发生,彼此互斥,分别计算两事件发生的频率,将其视作概率,利用概率加法公式可解.记“当天商品销售量为0件”为事件A ,“当天商品销售量为1件”为事件B ,“当天商店不进货”为事件C ,则P (C )=P (A )+P (B )=120+520=310.17.(2021年成都模拟)一个袋中装有四个形状、大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求n <m +2的概率.解:(1)从袋中随机取两个球,其一切可能的结果组成的样本点有:1和2,1和3,1和4,2和3,2和4,3和4,共6个.从袋中取出的两个球的编号之和不大于4的事件有:1和2,1和3,共2个,因此所求事件的概率为p =26=13.(2)先从袋中随机取一个球,记下编号为m ,放回后,再从袋中随机取一个球,记下编号为n ,试验的样本空间Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)},共16个样本点.又满足条件n ≥m +2的样本点有:(1,3),(1,4),(2,4),共3个. 所以满足条件n ≥m +2的事件的概率为P 1=316,故满足条件n <m +2的事件的概率为1-P 1=1-316=1316.C 级——探索创新练18.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进17枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N)的函数解析式;(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:(ⅰ)元)的平均数;(ⅱ)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.解:(1)若当天需求量n ≥17,则利润y =85; 若当天需求量n <17,则利润y =10n -85.故y 关于n 的函数解析式为y =⎩⎪⎨⎪⎧10n -85,n <17,85,n ≥17(n ∈N).(2)(ⅰ)这100天中有10天的日利润为55元,20天的日利润为65元,16天的日利润为75元,54天的日利润为85元,所以这100天的日利润的平均数为1100×(55×10+65×20+75×16+85×54)=76.4(元).(ⅱ)“当天的利润不少于75元”即“当天的需求量不少于16枝”,故当天的利润不少于75元的概率为0.16+0.16+0.15+0.13+0.1=0.7.。
人教A版高中同步学案数学必修第二册精品课件 第10章 概率 学习单元1 10.1.1-10.1.2
“落地时向上的数是2或4”,则下列各对事件是互斥事件但不是对立事件的
是( C )
A.A与B
B.B与C
C.A与D
D.B与D
解析 在A选项中,A与B是对立事件,故A错误;在B选项中,B与C能同时发生,
故B与C不是互斥事件,故B错误;在C选项中,A与D不能同时发生,且不是对
1 2 3 4 5 6 7 8 9 10 11 12 13 14
B级
关键能力提升练
10.任意抛两枚硬币,记事件A为“恰好一枚正面朝上”;B为“恰好两枚正面朝
上”;C为“恰好两枚正面朝下”;D为“至少一枚正面朝上”;E为“至多一枚正面
朝上”,则下列事件为对立事件的是( B )
A.A与B
B.C与D
C.B与C
(1)写出这个试验的样本空间;
(2)设A为“取出的两件产品中恰有一件次品”,写出集合A;
(3)把“每次取出后不放回”这一条件换成“每次取出后放回”,其余条件不变,
请继续回答上述两个问题.
1 2 3 4 5 6 7 8 9 10 11 12 13 14
解 (1)样本空间Ω1={(a1,a2),(a1,b1),(a2,a1),(a2,b1),(b1,a1),(b1,a2)}.
立事件,故A与D是互斥事件但不是对立事件,故C正确;在D选项中,B与D能
同时发生,故B与D不是互斥事件,故D错误.
1 2 3 4 5 6 7 8 9 10 11 12 13 14
6.一批产品共有100件,其中5件是次品,95件是合格品,从这批产品中任意抽
取5件.现给出以下四个事件:
事件A:恰有1件次品;
.
人教A版高中同步学案数学必修第二册精品课件 第10章 概率 第10章 综合训练
D.概率是随机的,在试验前不能确定
解析 由于必然事件的概率为1,不可能事件的概率为0,故A不正确.
频率的数值是通过试验完成的,频率是概率的近似值,概率是频率的稳定值,
故B,D不正确.
频率是不能脱离n次试验的实验值,而概率是具有确定性的不依赖于试验
次数的理论值,随着试验次数的增加,频率一般会越来越接近概率,故C正确.
13.同时抛掷两枚质地均匀的硬币,记事件A={(正,反)},写出事件A的一个互
斥事件: {(正,正)} .(用集合表示,写出一个即可)
解析 同时抛掷两枚质地均匀的硬币,所有可能的结果为(正,正),(正,反),
(反,正),(反,反),
其中事件{(正,正)},{(反,正)},{(反,反)}与事件A都不可能同时发生,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
解析 甲同学仅随机选一个选项,共有4种情况,分别为选A,选B,选C,选D,随
机事件“随机选一个选项,能得3分”中有两种情况选C,选D,故随机选一个选
1
项,能得3分的概率为2
,故A正确.
乙同学仅随机选两个选项,共有6种情况,
丁同学随机至少选择两个选项,由C的分析可知,共有11种情况,
1
故丁同学随机至少选择两个选项,能得分只有选CD一种情况,故概率为11
故D错误.
故选ABC.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
,
12.如图,由A1,A2,A3,A4四个电子元件分别组成甲、乙两种系统,设每个电子
2023-2024学年湖北省高中数学人教A版 必修二第十章 概率强化训练-10-含解析
1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年湖北省高中数学人教A 版 必修二第十章 概率强化训练(10)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)P 1=P 2P 1<P 2P 1>P 2 P 1 , P 2的大小无法确定1. 三张奖券中有2张是有奖的,甲、乙两人从中各抽一张(抽出后不放回),甲先抽,然后乙抽,设甲中奖的概率为P 1 , 乙中奖的概率为P 2 , 那么( )A. B. C. D. 2. 小华、小明等7名同学相约去游玩,在某景点排成一排拍照留念,则小明不在两端,且小华不在正中间位置的概率是( )A. B. C.D.3. 有5个大小相同的球,上面分别标有1,2,3,4,5,现任取两个球,两个球序号相邻的概率是( )A. B. C. D. 4. 编号为1、2、3、4的四个人入座编号为1、2、3、4的四个座位,则其中至少有两个人的编号与座位号相同的概率是( )A. B. C. D.5. 从装有若干个大小相同的红球、白球和黄球的袋中随机摸出1个球,摸到红球、白球和黄球的概率分别为 , , ,从袋中随机摸出一个球,记下颜色后放回,连续摸3次,则记下的颜色中有红有白但没有黄的概率为( )A. B. C. D.6. 抛掷一枚硬币 次,若正面向上用随机数 表示,反面向上用随机数 表示,下面表示 次抛掷恰有 次正面向上的是( )A.B.C.D.若事件A与事件B是互斥事件,则;若事件A与事件B满足条件:,则事件A与事件B是对立事件;一个人打靶时连续射击两次,则事件 “至少有一次中靶”与事件 “至多有一次中靶”是对立事件;把红、橙、黄、绿4张纸牌随机分给甲、乙、丙、丁 4人,每人分得1张,则事件“甲分得红牌”与事件“乙分得红牌”是互斥事件.7. 下列说法中正确的是()A.B.C.D.0.880.120.790.098. 若某一射手射击所得环数的分布列为456789100.020.040.060.090.280.290.22则此射手“射击一次命中环数 ”的概率是()A. B. C. D.9. 如图所示,在两个圆盘中,指针在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是( )A. B. C. D.“恰有1名男生”与“恰有2名男生”“至少有1名男生”与“全是男生”“至少有1名男生”与“全是女生”“至少有一名男生”与“至少有一名女生”10. 某小组有3名男生和2名女生,从中任选2名同学来讲解本题的解答思路,则下列各组事件中,互斥且对立的事件是()A. B.C. D.11. 《孙子算经》中曾经记载,中国古代诸侯的等级从高到低分为:公、侯、伯、子、男,共有五级.若给有巨大贡献的人进行封爵,则两人不被封同一等级的概率为()A. B. C. D.12. 命题“事件A与事件B互斥”是命题“事件A与事件B对立”的()充分必要条件充分不必要条件必要不充分条件既不充分也不必要条件A. B. C. D.13. 从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1.则事件“抽到的是二等品或三等品”的概率为14. 甲、乙、丙三人独立破译一份密码,已知各人能破译的概率分别是,则三人都成功破译的概率是;密码被两人成功破译的概率为.15. 甲乙两个箱子中各装有5个大小、质地均相同的小球,其中甲箱中有3个红球、2个白球,乙箱中有2个红球、3个白球;抛一枚质地均匀的硬币,若硬币正面向上,从甲箱中随机摸出一出一个球;若硬币反面向上,从乙箱中随机摸出一个球.则摸到红球的概率为 .16. 已知A,B是相互独立事件,且,,则 .17. 2021年8月3日,国务院印发了《全民健身计划(2021-2025)》,就促进全民健身更高水平发展、更好满足人民群众的健身和健康需求,提出5年目标和8个方面的主要任务.为此,深圳市政府颁发了《深圳建设国家体育消费试点城市实施方案》,进一步推动深圳市体育的高质量发展.为了响应全民健身和运动的需要,某单位举行了羽毛球趣味发球比赛,比赛规则如下:每位选手可以选择在区发球2次或者区发球3次,球落到指定区域内才能得分,在区发球时,每得分一次计2分,不得分记0分,在区发球时,每得分一次计3分,不得分记0分,得分高者胜出.已知选手甲在区和区每次发球得分的概率为和 .(1) 如果选手甲以在区和区发球得分的期望值较高者作为选择发球区的标准,问选手甲应该选择在哪个区发球?(2) 求选手甲在区得分高于在区得分的概率.18.中央二台经济生活频道,在主持人马斌主持的“购物街”栏目中,有一个幸运转盘游戏该游戏规则是这样的:一个木质均匀的标有20等分数字格的转盘(如图),甲、乙两名入选观众每人都有两次转动盘的机会,转盘停止时指针所指的两次数字之和为该人的得分,但超过100分按0分记;且规定:若某人在第一次转动后,认为分值理想,则可以放弃第二次机会,得分按第一次所指的数记,两人中得分多者为优胜,游戏进行中,第一名选手甲通过一次转动后,指针所指的数字是85,试回答以下问题:(Ⅰ)如果甲选择第二次转动,求甲得0分的概率;(Ⅱ)如果甲放弃了第二次机会,求乙选手获胜的概率.19. 某公司在一次入职面试中,共设有3轮测试,每轮测试设有一道题目,面试者能正确回答两道题目的即可通过面试,累计答错两道题目的即被淘汰.已知李明能正确回答每一道题目的概率均为,且各轮题目能否正确回答互不影响.(1) 求李明不需要进入第三轮测试的概率;(2) 求李明通过面试的概率.20. 年月日中国神舟十三号载人飞船返回舱在东风着陆场成功着陆,这标志着此次载人飞行任务取得圆满成功.在太空停留期间,航天员们开展了两次“天宫课堂”,在空间站进行太空授课,极大的激发了广大中学生对航天知识的兴趣.为此,某班组织了一次“航空知识答题竞赛”活动,竞赛规则是:两人一组,两人分别从个题中不放回地依次随机选出个题回答,若两人答对题数合计不少于题,则称这个小组为“优秀小组”.现甲乙两位同学报名组成一组,已知个题中甲同学能答对的题有个、乙同学答对每个题的概率均为,并且甲、乙两人选题过程及答题结果互不影响.若甲同学选出的两个题均能答对的概率为.求:(1) ;(2) 甲乙二人获“优秀小组”的概率.21. 如图是飞行棋部分棋盘图示,飞机的初始位置为0号格,抛掷一个质地均匀的骰子,若拋出的点数为1,2,飞机在原地不动;若抛出的点数为3,4,飞机向前移一格;若抛出的点数为5,6,飞机向前移两格.记抛掷骰子一次后,飞机到达1号格为事件.记抛掷骰子两次后,飞机到达2号格为事件.(1) 求;(2) 判断事件是否独立,并说明理由;(3) 抛掷骰子2次后,记飞机所在格子的号为,求随机变量的分布列和数学期望.答案及解析部分1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.(1)(2)18.19.(1)(2)20.(1)(2)21.(1)(2)(3)第 11 页 共 11 页。
人教版高中数学必修第二册第十章 概率 章末复习提升课
返回导航
下一页
第十章 概率
13
主题 3 事件的相互独立性 (2020·高考天津卷)已知甲、乙两球落入盒子的概率分别为12 和13 .假定
两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为________; 甲、乙两球至少有一个落入盒子的概率为________.
上一页
返回导航
下一页
第十章 概率
上一页
返回导航
下一页
第十章 概率
24
甲分厂产品等级的频数分布表
等级
A
B
C
D
频数
40
20
20
20
乙分厂产品等级的频数分布表
等级
A
B
C
D
频数
28
17
34
21
上一页
返回导航
下一页
第十章 概率
25
(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率; (2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润 为依据,厂家应选哪个分厂承接加工业务? 【解】 (1)由试加工产品等级的频数分布表知,甲分厂加工出来的一件产品 为 A 级品的概率的估计值为14000 =0.4; 乙分厂加工出来的一件产品为 A 级品的概率的估计值为12080 =0.28.
上一页
返回导航
下一页
第十章 概率
11
(2)设两位男同学分别为A,B,两位女同学分别为a,b,则四位同学排成 一列,所有可能的结果用树状图表示为
上一页
返回导航
下一页
第十章 概率
12
共 24 种结果,其中两位女同学相邻的结果有 12 种,所以 P(两位女同学相邻) =2142 =12 ,故选 D.
高中数学第二章概率课时训练10离散型随机变量的分布列新人教B版选修2-3(2021年整理)
2018版高中数学第二章概率课时训练10 离散型随机变量的分布列新人教B版选修2-3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高中数学第二章概率课时训练10 离散型随机变量的分布列新人教B版选修2-3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高中数学第二章概率课时训练10 离散型随机变量的分布列新人教B版选修2-3的全部内容。
课时训练 10 离散型随机变量的分布列(限时:10分钟)1.已知随机变量X的分布列如下表,则m的值为()X12345P错误!错误!m错误!错误!A。
错误!B。
错误!C.错误! D。
错误!答案:C2.若离散型随机变量X的分布列为X01P2a3a则a=( )A。
错误! B.错误!C.错误!D.错误!解析:由离散型随机变量分布列的性质可知,2a+3a=1,解得a=错误!.答案:C3.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,其分布列为P(X),则P(X=4)的值为__________.答案:错误!4.随机变量ξ的分布列如下,则ξ为奇数的概率为__________。
ξ012345P错误!错误!错误!错误!错误!错误!解析:P=P(ξ=1)+P(ξ=3)+P(ξ=5)=错误!+错误!+错误!=错误!。
答案:错误!5.从某医院的3名医生,2名护士中随机选派2人参加雅安抗震救灾,设其中医生的人数为X,写出随机变量X的分布列.解析:依题意可知,随机变量X服从超几何分布,所以P(X=k)=错误!(k=0,1,2).P(X=0)=错误!=错误!=0.1,P(X=1)=错误!=错误!=0.6,P(X=2)=错误!=错误!=0.3.(或P(X=2)=1-P(X=0)-P(X=1)=1-0.1-0。
部编版高中数学必修二第十章概率必练题总结
(名师选题)部编版高中数学必修二第十章概率必练题总结单选题1、如图,某系统由A ,B ,C ,D 四个零件组成,若每个零件是否正常工作互不影响,且零件A ,B ,C ,D 正常工作的概率都为p (0<p <1),则该系统正常工作的概率为( )A .[1−(1−p )p 2]pB .[1−p (1−p 2)]pC .[1−(1−p )(1−p 2)]pD .[1−(1−p )2p ]p答案:C分析:要使系统正常工作,则A 、B 要都正常或者C 正常,D 必须正常,然后利用独立事件,对立事件概率公式计算.记零件或系统X 能正常工作的概率为P(X),该系统正常工作的概率为:P {[(AB )∪C ]∩D }=P [(AB )∪C ]P (D )=[1−P(AB)P(C)]P (D )=(1−P(A ∪B)P(C))P (D )=[1−(1−P (AB ))(1−P (C ))]P (D )=[1−(1−p 2)(1−p )]p ,故选:C.2、接种疫苗是预防和控制传染病最经济、有效的公共卫生干预措施.根据实验数据,人在接种某种病毒疫苗后,有80%不会感染这种病毒,若有4人接种了这种疫苗,则最多1人被感染的概率为( )A .512625B .256625C .113625D .1625答案:A分析:最多1人被感染即4人没有人感染和4人中恰好有1人被感染,利用独立重复试验的概率和互斥事件的概率求解.由题得最多1人被感染的概率为C 40(45)4+C 41(15)(45)3=256+256625=512625. 故选:A小提示:方法点睛:求概率常用的方法:先定性(确定所求的概率是六种概率(古典概型的概率、几何概型的概率、互斥事件的概率、独立事件的概率、独立重复试验的概率、条件概率)的哪一种),再定量.3、把分别写有1,2,3,4的四张卡片全部分给甲、乙、丙三个人,每人至少一张,且若分得的卡片超过一张,则必须是连号,那么2,3连号的概率为( )A .23B .13C .35D .14 答案:B解析:根据列举法,列举出总的基本事件,以及满足条件的基本事件,基本事件个数之比即为所求概率. 分三类情况,第一类1,2连号,则甲、乙、丙三个人拿到的卡片可能为(12,3,4),(12,4,3),(3,12,4),(4,12,3),(3,4,12),(4,3,12),有6种分法;第二类2,3连号,则甲、乙、丙三个人拿到的卡片可能为(1,23,4),(4,23,1),(23,1,4),(23,4,1),(1,4,23),(4,1,23),有6种分法;第三类3,4连号,则甲、乙、丙三个人拿到的卡片可能为(1,2,34),(2,1,34),(34,1,2),(34,2,1),(1,34,2),(2,34,1),有6种分法;共有18种分法,则2,3连号的概率为P =618=13.故选:B .小提示:本题主要考查求古典概型的概率,属于基础题型.4、10张奖券中有4张“中奖”奖券,甲乙两人先后参加抽奖活动,每人从中不放回抽取一张奖券,甲先抽,乙后抽,在甲中奖条件下,乙没有中奖的概率为( )A .35B .23C .34D .415答案:B分析:根据题意,分析甲先抽,并且中奖后剩余的奖券和“中奖”奖券的数目,由古典摡型的概率计算公式,即可求解.根据题意,10张奖券中有4张“中奖”奖券,甲先抽,并且中奖,此时还有9张奖券,其中3张为“中奖”奖券,则在甲中奖条件下,乙没有中奖的概率P =69=23. 故选:B.5、将一个容量为1000的样本分成若干组,已知某组的频率为0.4,则该组的频数是( )A .4B .40C .250D .400答案:D分析:直接利用频率的定义求解即可.∵一个容量为1000的样本分成若干组,某组的频率为0.4,∴该组的频数为:1000×0.4=400.故选:D .小提示:本题考查频数的求法,解题时要认真审题,属于基础题.6、北京2022年冬奥会新增了女子单人雪车、短道速滑混合团体接力、跳台滑雪混合团体、男子自由式滑雪大跳台、女子自由式滑雪大跳台、自由式滑雪空中技巧混合团体和单板滑雪障碍追逐混合团体等7个比赛小项,现有甲、乙两名志愿者分别从7个比赛小项中各任选一项参加志愿服务工作,且甲、乙两人的选择互不影响,那么甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作的概率是( )A .249B .649C .17D .27答案:C分析:根据古典概型概率的计算公式直接计算.由题意可知甲、乙两名志愿者分别从7个比赛小项中各任选一项参加志愿服务工作共有7×7=49种情况, 其中甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作共7种,所以甲、乙两名志愿者选择同一个比赛小项进行志愿服务工作的概率是749=17,故选:C.7、掷一枚均匀的硬币,如果连续抛掷1000次,那么第999次出现正面向上的概率是A .1999B .11000C .9991000D .12答案:D每一次出现正面朝上的概率相等都是12,故选D.8、甲、乙两个气象站同时作气象预报,如果甲站、乙站预报的准确率分别为0.8和0.7,那么在一次预报中两站恰有..一次准确预报的概率为()A.0.8B.0.7C.0. 56D.0. 38答案:D解析:利用相互独立事件概率乘法公式和互斥事件概率加法公式运算即可得解.因为甲、乙两个气象站同时作气象预报,甲站、乙站预报的准确率分别为0.8和0.7,所以在一次预报中两站恰有一次准确预报的概率为:P=0.8×(1−0.7)+(1−0.8)×0.7=0.38.故选:D.多选题9、下列事件A,B不是独立事件的是()A.一枚硬币掷两次,A=“第一次为正面向上”,B=“第二次为反面向上”B.袋中有两个白球和两个黑球,不放回地摸两球,A=“第一次摸到白球”,B=“第二次摸到白球”C.掷一枚骰子,A=“出现点数为奇数”,B=“出现点数为偶数”D.A=“人能活到20岁”,B=“人能活到50岁”答案:BCD分析:利用相互独立事件的概念,对四个选项逐一分析排除,从而得出正确选项.对于A选项,A,B两个事件发生,没有关系,故是相互独立事件;对于B选项,A事件发生时,影响到B事件,故不是相互独立事件;对于C选项,由于投的是一个骰子,A,B是对立事件,所以不是相互独立事件;对于D选项,能活到20岁的,可能也能活到50岁,故A,B不是相互独立事件.故选:BCD.10、(多选)关于频率和概率,下列说法正确的是()A.某同学投篮3次,命中2次,则该同学每次投篮命中的概率为23B.费勒抛掷10000次硬币,得到硬币正面向上的频率为0.4979;皮尔逊抛掷24000次硬币,得到硬币正面向上的频率为0.5005.如果某同学抛掷36000次硬币那么得到硬币正面向上的频率可能大于0.5005C .某类种子发芽的概率为0.903,若抽取2000粒种子试种,则一定会有1806粒种子发芽D .将一颗质地均匀的骰子抛掷6000次,则掷出的点数大于2的次数大约为4000次答案:BD分析:通过对频率和概率的定义的理解,即可判断各选项,从而得出答案.解:A 中,某同学投篮3次,命中2次,只能说明频率为23,而不能说明概率为23,故A 选项错误;B 中,当试验次数很多时,硬币正面向上的频率在0.5附近摆动,可能大于0.5,也可能小于0.5,故B 选项正确;C 中,只能说明大约有1806粒种子发芽,并不是定有1806粒种子发芽,故C 选项错误;D 中,点数大于2的概率为23,故抛掷6000次点数大于2的次数大约为4000次,故D 选项正确. 故选:BD .11、已知甲罐中有四个相同的小球,标号为1,2,3,4;乙罐中有五个相同的小球,标号为1,2,3,5,6,现从甲罐、乙罐中分别随机抽取1个小球,记事件A =“抽取的两个小球标号之和大于5”,事件B =“抽取的两个小球标号之积大于8”,则( )A .事件A 发生的概率为12B .事件A ∪B 发生的概率为1120C .事件A ∩B 发生的概率为25D .从甲罐中抽到标号为2的小球的概率为15答案:BC分析:根据题意,分别列举出事件A 和事件B 所包含的基本事件,再逐项判断,即可得出结果.由题意,从甲罐、乙罐中分别随机抽取1个小球,共包含C 41C 51=20个基本事件; “抽取的两个小球标号之和大于5”包含的基本事件有:(1,5),(1,6),(2,5),(2,6),(3,3),(3,5),(3,6),(4,2),(4,3),(4,5),(4,6),共11个基本事件;“抽取的两个小球标号之积大于8”包含的基本事件有:(2,5),(2,6),(3,3),(3,5),(3,6),(4,3),(4,5),(4,6),共8个基本事件;即事件B 是事件A 的子事件;因此事件A 发生的概率为1120,故A 错;事件A ∪B 包含的基本事件个数为11个,所以事件A ∪B 发生的概率为1120;故B 正确; 事件A ∩B 包含的基本事件个数为8个,所以事件A ∩B 发生的概率为820=25,故C 正确; 从甲罐中抽到标号为2的小球,包含的基本事件为:(2,1),(2,2),(2,3),(2,5),(2,6)共5个基本事件,故从甲罐中抽到标号为2的小球的概率为15,即D 错误. 故选:BC.小提示:本题主要考查求古典概型的概率,考查求并事件和交事件的概率,属于基础题型.填空题12、有一道数学难题,在半小时内,甲、乙能解决的概率都是12,丙能解决的概率是13,若3人试图独立地在半小时内解决该难题,则该难题得到解决的概率为___.答案:56分析:根据独立事件的乘法公式和概率的性质求解.设“在半小时内,甲、乙、丙能解决该难题”分别为事件A ,B ,C ,“在半小时内解该难题得到解决”为事件D , 则P(A)=P(B)=12,P(C)=13,D =A ∪B ∪C ,D 表示事件“在半小时内没有解决该难题”,D =ABC , 所以P(D)=P(ABC)=P(A)P(B)P(C)=12×12×23=16, P(D)=1−P(D)=56; 所以答案是:56.。
高中数学必修二 第十章 概率 章末测试(提升)(含答案)
第十章 概率 章末测试(提升)一、单选题(每题只有一个选项为正确答案,每题5分,8题共40分)1.(2021·甘肃·张掖市第二中学)一个学习小组有5名同学,其中2名男生,3名女生.从这个小组中任意选出2名同学,则选出的同学中既有男生又有女生的概率为( )A .15B .25C .35D .45【答案】C【解析】5人小组中,设2男生分别为a ,b ,3名女生分别为A,B,C ,则任意选出2名同学,共有:(,),(,),(,),(,),(,),(,),(,),(,),(,),(,)a b a A a B a C b A b B b C A B A C B C 10个基本事件, 其中选出的同学中既有男生又有女生共有(,),(,),(,),(,),(,),(,)a A a B a C b A b B b C 6个基本事件, 所以63105P ==,故选:C 2.(2021·福建三明·高一期末)袋子中有大小、形状、质地完全相同的4个小球,分别写有“风”、“展”、“红”、“旗”四个字,若有放回地从袋子中任意摸出一个小球,直到写有“红”、“旗”的两个球都摸到就停止摸球.利用电脑随机产生1到4之间取整数值的随机数,用1,2,3,4分别代表“风”、“展”、“红”、“旗”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下20组随机数: 411 231 324 412 112 443 213 144 331 123 114 142 111 344 312 334 223 122 113 133 由此可以估计,恰好在第三次就停止摸球的概率为( ) A .110B .320 C .15D .14【答案】B【解析】由题得恰好在第三次就停止摸球的随机数有:324,443,334,共有3个. 由古典概型的概率公式得恰好在第三次就停止摸球的概率为320P =. 故选:B3.(2021·云南昆明·高一期末)已知一个古典概型的样本空间Ω和事件A 和B ,其中()12n Ω=,()6n A =,()4n B =,()8n A B =,那么下列事件概率错误的是( ) A .1()6P AB =B .2()3P A B = C .1()6P AB = D .2()3P AB =【答案】D【解析】对于选项A :()()()()6482n AB n A n B n A B =+-=+-=,所以()21()()126n AB P AB n ===Ω,故A 正确;对于选项B :()82()()123n A B P A B n ===Ω,故B 正确;对于选项C :()()()422n AB n B n AB =-=-=,所以()21()()126n AB P AB n ===Ω,故C 正确; 对于选项D :()()()1284n AB n n A B =Ω-=-=,所以()41()()123n AB P AB n ===Ω,故D 错误. 故选:D.4.(2021·湖南·长沙一中高一月考)下列说法正确的个数有( )(1)掷一枚质地均匀的的骰子一次,事件M =“出现偶数点”,N =“出现3点或 6 点”.则 M 和 N 相互独立;(2)袋中有大小质地相同的 3 个白球和 1 个红球.依次不放回取出 2 个球,则“两球同色”的概率是 13;(3)甲乙两名射击运动员进行射击比赛,甲的中靶率为0.8,乙的中标率为0.9,则“至少一人中靶”的概率为0.98;(4)柜子里有三双不同的鞋,如果从中随机地取出2只,那么“取出地鞋不成双”的概率是 45;A .1B .2C .3D .4【答案】C【解析】对于(1):掷一枚质地均匀的的骰子一次,()3162P M ==,()2163P N ==, ()111236P MN =⨯=,即()()()P MN P M P N =,故事件M 和N 相互独立;(1)正确;对于(2):袋中有大小质地相同的 3 个白球和 1 个红球.依次不放回取出 2 个球,若“两球同色”则都是白球,则“两球同色”的概率是 321432⨯=,(2)错误;对于(3):“至少一人中靶”的概率为()()110.910.80.98--⨯-=,(3)正确;对于(4):柜子里有三双不同的鞋,如果从中随机地取出2只,共有2615C =种,取出的鞋成双的只有3种,那么“取出的鞋不成双”有15-3=12种,所以“取出的鞋不成双”的概率是124155=,(4)正确综上可知正确的有(1)(3)(4)故选:C5.(2021·江苏·高一单元测试)下列命题中正确的是( ) A .事件A 发生的概率()P A 等于事件A 发生的频率()n f AB .一个质地均匀的骰子掷一次得到3点的概率是16,说明这个骰子掷6次一定会出现一次3点C .掷两枚质地均匀的硬币,事件A 为“一枚正面朝上,一枚反面朝上”,事件B 为“两枚都是正面朝上”,则()()2P A P B =D .对于两个事件A 、B ,若()()()P A B P A P B =+,则事件A 与事件B 互斥 【答案】C【解析】对于A 选项,频率与实验次数有关,且在概率附近摆动,故A 选项错误;对于B 选项,根据概率的意义,一个质地均匀的骰子掷一次得到3点的概率是16,表示一次实验发生的可能性是16,故骰子掷6次出现3点的次数也不确定,故B 选项错误;对于C 选项,根据概率的计算公式得()1112222P A =⨯⨯=,()111224P B =⨯=,故()()2P A P B =,故C 选项正确;对于D 选项,设[]3,3x ∈-,A 事件表示从[]3,3-中任取一个数x ,使得[]1,3x ∈的事件,则()13P A =,B 事件表示从[]3,3-中任取一个数x ,使得[]2,1x ∈-的事件,则()12P A =,显然()()()511632P A B P A P B ==+=+,此时A 事件与B 事件不互斥,故D 选项错误. 6.(2021·江苏南通·高一期末)已知{0,1,2}a ∈,{1,1,35}b ∈-,,则函数2()2f x ax bx =-在区间(1,)+∞上为增函数的概率是 A .512 B .13C .14D .16【答案】A【解析】{0,1,2}a ∈,{1,1,3,5}b ∈-,∴基本事件总数3412n =⨯=.用(,)a b 表示,a b 的取值. 若函数2()2f x ax bx =-在区间(1,)+∞上为增函数,则①当0a =时,()2f x bx =-,符合条件的只有(0,1)-,即0a =,1b =-; ②当0a ≠时,则由题意0a >,只需满足1ba,符合条件的有(1,1)-,(1,1),(2,1)-,(2,1),共4种.∴函数2()2f x ax bx =-在区间(1,)+∞上为增函数的概率512P =. 故选:A7.(2021·江苏·高一单元测试)一个电路如图所示,A ,B ,C ,D ,E ,F 为6个开关,其闭合的概率为12,且是相互独立的,则灯亮的概率是( )A .164B .5564 C .18D .116【答案】B【解析】设A 与B 中至少有一个不闭合的事件为,T E 与F 至少有一个不闭合的事件为R ,则()()1131224P T P R ==-⨯=,所以灯亮的概率为()()1P P T P R =-⋅⋅ ()()3311551442264P C P D ⋅=-⨯⨯⨯=, 故选B.8.(2021·全国·高一课时练习)连掷一枚均匀的骰子两次,所得向上的点数分别为,m n ,记t m n =+,则下列说法正确的是 A .事件“12t =”的概率为121B .事件“t 是奇数”与“m n =”互为对立事件C .事件“2t =”与“3t ≠”互为互斥事件D .事件“832t mn ><且”的概率为14【答案】D【解析】对于A,1266t ==+,则概率为1116636⨯=,选项错误;对于B, “t 是奇数”即向上的点数为奇数与偶数之和,其对立事件为都是奇数或都是偶数,选项错误; 对于C,事件“2t =”包含在“3t ≠”中,不为互斥事件,选项错误;对于D, 事件“832t mn 且><”的点数有: ()()()()()()()()()3,6,4,5,4,6,5,4,5,5,5,6,6,3,6,4,6,5,共9种,故概率为91664=⨯,选项正确; 综上可得,选D.二、多选题(每题至少有2个选项为正确答案,每题5分,4题共20分)9.(2021·辽宁·建平县实验中学高一月考)某社团开展“建党100周年主题活动——学党史知识竞赛”,甲、乙两人能得满分的概率分别为34,23,两人能否获得满分相互独立,则下列说法错误的是:( )A .两人均获得满分的概率为12 B .两人至少一人获得满分的概率为712 C .两人恰好只有甲获得满分的概率为34D .两人至多一人获得满分的概率为1112【答案】BCD【解析】∵甲、乙两人能得满分的概率分别为34,23,两人能否获得满分相互独立,分别记甲、乙得满分的事件为,M N ,则()()32,,,43P M P N M N ==独立.∴两人均获得满分的概率为:()()()P MN P M P N ==321432⨯=,故A 正确;两人至少一人获得满分的概率为:()()()()()321111111114312P MN P M P N ⎛⎫⎛⎫-=---=---= ⎪⎪⎝⎭⎝⎭,故B 错误;两人恰好只有甲获得满分的概率为:()()()()32111434P MN P M P N ⎛⎫=-=⨯-= ⎪⎝⎭,故C 错误;两人至多一人获得满分的概率为: ()111122P MN -=-=,故D 错误. 故选:BCD .10.(2021·湖南张家界·高一期末)分别抛掷两枚质地均匀的硬币,设事件M =“第一枚硬币正面朝上”,事件N =“第二枚硬币反面朝上”,则下列说法中正确的是( ) A .M 与N 是互斥事件 B .M 与N 是对立事件 C .()()P M P N = D .M 与N 是相互独立事件【答案】CD【解析】由事件M =“第一枚硬币正面朝上”,事件N =“第二枚硬币反面朝上”, 可知两事件互不影响,即M 与N 相互独立, 易得()12P M =,()12P M =,所以()()()1P M N P M P N ⋃=+=,且()()P M P N =, 综上,选项C 和选项D 正确. 故选:CD .11.(2021·江苏省天一中学高一期末)下列说法正确的是( )A .甲乙两人独立地解题,已知各人能解出的概率分别是0.5,0.25,则题被解出的概率是0.125B .若A ,B 是互斥事件,则()()()P A B P A P B =+,()0P AB =C .某校200名教师的职称分布情况如下:高级占比20%,中级占比50%,初级占比30%,现从中抽取50名教师做样本,若采用分层抽样方法,则高级教师应抽取10人D .一位男生和两位女生随机排成一列,则两位女生相邻的概率是23【答案】BCD【解析】对于A ,∵他们各自解出的概率分别是12,14,则此题不能解出的概率为 11311248⎛⎫⎛⎫---= ⎪ ⎪⎝⎭⎝⎭,则此题能解出的概率为35188-=,故A 错;对于B ,若A ,B 是互斥事件,则()()()P A B P A P B =+,()0P AB =,故B 正确; 对于C ,高级教师应抽取5020%10⨯=人,故C 正确; 对于D ,由列举法可知,两位女生相邻的概率是23,故D 正确.故选:BCD.12.(2021·山东烟台·高一期末)算盘是我国古代一项伟大的发明,是一类重要的计算工具.下图是一把算盘的初始状态,自右向左,分别表示个位、十位、百位、千位……,上面一粒珠子(简称上珠)代表5,下面一粒珠子(简称下珠)代表1,五粒下珠的大小等于同组一粒上珠的大小.例如,个位拨动一粒上珠、十位拨动一粒下珠至梁上,表示数字15.现将算盘的个位、十位、百位、千位分别随机拨动一粒珠子至梁上,设事件A =“表示的四位数能被3整除”,B =“表示的四位数能被5整除”,则( )A .()38P A =B .()13P B =C .()1116P A B ⋃=D .()316P AB =【答案】ACD【解析】只拨动一粒珠子至梁上,因此数字只表示1或5,四位数的个数是4216=,能被3整除的数字1和5各出现2个,因此满足条件的四位数和个数是246C =,所以63()168P A ==,能被5带除的四位数个数为328=,81()162P B ==,能被15带除的是能被3整除的四位数的个数是5,因此满足这个条件的四位数的个数是133C =,概率为3()16P AB =, 31311()()()()821616P A B P A P B P AB =+-=+-=.故选:ACD .三、填空题(每题5分,4题共20分)13.(2021·全国·高一专题练习)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________. 【答案】56【解析】基本事件总数为36,点数之和小于10的基本事件共有30种,所以所求概率为305.366= 14.(2021·安徽舒城·高一期末)天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数: 488 932 812 458 989 431 257 390 024 556 734 113 537 569 683 907 966 191 925 271 据此估计,这三天中恰有两天下雨的概率近似为__________. 【答案】0.3【解析】由题意知模拟三天的下雨情况,经随机模拟产生了20组随机数,在20组随机数中表示三天中恰有两天下雨的有:932、812、024、734、191、271,共6组随机数,∴所求概率为60.320P ==.故答案为:0.3 15.(2021·全国·高一课时练习)一次掷两枚骰子,得到的点数为m 和n ,则关于x 的方程2)0(4x m n x +++=有实数根的概率是________. 【答案】1112【解析】由题意知:基本事件共有6636⨯=个方程有实根 ()2160m n ∴∆=+≥- 4m n ∴+≥其对立事件为:4m n +<,包含:()1,1,()1,2,()2,1共3个基本事件∴所求概率为31113612P =-= 本题正确结果:111216.(2021·山东莱西·高一期末)一个数字不重复的三位数的百位、十位、个位上的数字依次记为a ,b ,c ,当且仅当a ,b ,c 中有两个不同数字的和等于剩下的一个数字时,称这个三位数为“有缘数”(如213,341等).现从1,2,3,4这四个数字中任取三个数组成一个数字不重复的三位数,则这个三位数为“有缘数”的概率是______. 【答案】12.【解析】从1,2,3,4这四个数字中任取三个数组成一个数字不重复的三位数的个数为3424A =,1,2,3,4这四个数字中两个的和等于第三个的有123,134,因此“有缘数”个数为333312A A +=,所示概率为121242P ==.故答案为:12.四、解答题(17题10分,其余每题12分,共70分)17.(2021·全国·高一课时练习)在某地区,某项职业的从业者共约8.5万人,其中约3.4万人患有某种职业病:为了解这种职业病与某项身体指标(检测值为不超过6的正整数)间的关系,依据是否患有职业病,使用分层抽样的方法随机抽取了100名从业者,记录他们该项身体指标的检测值,整理得到如下统计图:(1)求样本中患病者的人数和图中a ,b 的值;(2)试估计此地区该项身体指标检测值不低于5的从业者的人数;(3)某研究机构提出,可以选取常数0 4.5X =,若一名从业者该项身体指标检测值大于0X ,则判定其患有这种职业病;若检测值小于0X ,则判定其未患有这种职业病.从样本中随机选择一名从业者,按照这种方式判断其是否患病,求判断错误的概率.【答案】(1)患病者的人数为40,0.05a =,0.40b =;(2)31450;(3)21100.【解析】(1)根据分层抽样原则,容量为100的样本中,患病者的人数为 3.4100408.5⨯=. 10.100.350.250.150.100.05a =-----=,10.100.200.300.40b =---=.(2)由(1)可知,患病者的人数为40,未患病的人数为60,该项身体指标检测值不低于5的样本中,有患病者40(0.300.40)28⨯+=(人),未患病者60(0.10⨯+0.05)9=(人),共37人. 故估计此地区该项身体指标检测值不低于5的从业者的人数为378500031450100⨯=. (3)当0 4.5X =时,在100个样本数据中,有40(0.100.20)12⨯+=(名)患病者被误判为未患病,有60(0.100.05)9⨯+=(名)未患病者被误判为患病,因此判断错误的概率为21100. 18.(2021·安徽·定远县育才学校高一期末)如图,从参加环保知识竞赛的学生中抽出40名,将其成绩(均.为整数...)整理后画出的频率分布直方图如下:观察图形,回答下列问题:(1)80~90这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛成绩的平均数、众数、中位数.(3)从成绩是80分以上(包括80分)的学生中选两人,求他们在同一分数段的概率. 【答案】(1)4,0.1;(2)68.5,75,70;(3)715. 【解析】(1)根据题意,40~50的这一组的频率为0.01100.1⨯=,50~60的这一组的频率为0.015100.15⨯=,60~70的这一组的频率为0.025100.25⨯=,70~80的这一组的频率为0.035100.35⨯=,90~100的这一组的频率为0.005100.05⨯=,则80~90这一组的频率为()10.10.150.250.350.05-++++0.1=,其频数为400.14⨯=;(2)这次竞赛的平均数为450.1550.15650.25750.35850.1950.0568.5⨯+⨯+⨯+⨯+⨯+⨯=,70~80一组的频率最大,人数最多,则众数为75,70分左右两侧的频率均为0.5,则中位数为70;(3)记“取出的2人在同一分数段”为事件E , 因为80~90之间的人数为400.14⨯=,设为a 、b 、c 、d , 90~100之间有400.052⨯=人,设为A 、B ,从这6人中选出2人,有(),a b 、(),a c 、(),a d 、(),a A 、(),a B 、(),b c 、(),b d 、 (),b A 、(),b B 、(),c d 、(),c A 、(),c B 、(),d A 、(),d B 、 (),A B ,共15个基本事件,其中事件E 包括(),a b 、(),a c 、(),a d 、(),b c 、(),b d 、(),c d 、(),A B ,共7个基本事件, 则()715P E =. 19.(2021·天津市蓟州区擂鼓台中学高一月考)乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,已知甲每轮猜对的概率为34,乙每轮猜对的概率为23·在每轮活动中,甲和乙猜对与否互不影响,各轮结果也互不影响,求(1)“星队”在两轮活动中猜对2个成语的概率; (2) “星队”在两轮活动中猜对3个成语的概率; (3) “星队”在两轮活动至少中猜对1个成语的概率; 【答案】(1)37144;(2)512;(3)1112. 【解析】设A ,B 分别表示甲乙每轮猜对成语的事件,M 0,M 1,M 2表示第一轮甲乙猜对0个、1个、2个成语的事件,N 0,N 1,N 2表示第二轮甲乙猜对0个、1个、2个成语的事件,D 0,D 1,D 2,D 3,D 4表示两轮猜对0个、1个、2个、3个、4个成语的事件.∵P(A )=34,P (A )=1-34=14,P (B )=23,P (B )=1-23=13,∴根据独立性的假定得:P (M 0)=P (N 0)=P (AB )= P (A ) P (B )=1413=112, P (M 1)=P (N 1)=P (AB AB +)= P (AB )+P (AB ) =34⨯13+1243⨯=512,P (M 2)=P (N 2)=P (AB )=P (A )P (B )= 34⨯23=61122=,(1)P (D 2)=P (M 2N 0+M 1N 1+M 0N 2)= P (M 2N 0)+P (M 1N 1)+P (M 0N 2)=12.112+512.512+112.12=37144. (2)P (D 3)=P (M 1N 2+M 2N 1)= P (M 1N 2)+P (M 2N 1)= 512.12+12.512=512.(3)P (D 1+D 2+D 3+D 4)=1-P (D 0)=1-112=1112.20.(2021·陕西王益·高一期中)已知函数2()21f x ax bx =+-.(1)若a ,b 都是从集合{1,2,3}中任取的一个数,求函数() f x 在(,1)-∞-上单调递减的概率;(2)若a 是从集合{1,2,3}中任取的一个数,b 是从集合{1,2,3,4}中任取的一个数,求方程()0f x =在区间(,3)-∞-上有实数根的概率.【答案】(1)23;(2)512.【解析】(1)记函数()f x 在区间(,1)-∞-上单调递减为事件A . 由于a ,b 都是从集合{1,2,3}中任取的一个数,基本事件有()1,1,()1,2,()1,3,()2,1,()2,2,()2,3,()3,1,()3,2,()3,3,共9种.因为a 的取值为正数,所以函数()f x 图象开口向上, 若函数()f x 在区间(,1)-∞-上单调递减,则有212b a -≥-,即1ba≤,b a ≤, 满足条件的有()1,1,()2,1,()2,2,()3,1,()3,2,()3,3, 所以事件A 包含其中的6个基本事件. 所以所求的概率为62()93P A ==. (2)记方程()0f x =在区间(,3)-∞-上有实数根为事件B .由于a 是从集合{1,2,3}上任取的一个数,b 是从集合{1,2,3,4}上任取的一个数, 基本事件有()1,1,()1,2,()1,3,()1,4,()2,1,()2,2,()2,3,()2,4,()3,1,()3,2,()3,3,()3,4,共12种.由题意知0a >,(0)1f =-,所以方程()0f x =在区间(,3)-∞-上有实数根, 则有(3)0f -<,即9610a b --<,满足条件的有()1,2,()1,3,()1,4,()2,3,()2,4,所以事件B 包含其中的5个基本事件, 所以所求的概率为5()12P B =. 21.(2021·广东江门·高一期末)已知关于x 的二次函数2()1f x mx nx =--,令集合{}1,2,3,4M =,{}1,2,4,6,8N =-,若分别从集合M 、N 中随机抽取一个数m 和n ,构成数对(),m n .(1)列举数对(),m n 的样本空间;(2)记事件A 为“二次函数()f x 的单调递增区间为[)1,+∞”,求事件A 的概率; (3)记事件B 为“关于x 的一元二次方程()2f x =有4个零点”,求事件B 的概率. 【答案】(1){(1,1),(1,2),(1,4),(1,6),(1,8),(2,1),(2,2),(2,4),(2,6),(2,8),(3,1),Ω=---}(3,2),(3,4),(3,6),(3,8),(4,1),(4,2),(4,4),(4,6),(4,8)-;(2)15;(3)1120.【解析】(1)由题意可得,{}1,2,3,4m ∈,{}1,2,4,6,8n ∈-,数对(),m n 的样本空间为{(1,1),(1,2),(1,4),(1,6),(1,8),(2,1),(2,2),(2,4),(2,6),(2,8),(3,1),Ω=---}(3,2),(3,4),(3,6),(3,8),(4,1),(4,2),(4,4),(4,6),(4,8)-;(2)若二次函数()f x 的单调递增区间为[)1,+∞, 则二次函数()f x 的对称轴12nx m==,即2n m =, 由(1)可得,总的基本事件个数为20个,符合2n m =的基本事件为:()1,2,()2,4,()3,6,()4,8共4个, 所以()41205P A ==; (3)因为0m >,二次函数的图象开口向上,方程()2f x =有4个零点,即方程()2f x =和()2f x =-各有2个零点, 等价于二次函数2()1f x mx nx =--的最小值小于2-,所以2424m n m--<-,即24n m >, 样本空间中符合24n m >的基本事件有:()1,4,()1,6,()1,8,()2,4,()2,6,()2,8,()3,4,()3,6,()3,8,()4,6,()4,8,共11个,所以()1120P B =. 22.(2021·广东东莞·高一期末)4月23日是世界读书日,树人中学为了解本校学生课外阅读情况,按性别进行分层,用分层随机抽样的方法从全校学生中抽出一个容量为100的样本,其中男生40名,女生60名.经调查统计,分别得到40名男生一周课外阅读时间(单位:小时)的频数分布表和60名女生一周课外阅读时间(单位:小时)的频率分布直方图:(以各组的区间中点值代表该组的各个值)(1)从一周课外阅读时间为[)4,6的学生中按比例分配抽取6人,从这6人中任意抽取2人,求恰好一男一女的概率;(2)分别估计男生和女生一周课外阅读时间的平均数x ,y ; (3)估计总样本的平均数z 和方差2s .参考数据和公式:男生和女生一周课外阅读时间方差的估计值分别为2 2.4s =男和23s =女.()()()()404060602222211111100i i i i i i s x x x z y y y z ====⎡⎤=-+-+-+-⎢⎥⎣⎦∑∑∑∑,()040i x i ≤≤和()060i y i ≤≤分别表示男生和女生一周阅读时间的样本,其中i Z ∈.【答案】(1)13;(2)3x =,4y =;(3) 3.6z =,23s =.【解析】(1)一周课外阅读时间为[)4,6的学生中男生有3人,女生有1260158⨯⨯=人,若从中按比例分配抽取6人,则男生有1人,记为a ,女生有5人,记为1b ,2b ,3b ,4b ,5b , 则样本空间{}1234512131415232425343545,,,,,,,,,,,,,,ab ab ab ab ab bb bb bb bb b b b b b b b b b b b b Ω=, 记事件A =“恰好一男一女”,则{}12345,,,,A ab ab ab ab ab =, 所以()51153P A ==, 所以从这6人中任意抽取2人恰好一男一女的概率为13;(2)估计男生一周课外阅读时间平均数193255373340x ⨯+⨯+⨯+⨯==;估计女生一周课外阅读时间的平均数1111212325274244812y =⨯⨯+⨯⨯+⨯⨯+⨯⨯=.(3)估计总样本的平均数3404603.6100z ⨯+⨯==, ∵()40221140i i x x s =-=∑男,()22601160i i y y s =-=∑女 ∴()4022140 2.44096i i x xs =-=⋅=⨯=∑男,()2216060360180i i y ys =-=⋅=⨯=∑女,()()40221403 3.614.4i x z =-=⨯-=∑,()()60221604 3.69.6i y z=-=⨯-=∑,∴[]219614.49.61803100s =+++=, 所以估计总样本的平均数和方差分别是3.6和3.。
部编版高中数学必修二第十章概率带答案知识点总结(超全)
(名师选题)部编版高中数学必修二第十章概率带答案知识点总结(超全)单选题1、掷一枚骰子一次,设事件A :“出现偶数点”,事件B :“出现3点或6点”,则事件A ,B 的关系是 A .互斥但不相互独立B .相互独立但不互斥 C .互斥且相互独立D .既不相互独立也不互斥2、甲、乙两人练习射击,甲击中目标的概率为0.9,乙击中目标的概率为0.7,若两人同时射击一目标,则他们都击中的概率是( ) A .0.3B .0.63C .0.7D .0.93、下列事件:(1)在标准大气压下,水加热到100℃沸腾;(2)平面三角形的内角和是180°;(3)骑车到十字路口遇到红灯;(4)某人购买福利彩票5注,均未中奖;(5)没有水分,种子发芽了.其中随机事件的个数是( ). A .1B .2C .3D .44、2021年神舟十二号、十三号载人飞船发射任务都取得圆满成功,这意味着我国的科学技术和航天事业取得重大进步.现有航天员甲、乙、丙三个人,进入太空空间站后需要派出一人走出太空站外完成某项试验任务,工作时间不超过10分钟,如果10分钟内完成任务则试验成功结束任务,10分钟内不能完成任务则撤回再派下一个人,每个人只派出一次.已知甲、乙、丙10分钟内试验成功的概率分别为45,34,23,每个人能否完成任务相互独立,该项试验任务按照甲、乙、丙顺序派出,则试验任务成功的概率为( ) A .910B .1920C .2930D .59605、先后两次抛掷同一个骰子,将得到的点数分别记为a ,b ,则a ,b ,4能够构成等腰三角形的概率是( ) A .16B .12C .1336D .7186、从集合{2,4,6,8}中任取两个不同元素,则这两个元素相差2的概率为( ). A .13B .12C .14D .237、将一颗质地均匀的骰子先后抛掷两次,观察向上的点数,则点数和为6的概率为( ) A .19B .536C .16D .7368、打靶3次,事件A i表示“击中i发”,其中i=0、1、2、3.那么A=A1∪A2∪A3表示()A.全部击中B.至少击中1发C.至少击中2发D.以上均不正确多选题9、已知袋中有大小相同的黄、红、白球各一个,每次任取一个,有放回地取3次,则下列事件的概率不为89的是()A.颜色相同B.颜色不全相同C.颜色全不相同D.无红球10、某小组有2名男生和3名女生,从中任选2名同学去参加唱歌比赛,在下列各组事件中,是互斥事件的是()A.恰有1名女生和恰有2名女生B.至少有1名男生和至少有1名女生C.至少有1名女生和全是女生D.至少有1名女生和全是男生11、(多选题)从装有大小和形状完全相同的5个红球和3个白球的口袋内任取3个球,那么下列各对事件中,互斥而不对立的是A.至少有1个红球与都是红球B.至少有1个红球与至少有1个白球C.恰有1个红球与恰有2个红球D.至多有1个红球与恰有2个红球填空题12、已知甲盒装有3个红球,m个白球,乙盒装有3个红球, 1个白球,丙盒装有2个红球, 2个白球,这些球除颜色以外完全相同. 先随机取一个盒子,再从该盒子中随机取一个球,若取得白球的概率是37,则84m=_____.部编版高中数学必修二第十章概率带答案(十三)参考答案1、答案:B事件A ={2,4,6},事件B ={3,6},事件AB ={6},基本事件空间Ω={1,2,3,4,5,6},所以P(A)=36=12,P(B)=26=13,P(AB)=16=12×13,即P(AB)=P(A)P(B),因此,事件A 与B 相互独立.当“出现6点”时,事件A ,B同时发生,所以A ,B 不是互斥事件.故选B . 2、答案:B分析:结合相互独立事件直接求解即可.设甲击中为事件A ,乙击中为事件B ,则P (AB )=P (A )⋅P (B )=0.9×0.7=0.63. 故选:B 3、答案:B分析:根据随机事件的定义进行判断即可.事件(1)是基本事实,因此是确定事件;事件(2)是基本事实,因此它是确定事件; 事件(3、(4)是随机出现,是随机事件;事件(5)是不可能事件, 故选:B 4、答案:D分析:把试验任务成功的事件拆成三个互斥事件的和,再求出每个事件的概率,然后用互斥事件的概率加法公式计算作答.试验任务成功的事件M 是甲成功的事件M 1,甲不成功乙成功的事件M 2,甲乙都不成功丙成立的事件M 3的和, 事件M 1,M 2,M 3互斥,P(M 1)=45,P(M 2)=(1−45)×34=320,P(M 3)=(1−45)×(1−34)×23=130,所以试验任务成功的概率P(M)=P(M 1+M 2+M 3)=45+320+130=5960. 故选:D 5、答案:D分析:利用乘法原理求出基本事件总数,然后按照分类讨论的方法求出a ,b ,4能够构成等腰三角形的基本事件数,然后利用古典概型的概率公式求解即可. 由乘法原理可知,基本事件的总数是36,结合已知条件可知,当a=1时,b=4符合要求,有1种情况;当a=2时,b=4符合要求,有1种情况;当a=3时,b=3,4符合要求,有2种情况;当a=4时,b=1,2,3,4,5,6符合要求,有6种情况;当a=5时,b=4,5符合要求,有2种情况;当a=6时,b=4,6符合要求,有2种情况,所以能构成等腰三角形的共有14种情况,故a,b,4能够构成等腰三角形的概率P=1436=718.故选:D.6、答案:B分析:一一列出所有基本事件,然后数出基本事件数n和有利事件数m,代入古典概型的概率计算公式P=mn,即可得解.解:从集合{2,4,6,8}中任取两个不同元素的取法有(2,4)、(2,6)、(2,8)、(4,6)、(4,8)、(6,8)共6种,其中满足两个元素相差2的取法有(2,4)、(4,6)、(6,8)共3种.故这两个元素相差2的概率为12.故选:B.7、答案:B分析:分别求得基本事件的总数和点数和为6的事件数,由古典概率的计算公式可得所求值.解:一颗质地均匀的正方体骰子先后抛掷2次,可得基本事件的总数为6×6=36种,而点数和为6的事件为(1,5),(2,4),(3,3),(4,2),(5,1)共5种,则点数和为6的概率为P=536.故选:B.8、答案:B分析:利用并事件的定义可得出结论.A=A1∪A2∪A3所表示的含义是A1、A2、A3这三个事件中至少有一个发生,即可能击中1发、2发或3发.故选:B.9、答案:ACD分析:把所有情况列举出来,找到符合要求的情况,利用古典概型求概率公式进行求解.根据题意,有放回的取3次,共有3×3×3=27种情况,即(黄,黄,黄),(黄,白,黄),(黄,黄,白),(黄,红,黄),……,由古典概型计算:A选项,颜色相同的情况有3种,故概率为327=19,不为89;B选项,颜色不全相同与颜色相同是对立事件,故其概率为89;C选项,颜色全不相同,即黄,红,白各有一次,共有6种情况,故概率为627=29,不为89;D选项,无红球,即三次都是黄或白球,共有8种情况,故其概率为827,不为89.故选:ACD10、答案:AD分析:逐个选项分析事件之间是否有同时发生的可能性再判断即可.A中两个事件是互斥事件,恰有一名女生即选出的两名学生中有一名男生一名女生,它与恰有2名女生不可能同时发生,A是;B中两个事件不是互斥事件,两个事件均可能有一名男生和一名女生,B不是;C中两个事件不是互斥事件,至少一名女生包含全是女生的情况,C不是;D中两个事件是互斥事件,至少有一名女生与全是男生显然不可能同时发生,D是.故选:AD11、答案:CD解析:根据互斥不对立事件的定义辨析即可.根据互斥事件与对立事件的定义判断.A中两事件不是互斥事件,事件“3个球都是红球”是两事件的交事件;B中两事件能同时发生,如“恰有1个红球和2个白球”,故不是互斥事件;C中两事件是互斥而不对立事件;至多有1个红球,即有0个或1个红球,与恰有2个红球互斥,除此还有3个都是红球的情况,因此它们不对立,D符合题意.故选:CD小提示:本题主要考查了互斥与对立事件的辨析,属于基础题型. 12、答案:4分析:分别求出从甲、乙、丙盒中机取一个球取得白球的概率,再表示出随机取一个盒子,再从该盒子中随机取一个球, 取得白球的概率即可求出m 的值. 从甲盒中机取一个球,取得白球的概率是P 1=m 3+m ,从乙盒中机取一个球,取得白球的概率是P 2=14, 从丙盒中机取一个球,取得白球的概率是P 2=12, 因为随机取一个盒子,再从该盒子中随机取一个球, 取得白球的概率是3784,所以1C 31·(P 1+P 2+P 3)=13×(m 3+m +14+12)=3784, 解得:m =4. 所以答案是:4.。
部编版高中数学必修二第十章概率带答案知识集锦
(名师选题)部编版高中数学必修二第十章概率带答案知识集锦单选题1、如图所示,1,2,3表示三个开关,若在某段时间内它们每个正常工作的概率都是0.9,那么此系统的可靠性是( )A .0.999B .0.981C .0.980D .0.7292、掷一枚均匀的硬币,如果连续抛掷1000次,那么第999次出现正面向上的概率是A .1999B .11000C .9991000D .123、已知样本空间为Ω,x 为一个基本事件.对于任意事件A ,定义f (A )={0,x ∉A 1,x ∈A,给出下列结论:①f(Ω)=1,f(∅)=0;②对任意事件A ,0≤f(A)≤1;③如果A ∩B =∅,那么f(A ∪B)=f(A)+f(B);④f(A)+f(A )=1.其中,正确结论的个数是( )A .1个B .2个C .3个D .4个4、抛掷一枚质地均匀的正方体骰子,若事件A =“向上的点数为3”,B =“向上的点数为6”,C =“向上的点数为3或6”,则有( )A .A ⊆B B .C ⊆B C .A ∩B =CD .A ∪B =C5、一个学习小组有5名同学,其中2名男生,3名女生.从这个小组中任意选出2名同学,则选出的同学中既有男生又有女生的概率为( )A .15B .25C .35D .456、设条件甲:“事件A 与事件B 是对立事件”,结论乙:“概率满足P (A )+P (B )=1”,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7、某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为p 1,p 2,p 3,且p 3>p 2>p 1>0.记该棋手连胜两盘的概率为p ,则( )A .p 与该棋手和甲、乙、丙的比赛次序无关B .该棋手在第二盘与甲比赛,p 最大C .该棋手在第二盘与乙比赛,p 最大D .该棋手在第二盘与丙比赛,p 最大8、若书架上放的工具书、故事书、图画书分别是5本、3本、2本,则随机抽出一本是故事书的概率为( )A .15B .310C .35D .12 多选题9、盒中装有大小相同的5个小球(编号为1至5),其中黑球3个,白球2个.每次取一球(取后放回),则( )A .每次取到1号球的概率为15B .每次取到黑球的概率为25C .“第一次取到黑球”和“第二次取到白球”是相互独立事件D .“每次取到3号球”与“每次取到4号球”是对立事件10、下列有关古典概型的说法中,正确的是( )A .试验的样本空间的样本点总数有限B .每个事件出现的可能性相等C .每个样本点出现的可能性相等D .已知样本点总数为n ,若随机事件A 包含k 个样本点,则事件A 发生的概率P (A )=k n11、某学校组织了一次劳动技能大赛,共有100名学生参赛,经过评判,这100名参赛者的得分都在[40,90]内,得分60分以下为不及格,其得分的频率分布直方图如图所示(按得分分成[40,50),[50,60),[60,70),[70,80),[80,90]这五组),则下列结论正确的是( )A.直方图中a=0.005B.此次比赛得分不及格的共有40人C.以频率为概率,从这100名参赛者中随机选取1人,其得分在[60,80)的概率为0.5 D.这100名参赛者得分的中位数为65填空题12、若A,B互为对立事件,其概率分别为P(A)=1y ,P(B)=4x,且x>0,y>0,则x+y的最小值为________.部编版高中数学必修二第十章概率带答案(五十)参考答案1、答案:B解析:求出开关1、2均正常工作的概率及开关3正常工作的概率,由相互独立事件概率公式、对立事件的概率公式即可得解.由题意,开关1、2在某段时间内均正常工作的概率P 1=0.9×0.9=0.81,开关3正常工作的概率P 2=0.9,故该系统正常工作的概率P =1−(1−P 1)(1−P 2)=1−(1−0.81)×(1−0.9)=0.981,所以该系统的可靠性为0.981.故选:B.2、答案:D每一次出现正面朝上的概率相等都是12,故选D.3、答案:D分析:根据f (A )的定义,利用分类讨论思想进行分析判定.∵任意x ∈Ω恒成立,任意x ∈∅恒不成立,∴f(Ω)=1,f(∅)=0,故①正确;对任意事件A ,f (A )={0,x ∉A 1,x ∈A,∴f (A )∈{0,1},∴0≤f(A)≤1成立,故②正确; 如果A ∩B =∅,当x ∈A ∪B 时,f (A ∪B )=1,此时x ∈A 或x ∈B .若x ∈A ,则x ∉B ,f (A )=1,f (B )=0,f (A )+f (B )=1,f(A ∪B)=f(A)+f(B)成立;x ∈B 时,x ∉A ,f (A )=0,f (B )=1,f (A )+f (B )=1,f(A ∪B)=f(A)+f(B)成立;当x ∉A ∪B 时,x ∉A ,x ∉B ,∴f (A ∪B )=0,f (A )=0,f (B )=0,那么f(A ∪B)=f(A)+f(B)成立,∴③正确;当x ∈A 时,x ∉A ,此时f (A )=1,f (A )=0, f(A)+f(A )=1成立;当x ∉A 时,x ∈A ,此时f (A )=0,f (A )=1, f(A)+f(A )=1成立,故④正确.综上,正确的结论有4个,故选:D4、答案:D分析:根据事件的关系、和事件、积事件的定义逐一判断四个选项的正误,即可得出正确选项对于A :事件A =“向上的点数为3”发生,事件B =“向上的点数为6”一定不发生,故选项A 不正确;对于B :事件C =“向上的点数为3或6”发生,事件B =“向上的点数为6”不一定发生,但事件B =“向上的点数为6”发生,事件C =“向上的点数为3或6” 一定发生,所以B ⊆C ,故选项B 不正确;对于C :事件A 和事件B 不能同时发生,A ∩B =∅,故选项C 不正确;对于D :事件A =“向上的点数为3”或事件B =“向上的点数为6”发生,则事件C =“向上的点数为3或6”发生,故选项D 正确;故选:D5、答案:C分析:写出5人取2人的所有事件,找出一男同学一女同学的取法,利用古典概型求解.5人小组中,设2男生分别为a ,b ,3名女生分别为A,B,C ,则任意选出2名同学,共有:(a,b),(a,A),(a,B),(a,C),(b,A),(b,B),(b,C),(A,B),(A,C),(B,C)10个基本事件, 其中选出的同学中既有男生又有女生共有(a,A),(a,B),(a,C),(b,A),(b,B),(b,C)6个基本事件,所以P =610=35,故选:C6、答案:A解析:将两个条件相互推导,根据能否推导的情况选出正确答案.①若事件A 与事件B 是对立事件,则A ∪B 为必然事件,再由概率的加法公式得P (A )+P (B )=1;②投掷一枚硬币3次,满足P (A )+P (B )=1,但A ,B 不一定是对立事件,如:事件A :“至少出现一次正面”,事件B :“出现3次正面”,则P (A )=78,P (B )=18,满足P (A )+P (B )=1,但A ,B 不是对立事件. 所以甲是乙的充分不必要条件.故选:A小提示:本小题主要考查充分、必要条件的判断,考查对立事件的理解,属于基础题.7、答案:D分析:该棋手连胜两盘,则第二盘为必胜盘.分别求得该棋手在第二盘与甲比赛且连胜两盘的概率p 甲;该棋手在第二盘与乙比赛且连胜两盘的概率p乙;该棋手在第二盘与丙比赛且连胜两盘的概率p丙.并对三者进行比较即可解决该棋手连胜两盘,则第二盘为必胜盘,记该棋手在第二盘与甲比赛,比赛顺序为乙甲丙及丙甲乙的概率均为12,则此时连胜两盘的概率为p甲则p甲=12[(1−p2)p1p3+p2p1(1−p3)]+12[(1−p3)p1p2+p3p1(1−p2)]=p1(p2+p3)−2p1p2p3;记该棋手在第二盘与乙比赛,且连胜两盘的概率为p乙,则p乙=(1−p1)p2p3+p1p2(1−p3)=p2(p1+p3)−2p1p2p3记该棋手在第二盘与丙比赛,且连胜两盘的概率为p丙则p丙=(1−p1)p3p2+p1p3(1−p2)=p3(p1+p2)−2p1p2p3则p甲−p乙=p1(p2+p3)−2p1p2p3−[p2(p1+p3)−2p1p2p3]=(p1−p2)p3<0p乙−p丙=p2(p1+p3)−2p1p2p3−[p3(p1+p2)−2p1p2p3]=(p2−p3)p1<0即p甲<p乙,p乙<p丙,则该棋手在第二盘与丙比赛,p最大.选项D判断正确;选项BC判断错误;p与该棋手与甲、乙、丙的比赛次序有关.选项A判断错误.故选:D8、答案:B分析:由古典概率模型的计算公式求解.样本点总数为10,“抽出一本是故事书”包含3个样本点,所以其概率为310.故选:B.9、答案:AC分析:通过计算得出每次取到1号球的概率判断A;通过计算得出每次取到黑球的概率判断B;根据独立事件的定义判断C;通过计算得出次取到3,4号球的概率及对立事件的定义判断D.解:对于A ,每次取到1号球的概率为C 11C 51=15,故正确;对于B ,每次取到黑球的概率为C 31C 51=35,故错误;对于C ,“第一次取到黑球”和“第二次取到白球”相互之间没有影响,所以“第一次取到黑球”和“第二次取到白球”是相互独立事件,故正确;对于D ,每次取到3号球的概率为C 11C 51=15,每次取到4号球的概率为C 11C 51=15,它们互斥事件,而不是对立事件,故错误.故选:AC.10、答案:ACD分析:根据古典概型的定义逐项判断即可.由古典概型概念可知:试验的样本空间的样本点总数有限;每个样本点出现的可能性相等.故AC 正确;每个事件不一定是样本点,可能包含若干个样本点,所以B 不正确;根据古典概型的概率计算公式可知D 正确.故选:ACD11、答案:ABC分析:由频率和为1求参数a ,判断A ;由直方图求60分以下的人数、求[60,80)的频率判断B 、C ;由中位数的性质求中位数即可判断D.因为(a +0.01+0.02+0.03+0.035)×10=1,所以a =0.005,所以A 正确;因为不及格的人数为100×(0.005+0.035)×10=40,所以B 正确;因为得分在[60,80)的频率为(0.03+0.02)×10=0.5,所以从这100名参赛者中随机选取1人,其得分在[60,80)的概率为0.5,所以C 正确;这100名参赛者得分的中位数为60+0.10.03≠65,所以D 错误.故选:ABC.12、答案:9解析:根据对立事件的性质可知1y +4x =1,再利用基本不等式求x +y 的最小值.由事件A,B互为对立事件,其概率分别P(A)=1y,P(B)=4x ,且x>0,y>0,所以P(A)+P(B)=1y+4x=1,所以x+y=(x+y)(1y +4x)=5+4yx+xy≥5+2√4yx ⋅xy=9,当且仅当x=6,y=3时取等号,所以x+y的最小值为9.所以答案是:9小提示:方法点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方。
高中数学必修二第十章概率知识总结例题(带答案)
高中数学必修二第十章概率知识总结例题单选题1、打靶3次,事件A i表示“击中i发”,其中i=0、1、2、3.那么A=A1∪A2∪A3表示()A.全部击中B.至少击中1发C.至少击中2发D.以上均不正确答案:B分析:利用并事件的定义可得出结论.A=A1∪A2∪A3所表示的含义是A1、A2、A3这三个事件中至少有一个发生,即可能击中1发、2发或3发.故选:B.2、某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%答案:C分析:记“该中学学生喜欢足球”为事件A,“该中学学生喜欢游泳”为事件B,则“该中学学生喜欢足球或游泳”为事件A+B,“该中学学生既喜欢足球又喜欢游泳”为事件A⋅B,然后根据积事件的概率公式P(A⋅B)=P(A)+P(B)−P(A+B)可得结果.记“该中学学生喜欢足球”为事件A,“该中学学生喜欢游泳”为事件B,则“该中学学生喜欢足球或游泳”为事件A+B,“该中学学生既喜欢足球又喜欢游泳”为事件A⋅B,则P(A)=0.6,P(B)=0.82,P(A+B)=0.96,所以P(A⋅B)=P(A)+P(B)−P(A+B)=0.6+0.82−0.96=0.46所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为46%.故选:C.小提示:本题考查了积事件的概率公式,属于基础题.3、某居民小区内一条街道的一侧并排安装了5盏路灯,在满足晚上不同时间段照明的前提下,为了节约用电,小区物业通过征求居民意见,决定每天24:00以后随机关闭其中3盏灯,则2盏亮着的路灯不相邻的概率为()A.0.3B.0.5C.0.6D.0.8答案:C分析:把问题转化为亮的2盏插空到不亮的3盏之间,计算出2盏亮的灯相邻和不相邻的所有可能数,再根据古典概型的概率公式计算即可.5盏路灯关闭其中3盏灯,则2盏亮着的路灯不相邻,相当于把亮的2盏插空到不亮的3盏之间,那么亮的2盏不相邻的情况共有C42=6种,相邻的情况共有4种,=0.6,因此2盏亮着的路灯不相邻的概率为610故选:C.4、天气预报说,今后三天中,每一天下雨的概率均为40%,现采用随机模拟方法估计这三天中恰有两天下雨的概率:先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示下雨,5,6,7,8,9,0表示不下雨.经随机模拟产生了如下20组随机数:907 966 195 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989据此估计今后三天中恰有两天下雨的概率为()A.0.40B.0.30C.0.25D.0.20答案:D分析:由题意知:在20组随机数中表示三天中恰有两天下雨通过列举得到共4组随机数,根据概率公式得到结果.由题意知:在20组随机数中恰有两天下雨的有可以通过列举得到:271 932 812 393 共4组随机数∴所求概率为4=0.2020故选:D5、甲、乙两人投篮,投中的概率分别为0.6,0.7,若两人各投2次,则两人投中次数不等的概率是()A.0.6076B.0.7516C.0.3924D.0.2484答案:A分析:先求出两人投中次数相等的概率,再根据对立事件的概率公式可得两人投中次数不相等的概率.两人投中次数相等的概率P =0.42×0.32+C 21×0.6×0.4×C 21×0.7×0.3+ 0.62×0.72=0.3924,故两人投中次数不相等的概率为:1﹣0.3924=0.6076.故选:A .小提示:本题考查了对立事件的概率公式和独立事件的概率公式,属于基础题.6、已知集合M ={−1,0,1,−2},从集合M 中有放回地任取两元素作为点P 的坐标,则点P 落在坐标轴上的概率为( )A .516B .716C .38D .58 答案:B分析:利用古典概型的概率求解.由已知得,基本事件共有4×4= 16个,其中落在坐标轴上的点为:(−1,0),(0,−1),(0,0),(1,0),(0,1),(−2,0),(0,−2),共7个,∴所求的概率P =716,故选:B .7、从装有两个红球和三个黑球的口袋里任取两个球,那么互斥而不对立的两个事件是( )A .“恰好有一个黑球”与“恰好有两个黑球”B .“至少有一个黑球”与“至少有一个红球”C .“至少有一个黑球”与“都是黑球”D .“至少有一个黑球”与“都是红球”答案:A分析:根据互斥事件和对立事件的定义直接判断.对于A :“恰好有一个黑球”与“恰好有两个黑球”不能同时发生,但能同时不发生,故A 中的两事件互斥而不对立;对于B :“至少有一个黑球”与“至少有一个红球” 能同时发生,故B 中的两事件不互斥;对于C :“至少有一个黑球”与“都是黑球”能同时发生,故C 中的两事件不是互斥事件;对于D :“至少有一个黑球”与“都是红球” 互斥并且对立.故选:A8、若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)=2−a,P(B)=4a−5,则实数a的取值范围是A.(1,2)B.(54,32)C.(54,43)D.(54,43]答案:D分析:由随机事件A、B互斥,A、B发生的概率均不等于0,知{0<P(A)<1 0<P(B)<1P(A)+P(B)⩽1,由此能求出实数a的取值范围.∵随机事件A、B互斥,A、B发生的概率均不等于0,且P(A)=2−a,P(B)=4a−5,∴{0<P(A)<1 0<P(B)<1P(A)+P(B)⩽1,即{0<2−a<10<4a−5<13a−3⩽1,解得54<a⩽43,即a∈(54,43].故选:D.小提示:本题考查互斥事件的概率的应用,属于基础题.解题时要认真审题,仔细解答.多选题9、某学校共3000名学生,为了调查本学校学生携带手机进校园情况,对随机抽出的500名学生进行调查,调查中使用了2个问题,问题1:你生日的月份是否为奇数?问题2:你是否携带手机?调查人员给被调查者准备了一枚质地均匀的硬币,被调查者背对着调查人员掷一次硬币,如果正面朝上,则回答问题1;如果反面朝上,则回答问题2.共有175人回答“是”,则下列说法正确的有()A.估计被调查者中约有175人携带手机B.估计本校学生约有600人携带手机C.估计该学校约有20%的学生携带手机D.估计该学校约有10%的学生携带手机答案:BC分析:先根据正反面的等可能性和奇数月份的等可能性计算回答第一个问题且回答是的人数,即得到500名学生中带手机的学生人数及比例,即得到结果.随机抽取的500名学生中,回答第一个问题的概率为12,生日月份为奇数的概率也是12, 所以回答第一个问题且回答是的人数为500×12×12=125, 所以回答第二个问题且回答是的人数为175−125=50,所以随机抽取的500名学生中,带手机的学生人数的比例为50250=20%,故该学校3000名学生中,带手机的学生人数为3000×20%=600.所以BC 正确.故选:BC.10、下列说法错误的是( )A .甲、乙二人比赛,甲胜的概率为35,则比赛5场,甲胜3场B .某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,则第10个病人一定治愈C .随机试验的频率与概率相等D .天气预报中,预报明天降水概率为90%,是指降水的可能性是90%答案:ABC分析:根据频率与概率的概念分析可得答案.对于A ,甲、乙二人比赛,甲胜的概率为35,是指每场比赛,甲胜的可能性为35,则比赛5场,甲可能胜3场、2场、1场、0场,故A 错误;对于B ,治愈率为10%,是指每个人治愈的可能性是10%,不是说前9个病人没有治愈,则第10个病人一定治愈,故B 错误;对于C ,随机试验的频率是变化的,概率是频率的稳定值,是固定的,故C 错误;对于D ,天气预报中,预报明天降水概率为90%,是指降水的可能性是90%,故D 正确.故选:ABC11、下面结论正确的是( )A .若P(A)+P(B)=1,则事件A 与B 是互为对立事件B .若P(AB)=P(A)P(B),则事件A 与B 是相互独立事件C.若事件A与B是互斥事件,则A与B̅也是互斥事件D.若事件A与B是相互独立事件,则A与B̅也是相互独立事件答案:BD解析:根据互斥事件、对立事件的知识判断AC两个选项的正确性,根据相互独立事件的知识判断BD两个选项的正确性.对于A选项,要使A,B为对立事件,除P(A)+P(B)=1还需满足P(AB)=0,也即A,B不能同时发生,所以A 选项错误.对于C选项,A包含于B,所以A与B不是互斥事件,所以C选项错误.对于B选项,根据相互独立事件的知识可知,B选项正确.对于D选项,根据相互独立事件的知识可知,D选项正确.故选:BD小提示:本小题主要考查互斥事件和对立事件,考查相互独立事件,属于基础题.填空题12、将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____.答案:19分析:分别求出基本事件总数,点数和为5的种数,再根据概率公式解答即可.根据题意可得基本事件数总为6×6=36个.点数和为5的基本事件有(1,4),(4,1),(2,3),(3,2)共4个.∴出现向上的点数和为5的概率为P=436=19.所以答案是:19.小提示:本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.13、已知事件A,B,且P(A)=0.5,P(B)=0.2,如果A与B互斥,令m=P(AB);如果A与B相互独立,令n= P(A B̅),则n−m=___________.答案:0.4##25分析:利用互斥事件的概念及独立事件概率公式即得.∵A 与B 互斥,∴m =P (AB )=0,∵A 与B 相互独立,∴n =P (A B̅)=P (A )P (B ̅)=(1−0.5)×(1−0.2)=0.4, ∴n −m =0.4.所以答案是:0.4.14、新冠肺炎疫情发生后,我国加紧研发新型冠状病毒疫苗,某医药研究所成立疫苗研发项目,组建甲、乙两个疫苗研发小组,且两个小组独立开展研发工作.已知甲小组研发成功的概率为23,乙小组研发成功的概率为12.在疫苗研发成功的情况下,是由甲小组研发成功的概率为__________. 答案:45##0.8 分析:根据对立事件,相互独立事件及条件概率公式直接计算即可.设事件A 为“疫苗研发成功”,即甲、乙两个小组至少有一个小组研发成功,其概率为:P (A )=1−(1−23)×(1−12)=56, 事件B 为“甲小组研发成功”,则P (B )=P (AB )=23,所以P (B |A )=P (AB )P (A )=2356=45, 所以答案是:45.解答题15、某校社团活动深受学生欢迎,每届高一新生都踊跃报名加入.现已知高一某班60名同学中有4名男同学和2名女同学参加摄影社,在这6名同学中,2名同学初中毕业于同一所学校,其余4名同学初中毕业于其他4所不同的学校.现从这6名同学中随机选取2名同学代表社团参加校际交流(每名同学被选到的可能性相同).(1)在该班随机选取1名同学,求该同学参加摄影社的概率;(2)求从这6名同学中选出的2名同学代表至少有1名女同学的概率;(3)求从这6名同学中选出的2名同学代表来自不同的初中学校的概率.答案:(1)110;(2)35;(3)1415. 分析:(1)首先找到该班全部同学的数量和参加摄影社的同学的数量,然后计算比值即为所求概率;(2)设A ,B ,C ,D 表示参加摄影社的男同学,a ,b 表示参加摄影社的女同学,列出所有满足的情况,根据古典概型的计算方式求解;(3)用1,2,3,4表示这6名同学中选出的4同学代表来自不同的初中学校的同学,用e ,f 表示2名来自同一个学校的2名同学,根据古典概型的计算方式求解.解:(1)依题意,该班60名同学中共有6名同学参加摄影社,所以在该班随机选取1名同学,该同学参加摄影社的概率为660=110.(2)设A ,B ,C ,D 表示参加摄影社的男同学,a ,b 表示参加摄影社的女同学,则从6名同学中选出的2名同学代表共有15种等可能的结果:AB ,AC ,AD ,Aa ,Ab ,BC , BD ,Ba ,Bb ,CD ,Ca ,Cb ,Da ,Db ,ab ,其中至少有1名女同学的结果有9种:Aa ,Ab ,Ba ,Bb ,Ca ,Cb ,Da ,Db ,ab ,根据古典概率计算公式,从6名同学中选出的2名同学代表至少有1名女同学的概率为P =915=35.(3)用1,2,3,4表示这6名同学中选出的4同学代表来自不同的初中学校的同学,用e ,f 表示2名来自同一个学校的2名同学.从6名同学中选出2名,有:12,13,14,1e ,1f ,23,24,2e ,2f ,34,3e ,3f ,4e ,4f ,ef 共15种不同情况,其中2名同学代表来自不同的初中学校12,13,14,1e ,1f ,23,24,2e ,2f ,34,3e ,3f ,4e ,4f 有14种,所以从这6名同学中选出的2名同学代表来自不同的初中学校的概率P =1415.。
部编版高中数学必修二第十章概率带答案知识点归纳超级精简版
(名师选题)部编版高中数学必修二第十章概率带答案知识点归纳超级精简版单选题1、从集合{2,4,6,8}中任取两个不同元素,则这两个元素相差2的概率为( ). A .13B .12C .14D .232、下列概率模型中不是古典概型的为( )A .从6名同学中选出4人参加数学竞赛,每人被选中的可能性大小B .同时抛掷两枚质地均匀的骰子,点数和为6的概率C .近三天中有一天降雨的概率D .10人站成一排,其中甲,乙相邻的概率3、从某地区的儿童中挑选体操学员,已知儿童体型合格的概率为15,身体关节构造合格的概率为14.从中任挑一儿童,这两项至少有一项合格的概率是(假定体型与身体关节构造合格与否相互之间没有影响)( ) A .1320B .25C .14D .154、一个学习小组有5名同学,其中2名男生,3名女生.从这个小组中任意选出2名同学,则选出的同学中既有男生又有女生的概率为( ) A .15B .25C .35D .455、下列事件属于古典概型的是( )A .任意抛掷两颗均匀的正方体骰子,所得点数之和作为基本事件B .篮球运动员投篮,观察他是否投中C .测量一杯水分子的个数D .在4个完全相同的小球中任取1个6、“不怕一万,就怕万一”这句民间谚语说明( ). A .小概率事件虽很少发生,但也可能发生,需提防; B .小概率事件很少发生,不用怕; C .小概率事件就是不可能事件,不会发生;D .大概率事件就是必然事件,一定发生.7、抛掷一颗质地均匀的骰子,记事件A 为“向上的点数为1或4”,事件B 为“向上的点数为奇数”,则下列说法正确的是( )A .A 与B 互斥B .A 与B 对立C .P (A +B )=23D .P (A +B )=568、2021年12月9日,中国空间站太空课堂以天地互动的方式,与设在北京、南宁、汶川、香港、澳门的地面课堂同步进行.假设香港、澳门参加互动的学生人数之比为5:3,其中香港课堂女生占35,澳门课堂女生占13,若主持人向这两个分课堂中的一名学生提问,则该学生恰好为女生的概率是( ) A .18B .38C .12D .58 多选题9、袋中有红球3个,白球2个,黑球1个,从中任取2个,则互斥的两个事件是( ) A .至少有一个白球与都是白球 B .恰有一个红球与白、黑球各一个 C .至少一个白球与至多有一个红球 D .至少有一个红球与两个白球10、某小组有2名男生和3名女生,从中任选2名同学去参加唱歌比赛,在下列各组事件中,是互斥事件的是( )A .恰有1名女生和恰有2名女生B .至少有1名男生和至少有1名女生C .至少有1名女生和全是女生D .至少有1名女生和全是男生 11、下列关于概率的命题,正确的有( )A .若事件A,B 满足P (A )=13,P (B )=23,则A,B 为对立事件B .若事件A ,B 满足P(A)=13,P(B)=23,P(AB)=29,则A ,B 相互独立C .若对于事件A,B,C,P (A )=P (B )=P (C )=12,P (ABC )=18,则A,B,C 两两独立D .若对于事件A,B,A 与B 相互独立,且P (A )=0.7,P (B )=0.6,则P (AB )=0.42,P (A ∪B )=0.88 填空题12、对于一个古典概型的样本空间Ω和事件A,B,其中n(Ω)=60,n(A)=30,n(B)=20,n(A∩B)=10,则P(A∪B)=___________.部编版高中数学必修二第十章概率带答案(四十九)参考答案1、答案:B分析:一一列出所有基本事件,然后数出基本事件数n 和有利事件数m ,代入古典概型的概率计算公式P =mn ,即可得解.解:从集合{2,4,6,8}中任取两个不同元素的取法有(2,4)、(2,6)、(2,8)、(4,6)、(4,8)、(6,8)共6种,其中满足两个元素相差2的取法有(2,4)、(4,6)、(6,8)共3种.故这两个元素相差2的概率为12. 故选:B. 2、答案:C分析:根据古典概型的特点,即可判断出结果.解:古典概型的特点:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等. 显然A 、B 、D 符合古典概型的特征,所以A 、B 、D 是古典概型;C 选项,每天是否降雨受多方面因素影响,不具有等可能性,不是古典概型. 故选:C. 3、答案:B解析:先写出事件“从中任挑一儿童,这两项至少有一项合格”的对立事件,然后再根据相互独立事件同时发生的概率公式求出其概率,最后根据对立事件的概率公式即可算出.设事件A :“从中任挑一儿童,这两项至少有一项合格”,则其对立事件B :“从中任挑一儿童,这两项都不合格”,由题可知,儿童体型不合格的概率为45,身体关节构造不合格的概率为34,所以P (B )=45×34=35,故P (A )=1−P (B )=1−35=25.故选:B .小提示:本题主要考查对立事件的概率公式和相互独立事件同时发生的概率公式的应用,属于基础题. 4、答案:C分析:写出5人取2人的所有事件,找出一男同学一女同学的取法,利用古典概型求解. 5人小组中,设2男生分别为a ,b ,3名女生分别为A,B,C ,则任意选出2名同学,共有:(a,b),(a,A),(a,B),(a,C),(b,A),(b,B),(b,C),(A,B),(A,C),(B,C)10个基本事件,其中选出的同学中既有男生又有女生共有(a,A),(a,B),(a,C),(b,A),(b,B),(b,C)6个基本事件,所以P=610=35,故选:C5、答案:D解析:根据古典概率的特征,逐项判断,即可得出结果判断一个事件是否为古典概型,主要看它是否具有古典概型的两个特征:有限性和等可能性.A选项,任意抛掷两颗均匀的正方体骰子,所得点数之和对应的概率不全相等,如点数之和为2与点数之和为3发生的可能性显然不相等,不属于古典概型,故A排除;B选项,“投中”与“未投中”发生的可能性不一定相等,不属于古典概型,故B排除;C选项,杯中水分子有无数多个,不属于古典概率,故C排除;D选项,在4个完全相同的小球中任取1个,每个球被抽到的机会均等,且包含的基本事件共有4个,符合古典概型,故D正确.故选:D.6、答案:A分析:理解谚语的描述,应用数学概率知识改写即可.“不怕一万,就怕万一”表示小概率事件很少发生,但也可能发生,需提防;故选:A7、答案:C解析:根据互斥事件和对立事件的定义判断.求出事件A+B,然后计算概率.A与B不互斥,当向上点数为1时,两者同时发生,也不对立,事件A+B表示向上点数为1,3,4,5之一,∴P(A+B)=46=23.故选:C.小提示:关键点点睛:本题考查互斥事件和对立事件,考查事件的和,掌握互斥事件和对立事件的定义是解题关键.判断互斥事件,就看在一次试验中两个事件能不能同时发生,只有互斥事件才可能是对立事件,如果一次试验中两个事件不能同时发生,但非此即彼,即必有一个发生,则它们为对立事件.而不互斥的事件的概率不能用概率相加,本题P(A +B)≠P(A)+P(B). 8、答案:C分析:利用互斥事件概率加法公式计算古典概型的概率即可得答案.解:因为香港、澳门参加互动的学生人数之比为5:3,其中香港课堂女生占35,澳门课堂女生占13, 所以香港女生数为总数的58×35=38,澳门女生数为总数的38×13=18, 所以提问的学生恰好为女生的概率是38+18=12. 故选:C. 9、答案:BD分析:根据互斥事件的定义和性质判断.袋中装有红球3个、白球2个、黑球1个,从中任取2个,在A 中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故A 不成立. 在B 中,恰有一个红球和白、黑球各一个不能同时发生,是互斥事件,故B 成立; 在C 中,至少一个白球与至多有一个红球,能同时发生,故C 不成立;在D 中,至少有一个红球与两个白球两个事件不能同时发生,是互斥事件,故D 成立; 故选:BD.小提示:本题考查互斥事件的判断,根据两个事件是否能同时发生即可判断,是基础题. 10、答案:AD分析:逐个选项分析事件之间是否有同时发生的可能性再判断即可.A 中两个事件是互斥事件,恰有一名女生即选出的两名学生中有一名男生一名女生,它与恰有2名女生不可能同时发生,A 是;B 中两个事件不是互斥事件,两个事件均可能有一名男生和一名女生,B 不是;C 中两个事件不是互斥事件,至少一名女生包含全是女生的情况,C 不是;D 中两个事件是互斥事件,至少有一名女生与全是男生显然不可能同时发生,D 是. 故选:AD 11、答案:BD分析:A.举例说明;B.根据P(AB)=P(A)⋅P(B)是判断A,B是否相互独立的条件判断; C. 由A,B,C两两独立,则AB,AC,BC相互独立判断; D.根据独立事件和互斥事件的概率求法判断.A.因为P(A)+P(B)=1,是A,B为对立事件的必要条件,不是充分条件,如单位圆的一条直径把圆分成两部分,即区域M和区域N(不包括边界),向这两个区域投一枚绣花针,如针尖落在区域M内记为事件A,针尖落在区域N内记为事件B,满足P(A)+P(B)=1,但A,B不是对立事件,因为针尖还有可能落在直径上,故错误;B. 若P(AB)=P(A)⋅P(B),则A,B相互独立,故正确;C. 若A,B,C两两独立,则P(AB)=P(A)⋅P(B),P(AC)=P(A)⋅P(C),P(BC)=P(B)⋅P(C),故错误;D.若事件A与B相互独立,则P(AB)=P(A)⋅P(B)=0.42,P(A∪B)=P(A)+P(B)−P(AB)=0.88,故正确;故选:BD12、答案:23分析:求出A∪B所包含的基本事件数,从而求出相应的概率.由题意得:n(A∪B)=30+20−10=40,所以P(A∪B)=4060=23.所以答案是:23。
部编版高中数学必修二第十章概率知识点总结归纳完整版
(名师选题)部编版高中数学必修二第十章概率知识点总结归纳完整版单选题1、抛掷一颗均匀骰子两次,E 表示事件“第一次是奇数点”,F 表示事件“第二次是3点”,G 表示事件“两次点数之和是9”,H 表示事件“两次点数之和是10”,则( )A .E 与G 相互独立B .E 与H 相互独立C .F 与G 相互独立D .G 与H 相互独立答案:A分析:先根据古典概型的概率公式分别求出四个事件的概率,再利用独立事件的定义P(AB)=P(A)P(B)判断个选项的正误.解:由题意得:P(E)=1836=12,P(F)=636=16,P(G)=436=19,P(H)=336=112 对于选项A :P(EG)=236=118,P(E)P(G)=12×19=118,P(EG)=P(E)P(G),所以E 和G 互相独立,故A 正确; 对于选项B :P(EH)=136,P(E)P(H)=12×112=124,P(EH)≠P(E)P(H),所以E 和H 不互相独立,故B 错误;对于选项C :P(FG)=136,P(F)P(G)=16×19=154,P(FG)≠P(F)P(G),所以F 和G 不互相独立,故C 错误; 对于选项D :P(GH)=0,P(G)P(H)=19×112=1108,P(GH)≠P(G)P(H),所以G 和H 不互相独立,故D 错误; 故选:A2、关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请全校m 名同学每人随机写下一个都小于1的正实数对(x,y );再统计两数能与1构成钝角三角形三边的数对(x,y )的个数a ;最后再根据统计数a 估计π的值,那么可以估计π的值约为( )A .4a mB .a+2m C .a+2m m D .4a+2m m答案:D解析:由试验结果知m 对0~1之间的均匀随机数x,y ,满足{0<x <10<y <1 ,面积为1,再计算构成钝角三角形三边的数对(x,y),满足条件的面积,由几何概型概率计算公式,得出所取的点在圆内的概率是圆的面积比正方形的面积,即可估计π的值.解:根据题意知,m 名同学取m 对都小于1的正实数对(x,y ),即{0<x <10<y <1, 对应区域为边长为1的正方形,其面积为1,若两个正实数x,y 能与1构成钝角三角形三边,则有{x 2+y 2<1x +y >10<x <10<y <1, 其面积S =π4−12;则有a m =π4−12,解得π=4a+2m m故选:D .小提示:本题考查线性规划可行域问题及随机模拟法求圆周率的几何概型应用问题. 线性规划可行域是一个封闭的图形,可以直接解出可行域的面积;求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解.3、《史记》卷六十五《孙子吴起列传第五》中有这样一道题:齐王与田忌赛马,田忌的上等马劣于齐王的上等马,优于齐王的中等马,田忌的中等马劣于齐王的中等马,优于齐王的下等马,田忌的下等马劣于齐王的下等马,现两人进行赛马比赛,比赛规则为:每匹马只能用一次,每场比赛双方各出一匹马,共比赛三场.每场比赛中胜者得1分,否则得0分.若每场比赛之前彼此都不知道对方所用之马,则比赛结束时,田忌得2分的概率为( ).A .13B .23C .16D .12答案:C分析:根据题意,设齐王的上,中,下三个等次的马分别为a , b ,c ,田忌的上,中,下三个等次的马分别为记为A ,B ,C ,用列举法列举齐王与田忌赛马的情况,进而可得田忌胜出的情况数目,进而由等可能事件的概率计算可得答案.设齐王的上,中,下三个等次的马分别为a ,b ,c ,田忌的上,中,下三个等次的马分别为记为A ,B ,C ,双方各出上、中、下等马各1匹分组分别进行1场比赛,所有的可能为: Aa ,Bb ,Cc ,田忌得0分;Aa ,Bc ,Cb ,田忌得1分Ba ,Ab ,Cc ,田忌得1分Ba ,Ac ,Cb ,田忌得1分;Ca ,Ab ,Bc ,田忌得2分,Ca ,Ac ,Bb ,田忌得1分田忌得2分概率为P =16,故选:C4、甲、乙二人玩猜数字游戏,先由甲任想一数字,记为a ,再由乙猜甲刚才想的数字,把乙猜出的数字记为b ,且a,b ∈{1,2,3,4},若|a −b|≤1,则称甲乙“心有灵犀”.现任意找两个人玩这个游戏,则他们“心有灵犀”的概率为( )A .38B .58C .316D .516 答案:B分析:利用列举法根据古典概型公式计算即可.B 两人分别从1,2,3,4四个数中任取一个,共有16个样本点,为:(1,1),(1,2),(1,3),(1,4), (2,1),(2,2),(2,3) ,(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2) (4,3),(4,4),这16个样本点发生的可能性是相等的.其中满足|a −b|≤1的样本点有(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4),共10个,故他们“心有灵犀”的概率为P =1016=58. 故选:B5、当P(A)>0时,若P(B|A)+P(B̅)=1,则事件A 与B 的关系是( ) A .互斥B .对立C .相互独立D .无法判断答案:C分析:根据条件概率的公式,化简原式,再根据相互独立事件的性质即可得出结论.∵P(B|A)+P(B ̅)=P(B|A)+1−P(B)=1,∴P(B|A)=P(B),即P(AB)=P(B),P(A)∴P(AB)=P(A)P(B),∴事件A与B相互独立.故选:C.6、已知100件产品中有5件次品,从这100件产品中任意取出3件,设E表示事件“3件产品全不是次品”,F表示事件“3件产品全是次品”,G表示事件“3件产品中至少有1件是次品”,则下列结论正确的是()A.F与G互斥B.E与G互斥但不对立C.E,F,G任意两个事件均互斥D.E与G对立答案:D分析:列出基本事件,再结合互斥事件,对立事件的定义即可判断.设1表示取到正品, 0 表示取到次品,所有事件Ω={(1,1,1),(1,1,0),(1,0,0),(0,0,0)}.则E={(1,1,1)},F={(0,0,0)},G={(1,1,0),(1,0,0),(0,0,0)}F∩G=F,故F与G不互斥,故A,C错E∩G=∅,E∪G=Ω,故E与G互斥且对立,故B错,D正确故选:D7、素数分布是数论研究的核心领域之一,含有众多著名的猜想.19世纪中叶,法国数学家波利尼亚克提出了“广义孪生素数猜想”:对所有自然数k,存在无穷多个素数对(p,p+2k).其中当k=1时,称(p,p+2)为“孪生素数”,k=2时,称(p,p+4)为“表兄弟素数”.在不超过30的素数中,任选两个不同的素数p、q(p<q),令事件A={(p,q)为孪生素数},B={(p,q)为表兄弟素数},C={(p,q)|q−p≤4},记事件A、B、C发生的概率分别为P(A)、P(B)、P(C),则下列关系式成立的是()A.P(A)P(B)=P(C)B.P(A)+P(B)=P(C)C.P(A)+P(B)>P(C)D.P(A)+P(B)<P(C)答案:D解析:根据素数的定义,一一列举出不超过30的所有素数,共10个,根据组合运算,得出随机选取两个不同的素数p 、q (p <q ),有C 102=45(种)选法,从而可列举出事件A 、B 、C 的所有基本事件,最后根据古典概率分别求出P(A),P(B)和P(C),从而可得出结果.解:不超过30的素数有2、3、5、7、11、13、17、19、23、29,共10个,随机选取两个不同的素数p 、q (p <q ),有C 102=45(种)选法,事件A 发生的样本点为(3,5)、(5,7)、(11,13)、(17,19)共4个,事件B 发生的样本点为(3,7)、(7,11)、(13,17)、(19,23)共4个,事件C 发生的样本点为(2,3)、(2,5)、(3,5)、(3,7)、(5,7)、(7,11)、(11,13)、(13,17)、(17,19)、(19,23),共10个,∴P(A)=P(B)=445,P(C)=1045=29, 故P(A)+P(B)<P(C).故选:D.小提示:关键点点睛:本题考查与素数相关的新定义,考查古典概型的实际应用和利用列举法求古典概型,考查组合数的计算,解题的关键在于理解素数的定义,以及对题目新定义的理解,考查知识运用能力.8、打靶3次,事件A i 表示“击中i 发”,其中i =0、1、2、3.那么A =A 1∪A 2∪A 3表示( )A .全部击中B .至少击中1发C .至少击中2发D .以上均不正确答案:B分析:利用并事件的定义可得出结论.A =A 1∪A 2∪A 3所表示的含义是A 1、A 2、A 3这三个事件中至少有一个发生,即可能击中1发、2发或3发. 故选:B.多选题9、连续抛掷一枚质地均匀的硬币3次,每次结果要么正面向上,要么反面向上,且两种结果等可能.记事件A 表示“3次结果中有正面向上,也有反面向上”,事件B 表示“3次结果中最多一次正面向上”,事件C 表示“3次结果中没有正面向上”,则( )A.事件B与事件C互斥B.P(A)=34C.事件A与事件B独立D.记C的对立事件为C,则P(B|C)=37答案:BCD分析:对A,根据事件B包含事件C判断即可;对B,根据概率的性质,用1减去全为正面和全为反面的情况概率即可;对C,根据相互独立事件的公式判断即可;对D,先求得P(C)=18,再利用条件概率公式求解即可选项A:显然B发生的情况中包含C,故可同时发生,错误;选项B:P(A)=1−123×2=34,正确;选项C:P(B)=123+C31×123=12,P(AB)=C31×123=38=P(A)P(B)故A与B独立,正确;选项D:P(C)=123=18,P(B|C)=P(BC)P(C)=C31×1231−18=37,正确;故选:BCD.10、在一次歌唱比赛中,以下表格数据是5位评委给甲、乙两名选手评出的成绩(分数),则下列说法正确的是()B.甲选手成绩的75%分位数小于乙选手成绩的75%分位数C.从甲的5次成绩中任取2个,均大于甲的平均成绩的概率为310D.从乙的5次成绩中任取3个,事件“至多1个超过平均分”与事件“恰有2个超过平均分”是对立事件答案:ABD分析:直接由极差、百分位数、古典概型概率以及对立事件的概念依次判断4个选项即可.对于A选项,根据极差的概念,可知甲选手成绩的极差为96−86=10,乙选手成绩的极差为95−86=9.故A正确;对于B选项,5×75%=3.75,则甲成绩的75%分位数是91,乙成绩的75%分位数是92.故B正确;×(87+90+96+91+86)=90,从甲的5次成绩中任取2次成绩样本空间对于C选项,甲的平均成绩为15有Ω={(87,90),(87,96),(87,91),(87,86),(90,96),(90,91),(90,86),(96,91),(96,86),(91,86)},共10个样本点,,故C错误.其中均大于甲的平均成绩的样本点只有1个为(96,91),故所求概率为110对于D选项,乙的平均成绩为1×(90+86+92+87+95)=90,抽到不超过平均分的个数为0,1,2,5所以事件“至多1个超过平均分”与事件“恰有2个超过平均分”是对立事件,故D正确;故选:ABD.11、(多选题)从装有大小和形状完全相同的5个红球和3个白球的口袋内任取3个球,那么下列各对事件中,互斥而不对立的是A.至少有1个红球与都是红球B.至少有1个红球与至少有1个白球C.恰有1个红球与恰有2个红球D.至多有1个红球与恰有2个红球答案:CD解析:根据互斥不对立事件的定义辨析即可.根据互斥事件与对立事件的定义判断.A中两事件不是互斥事件,事件“3个球都是红球”是两事件的交事件;B中两事件能同时发生,如“恰有1个红球和2个白球”,故不是互斥事件;C中两事件是互斥而不对立事件;至多有1个红球,即有0个或1个红球,与恰有2个红球互斥,除此还有3个都是红球的情况,因此它们不对立,D符合题意.故选:CD小提示:本题主要考查了互斥与对立事件的辨析,属于基础题型.填空题12、有甲、乙两批种子,发芽率分别为0.8和0.9,在两批种子中各取一粒,则恰有一粒种子能发芽的概率是___________.答案:0.26分析:利用互斥事件及独立事件概率公式即得.由题意得:甲批种子发芽同时乙批不发芽或甲批种子不发芽同时乙批种子发芽,则所求概率P=0.8×(1−0.9)+(1−0.8)×0.9=0.26.所以答案是:0.26.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学第二课堂训练十(概率)
一、选择题:
1、从一箱产品中随机地抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知 P (A )= 0.65, P(B)=0.2 , P(C)=0.1。
则事件“抽到的不是一等品”的概率为( ) A 、0.7 B 、 0.65 C 、 0.35 D 、 0.3
2、从装有2个红球和2个黑球的口袋内任取两个球,那么互斥而不对立的事件是( ) A 、至少有一个黑球与都是黑球 B 、至少有一个黑球与至少有一个红球 C 、恰好有一个黑球与恰好有两个黑球 D 、至少有一个黑球与都是红球
3、已知某射击运动员,每次击中目标的概率都是0.8.现采用随机模拟的方法估计该运动员射击4次,至少击中3次的概率:先由计算器算出0到9之间取整数值的随机数,指定0,1,表示没有击中目标,2,3,4,5,6,,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了20组随机数: 5727 0293 7140 9857 0347 4373 8636 9647 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 6710 4281 据此估计,该射击运动员射击4次至少击中3次的概率为 ( )
A .0.85
B .0.8192
C .0.8
D . 0.75 4、取一根长度为3m 的绳子,拉直后在任意位置剪断,那么剪断后的两段绳子的长度都不小于1m 的概率是( ) A .
23 B .13 C .1
4
D.不能确定 5、一个总体含有100个个体,以简单随机抽样方法从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 ( )A.
110 B.120 C.320 D. 1
50
6、在一个袋子中装有分别标注数字1,2,3,4,5 的五个小球,这些小球除标注的数
字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率
是( ) A .
310 B .15 C .110 D .112
7、某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:
A .0.22
B .0.35
C .0.65
D .0.78
8、在棱长为4的正方体1111ABCD A BC D -中,点
O 为底面ABCD 的中心,在正方体1111ABCD A BC D -内随机取一点
P ,则点P 到点O 的距离大于2的概率为( ). A .
6π B .16
π- C .12π
D .112
π
-
9、同时掷两枚质地均匀的骰子,向上的点数之差的绝对值是3概率是( )
A .
16 B .112 C .118 D . 19
10、在区间(0,1)中随机地取出两个数,则两个数之和小于
6
5
的概率是 . 12、点A 为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B ,则劣弧AB 的长度小于1的概率为 。
13、一个口袋内装有大小相同的5个红球和3个黄球,从中一次摸出两个球。
则至少一个红球的概率是 .
14、某班50名学生在一次数学测试中,成绩全部介于50与100之间,将测试结果按如下方式分成五组:第一组[)50,60,第二组[)60,70,…,第五组[90,100].下图是按上述分组方法得到的频率分布直方图。
(Ⅰ)若成绩大于或等于60且小于80,认为合格,求该班在这次数学测试中成绩
合格的人数;
(Ⅱ)从测试成绩在[)50,60[90,100] 内的所有 学生中随机抽取两名同学,设其测试成绩分别为
m ,n ,求事件“||10m n ->”概率.
解:(I )由直方图知,成绩在[)60,80内的人数为:50×10×(0.18+0.040)=29.
所以该班在这次数学测试中成绩合格的有29人。
………………3分
(II )由直方图知,成绩在[)50,60内的人数为:50×10×0.004=2,
设成绩为x 、y ……………………5分
成绩在[90,100]的人数为50×10×0.006=3,设成绩为a 、b 、c , ………………6分 若[),50,60,m n xy ∈时只有一种情况, ………………7分 若,[90,100]m n ∈时,有ab,bc,ac 三种情况, ………………8分 若[),50,60[90,100]m n 分别在和内时,有
共有事件“||10m n ->”所包含的基本事件个数有6种 ………………10分
63
(||10).105
P m n ∴->=
= ………………12分
2、二次函数222(3)9y x a x b =---+,其中,a b 是抛掷两粒骰子得到的点数, 求:(1)函数图象过原点的概率;
(2)函数图象与x 轴有两个不同的交点的概率; 解:1)若函数图像过原点,则3,92==b b ,所以,6
1=
p 2)若函数图像与x 轴有两个不同的交点,则0)9(4)3(422>+---=∆b a 所以9)3(22>+-b a ;若6,5,4,3,1==b a 则; 若6,5,4,3,2==b a 则; 若6,5,4,3==b a 则 若6,5,4,3,4==b a 则; 若6,5,4,3,5==b a 则 若6,5,4,23,1,6==b a 则 所以36
25=
p 3、(本小题满分10分)
某校高三年级有男生105人,女生126人,教师42人,用分层抽样的方法从中抽取13人,进行问卷调查.设其中某项问题的选择支为“同意”,“不同意”两种,且每人都做了一种选择.下面表格中提供了被调查人答卷情况的部分信息.
⑴请完成此统计表;
⑵试估计高三年级学生“同意”的人数;
⑶从被调查的女生中选取2人进行访谈,求选到的两名学生中,恰有一人“同意”一人“不同意”的概率.
4、将A 、B 两枚骰子各抛掷一次,观察向上的点数,问: (I )共有多少种不同的结果?
(II )两枚骰子点数之和是3的倍数的结果有多少种? (III )两枚骰子点数之和是3的倍数的概率是多少?
解:(I ) 共有3666=⨯种结果 ………………4分
(II ) 若用(a,b)来表示两枚骰子向上的点数,则点数之和是3的倍数的结果有:
(1,2),(2,1),(1,5),(5,1),(2,4),(4,2), (3,3),(4,5),(5,4),(3,6),(6,3),(6,6)
共12种. ………………8分 (III )两枚骰子点数之和是3的倍数的概率是:P =
3
1
3612= …………12分
5、甲、乙两位同学报名参加2010年在广州举办的亚运会志愿者服务,两人条件相当,但名额只有一人. 两人商量采用抛骰子比大小的方法决定谁去,每人将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次, 两次点数和较大的当选志愿者. 甲先抛掷两次,第1次向上点数为3,第2次向上点数为4.
(1)记乙第一次出现的点数为x ,第二次出现的点数为y ,用(,)x y 表示先后抛掷两次的结果,试写出两次向上点数和与甲相同的所有可能结果. (2)求乙抛掷两次后,向上点数和与甲相同的概率? (3)求乙抛掷两次后,能决定乙当选志愿者的概率? 解:(1)乙两次向上点数和与甲相同,即乙两次向上点数和为7,所有可能结果有:
(1,6),(2,5),(3,4),(4,3),(5,2),(6,1). ……(2分) (2)乙抛掷两次后,共有6636⨯=种结果,而向上点数和为7的结果有6种,所以向上点数和与甲相同的概率为61
366
p =
=. ……(5分) (3)若乙当选志愿者,则向上点数和应大于7,所有可能结果有:
(2,6),(3,5),(3,6),(4,4),(4,5),(4,6),(5,3),(5,4),(5,5),(5,6),(6,2),(6,3),(6,4),(6,5),(6,6), 共15种,所以能决定乙当选志愿者的概率为155
369
p ==. ……(9分)
6、先后掷两枚质地均匀的骰子,第一枚向上的点数记为a ,第二枚向上的点数记为b , (1)求 b=2a 的概率; (2)求 2b a < 的概率.
12. (1)解:基本事件总数为()1,1,()1,2,…,()1,5,()2,1,()2,2,…,()2,5,…,
()6,6共36种.
设事件A 为"2"b a =. 满足条件的实数对(),a b 有()1,2、()2,4、 ()3,6
所以()31
3612
P A =
=.答:b=2a 的概率为112.⋅⋅⋅⋅⋅⋅ 3分
(2)解:设事件B 为“2b a <”,
基本事件总数为()1,1,()1,2,…,()1,5,()2,1,()2,2,…,()2,5,…,()6,6共36种.
满足条件的实数对(),a b 有()1,1、()2,1、()2,2、()2,3、()3,1、()3,2⋅⋅⋅⋅⋅⋅(3,5)⋅⋅⋅⋅⋅⋅(5,5)
,(6,1),(6,2)……(6,6) 共27种. ⋅⋅⋅⋅⋅⋅6分 所以()273
364P B =
=.答:2b a <的概率为34. ⋅⋅⋅⋅⋅⋅7分。