九年级数学下第二十九章29.1投影同步作业(附答案)

合集下载

人教版九年级数学下册第二十九章29.1%E3%80%80投影 同步测试题(含答案)

人教版九年级数学下册第二十九章29.1%E3%80%80投影 同步测试题(含答案)

人教版九年级数学下册第二十九章29.1 投影同步测试题一、选择题(每小题3分共30分)1.由下列光源产生的投影,是平行投影的是(A)A.太阳B.路灯 C.手电筒D.台灯2.平行投影中的光线是(A)A.平行的B.聚成一点的 C.不平行的D.向四面发散的3.在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是(D)4.在同一时刻,两根长度不等的竿子置于阳光之下,但它们的影长相等,那么这两根竿子的相对位置是(C)A.两根都垂直于地面 B.两根平行斜插在地上C.两根竿子不平行 D.一根倒在地上5.如图,晚上小亮在路灯下散步,他从A处向着路灯灯柱方向径直走到B处,这一过程中他在该路灯灯光下的影子(A)A.逐渐变短 B.逐渐变长 C.先变短后变长 D.先变长后变短6.一根笔直的小木棒(记为线段AB),它的正投影为线段CD,则下列各式中一定成立的是(D)A.AB=CD B.AB≤CD C.AB>CD D.AB≥CD7.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是(D)8.皮皮拿着一块正方形纸板在阳光下做投影实验,正方形纸板在投影面上形成的投影不可能是(D)A.正方形B.长方形C.线段D.梯形9.如图,某小区内有一条笔直的小路,路的正中间有一路灯,晚上小华由A处走到B处,她在灯光照射下的影长l与行走的路程s之间的变化关系,用图象刻画出来,大致图象是(C)10.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序进行排列,正确的是(C)A.③①④② B.③②①④C.③④①② D.②④①③二、填空题(每小题4分,共20分)11.将一个三角形放在太阳光下,它所形成的投影是三角形或线段.12.小飞晚上到广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定地说,广场上的大灯泡一定位于两人中间的上方.13.如图是一个三棱柱,它的正投影是下图中的②.(填序号)14.如图1,2分别是两根木杆及其影子的图形.___2__图形反映了太阳光下的情形?__1_图形反映了路灯下的情形?15.如图,长方体的一个底面ABCD在投影面P上,M,N分别是侧棱BF,CG的中点,矩形EFGH与矩形EMNH的投影都是矩形ABCD,设它们的面积分别是S1,S2,S,则S1,S2,S的关系是S1=S<S2(用“=”“>”或“<”连起来)三、解答题(共50分)16.如图,工件的底面与投影面平行,画出工件在投影面上的正投影.【解答】如图所示.17.如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB,CD.(1)请你在图中画出路灯灯泡所在的位置;(用点P表示)(2)画出小华此时在路灯下的影子.(用线段EF表示)解:如图所示.18.如图,在水平地面上竖立着一面墙AB ,墙外有一盏路灯D.光线DC 恰好通过墙的最高点B ,且与地面形成37°角.墙在灯光下的影子为线段AC ,并测得AC =5.5 m.(1)求墙AB 的高度;(结果精确到0.1 m .参考数据:tan37°≈0.75,sin37°≈0.60,cos37°≈0.80)(2)如果要缩短影子AC 的长度,同时不能改变墙的高度和位置,请你写出两种不同的方法.解:(1)在Rt △ABC 中,AC =5.5 m ,∠C =37°,tanC =AB AC, ∴AB =AC ·tanC ≈5.5×0.75≈4.1(m).(2)要缩短影子AC 的长度,增大∠C 的度数即可.因此第一种方法:增加路灯D 的高度;第二种方法:使路灯D 向墙靠近.19.如图,阳光通过窗口照到教室内,竖直窗框在地面上留下2.1 m 长的影子,已知窗框的影子DE 到窗下墙脚的距离CE =3.9 m ,窗口底边离地面的距离BC =1.2 m ,试求窗口(即AB)的高度.解:由于阳光是平行光线,即AE ∥BD ,∴∠AEC =∠BDC.又∵∠BCD是公共角,∴△AEC∽△BDC.∴ACBC=ECDC.又∵AC=AB+BC,DC=EC-ED,EC=3.9 m,ED=2.1 m,BC=1.2 m,∴AB+1.21.2=3.93.9-2.1.解得AB=1.4.答:窗口的高度为1.4 m.。

人教版九年级下册数学第二十九章 投影与视图 含答案

人教版九年级下册数学第二十九章 投影与视图 含答案

人教版九年级下册数学第二十九章投影与视图含答案一、单选题(共15题,共计45分)1、下列几何体中,俯视图为矩形的是()A. B. C. D.2、如图由七个相同的小正方体摆成的几何体,则这个几何体的主视图是()A. B. C. D.3、如图是一个几何体的三视图,则此几何体是()A.圆柱B.棱柱C.圆锥D.棱台4、如图是某个几个几何体的三视图,该几何体是()A.圆锥B.圆柱C.长方体D.正三棱柱5、如图,是由大小一样的小立方块摆成的立体图形的三视图,则摆成这个立体图形所需的小立方块的个数为()A.3B.4C.5D.66、如图是某几何体的三视图及相关数据,则判断正确的是()A.a>cB.b>cC.4a 2+b 2=c 2D.a 2+b 2=c 27、某几何体的三视图如图所示,则该几何体是()A.球B.圆柱C.三棱锥D.圆锥8、如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A.美B.丽C.云D.南9、图①是正方体的平面展开图,六个面的点数分别为1点、2点、3点、4点、5点、6点,将点数朝外折叠成一枚正方体骰子,并放置于水平桌面上,如图②所示,若骰子初始位置为图②所示的状态,将骰子向右翻滚,则完成1次翻转,此时骰子朝下一面的点数是2,那么按上述规则连线完成2次翻折后,骰子朝下一面的点数是3点;连续完成2019次翻折后,骰子朝下一面的点数是()A.2B.3C.4D.510、如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的从三个方向看得图形,下列说法正确的是()A.从正面看到的图相同B.从左面看到的图相同C.从上面看到的图相同D.从三个方向看到的图都不相同11、如图是由5个相同的小立方体搭成的一个几何体,从左面看这个几何体,看到的形状图是()A. B. C. D.12、若一个几何体的三视图如图所示,则这个几何体是()A.三棱柱B.四棱柱C.五棱柱D.长方体13、如图所示的几何体的左视图是()A. B. C. D.14、给出下列结论正确的有()①物体在阳光照射下,影子的方向是相同的②物体在任何光线照射下影子的方向都是相同的③物体在路灯照射下,影子的方向与路灯的位置有关④物体在光线照射下,影子的长短仅与物体的长短有关.A.1个B.2个C.3个D.4个15、用6个大小相同的正方体搭成如图所示的几何体,下列说法正确的是()A.主视图的面积最大B.左视图的面积最大C.俯视图的面积最大 D.主视图、俯视图的面积相等二、填空题(共10题,共计30分)16、物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是________ 现象.举例________ 、________ .17、一个几何体的主视图和俯视图如图所示,若这个几何体最多有m个小正方体组成,最少有n个小正方体组成,m+n=________.18、写出一个主视图、左视图、俯视图都相同的几何体:________.19、某几何体的三视图如图所示,则组成该几何体的小正方体的个数是________.20、当太阳斜照或直照时,一个放在水平地面上的长方形状的箱子在地面上留下的影子是________.21、已知圆锥如图所示放置,.其主视图面积为12,俯视图的周长为6π,则该圆锥的侧面积为________.22、如图是一个多面体的表面展开图,如果面F在前面,从左面看是面B,那么从上面看是________面(填字母)。

人教版九年级下《第29章投影与视图》专项训练含答案

 人教版九年级下《第29章投影与视图》专项训练含答案

人教版九年级下《第29章投影与视图》专项训练含答案专训1平行投影、中心投影、正投影间的关系名师点金:1.平行投影的投影线是平行的,在同一时刻物体的影长与物高成正比;中心投影的投影线相交于一点,在同一时刻物体的影长与物高不一定成正比.2.平行投影在同一时刻的影子总在同一方向;中心投影在同一时刻的影子不一定在同一方向.3.正投影是投影线垂直于投影面的平行投影.利用平行投影与中心投影的定义判断投影1.如图,下列判断正确的是()(第1题)A.图①是在阳光下的影子,图②是在灯光下的影子B.图②是在阳光下的影子,图①是在灯光下的影子C.图①和图②都是在阳光下的影子D.图①和图②都是在灯光下的影子2.如图,下面是北半球一天中四个不同时刻两个建筑物的影子,将它们按时间先后顺序进行排列,正确的是()(第2题)A.③④②①B.②④③①C.③④①②D.③①②④利用平行投影与中心投影的特征作图3.如图,两棵树的影子是在太阳光下形成的还是在灯光下形成的?画出同一时刻旗杆的影子.(用线段表示)(第3题)4.图①②分别是两棵树及其影子的情形.(第4题)(1)哪个图反映了阳光下的情形?哪个图反映了路灯下的情形?(2)你是用什么方法判断的?(3)请分别画出图中表示小丽影子的线段.正投影的识别与画法5.如图,若投影线的方向如箭头所示,则图中物体的正投影是()(第5题)6.一个正方体框架上面嵌有一根黑色的金属丝EF,如图所示.若正方体的面ABCD平行于投影面P,且垂直于投影面Q,画出这个物体在两个投影面上的正投影.(第6题)专训2投影规律在实际问题中的应用名师点金:用光线照射物体,在某个平面(地面、墙等)上得到的影子叫物体的投影.投影有两种类型:平行投影和中心投影.平行投影的特征是投影线平行,中心投影的特征是投影线相交于一点.在解答与投影有关的实际问题时,往往与相似三角形、直角三角形的性质密切相关,要注意构造相似三角形或直角三角形.平行投影的实际应用类型1:投影线不受限时的测量1.甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量,下面是他们通过测量得到的一些信息:甲组:如图①,测得一根直立于平地、长为80 cm的竹竿的影长为60 cm.乙组:如图②,测得学校旗杆的影长为900 cm.丙组:如图③,测得校园景灯(灯罩视为圆柱体,灯杆粗细忽略不计)的灯罩部分影长HQ为90 cm,灯杆被阳光照射到的部分PG长为50 cm,未被照射到的部分KP长为32 cm.(第1题)(1)请你根据甲、乙两组得到的信息计算出学校旗杆的高度.(2)请根据甲、丙两组得到的信息,解答下列问题:①求灯罩底面半径MK的长;②求从正面看灯罩得到的图形的面积和从上面看灯罩得到的图形的面积.类型2:投影线在特定条件时的测量2.如图,有甲、乙两座办公楼,两幢楼都为10层,由地面上依次为1层至10层,每层的高度均为3 m,两楼之间的距离为30 m.为了了解太阳光与水平线的夹角为30°时,甲楼对乙楼采光的影响情况,请你求出甲楼楼顶B的影子E 落在乙楼的第几层.(第2题)中心投影的实际应用3.如图,一位同学身高1.6 m,晚上站在路灯下A处,他在地面上的影长AB是2 m,若他沿着影长的方向移动2 m站在B处时,影长增加了0.5 m,求路灯的高度.(第3题)答案专训11.B点拨:图①中影子的方向不同,是在灯光下的影子;图②中影子的方向相同,且影长与树高成正比,是在阳光下的影子.2.C3.解:如图,过树和影子的顶端分别画两条光线AA1,BB1.观察可知,AA1∥BB1,故两棵树的影子是在太阳光下形成的.(第3题)过旗杆的顶端C画AA1(或BB1)的平行线CC1,交地面于点C1,连接旗杆底端O和点C1,则线段OC1即为同一时刻旗杆的影子.点拨:根据物体和投影之间的关系可以判断是平行投影,然后根据平行投影的特征即可完成题中的要求.4.解:(1)题图②反映了阳光下的情形,题图①反映了路灯下的情形.(2)题图①中过影子顶端与树顶端的直线相交于一点,符合中心投影的特点,因此题图①反映了路灯下的情形;题图②中过影子顶端与树顶端的直线平行,符合平行投影的特点,因此题图②反映了阳光下的情形.(3)路灯下小丽的影子如图①所示,表示影子的线段为AB;阳光下小丽的影子如图②所示,表示影子的线段为CD.(第4题)误区诊断:平行投影和中心投影对应的光线是不同的,形成平行投影的光源发出的光线是平行光线,而形成中心投影的光源发出的光线交于一点;同一时刻,平行投影下的影子的方向总是在同一方向,而中心投影下的影子可能在同一方向,也可能在不同方向.5.C点拨:观察图中的两个立体图形,圆柱的正投影为长方形,正方体的正投影为正方形,故选C.6.解:画出的正投影如图所示.正方体、金属丝在投影面P上的正投影是正方形A1B1C1D1及线段E1F1;在投影面Q上的正投影是正方形C2D2G2H2.(第6题)点拨:当物体的某个面(或某条边)与投影面平行时,这个面(或这条边)的正投影和这个面(或这条边)相同;当物体的某个面(或某条边)与投影面垂直时,这个面(或这条边)的正投影是一条线段(或一个点).专训21.解:(1)根据平行投影的性质,得Rt△ABC∽Rt△DEF.∴ABAC=DEDF,即8060=DE900.解得DE=1 200 cm=12 m.即学校旗杆的高度为12 m.(2)①根据题意可知,Rt△GPH∽Rt△KPM∽Rt△ABC,∴ABAC=GPGH=KPMK,即8060=50GH=32MK.解得GH=37.5 (cm),MK=24 (cm).即灯罩底面半径MK的长为24 cm.。

人教版九年级下册数学第二十九章 投影与视图 含答案

人教版九年级下册数学第二十九章 投影与视图 含答案

人教版九年级下册数学第二十九章投影与视图含答案一、单选题(共15题,共计45分)1、如图所示,该几何体的主视图是()A. B. C. D.2、如图,是某几何体的三视图及相关数据,则该几何体的表面积是()A.39πB.29πC.24πD.19π3、如图,下列关于物体的主视图画法正确的是()A. B. C. D.4、如图所示的几何体,从正面看所得到的图形是()A. B. C. D.5、如图,晚上小亮在路灯下散步,在从A处走向B处的过程中,他在地上的影子()A.逐渐变短B.先变短后再变长C.逐渐变长D.先变长后再变短6、如图是由几个相同的小正方形搭成一个几何体,从左边看得到的平面图形是()A. B. C. D.7、如图,是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是()A.πB.2πC.4πD.5π8、如图是某几何体的三视图及相关数据,则判断正确的是()A. B. C. D.9、用小立方块搭成的几何体,从正面看和从上面看的形状图如下,则组成这样的几何体需要的立方块个数为( )A.最多需要8块,最少需要6块B.最多需要9块,最少需要6块C.最多需要8块,最少需要7块D.最多需要9块,最少需要7块10、物体如图,则这两个物体的俯视图应是()A. B. C. D.11、图是边长为的六个小正方形组成的图形,它可以围成图的正方体,则在图中,小虫从点A沿着正方体的棱长爬行到点B的长度为()A.0B.1C.2D.312、下列图形中,不能通过折叠围成一个三棱柱的是()A. B. C. D.13、由一些大小相同的小正方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是()A. B. C. D.14、如下图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是()A.①②B.②③C.②④D.③④15、某个几何体的展开图如图所示,该几何体是()A.三棱锥B.四棱锥C.三棱柱D.圆锥二、填空题(共10题,共计30分)16、小军晚上到乌当广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定的说“广场上的大灯泡一定位于两人________ ”.17、一个均匀的立方体6个面上分别标有数1、2、3、4、5、6,下图是这个立方体表面展开图,抛掷这个立方体,则朝上一面上的数恰好等于下一面上的数的的概率是________.18、如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是________.19、如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“守”字一面的相对面上的字是________.20、有一个正方体,在它的各个面上分别标上字母A,B,C,D,E,F,甲、乙、丙三位同学从不同方向去观察其正方体,观察结果如图所示。

人教版九年级下册数学第二十九章 投影与视图 含答案

人教版九年级下册数学第二十九章 投影与视图 含答案

人教版九年级下册数学第二十九章投影与视图含答案一、单选题(共15题,共计45分)1、如图是由四个完全相同的小正方体组合而成的几何体,它的主视图是()A. B. C. D.2、某几何体的三视图如图所示,该几何体是()A. B. C. D.3、一个几何体的三视图如图所示,则该几何体的表面积为()A.4πB.3πC.2π+4D.3π+44、图中三视图对应的正三棱柱是()A. B. C.D.5、如图,灯光与影子的位置最合理的是( )A. B. C. D.6、如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A. B. C. D.7、如图是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数不可能是( )A.6个B.7个C.8个D.9个8、今年“三八节”佳佳给妈妈送了一个礼盒,该礼盒的主视图是()A. B. C. D.9、如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中周长最小的是()A.主视图B.左视图C.俯视图D.三种一样10、如图所示,该几何体的俯视图是()A. B. C. D.11、在一个仓库里堆放有若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画出来,如图,则这堆货箱共有()A.4个B.5个C.6个D.7个12、一个圆锥的主视图是边长为4的等边三角形,这个这个圆锥的侧面积为()A.(4 +4)πB.(8 +4)πC.12πD.8π13、下列立体图形中,从正面看,看到的图形是圆形的是(A. B. C. D.14、如图是一个由5个相同的正方体组成的立体图形,它的三视图是()A. B. C.D.15、由几个相同的小正方形搭成的一个几何体如图所示,这个几何体的主视图是()A. B. C. D.二、填空题(共10题,共计30分)16、有六个面,且主视图、俯视图和左视图都相同的几何体是________ .17、如图,是一几何体的三视图,根据图中数据,这个几何体的侧面积是________.18、如图所示是由若干个大小相同的小正方体所搭成的几何体从三个方向看到的图形,则搭成这个几何体的小正方体的个数是________个19、一个上下底密封的纸盒的三视图如图所示,请你根据图中的数据,计算这个密封纸盒的表面积为________cm2.(结果保留π)20、一个长方体主视图和俯视图如图所示,则这个长方体左视图的面积为________ .21、用小正方体搭一个几何体,使它的主视图和俯视图如图所示,这样的几何体需要小正方体最多几块?最少几块?答:最多________ 块;最少________块.22、一个圆锥的侧面积是2πcm2,它的侧面展开图是一个半圆,则这个圆锥的高为________ cm.23、由一些大小相同的小正方体搭成的几何体的从正面看和从上面看,如图所示,则搭成该几何体的小正方体最多是________ 个.24、一个几何体由若干大小相同的小正方体搭成,从上面看到的这个几何体的形状如图所示,其中小正方形中的数字表示在该位置小正方体的个数.在不破坏原几何体的前提下,再添加一些小正方体,使其搭成一个大正方体,则至少还需要添加________个这样的小正方体.25、一个空间几何体的主视图和左视图都是边长为2cm的正三角形,俯视图是一个圆,那么这个几何体的侧面积是________cm2.三、解答题(共5题,共计25分)26、一个几何体的三视图如图,求这个几何体的侧面积?27、)已知,AB和DE是直立在地面上的两根立柱,AB=6m,某一时刻AB在阳光下的投影BC=4m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为8m,请你计算DE的长.28、如图,分别从正面、左面、上面观察该立体图形,能得到什么平面图形.29、如图所示是一个纸杯,它的母线延长后形成的立体图形是圆锥,该圆锥的侧面展开图是扇形OAB,经测量,纸杯开口圆的直径为6cm,下底面直径为4cm,母线长EF=9cm,求扇形OAB的圆心角及这个纸杯的表面积.(结果保留根号和π)30、如图,分别从正面、左面、上面观察这个立体图形,请画出你看到的平面图形.参考答案一、单选题(共15题,共计45分)1、A2、B3、D4、A5、B6、D7、D8、C9、B10、D11、B12、D13、A14、A15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。

九年级数学下第二十九章29.1投影同步作业(含答案)

九年级数学下第二十九章29.1投影同步作业(含答案)

29.1投影初三数学备课组一、自主学习1.平行投影中的光线是( )A.平行的B.聚成一点的C.不平行的D.向四面八方发散的2.太阳光线可以看成___________.3.皮影戏中的皮影是由_________投影得到.4.图29-1是两棵小树在同一时刻的影子,请问图A的影子是在_________光线下形成的,图B的影子是在_________光线下形成的.(填“太阳”或“灯光”)图29-1二、基础巩固5.小明在操场上练习双杠时,在练习的过程中他发现在地上双杠的两横杠的影子( )A.相交B.平行C.垂直D.无法确定6.太阳光照射一扇矩形的窗户,投在平行于窗户的墙上的影子的形状是( )A.与窗户全等的矩形;B.平行四边形;C.比窗户略小的矩形;D.比窗户略大的矩形7.在同一平面内的影子如图29-2所示,此时,第三根木棒的影子表示正确( )图29-28.有两根木棒AB、CD在同一平面上直立着,其中AB这根木棒在太阳光下的影子BE如图29-3所示,请你在图中画出这时木棒CD的影子.图29-39.如图29-4所示,某校墙边有甲、乙两根木杆,如果乙木杆的影子刚好不落在墙上,那么你能在图中画出此时的太阳光线及甲木杆的影子吗?在你画的图形中有相似三角形吗?为什么?图29-410.在同一时刻,两根长度不等的竿子置于阳光之下,但它们的影长相等,那么这根竿子的相对位置是( )A.两根都垂直于地面;B.两根平行斜插在地上;C.两根竿子不平行;D.一根倒在地上11.夜晚在亮有路灯的路上,若想没有影子,你应该站的位置是( )A.路灯的左侧;B.路灯的右侧;C.路灯的下方;D.以上都可以12.不同长度的物体在同一时刻同一地点的太阳光下得到的投影是( )A.相等B.长的较长C.短的较长D.不能确定13.当你走向路灯时,你的影子在你的_________,并且影子越来越________.14.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵随太阳转动的情况,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为( )A.上午12时B.上午10时C.上午9时30分D.上午8时15.小军晚上到广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定地说:“广场上的大灯泡一定位于两人_______________.16.如图29-5所示,试确定灯泡所在的位置.图29-5三、能力提高17.一天上午小红先参加了校运动会女子100m比赛,过一段时间又参加了女子400 m比赛,图29-6是摄影师在同一位置拍摄的两张照片,那么下列说法正确的是( )A.乙照片是参加100 m的B.甲照片是参加400 m的C.乙照片是参加400 m的D.无法判断甲、乙两张照片图29-618.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( )A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长19.图29-7是一球吊在空中,当发光的手电筒由远及近时,落在竖直墙面上的球的影子会如何变化?图29-720.小强说:“同一时刻,阳光下影子越长的物体就越高”,你同意他的说法吗?小亮说:“同一时刻,灯光下影子越长的物体就越高”,你同意吗?说说你的理由.21.某一时刻甲木杆高2 m,它的影长是1.5m,小颖身高1.6m,那么此时她的影长为几米?22.如图29-8所示,小明从路灯下,向前走了5 m,发现自己在地面上的影子长DE是2 m,如果小明的身高为1.6 m,那么路灯距地面的高度AB是_________ m.图29-8 图29-923.晚上,小亮走在大街上,他发现当他站在大街两边的两盏路灯之间,并且自己被两边路灯照在地上的两个影子成一直线时,自己右边的影子长为3 m,左边的影子长为1.5 m.又知自己身高1.80 m,两盏路灯的高相同,两盏路灯之间的距离为12 m,则路灯的高为________ m.24.在太阳光下,转动一个正方体,观察正方体在地上投下的影子,那么这个影子最多可能是几边形( )A.四边形B.五边形C.六边形D.七边形25.图29-9是木杆、底边上有高的等腰三角形、正方形在同一时刻的影子,其中相似三角形有_____________.26.阳光下,同学们整齐地站在操场上做课间操,小勇和小宁站在同一列,小勇的影子正好被站在他后面的同学踩在脚下,而小宁的影子却没有被他后面的同学踩在脚下,你知道他们的队列是向哪个方向的吗?小宁和小勇哪个高?为什么?27.如图29-10所示,为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如右示意图的测量方案:把镜子放在离树(AB)8.7m的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.7 m,观察者目高CD=1.6 m,请你计算树(AB)的高度.(精确到0.1 m)图29-10四、模拟链接28.如图29-11所示,某一时刻太阳光从教室窗户射入室内,与地面的夹角∠B PC为30°,窗户的一部分在教室地面所形成的影长PE为3.5 m,窗户的高度AF为2.5 m.求窗外遮阳篷外端一点D到窗户上椽的距离A D。

人教版数学九年级下册第29章29.1--29.3同步练习题(含答案)

人教版数学九年级下册第29章29.1--29.3同步练习题(含答案)

人教版数学九年级下册第29章29.1--29.3同步练习题(含答案)29.1《投影》一、选择题1.关于盲区的说法正确的有()(1)我们把视线看不到的地方称为盲区(2)我们上山与下山时视野盲区是相同的(3)我们坐车向前行驶,有时会发现一些高大的建筑物会被比矮的建筑物挡住(4)人们常说“站得高,看得远”,说明在高处视野盲区要小,视野范围大A.1 个B.2个C.3个D.4个2.如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向上远移时,圆形阴影的大小的变化情况是()A.越来越小B.越来越大C.大小不变D.不能确定3.如下图所示的四幅图中,灯光与影子的位置最合理的是( )4.如图,一个斜插吸管的盒装饮料的正投影是图中的( )5.如图所示,晚上小亮在路灯下散步,在小亮由A处走向B处的过程中,他在地上的影子()A.逐渐变短B.逐渐变长C.先变短后再变长D.先变长后再变短6.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是( )(A)①②③④. (B)④①③②. (C)④②③①. (D)④③②①.7.下列各种现象属于中心投影现象的是( )A.上午10点时,走在路上的人的影子C.中午用来乘凉的树影D.升国旗时,地上旗杆的影子8.如图,晚上小亮在路灯下散步,在小亮由A处走到B处这一过程中,他在地上的影子()A.逐渐变短B.逐渐变长C.先变短后变长D.先变长后变短9.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( )A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长10.下列说法正确的是()A.物体在阳光下的投影只与物体的高度有关B.小明的个子比小亮高,我们可以肯定,不论什么情况,小明的影子一定比小亮的影子长.C.物体在阳光照射下,不同时刻,影长可能发生变化,方向也可能发生变化.D.物体在阳光照射下,影子的长度和方向都是固定不变的.11.四个直立在地面上的字母广告牌在不同情况下,在地面上的投影(阴影部分)效果如图.则在字母L、K、C的投影中,与字母N属于同一种投影的有( )A.L、KB.答案为:C;C.KD.L、K、C12.这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图,已知桌面的直径为1.2米,桌面距离地面1米,若灯泡距离地面3米,则地面上阴影部分的面积为()A.0.36π平方米B.0.81π平方米C.2π平方米D.3.24π平方米二、填空题13.有下列投影:①阳光下遮阳伞的影子;②探照灯光下小明读书的影子;③阳光下大树的影子;④阳光下农民锄地的影子;⑤路灯下木杆的影子.其中属于平行投影的是________.(填序号)14.如图所示,此时树的影子是在(填太阳光或灯光)下的影子.15.如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身高分别为1.8m,1.5m,则路灯的高为____________m.16.如图所示是两棵小树在同一时刻的影子,可以断定这是________投影,而不是_______投影.17.如图是置于水平地面上的一个球形储油罐,小敏想测量它的半径.在阳光下,他测得球的影子的最远点A到球罐与地面接触点B的距离是10米(如示意图,AB=10米);同一时刻,他又测得竖直立在地面上长为1米的竹竿的影子长为2米,那么,球的半径是米.18.如图,太阳光线与地面成60°的角,照在地面的一只排球上,排球在地面的投影长是,则排球的直径是 cm.三、解答题19.如图,已知AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.20.如图,晚上,小亮在广场上乘凉。

精品解析2022年最新人教版九年级数学下册第二十九章-投影与视图同步练习试题(含详细解析)

精品解析2022年最新人教版九年级数学下册第二十九章-投影与视图同步练习试题(含详细解析)

人教版九年级数学下册第二十九章-投影与视图同步练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图几何体的主视图是()A.B.C.D.2、如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和俯视图,若这个几何体最多由m个小正方体组成,最少由n个小正方体组成,则2m﹣n=()A.10 B.11 C.12 D.133、用小立方块搭一个几何体,使得它的主视图和俯视图如图所示,则最少需要小立方块的个数为()A.6 B.7 C.10 D.14、如图,该几何体的俯视图是()A.B.C.D.5、某几何体从三个方向看到的平面图形都相同,这个几何体可以是()A.B.C.D.6、一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为()A.12 B.16 C.18 D.24 7、如图,几何体的左视图是()A.B.C.D.8、如图,根据三视图,这个立体图形的名称是()A.三棱锥B.三棱柱C.四柱D.四锥9、下列几何体的主视图和俯视图完全相同的是()A.B.C.D.10、下面的三视图所对应的几何体是()A.B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是________.2、如图所示是给出的几何体从三个方向看到的形状,则这个几何体最多由___个小正方体组成.3、如图是由五个棱长均为1的正方体搭成的几何体,则它的左视图的面积为________.4、如图是一个几何体的三视图,该几何体的体积是_____.5、如图为一个圆锥的三视图,这个圆锥的侧面积为_________2mm.三、解答题(5小题,每小题10分,共计50分)1、如图,是由一些大小相同的小正方体组合成的简单几何体.(1)图中有_______块小正方体;(2)该几何体从正面看所得到的平面图形如图所示,请你在下面方格纸中分别画出从左边看和从上边看它所得到的平面图形.2、如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,问最多可以取走几个小立方块.3、如图所示是由6个大小相同的小立方体搭成的几何体.,请你画出它的主视图与左视图.4、用棱长都为5cm的小立方块搭成几何体,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.(1)请你分别画出从正面和从左面看到的这个几何体的形状图;(2)若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加大小相同的小立方块,以搭成一个大正方体,至少还需要_______个小立方块;(3)①图中的几何体的表面积(包括与桌面接触的部分)为_______2cm;②若新搭一个几何体,且满足如下三个条件:图中从上面看到的几何体的形状图不变,小立方块的总数不变,从上面看到的小正方形中的数字可以改变,则新搭几何体的表面积(包括与桌面接触的部分)最小值和最大值分别为_______2cm.cm,_______25、如图所示的几何体是由几个相同的小正方体排成3行组成的.(1)填空:这个几何体由个小正方体组成;(2)画出该几何体的三个视图.(用阴影图形表示)---------参考答案-----------一、单选题1、A【分析】根据题意可得:从正面看,主视图是两个长方形,即可求解.【详解】解:从正面看,主视图是两个长方形.故选:A【点睛】本题主要考查了几何体的三视图,熟练掌握几何体的三视图的特征是解题的关键.2、B【分析】根据几何体的主视图和俯视图,可得最下面一层有4个正方体,中间一层最多有3个正方体,最少有2个正方体,最上面一层最多有2个正方体,最少有1个正方体.【详解】解:由三视图可知:最下面一层有4个正方体,中间一层最多有3个正方体,最少有2个正方体,最上面一层最多有2个正方体,最少有1个正方体,∴m=4+3+2=9,n=4+2+1=7,∴2m﹣n=2×9﹣7=11.故选B.【点睛】本题主要考查了三视图确定小立方体个数以及代数式求值,解题的关键在于能够熟练掌握根据三视图判断小立方体的个数.3、C【分析】从主视图和左视图考虑几何体的形状,从俯视图看出几何体的小立方块最少与最多的数目,利用口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”求解即可.【详解】解:由主视图可知,它自下而上共有3列,第一列3块,第二列2块,第三列1块.由俯视图可知,它自左而右共有3列,第一列与第二列各3块,第三列1块,从空中俯视的块数只要最底层有一块即可.因此,综合两图可知这个几何体的形状不能确定;并且最少时为第一列中有一个三层,其余为一层,第二列中有一个二层,其余为一层,第三列一层,共10块.故选:C.【点睛】题目主要考查对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”是解题关键.4、A【分析】俯视图,从上面看到的平面图形,根据定义可得答案.【详解】解:从上面看这个几何体看到的是三个长方形,所以俯视图是:故选A【点睛】本题考查的是三视图,注意能看到的棱都要画成实线,掌握“三视图中的俯视图”是解本题的关键.5、C【分析】根据三视图判断即可;【详解】的左视图、主视图是三角形,俯视图是圆,故A不符合题意;的左视图、主视图是长方形,俯视图是三角形,故B不符合题意;的主视图、左视图、俯视图都是正方形,故C符合题意;的左视图、主视图是长方形,俯视图是圆,故D不符合题意;故选C.【点睛】本题主要考查了几何体三视图的判断,准确分析是解题的关键.6、A【分析】由主视图所给的图形可得到俯视图的对角线长为的体积公式底面积乘以高即为这个长方体的体积.【详解】解:设俯视图的正方形的边长为a.∵其俯视图为正方形,正方形的对角线长为,∴a2+a2=()2,解得a2=4,∴这个长方体的体积为4×3=12.故选A.【点睛】本题主要是考查三视图的基本知识以及长方体体积计算公式.解决本题的关键是理解长方体的体积公式为底面积乘高,难点是利用勾股定理得到长方体的底面积.7、C【分析】找到从左面看所得到的图形,比较即可.【详解】解:观察可知,从物体的左边看是一个竖长横短的长方形,由于右边有一条横向棱被遮挡看不见,画为虚线,如图所示的几何体的左视图是:.故选C.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.8、B【分析】由主视图和左视图,可以确定是柱体,再结合俯视图即可得到正确答案.【详解】解:由主视图和左视图可以确定是柱体,又因为俯视图是三角形,可以确定该柱体是三棱柱.故选:B【点睛】本题考查由三视图确定几何体,牢记相关知识点并能够灵活应用是解题关键.9、D【分析】根据主视图和俯视图是分别从物体正面和上面看到的图形,逐项分析即可.【详解】解:A、圆柱主视图是矩形,俯视图是圆,故A选项不合题意;B、圆锥的主视图是等腰三角形,俯视图是圆以及中心有一个点,故B选项不合题意;C、三棱柱主视图是一行两个矩形且公共边是虚线,俯视图是三角形,故C选项不合题意;D、圆的主视图和俯视图都为圆,故D选项符合题意;故选D.【点睛】本题考查简单几何体的三视图,解决问题的关键是掌握主视图是从物体的正面看到的视图,俯视图是从物体的上面看得到的视图.10、C【分析】根据“俯视打地基、主视疯狂盖、左视拆违章”得出组成该几何体的小正方体分布情况,继而得出答案.【详解】解:根据三视图知,组成该几何体的小正方体分布情况如下:与之相对应的C选项,故选:C.【点睛】本题考查由三视图判断几何体,关键是由主视图和左视图、俯视图可判断确定几何体的具体形状.二、填空题1、18【解析】【分析】由几何体的三视图可得出原几何体为圆锥和圆柱组合体,根据图中给定数据求出表面积即可.【详解】解:由几何体的三视图可得出原几何体为圆锥和圆柱组合体,根据主视图中给定数据可知圆锥的母线长是3,底面圆的直径是4,圆柱的高是2, 因此圆锥的侧面积为:4362S rl πππ==⨯⨯= 圆柱的侧面积为:422282S rh πππ==⨯⨯= 底面圆的面积为:22442S r πππ⎛⎫==⨯= ⎪⎝⎭ 因此这个几何体的表面积为:68418ππππ++=故答案为:18π.【点睛】本题考查了由三视图判断几何体、圆锥和圆柱的计算,由几何体的三视图可得出原几何体为圆锥和圆柱组合体是解题的关键.2、11【解析】【分析】从俯视图中可以看出最底层小立方块的个数及形状,从主视图可以看出每一层小立方块的层数和个数,从左视图可看出每一行小立方块的层数和个数,从而算出总的个数.【详解】解:研究该几何体最多由多少个小正方形组成,由俯视图易得最底层小立方块的个数为5,由其他视图可知第二层有5个小立方块,第三层有1个小立方块,即如下图:那么共最多由55111++=个小立方块.故答案为:11.【点睛】本题考查了学生对三视图的掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,解题的关键是掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.3、3【解析】【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看,底层是两个小正方形,上层的右边是一个小正方形,因为每个小正方形的面积为1,所以则它的左视图的面积为3.故答案为:3.【点睛】本题考查了简单组合体的三视图,从左边看得到的图象是左视图.4、4π【解析】【分析】由三视图可知。

人教版九年级下册数学第二十九章 投影与视图 含答案

人教版九年级下册数学第二十九章 投影与视图 含答案

人教版九年级下册数学第二十九章投影与视图含答案一、单选题(共15题,共计45分)1、图1是矗立千年而不倒的应县木塔一角,它使用了六十多种形态各异的斗栱(dǒugǒng).斗栱是中国古代匠师们为减少立柱与横梁交接处的剪力而创造的一种独特的结构,位于柱与梁之间,斗栱是由斗、升、栱、翘、昂组成,图2是其中一个组成部件的三视图,则这个部件是()A. B. C. D.2、由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是()A.3B.4C.5D.63、如图,这个几何体的左视图是()A. B. C. D.4、如图,正六棱柱的主视图是()A. B. C. D.5、如图是由5个相同的小正方体构成的几何体,其俯视图是()A. B. C. D.6、如图是一个几何体的三视图,其中主视图、左视图都是腰为13cm,底为10cm的等腰三角形,则这个几何的侧面积是 ( )A.60πcm 2B.65πcm 2C.70πcm 2D.75πcm 27、当投影线由上到下照射水杯时,如图所示,那么水杯的正投影是()A. B. C. D.8、一个几何体的三视图如图所示,则这个几何体是()A.三棱锥B.三棱柱C.圆柱D.长方体9、某几何体的三视图如图所示,则该几何体是()A.圆柱B.三棱柱C.长方体D.四棱锥10、在一盏路灯的周围有一圈栏杆,则下列叙述中不正确的是( )A.若栏杆的影子落在围栏里,则是在太阳光照射下形成的B.若这盏路灯有影子,则说明是在白天形成的C.若所有栏杆的影子都在围栏外,则是在路灯照射下形成的D.若所有栏杆的影子都在围栏外,则是在太阳光照射下形成的11、下面四幅图中,()不是无盖的正方体盒子的展开图.A. B. C. D.12、如图是4块小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小方块的个数,其主视图是()A. B. C. D.13、下列水平放置的四个几何体中,主视图与其它三个不相同的是()A. B. C. D.14、如图是由5个相同的小正方体组成的立体图形,这个立体图形的左视图是()A. B. C. D.15、如图,太阳光线与地面成60°的角,照在地面的一只排球上,排球在地面的投影长是14 ,则排球的直径是()A.7cmB.14cmC.21cmD.21 cm二、填空题(共10题,共计30分)16、小亮的身高为1.8米,他在路灯下的影子长为2米;小亮距路灯杆底部为3米,则路灯灯泡距离地面的高度为________ 米.17、俯视图为圆的几何体是________,________.18、一块直角三角形板ABC,∠ACB=90°,BC=12 cm,AC=8 cm,测得BC边的中心投影B1C1长为24 cm,则A1B1长为________ cm.19、如图,长方体的棱AB长为4,棱BC长为3,棱BF长为2,P为HG的中点,一只蚂蚁从点A出发,沿长方体的表面爬行到点处吃食物,那么它爬行的最短路程是________.20、由一些大小相同的小正方体搭成的几何体的从正面看和从上面看,如图所示,则搭成该几何体的小正方体最多是________ 个.21、若要使如图中的平面展开图折叠成正方体后,相对面上的两个数为相反数,则________.22、一个几何体的三视图如图所示,则该几何体的侧面展开图的面积为________.23、在右边的展开图中,分别填上数字1,2,3,4,5,6,使得折叠成正方体后,相对面上的数字之和相等,则a=________ ,b=________ ,c=________24、圆锥有________个面,它的侧面展开图是________.25、若要使图中的展开图按虚线折叠成正方体后,相对面上两个数之和为10,则x+y=________.三、解答题(共5题,共计25分)26、一个几何体的三视图如图,求这个几何体的侧面积?27、如图是一个正方体的表面展开图,请回答下列问题:(1)与面B、C相对的面分别是?(2)若A=a3+a2b+3,B=a2b﹣3,C=a3﹣1,D=﹣(a2b﹣6),且相对两个面所表示的代数式的和都相等,求E、F分别代表的代数式.28、已知:如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻,AB 在阳光下的投影BC=4m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影长时,同时测出DE在阳光下的投影长为6m,请你计算DE的长.29、已知Rt△DEF与等腰△ABC如图放置(点A与F重合,点D,A,B在同一直线上),AD=3,AB=BC=4,∠EDF=30°,∠ABC=120°.(1)求证:ED∥AC;(2)Rt△DEF沿射线AB方向平移,平移距离为a,当点D与点B重合时停止移动:①当E在BC上时,求a;②设△DEF与△ABC重叠部分的面积为S,请直接写出S与平移距离a之间的函数关系式,并写出相应的自变量a的取值范围.30、一个正方体6个面分别写着1、2、3、4、5、6,根据下列摆放的三种情况,那么每个数对面上的数是几?参考答案一、单选题(共15题,共计45分)1、C2、C3、B4、D5、B6、B7、D8、B9、C10、D11、D12、D13、D14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。

人教版九年级数学下册 29.1 投影同步测试及答案【新】

人教版九年级数学下册 29.1 投影同步测试及答案【新】

投影与视图29.1__投影__第1课时投影[见B本P88]1.如图所示的物体的影子,不正确的是( B )【解析】太阳光线是平行的,故B错误.29点钟天安门广场上国旗的影子( D )图29-1A.(2) B.(3) C.(1) D.(4)【解析】早上太阳在正东,影子在正西,太阳向南移动,影子向北移动,故选D.3.某小区的健身广场上南北两端各有一棵水杉,下面哪一幅图可能是它们在灯光下的影子( A )图29-1-2A.(1) B.(2)C.(1)(2)都可能 D.无法判断【解析】连接树顶端和影子顶端的直线相交于一点即为灯光下的影子.4.如图29-1-3,如果在阳光下你的身影的方向为北偏东60°方向,那么太阳相对于你的方向是( A )图29-1-3A.南偏西60° B.南偏西30°C.北偏东60° D.北偏东30°【解析】由于人相对于太阳与太阳相对于人的方位正好相反,∵在阳光下你的身影的方向为北偏东60°方向,∴太阳相对于你的方向是南偏西60°方向.5.如图29-1-4,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向远处移动时,圆形阴影的大小的变化情况是( A )图29-1-4A.越来越小 B.越来越大C.大小不变 D.不能确定6. 下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序排列正确的是( C )图29-1-5A.③①④② B.③②①④C.③④①② D.②④①③【解析】西为③,西北为④,东北为①,东为②,∴将它们按时间先后顺序排列为③④①②.7. 如图,一束平行太阳光线照射到正五边形上,则∠1=__30°__.图29-1-68. 太阳光线与地面成60°的角,照射在地面上的一只皮球上,皮球在地面上的投影长是10 3 cm,则皮球的直径是( B )A.5 cm B.15 cm C.10 cm D.8 cm图29-1-7 第8题答图【解析】由题意得:DC=2R,DE=103,∠CED=60°,∴可得:DC=DE sin60°=15 cm.9.一天下午,秦老师参加了校运动会女子200 m比赛,然后又参加了女子400 m比赛,摄影师在同一位置拍摄了她参加这两项比赛的照片(如图29-1-8).你认为秦老师参加400 m比赛的照片是__(a)__.图29-1-8【解析】太阳东升西落,影子长度和方向都在变化,这两幅照片都是在下午拍摄的,则影子越长拍摄的时间越晚,影子越短的拍摄的时间越早.秦老师参加400 m比赛的照片是(a).图29-1-910. 如图29-1-9,王琳同学在晚上由路灯A走向路灯B,当他行到P处时发现,他在路灯B下的影长为2米,且恰好位于路灯A的正下方,接着他又走了6.5米到Q处,此时他在路灯A下的影子恰好位于路灯B的正下方(已知王琳身高1.8米,路灯B高9米)(1)标出王琳站在P处在路灯B下的影子;(2)计算王琳站在Q处在路灯A下的影长;(3)计算路灯A的高度.解:(1)线段CP为王琳在路灯B下的影长;(2)由题意得Rt△CEP∽Rt△CBD,∴EPBD=CPCD,∴1.89=22+6.5+QD,解得:QD=1.5米;(3)∵Rt△DFQ∽Rt△DAC∴FQAC=QDCD,∴1.8AC=1.51.5+6.5+2解得:AC=12米.答:路灯A的高度为12米.11.某数学兴趣小组利用树影测量树高,如图29-1-10(1),已知测出树AB的影长AC为12米,并测出此时太阳光线与地面成30°夹角.(精确到1米,2≈1.4,3≈1.7)(1)求出树高AB;(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.(用图29-1-10(2)解答)①求树与地面成45°角时的影长;解:(1)AB=AC·tan30°=12×33=43≈7(米);(2)①如图(2),B1N=AN=AB1·sin45°=43×22≈5(米),NC1=B1N·tan60°=26×3≈8(米),AC1=AN+NC1≈5+8=13(米).答:树与地面成45°角时影长约为13米.602最大(或树与光线垂直时影长最大),AC 2=2AB 2≈14(米).答:树的最大影长约为14米.第2课时正投影[见A本P90]1.如图,箭头表示投影的方向,则图中圆柱体的投影是( B )图29-1-11A.圆B.矩形C.梯形 D.圆柱【解析】根据投影的定义画出投影,此时圆柱体的投影为矩形.2.一根笔直小木棒(记为线段AB),它的正投影为线段CD,则下列各式中一定成立的是( D ) A.AB=CDB.AB≤CDC.AB>CDD.AB≥CD【解析】当投影线与木棒垂直时,AB=CD,当投影线与木棒不垂直时,AB>CD,故选D.3.下列关于正投影的说法正确的是( B )A.如果一个物体的正投影是圆,那么这个物体一定是球B.不同的物体正投影可以相同C.圆锥的正投影是等腰三角形D.圆纸片的正投影是圆【解析】球、圆柱、圆锥、圆纸片,后三者在圆面与投影面平行时正投影都是圆.A,C,D三个选项均错在没有考虑物体的正投影与物体相对于投影面的位置有关.4.小明拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上形成的投影不可能是图中的( B )【解析】等边三角形在地面上形成的投影不可能是一个点.5.如图29-1-12,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕A按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC(假定AC>AB),影长的最大值为m,最小值为n,那么下列结论:①m>AC;②m=AC;③n=AB;④影子的长度先增大后减小.其中正确的结论的序号是__①③④__.图29-1-126.春蕾数学兴趣小组用一块正方形木板在阳光下做投影实验,这块正方形木板在地面上形成的投影可能是__正方形、菱形(答案不唯一)__(写出符合题意的两个图形即可).7.如图29-1-13所示,正三棱柱的面EFDC∥平面R且AE=EF=AF=2,AB=6,正三棱柱在平面R的正投影是__矩形__,正投影面积为__12__.图29-1-13【解析】由正三棱柱的特征知面EFDC为矩形,当它与投影面平行时,它的正投影与它全等,其面积为2×6=12.8.如图29-1-14所示,在电视台的演播厅中,1,2,3,4号摄像机分别拍到a,b,c,d四个画面,按画面a,b,c,d的顺序排列摄像机的顺序依次是__2,3,4,1__.图29-1-149.画出如图29-1-15所示物体(正三棱柱)的正投影.(1)投影线由物体前方射到后方;(2)投影线由物体左方射到右方;(3)投影线由物体上方射到下方.图29-1-15【解析】仔细观察光线的方向是解本题的关键.(1)从前方射到后方的正投影为两个长方形.(2)从左方射到右方的正投影为一个长方形.(3)由上方射到下方的正投影是一个正三角形.解:如图所示.10.指出如图29-1-16所示的立体图各个面的正投影图形,并画出投影线的方向如箭头所示立体图的正投影.图29-1-16解:立体图形除正面和后面为五边形外,其他的正投影为矩形.。

人教版九年级下册数学 第29章 投影与视图 同步练习题(含答案)

人教版九年级下册数学 第29章  投影与视图  同步练习题(含答案)

人教版九年级下册数学第29章投影与视图同步练习题29.1 投影1.小明拿一个等边三角形木框在太阳下玩耍,发现等边三角形木框在地面上的投影不可能是()2.小飞晚上到广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定地说,广场上的大灯泡一定位于两人.3.一根笔直的小木棒(记为线段AB),它的正投影为线段CD,则下列各式中一定成立的是() A.AB=CD B.AB≤CDC.AB>CD D.AB≥CD4.如图,如果在阳光下你的身影的方向是北偏东60°方向,那么太阳相对于你的方向是()A.南偏西60°B.南偏西30°C.北偏东60° D.北偏东30°5.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()6.如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB,CD. (1)请你在图中画出路灯灯泡所在的位置(用点P表示);(2)画出小华此时在路灯下的影子(用线段EF表示).7.如图,已知线段AB=2 cm,投影面为P,太阳光线与地面垂直.(1)当AB垂直于投影面P时(如图1),请画出线段AB的投影;(2)当AB平行于投影面P时(如图2),请画出它的投影,并求出正投影的长;(3)在(2)的基础上,点A不动,线段AB绕点A在垂直于投影面P的平面内逆时针旋转30°,请在图3中画出线段AB的正投影,并求出其正投影长.29.2 三视图第1课时几何体的三视图1.下列立体图形中,主视图是圆的是()2.如图是由四个小正方体叠成的一个几何体,它的左视图是()3.如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图是()4.如图所示几何体的左视图是()5.将如图所示的两个平面图形绕轴旋转一周,对其所得的立体图形,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同6.图中物体的一个视图(a)的名称为.7.画出如图所示圆柱的三视图.8.画出如图所示几何体三视图.9.下列四个几何体中,主视图与左视图相同的几何体有()A.1个 B.2个C.3个D.4个10.如图是一个空心圆柱体,其左视图正确的是()11.形状相同、大小相等的两个小木块放置于桌面,其俯视图如图,则其主视图是()12.如图,一个正方体切去一个三棱锥后所得几何体的俯视图是()13.一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你在指定的方框内分别画出这个几何体的三视图(从正面、左面、上面看得到的视图).14.一种机器上有一个进行转动的零件叫燕尾槽(如图),为了准确做出这个零件,请画出它的三视图.15.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为下列几何体中的哪一个?选择并说明理由.第2课时由三视图确定几何体1.如图是某几何体的三视图,则这个几何体是()A.棱柱 B.圆柱C.棱锥 D.圆锥2.一个几何体的三视图如图所示,这个几何体是()A.圆柱 B.棱柱C.圆锥 D.球3.如图所示,所给的三视图表示的几何体是()A.圆锥 B.正三棱锥C.正四棱锥 D.正三棱柱4.如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上方小正方体的个数,这个立体图形的左视图是()5.图中的三视图所对应的几何体是()6.已知一个正棱柱的俯视图和左视图如图,则其主视图为()7.某几何体的三视图如图所示,则组成该几何体共用了小方块()A.12块B.9块C.7块D.6块8.如图所示是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体不可能是()A.6个B.7个 C.8个 D.9个第3课时由三视图确定几何体的表面积或体积1.如图是一个几何体的三视图,根据图中提供的数据(单位: cm)可求得这个几何体的体积为()A.2 cm3B.3 cm3C.6 cm3D.8 cm32.如图是一几何体的三视图,由图中数据计算此几何体的侧面积为.(结果保留π)3.如图是某工件的三视图,求此工件的全面积.4.如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积,结果为 cm2.(结果可保留根号)5.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.6.如图是一个几何体的三视图(单位:cm).(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体中的点B出发,沿表面爬到AC的中点D,请你求出这个路线的最短长度.参考答案:第二十九章投影与视图29.1 投影1.B2.中间的上方.3.D4.A5.D6.解:如图所示.7.解:(1)点C为所求的投影.(2)线段CD为所求的投影,CD=2 cm.(3)线段CD为所求的投影,CD=2cos30°= 3 cm.29.2 三视图第1课时几何体的三视图1.D2.A3.D4.A5.D6.主视图.7.解:如图所示.8.解:如图所示.9. D10.B11.D12.D13.解:如图.14.解:如图.15.解:比较各几何体的三视图,考虑是否有长方形,圆及三角形即可.对于A,三视图分别为长方形、三角形、圆(含直径),符合题意;对于B,三视图分别为三角形、三角形、圆(含圆心),不符合题意;对于C,三视图分别为正方形、正方形、正方形,不符合题意;对于D,三视图分别为三角形、三角形、矩形(含对角线),不符合题意;故选A.第2课时由三视图确定几何体1.D2.A3.D4.B5.B6.D7.D8.D 提示:如图,根据左视图可以推测d=e=1,a,b,c中至少有一个为2. 当a,b,c中一个为2时,小立方体的个数为:1+1+2+1+1=6;当a,b,c中两个为2时,小立方体的个数为:1+1+2+2+1=7;当a,b,c三个都为2时,小立方体的个数为:1+1+2+2+2=8.所以小立方体的个数可能为6个、7个或8个.故选D.第3课时由三视图确定几何体的表面积或体积1.B2.10π.3.解:由三视图可知,该工件为底面半径为10 cm、高为30 cm的圆锥体.圆锥的母线长为302+102=1010(cm),圆锥的侧面积为12×20π×1010= 10010π(cm 2),圆锥的底面积为102π=100π(cm 2),圆锥的全面积为100π+10010π=100(1+10)π(cm 2).45.解:该几何体的形状是直四棱柱,由三视图知,棱柱底面菱形的对角线长分别为 4 cm ,3 cm.∴菱形的边长为(32)2+22=52(cm ),棱柱的侧面积为52×8×4=80(cm 2). 6.解:(1)圆锥.(2)表面积S =S 扇形+S 圆=πrl +πr 2=12π+4π=16π(cm 2).(3)如图将圆锥侧面展开,线段BD 为所求的最短长度.由条件,得∠BAB ′=120°,C 为弧BB ′的中点,∴BD =33(cm ).。

最新人教版九年级数学下册第二十九章-投影与视图同步测评试题(含答案及详细解析)

最新人教版九年级数学下册第二十九章-投影与视图同步测评试题(含答案及详细解析)

人教版九年级数学下册第二十九章-投影与视图同步测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示的几何体的俯视图是()A.B.C.D.2、已知一个几何体如图所示,则该几何体的左视图是()A.B.C.D.3、如图所示的几何体的左视图为()A.B.C.D.4、如图所示,两个几何体各由4个相同的小正方体搭成,比较两个几何体的三视图,可以得到的正确结论是()A.主视图不同B.左视图不同C.俯视图不同D.主视图、左视图和俯视图都不相同5、如图,该几何体的主视图是()A.B.C.D.6、如图是由5个小立方块搭成的几何体,则该几何体从左面看到的形状图是()A.B.C.D.7、如图所示的几何体,它的左视图是()A.B.C.D.8、如图,是由一个圆柱体和一个长方体组成的几何体,其左视图是()A.B.C.D.9、如图所示的礼品盒的主视图是()A.B.C.D.10、下列几何体中,从正面看和从左面看形状均为三角形的是()A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若干个相同的小正方体组成的几何体的主视图和左视图如图所示则组成这个几何体的小正方体最多为______个.2、如图,从三个不同方向看同一个几何体得到的平面图形,则这个几何体的侧面积是__________2cm.3、如图是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图).已知主视图和左视图是两个全等的矩形.若主视图的相邻两边长分别为2和3,俯视图是直径等于2的圆,则这个几何体的体积为_______.4、一个几何体是由一些大小相同的校正方体摆成的,从正面看与从上面看得到的形状如图所示,则组成这个几何体的校正方体最多有_________个5、一个“粮仓”的三视图如图所示(单位:m),则它的体积是____三、解答题(5小题,每小题10分,共计50分)1、如图是由六个棱长为1 cm的小正方体组成的几何体.(1)该几何体的表面积是(含下底面) cm2;(2)分别画出该立体图形的三视图.2、如图,是公园的一圆形桌面的主视图,表示该桌面在路灯下的影子.(1)请你在图中找出路灯的位置(要求保留画图痕迹,光线用虚线表示);(2)若桌面直径和桌面与地面的距离均为1.2m,测得影子的最大跨度为2m,求路灯O与地面的距离.3、如图,已知小华、小强的身高都是1.6m,小华、小强之间的水平距离BC为14m,在同一盏路灯下,小华的影长AB=4m,小强的影长CD=3m,求这盏路灯OK的高度.4、如图是用10块完全相同的小正方体搭成的几何体.(1)请在空白的方格中分别画出从正面、从左面、从上面看到的所搭几何体的形状图;(2)若保持从正面和从上面看到的形状图不变,最多还可以再搭块小正方体.5、一个物体由几个相同的正方体堆叠成,从三个不同方向观察得到的图形如图所示,试回答下面的问题:(1)该物体共有几层?(2)一共需要几个正方体叠成?---------参考答案-----------一、单选题1、C【分析】根据几何体的俯视图即为从几何体的上面看到的形状,判断即可.【详解】解:从上面看该几何体,所看到的图形如下:故选:C.【点睛】本题考查简单组合体的三视图,理解视图的意义,解题的关键是:掌握俯视图的画法是正确判断的前提.2、B【分析】根据几何体左视图的概念求解即可.【详解】解:由左视图的概念可得,这个几何体的左视图为:.故选:B.【点睛】此题考查了几何体的左视图,解题的关键是熟练掌握几何体左视图的概念.左视图,一般指由物体左边向右做正投影得到的视图.3、C【分析】找到从左边看所得到的图形即可,注意所有看得到的棱用实线表示,看不到的部分用虚线表示【详解】解:从左边看到的图形是:故选C【点睛】本题考查了简单组合体的三视图,理解看不到的且存在的是虚线解题的关键.4、C【分析】根据几何体的三视图特征进行判断即可.【详解】解:观察两个几何体的三视图,则知:主视图相同,左视图相同,俯视图不同,故选项A、B、D错误,选项C正确,故选:C.【点睛】本题考查几何体的三视图,理解三视图的意义是解答的关键.5、B【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中,看不到的棱需要用虚线来表示.【详解】解:从正面看易得,该几何体的视图为B,故选:B【点睛】本题主要考查了三视图的知识,主视图是从物体的正面看得到的视图,掌握主视图的概念是解题的关键.6、D【分析】左视图:从左边看立体图形,看到的平面图形是左视图,根据左视图的定义可得答案.【详解】解:该几何体从左面看到的形状图有2列,第1列看到1个正方形,第2列看到2个正方形,所以左视图是D,故选D【点睛】本题考查的是三视图,值得注意的是能看到的立体图形中的线条都要画成实线,看不到的画成虚线,掌握“左视图的含义”是解题的关键.7、D【分析】左视图:从物体左面所看的平面图形,注意:看到的棱画实线,看不到的棱画虚线,据此进行判断即可.【详解】解:如图所示,几何体的左视图是:故选:D.【点睛】本题考查简单组合体的三视图,正确掌握观察角度是解题关键.8、C【分析】长方体的左视图为矩形,圆柱的左视图为矩形,据此分析即可得左视图从左面可看到一个长方形和一个长方形,且两个长方形等高.故选C【点睛】本题考查了简单几何题的三视图,掌握简单几何题的三视图是解题的关键.9、B【分析】找出从几何体的正面看所得到的图形即可.【详解】解:从礼品盒的正面看,可得图形:故选:B.【点睛】此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.10、C【分析】根据几何体的三视图解答.【详解】解:圆柱从正面看是长方形,故A选项不符合题意;四棱柱从正面看是长方形,故B选项不符合题意;圆锥从正面看是三角形,从左面看是三角形,故C选项符合题意;三棱柱从正面看是长方形,故D选项不符合题意;【点睛】此题考查简单几何体的三视图,正确掌握各几何体的三视图及视角的位置是解题的关键.二、填空题1、5【解析】【分析】易得此组合体有两层,判断出各层最多有几个正方体组成即可.【详解】解:底层正方体最多有4个正方体,第二层最多有1个正方体,所以组成这个几何体的小正方体的个数最多有5个.故答案是:5.【点睛】本题考查了由三视图判断几何体的知识,解决本题的关键是利用“主视图疯狂盖,左视图拆违章”找到所需最多正方体的个数.2、36【解析】【分析】先确定该几何体是三棱柱,再得到底面是边长为4cm的等边三角形,侧棱长为3cm,从而可得答案.【详解】解:从三视图可得得到:这个几何体是三棱柱,其底面是边长为4cm的等边三角形,侧棱长为3cm,所以这个三棱柱的侧面积为:334=36⨯⨯cm2【点睛】本题考查的是简单几何体的三视图,根据三视图还原几何体,求解三棱柱的侧面积,掌握由三视图还原几何体是解题的关键.3、3π【解析】【分析】由三视图判断出几何体的形状以及相关长度,根据圆柱的体积公式计算即可.【详解】解:由三视图可知:该几何体是圆柱,该圆柱的底面直径为2,高为3,∴这个几何体的体积为2232π⎛⎫⨯⨯⎪⎝⎭=3π,故答案为:3π.【点睛】本题考查了几何体的三视图,圆柱的体积,解题的关键是判断出该几何体为圆柱.4、6【解析】【分析】易得这个几何体共有2层,由主视图和俯视图可得第一层最多正方体的个数为3块,第二层最多正方体的个数为3块,相加即可.【详解】解:组成这个几何体的小正方块最多有3+3=6块.【点睛】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.5、345m π【解析】【分析】根据三视图可知该几何体为圆锥和圆柱的结合体,进而根据三视图中的数据计算体积即可.【详解】解:观察发现该几何体为圆锥和圆柱的结合体, 其体积为:()22134374453πππ⨯+⨯⨯-=3m , 故答案为:345m π【点睛】本题考查了根据三视图计算几何体的体积,由三视图还原几何题是解题的关键.三、解答题1、(1)24;(2)见解析【分析】(1)根据三视图可求出几何体的表面积;(2)主视图有3列,每列小正方形数目分别为2,2,1,左视图有2列,每列小正方形数目分别为2,1,俯视图有3列,每列小正方数形数目分别为1,2,1.据此可画出图形.【详解】解:(1)该几何体的表面积是:4×2+5×2+3×2=24(cm 2),故答案为: 24;(2)如图所示:【点睛】本题考查几何体的三视图画法以及几何体的表面积,关键是掌握三视图所看的位置,掌握几何体表面积的计算方法.2、(1)见解析;(2)路灯O与地面的距离为3m【分析】MA NB并延长,两条线的交点就是灯光的位置;(1)由题意连接,,(2)作OF⊥MN交AB于E,证明△OAB∽△OMN,再利用相似三角形的对应高的比等于相似比建立方程求解即可.【详解】解:(1)如图,点即为为所求;(2)作OF⊥MN交AB于E,如图,AB=1.2m,EF=1.2m,MN=2m,∵AB MN∥,∴△OAB ∽△OMN ,∴AB :MN =OE :OF , 即1.2 1.2=2OF OF,解得OF =3(m ). 经检验:符合题意答:路灯O 与地面的距离为3m .【点睛】本题考查的是中心投影的性质,相似三角形的判定与性质,掌握“相似三角形的对应高的比等于相似比”是解题的关键.3、4.8m【分析】根据题意得到三角形相似,利用相似三角形的对应边的比列等式计算即可;【详解】解:∵EB KO FC ∥∥,∴~KOA EBA ,KOD FCD △△, ∴EB BA KO OA =,DC FC DO KO=, 由题意得:4AB =, 1.6EB FC ==,3DC =, ∴4 1.64OB KO =+,3 1.63CO KO=+, ∵14BC =,∴14CO BO =-, ∴4 1.64OB KO =+,3 1.6314BO KO=+-,整理得:4 1.6 6.43 1.627.2KO OBKO OB-=⎧⎨+=⎩,解得:4.88 KOOB=⎧⎨=⎩,∴这盏路灯OK的高度是4.8m.【点睛】本题主要考查了相似三角形的判定与性质,中心投影,准确计算是解题的关键.4、(1)见解析;(2)3【分析】(1)根据三视图的画法分别画出从正面、左面、上面看该组合体所看到的图形即可;(2)可在最左侧前端放两个后面再放一个即可得出答案.【详解】解:(1)该组合体的三视图如图所示:(2)在俯视图的相应位置最多添加相应数量的正方体,如图所示:∴最多还可以再搭3块小正方体.【点睛】本题考查简单组合体的三视图,理解视图的意义,掌握简单组合体三视图的画法是正确解答的关键.5、(1)三层;(2)9【分析】(1)由主视图与左视图可以得到该堆砌图形有3层;(2)结合三种视图分析每个位置的小正方体的个数,再写在俯视图中,从而可得答案.【详解】解:(1)由主视图与左视图可得:这个物体一共有三层.(2)结合三种视图可得:各个位置的小正方体的个数如图示:321129,所以这个图形一共由9个小正方体组成.【点睛】本题考查的是根据三视图还原几何体,掌握“由小正方体堆砌图形的三视图还原堆砌图形”是解本题的关键.。

(含答案)九年级数学人教版下册课时练第29章《29.1 投影》(2)

(含答案)九年级数学人教版下册课时练第29章《29.1 投影》(2)

立了一个 2 m 长的标杆 ,测得其影长 = 0.4 m.
4 / 12
(1)请在图中画出此时旗杆 在阳光下的投影 浔; (2)如果 浔 = 1.6 m,求旗杆 的高. 16. 如图,投影线的方向如箭头所示,画出图中几何体的正投影.
17. 画出下列几何体的直观图. (1)棱长分别为 3,4,5 个单位的长方体. (2)棱长为 3 个单位的正方体.
= 90∘,
所以 = ,
所以 9 = 4 ,
所以 = 6,
所以 △
= 1⋅
2

(3) 如图,作
= 1 × 13 × 6 = 39.
2
⊥ 于 , ‹ ⊥ ,交
的延长线于 ‹.
因为 ∠ = 90∘, , = 2,
10 / 12
所以 = 2. 因为 ∠ = 60∘,
所以 ∠ = ∠ ‹ = 30∘, = 3 = 2 3, = 2 = 4.
(2)在(1)的结论下,若过点 浔 的光线 浔 ⊥ ,斜坡与地面夹角为 60∘, = 1 m, = 2 m,请求出乙杆 浔 的高度.(结果保留根号)
7 / 12
1. D 2. A 3. C 4. D 5. A 6. B 7. C 8. A 9. 不会 10. 15 11. 12 12. 185π cm2
A.
B.
C.
D.
3. 下列关于投影的说法不正确的是
A. 正午,上海中心大厦在地面上的投影是平行投影 B. 匡衡借光学习时,他在地面上的投影是中心投影 C. 三角形木板的正投影可以是一个点 D. 晚上,小强向路灯走去,他的影子越来越短 4. 小阳和小明两人从远处沿直线走到路灯下,他们规定:小阳在前,小明在后,两人之间
13. 8 13 14. 1 = < 2

九年级数学(下)第二十九章《投影与视图》全章测试题含答案

九年级数学(下)第二十九章《投影与视图》全章测试题含答案

九年级数学(下)第二十九章《投影与视图》全章测试题一、选择题1.平行投影中的光线是( )A.平行的B.聚成一点的C.不平行的D.向四面八方发散2.正方形在太阳光下的投影不可能是( )A.正方形B.一条线段C.矩形D.三角形3.如图1,将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆洞,最后将正方形纸片展开,得到的图案是( )4.由一些完全相同的小立方块搭成的几何体的三视图如图所示,那么搭成这个几何体所用的小立方块的个数是( )第4题图A.8 B.7 C.6 D.5 5.如图是某几何体的三视图及相关数据,则判断正确的是( )第5题图A.a>c B.b>cC.4a2+b2=c2D.a2+b2=c26.若干个正方体形状的积木摆成如图所示的塔形,平放于桌面上,上面正方体的下底四个顶点是下面相邻正方体的上底各边中点,最下面的正方体棱长为1,如果塔形露在外面的面积超过7,则正方体的个数至少是( )A.2 B.3C.4 D.5二、填空题7.一个圆柱的俯视图是______,左视图是______.8.如果某物体的三视图如图所示,那么该物体的形状是______.第8题图9.一空间几何体的三视图如图所示,则这个几何体的表面积是______cm2.第9题图10.如图,水平放置的长方体的底面是边长为2和4的矩形,它的左视图的面积为6,则长方体的体积等于______.三、解答题11.楼房、旗杆在路灯下的影子如图所示.试确定路灯灯炮的位置,再作出小树在路灯下的影子.(不写作法,保留作图痕迹)12.画出图中的九块小立方块搭成几何体的主视图、左视图和俯视图.13.如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请画出这个几何体的主视图和左视图.14.如图是一个几何体的主视图和俯视图,求该几何体的体积( 取3.14).15.拿一张长为a,宽为b的纸,作一圆柱的侧面,用不同的方法作成两种圆柱,画出图形并求这两种圆柱的表面积.答案与提示第二十九章 投影与视图全章测试1.A . 2.D . 3.A . 4.A . 5.D . 6.B . 7.圆;矩形. 8.三棱柱. 9.48π. 10.24. 11.如图:12.如图:13.如图:14.体积为π×102×32+30×25×40≈40 048(cm 3).15.第一种:高为a ,表面积为;π221b ab S +=第二种:高为b ,表面积为⋅+=π222a ab S。

人教版九年级数学下册第29章《投影与视图》测试带答案解析

人教版九年级数学下册第29章《投影与视图》测试带答案解析
A.圆柱B.五棱柱C.长方体D.五棱锥
7.下列几何体中,主视图为等腰三角形的是()
A. B. C. D.
8.如图,一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是圆,关于这个几何体的说法错误的是()
A.该几何体是圆柱B.几何体底面积是
C.主视图面积是4D.几何体侧面积是
9.如图,在直角坐标系中,点P(2,2)是一个光源.木杆AB两端的坐标分别为(0,1),(3,1).则木杆AB在x轴上的投影长为()
参考答案:
1.C
【分析】根据常见几何体的主视图特征判断即可;
【详解】解:A.主视图为圆,不符合题意;
B.主视图为等腰梯形,不符合题意;
C.主视图为长方形,符合题意;
D.主视图为三角形,不符合题意;
故选:C.
【点睛】本题考查了主视图:在正面内得到的由前向后观察物体的视图,叫做主视图;掌握常见几何体的三视图特征是解题关键.
【详解】如图所示:

【点睛】本题考查简单组合体的三视图,掌握三视图的画法是画出三视图的关键.
18.图见解析.
【分析】根据几何体的三视图,可得从正面看有3列,每列小方形数目为2,1,3;从左面看有2列,每列小方形数目为2,3;从上面看有3列,每列小方形数目为1,1,2;分别画出即可求解.
【详解】解:如图所示.
16.如图,这是一个底面为等边三角形的正三棱柱和它的主视图、俯视图,则它的左视图的面积是___________.
三、解答题(共9个小题,17、18每小题8分,19-25每小题10分,共86分)
17.一个几何体由一些大小相同的小正方块儿搭建,如图是从上面看到的这个几何体的形状图,小正方形中的数字表示在该位置的小正方块儿的个数,请在相应网格中画出从正面和左面看到的几何体的形状图.

九年级数学下册第二十九章投影与视图29.1投影29.1.2正投影练习新人教版(2021年整理)

九年级数学下册第二十九章投影与视图29.1投影29.1.2正投影练习新人教版(2021年整理)

2018-2019学年九年级数学下册第二十九章投影与视图29.1 投影29.1.2 正投影同步练习(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年九年级数学下册第二十九章投影与视图29.1 投影29.1.2 正投影同步练习(新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年九年级数学下册第二十九章投影与视图29.1 投影29.1.2 正投影同步练习(新版)新人教版的全部内容。

课时作业(二十四)[29.1 第2课时正投影]一、选择题1.把一个正五棱柱按如图K-24-1所示方式摆放,当投射线由正前方照射到后方时,它的正投影是( )图K-24-1图K-24-22.下列叙述正确的是( )A.圆锥的正投影是圆(有圆心)或等腰三角形B.圆柱的正投影是矩形或圆C.球的正投影是圆D.线段的正投影还是线段3.当棱长为20 cm的正方体的某个面平行于投影面时,这个面的正投影的面积为( )错误!A.20 cm2 B.300 cm2 C.400 cm2 D.600 cm24.如图K-24-3,正方体的一个面ABCD倾斜于投影面P,上底面ADEF垂直于投影面P,并且上底面的对角线AE垂直于投影面P,则该正方体在投影面P上产生的正投影()图K-24-3A.和原正方体某一个面的形状、大小完全相同B.和原正方体某一个面的形状相同,大小不同C.和原正方体某一个面的面积相同,形状不同D.外轮廓是一个矩形,并且长等于原正方体的底面对角线长,宽等于正方体的棱长二、解答题5.画出如图K-24-4所示的物体的正投影.(1)投影线由物体前方射到后方;(2)投影线由物体左方射到右方;(3)投影线由物体上方射到下方.图K-24-4错误!6.一张面积为100 cm2的正方形纸片,其正投影的面积可能是100 cm2吗?可能是80 cm2吗?可能是120 cm2吗?试确定这张正方形纸片的正投影面积的取值范围.探究题操作与研究:如图K-24-5,△ABC被平行光线照射,CD⊥AB于点D,AB在投影面上.(1)指出图中AC的投影是什么,CD与BC的投影呢?(2)探究:当△ABC为直角三角形(∠ACB=90°)时,易得AC2=AD·AB,此时有如下结论:直角三角形一直角边的平方等于它在斜边上的射影与斜边的乘积,这一结论我们称为射影定理.通过上述结论的推理,请证明以下两个结论:①CB2=BD·AB;②CD2=AD·BD。

2021-2022学年人教版九年级数学下册第二十九章-投影与视图同步测评试题(含答案解析)

2021-2022学年人教版九年级数学下册第二十九章-投影与视图同步测评试题(含答案解析)

人教版九年级数学下册第二十九章-投影与视图同步测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示的几何体,其俯视图是()A.B.C.D.2、下面左侧几何体的主视图是()A.B.C.D.3、图1、图2均是正方体,图3是由一些大小相同的正方体搭成的几何体从正面看和左面看得到的形状图,小敏同学经过研究得到如下结论:(1)若将图1中正方体的表面沿某些棱剪开,展成一个平面图形,需要剪开7条棱;(2)用一个平面从不同方向去截图1中的正方体,得到的截面可能是三角形、四边形、五边形或六边形;(3)用一个平面去截图1中的正方体得到图2,截面三角形ABC中∠ABC=45°;(4)如图3,要搭成该几何体的正方体的个数最少是a,最多是b,则a+b=19其中正确结论的个数有()A.1个B.2个C.3个D.4个4、下列几何体中,其三视图完全相同的是()A.B.C.D.5、如图是一个几何体的实物图,则其主视图是()A.B.C.D.6、下列物体中,三视图都是圆的是()A.B.C.D.7、下面图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.四棱柱B.四棱锥C.圆柱D.圆锥8、如图所示的几何体的从左边看的视图是( )A.B.C.D.9、如图所示的领奖台是由三个长方体组合而成的几何体,则这个几何体的左视图是()A.B.C.D.10、如图,是一个由多个相同小正方体堆积而成的几何体的主视图和俯视图,那么这个几何体最少需要用()个小正方体A.12 B.11 C.10 D.9第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个圆柱形橡皮泥,底面积是212cm.高是5cm.如果用这个橡皮泥的一半,把它捏成高为5cm的圆锥,则这个圆锥的底面积是______2cm2、如图,用小木块搭一个几何体,它的主视图和俯视图如图所示.问:最少需要_________个小正方体木块,最多需要_________个小正方体木块.3、在学校开展的手工制作比赛中,小明用纸板制作了一个圆锥模型,它的三视图如图所示,根据图中数据求出这个模型的侧面积为______.4、长方体的长为15cm,宽为10cm,高为20cm,点B离点C5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B去吃一滴蜜糖,需要爬行的最短距离是_________.5、如图为一个长方体,则该几何体从左面看得到的图形的面积为__________2cm.三、解答题(5小题,每小题10分,共计50分)1、如图,是由若干个完全相同的棱长为1的小正方体组成的一个几何体.(1)请画出这个几何体的三视图;(2)该几何体的表面积(含下底面)为;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和左视图不变,那么最多可以再添加个小正方体.2、一个几何体由几个大小相同的小立方块搭成,从上面看到的这个几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.请画出从正面和左面看到的这个几何体的形状图.3、画出图中几何体的主视图、左视图、俯视图.4、已知某几何体的俯视图是一个圆,下图是这个几何体的展开图(图中尺寸单位:cm),请求出它的体积,并画出这个几何体的三视图.5、如图为一个机器零件的三视图(俯视图是一个正三角形).(1)画出这个机器零件的几何体并说出几何体的名称;(2)根据图中标注的数据算出这个几何体的表面积.---------参考答案-----------一、单选题1、D【分析】几何体的俯视图即为从上往下看,所看到的平面图形,由此判断即可.【详解】解:该几何体俯视图有2行,第一行有两个正方形,第二行右边有一个正方形,∴D选项图形符合题意,故选:D.【点睛】本题考查简单组合体的三视图识别,理解三视图的基本概念,灵活运用空间想象能力是解题关键.2、A【分析】找出从几何体的正面看所得到的图形即可.【详解】解:从几何体的正面看,是一行两个并列的矩形.故选:A.【点睛】本题主要考查了几何体的三视图,准确分析判断是解题的关键.3、B【分析】根据正方体的棱的条数以及展开后平面之间应有棱连着可判断(1);正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形可判断(2)(3);作出相应的俯视图,标出搭成该几何体的小正方体的个数最多(少)时的数字即可.为【详解】解:(1)若将图1中正方体的表面沿某些棱剪开,展成一个平面图形,需要剪开7条棱;正确,因为正方体有6个表面,12条棱,要展成一个平面图形必须5条棱连接,所以至少要剪开12﹣5=7条棱.(2)用一个平面从不同方向去截图1中的正方体,得到的截面可能是三角形、四边形、五边形或六边形;正确,因为用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.(3)用一个平面去截图1中的正方体得到图2,截面三角形ABC中∠ABC=45°;错误,因为△ABC是等边三角形,所以∠ABC=60°.4、A【分析】找到从物体正面、左面和上面看得到的图形全等的几何体即可.【详解】解:A、球的三视图完全相同,都是圆,正确;B、圆柱的俯视图与主视图和左视图不同,错误;C、四棱锥的俯视图与主视图和左视图不同,错误;D、圆锥的俯视图与主视图和左视图不同,错误;故选A.【点睛】考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.5、C【分析】找到从正面看所得到的图形即可.【详解】解:从正面看可得到一个矩形和一个下底和矩形相邻的梯形的组合图.故选:C.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6、C【分析】根据主视图、左视图、俯视图的判断方法,逐项进行判断即可.【详解】A、圆柱的主视图是矩形,左视图是矩形,俯视图是圆,不符合题意;B.圆锥的主视图是三角形,左视图是三角形,俯视图是圆,不符合题意;C.球的三视图都是圆,符合题意;D.正方体的三视图都是正方形,不符合题意.故选:C.【点睛】题目主要考查了简单几何体的三视图,理解三视图的作法是解题的关键.7、C【分析】根据三视图即可完成.【详解】此几何体为一个圆柱故选:C.【点睛】本题考查由三视图还原几何体,既要考虑各视图的形状,还要把各视图的情况综合考虑才能得到几何体的形状.8、C【分析】根据左视图是从左面看到的图形判定则可.【详解】解:从左边看,是一个大正方形右上角有一个小正方形,.故选:C.【点睛】本题考查简单组合体的三视图,正确掌握观察角度是解题关键.9、C【分析】左视图是从左边看得到的视图,结合选项即可得出答案.【详解】解:A是俯视图,B、D不是该几何体的三视图,C是左视图.故选:C.【点睛】本题考查了简单组合体的三视图,属于基础题,从正面看到的图是主视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.10、D【分析】根据几何体的主视图和俯视图可得:该几何体由3层组成,最底层至少6个小正方体;第二层2个小正方体;最高层1个小正方体,即可求解.【详解】解:根据几何体的主视图和俯视图得:该几何体由3层组成,最底层至少6个小正方体;第二层2个小正方体;最高层1个小正方体;++=个小正方体.∴这个几何体最少需要用6219【点睛】本题主要考查了几何体的三视图,熟练掌握三视图的特征是解题的关键.二、填空题1、18【解析】【分析】首先求出圆柱体积,根据题意得出圆柱体积的一半即为圆锥的体积,根据圆锥体积计算公式列出方程,即可求出圆锥的底面积.【详解】V圆柱=Sh =212560cm , 这个橡皮泥的一半体积为:2160302V cm ,把它捏成高为5cm 的圆锥,则圆锥的高为5cm , 故1303Sh, 即15=303S ,解得=18S (cm 2),故填:18.【点睛】本题考查了圆柱的体积和圆锥的体积计算公式,解题关键是理解题意,熟练掌握圆柱体积和圆锥体积计算公式.2、 10 16【解析】综合三视图,这个几何体中底层最多有3+3+1=7个小正方体,最少也有7个小正方体,第二层最多有2×3=6个小正方体,最少有2个小正方体,第三层最多有3个小正方体,最少有1个小正方体,因此这个几何体最少需要7+2+1=10个小正方体,最多需要7+6+3=16个小正方体木块.【详解】解:综合三视图的知识,该几何体底面最多有7个小正方形,最少也是7个小正方形,第二层最多有6个小正方形,最少有2个,而第三层最多有3个小正方形,最少有1个,故这个几何体最少有10个小正方形,最多有16个,故答案为:10,16.【点睛】本题要根据最多和最少两种情况分别进行讨论,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”得出结果.3、15π【解析】【分析】从主视图和左视图都为一个三角形,俯视图为一个圆,可以确定这个几何体是圆锥,由三视图可知圆锥的底面半径为3,高为4,进而求得母线长,据此求得圆锥的侧面积.【详解】从主视图和左视图都为一个三角形,俯视图为一个圆,可以确定这个几何体是圆锥,由三视图可知圆锥的底面半径为623÷=,高为45,所以这个模型的侧面积为3515rl πππ=⨯=.故答案为15π.【点睛】本题考查了根据三视图确定几何体,求圆锥的侧面,牢记公式是解题的关键.4、25cm【解析】【分析】要求蚂蚁爬行的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【详解】解:只要将长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如图1:∵长方体的宽为10,高为20,点B与点C的距离是5,∴BD=CD+BC=10+5=15,AD=20,在直角三角形ABD中,根据勾股定理得:AB=;只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图2:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=20+5=25,AD=10,在直角三角形ABD中,根据勾股定理得:AB=只要把长方体的上表面剪开与后面这个侧面所在的平面形成一个长方形,如图3:∵长方体的宽为10,高为20,点B离点C的距离是5,∴AC=CD+AD=20+10=30,在直角三角形ABC中,根据勾股定理得:AB∵25<∴蚂蚁爬行的最短距离是25cm,故答案为:25cm.【点睛】此题考查了轴对称-最短路线问题,本题是一道趣味题,将长方体展开,根据两点之间线段最短,运用勾股定理解答即可,正确掌握勾股定理及长方体的不同展开方式是解题的关键.5、15【解析】【分析】先判断出左视图的形状,再计算出面积即可.【详解】解:图中的几何体是长方体,左视图是长为5cm,宽为3cm的长方形,由长方形的面积公式得长方形的面积为:53=15⨯(cm2),故答案为:15.【点睛】此题考查了由几何体判断三视图,关键是根据从左面看到的形状图的相关数据得出长方形的面积.三、解答题1、(1)见解析;(2)28;(3)2【分析】(1)从正面看得到从左往右3列正方形的个数依次为1,3,2;从左面看得到从左往右2列正方形的个数依次为3,1;从上面看得到从左往右3列正方形的个数依次为1,2,1,依此画出图形即可;(2)有顺序的计算上下面,左右面,前后面的表面积之和即可;(3)根据保持这个几何体的主视图和左视图不变,可知添加小正方体是1列和3列各加1个,依此即可求解.【详解】(1)如图所示:(2)(4×2+6×2+4×2)×(1×1)=(8+12+8)×1=28故答案为:28(3)由分析可知,最多可以再添加2个小正方体,如图,故答案为:2【点睛】此题考查了作图−三视图,用到的知识点为:计算几何体的表面积应有顺序的分为相对的面进行计算不易出差错;三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.2、答案见解析【分析】根据题目条件可知,该几何体从正面看有3列,各列中小正方形的数目分别为2,2和3;从左面看有2列,各列中小正方形的数目分别为3和2;据此可画出图形.【详解】解:从正面看到的该几何体的形状图如下图所示:从左面看到的该几何体的形状图如下图所示:【点睛】本题考查几何体的三视图画法,由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字;左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中小正方形数字中的最大数字.3、见解析【分析】主视图有3列,每列小正方形数目分别为1,1,2;左视图有2列,每列小正方形数目分别为2,1;俯视图有3列,每列小正方形数目分别为1,2,1.依此画出图形即可求解.【详解】解:如图所示:【点睛】此题考查的知识点是简单组合体的三视图,关键是明确主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.4、3π,见解析336cm【分析】先由展开图想象出几何体的形状,知道它是上部分为圆锥,下部分为圆柱的组合体,由它的俯视图是一个圆可以知道,圆锥的底面积与圆柱的底面积相等,然后通过计算圆锥和圆柱的体积,得出所求结果.【详解】由题意得:此几何体是由一个底面直径为8cm,母线为5cm的圆锥和底面直径为8cm,高为20cm的圆柱组成,∴圆锥和圆柱的底面半径为4cm,3=(cm),∴v =22143+4203ππ⋅⨯⋅⨯=3336cm π, 三视图如图:【点睛】本题考查了由三视图求几何体的体积,解题的关键是判断几何体的形状及数据所对应的几何量.5、(1)图见解析,直三棱柱;(2)【分析】(1)有2个视图的轮廓是长方形,那么这个几何体为棱柱,另一个视图是三角形,那么该几何体为三棱柱;(2)根据正三角形一边上的高可得正三角形的边长,表面积=侧面积+2个底面积=底面周长×高+2个底面积.【详解】解:(1)符合这个零件的几何体是直三棱柱;(2)∵△ABC 是正三角形,又∵CD ⊥AB ,CD =6,∴AC =sin 60CD =︒∴S 表面积12cm 2).【点睛】本题考查了由三视图判断几何体及几何体表面积的计算;得到几何体的形状是解题的突破点;得到底面的边长是解决本题的易错点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

29.1投影初三数学备课组一、自主学习1.平行投影中的光线是( )A.平行的B.聚成一点的C.不平行的D.向四面八方发散的2.太阳光线可以看成___________.3.皮影戏中的皮影是由_________投影得到.4.图29-1是两棵小树在同一时刻的影子,请问图A的影子是在_________光线下形成的,图B的影子是在_________光线下形成的.(填“太阳”或“灯光”)图29-1二、基础巩固5.小明在操场上练习双杠时,在练习的过程中他发现在地上双杠的两横杠的影子( )A.相交B.平行C.垂直D.无法确定6.太阳光照射一扇矩形的窗户,投在平行于窗户的墙上的影子的形状是( )A.与窗户全等的矩形;B.平行四边形;C.比窗户略小的矩形;D.比窗户略大的矩形7.在同一平面内的影子如图29-2所示,此时,第三根木棒的影子表示正确( )图29-28.有两根木棒AB、CD在同一平面上直立着,其中AB这根木棒在太阳光下的影子BE如图29-3所示,请你在图中画出这时木棒CD的影子.图29-39.如图29-4所示,某校墙边有甲、乙两根木杆,如果乙木杆的影子刚好不落在墙上,那么你能在图中画出此时的太阳光线及甲木杆的影子吗?在你画的图形中有相似三角形吗?为什么?图29-410.在同一时刻,两根长度不等的竿子置于阳光之下,但它们的影长相等,那么这根竿子的相对位置是( )A.两根都垂直于地面;B.两根平行斜插在地上;C.两根竿子不平行;D.一根倒在地上11.夜晚在亮有路灯的路上,若想没有影子,你应该站的位置是( )A.路灯的左侧;B.路灯的右侧;C.路灯的下方;D.以上都可以12.不同长度的物体在同一时刻同一地点的太阳光下得到的投影是( )A.相等B.长的较长C.短的较长D.不能确定13.当你走向路灯时,你的影子在你的_________,并且影子越来越________.14.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵随太阳转动的情况,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为( )A.上午12时B.上午10时C.上午9时30分D.上午8时15.小军晚上到广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定地说:“广场上的大灯泡一定位于两人_______________.16.如图29-5所示,试确定灯泡所在的位置.图29-5三、能力提高17.一天上午小红先参加了校运动会女子100m比赛,过一段时间又参加了女子400 m比赛,图29-6是摄影师在同一位置拍摄的两张照片,那么下列说法正确的是( )A.乙照片是参加100 m的B.甲照片是参加400 m的C.乙照片是参加400 m的D.无法判断甲、乙两张照片图29-618.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( )A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长19.图29-7是一球吊在空中,当发光的手电筒由远及近时,落在竖直墙面上的球的影子会如何变化?图29-720.小强说:“同一时刻,阳光下影子越长的物体就越高”,你同意他的说法吗?小亮说:“同一时刻,灯光下影子越长的物体就越高”,你同意吗?说说你的理由.21.某一时刻甲木杆高2 m,它的影长是1.5m,小颖身高1.6m,那么此时她的影长为几米?22.如图29-8所示,小明从路灯下,向前走了5 m,发现自己在地面上的影子长DE是2 m,如果小明的身高为1.6 m,那么路灯距地面的高度AB是_________ m.图29-8 图29-923.晚上,小亮走在大街上,他发现当他站在大街两边的两盏路灯之间,并且自己被两边路灯照在地上的两个影子成一直线时,自己右边的影子长为3 m,左边的影子长为1.5 m.又知自己身高1.80 m,两盏路灯的高相同,两盏路灯之间的距离为12 m,则路灯的高为________ m.24.在太阳光下,转动一个正方体,观察正方体在地上投下的影子,那么这个影子最多可能是几边形( )A.四边形B.五边形C.六边形D.七边形25.图29-9是木杆、底边上有高的等腰三角形、正方形在同一时刻的影子,其中相似三角形有_____________.26.阳光下,同学们整齐地站在操场上做课间操,小勇和小宁站在同一列,小勇的影子正好被站在他后面的同学踩在脚下,而小宁的影子却没有被他后面的同学踩在脚下,你知道他们的队列是向哪个方向的吗?小宁和小勇哪个高?为什么?27.如图29-10所示,为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如右示意图的测量方案:把镜子放在离树(AB)8.7m的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.7 m,观察者目高CD=1.6 m,请你计算树(AB)的高度.(精确到0.1 m)图29-10四、模拟链接28.如图29-11所示,某一时刻太阳光从教室窗户射入室内,与地面的夹角∠B PC为30°,窗户的一部分在教室地面所形成的影长PE为3.5 m,窗户的高度AF为2.5 m.求窗外遮阳篷外端一点D到窗户上椽的距离A D。

(结果精确到0.1 m)图29-1129.如图29-12所示,小鹏准备测量学校旗杆的高度,他发现斜坡正对着太阳时,旗杆AB 影子恰好落在水平地面BC 和斜坡坡面CD 上,测得旗杆在水平地面上的影长BC=20 m ,在斜坡坡面上的影长CD=8 m ,太阳光线AD 与水平地面成30°角,且太阳光线AD 与斜坡坡面CD 互相垂直,请你帮小鹏求出旗杆AB 的高度.(精确到1 m)图29-1230.如图29-13所示,某居民小区有一朝向为正南方向的居民楼,该居民楼的一楼是高6m 的小区超市,超市以上是居民住房,在该楼的前面15 m 处要盖一栋高20m 的新楼,当冬季正午的阳光与水平线的夹角为32°时.(1)问超市以上的居民住房采光是否有影响,为什么?(2)若要超市采光不受影响,两楼应相距多少米?(结果保留整数,参考数据:sin32°10053≈,cos32°≈125106,tan32°≈85)图29-13参考答案一、自主学习1.平行投影中的光线是( )A.平行的B.聚成一点的C.不平行的D.向四面八方发散的答案:A2.太阳光线可以看成___________.答案:平行光线3.皮影戏中的皮影是由_________投影得到.答案:中心4.图29-1是两棵小树在同一时刻的影子,请问图A的影子是在_________光线下形成的,图B的影子是在_________光线下形成的.(填“太阳”或“灯光”)图29-1答案:灯光太阳二、基础巩固5.小明在操场上练习双杠时,在练习的过程中他发现在地上双杠的两横杠的影子( )A.相交B.平行C.垂直D.无法确定答案:B6.太阳光照射一扇矩形的窗户,投在平行于窗户的墙上的影子的形状是( )A.与窗户全等的矩形;B.平行四边形;C.比窗户略小的矩形;D.比窗户略大的矩形答案:A7.在同一平面内的影子如图29-2所示,此时,第三根木棒的影子表示正确( )图29-2答案:A8.有两根木棒AB、CD在同一平面上直立着,其中AB这根木棒在太阳光下的影子BE如图29-3所示,请你在图中画出这时木棒CD的影子.图29-3答案:如图D29-1所示.图D29-19.如图29-4所示,某校墙边有甲、乙两根木杆,如果乙木杆的影子刚好不落在墙上,那么你能在图中画出此时的太阳光线及甲木杆的影子吗?在你画的图形中有相似三角形吗?为什么?图29-4答案:△ABC∽△EOD,如图D29-2所示.图D29-210.在同一时刻,两根长度不等的竿子置于阳光之下,但它们的影长相等,那么这根竿子的相对位置是( )A.两根都垂直于地面;B.两根平行斜插在地上;C.两根竿子不平行;D.一根倒在地上答案:C11.夜晚在亮有路灯的路上,若想没有影子,你应该站的位置是( )A.路灯的左侧;B.路灯的右侧;C.路灯的下方;D.以上都可以答案:C12.不同长度的物体在同一时刻同一地点的太阳光下得到的投影是( )A.相等B.长的较长C.短的较长D.不能确定答案:D13.当你走向路灯时,你的影子在你的_________,并且影子越来越________.答案:身后短14.小亮在上午8时、9时30分、10时、12时四次到室外的阳光下观察向日葵随太阳转动的情况,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为( )A.上午12时B.上午10时C.上午9时30分D.上午8时答案:D15.小军晚上到广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定地说:“广场上的大灯泡一定位于两人_______________.答案:中间的上方16.如图29-5所示,试确定灯泡所在的位置.图29-5答案:如图D29-3所示,试确定灯泡所在的位置.图D29-3三、能力提高17.一天上午小红先参加了校运动会女子100m比赛,过一段时间又参加了女子400 m比赛,图29-6是摄影师在同一位置拍摄的两张照片,那么下列说法正确的是( )A.乙照片是参加100 m的B.甲照片是参加400 m的C.乙照片是参加400 m的D.无法判断甲、乙两张照片图29-6答案:C18.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( )A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长答案:D 路灯光线的投影是中心投影,在灯光下,直立物体的影子与物体的高度不成定比例.19.图29-7是一球吊在空中,当发光的手电筒由远及近时,落在竖直墙面上的球的影子会如何变化?图29-7答案:球的影子会逐渐变大.20.小强说:“同一时刻,阳光下影子越长的物体就越高”,你同意他的说法吗?小亮说:“同一时刻,灯光下影子越长的物体就越高”,你同意吗?说说你的理由.答案:小强说的是对的,小亮说的是错的.21.某一时刻甲木杆高2 m,它的影长是1.5m,小颖身高1.6m,那么此时她的影长为几米?答案:1.2 m22.如图29-8所示,小明从路灯下,向前走了5 m,发现自己在地面上的影子长DE是2 m,如果小明的身高为1.6 m,那么路灯距地面的高度AB是_________ m.图29-8答案:5.6 △CDE≌△BAE23.晚上,小亮走在大街上,他发现当他站在大街两边的两盏路灯之间,并且自己被两边路灯照在地上的两个影子成一直线时,自己右边的影子长为3 m,左边的影子长为1.5 m.又知自己身高1.80 m,两盏路灯的高相同,两盏路灯之间的距离为12 m,则路灯的高为________ m.答案:6.624.在太阳光下,转动一个正方体,观察正方体在地上投下的影子,那么这个影子最多可能是几边形( )A.四边形B.五边形C.六边形D.七边形答案:B25.图29-9是木杆、底边上有高的等腰三角形、正方形在同一时刻的影子,其中相似三角形有_____________.图29-9答案:△ABC ∽△A′B′C′,△GHM ∽△KFN26.阳光下,同学们整齐地站在操场上做课间操,小勇和小宁站在同一列,小勇的影子正好被站在他后面的同学踩在脚下,而小宁的影子却没有被他后面的同学踩在脚下,你知道他们的队列是向哪个方向的吗?小宁和小勇哪个高?为什么?答案:向东,小勇高27.如图29-10所示,为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如右示意图的测量方案:把镜子放在离树(AB)8.7m 的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE=2.7 m ,观察者目高CD=1.6 m ,请你计算树(AB)的高度.(精确到0.1 m)图29-10答案:由题意知∠CED=∠AEB ,∠CDE=∠ABE=90°∴△CED ∽△AEB ∴BE AB DE CD =∴7.87.26.1AB = ∴AB≈5.2 m四、模拟链接28.如图29-11所示,某一时刻太阳光从教室窗户射入室内,与地面的夹角∠B PC 为30°,窗户的一部分在教室地面所形成的影长PE 为3.5 m ,窗户的高度AF 为2.5 m.求窗外遮阳篷外端一点D 到窗户上椽的距离A D 。

相关文档
最新文档