成都七中2015届高三一诊模拟考试数学答案(理,word版)
2015年四川省成都七中高考一模数学试卷(理科)【解析版】
2015年四川省成都七中高考数学一模试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.1.(5分)已知集合A={x∈R|﹣3≤x≤4},B={x∈R|log2x≥1},则A∩B=()A.[4,+∞)B.(4,+∞)C.[2,4)D.[2,4]2.(5分)复数z=在复平面上对应的点的坐标为()A.(1,﹣3)B.(,﹣)C.(3,﹣3)D.(,﹣)3.(5分)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图,则该样本的中位数、众数分别是()A.45,56B.46,45C.47,45D.45,474.(5分)已知一个三棱锥的三视图如图所示,其中俯视图是等腰三角形,则该三棱锥的体积为()A.B.C.D.25.(5分)已知双曲线﹣=1(a>0,b>0)的左顶点与抛物线y2=2px的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),则双曲线的焦距为()A.2B.2C.4D.46.(5分)函数f(x)=A sin(ωx+φ)(其中)的图象如图所示,为了得到g(x)=sin2x的图象,则只需将f(x)的图象()A.向右平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向左平移个长度单位7.(5分)已知不等式组,则目标函数z=2x﹣y的最小值是()A.8B.5C.4D.1+ln28.(5分)将一颗骰子投掷两次,第一次出现的点数记为a,第二次出现的点数记为b,设任意投掷两次使两条不重合直线l1:ax+by=2,l2:x+2y=2平行的概率为P1,相交的概率为P2,若点(P1,P2)在圆(x﹣m)2+y2=的内部,则实数m的取值范围是()A.(﹣,+∞)B.(﹣∞,)C.(﹣,)D.(﹣,)9.(5分)已知f(x)为R上的可导函数,且∀x∈R,均有f(x)>f′(x),则有()A.e2014f(﹣2014)<f(0),f(2014)>e2014f(0)B.e2014f(﹣2014)<f(0),f(2014)<e2014f(0)C.e2014f(﹣2014)>f(0),f(2014)>e2014f(0)D.e2014f(﹣2014)>f(0),f(2014)<e2014f(0)10.(5分)已知整数a,b,c,t满足:2a+2b=2c,t=,则log2t的最大值是()A.0B.log23C.2D.3二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(x2﹣)6展开式中的常数项为.(用数字作答)12.(5分)在如图所示的程序框图中,若输出S=,则判断框内实数p的取值范围是.13.(5分)已知{a n}是递增数列,且对任意的n∈N*都有a n=n2+2sinθ•n(θ∈[0,2π])恒成立,则角θ的取值范围是.14.(5分)已知点O为△ABC内一点,且=,则△AOB、△AOC、△BOC的面积之比等于.15.(5分)若以曲线y=f(x)上任意一点M(x1,y1)为切点作切线l1,曲线上总存在异于M的点N(x2,y2),以点N为切点作切线l2,且l1∥l2,则称曲线y=f(x)具有“可平行性”.现有下列命题:①函数y=(x﹣2)2+lnx的图象具有“可平行性”;②定义在(﹣∞,0)∪(0,+∞)的奇函数y=f(x)的图象都具有“可平行性”;③三次函数f(x)=x3﹣x2+ax+b具有“可平行性”,且对应的两切点M(x1,y1),N(x2,y2)的横坐标满足x1+x2=;④要使得分段函数f(x )=的图象具有“可平行性”,当且仅当实数m=1.其中的真命题是.(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.16.(12分)已知等差数列{a n}的前n项和为S n,且a2=﹣5,S5=﹣20.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求使不等式S n>a n成立的n的最小值.17.(12分)在△ABC中,角A,B,C的对边分别是a,b,c,若a sin A=(a ﹣b)sin B+c sin C,(1)求角C的值:(2)若c=2,且sin C+sin(B﹣A)=3sin2A,求△ABC的面积.18.(12分)如图,在四棱锥P﹣ABCD中,E为AD上一点,PE⊥平面ABCD,AD∥BC,AD⊥CD,BC=ED=2AE=2,EB=3,F为PC上一点,且CF=2FP.(1)求证:P A∥平面BEF;(2)若二面角F﹣BE﹣C为60°,求直线PB与平面ABCD所成角的大小.(用向量法解答)19.(12分)2013年2月20日,针对房价过高,国务院常务会议确定五条措施(简称“国五条”).为此,记者对某城市的工薪阶层关于“国五条”态度进行了调查,随机抽取了60人,作出了他们的月收入的频率分布直方图(如图),同时得到了他们的月收入情况与“国五条”赞成人数统计表(如表):(Ⅰ)试根据频率分布直方图估计这60人的平均月收入;(Ⅱ)若从月收入(单位:百元)在[15,25),[25,35)的被调查者中各随机选取3人进行追踪调查,记选中的6人中不赞成“国五条”的人数为X,求随机变量X的分布列及数学期望.20.(13分)设椭圆C:的离心率e=,左顶点M到直线=1的距离d=,O为坐标原点.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l与椭圆C相交于A,B两点,若以AB为直径的圆经过坐标原点,证明:点O到直线AB的距离为定值;(Ⅲ)在(Ⅱ)的条件下,试求△AOB的面积S的最小值.21.(14分)已知向量,,(a为常数).(Ⅰ)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值;(Ⅱ)若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a,求实数a的取值范围.2015年四川省成都七中高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.1.(5分)已知集合A={x∈R|﹣3≤x≤4},B={x∈R|log2x≥1},则A∩B=()A.[4,+∞)B.(4,+∞)C.[2,4)D.[2,4]【解答】解:由B中不等式变形得:log2x≥1=log22,得到x≥2,即B=[2,+∞),∵A=[﹣3,4],∴A∩B=[2,4],故选:D.2.(5分)复数z=在复平面上对应的点的坐标为()A.(1,﹣3)B.(,﹣)C.(3,﹣3)D.(,﹣)【解答】解:由复数=.∴复数在复平面上对应的点的坐标为().故选:B.3.(5分)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图,则该样本的中位数、众数分别是()A.45,56B.46,45C.47,45D.45,47【解答】解:由题意可知茎叶图共有30个数值,所以中位数为:=46.出现次数最多的数是45,故众数是45.故选:B.4.(5分)已知一个三棱锥的三视图如图所示,其中俯视图是等腰三角形,则该三棱锥的体积为()A.B.C.D.2【解答】解:由三视图知:几何体为三棱锥,且一条侧棱与底面垂直,高为2,三棱柱的底面为等腰三角形,且三角形的底边长为2,底边上的高为1,∴几何体的体积V=××2×1×2=.故选:B.5.(5分)已知双曲线﹣=1(a>0,b>0)的左顶点与抛物线y2=2px的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),则双曲线的焦距为()A.2B.2C.4D.4【解答】解:根据题意,双曲线的一条渐近线与抛物线的准线的交点坐标为(﹣2,﹣1),即点(﹣2,﹣1)在抛物线的准线上,又由抛物线y2=2px的准线方程为x=﹣,则p=4,则抛物线的焦点为(2,0);则双曲线的左顶点为(﹣2,0),即a=2;点(﹣2,﹣1)在双曲线的渐近线上,则其渐近线方程为y=±x,由双曲线的性质,可得b=1;则c=,则焦距为2c=2;故选:B.6.(5分)函数f(x)=A sin(ωx+φ)(其中)的图象如图所示,为了得到g(x)=sin2x的图象,则只需将f(x)的图象()A.向右平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向左平移个长度单位【解答】解:由已知中函数f(x)=A sin(ωx+φ)(其中)的图象,过(,0)点,()点,易得:A=1,T=4()=π,即ω=2即f(x)=sin(2x+φ),将()点代入得:+φ=+2kπ,k∈Z又由∴φ=∴f(x)=sin(2x+),设将函数f(x)的图象向左平移a个单位得到函数g(x)=sin2x的图象,则2(x+a)+=2x解得a=﹣故将函数f(x)的图象向右平移个长度单位得到函数g(x)=sin2x的图象,故选:A.7.(5分)已知不等式组,则目标函数z=2x﹣y的最小值是()A.8B.5C.4D.1+ln2【解答】解:作出不等式组所对应的可行域(如图),变形目标函数可得y=2x﹣z,平移直线y=2x可知当直线经过点A(,﹣ln2)时,截距最大,z取最小值,故目标函数z=2x﹣y的最小值为1+ln2故选:D8.(5分)将一颗骰子投掷两次,第一次出现的点数记为a,第二次出现的点数记为b,设任意投掷两次使两条不重合直线l1:ax+by=2,l2:x+2y=2平行的概率为P1,相交的概率为P2,若点(P1,P2)在圆(x﹣m)2+y2=的内部,则实数m的取值范围是()A.(﹣,+∞)B.(﹣∞,)C.(﹣,)D.(﹣,)【解答】解:对于a与b各有6中情形,故总数为36种设两条直线l1:ax+by=2,l2:x+2y=2平行的情形有a=2,b=4,或a=3,b =6,故概率为P==设两条直线l1:ax+by=2,l2:x+2y=2相交的情形除平行与重合即可,∵当直线l1、l2相交时b≠2a,图中满足b=2a的有(1,2)、(2,4)、(3,6)共三种,∴满足b≠2a的有36﹣3=33种,∴直线l1、l2相交的概率P==,∵点(P1,P2)在圆(x﹣m)2+y2=的内部,∴(﹣m)2+()2<,解得﹣<m<故选:D.9.(5分)已知f(x)为R上的可导函数,且∀x∈R,均有f(x)>f′(x),则有()A.e2014f(﹣2014)<f(0),f(2014)>e2014f(0)B.e2014f(﹣2014)<f(0),f(2014)<e2014f(0)C.e2014f(﹣2014)>f(0),f(2014)>e2014f(0)D.e2014f(﹣2014)>f(0),f(2014)<e2014f(0)【解答】解:构造函数g(x)=,则g′(x)=.因为∀x∈R,均有f(x)>f′(x),并且e x>0,所以g′(x)<0,故函数g(x)=在R上单调递减,所以g(﹣2014)>g(0),g(2014)<g(0),即>f(0),<f(0),即e2014f(﹣2014)>f(0),f(2014)<e2014f(0).故选:D.10.(5分)已知整数a,b,c,t满足:2a+2b=2c,t=,则log2t的最大值是()A.0B.log23C.2D.3【解答】解:∵整数a,b,c,t满足:2a+2b=2c,t=,∴t=≤=当且仅当a=b时,取最大值,∴当a=b>0时,t max==,c=a+1,∵a,b,c,t是整数,∴a=1,t=1,∴log 2t 的最大值为log 21=0. 当a =b =﹣2时,c =﹣1,t ==4,∴log 2t 的最大值为log 24=2. 综上所述,log 2t 的最大值是2. 故选:C .二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(x 2﹣)6展开式中的常数项为 15 .(用数字作答) 【解答】解:展开式的通项公式为T r +1=(﹣1)r C 6r x 12﹣3r 令12﹣3r =0得r =4∴展开式中的常数项为C 64=15 故答案为1512.(5分)在如图所示的程序框图中,若输出S =,则判断框内实数p 的取值范围是 (5,6] .【解答】解:S =++…=(1﹣﹣)=(1﹣),令S =得n =5,所以实数p的取值范围是(5,6].故答案为:(5,6].13.(5分)已知{a n}是递增数列,且对任意的n∈N*都有a n=n2+2sinθ•n(θ∈[0,2π])恒成立,则角θ的取值范围是[0,]∪[,2π].【解答】解:∵{a n}是递增数列,且对任意的n∈N*都有a n=n2+2sinθ•n(θ∈[0,2π])恒成立,∴a n+1≥a n,对任意的n∈N*都成立,∴(n+1)2+2sinθ•(n+1)﹣n2﹣2sinθ•n,∴2n+1+2sinθ≥0,转化为2sinθ≥﹣2n﹣1,恒成立,因为n≥1,n∈N*,∴﹣2n﹣1≥﹣3,∴2sinθ≥﹣3,解得sinθ≥﹣,∵θ∈[0,2π]解得0≤θ≤,或≤θ≤2π,故答案为:[0,]∪[,2π];14.(5分)已知点O为△ABC内一点,且=,则△AOB、△AOC、△BOC的面积之比等于3:2:1.【解答】解:如图所示,延长OB到点E,使得=2,分别以,为邻边作平行四边形OAFE;则+2=+=,∵+2+3=,∴﹣=3,又∵==2,∴=2,∴=,∴S△ABC =2S△AOB;同理:S△ABC =3S△AOC,S△ABC=6S△BOC;∴△AOB,△AOC,△BOC的面积比=3:2:1.故答案为:3:2:1.15.(5分)若以曲线y=f(x)上任意一点M(x1,y1)为切点作切线l1,曲线上总存在异于M的点N(x2,y2),以点N为切点作切线l2,且l1∥l2,则称曲线y=f(x)具有“可平行性”.现有下列命题:①函数y=(x﹣2)2+lnx的图象具有“可平行性”;②定义在(﹣∞,0)∪(0,+∞)的奇函数y=f(x)的图象都具有“可平行性”;③三次函数f(x)=x3﹣x2+ax+b具有“可平行性”,且对应的两切点M(x1,y1),N(x2,y2)的横坐标满足x1+x2=;④要使得分段函数f(x)=的图象具有“可平行性”,当且仅当实数m=1.其中的真命题是④.(写出所有真命题的序号)【解答】解:由“可平行性”的定义,可得曲线y=f(x)具有“可平行性”,则方程y′=a(a是导数值)至少有两个根.①函数y=(x﹣2)2+lnx,则(x>0),方程,即2x2﹣(4+a)x+1=0,当a=﹣4+时有两个相等正根,不符合题意;②定义在(﹣∞,0)∪(0,+∞)的奇函数,如y=x,x∈(﹣∞,0)∪(0,+∞)在各点处没有切线,∴②错误;③三次函数f(x)=x3﹣x2+ax+b,则f′(x)=3x2﹣2x+a,方程3x2﹣2x+a﹣m=0在(﹣2)2﹣12(a﹣m)≤0时不满足方程y′=a(a是导数值)至少有两个根.命题③错误;④函数y=e x﹣1(x<0),y′=e x∈(0,1),函数y=x+,=,由,得,∴x>1,则m=1.故要使得分段函数f(x)=的图象具有“可平行性”,当且仅当实数m=1,④正确.∴正确的命题是④.故答案为:④.三、解答题:本大题共6小题,共75分.16.(12分)已知等差数列{a n}的前n项和为S n,且a2=﹣5,S5=﹣20.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求使不等式S n>a n成立的n的最小值.【解答】解:(Ⅰ)设{a n}的公差为d,依题意,有a2=a1+d=﹣5,S5=5a1+10d=﹣20,联立得解得,所以a n=﹣6+(n﹣1)•1=n﹣7.(Ⅱ)因为a n=n﹣7,所以,令,即n2﹣15n+14>0,解得n<1或n>14,又n∈N*,所以n>14,所以n的最小值为15.17.(12分)在△ABC中,角A,B,C的对边分别是a,b,c,若a sin A=(a ﹣b)sin B+c sin C,(1)求角C的值:(2)若c=2,且sin C+sin(B﹣A)=3sin2A,求△ABC的面积.【解答】解:(Ⅰ)∵a sin A=(a﹣b)sin B+c sin C,由正弦定理,得a2=(a﹣b)b+c2,即a2+b2﹣c2=ab.①由余弦定理得cos C=,结合0<C<π,得C=.…(6分)(Ⅱ)由C=π﹣(A+B),得sin C=sin(B+A)=sin B cos A+cos B sin A,∵sin C+sin(B﹣A)=3sin2A,∴sin B cos A+cos B sin A+sin B cos A﹣cos B sin A=6sin A cos A,整理得sin B cos A=3sin A cos A.…(8分)若cos A=0,即A=时,△ABC是直角三角形,且B=,=bc=.…(10分)于是b=c tan B=2tan=,∴S△ABC若cos A≠0,则sin B=3sin A,由正弦定理得b=3a.②联立①②,结合c=2,解得a=,b=,=ab sin C=×××=.∴S△ABC综上,△ABC的面积为或.…(12分)18.(12分)如图,在四棱锥P﹣ABCD中,E为AD上一点,PE⊥平面ABCD,AD∥BC,AD⊥CD,BC=ED=2AE=2,EB=3,F为PC上一点,且CF=2FP.(1)求证:P A∥平面BEF;(2)若二面角F﹣BE﹣C为60°,求直线PB与平面ABCD所成角的大小.(用向量法解答)【解答】(1)证明:连接AC交BE于点M,连接FM.由EM∥CD,∴===,∴FM∥AP,又∵FM⊂平面BEF,P A⊄平面BEF,∴P A∥平面BEF;(2)以E为坐标原点,EB,EA,EP所在直线为x,y,z轴,建立空间直角坐标系,则设P(0,0,t),由于PE⊥平面ABCD,则向量=(0,0,﹣t)即为平面BEC的法向量,由于AD∥BC,AD⊥CD,BC=ED=2AE=2,EB=3,则四边形BCDE为矩形,B(3,0,0),C(3,﹣2,0),由于F为PC上一点,且CF=2FP,则有F(1,,t),则=(1,,t),=(3,0,0),设平面BEF的法向量为=(x,y,z),则即有=0,即x﹣y=0,又=0,即3x=0,则可取=(0,1,),由二面角F﹣BE﹣C为60°,则与的夹角为120°,即有cos120°===﹣,解得,t=.即P(0,0,).PB==2,由于PE⊥平面ABCD,则∠PBE即为直线PB与平面ABCD所成角.在直角三角形PBE中,cos∠PBE===.故直线PB与平面ABCD所成角为arccos=.19.(12分)2013年2月20日,针对房价过高,国务院常务会议确定五条措施(简称“国五条”).为此,记者对某城市的工薪阶层关于“国五条”态度进行了调查,随机抽取了60人,作出了他们的月收入的频率分布直方图(如图),同时得到了他们的月收入情况与“国五条”赞成人数统计表(如表):(Ⅰ)试根据频率分布直方图估计这60人的平均月收入;(Ⅱ)若从月收入(单位:百元)在[15,25),[25,35)的被调查者中各随机选取3人进行追踪调查,记选中的6人中不赞成“国五条”的人数为X,求随机变量X的分布列及数学期望.【解答】解:(Ⅰ)这60人的月平均收入为(20×0.015+30×0.015+40×0.025+0.02×50+60×0.015+70×0.01)×10=43.5(百元)(Ⅱ)根据频率分布直方图可知[15,25)的人数为0.015×10×60=9人,其中不赞成的只有1人;[25,35)的人数为0.015×10×60=9人,其中不赞成的有2人.则X的所有取值可能为0,1,2,3.,,P(X=2)=+,.∴随机变量X的分布列为∴E(X)==1.20.(13分)设椭圆C:的离心率e=,左顶点M到直线=1的距离d=,O为坐标原点.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l与椭圆C相交于A,B两点,若以AB为直径的圆经过坐标原点,证明:点O到直线AB的距离为定值;(Ⅲ)在(Ⅱ)的条件下,试求△AOB的面积S的最小值.【解答】解:(Ⅰ)由已知得,又a2=b2+c2,解得a=2,b=1,c=,∴椭圆C的方程为.(Ⅱ)证明:设A(x1,y1),B(x2,y2),①当直线AB的斜率不存在时,则由椭圆的对称性知x1=x2,y1=﹣y2,∵以AB为直线的圆经过坐标原点,∴=0,∴x1x2+y1y2=0,∴,又点A在椭圆C上,∴=1,解得|x1|=|y1|=.此时点O到直线AB的距离.(2)当直线AB的斜率存在时,设AB的方程为y=kx+m,联立,得(1+4k2)x2+8kmx+4m2﹣4=0,∴,,∵以AB为直径的圆过坐标原点O,∴OA⊥OB,∴=x1x2+y1y2=0,∴(1+k2)x1x2+km(x1+x2)+m2=0,∴(1+k2)•,整理,得5m2=4(k2+1),∴点O到直线AB的距离=,综上所述,点O到直线AB的距离为定值.(3)设直线OA的斜率为k0,当k0≠0时,OA的方程为y=k0x,OB的方程为y=﹣,联立,得,同理,得,∴△AOB的面积S==2,令1+=t,t>1,则S=2=2,令g(t)=﹣++4=﹣9()2+,(t>1)∴4<g(t),∴,当k0=0时,解得S=1,∴,∴S的最小值为.21.(14分)已知向量,,(a为常数).(Ⅰ)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值;(Ⅱ)若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a,求实数a的取值范围.【解答】解:(Ⅰ)∵(a为常数),∴f(x)lnx=x(1﹣alnx),∴f(x)=.(x>1).f′(x)=﹣a(x>1),∵函数f(x)在(1,+∞)上是减函数,∴f′(x)≤0在(1,+∞)上恒成立,∴a≥的最大值,x∈(1,+∞).令g(x)==+≤,当lnx=2,即x=e2时取得最大值.∴,∴实数a的最小值是.(Ⅱ)f(x)=.f′(x)=﹣a.存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a成立⇔x∈[e,e2],f(x)min≤f(x)max+a =,①当a ≥时,f′(x)≤0,f(x)在x∈[e,e2]上为减函数,则f(x)min=f(e2)=≤,解得a ≥﹣.②当a <时,由f′(x)=+﹣a,在[e,e2]上的值域为[﹣a ,].(i)当﹣a≥0即a≤0时,f′(x)≥0在x∈[e,e2]上恒成立,因此f(x)在x∈[e,e2]上为增函数,∴f(x)min=f(e)=e﹣ae≥e>,不和题意,舍去.(ii)当﹣a<0时,即0<a <时,由f′(x)的单调性和值域可知:存在唯一x0∈(e,e2),使得f′(x0)=0,且满足当x∈[e,x0),f′(x)<0,f(x)为减函数;当x∈(x0,e2)时,f′(x)>0,f(x)为增函数.∴f(x)min=f(x0)=﹣ax0≤,x0∈(e,e2).∴a ≥﹣>﹣>,与0<a <矛盾.综上可得:a 的取值范围是:.第21页(共21页)。
四川省成都市第七中学2015届高三下学期“高考热身考试”数学(理)试题 含解析
成都七中高2015届“高考热身考试"数学理科试题第Ⅰ卷(非选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1。
若集合{}2lg ,1x M x y N x x x -⎧⎫===<⎨⎬⎩⎭,则=N C M R ( )A .)2,0(B 。
)4,0(C 。
[)2,1D .),0(+∞【答案】C考点:集合的运算. 2.已知复数z 满足i i z -=+1)1(3,则复数z 对应的点在( )上A 。
直线x y 21-= B 。
直线x y 21= C 。
直线21-=x D .直线21-=y 【答案】C 【解析】试题分析:因为33111(1)1(1)2(1)2i i z i i z i i --+=-⇔===-+-,所以复数z 对应的点是1,02⎛⎫- ⎪⎝⎭,所以在直线21-=x 上.考点:1。
复数的运算;2.复数的几何意义. 3.已知命题R x p ∈∃:,使25sin =x ;命题R x q ∈∀:,都有012>++x x 。
给出下列结论:①题""q p ∧是真命题 ②命题""q p ⌝∧是假命题 ③命题""q p ∧⌝是真命题 ④命题""q p ⌝∨⌝是假命题其中正确的是( )A 。
②④B 。
②③C .③④D 。
①②③【答案】B 【解析】 试题分析:5sin 1,2x =>∴命题p 是假命题;22131()0,24x x x ++=++>∴命题q是真命题;所以②、③正确,故选B 。
考点:1.命题真假判断;2。
全称命题、特称命题.4.已知实数[]10,1∈x 执行如图所示的流程图,则输出的x 不小于63的概率为( )A .31B 。
94C 。
53 D 。
103【答案】A 【解析】试题分析:由程序框图知:第一次运行x =2x +1,n =2;第二次运行x =2(2x +1)+1,n =3;第三次运行x =2×+1,n =4;不满足条件n ≤3,程序运行终止,输出x =8x +4+2+1=7+8x ,解8x +7≥63得x ≥7,∴输入x ∈,输出的x 不小于63的概率为3193=.故选:A .考点:程序框图。
四川省成都市第七中学2015届高三理科数学上期半期考试试题答案
成都七中高2015届高三上学期期中数学考试题(理科)满分150分,考试时间120分钟 出题人:江海兵 审题人:廖学军一、选择题,本大题有10个小题,每小题5分,共50分,每小题有一个正确选项,请将正确选项涂在答题卷上.1.ABC ∆中,角,,A B C 的对边分别为,,a b c ,若13, 2.cos()3a b A B ==+=,则c =( ).4.15.3.17A B C D答案:D解析:22211cos ,2cos 94232()1733C c a b ab C =-=+-=+-⋅⋅-=2.《张丘建算经》卷上第22题为:今有女善织,日益功疾,且从第2天起,每天比前一天多织相同量的布,若第1天织5尺布,现在一月(按30天计)共织390尺布,则每天比前一天多织________尺布。
(不作近似计算)( )A. B. C. D.答案:C解析:由题可知,是等差数列,首项是5,公差为,前30项和为390.根据等差数列前项和公式,有,解得.3.若在上是减函数,则b 的取值范围是( ).[1,)A -+∞ .(1,)B -+∞ .(,1)C -∞- .(,1]D -∞-答案:D解析:由题意可知()02bf x x x '=-+≤+,在(1,)x ∈-+∞上恒成立, 即(2)b x x ≤+在(1,)x ∈-+∞上恒成立,2()(2)2f x x x x x =+=+且(1,)x ∈-+∞()1f x ∴>-∴要使(2)b x x ≤+,需1b ≤- 故答案为1b ≤-,选D4.已知平面,αβ和直线m ,给出条件:①//m α;②m α⊥;③m α⊂;④αβ⊥;⑤//αβ 能推导出//m β的是( ).A ①④ .B ①⑤ .C ②⑤ .D ③⑤ 答案:D解析:由两平面平行的性质可知两平面平行,在一个平面内直线必平行于另一个平面5.已知数列{}n a 满足*1130,,31n n n a a a n N a +-==∈+,则2015a 等于( ) 3.0.3.3.2A B C D -1281516291631d n d 22930530390⨯+⨯=2916=d )2ln(21)(2++-=x b x x f ),1(+∞-答案:B解析:根据题意,由于数列{a n }满足a 1=0,a n +1=,那么可知∴a 1=0,a 2=- ,a 3=,a 4=0,a 5=-,a 6=…,故可知数列的周期为3,那么可知201523a a ==-,选B. 6.在ABC ∆中,若a 、b 、c 分别为角A 、B 、C 的对边,且cos2cos cos()1B B A C ++-=,则有( )A .,,a c b 成等比数列B .,,a c b 成等差数列C .,,a b c 成等差数列D .,,a b c 成等比数列答案:D解析:由cos 2cos cos()1B B A C ++-=变形得:cos cos()1cos 2B A C B +-=-,[]2cos cos ()cos(),cos212sin B A C A C B B π=-+=-+=-,∴上式化简得:2cos()cos()2sin A C A C B --+=,22sin sin 2sin A C B ∴=,即2sin sin sin A C B =,由正弦定理:sin :sin :sin a A b B c C ==得:2ac b =,则,,a b c 成等比数列. 故选D7.设M 是ABC ∆所在平面上的一点,且330,22MB MA MC D ++=是AC 中点,则MD BM 的值为( )11...1.232A B C D答案:A解析:D 为AC 中点,33()2322MB MA MC MD MD ∴=-+=-⋅=- 13MD MB ∴=8.若存在过点(1,0)的直线与曲线和都相切,则 ( ) A.或 B.或 C.或 D.或答案:A解析:由求导得设曲线上的任意一点处的切线方程为,将点代入方程得或. (1)当时:切线为,所以仅有一解,得 331n n a a -+33333y x =21594y ax x =+-a =1-2564-1-21474-2564-74-73y x =2'3y x =3y x =300(,)x x 320003()y x x x x -=-()1,000x =032x =00x =0y =215904ax x +-=2564a =-(2)当时:切线为,由得仅有一解,得.综上知或. 9.已知,x y 满足约束条件10230x y x y --≤⎧⎨--≥⎩,当目标函数(0,0)z ax by a b =+>>在约束条件下取到最小值25时,22a b +的最小值为( ).1.2.3.4A B C D答案:D10.我们把具有以下性质的函数 称为“好函数”:对于在定义域内的任意三个数,若这三个数能作为三角形的三边长,则也能作为三角形的三边长.现有如下一些函数:① ②③, ④,.其中是“好函数”的序号有( )A.①②B.①②③C.②③④D.①③④ 答案:B解析:①任给三角形,设它的三边长分别为a ,b ,c ,则a+b >c ,不妨假设a≤c ,b≤c ,由于,所以①为好函数.②设所以②为好函数. ③设因为,所以,所以③为好函数.④不是好函数.如显然不是好函数.二、填空题,本大题共5个小题,每小题5分,共25分,请将正确答案填在答题卷上.11.已知指数函数()y f x =,对数函数()y g x =和幂函数()y h x =的图像都过1(,2)2P ,如果123()()()4f xg xh x ===,那么123x x x ++= 答案:32032x =272744y x =-22727441594y x y ax x ⎧=-⎪⎪⎨⎪=+-⎪⎩24309ax x --=1a =-1a =-2564a =-()f x ()f x ,,a b c (),(),()f a f b f c ()f x x =)21,0(,1)(∈-=x x x f x e x f =)()1,0(∈x x x f sin )(=),0(π∈x 0a b a b c +>+>>,111,(11)(1)1()0,a b c a b c b c a b c a ≤≤-≥-≥-∴-+---=-++>则,,abca b c e e e ≤≤≤≤则22()222(2)a b c a b c a b ccc c c e e e e e e ee e e e e +∴+-≥⋅-=->-=-(0,1)c ∈20,()0c a b c e e e e ->∴+->5999999952,,,sin sin sin 3610000100063a b c ππππππ===+<解析:令(),()log ,()x cb f x a g x x h x x ===则12111()2,()log log 22222b b f a g ====-=,11()()222c h ==111232114,,1()441,,244x a b c f x x x x ∴===-∴==⇒===12332x x x ∴++= 12.6,62,a b ta bta b ==+-已知若与 的夹角为钝角,则t 的取值范围为答案: 解析:,∴,又因为与不共线,所以,所以13.定义在R 上的奇函数()y f x =满足(3)0f =,且不等式()()f x xf x '>-在(0,)+∞上恒成立,则函数()()lg 1g x xf x x =++的零点个数为 答案:3 解析:[]()()()0()f x xfx xf x xf x ''>-∴>∴在(0,)+∞单增,又()xf x 为偶函数且有一个零点为3,令()0g x =得()lg 1xf x x =-+,如图可知()g x 有3个零点14.已知命题p :函数在内有且仅有一个零点.命题q :在区间内恒成立.若命题“p 且q”是假命题,实数的取值范围是 .答案:52a >-提示:先确定p 且q 为真命题的a 的取值范围,然后取补集可得结果.15.给出定义:若11,,()22x m m m Z ⎛⎤∈-+∈ ⎥⎝⎦,则m 叫做实数x 的“亲密函数”,记作{}x m =,在此基础上给出下列函数{}()f x x x =-的四个命题:①函数()y f x =在(0,1)x ∈上是增函数;②函数()y f x =是周期函数,最小正周期为1; ③函数()y f x =的图像关于直线()2kx k Z =∈对称; (2,0)(0,2)-ta b ta b +-与 的夹角为钝角2222()0,0,36720,22ta b ta b t a b t t +⋅-<∴-<∴-<∴-<<)(ta b +ta b -0t ≠(2,0)(0,2)t ∈-2()2f x x ax =+-[1,1]-23(1)20x a x +++≤13[,]22a④当(]0,2x ∈时,函数()()ln g x f x x =-有两个零点. 其中正确命题的序号是 答案:②③④解析:11,22x ⎛⎤∈- ⎥⎝⎦时,{}()0f x x x x =-=-,当13,22x ⎛⎤∈ ⎥⎝⎦时,()1f x x =-当35,22x ⎛⎤∈ ⎥⎝⎦时,()2f x x =-,作出函数的图像可知①错,②,③对,再作出ln y x =的图像可判断有两个交点,④对三、解答题,本大题共6个小题,共75分,请将答案及过程写在答题卷上.16.(12分)已知函数2()3cos 42cos (2)14f x x x π=-++(1)求()f x 得最小正周期;(2)求()f x 在区间,64ππ⎡⎤-⎢⎥⎣⎦上的取值范围.解析:(1)()3cos 4cos(4)3cos 4sin 42sin(4),233f x x x x x x T πππ=-+=+=+∴=(2)43,4,sin(4)16433323x x x ππππππ-≤≤∴-≤+≤∴-≤+≤ ()f x ∴的取值范围为3,2⎡⎤-⎣⎦ 17. (12分)已知数列满足. (Ⅰ)证明数列是等差数列;(Ⅱ)求数列的通项公式;(Ⅲ)设,求数列的前项和.解析:(Ⅰ)由已知可得1122nnn nn a a a ++=+,所以11221n n n na a ++=+,即11221n nn n a a ++-=, ∴数列2n n a ⎧⎫⎨⎬⎩⎭是公差为1的等差数列.(Ⅱ)由(Ⅰ)可得122(1)11n n n n a a =+-⨯=+,∴21nn a n =+. .(Ⅲ)由(Ⅱ)知,2n n b n =⋅,所以231222322n n S n =⋅+⋅+⋅++⋅,234121222322n n S n +=⋅+⋅+⋅++⋅,相减得23122222n n n S n +-=++++-⋅ 11222n n n ++=--⋅,∴1(1)22n n S n +=-⋅+18.(12分) ABC ∆为一个等腰三角形形状的空地,腰AC 的长为3(百米),底AB 的长为4(百米).现决定在空地内筑一条笔直的小路EF (宽度不计),将该空地分成一个四边形和一个三角形,设分成的四边形和三角形的周长相等,面积分别为1S 和2S .{}n a 11121,(*)2n nn nn a a a n N a ++==∈+2n n a ⎧⎫⎨⎬⎩⎭{}n a (1)n n b n n a =+{}n b n n S(1)若小路一端E 为AC 的中点,求此时小路的长度; (2)若小路的端点,E F 两点分别在两腰上,求12S S 得最小值. 解:(1)E 为AC 中点,333,34222AE EC ∴==+<+,F ∴不在BC 上,故F 在AB 上,可得72AF =,在ABC ∆中,2cos 3A =,在AEF ∆中,222152cos 2EF AE AF AE AF A =+-⋅=,302EF ∴= (2)若小路的端点,E F 两点分别在两腰上,如图所示,设,CE x CF y ==,则5x y +=1221sin 991121111125sin 22ABC CEF ABCCEF CEFCA CB CS S S S S S S xy x y CE CF C ∆∆∆∆∆⋅-==-=-=-≥-=+⎛⎫⋅ ⎪⎝⎭当且仅当52x y ==时取等号,故12SS 的最小值为1125.19.(12分)如图分别是正三棱台111ABC A B C -的直观图和正视图,1,O O 分别是上下底面的中心,E 是BC 中点.(1)求正三棱台111ABC A B C -的体积;(注:棱台体积公式:1()3V S S S S h =+⋅+下下上上,其中S 上为棱台上底面面积,S 下为棱台下底面面积,h 为棱台高) (2)求平面11EA B 与平面111A B C 的夹角的余弦; (3) 若P 是棱11AC 上一点,求1CP PB +的最小值. 解析:(1)由题意,正三棱台高为(2)设分别是上下底面的中心,是中点,是中点.以 为原点,过平34,3211==C A AC 321,312,33111111===-∆∆C B A ABC C B A ABC V S S 1,O O E BC F 11C B 1O 1O CABE F行的线为轴建立空间直角坐标系. ,, ,,,,,设平面的一个法向量,则即取,取平面的一个法向 量,设所求角为则 (3)将梯形绕旋转到,使其与成平角, 由余弦定理得 即的最小值为20.(13分)已知函数21(),()()sin 2f x xg x f x x λ'==+,其中函数()g x 在[]1,1-上是减函数.(1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)若()3sin1g x λ≤+在[]1,1x ∈-上恒成立,求λ得取值范围.(3)关于x 的方程ln (1)2f x x m +=-,1 1.1x e e ⎡⎤∈--⎢⎥⎣⎦有两个实根,求m 的取值范围.解析:(1)2(),()2,(1)2f x x f x x f ''=∴==,∴在点(1,(1))f 处的切线方程为12(1)y x -=-,即210x y --=(2)()sin ,()cos ,()g x x x g x x g x λλ'=+∴=+在[]1,1-上单减()0g x '∴≤在[]1,1-上恒成立,即cos x λ≤-在[]1,1-上恒成立,1λ∴≤-,又()g x 在[]1,1-单减,[]max ()(1)sin1g x g λ∴=-=-()3sin1g x λ≤+在[]1,1x ∈-上恒成立,∴只需sin13sin1λλ--≤+恒成立,2sin1λ∴≥-sin30sin1,12sin1,2sin11λ<<∴-≤≤-(3)由(1)知2(1)(1)f x x +=+∴方程为2ln(1)2x x m +=-,设2()ln(1)2h x x x m =+-+,则11B C x xyz O -1)0,2,32(1-C )3,1,3(-C )3,1,0(E )0,4,0(1-A )0,2,32(1B )3,1,0(1=E A )0,6,32(11=B A 11B EA ),,(z y x n =⎪⎩⎪⎨⎧=⋅=⋅00111B A n E A n ⎪⎩⎪⎨⎧=+=+033035y x z y )5,3,3(--=n 111C B A )1,0,0(=m θ37375cos =⋅⋅=nm n m θ11ACC A 11C A 1''1C C A A 111C B A ∆772sin ,721cos cos 111111111111'=∠=⋅⋅=∠=∠A CC A C C C A C C C A CC A C C 1421)3cos(cos 1111-=+∠=∠∴πA CCB CC 34,3,111'11'==∆B C C C B C C 中671'=∴B C 1PB CP +67方程2ln(1)2x x m +=-根的个数即为函数()h x 图像与x 轴交点的个数.22()211x h x x x-'=-=++,当(1,0)x ∈-时,()0,()h x h x '>∴在(1,0)-上为增函数, 当(,1)(0,)x ∈-∞-+∞时,()0,()h x h x '<∴在(,1)(0,)x ∈-∞-+∞和都是减函数.()h x ∴在1,01e ⎡⎫⎪⎢-⎣⎭上为减函数,在(]0,1e -上为减函数.()h x ∴在1,11e e ⎡⎤-⎢⎥-⎣⎦上的最大值为(0)h m =,又12(1),(1)42h m h e m e e e -=--=+-且224e e ->,∴所求方程有两根需满足1(1)0(0)0(1)0h e h h e ⎧-≤⎪⎪>⎨⎪-≤⎪⎩20m e ⇒<≤时原方程有两根,20,m e ⎛⎤∴∈ ⎥⎝⎦ 21.(14分)已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的周期为π,图像的一个对称中心为(,0)4π,将函数()f x 图像上的所有点的横坐标伸长为原来的2倍(纵坐标不变),在将所得图像向右平移2π个单位长度后得到函数()g x 的图像.(1)求函数()f x 与()g x 的解析式;(2)是否存在0(,)64x ππ∈,使得0000(),(),()()f x g x f x g x 按照某种顺序成等差数列?若存在,请确定0x 的个数;若不存在,说明理由.(3)求实数a 与正整数n ,使得()()()F x f x ag x =+在(0,)n π内恰有2013个零点. 解:(Ⅰ)由函数()sin()f x x ωϕ=+的周期为π,0ω>,得2ω=又曲线()y f x =的一个对称中心为(,0)4π,(0,)ϕπ∈故()sin(2)044f ππϕ=⨯+=,得2πϕ=,所以()cos 2f x x =将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)后可得cos y x =的图象,再将cos y x =的图象向右平移2π个单位长度后得到函数()sin g x x =(Ⅱ)当(,)64x ππ∈时,12sin 22x <<,10cos 22x <<所以sin cos 2sin cos 2x x x x >>问题转化为方程2cos 2sin sin cos 2x x x x =+在(,)64ππ内是否有解设()sin sin cos 22cos 2G x x x x x =+-,(,)64x ππ∈ 则()cos cos cos 22sin 2(2sin )G x x x x x x '=++-因为(,)64x ππ∈,所以()0G x '>,()G x 在(,)64ππ内单调递增,又1()064G π=-<,2()042G π=>且函数()G x 的图象连续不断,故可知函数()G x 在(,)64ππ内存在唯一零点0x ,即存在唯一的0(,)64x ππ∈满足题意(Ⅲ)依题意,()sin cos 2F x a x x =+,令()sin cos 20F x a x x =+=当sin 0x =,即()x k k Z π=∈时,cos 21x =,从而()x k k Z π=∈不是方程()0F x =的解,所以方程()0F x =等价于关于x 的方程cos 2sin xa x=-,()x k k Z π≠∈现研究(0,)(,2)x πππ∈U 时方程解的情况,令cos 2()sin xh x x=-,(0,)(,2)x πππ∈U 则问题转化为研究直线y a =与曲线()y h x =在(0,)(,2)x πππ∈U 的交点情况22cos (2sin 1)()sin x x h x x+'=,令()0h x '=,得2x π=或32x π= 当x 变化时,()h x 和()h x '变化情况如下表x(0,)2π 2π(,)2ππ 3(,)2ππ 32π 3(,2)2ππ ()h x '+ 0 - -0 + ()h xZ1]]1-Z 当0x >且x 趋近于0时,()h x 趋向于-∞,当x π<且x 趋近于π时,()h x 趋向于-∞ 当x π>且x 趋近于π时,()h x 趋向于+∞,当2x π<且x 趋近于2π时,()h x 趋向于+∞ 故当1a >时,直线y a =与曲线()y h x =在(0,)π内有无交点,在(,2)ππ内有2个交点; 当1a <-时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内无交点; 当11a -<<时,直线y a =与曲线()y h x =在(0,)π内有2个交点,在(,2)ππ内有2个交点 由函数()h x 的周期性,可知当1a ≠±时,直线y a =与曲线()y h x =在(0,)n π内总有偶数个交点,从而不存在正整数n ,使得直线y a =与曲线()y h x =在(0,)n π内恰有2013个交点;当1a =±时,直线y a =与曲线()y h x =在(0,)(,2)πππU 内有3个交点,由周期性,20133671=⨯,所以67121342n =⨯=综上,当1a =±,1342n =时,函数()()()F x f x ag x =+在(0,)n π内恰有2013个零点.。
四川省成都市第七中学高三一诊模拟——数学(理)数学理
成都七中2015届高中毕业班第一次诊断性检测模拟题数学(理科参考答案)提示:9.构造函数,则2()()()()()()x x x xf x e e f x f x f xg x e e ''--'==, ∵任意均有,并且,∴,故函数在上单调递减,也就是20142014(2014)(0),(2014)(0)e f f f e f -><故选C.10. 不妨设,122222221b c a b b b b b c b +<=+≤+=⇒<≤+,,,..,,,故2max 2(log )log 42t ==.15.②④由题,“可平行性”曲线的充要条件是:对域内都使得成立.①错,,又1212112(2)2(2)x x x x -+=-+ ,显然时不满足;②对,由()()()()f x f x f x f x ''=--⇒=-即奇函数的导函数是偶函数,对都使得成立(可数形结合);③错,,又当时,2211223232x x a x x a -+=-+2212123()2()x x x x ⇔-=-,当时不合题意;④对,当时,,若具有“可平行性”,必要条件是:当时,,解得,又时,分段函数具有“可平行性”,(可数形结合).三、解答题:本大题共6小题,共75分.16.解:(Ⅰ)设的公差为,依题意,有 52115,51020a a d S a d =+=-=+=-.联立得,解得.6(1)17n a n n =-+-⋅=-. ……………6分 (Ⅱ), 1()(13)22n n a a n n n S +-== . 令,即, ……………10分解得或.又,.的最小值为. ……………12分17.解:(Ⅰ)∵asinA=(a-b)sinB+csinC ,(Ⅱ)由 C=π-(A+B),得sinC=sin(B+A)=sinBcosA+cosBsinA ,∵ sinC+sin(B-A)=3sin2A ,∴ sinBcosA+cosBsinA+sinBcosA-cosBsinA=6sinAcosA ,整理得sinBcosA=3sinAcosA . ………………………………………………8分 若cosA=0,即A=时,△ABC 是直角三角形,且B=,于是b=ctanB=2tan=,∴ S △ABC =bc=. ……………………10分若cosA ≠0,则sinB=3sinA ,由正弦定理得b=3a .②联立①②,结合c=2,解得a=,b=,∴ S △ABC =absinC=×××=.综上,△ABC 的面积为或.………………………………………12分(Ⅱ)连,过作于.由于,故.过作于,连.则,即为二面角的平面角. 60,FMH FH ∴∠==., .………………10分.在中,,,.直线与平面所成角的大小为. ……………12分解法二:以为坐标原点,为轴建立空间直角坐标系.(0,0,0),(3,0,0),(0,0,),(3,2,0)E B P m C,. ………………7分设平面的法向量,由00n EB n EF ⎧⋅=⎪⎨⋅=⎪⎩ 得. 又面法向量为.由1212cos 60n n n n ⋅=⋅ , 解得. ………………10分在中,,,.直线与平面所成角的大小为. ……………12分19.解:(Ⅰ)由直方图知:(200.015300.015400.025500.02600.015700.01)1043.5⨯+⨯+⨯+⨯+⨯+⨯⨯= 这60人的平均月收入约为百元. ………………4分 (Ⅱ)根据频率分布直方图和统计表可知道:[15,25)的人数为人,其中1人不赞成.[25,35)的人数为人,其中2人不赞成. ………………6分的所有可能取值为.338733995(0)18C C P X C C ==⋅=,23312878273333999917(1)36C C C C C P X C C C C ==⋅+⋅=, 212321827827333399992(2)9C C C C C C P X C C C C ==⋅+⋅=,21287233991(3)36C C C P X C C ==⋅=.……………10分 的分布列为012311836936EX ∴=⨯+⨯+⨯+⨯=. ………………12分20.(Ⅰ)解 由e =32,得c =32a ,又b 2=a 2-c 2,所以b =12a ,即a =2b . 由左顶点M (-a,0)到直线x a +y b =1,即bx +ay -ab =0的距离d =455, 得|b (-a )-ab |a 2+b 2=455,即2ab a 2+b 2=455, 把a =2b 代入上式,得4b 25b 2=455,解得b =1.所以a =2b =2,c = 3. 所以椭圆C 的方程为x 24+y 2=1. ………………3分 (Ⅱ)证明 设A (x 1,y 1),B (x 2,y 2),①当直线AB 的斜率不存在时,则由椭圆的对称性,可知x 1=x 2,y 1=-y 2.因为以AB 为直径的圆经过坐标原点,故OA →·OB →=0,即x 1x 2+y 1y 2=0,也就是x 21-y 21=0,又点A 在椭圆C 上,所以x 214-y 21=1, 解得|x 1|=|y 1|=255. 此时点O 到直线AB 的距离d 1=|x 1|=255. ②当直线AB 的斜率存在时,设直线AB 的方程为y =kx +m ,所以点O 到直线AB 的距离d 1=|m |k 2+1=255.综上所述,点O 到直线AB 的距离为定值255. ………………8分 (Ⅲ)解 设直线OA 的斜率为k 0.当k 0≠0时,则OA 的方程为y =k 0x ,OB 的方程为y =-1k 0x , 联立⎩⎪⎨⎪⎧ y =k 0x ,x 24+y 2=1,得⎩⎨⎧ x 21=41+4k 20,y 21=4k 201+4k 20.同理可求得⎩⎨⎧ x 22=4k 20k 20+4,y 22=4k 20+4.故△AOB 的面积为S =121+k 20·|x 1|·1+1k 20·|x 2|=2(1+k 20)2(1+4k 20)(k 20+4). 令1+k 20=t (t >1), 则S =2t 24t 2+9t -9=21-9t 2+9t +4, 令g (t )=-9t 2+9t +4=-9(1t -12)2+254(t >1),所以4<g (t )≤254.所以45≤S <1. 当k 0=0时,可求得S =1,故45≤S ≤1,故S 的最小值为45. ………………13分 21.解:(Ⅰ)由题意得ln ()(1ln )x f x a x x ⋅=-⋅()(1)ln x f x ax x x∴=-≠. ………………2分 在上是减函数, 等价于2ln 1()0(ln )x f x a x -'=-≤在上恒成立.…………4分 222ln 1111111()()(ln )ln ln ln 244x x x x x -=-+=--+≤, 当且仅当即时取到最大值.. ………………6分 (Ⅱ)题意等价于min max 1()(())4f x f x a '≤+=. 由(Ⅰ)知2111()()ln 24f x a x '=--+-. ,.在上单调递增,且的值域为. ………8分当时,,在上单调递增,min 1()()4f x f e e ae ==-≤与前提矛盾,无解. 当时,,在上单调递减,222min 1()()24e f x f e ae ==-≤. .当时,存在唯一零点,且时,,单调递减,时,,单调递增,0min 0001()()ln 4x f x f x ax x ∴==-≤. 设211()()ln 4h x e x e x x=-<<,2111()()(ln )4h x x x x '∴=--, , 211()0()(ln )4h x h x x x'>∴<∴单减. 222111111111()ln 4ln 424244h x x x e e e ∴=->-=->-=. 00111ln 44a x x ⇒≥->与前提矛盾,无解. 综上所述,实数的取值范围是. ………………14分。
四川省成都市2015届高三第一次诊断适应性考试数学(理)试卷
四川省成都市2015届高三第一次诊断适应性考试数学(理)试卷一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1、设集合}021|{≤-+=x x x M ,}212|{>=x x N ,则M N =( )A 、),1(+∞-B 、)2,1[-C 、)2,1(-D 、]2,1[- 2、下列有关命题的说法正确的是( )A 、命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”.B 、“1x =-” 是“2560x x --=”的必要不充分条件.C 、命题“若x y =,则sin sin x y =”的逆否命题为真命题.D 、命题“x ∃∈R 使得210x x ++<”的否定是:“x ∀∈R 均有210x x ++<”. 3、方程()()2ln 10,0x x x+-=>的根存在的大致区间是( ) A 、()0,1 B 、()1,2 C 、()2,e D 、()3,4 4、执行上图所示的程序框图,则输出的结果是( ) A 、5B 、7C 、9D 、115、设m n 、是两条不同的直线, αβ、是两个不同的平面,下列命题中错误的是( ) A 、若m α⊥,//m n ,//n β,则αβ⊥ B 、若αβ⊥,m α⊄,m β⊥,则//m α C 、若m β⊥,m α⊂,则αβ⊥ D 、若αβ⊥,m α⊂,n β⊂,则m n ⊥6、二项式102)2(x x +展开式中的常数项是( ) A 、180 B 、90 C 、45 D 、360 7、设a 、b 都是非零向量,下列四个条件中,一定能使0||||a b a b +=成立的是( )A 、2a b =B 、//a bC 、13a b =- D 、a b ⊥8、已知O 是坐标原点,点()1,0A -,若()y x M ,为平面区域⎪⎩⎪⎨⎧≤≤≥+212y x y x 上的一个动点,则 OA OM+的取值范围是( )A 、[]51,B 、[]52,C 、[]21,D 、[]50, 9、已知抛物线C :x 2=4y 的焦点为F ,直线x-2y+4=0与C 交于A 、B 两点,则sin ∠AFB=( ) A 、54 B 、53 C 、43 D 、5510、已知函数)(x f y =是定义在R 上的偶函数,对于任意R x ∈都)3()()6(f x f x f +=+成立;当]3,0[,21∈x x ,且21x x ≠时,都有0)()(2121>--x x x f x f .给出下列四个命题:①0)3(=f ;②直线6-=x 是函数)(x f y =图象的一条对称轴;③函数)(x f y =在]6,9[--上为增函数;④函数)(x f y =在]2014,0[上有335个零点.其中正确命题的个数为( )A .1B .2C .3D .4 二、填空题:(本大题共5小题,每小题5分,共25分.)11、若复数z 满足(34)43i z i -=+,则z 的虚部为 ; 12、已知某四棱锥,底面是边长为2的正方形,且俯视图如右图所示. 若该四棱锥的侧视图为直角三角形,则它的体积为 ;13、各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生不同的填报专业志愿的方法有 种。
四川省成都七中2015届高三一诊模拟试题参考答案
四川省成都七中2015届高三一诊模拟试题参考答案1.C(C项fēi/fěi,qiào/kã,nì/ní,yì/ài;A项qūn/jùn,xuâ/xiě,wãi/wěi,pǐ;B项jìnɡ,páo/bào,yī/qǐ,hùn/hún;D项chuǎi/chuǎn,juǎn /juàn,láng,dāng/dàng)2.B(A项险相环生——险象环生;C项批露——披露;D项敞蓬车——敞篷车)3.D(D项鱼目混珠:比喻拿假的东西冒充真的东西。
A项基于:介词,根据,表示以某种事物作为结论的前提或语言行动的基础。
此处可用连词“鉴于”。
B项拷问:拷打审问。
此处可用“考问”。
C 项亦步亦趋:比喻自己没有主张,或为了讨好,每件事都效仿或依从别人,跟着人家行事。
此处感情色彩不当)4.A(B项不合逻辑,“日前”是“以前”“几天前”的意思,不能与“正在”连用。
C项成分残缺,“那些环境……”前应加上“对”。
D项语序不当,“为用户”移到“提供”的前面)5.B(理解片面。
“气候模式能预估全球温度的变化情况”原因的很多,不只局限于“对过去1000年气候变化的准确模拟”)6.D(A项表述扩大了范围,原文说“时间长的要用高速计算机算好几个月”;B项表述绝对,原文只说“这样可靠性会大大增强”而非可以完全消除差异;C项表述缺少限制,原文强调气候模式是“目前唯一能定量客观……”)7.B(理解有误,原文中“不同的模式对天空中云的状态处理方式不同”是科学家质疑气候模式可靠性的原因之一)8.C(恤:救济)9.B(两个“以”均为介词,可译为“把”。
A项第一个“之”为结构助词“的”;第二个“之”助词,取消独立性,无义。
C项第一个“而”为表转折的连词,;第二个“而”为表并列的连词。
D项第一个“因”表承接的连词,译为“于是,就”;第二个“因”介词,译为“通过”)10.(8分)(1)(4分)遇到有人乞求借钱,(顾隐君)马上分钱给予,就是知道那人一定会背弃(信义),自己已经答应了,也一定不会改变承诺。
四川省成都市2015届高三第一次诊断适应性考试数学理试题(word版,含答案)
2015届成都市第一次诊断适应性考试数 学(理)一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、设集合}021|{≤-+=x x x M ,}212|{>=x x N ,则M N =( ) A 、),1(+∞- B 、)2,1[- C 、)2,1(- D 、]2,1[- 2、下列有关命题的说法正确的是( )A 、命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”.B 、“1x =-” 是“2560x x --=”的必要不充分条件.C 、命题“若x y =,则sin sin x y =”的逆否命题为真命题.D 、命题“x ∃∈R 使得210x x ++<”的否定是:“x ∀∈R 均有210x x ++<”.3、方程()()2ln 10,0x x x+-=>的根存在的大致区间是( )A 、()0,1B 、()1,2C 、()2,eD 、()3,44、执行上图所示的程序框图,则输出的结果是( ) A 、5 B 、7 C 、9 D 、115、设m n 、是两条不同的直线, αβ、是两个不同的平面,下列命题中错误的是( ) A 、若m α⊥,//m n ,//n β,则αβ⊥ B 、若αβ⊥,m α⊄,m β⊥,则//m α C 、若m β⊥,m α⊂,则αβ⊥ D 、若αβ⊥,m α⊂,n β⊂,则m n ⊥6、二项式102)2(xx +展开式中的常数项是( )A 、180B 、90C 、45D 、360 7、设a 、b 都是非零向量,下列四个条件中,一定能使0||||a b a b +=成立的是( ) A 、2a b = B 、//a b C 、13a b =- D 、a b ⊥8、已知O 是坐标原点,点()1,0A -,若()y x M ,为平面区域⎪⎩⎪⎨⎧≤≤≥+212y x y x 上的一个动点,则OA OM +的取值范围是( )A 、[]51,B 、[]52,C 、[]21,D 、[]50, 9、已知抛物线C :x 2=4y 的焦点为F ,直线x-2y+4=0与C 交于A 、B 两点,则sin ∠AFB=( )A 、54B 、53C 、43D 、5510、已知函数)(x f y =是定义在R 上的偶函数,对于任意R x ∈都)3()()6(f x f x f +=+成立;当]3,0[,21∈x x ,且21x x ≠时,都有0)()(2121>--x x x f x f .给出下列四个命题:①0)3(=f ;②直线6-=x 是函数)(x f y =图象的一条对称轴;③函数)(x f y =在]6,9[--上为增函数;④函数)(x f y =在]2014,0[上有335个零点.其中正确命题的个数为( )A .1 B.2C .3D .4二、填空题:(本大题共5小题,每小题5分,共25分.)11、若复数z 满足(34)43i z i -=+,则z 的虚部为 ;12、已知某四棱锥,底面是边长为2的正方形,且俯视图如右图所示. 若该四棱锥的侧视图为直角三角形,则它的体积为 ;13、各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生不同的填报专业志愿的方法有 种。
四川省成都市第七中学2015届高三考试数学(理)试题 Word版含答案
成都七中高2015届“高考热身考试”数学理科试题第Ⅰ卷(非选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}2lg,1x M x y N x x x -⎧⎫===<⎨⎬⎩⎭,则 =N C M R ( ) [)),0(.2,1.)4,0(.)2,0(.+∞D C B A答案:C2.已知复数z 满足i i z -=+1)1(3,则复数z 对应的点在( )上.A 直线x y 21-= .B 直线x y 21= .C 直线21-=x .D 直线21-=y答案:C3.已知命题R x p ∈∃:,使25sin =x ;命题R x q ∈∀:,都有012>++x x .给出下列结论: ① 题""q p ∧是真命题 ②命题""q p ⌝∧是假命题 ③命题""q p ∧⌝是真命题 ④命题""q p ⌝∨⌝是假命题 其中正确的是( ).A ②④.B ②③.C ③④.D ①②③答案:B4.已知实数[]10,1∈x 执行如图所示的流程图,则输出的x 不小于63的概率为( )103.52.94.31.D C B A 答案:A5.函数)62sin(π-=x y 的图像与函数)3cos(π-=x y 的图像( ).A 有相同的对称轴但无相同的对称中心 .B 有相同的对称中心但无相同的对称轴 .C 既有相同的对称轴但也有相同的对称中心 .D 既无相同的对称中心也无相同的对称轴答案:A6. 已知函数)(x f 的图像如图所示,则)(x f 的解析式可能是( )3121)(.x x x f A --=3121)(.x x x f B +-=3121)(.x x x f C -+=3121)(.x x x f D ---=答案:A7.已知点()0,2A ,抛物线C:2(0)y ax a =>(0a >)的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,若则a 的值等于( )4.1.21.41.D C B A答案:D解析:5:1:),0,4(=∴=MN KM MKMF a F ,则42421:2:=∴=∴=a a KM KN8.已知M 是ABC ∆内一点,且23AB AC ⋅=,30BAC ∠=,若MBC ∆、MAB ∆、MAC ∆的面积分别为12、x 、y ,则14x y+的最小值是( ) 20.81.16.9.D C B A答案:C9.⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡2,27.2,25.27,25.25,0.D C B A 答案:D10. 已知实数d c b a ,,,满足1112=--=-d cb e a a 其中e 是自然对数的底数 , 则22)()(d bc a -+-的最小值为( )18.12.10.8.D C B AO xy答案:A解析:∵实数d c b a ,,,满足1112=--=-d cb e a a ,cde a b a -=-=∴2,2,∴点),(b a 在曲线xe x y 2-=上,点),(d c 在曲线x y -=2上,22)()(d b c a -+-的几何意义就是曲线x e x y 2-=到曲线x y -=2上点的距离最小值的平方.考查曲线x e x y 2-=上和直线x y -=2平行的切线,x e y 21-=' ,求出x e x y 2-=上和直线x y -=2平行的切线方程,121-=-='x e y ,解得∴=,0x 切点为)2,0(-该切点到直线x y -=2的距离2211220=+--=d 就是所要求的两曲线间的最小距离,故22)()(d b c a -+-的最小值为82=d .故选A .第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.一个三棱锥的三视图是三个直角三角形,如图所示,则该三棱锥的外接球的表面积为 答案:π29解析:由三视图知,三棱锥有相交于一点的三条棱互相垂直,将此三棱锥补成长方体,它们有共同的外接球,ππ29422923322222==∴=++=R S R12.在52⎪⎭⎫ ⎝⎛-x x 的二项展开式中,2x 的系数为____________.答案:4013.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表: 年产量/亩 年种植成本/亩 每吨售价 黄瓜 4吨 1.2万元 0.55万元 韭菜6吨0.9万元0.3万元为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为________. 答案:20,30解析:设黄瓜和韭菜的种植面积分别为y x ,亩,总利润z 万元,则目标函数y x y y x x z 9.0)9.063.0()2.1455.0(+=-⨯+-⨯=线性约束条件为⎪⎩⎪⎨⎧≥≥≤+≤+0,0549.02.150y x y x y x即⎪⎩⎪⎨⎧≥≥≤+≤+0,01803450y x y x y x ,做出可行域,求得)45,0(),20,30(),50,0(C B A 平移直线,9.0y x z +=可知直线,9.0y x z +=经过点),20,30(B 即20,30==y x 时,z 取得最大值.14.将9~1这9个数平均分成3组,则每组的3个数都成等差数列的分组方法的种数是 答案:5解析:设3组中每组正中间的数分别c b a ,,且c b a <<,则15,45333=++=++c b a c b a , 而42≤≤a ,故),,(c b a 所有可能取的值为)6,5,4(),7,5,3(),8,4,3(),7,6,2(),8,5,2(此时相对应的分组情况是());8,7,6(),9,5,1(),4,3,2();9,8,7(),6,4,2(),5,3,1();9,7,5(),8,6,4(,3,2,1);9,8,7(),6,5,4(),3,2,1()9,6,3(),8,5,2(),7,4,1(故分组方法有5种.15.如果)(x f 的定义域为R ,对于定义域内的任意x ,存在实数a 使得)()(x f a x f -=+成立,则称此函数具有“)(a P 性质”. 给出下列命题: ①函数x ysin =具有“)(a P 性质”;②若奇函数)(x f y =具有“)2(P 性质”,且1)1(=f ,则(2015)1f =;③若函数)(x f y =具有“(4)P 性质”, 图象关于点(10),成中心对称,且在(1,0)-上单调递减,则)(x f y =在(2,1)--上单调递减,在(1,2)上单调递增;④若不恒为零的函数)(x f y =同时具有“)0(P 性质”和 “(3)P 性质”,且函数)(x g y =对R x x ∈∀21,,都有1212|()()||()()|f x f x g x g x -≥-成立,则函数)(x g y =是周期函数. 其中正确的是(写出所有正确命题的编号).答案:①③④三、解答题,本大题共6小题,共75分. 16.(本小题满分12分)设函数R x x x x f ∈++=,cos 2)322cos()(2π. (Ⅰ)求函数)(x f 的最小正周期和单调减区间;(Ⅱ)将函数)(x f 的图象向右平移3π个单位长度后得到函数)(x g 的图象,求函数)(x g 在区间⎥⎦⎤⎢⎣⎡2,0π 上的最小值. 解析:(Ⅰ)x x x x x x f 2cos 12sin 232cos 21cos 2322cos )(2++--=+⎪⎭⎫ ⎝⎛+=π 132cos 12sin 232cos 21+⎪⎭⎫ ⎝⎛+=+-=πx x x所以函数)(x f 的最小正周期为π.由πππ)12(322+≤+≤k x k ,可解得36ππππ+≤≤-k x k所以单调减区间是Z k k k ∈⎥⎦⎤⎢⎣⎡+-,3,6ππππ (Ⅱ)由(Ⅰ)得1)32cos(1)3)3(2cos()(+-=++-=πππx x x g 因为20π≤≤x ,所以32323πππ≤-≤-x 所以1)32cos(21≤-≤-πx ,因此21)32cos(21≤+-≤πx ,即)(x f 的取值范围为⎥⎦⎤⎢⎣⎡2,21. 17.(本小题满分12分)甲乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错不答都得0分,已知甲队3人每人答对的概率分别为21,32,43,乙队每人答对的概率都是32.设每人回答正确与否相互之间没有影响,用ξ表示甲队总得分. (Ⅰ)求随机变量ξ的分布列及其数学期望)(ξE ;(Ⅱ)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率. (1)ξ的可能取值为3,2,1,041213141213241213143)1(;241213141)0(=⨯⨯+⨯⨯+⨯⨯===⨯⨯==ξξP P41213243)3(;2411213143213241213243)2(=⨯⨯===⨯⨯+⨯⨯+⨯⨯==ξξP Pξ的分布列为1223413241124112410)(=⨯+⨯+⨯+⨯=ξE(2)设“甲队和乙队得分之和为4”为事件A ,“甲队比乙队得分高”为事件B 则31313241313224113241)(213223333=⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯+⨯⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛⨯=C C C A P181313241)(213=⎪⎭⎫ ⎝⎛⨯⎪⎭⎫ ⎝⎛⨯=C AB P 6131181)()()|(===∴A P AB P A B P 18.(本小题满分12分)如图,在四棱锥ABCD P -中, 四边形ABCD 是直角梯形,ABCD PC CD AB AD AB 底面⊥⊥,//,,E a PC CD AD AB ,2,422====是PB 的中点.(Ⅰ)求证:平面EAC ⊥平面PBC ;ξ1 23 P 241412411 41(Ⅱ)若二面角E AC P --的余弦值为36,求直线PA 与平面EAC 所成角的正弦值. 解析:(Ⅰ)PC AC ABCD AC ABCD PC ⊥∴⊂⊥,,平面平面.2,2,4==∴===BC AC CD AD ABBC AC AB BC AC ⊥∴=+∴,222,又PBC AC C PC BC 平面⊥∴=,PBC EAC EAC AC 平面平面平面⊥∴⊂ .(Ⅱ)如图,以点C 为原点,CP CD DA ,,分别为x 轴、y 轴、z 轴正方向,建立空间直角坐标系,则)0,2,2(),0,2,2(),0,0,0(-B A C 。
2015届四川省成都七中高三上学期一诊模拟考试理科数学试题(含答案解析)WORD精校版
第 2 页 共 11 页
N (x2 , y2 ) ,以点 N 为切点作切线 l2 ,且 l1 ∥ l2 ,则称曲线 y = f (x) 具有“可平行性”.现
有下列命题:
①函数 y = (x - 2)2 + ln x 的图象具有“可平行性”;
②定义在 (-¥, 0) U (0, +¥) 的奇函数 y = f (x) 的图象都具有“可平行性”;
③ 三 次 函 数 f (x) = x3 - x2 + ax + b 具 有 “ 可 平 行 性 ”, 且 对 应 的 两 切 点 M (x1, y1) ,
N (x2 ,
y2 )
的横坐标满足
x1
+
x2
=
2 3
;
④要使得分段函数
f
(x)
=
ìï x í
+
1 x
(m
<
x)
的图象具有“可平行性”,当且仅当实数
m
=
1.
ïîex -1(x < 0)
其中的真命题是
.(写出所有真命题的序号)
三、解答题:本大题共6小题,共75分.
16.(本小题满分 12 分)
已知等差数列{an} 的前 n 项和为 Sn ,且 a2 = -5 ,S5 = -20 .
(Ⅰ)求数列{an} 的通项公式;
(Ⅱ)求使不等式 Sn > an 成立的 n 的最小值.
7.已知不等式组
ï í
x
-
y
£
2
,则目标函数
z
=
2x
-
y
的最小值是
ïî y £ ln x
第 1 页 共 11 页
四川省成都七中2015届高三零诊模拟数学(理)试题 Word版含答案
成都七中2015届零诊模拟考试数学试卷(理科)考试时间:120分钟 命题:张祥艳 审题:廖学军一、选择题:本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.1.命题“0||,2≥+∈∀x x R x ”的否定是( )A.0||,2<+∈∀x x R xB. 0||,2≤+∈∀x x R xC. 0||,2000<+∈∃x x R x D. 0||,2000≥+∈∃x x R x 2.设集合{||1|2}A x x =-<,{|2,[0,2]}x B y y x ==∈,则AB =( )A .[0,2] B. [1,3) C. (1,3) D.(1,4) 3.在极坐标系中,过点22(,)π且与极轴平行的直线方程是( )A .2ρ= B.2θπ=C. cos 2ρθ=D.sin =2ρθ 4.已知实数,x y 满足(01)x y a a a <<<,则下列关系式恒成立的是( )A .33x y > B. sin sin x y > C. 22ln(1)ln(1)x y +>+D.221111x y >++ 5.已知一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为( )A .1B .2C .3D .46. 对于函数()f x ,若存在常数0a ≠,使得x 取定义域内的每一个值,都有()(2)f x f a x =-,则称()f x 为准偶函数,下列函数中是准偶函数的是 ( ) A . ()cos(1)f x x =+B.()f x =C.()tan f x x = D.3()f x x =7.执行右图程序框图,如果输入的x ,t 均为2,则输出的S= ( )A. 4B. 5C. 6D. 7俯视图侧(左)视图正(主)视图8.设x,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩,则2z x y =-的最大值为( )A.10B.8C.3D.29. 如图,设P 为正四面体A BCD -表面(含棱)上与顶点不重合的一点,由点P 到四个顶点的距离组成的集合记为M ,如果集合M 中有且只有2个元素,那么符合条件的点P 有( ) A .4个 B.6个 C. 10个 D.14个10.设函数()x f x π=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( )A. ()(),66,-∞-⋃∞B. ()(),22,-∞-⋃∞C. ()(),44,-∞-⋃∞D.()(),14,-∞-⋃∞二、填空题:本大题共5小题,每小题5分,共25分.11.设向量,a b满足|a b |+|a b |-=则a b ⋅=12.设△ABC 的内角A B C 、、 的对边分别为a b c 、、,且1cos 4a b C ==1,=2,, 则sin B =13. 已知抛物线)1)0(22m M p px y ,(上一点>=到其焦点的距离为5,双曲线122=-ay x 的左顶点为A ,若双曲线一条渐近线与直线AM 垂直,则实数a =14.随机地向半圆0y <<a 为正常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点与该点的连线与x 轴的夹角小于4π的概率为 .15、设函数)(x f 在其定义域D 上的导函数为)(/x f ,如果存在实数a 和函数)(x h ,其中)(x h 对任意的D x ∈,都有0)(>x h ,使得),1)(()(2/+=ax x x h x f -则称函数)(x f 具有性质)(a ω,给出下列四个函数:①131)(23++=x x x x f -; ②14ln )(++=x x x f ;BADC. PD CBAP③xe x x xf )54()(2+=-; ④12)(2++=x xx x f其中具有性质)2(ω的函数三、解答题:(本大题共6小题,共75分.16-19题每小题12分,20题13分,21题14分) 16. 已知函数sin 2(sin cos )()cos x x x f x x-=.(Ⅰ)求函数f (x )的定义域及最大值;(Ⅱ)求使()f x ≥0成立的x 的取值集合.17. 成都市为增强市民的环保意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[)20,25,第2组[)25,30,第3组[)30,35,第4组[)35,40,第5组[40,45],得到的频率分布直方图如图所示.(Ⅰ)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(Ⅱ)在(Ⅰ)的条件下,决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.18.在四棱锥P A B C D -中,PD ⊥平面A B C D ,2PD CD BC AD ===,//,90AD BC BCD ∠=︒.19.已知等差数列{}n a 为递增数列,且25,a a 是方程212270x x -+=的两根,数列{}n b 的前n 项和11;2n n T b =-(1)求数列{}{}n n a b 和的通项公式; (2)若13n nn n n b c a a +⋅=⋅,求数列{}n c 的前n 项和.n S20.巳知椭圆222210:()x y M a b a b +=>>的长轴长为22124x y +=第(17)题图有相同的离心率. (I )求椭圆M 的方程;(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与M 有两个交点A 、B ,且OA OB ⊥?若存在,写出该圆的方程,并求||AB 的取值范围,若不存在,说明理由.21. 已知函数()f x 是奇函数,()f x 的定义域为(,)-∞+∞.当0x <时,()f x l n ()ex x-=.这里,e 为自然对数的底数.(1)若函数()f x 在区间1(,)(0)3a a a +>上存在极值点,求实数a 的取值范围;(2)如果当x ≥1时,不等式()1kf x x ≥+恒成立,求实数k 的取值范围;(3)试判断 1ln 1n +与122231n n n ⎛⎫+++- ⎪+⎝⎭的大小关系,这里*n N ∈,并加以证明.成都七中2015届零诊模拟考试数学试卷(理科)考试时间:120分钟 命题:张祥艳 审题:廖学军一、选择题:本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.1.命题“0||,2≥+∈∀x x R x ”的否定是( C )B.0||,2<+∈∀x x R x B. 0||,2≤+∈∀x x R xC. 0||,2000<+∈∃x x R x D.0||,2000≥+∈∃x x R x2.设集合{||1|2}A x x =-<,{|2,[0,2]}x B y y x ==∈,则A B =( B )(A )[0,2](B )[1,3)(C )(1,3)(D )(1,4) 3.在极坐标系中,过点22(,)π且与极轴平行的直线方程是(D )(A )2ρ=(B )2θπ=(C )cos 2ρθ=(D )sin =2ρθ 4.已知实数,x y 满足(01)x y a a a <<<,则下列关系式恒成立的是( A ) (A) 33x y >(B) sin sin x y >(C) 22ln(1)ln(1)x y +>+(D)221111x y >++ 5.已知一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为(D )A .1B .2C .3D .46. 对于函数()f x ,若存在常数0a ≠,使得x 取定义域内的每一个值,都有()(2)f x f a x =-,则称()f x 为准偶函数,下列函数中是准偶函数的是 ( A ) (A) ()cos(1)f x x =+(B) ()f x =(C) ()tan f x x =(D) 3()f x x =7.执行右图程序框图,如果输入的x ,t 均为2,则输出的S= ( D ) A. 4 B. 5 C. 6 D. 7俯视图侧(左)视图正(主)视图8.设x,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩,则2z x y =-的最大值为( B )A.10B.8C.3D.29. 如图,设P 为正四面体A BCD -表面(含棱)上与顶点不重合的一点,由点P 到四个顶点的距离组成的集合记为M ,如果集合M 中有且只有2个元素,那么符合条件的点P 有( C ) (A )4个(B )6个(C )10个(D )14个10.设函数()s i n x f x mπ=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( B )A. ()(),66,-∞-⋃∞B. ()(),22,-∞-⋃∞C. ()(),44,-∞-⋃∞D.()(),14,-∞-⋃∞13. 已知抛物线)1)0(22m M p px y ,(上一点>=到其焦点的距离为5,双曲线122=-ay x 的左顶点为A ,若双曲线一条渐近线与直线AM 垂直,则实数a = 1414.随机地向半圆0y <<a 为正常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点与该点的连线与x 轴的夹角小于4π的概率为 .112π+15、设函数)(x f 在其定义域D 上的导函数为)(/x f ,如果存在实数a 和函数)(x h ,其中)(x h 对任意的D x ∈,都有0)(>x h ,使得),1)(()(2/+=ax x x h x f -则称函数)(x f 具有性质BADC. P)(a ω,给出下列四个函数:①131)(23++=x x x x f -; ②14ln )(++=x x x f ; ③xe x x xf )54()(2+=-; ④12)(2++=x xx x f其中具有性质)2(ω的函数 ①② ③三、解答题:(本大题共6小题,共75分.16-19题每小题12分,20题13分,21题14分) 16. 已知函数sin 2(sin cos )()cos x x x f x x-=.(Ⅰ)求函数f (x )的定义域及最大值; (Ⅱ)求使()f x ≥0成立的x 的取值集合.解:(Ⅰ) cos x ≠0知x 2k pp?,k ∈Z , 即函数f (x )的定义域为{x |x ∈R ,且x ≠kπ,k ∈Z }.………………………3分 又∵ x xx x x x x x x x x f 2sin 22cos 12cos sin 2sin 2cos )cos (sin cos sin 2)(2--⨯=-=-=)2cos 2(sin 1x x +-= )42sin(21π+-=x ,∴ 21)(max +=x f .……………………………………………………………8分(II )由题意得1)4πx +≥0,即sin(2)4πx +解得324πk π+≤24πx +≤924πk π+,k ∈Z ,整理得4πk π+≤x ≤k ππ+,k ∈Z .结合x ≠kπ,k ∈Z 知满足f (x )≥0的x 的取值集合为{x |4πk π+≤x ≤k ππ+且x 2k p p?,k ∈Z }.………………………………………………12分17. 成都市为增强市民的环保意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[)20,25,第2组[)25,30,第3组[)30,35,第4组[)35,40,第5组[40,45],得到的频率分布直方图如图所示.(Ⅰ)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参广场的宣传活动,应从第3,4, 5组各抽取多少名志愿者?(Ⅱ)在(Ⅰ)的条件下,决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.解:(1)第3组的人数为0.3×100=30, 第4组的人数为0.2×100=20,第5组的人数为0.1×100=10. …………3分因为第3,4,5组共有60名志愿者,所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,每组抽取的人数分别为:第3组:3060×6=3; 第4组:2060×6=2; 第5组:1060×6=1.所以应从第3,4,5组中分别抽取3人,2人,1人. …………6分(2)记第3组的3名志愿者为A1,A2,A3,第4组的2名志愿者为B1,B2,第5组的1名志愿者为C1.则从6名志愿者中抽取2名志愿者有:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),( A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1),共有15种. …………8分其中第4组的2名志愿者B1,B2至少有一名志愿者被抽中的有:(A1,B1), (A1,B2), (A2,B1), (A2,B2), (A3,B1), (A3, B2), (B1,B2), (B1,C1), (B2,C1),共有9种,………10分所以第4组至少有一名志愿者被抽中的概率为93.155=…………12分yD CBAP18.在四棱锥P ABCD -中,PD ⊥平面A B C ,2PD CD BC AD ===,//,90AD BC BCD ∠=︒.(Ⅰ)求证:BC PC ⊥;(Ⅱ)求PA 与平面PBC 所成角的正弦值;(Ⅲ)线段PB 上是否存在点E ,使AE ⊥平面PBC ?说明理由.证明:(Ⅰ)在四棱锥P ABCD -中,因为PD ⊥平面ABCD ,BC ⊂平面ABCD ,所以PD BC ⊥. 因为90BCD ∠=︒, 所以BC CD ⊥.因为PDDC D =, 所以BC ⊥平面PCD .因为PC ⊂平面PCD ,所以BC PC ⊥. ………4分 (Ⅱ) 如图,以D 为原点建立空间直角坐标系-D xyz . 不妨设1=AD ,则2===PD CD BC .则(0,0,0),(1,0,0),(2,2,0),(0,2,0),(0,0,2)D A B C P .所以(1,0,2)=-PA u u r ,(2,2,2),(0,2,2)=-=-PB PC u u r u u u r.设平面PBC 的法向量(,,)=x y z n .所以 0,⎧⋅=⎪⎨⋅=⎪⎩uu r uu u r PB PC n n .即2220,220x y z y z +-=⎧⎨-=⎩. 令1y =,则0,1x z ==.所以(0,1,1)=n所以cos ,<>==uu rPA n 所以PA 与平面PBC所成角的正弦值为5. ………8分所以DF PC ⊥. 因为BC ⊥平面PCD , 所以DF BC ⊥.因为=PC BC C I , 所以DF ⊥平面PBC . 所以AE ⊥平面PBC .即在线段PB 上存在点E ,使AE ⊥平面PBC .(法二)设在线段PB 上存在点E ,当(01)=<<u u r u u rPE PB λλ时,AE ⊥平面PBC .设000(,,)E x y z ,则000(,,2)=-PE x y z uur.所以000(,,2)(2,2,2)x y z λ-=-.即0002,2,22x y z λλλ===-+.所以(2,2,22)E λλλ-+.所以(21,2,22)=--+AE λλλu u u r.由(Ⅱ)可知平面PBC 的法向量(0,1,1)=n . 若AE ⊥平面PBC ,则//u u u r AE n .即=u u u r AE μn .解得1,12λμ==.所以当12=PE PB uur uu r,即E 为PB 中点时,AE ⊥平面PBC . ………12分19.已知等差数列{}n a 为递增数列,且25,a a 是方程212270x x -+=的两根,数列{}n b 的前n 项和11;2n n T b =-(1)求数列{}{}n n a b 和的通项公式;(2)若13n nn n n b c a a +⋅=⋅,求数列{}n c 的前n 项和.n S20.巳知椭圆的长轴长为,且与椭圆有相同的离心率.(I )求椭圆M的方程;(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与M有两个交点A、B,且?若存在,写出该圆的方程,并求的取值范围,若不存在,说明理由.21.(本小题满分12分)已知函数()f x 是奇函数,()f x 的定义域为(,)-∞+∞.当0x <时,()f x ln()ex x-=.这里,e 为自然对数的底数. (1)若函数()f x 在区间1(,)(0)3a a a +>上存在极值点,求实数a 的取值范围; (2)如果当x ≥1时,不等式()1k f x x ≥+恒成立,求实数k 的取值范围; (3)试判断 1ln 1n +与122231n n n ⎛⎫+++- ⎪+⎝⎭的大小关系,这里*n N ∈,并加以证明. 解:x>0时,ln()1ln ()()ex x f x f x x x+=--== ………2分(1)当x>0时,有221(1ln )1ln ()x x x x f x x x ⋅-+⋅'==- ()0ln 001f x x x '>⇔<⇔<<;()0ln 01f x x x '<⇔>⇔> 所以()f x 在(0,1)上单调递增,在(1,)∞上单调递减,函数()f x 在1x =处取得唯一的极值.由题意0a >,且113a a <<+,解得所求实数a 的取值范围为213a << …4分(2)当1x ≥时,1ln (1)(1ln )()11k x k x x f x k x x x x+++≥⇔≥⇔≤++ 令(1)(1l n )()(1)x x g x x x++=≥,由题意,()k g x ≤在[)1,+∞上恒成立 []22(1)(1ln )(1)(1ln )ln ()x x x x x x x x g x x x ''++⋅-++⋅-'== 令()l n (1)h x x x x =-≥,则1()10h x x'=-≥,当且仅当1x =时取等号. 所以()l n h x x x =-在[)1,+∞上单调递增,()(1)10h x h ≥=>.……6分 因此,2()()0h x g x x '=> ()g x 在[)1,+∞上单调递增,m i n ()(1)2g x g ==.所以2k ≤.所求实数k 的取值范围为(],2-∞ …………………8分(3)(方法一)由(2),当1x ≥时,即12)(+≥x x f ,即12ln 1+≥+x x x . 从而x x x 21121ln ->+-≥.………..10分 令1(1,2,,)k x k n k +==,得,22112ln -> 322ln123⋅>-, ……12ln 11n n n n +⋅>-+将以上不等式两端分别相加,得123ln(1)2()2341n n n n +>-+++++ 1123ln 2()12341n n n n ∴<++++-++ ………………………14分 (方法二)1=n 时,2ln 11ln -=+n < 011132212=-=-⎪⎭⎫ ⎝⎛++++n n n 猜想11ln +n n n n -⎪⎭⎫ ⎝⎛++++<132212 对一切*N n ∈成立。
四川省成都七中2015届高三一诊模拟考试试题
四川省成都七中2015届高三一诊模拟考试试题高三2012-03-20 14:39四川省成都七中2015届高三一诊模拟考试试题考试时间:150分钟满分:150分本试卷分第I卷和第Ⅱ卷两部分。
第Ⅰ卷答案用2B铅笔涂在答题卡上,第Ⅱ卷(含作文)必须用0.5mm黑色签字笔写在答题卡上。
第Ⅰ卷(共30分)一、(12分,每小题3分)1.下列词语中加点的字,注音全都正确的一组是()A.打颤(zhàn)扉页(fēi)着火点(zhuó)久假不归(jiǎ)B.占卜(zhān)翘楚(qiáo)肖像权(xiào)心广体胖(pán )C.荫庇(yìn)挑剔(tī)冠心病(ɡuān)称心如意(chânɡ)D.解剖(pāo)魁梧(wú)花骨朵(ɡū)宁缺毋滥(wú)2.下列各组词语中,没有错别字的一组是()A.专诚焕然一炷香卑躬屈膝B.歌颂装璜黄澄澄里应外合C.因缘赋予亲和力披沙捡金D.宣泄蛰伏乱篷篷小题大做3.下列各句中,加点的词语使用恰当的一句是()A. “贾君鹏你妈妈喊你回家吃饭”这句几乎调侃式的话,短短的几个小时内便引来了40多万名网友的点击浏览。
B.美国“微软”集团败诉,国际金融机构对此迅速做出反映,这一事件令比尔·盖茨一度陷入困境之中。
C.这个小镇是一个风景优美的地方,依山傍水,秀色可餐,名不虚传。
近来,它成为了都市人休闲避暑的胜地。
D.在黄山的光明顶上放眼眺望,只见群山起伏,座座相连,鳞次栉比,绵延远方,最后消失在迷茫的天际。
4.下列各句中没有语病、句意明确的一句是()A.我们仔细调查研究的结果,认为他要负全部责任,但他却百般抵赖,拒不承担由于酒后超速行驶致使大桥护栏被撞毁的损失。
B.后金融危机时代,欧洲一些国家如希腊,由于债务危机已经导致债务负担出现不断加剧的趋势,使国家主权风险迅速提高。
C.2010年11月,中国政府申报的项目“中医针灸”通过联合国教科文组织审议,被列入“人类非物质文化遗产代表作名录”。
成都七中2015级高三“一诊”模拟考试数学答案
C D OBE'AH成都七中2015级高三“一诊”模拟考试数学试题参考答案一、选择题:(本大题共10小题,每小题5分,共50分) BAADB ACBAD 二、填空题:(本大题共5小题,每小题5分,共25分) 11. 180 12.12 13. - 14. (-7, 3) 15. ①②③⑤ 三、解答题:本大题共6小题,共75分。
解答应写出文字说明,证明过程或演算步骤。
16、(本小题满分12分)【解析】(I )由已知条件得:cos23cos 1A A +=22cos 3cos 20A A ∴+-=,解得1cos 2A =,角60A =︒ (II )1sin 2S bc A ==4c ⇒=,由余弦定理得:221a =,()222228sin a R A ==25sin sin 47bc B C R ∴==.17、(本小题满分12分) 解答:(1)331328()327p C ==,22232128()33327p C =⋅=,222342114()()33227p C =⋅=(2)由题意可知X 的可能取值为:0, 1, 2, 3. 乙队得分X 的分布列为:乙队得分X 的数学期望:1644170123.27272799EX =⨯+⨯+⨯+⨯=18、(本小题满分12分)【解析】(Ⅰ) 在图1中,易得3,OC AC AD ===连结,OD OE,在OCD ∆中,由余弦定理可得OD由翻折不变性可知A D '=,所以222A O OD A D ''+=,所以A O OD '⊥,理可证A O OE '⊥, 又OD OE O = ,所以A O '⊥平面BCDE . (Ⅱ) 传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ', 因为A O '⊥平面BCDE ,所以A H CD '⊥, 所以A HO '∠为二面角A CD B '--的平面角.3210X P2742742719结合图1可知,H 为AC 中点,故2OH =,从而A H '==所以cos 5OH A HO A H '∠==',所以二面角A CD B '--的平面角的余弦值为5.向量法:以O 点为原点,建立空间直角坐标系O xyz -如图所示, 则(A ',()0,3,0C -,()1,2,0D -所以(CA '= ,(1,DA '=-设(),,n x y z = 为平面A CD '的法向量,则 00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩,即3020y x y⎧+=⎪⎨-++=⎪⎩,解得y x z =-⎧⎪⎨=⎪⎩令1x =,得(1,n =-由(Ⅰ) 知,(OA '=为平面CDB 的一个法向量,所以cos ,n OA n OA n OA '⋅'===',即二面角A CD B '--的平面角的余弦19、(本小题满分12分)(1)解:由222(1)()0n n S n n S n n -+--+=,得2[()](1)0.n n S n n S -++=由于{a n }是正项数列,所以20,.n n S S n n >=+于是112,2a S n ==≥时,221(1)(1)2.n n n a S S n n n n n -=-=+----= 综上,数列{a n }的通项2.n a n = (2)证明:由于2,n a n =221(2)n nn b n a +=+, 则22221111[4(2)16(2)n n b n n n n +==-++.2222222221111111111[11632435(1)(1)(2)n T n n n n =-+-+-++-+--++ 2221111[1]162(1)(2)n n =+--++2115(1).16264<+=【解析】(Ⅰ) 依题意,设抛物线C 的方程为24x cy =,2=结合0c >, 解得1c =.所以抛物线C 的方程为24x y =. (Ⅱ) 抛物线C 的方程为24x y =,即214y x =,求导得12y x '= 设()11,A x y ,()22,B x y (其中221212,44x x y y ==), 则切线,PA PB 的斜率分别为112x ,212x ,所以切线PA 的方程为()1112x y y x x -=-,即211122x x y x y =-+,即11220x x y y --= 同理可得切线PB 的方程为22220x x y y --=因为切线,PA PB 均过点()00,P x y ,所以1001220x x y y --=,2002220x x y y --= 所以()()1122,,,x y x y 为方程00220x x y y --=的两组解. 所以直线AB 的方程为00220x x y y --=.(Ⅲ) 由抛物线定义可知11AF y =+,21BF y =+, 所以()()()121212111AF BF y y y y y y ⋅=++=+++联立方程0022204x x y y x y--=⎧⎨=⎩,消去x 整理得()22200020y y x y y +-+=由一元二次方程根与系数的关系可得212002y y x y +=-,2120y y y =所以()221212000121AF BF y y y y y x y ⋅=+++=+-+又点()00,P x y 在直线l 上,所以002x y =+,所以22220000001921225222y x y y y y ⎛⎫+-+=++=++ ⎪⎝⎭所以当012y =-时, AF BF ⋅取得最小值,且最小值为92.。
2015届成都高三第一次诊断试题 数学(理)Word版含答案
成都市2015届高中毕业班第一次诊断性检测数学试题(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{|0}=≥U x x,集合{1}=P,则UP=ð(A)[0,1)(1,)+∞(B)(,1)-∞(C)(,1)(1,)-∞+∞(D)(1,)+∞2.若一个几何体的正视图和侧视图是两个全等的正方形,则这个几何体的俯视图不可能是(A)(B)(C)(D)3.已知复数z43i=--(i是虚数单位),则下列说法正确的是(A)复数z的虚部为3i-(B)复数z的虚部为3(C)复数z的共轭复数为z43i=+(D)复数z的模为54.函数31,0()1(),03xx xf xx⎧+<⎪=⎨≥⎪⎩的图象大致为(A)(B)(C)(D)5.已知命题p:“若22≥+x a b,则2≥x ab”,则下列说法正确的是(A)命题p的逆命题是“若22<+x a b,则2<x ab”(B)命题p的逆命题是“若2<x ab,则22<+x a b”(C)命题p的否命题是“若22<+x a b,则2<x ab”(D)命题p的否命题是“若22x a b≥+,则2<x ab”yxOxyOxyO xyOGFEHPACBDA 1B 1C 1D 16.若关于x 的方程240+-=x ax 在区间[2,4]上有实数根,则实数a 的取值范围是 (A )(3,)-+∞ (B )[3,0]- (C )(0,)+∞ (D )[0,3]7.已知F 是椭圆22221+=x y a b(0>>a b )的左焦点,A 为右顶点,P 是椭圆上一点,⊥PF x轴.若14=PF AF ,则该椭圆的离心率是 (A )14 (B )34 (C )12(D )328.已知m ,n 是两条不同直线,α,β是两个不同的平面,且//m α,n ⊂β,则下列叙述正确的是(A )若//αβ,则//m n (B )若//m n ,则//αβ (C )若n α⊥,则m β⊥ (D )若m β⊥,则αβ⊥9.若552sin =α,1010)sin(=-αβ,且],4[ππα∈,]23,[ππβ∈,则αβ+的值是 (A )74π (B )94π (C )54π或74π (D )54π或94π 10.如图,已知正方体1111ABCD A B C D -棱长为4,点H 在棱1AA 上,且11HA =.在侧面11BCC B 内作边长为1的正方形1EFGC ,P 是侧面11BCC B 内一动点,且点P 到平面11CDD C 距离等于线段PF 的长.则当点P 运动时, 2HP 的最小值是 (A )21(B )22 (C )23 (D )25二、填空题:本大题共5小题,每小题5分,共25分.11.若非零向量a ,b 满足a b a b +=-,则a ,b 的夹角的大小为__________. 12.二项式261()x x-的展开式中含3x 的项的系数是__________.(用数字作答)DB C AFE 13.在∆ABC 中,内角,,A B C 的对边分别为,,a b c ,若2=c a ,4=b ,1cos 4=B ,则∆ABC 的面积=S __________.14.已知定义在R 上的奇函数()f x ,当0x ≥时,3()log (1)=+f x x .若关于x 的不等式2[(2)](22)f x a a f ax x ++≤+的解集为A ,函数()f x 在[8,8]-上的值域为B ,若“x A ∈”是“x B ∈”的充分不必要条件,则实数a 的取值范围是__________.15.已知曲线C :22y x a =+在点n P (,2)n n a +(0,a n >∈N )处的切线n l 的斜率为n k ,直线n l 交x 轴,y 轴分别于点(,0)n n A x ,(0,)n n B y ,且00=x y .给出以下结论: ①1a =;②当*n ∈N 时,n y 的最小值为54; ③当*n ∈N 时,12sin21n k n <+; ④当*n ∈N 时,记数列{}n k 的前n 项和为n S ,则2(11)<+-n S n .其中,正确的结论有 (写出所有正确结论的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)口袋中装有除颜色,编号不同外,其余完全相同的2个红球,4个黑球.现从中同时取出3个球.(Ⅰ)求恰有一个黑球的概率;(Ⅱ)记取出红球的个数为随机变量X ,求X 的分布列和数学期望()E X .17.(本小题满分12分)如图,ABC ∆为正三角形,EC ⊥平面ABC ,//DB EC ,F 为EA 的中点,2EC AC ==,1BD =.(Ⅰ)求证:DF //平面ABC ;(Ⅱ)求平面DEA 与平面ABC 所成的锐二面角的余弦值. 18.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且22n n S a =-;数列{}n b 满足11b =,12n n b b +=+.*n ∈N .(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)记n n n c a b =,*n ∈N .求数列{}n c 的前n 项和n T . 19.(本小题满分12分)某大型企业一天中不同时刻的用电量y (单位:万千瓦时)关于时间t (024t ≤≤,单位:小时)的函数()y f t =近似地满足()sin()(0,0,0)f t A t B A ωϕωϕπ=++>><<,下图是该企业一天中在0点至12点时间段用电量y 与时间t 的大致图象. (Ⅰ)根据图象,求A ,ω,ϕ,B 的值; (Ⅱ)若某日的供电量()g t (万千瓦时)与时间t (小时)近似满足函数关系式205.1)(+-=t t g (012t ≤≤).当该日内供电量小于该企业的用电量时,企业就必须停产.请用二分法计算该企业当日停产的大致时刻(精确度0.1). 参考数据:20.(本小题满分13分)已知椭圆Γ:12222=+by a x (0>>b a )的右焦点为)0,22(,且椭圆Γ上一点M 到其两焦点12,F F 的距离之和为43.(Ⅰ)求椭圆Γ的标准方程;(Ⅱ)设直线:(l y x m m =+∈R)与椭圆Γ交于不同两点A ,B ,且32AB =.若点0(,2)P x 满足=PA PB ,求0x 的值.21.(本小题满分14分)已知函数2()ln mx f x x =-,2()emx mx g x m =-,其中m ∈R 且0m ≠.e 2.71828=为自然对数的底数.(Ⅰ)当0m <时,求函数()f x 的单调区间和极小值;(Ⅱ)当0m >时,若函数()g x 存在,,a b c 三个零点,且a b c <<,试证明:10e a b c -<<<<<;(Ⅲ)是否存在负数m ,对1(1,)x ∀∈+∞,2(,0)x ∀∈-∞,都有12()()f x g x >成立?若存在,求出m 的取值范围;若不存在,请说明理由.t (时)10 11 12 11.5 11.25 11.75 11.625 11.6875 ()f t (万千瓦时) 2.25 2.4332.5 2.48 2.462 2.496 2.490 2.493 ()g t (万千瓦时)53.522.753.1252.3752.5632.469数学(理科)参考答案及评分意见第Ⅰ卷(选择题,共50分)一、选择题:(本大题共10个小题,每小题5分,共50分)1.A ; 2.C ; 3.D ;4.A ;5.C ;6.B ;7.B ;8.D ;9.A ;10.B .第Ⅱ卷(非选择题,共100分)二、填空题:(本大题共5个小题,每小题5分,共25分)11.90︒ 12.20- 13.15 14.[2,0]- 15.①③④ 三、解答题:(本大题共6个小题,共75分) 16.(本小题满分12分) 解:(Ⅰ)记“恰有一个黑球”为事件A ,则21243641()205⋅===C C P A C .……………………………………………………………4分(Ⅱ)X 的可能取值为0,1,2,则343641(0)205====C P X C ……………………………………………………………2分122436123(1)205⋅====C C P X C ………………………………………………………2分 1(2)()5===P X P A ………………………………………………………………2分 ∴X 的分布列为∴X 的数学期望1310121555=⨯+⨯+⨯=EX .…………………………………2分 17.(本小题满分12分)(Ⅰ)证明:作AC 的中点O ,连结BO .在∆AEC 中,//=FO 12EC ,又据题意知,//=BD 12EC . ∴//=FO BD ,∴四边形FOBD 为平行四边形. X 0 1 2 P 15 35 15DBCFEyzO∴//DF OB ,又⊄DF 平面ABC ,⊂OB 平面ABC . ∴//DF 平面ABC .……………………………………4分 (Ⅱ)∵//FO EC ,∴⊥FO 平面ABC .在正∆ABC 中,⊥BO AC ,∴,,OA OB OF 三线两两垂直. 分别以,,OA OB OF 为,,z x y 轴,建系如图. 则(1,0,0)A ,(1,0,2)-E ,(0,3,1)D . ∴(2,0,2)=-AE ,(1,3,1)=-AD . 设平面ADE 的一个法向量为1(,,z)=x y n ,则110⎧⋅=⎪⎨⋅=⎪⎩AE AD n n ,即22030-+=⎧⎪⎨-++=⎪⎩x z x y z ,令1=x ,则1,0==z y .∴平面ADE 的一个法向量为1(1,0,1)=n . 又平面ABC 的一个法向量为2(0,0,1)=n . ∴12121212,22⋅>===cos <n n n n n n . ∴平面DEA 与平面ABC 所成的锐二面角的余弦值22.…………………………8分 18.(本小题满分12分) 解:(Ⅰ)∵22n n S a =- ①当2≥n 时,1122--=-n n S a ②①-②得,122-=-n n n a a a ,即12-=n n a a (2≥n ). 又当1≥n 时,1122=-S a ,得12=a .∴数列{}n a 是以2为首项,公比为2的等比数列,∴数列{}n a 的通项公式为1222-=⋅=n n n a .………………………………………4分 又由题意知,11b =,12n n b b +=+,即12+-=n n b b ∴数列{}n b 是首项为1,公差为2的等差数列,∴数列{}n b 的通项公式为1(1)221=+-⨯=-n b n n .……………………………2分(Ⅱ)(Ⅱ)由(Ⅰ)知,(21)2=-n n c n ………………………………………………1分∴231123252(23)2(21)2-=⨯+⨯+⨯++-⋅+-⋅n n n T n n231121232(25)2(23)2(21)2-+=⨯+⨯++-⋅+-⋅+-⋅n n n n T n n n ④由-④得2311222222222(21)2-+-=+⨯+⨯++⋅+⋅--⋅n n n n T n …………………1分23112(12222)(21)2-+-=++++--⋅n n n n T n∴12222(21)212+-⋅-=⨯--⋅-n n n T n …………………………………………………1分∴111224222+++-=⋅--⋅+n n n n T n 即1(32)24+-=-⋅-n n T n ∴1(23)24+=-+n n T n∴数列{}n c 的前n 项和1(23)24+=-+n n T n ………………………………………3分 19.(本小题满分12分) 解:(Ⅰ)由图知12T =,6πω=.………………………………………………………1分2125.15.22m i n m a x =-=-=y y A ,225.15.22min max =+=+=y y B .……………2分 ∴0.5sin()26y x πϕ=++.又函数0.5sin()26y x πϕ=++过点(0,2.5).代入,得22k πϕπ=+,又0ϕπ<<,∴2πϕ=.…………………………………2分综上,21=A ,6πω=,2πϕ=,21=B . ………………………………………1分即2)26sin(21)(++=ππt t f . (Ⅱ)令)()()(t g t f t h -=,设0)(0=t h ,则0t 为该企业的停产时间. 由0)11()11()11(<-=g f h ,0)12()12()12(>-=g f h ,则)12,11(0∈t . 又0)5.11()5.11()5.11(<-=g f h ,则)12,5.11(0∈t . 又0)75.11()75.11()75.11(>-=g f h ,则)75.11,5.11(0∈t .又0)625.11()625.11()625.11(<-=g f h ,则)75.11,625.11(0∈t .又0)6875.11()6875.11()6875.11(>-=g f h ,则)6875.11,625.11(0∈t .…4分 ∵1.00625.0625.116875.11<=-. ……………………………………………1分 ∴应该在11.625时停产.……………………………………………………………1分 (也可直接由)625.11()625.11()625.11(<-=g f h ,0)6875.11()6875.11()6875.11(>-=g f h ,得出)6875.11,625.11(0∈t ;答案在11.625—11.6875之间都是正确的;若换算成时间应为11点37分到11点41分停产) 20.(本小题满分13分)(Ⅰ)由已知243=a 得23=a ,又22=c . ∴2224=-=b a c .∴椭圆Γ的方程为141222=+y x .…………………………………………………4分 (Ⅱ)由⎪⎩⎪⎨⎧=++=,1412,22y x m x y 得01236422=-++m mx x ① ………………………1分∵直线l 与椭圆Γ交于不同两点A 、B ,∴△0)123(163622>--=m m , 得216<m .设),(11y x A ,),(22y x B ,则1x ,2x 是方程①的两根,则2321mx x -=+, 2123124-⋅=m x x .∴2222129312(312)21244=+-=⨯--=⨯-+AB kx x m m m . 又由32AB =,得231294-+=m ,解之2m =±.……………………………3分 据题意知,点P 为线段AB 的中垂线与直线2=y 的交点. 设AB 的中点为),(00y x E ,则432210m x x x -=+=,400mm x y =+=,当2m =时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x -=-+,即1y x =--.令2=y ,得03x =-.…………………………………………………………………2分当2m =-时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x +=--,即1y x =-+. 令2=y ,得01x =-.………………………………………………………………2分 综上所述,0x 的值为3-或1-. 21.(本小题满分14分)解:(Ⅰ)2222)(ln )ln 21()(ln ln 2)(ln 1ln 2)(x x mx x x x x m x x x x x mx f -⋅=-=⋅--='(0>x 且1≠x ).∴由0)(>'x f ,得21e x >;由0)(<'xf ,得210e x <<,且1≠x .……………………1分 ∴函数)(x f 的单调递减区间是(0,1),(1,e),单调递增区间是),(+∞e .………………2分 ∴me e f x f 2)()(-==极小值.………………………………………………………………1分(Ⅱ)222(2)(),(0)mx mx mx mxmxe mx e m mx mx g x m e e --'=-=>. ∴()g x 在(,0)-∞上单调递增,2(0,)m上单调递减,2(,)m +∞上单调递增.∵函数()g x 存在三个零点.∴20(0)02402()00>⎧>⎧⎪⎪⎪⇒⇒<<⎨⎨<⎪⎪-<⎩⎪⎩m g m e g m m m e . ∴02<<me …………………………………………………………………………………3分 由(1)(1)0-=-=-<mmg m me m e .∴22()(1)0=-=-<em em me e g e m m e e.……………………………………………………1分综上可知,()0,(0)0,(1)0<>-<g e g g ,结合函数()g x 单调性及a b c <<可得:(1,0),(0,),(,)a b e c e ∈-∈∈+∞.即10a b e c -<<<<<,得证.…………………………………………………………1分(III )由题意,只需min max ()()>f x g x ∵2(12ln )()(ln )-'=mx x f x x由0<m ,∴函数()f x 在12(1,)e 上单调递减,在12(,)e +∞上单调递增.∴12min ()()2==-f x f e me .………………………………………………………………2分 ∵(2)()-'=mxmx mx g x e由0<m ,∴函数()g x 在2(,)m -∞上单调递增,2(,0)m上单调递减. ∴max 224()()==-g x g m m e m .……………………………………………………………2分 ∴242->-me m e m ,不等式两边同乘以负数m ,得22242-<-m e m e.∴224(21)e m e+>,即224(21)m e e >+. 由0<m ,解得221(21)e m e e +<-+.综上所述,存在这样的负数221(,)(21)+∈-∞-+e m e e 满足题意.……………………………1分。
四川省成都七中实验学校高2015届高三零诊模拟训练数学试题 Word版含答案
成都七中实验学校高2015届高三零诊数学模拟训练试题第Ⅰ卷(选择题),第Ⅱ卷(非选择题),满分150分,考试时间120分钟.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,只有一项是符合题目要求的.1.已知集合{}210A x x =-≥,集合{}10B x x =-≤,则()U C A B =I ( ) A .{}1x x ≥ B .{}11x x -<< C .{}11x x <-<≤ D .{}1x x <- 解析:{}210A x x =-≥={}11x x x 或≥≤-,∴U C A ={}11x x -<<, 又{}10B x x =-≤={}1x x ≤,∴ ()U C A B =I {}11x x -<< 答案B 2. 下列四种说法中,正确的是 ( C ) A .}{1,0A =-的子集有3个;B .“若22,am bm a b <<则”的逆命题为真;C .“命题p q ∨为真”是“命题p q ∧为真”的必要不充分条件;D .命题“x R ∀∈,均有2320x x --≥”的否定是 “,x R ∃∈使得2320x x --≤ 3.某几何体的三视图如图所示,则该几何体的表面积是( ) A .244π+ B .166π+C .242π+D .164π+由三视图知,该几何体是由两个半径为1的半球和一个棱长为2正方体组成,表面积为42262242S πππ=+⨯⨯-=+,选C .4. 阅读如图所示的程序框图,运行相应的程序,输出的结果k =( B )A. 4B. 5C. 6D. 75.函数3,0(),0-+<⎧=⎨≥⎩x x a x f x a x (01)a a >≠且是R 上的减函数,则a 的取值范围是( B )A .()0,1B .1[,1)3C .1(0,]3D .2(0,]3解:据单调性定义,()f x 为减函数应满足:0013a a a <<⎧⎨≥⎩即113a ≤<. 答案B 6. 已知向量()()ABC BC AB ∆︒︒=︒︒=则,45sin ,30cos ,120sin ,120cos 的形状为 ( C )A .直角三角形B .等腰三角形C . 钝角三角形D .锐角三角形()()cos120,sin120cos30,sin 45=cos120cos30+sin120sin 45AB BC ⋅=︒︒⋅︒︒︒︒︒︒1=02->,所以ABC ∠为钝角 答案C7. 设,m n 为空间的两条不同的直线,,αβ为空间的两个不同的平面,给出下列命题:①若m ∥α,m ∥β,则α∥β; ②若,m m αβ⊥⊥,则α∥β; ③若m ∥α,n ∥α,则m ∥n ; ④若,m n αα⊥⊥,则m ∥n . 上述命题中,所有真命题的序号是 ( D )A. ①②B. ③④C. ①③D. ②④8.某企业拟生产甲、乙两种产品,已知每件甲产品的利润为3万元,每件乙产品的利润为2万元,且甲、乙两种产品都需要在A 、B 两种设备上加工.在每台设备A 、每台设备B 上加工1件甲产品所需工时分别为1h 和2h ,加工1件乙产品所需工时分别为2h 和1h ,A 设备每天使用时间不超过4h ,B 设备每天使用时间不超过5h ,则通过合理安排生产计划,该企业在一天内的最大利润是 ( D )A .18万元B . 12万元C . 10万元D .8万元9. 若()sin(2)f x x b ϕ=++, 对任意实数x 都有()()3f x f x π+=-,2()13f π=-,则实数b 的值为 ( A )A .2-或0B .0或1C .1±D .2±解:由()3f x f x π⎛⎫+=- ⎪⎝⎭可得()f x 关于直线6x π=对称,因为213f π⎛⎫=-⎪⎝⎭且函数周期为π,所以21163f f b ππ⎛⎫⎛⎫=-==±+ ⎪ ⎪⎝⎭⎝⎭,所以2b =-或0b =10. 我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”.已知1F 、2F 是一对相关曲线的焦点,P 是它们在第一象限的交点,当 6021=∠PF F 时,这一对相关曲线中双曲线的离心率是( A )A .3 B.2 C.332 D.2 解:设椭圆的半长轴为1a ,椭圆的离心率为1e ,则1111,c ce a a e ==.双曲线的实半轴为a ,双曲线的离心率为e ,,c ce a a e==.12,,(0)PF x PF y x y ==>>,则由余弦定理得2222242cos 60c x y xy x y xy =+-=+-,当点P 看做是椭圆上的点时,有22214()343c x y xy a xy =+-=-,当点P 看做是双曲线上的点时,有2224()4c x y xy a xy =-+=+,两式联立消去xy 得222143c a a =+,即22214()3()c cc e e=+,所以22111()3()4e e +=,又因为11e e =,所以22134e e +=,整理得42430e e-+=,解得23e =,所以e ,,选A.第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5题,每小题5分,共25分.答案填在答题卡上. 11. 设{}n a 是公差不为零的等差数列,12a =且136,,a a a 成等比数列,则2014a =22017=n a 12. 已知a b>,且1ab =,则221a b a b++-的最小值是 . 13.有一个内接于球的四棱锥P ABCD -,若PA ABCD ⊥底面,2BCD π∠=,2ABC π∠≠,BC =3,CD =4,PA =5,则该球的表面积为________.解: 由∠BCD =90°知BD 为底面ABCD 外接圆的直径,则2r =32+42=5.又∠DAB =90°⇒PA ⊥AB ,PA ⊥AD ,BA ⊥AD .从而把PA ,AB ,AD 看作长方体的三条棱,设外接球半径为R ,则(2R )2=52+(2r )2=52+52, ∴4R 2=50,∴S 球=4πR 2=50π.14.已知函数221,(20)()3,(0)ax x x f x ax x ⎧⎪⎨⎪⎩++-<≤=->有3个零点,则实数a 的取值范围是 .解:因为二次函数最多有两个零点,所以函数必有一个零点,从而0a >,所以函数3(0)y ax x =->221(20)y ax x x =++-<?必有两个零点,故需要()()22022000440a f f a ìïï-<-<ïïïïï->íïï>ïïïï=->ïîV ,解得34a < 答案 3(,)4+∞15.下列命题正确的有___________.①已知A,B 是椭圆+=22134x y 的左右两顶点, P 是该椭圆上异于A,B 的任一点,则⋅=-34AP BP k k .②已知双曲线-=2213y x 的左顶点为1A ,右焦点为2F ,P 为双曲线右支上一点,则⋅12PA PF 的最小值为-2.③若抛物线C :=24x y 的焦点为F ,抛物线上一点(2,1)Q 和抛物线内一点(2,)R m >(1)m ,过点Q 作抛物线的切线1l ,直线2l 过点Q 且与1l 垂直,则2l 平分∠RQF ;④已知函数()f x 是定义在R 上的奇函数,'=->>(1)0,()()0(0)f xf x f x x , 则不等式>()0f x 的解集是-+∞(1,0)(1,).答案 (2) (3) (4)三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,且222823ABC b c a S ∆+-=(其中ABC S ∆为△ABC 的面积).(1)求2sin cos 22B CA ++;(2)若2b =,△ABC 的面积为3,求a .解析:(1)由已知得A bc A bc sin 21382cos 2⨯=即0sin 4cos 3>=A A 53sin =∴A 54cos =A212cos cos 22cos 2cos 12cos 2sin 22-+=++=++A A A A A C B50592152425162=-⨯+⨯=………………6分 (2)由(Ⅰ)知53sin =A 2,3sin 21===∆b A bc S ABC ,A b c a c cos 265222++==∴ 又13545222542=⨯⨯⨯-+=∴a13=∴a ……………………………………12分17.(本小题满分12分)已知数列{}n a ,其前n 项和为n S ,点(),n n S 在抛物线23122y x x =+上;各项都为正数的等比数列{}n b 满足13511,1632==b b b .(1)求数列{}n a ,{}n b 的通项公式;(2)记n n n c a b =,求数列{}n c 的前n 项和n T . 解:(1)23122n S n n =+Q 当1n =时,2a S ==∴数列n a 是首项为2,公差为3的等差数列,31n a n ∴=- 又各项都为正数的等比数列{}n b 满足13511,432b b b ==解得1,22b q ==,()2n n b ∴= ……………………5分(2)由题得1(31)()2n n c n =-①②①-②得2311111113()()()(31)()22222n n n T n +⎡⎤=++++--⎢⎥L52n n T ∴=- ………………………………………………12分18. (本小题满分12分)已知函数3221()(1)3f x x a x b x =--+,其中,a b 为常数. (1)当6,3a b ==时,求函数()f x 的单调递增区间;(2)若任取[0,4],[0,3]a b ∈∈,求函数()f x 在R 上是增函数的概率.19. (本小题满分12分)如图,已知平面ABCD ⊥平面BCEF ,且四边形ABCD 为矩形,四边形BCEF 为直角梯形, 090CBF ∠=,//BF CE ,BC CE ⊥,4DC CE ==, 2BC BF ==.(1)作出这个几何体的三视图(不要求写作法).(2)设,P DF AG Q =⋂是直线DC 上的动点,判断并证明直线PQ 与直线EF 的位置关系.(3)求直线EF 与平面ADE 所成角的余弦值.19.(1)如右图. (2)垂直.(3)20.(本小题满分13分)平面内两定点12,A A 的坐标分别为(2,0),(2,0)-,P 为平面一个动点,且P 点的横坐标()2,2x ∈-. 过点P 作PQ 垂直于直线12A A ,垂足为Q ,并满足21234PQ AQ A Q =⋅. (1)求动点P 的轨迹方程.(2)当动点P 的轨迹加上12,A A 两点构成的曲线为C . 一条直线l 与以点(1,0) 为圆心,半径为2的圆M 相交于,A B 两点. 若圆M 与x 轴的左交点为F ,且6FA FB ⋅=. 求证:直线l 与曲线C 只有一个公共点.解:(1)设(),P x y ,()2,2x ∈-则:2212,2,2PQ y AQ x A Q x ==+=- 所以:23(2)(2)4y x x =-+,即:22143x y +=,()2,2x ∈- -----4分 (2)由(1)知曲线C 的方程为22143x y +=,圆M 的方程为()2214x y -+=,则()1,0F - 设()()1122,,,A x y B x y①当直线l 斜率不存在时,设l 的方程为:0x x =,则:12012,x x x y y ===-,()()01021,,1,FA x y FB x y =+=+因为6FA FB ⋅=,所以:()201216x y y ++=,即:()220116x y +-=因为点A 在圆M 上,所以:()220114x y -+=代入上式得:02x =±所以直线l 的方程为:2=+x (经检验x=-2不合题意舍去), 与曲线C 只有一个公共点. ------5分 经检验x=-2不合题意舍去所以 x=2 -------6分②当直线l 斜率存在时,设l 的方程为:y kx m =+,联立直线与圆的方程:()2214y kx mx y =+⎧⎪⎨-+=⎪⎩,消去x 得: 222(1)2(1)30k x km x m ++-+-=所以:12221222(1)131km x x k m x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩------------8分 因为:()()11221,,1,FA x y FB x y =+=+,且6FA FB ⋅=所以:121212()5x x x x y y +++=又因为:1122y kx my kx m =+⎧⎨=+⎩,所以:()()2212121212()y y kx m kx m k x x km x x m =++=+++代入得:221212(1)(1)()5k x x km x x m +++++=, 化简得:2243m k -=--------10分 联立直线l 与曲线C 的方程:22143y kx m x y =+⎧⎪⎨+=⎪⎩,消去x 得:222(34)84120k x kmx m +++-= 22222(8)4(34)(412)48(43)km k m k m ∆=-+-=-+ ----12分 因为:2243m k -=,所以0∆=,即直线l 与曲线C 只有一个公共点21.(本小题满分14分)(文科)已知函数()1xaf x x e =-+(a R ∈,e 为自然对数的底数). (1)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求a 的值;(2)求函数()f x 的极值;(3)当1a =的值时,若直线:1l y kx =-与曲线()y f x =没有公共点,求k 的最大值.解:(Ⅰ)由()1x a f x x e =-+,得 ()1xaf x e '=-. 又曲线()y f x =在点()()1,1f 处的切线平行于x 轴, 得()10f '=,即10ae-=,解得a e =.(Ⅱ)()1xa f x e '=-, ①当0a ≤时,()0f x '>,()f x 为(),-∞+∞上的增函数,所以函数()f x 无极值. ②当0a >时,令()0f x '=,得x e a =,ln x a =.(),ln x a ∈-∞,()0f x '<;()ln ,x a ∈+∞,()0f x '>.所以()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增,故()f x 在ln x a =处取得极小值,且极小值为()ln ln f a a =,无极大值.综上,当0a ≤时,函数()f x 无极小值;当0a >,()f x 在ln x a =处取得极小值ln a ,无极大值.(Ⅲ)当1a =时,()11x f x x e=-+令()()()()111xg x f x kx k x e =--=-+, 则直线l :1y kx =-与曲线()y f x =没有公共点,等价于方程()0g x =在R 上没有实数解. 假设1k >,此时()010g =>,1111101k g k e -⎛⎫=-+<⎪-⎝⎭, 又函数()g x 的图象连续不断,由零点存在定理,可知()0g x =在R 上至少有一解, 与“方程()0g x =在R 上没有实数解”矛盾,故1k ≤.又1k =时,()10x g x e=>,知方程()0g x =在R 上没有实数解. 所以k 的最大值为1.另解(Ⅲ)当1a =时,()11x f x x e=-+.直线l :1y kx =-与曲线()y f x =没有公共点, 等价于关于x 的方程111xkx x e -=-+在R 上没有实数解,即关于x 的方程: ()11xk x e -=(*)在R 上没有实数解.①当1k =时,方程(*)可化为10x e =,在R 上没有实数解. ②当1k ≠时,方程(*)化为11x xe k =-.令()xg x xe =,则有()()1xg x x e '=+.令()0g x '=,得1x =-,当x 变化时,()g x '的变化情况如下表:当1x =-时,()min g x e=-, 同时当x 趋于+∞时,()g x 趋于+∞, 从而()g x 的取值范围为1,e ⎡⎫-+∞⎪⎢⎣⎭.所以当11,1k e ⎛⎫∈-∞- ⎪-⎝⎭时,方程(*)无实数解, 解得k 的取值范围是()1,1e -. 综上,得k 的最大值为1.(理科)已知函数2()ln f x x x =+.(1)若函数()()g x f x ax =-在定义域内为增函数,求实数a 的取值范围;(2)在(1)的条件下,若1a >,3()3x xh x e ae =-,[0,ln 2]x ∈,求()h x 的极小值;(3)设2()2()3()F x f x x kx k R =--∈,若函数()F x 存在两个零点,m n<<(0)m n ,且满足02x m n =+,问:函数()F x 在00(,())x F x 处的切线能 否平行于x 轴?若能,求出该切线方程,若不能,请说明理由.解:(Ⅰ)21()()ln ,()2.g x f x ax x x ax g x x a x'=-=+-=+-由题意,知()0,(0,)g x x '≥∈+∞恒成立,即min 1(2)a x x≤+…… 2分又10,2x x x>+≥x =时等号成立.故min 1(2)x x+=a ≤……4分(Ⅱ)由(Ⅰ)知,1a <≤ 令x e t =,则[1,2]t ∈,则3()()3.h x H t t at ==-2()333(H t t a t t '=-=+……5分由()0H t '=,得t =或t =(舍去),34(1,2[1,2]a ∈,①若1t <≤()0,()H t H t '<单调递减;()h x在也单调递减; 2t <≤,则()0,()H t H t '>单调递增. ()h x 在2]也单调递增;故()hx 的极小值为(ln 2h =-……8分(Ⅲ)设()F x 在00(,())x F x 的切线平行于x 轴,其中2()2ln .F x x x kx =-- 结合题意,有220002ln 0,2ln 0,2,220,m m km n n kn m n x x k x ⎧--=⎪--=⎪⎪+=⎨⎪⎪--=⎪⎩ ……10分①—②得2ln ()()().m m n m n k m n n -+-=-,所以02ln 2.m n k x m n =-- 由④得0022.k x x =- 所以2(1)2()ln .1m m m n n m n m n n--==++⑤ ……11分 设(0,1)m u n =∈,⑤式变为2(1)ln 0((0,1)).1u u u u --=∈+ 设2(1)ln ((0,1))1u y u u u -=-∈+, 2222212(1)2(1)(1)4(1)0,(1)(1)(1)u u u u u y u u u u u u +--+--'=-==>+++ 所以函数2(1)ln 1u y u u -=-+在(0,1)上单调递增,因此,1|0u y y =<=, 即2(1)ln 0.1u u u --<+ 也就是,2(1)ln 1m m n m n n-<+,此式与⑤矛盾. 所以()F x 在00(,())x F x 处的切线不能平行于x 轴.……14分① ② ③④。
四川省成都市高三数学上学期第一次段考试卷 理(含解析)-人教版高三全册数学试题
四川省成都七中2015届高三上学期第一次段考数学试卷(理科)一、选择题(本大题10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一个是符合要求的)1.(5分)已知集合A={x|x2﹣2x>0},,则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B2.(5分)下列命题正确的是()A.命题P:“∀x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)≥0”的否定是:“∀x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)<0”B.命题“若x=1,则x2+2x﹣3=0”的否定是“若x≠1,则x2+2x﹣3≠0”C.“x≠1或y≠2”是“x+y≠3”的必要不充分条件D.“A=B”是:“tanA=tanB”的充分不必要条件3.(5分)定义运算=ad﹣bc,若函数在上单调递减,则实数m的取值范围()A.C.D.(﹣4,﹣2]4.(5分)若f(x)是幂函数,且满足=2,则=()A.B.C.2 D.45.(5分)设a=log23,b=,c=,则()A.b<a<c B.c<a<b C.c<b<a D.a<c<b6.(5分)函数的图象是()A.B.C.D.7.(5分)若函数f(x)=sin(3x+φ),满足f(a+x)=f(a﹣x),则的值为()A.B.±1C.0 D.8.(5分)已知α∈R,2sinα﹣cosα=,则=()A.B.﹣7 C.D.9.(5分)定义在(1,+∞)上的函数f(x)满足下列两个条件:(1)对任意的x∈(1,+∞)恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时,f(x)=2﹣x;记函数g(x)=f(x)﹣k(x﹣1),若函数g(x)恰有两个零点,则实数k的取值范围是()A.的最大值为2,有下列命题:①f(x)的周期为4;②f(x)的图象关于直线x=2k+1(k∈Z)对称;③f(x)的图象关于点(2k,0)(k∈Z)对称;④f(x)在R上的最小值是2.其中真命题为.三、解答题(共75分)16.(12分)已知函数f(x)=sinωx+cosωx+c(ω>0,x∈R,c是实数常数)的图象上的一个最高点(,1),与该最高点最近的一个最低点是(,﹣3).(1)求函数f(x)的解析式及其单调增区间;(2)在△ABC中,角A、B、C所对的边分别为a,b,c,且•=﹣ac,角A的取值范围是区间M,当x∈M时,试求函数f(x)的取值范围.17.(12分)已知偶函数f(x)的定义域为,且f(﹣1)=1,若对任意x1,x2∈,x1≠x2,都有>0成立.(1)解不等式;(2)若f(x)≤t2﹣2at+1对x∈和a∈恒成立,求实数t的取值范围.18.(12分)已知函数f(x)=log2(x2+x﹣a).(1)若f(x)的定义域为(﹣∞,﹣3)∪(2,+∞),求实数a的值;(2)若函数g(x)=f(x)+x的定义域是(0,+∞),值域为,在区间(0,e]上总存在t1,t2(t1≠t2),使得f(t1)=f(t2)=g(x m),求m的取值范围.21.(14分)已知函数f(x)=lnx﹣mx(m∈R).(1)若曲线y=f(x)过点P(1,﹣1),求曲线y=f(x)在点P处的切线方程;(2)求函数f(x)在区间上的最大值;(3)若函数f(x)有两个不同的零点x1,x2,求证:x1x2>e2.四川省成都七中2015届高三上学期第一次段考数学试卷(理科)参考答案与试题解析一、选择题(本大题10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一个是符合要求的)1.(5分)已知集合A={x|x2﹣2x>0},,则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B考点:并集及其运算;一元二次不等式的解法.专题:不等式的解法及应用;集合.分析:根据一元二次不等式的解法,求出集合A,再根据的定义求出A∩B和A∪B.解答:解:∵集合A={x|x2﹣2x>0}={x|x>2或x<0},∴A∩B={x|2<x<或﹣<x<0},A∪B=R,故选B.点评:本题考查一元二次不等式的解法,以及并集的定义,属于基础题.2.(5分)下列命题正确的是()A.命题P:“∀x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)≥0”的否定是:“∀x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)<0”B.命题“若x=1,则x2+2x﹣3=0”的否定是“若x≠1,则x2+2x﹣3≠0”C.“x≠1或y≠2”是“x+y≠3”的必要不充分条件D.“A=B”是:“tanA=tanB”的充分不必要条件考点:命题的真假判断与应用;全称命题;特称命题.专题:简易逻辑.分析:利用命题及其关系、充分条件、必要条件、含量词的命题的否定,逐个分析各选项的正误.解答:解:对于A,“∀x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)≥0”的否定是:“∃x1,x2∈R,(f(x2)﹣f(x1))(x2﹣x1)<0”,故A不正确;对于B,“若x=1,则x2+2x﹣3=0”的否定是“若x=1,则x2+2x﹣3≠0”,故B不正确;对于C,若“x≠1或y≠2”则“x+y≠3”的逆否命题是:“若x+y=3”则“x=1且y=2”,显然,“x+y=3”是“x=1且y=2”的必要不充分条件,由于原命题与逆否命题等价,故C正确;对于D,当A=B=90°时,tanA,tanB无意义,故D不正确.故选C.点评:本题考查命题及其关系;充分条件;必要条件;含量词的命题的否定.基本知识的考查.3.(5分)定义运算=ad﹣bc,若函数在上单调递减,则实数m的取值范围()A.C.D.(﹣4,﹣2]考点:二次函数的性质.专题:新定义;函数的性质及应用.分析:由定义的运算得:f(x)=(x+2)2﹣7,得到函数的单调性,由题意得m≤﹣2,又m>﹣4,从而得出答案.解答:解:由定义知f(x)=(x﹣1)(x+3)+2x=x2+4x﹣3=(x+2)2﹣7,f(x)在(﹣∞,﹣2)上单调减,上单调递增,选出满足条件的选项.解答:解:∵函数的定义域是,关于原点对称,以﹣x 代替x,函数值不变.∴函数是个偶函数,函数图象关于y轴对称,且与y轴无交点.在(0,]上单调递增,且x趋向0时,y趋向﹣∞,结合图象可知,应选B.故选B.点评:本题考查利用函数解析式分析函数图象的特征,注意利用奇偶性、单调性、特殊点及函数值的范围.7.(5分)若函数f(x)=sin(3x+φ),满足f(a+x)=f(a﹣x),则的值为()A.B.±1C.0 D.考点:正弦函数的对称性;三角函数的化简求值.专题:计算题;三角函数的图像与性质.分析:由题意求出函数的对称轴,函数的周期,利用正弦函数的基本性质即可求出的值.解答:解:对于任意的x∈R,函数f(x)=sin(3x+φ),满足条件f(a+x)=f(a﹣x),∴函数关于x=a对称,x=a时函数取得最值,∴3a+φ=k,k∈Z,∴=sin(3a++φ)=sin(+)=0;故选:C.点评:本题是中档题,考查三角函数的基本性质,函数的周期对称性的应用,三角函数的最值是解题的关键,考查计算能力.8.(5分)已知α∈R,2sinα﹣cosα=,则=()A.B.﹣7 C.D.考点:二倍角的余弦;二倍角的正弦.专题:三角函数的求值.分析:首先把已知等式两边平方,然后化弦为切,求得tanα,进而求得tan2α,从而求出的值.解答:解:已知等式两边平方得,即,即3tan2α﹣8tanα﹣3=0,解得,所以,从而=﹣7.故选:B点评:本题考查的知识要点:三角关系式的恒等式变换,解方程等运算问题.9.(5分)定义在(1,+∞)上的函数f(x)满足下列两个条件:(1)对任意的x∈(1,+∞)恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时,f(x)=2﹣x;记函数g(x)=f(x)﹣k(x﹣1),若函数g(x)恰有两个零点,则实数k的取值范围是()A.,又因为f(x)=k(x﹣1)的函数图象是过定点(1,0)的直线,再结合函数的图象根据题意求出参数的范围即可解答:解:因为对任意的x∈(1,+∞)恒有f(2x)=2f(x)成立,且当x∈(1,2]时,f(x)=2﹣x所以f(x)=﹣x+2b,x∈(b,2b].由题意得f(x)=k(x﹣1)的函数图象是过定点(1,0)的直线,如图所示红色的直线与线段AB相交即可(可以与B点重合但不能与A点重合)所以可得k的范围为故选C.点评:解决此类问题的关键是熟悉求函数解析式的方法以及函数的图象与函数的性质,数形结合思想是高中数学的一个重要数学数学,是解决数学问题的必备的解题工具.10.(5分)已知y=f(x)为R上的可导函数,当x≠0时,,则关于x的函数的零点个数为()A.1 B.2 C.0 D.0或2考点:根的存在性及根的个数判断.专题:函数的性质及应用.分析:由题意可得,x≠0,因而 g(x)的零点跟 xg(x)的非零零点是完全一样的.当x>0时,利用导数的知识可得xg(x)在(0,+∞)上是递增函数,xg(x)>1恒成立,可得xg(x)在(0,+∞)上无零点.同理可得xg(x)在(﹣∞,0)上也无零点,从而得出结论.解答:解:由于函数,可得x≠0,因而 g(x)的零点跟 xg(x)的非零零点是完全一样的,故我们考虑 xg(x)=xf(x)+1 的零点.由于当x≠0时,,①当x>0时,(x•g(x))′=(xf(x))′=xf′(x)+f(x)=x(f′(x)+)>0,所以,在(0,+∞)上,函数x•g(x)单调递增函数.又∵=1,∴在(0,+∞)上,函数x•g(x)=xf(x)+1>1恒成立,因此,在(0,+∞)上,函数x•g(x)=xf(x)+1 没有零点.②当x<0时,由于(x•g(x))′=(xf(x))′=xf′(x)+f(x)=x(f′(x)+)<0,故函数x•g(x)在(﹣∞,0)上是递减函数,函数x•g(x)=xf(x)+1>1恒成立,故函数x•g(x)在(﹣∞,0)上无零点.综上可得,函在R上的零点个数为0,故选C.点评:本题考查了根的存在性及根的个数判断,导数与函数的单调性的关系,体现了分类讨论、转化的思想,属于中档题.二、填空题(本大题共5个小题,每小题5分,共25分)11.(5分)函数f(x)=(2x2﹣x﹣1)的单调递增区间是(﹣∞,﹣).考点:复合函数的单调性.专题:函数的性质及应用.分析:令t=2x2﹣x﹣1>0 求得函数的定义域,且f(x)=t,本题即求函数t在定义域内的减区间.再根据二次函数的性质可得函数t在定义域内的单调递减区间.解答:解:令t=2x2﹣x﹣1>0 求得x<﹣或x>1,故函数的定义域为{x|x<﹣或x>1},f(x)=t,根据复合函数单调性,本题即求函数t在定义域内的减区间.再根据二次函数的性质可得函数t在定义域内的单调递减区间是,故答案为:(﹣∞,﹣).点评:本题主要考查复合函数的单调性,对数函数、二次函数的性质,体现了转化的数学思想,属于基础题.12.(5分)抛物线y=x2﹣2x+2和y=﹣x2+ax+1有一个交点P,且两切线在P点的切线互相垂直,贼a的值为.考点:利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:根据导数的几何意义,点P是两抛物线的一个交点,得关于点P的横坐标与a的方程组求解.解答:解:设P(x,y),则函数y=x2﹣2x+2的导数为y′=f′(x)=2x﹣2,函数y=﹣x2+ax+1的导数为y′=g′(x)=﹣2x+a,∵两切线在P点的切线互相垂直,∴,解得.故答案为:点评:本题主要考查导数的几何意义的应用,根据直线垂直的关系,建立方程是解决本题的关键.13.(5分)函数f(x)=log2•log(2x)的最小值为.考点:对数函数图象与性质的综合应用;换底公式的应用.专题:函数的性质及应用.分析:利用对数的运算性质可得f(x)=,即可求得f(x)最小值.解答:解:∵f(x)=log2•log(2x)∴f(x)=log()•log(2x)=log x•log(2x)=log x(log x+log2)=log x(log x+2)=,∴当log x+1=0即x=时,函数f(x)的最小值是.故答案为:﹣点评:本题考查对数不等式的解法,考查等价转化思想与方程思想的综合应用,考查二次函数的配方法,属于中档题.14.(5分)设函数f(x)=ax+sinx+cosx.若函数f(x)的图象上存在不同的两点A,B,使得曲线y=f(x)在点A,B处的切线互相垂直,则实数a的取值范围为.考点:利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:求出原函数的导函数,设出A,B的坐标,代入导函数,由函数在A,B处的导数等于0列式,换元后得到关于a的一元二次方程,结合线性规划知识求得a的取值范围.解答:解:由f(x)=ax+sinx+cosx,得f′(x)=a+cosx﹣sinx,设A(x1,y1),B(x2,y2),则f′(x1)=a+cosx1﹣sinx1,f′(x2)=a+cosx2﹣sinx2.由,得a2+a+(cosx1﹣sinx1)(cosx2﹣sinx2)+1=0.令m=cosx1﹣sinx1,n=cosx2﹣sinx2,则m∈,.∴a2+(m+n)a+mn+1=0.△=(m+n)2﹣4mn﹣4=(m﹣n)2﹣4,∴0≤(m﹣n)2﹣4≤4,.当m﹣n=时,m+n=0,又=.∴﹣1≤a≤1.∴函数f(x)的图象上存在不同的两点A,B,使得曲线y=f(x)在点A,B处的切线互相垂直,则实数a的取值范围为.故答案为:.点评:本题考查利用导数研究曲线上某点的切线方程,考查了数学转化思想方法,解答的关键在于由关于a的方程的根求解a的范围,是有一定难度题目.15.(5分)已知定义在R上的连续奇函数f(x)满足f(x﹣2)=﹣f(x),且在的最大值为2,有下列命题:①f(x)的周期为4;②f(x)的图象关于直线x=2k+1(k∈Z)对称;③f(x)的图象关于点(2k,0)(k∈Z)对称;④f(x)在R上的最小值是2.其中真命题为①②③④.考点:函数的周期性;函数奇偶性的性质.专题:函数的性质及应用.分析:利用已知条件,周期、轴对称、中心对称的意义判断前3 个命题都是正确的,对于第四个命题,由奇偶性知f(x)在的最大值为2,得f(x)在的最小值﹣2,再由①②③正确得④正确.解答:解:由f(x﹣2)=﹣f(x)得f(x﹣4)=f(x),所以函数f(x)的周期为4,故①正确由f(4k+2﹣x)=f(2﹣x)=﹣f(x﹣2)=f(x),所以f(x)的图象关于直线x=2k+1(k∈Z)对称,故②正确;由f(4k﹣x)=f(﹣x)=﹣f(x)得f(4k﹣x)+f(x)=0,故正确③;由f(x)在的最大值为2,得f(x)在的最小值﹣2,又f(x﹣2)=﹣f(x),所以f(x)在的最大值为2,最小值为﹣2.由①得f(x)在R上的最小值是2,故④正确.故答案为:①②③④点评:本题考察了抽象函数的性质,性质的解析式表示,掌握好数学表达式是解题关键.三、解答题(共75分)16.(12分)已知函数f(x)=sinωx+cosωx+c(ω>0,x∈R,c是实数常数)的图象上的一个最高点(,1),与该最高点最近的一个最低点是(,﹣3).(1)求函数f(x)的解析式及其单调增区间;(2)在△ABC中,角A、B、C所对的边分别为a,b,c,且•=﹣ac,角A的取值范围是区间M,当x∈M时,试求函数f(x)的取值范围.考点:三角函数中的恒等变换应用;函数y=Asin(ωx+φ)的图象变换.专题:计算题;三角函数的图像与性质;解三角形.分析:(1)利用三角函数中的恒等变换可求得f(x)=2sin(ωx+)+c,再依题意可求得c及ω,从而可得函数f(x)的解析式,继而利用正弦函数的单调性可求其单调增区间;(2)利用向量的数量积与诱导公式可求得cosB=,又0<B<π,于是知B=,从而知M=(0,),利用正弦函数的单调性与最值即可求得函数f(x)的取值范围.解答:解:(1)∵f(x)=sinωx+cosωx+c=2(sinωx+cosωx)+c=2sin(ωx+)+c,∴f(x)max=2+c=1,f(x)min=﹣2+c=﹣3,∴c=﹣1;又=﹣=,∴T==π,∴ω=2,∴f(x)=2sin(2x+)﹣1.由2kπ﹣≤2x+≤2kπ+(k∈Z),得:kπ﹣≤x≤kπ+(k∈Z),∴函数f(x)的单调增区间为(k∈Z);(2)依题意,•=||•||cos<,>=ca•cos(π﹣B)=﹣ac,∴cosB=,又0<B<π,∴B=.∴A∈(0,),即M=(0,);∴当x∈(0,)时,2x+∈(,),∴sin(2x+)∈(﹣1,1],∴f(x)=2sin(2x+)﹣1∈(﹣3,1].即函数f(x)的取值范围为(﹣3,1].点评:本题考查三角函数中的恒等变换,考查向量的数量积与诱导公式,突出考查正弦函数的单调性与最值,属于中档题.17.(12分)已知偶函数f(x)的定义域为,且f(﹣1)=1,若对任意x1,x2∈,x1≠x2,都有>0成立.(1)解不等式;(2)若f(x)≤t2﹣2at+1对x∈和a∈恒成立,求实数t的取值范围.考点:函数恒成立问题.专题:函数的性质及应用.分析:(1)根据题意得f(x)在上单调递减,又f(x)是偶函数,则f(x)=f(﹣|x|),由此得从而解得x范围;(2)由不等式恒成立的条件求实数t的取值范围.解答:解:(1)由对任意x1,x2∈,x1≠x2,都有成立知,f(x)在上单调递减,又f(x)是偶函数,则f(x)=f(﹣|x|),所以,故不等式的解集为.(2)由已知f max(x)=f(﹣1)=1,又f(x)≤t2﹣2at+1对x∈和a∈恒成立,所以1≤t2﹣2at+1⇔2at﹣t2≤0,在a∈上恒成立,只需,即t=0或t≤﹣2或t≥2,所以实数t的取值范围是(﹣∞,﹣2]∪{0}∪点评:本题综合考察了对数函数的性质,运用换元,构造的方法转化求解,考察了多种数学思想,难度较大.19.(12分)已知函数f(x)=ax3﹣bx2+(2﹣b)x+1(a,b是实数,a≠0)在x=x1处取得极大值,在x=x2处取得极小值,且0<x1<1<x2<2.(1)求证:0<a<2b<3a:(2)若函数g(x)=f′(x)﹣2+a﹣2b.设g(x)的零点为α,β,求|α﹣β|的取值范围.考点:利用导数研究函数的极值.专题:计算题;证明题;导数的综合应用.分析:(1)由极值和导数的关系,以及单调性和导数的关系得到a>0,再由二次函数的性质可得f′(0)>0,f′(1)<0,f′(2)>0,即可得证;(2)求出g(x)的表达式,运用韦达定理,求出|α﹣β|的表达式,配方再由(1)的结论,即可得到.解答:(1)证明:由题意f'(x)=ax2﹣2bx+(2﹣b),f'(x)=0的根为x1,x2,且0<x1<1<x2<2,且f(x)在区间(﹣∞,x1),(x2,+∞)上单调递增,即f'(x)>0,f(x)在(x1,x2)上单调递减,即f'(x)<0,所以a>0,所以,又a>0,所以0<a<2b<3a;(2)解:函数g(x)=f'(x)﹣2+a﹣2b.设g(x)的零点为α,β,即有g(x)=ax2﹣2bx+a﹣3b,α+β=,,则,由(1)知∴.点评:本题考查导数的综合应用:求单调区间和求极值,考查函数和方程的转换思想方法,注意运用二次函数的性质解决,属于中档题.20.(13分)f(x)=mx﹣alnx﹣m,g(x)=,其中m,a均为实数.(1)求g(x)的极值.(2)设a=﹣1,若函数h(x)=f(x)+xe x+1•g(x)﹣m2lnx是增函数,求m的取值范围.(3)设a=2,若对任意给定的x0∈(0,e],在区间(0,e]上总存在t1,t2(t1≠t2),使得f(t1)=f(t2)=g(x m),求m的取值范围.考点:导数在最大值、最小值问题中的应用.专题:导数的综合应用.分析:(1)对于第一问非常简单,只需按求解极值的定义求解即可.(2)由题意可得,对x∈(0,+∞)恒成立,讨论二次函数在(0,+∞)上的单调性即可得出结论;(3)通过第三问的条件,你会得到f(x)在区间(0,e]不是单调函数的结论,并要求f (x)的值域需包含g(x)的值域便可.接下来就是看怎样让f(x)的值域包含g(x)的值域,即能求出m的范围.解答:解:(1),令g(x)=0,得x=1当x∈(0,1)时,g'(x)>0,当x∈(1,+∞)时,g'(x)<0,∵g(1)=1∴y=g(x)的极大值为1,无极小值.(2)因为a=﹣1,由题意,h(x)=x2+m(x﹣1)+(1﹣m2)lnx是增函数,,对x∈(0,+∞)恒成立,当时,只需1﹣m2≥0,即0≤m≤1,当时,只需,即综上得,.(3)由(1)知,当x∈(0,e]时,g(x)∈(0,1],由题意,当f(x)取(0,1]的每一个值时,在区间(0,e]上存在t1,t2(t1≠t2)与该值对应.a=2时,,当m=0时,,f(x)单调递减,不合题意,当m≠0时,时,f'(x)=0,由题意,f(x)在区间(0,e]上不单调,所以,,当时,f'(x)<0,当时,f'(x)>0所以,当x∈(0,e]时,,由题意,只需满足以下三个条件:①②f(e)=m (e﹣1)﹣2≥1③使f(x0)>1∵,所以①成立.由②f(x)=m(x﹣1)﹣2lnx→+∞,所以③满足,所以当m满足即时,符合题意,故,m的取值范围为.点评:本题主要考查利用导数研究函数的单调性、极值、最值等知识,考查学生的等价转化思想的运用能力及运算求解能力,属于难题.21.(14分)已知函数f(x)=lnx﹣mx(m∈R).(1)若曲线y=f(x)过点P(1,﹣1),求曲线y=f(x)在点P处的切线方程;(2)求函数f(x)在区间上的最大值;(3)若函数f(x)有两个不同的零点x1,x2,求证:x1x2>e2.考点:利用导数求闭区间上函数的最值;利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:(1)中求出斜率,代入切线方程即可;(2)中需要讨论m的范围,m的取值范围不一样,求出的最值不同;(3)中将所证的结论转化为求新函数的单调区间问题得以解决.解答:解:(1)因为点P(1,﹣1)在曲线y=f(x)上,所以﹣m=﹣1,解得m=1.因为f′(x)=﹣1=0,所以切线的斜率为0,所以切线方程为y=﹣1.(2)因为f′(x)=﹣m=.①当m≤0时,x∈(1,e),f′(x)>0,所以函数f (x)在(1,e)上单调递增,则f (x)max=f (e)=1﹣me.②当≥e,即0<m≤时,x∈(1,e),f′(x)>0,所以函数f (x)在(1,e)上单调递增,则f (x)max=f (e)=1﹣me.③当1<<e,即<m<1时,函数f (x)在(1,)上单调递增,在(,e)上单调递减,则f (x)max=f ()=﹣lnm﹣1.④当≤1,即m≥1时,x∈(1,e),f′(x)<0,函数f (x)在(1,e)上单调递减,则f (x)max=f (1)=﹣m.综上,①当m≤时,f (x)max=1﹣me;②当<m<1时,f (x)max=﹣lnm﹣1;③当m≥1时,f (x)max=﹣m.(3)不妨设x1>x2>0.因为f (x1)=f (x2)=0,所以lnx1﹣mx1=0,lnx2﹣mx2=0,可得lnx1+lnx2=m(x1+x2),lnx1﹣lnx2=m(x1﹣x2).要证明x1x2>e2,即证明lnx1+lnx2>2,也就是m(x1+x2)>2.因为m=,所以即证明>,即ln>.令=t,则t>1,于是lnt>.令ϕ(t)=lnt﹣(t>1),则ϕ′(t)=﹣=>0.故函数ϕ(t)在(1,+∞)上是增函数,所以ϕ(t)>ϕ(1)=0,即lnt>成立.所以原不等式成立.点评:本题是关于导数的综合应用,利用导数求斜率,求函数的单调区间以及区间上的最值是最主要的题型之一.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成都七中2015届高中毕业班第一次诊断性检测模拟题数学(理科参考答案)一、选择题:本大题共10小题,每小题5分,共50分.二、填空题:本大题共5小题,每小题5分,共25分.11.15; 12.[)5,7; 13.450233πππ⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦,,; 14.3:2:1; 15.②④. 提示:9.构造函数()()x f x g x e =,则2()()()()()()x x x xf x e e f x f x f xg x e e''--'==, ∵任意x R ∈均有()()f x f x '>,并且0x e >,∴()0g x '<,故函数()()x f x g x e=在R 上单调递减,也就是20142014(2014)(0),(2014)(0)e f f f e f -><故选C. 10. 不妨设a b ≤,122222221bcabbbb bc b +<=+≤+=⇒<≤+,,b c Z ∈,1c b ∴=+,1222b a b +∴=+1a bc ⇒==-.a b t c +∴=22c=-. ,a t Z ∈,1,2c ∴=±±,0,1,3,4t∴=,故2max 2(log )log 42t ==.15.②④由题,“可平行性”曲线的充要条件是:对域内1x ∀都21x x ∃≠使得12()()f x f x ''=成立.①错,12(2)y x x '=-+,又1212112(2)2(2)x x x x -+=-+ 1212x x ⇔=,显然12x =时不满足;②对,由()()()()f x f x f x f x ''=--⇒=-即奇函数的导函数是偶函数,对10x ∀≠都21x x ∃=-使得12()()f x f x ''=成立(可数形结合);③错,2()32f x x x a '=-+,又当时,2211223232x x a x x a -+=-+2212123()2()x x x x ⇔-=-1223x x ⇔+=,当11=3x 时不合题意;④对,当0x <时,()(0,1)xf x e '=∈,若具有“可平行性”,必要条件是:当0x >时,21()1(0,1)f x x'=-∈,解得1x >,又1x >时,分段函数具有“可平行性”,1m ∴=(可数形结合).三、解答题:本大题共6小题,共75分. 16.解:(Ⅰ)设{}n a 的公差为d ,依题意,有 52115,51020a a d S a d =+=-=+=-.联立得11551020a d a d +=-⎧⎨+=-⎩,解得161a d ⎧⎨⎩=-=.∴ 6(1)17n a n n =-+-⋅=-. n N *∈ ……………6分 (Ⅱ) 7n a n =-,∴1()(13)22n n a a n n n S +-==. 令(13)72n n n ->-,即215140n n -+> , ……………10分 解得1n <或14n >. 又*n ∈N ,∴14n >.n ∴的最小值为15. ……………12分17.解:(Ⅰ)∵asinA=(a-b)sinB+csinC ,结合0C π<<,得3C =. …………………………………………………6分(Ⅱ)由 C=π-(A+B),得sinC=sin(B+A)=sinBcosA+cosBsinA , ∵ sinC+sin(B-A)=3sin2A ,∴ sinBcosA+cosBsinA+sinBcosA-cosBsinA=6sinAcosA ,整理得sinBcosA=3sinAcosA . (8)分 若cosA=0,即A=2π时,△ABC 是直角三角形,且B=6π,于是b=ctanB=2tan6π,∴ S △ABC =12. ……………………10分 若cosA ≠0,则sinB=3sinA ,由正弦定理得b=3a .② 联立①②,结合c=2,解得,∴ S △ABC =12absinC=12.综上,△ABC 12分18.(Ⅰ)证明:连接AC 交BE 于点M ,连接FM .由//EM CD12AM AE PFMC ED FC∴===. //FM AP ∴. ………………4分 FM BEF PA BEF ⊂⊄面,面, //PA BEF ∴面.………………6分(Ⅱ)连CE ,过F 作FH CE ⊥于H .由于//FH PE ,故FH ABCD ⊥面.过H 作HM BE ⊥于M ,连FM .则FM BE ⊥,即FMH ∠为二面角F BE C --的平面角. 60,FMH FH ∴∠==.23FH PE =,1233MH BC AE ==PE ∴=.………………10分1,AE PE =∴=在Rt PBE ∆中,3BE =,tan PBE ∴∠=,6PBE π∴∠=.∴直线PB 与平面ABCD 所成角的大小为6π. ……………12分 解法二:以E 为坐标原点,,,EB ED EP 为,,x y z 轴建立空间直角坐标系. (0,0,0),(3,0,0),(0,0,),(3,2,0)E B P m C2CF FP = ,22(1,,)33F m ∴.………………7分设平面BEF 的法向量1(,,)n x y z =,由n EB n EF ⎧⋅=⎪⎨⋅=⎪⎩ 得1n =(0,,1)m -. 又面ABCD 法向量为2(0,0,1)n =.由1212cos 60n n nn ⋅=⋅ , 解得m =.………………10分在Rt PBE ∆中,3BE =, tan 3PBE ∴∠=,6PBE π∴∠=.∴直线PB 与平面ABCD 所成角的大小为6π. ……………12分 19.解:(Ⅰ)由直方图知:(200.015300.015400.025500.02600.015700.01)1043.5⨯+⨯+⨯+⨯+⨯+⨯⨯=∴这60人的平均月收入约为43.5百元. ………………4分(Ⅱ)根据频率分布直方图和统计表可知道:[15,25)的人数为0.01510609⨯⨯=人,其中1人不赞成.[25,35)的人数为0.01510609⨯⨯=人,其中2人不赞成. ………………6分X 的所有可能取值为0,1,2,3.338733995(0)18C C P X C C ==⋅=,23312878273333999917(1)36C C C C C P X C C C C ==⋅+⋅=, 212321827827333399992(2)9C C C C C C P X C C C C ==⋅+⋅=,21287233991(3)36C C C P X C C ==⋅=.……………10分 X∴的分布列为012311836936EX ∴=⨯+⨯+⨯+⨯=. ………………12分20.(Ⅰ)解 由e =32,得c =32a ,又b 2=a 2-c 2,所以b =12a ,即a =2b . 由左顶点M (-a,0)到直线x a +y b =1,即bx +ay -ab =0的距离d =455,得|b (-a )-ab |a 2+b 2=455,即2ab a 2+b 2=455,把a =2b 代入上式,得4b 25b 2=455,解得b =1.所以a =2b =2,c = 3.所以椭圆C 的方程为x 24+y 2=1. ………………3分(Ⅱ)证明 设A (x 1,y 1),B (x 2,y 2),①当直线AB 的斜率不存在时,则由椭圆的对称性,可知x 1=x 2,y 1=-y 2. 因为以AB 为直径的圆经过坐标原点,故OA →·OB →=0,即x 1x 2+y 1y 2=0,也就是x 21-y 21=0,又点A 在椭圆C 上,所以x 214-y 21=1, 解得|x 1|=|y 1|=255. 此时点O 到直线AB 的距离d 1=|x 1|=255. ②当直线AB 的斜率存在时, 设直线AB 的方程为y =kx +m , 与椭圆方程联立有⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1, 消去y ,得(1+4k 2)x 2+8kmx +4m 2-4=0,所以x 1+x 2=-8km1+4k 2,x 1x 2=4m 2-41+4k 2.因为以AB 为直径的圆过坐标原点O ,所以OA ⊥OB . 所以OA →·OB →=x 1x 2+y 1y 2=0. 所以(1+k 2)x 1x 2+km (x 1+x 2)+m 2=0. 所以(1+k 2)·4m 2-41+4k 2-8k 2m 21+4k2+m 2=0. 整理得5m 2=4(k 2+1), 所以点O 到直线AB 的距离d 1=|m |k 2+1=255.综上所述,点O 到直线AB 的距离为定值255. ………………8分(Ⅲ)解 设直线OA 的斜率为k 0. 当k 0≠0时,则OA 的方程为y =k 0x ,OB 的方程为y =-1k 0x ,联立⎩⎪⎨⎪⎧y =k 0x ,x 24+y 2=1,得⎩⎨⎧x 21=41+4k 20,y 21=4k 201+4k 20.同理可求得⎩⎨⎧x 22=4k 20k 20+4,y 22=4k 20+4.故△AOB 的面积为S =121+k 20·|x 1|·1+1k 20·|x 2|=2(1+k 20)2(1+4k 20)(k 20+4). 令1+k 20=t (t >1),则S =2t 24t 2+9t -9=21-9t 2+9t+4,令g (t )=-9t 2+9t +4=-9(1t -12)2+254(t >1),所以4<g (t )≤254.所以45≤S <1.当k 0=0时,可求得S =1,故45≤S ≤1,故S 的最小值为45. ………………13分 直线的参数方程也可以做,更简洁。
21.解:(Ⅰ)由题意得ln ()(1ln )x f x a x x ⋅=-⋅()(1)ln xf x ax x x∴=-≠. ………………2分 ()f x 在(1,)+∞上是减函数,∴等价于2ln 1()0(ln )x f x a x -'=-≤在(1,)+∞上恒成立max 2ln 1()(ln )x a x -⇔≥.…………4分 222ln 1111111()()(ln )ln ln ln 244x x x x x -=-+=--+≤,当且仅当11ln 2x =即2x e =时取到最大值. ∴1=4a . ………………6分(Ⅱ)题意等价于min max 1()(())4f x f x a '≤+=.由(Ⅰ)知2111()()ln 24f x a x '=--+-. 2e x e ≤≤,∴1112ln x≤≤. ∴()f x '在2,x e e ⎡⎤∈⎣⎦上单调递增,且()f x '的值域为1,4a a ⎡⎤--⎢⎥⎣⎦. ………8分 1 当0a ≤时,()0f x '≥,()f x 在2,x e e ⎡⎤∈⎣⎦上单调递增,min 1()()4f x f e e ae ==-≤11-04a e⇒≥>与前提矛盾,无解. 2 当14a ≥时,()0f x '≤,()f x 在2,x e e ⎡⎤∈⎣⎦上单调递减, 222min1()()24e f x f e ae ==-≤2111244a e ⇒≥->.∴21124a e ≥-. 3 当104a <<时, ()y f x '=存在唯一零点20(,)x e e ∈,且[]0,x e x ∈时,()0f x '≤,()f x 单调递减,(20,x x e ⎤∈⎦时,()0f x '>,()f x 单调递增,0min 0001()()ln 4x f x f x ax x ∴==-≤0011ln 4a x x ⇒≥-. 设211()()ln 4h x e x e x x =-<<,2111()()(ln )4h x x x x'∴=--, 211(,1)(ln )4x ∈,2111(,)444x e e ∈211()0()(ln )4h x h x x x '>∴<∴单减. 222111111111()ln 4ln 424244h x x x e e e ∴=->-=->-=. 00111ln 44a x x ⇒≥->与前提矛盾,无解. 综上所述,实数a 的取值范围是211,24e ⎡⎫-+∞⎪⎢⎣⎭. ………………14分 也可分离参数做,更简洁.。