九年级沪科版数学下册课件:29-30
合集下载
上海科学技术出版社九年级(初三)数学下册全套PPT课件
O
结论
旋转的基本性质 在一个图形和它经过旋转所得到的图形中,
(1)对应点到旋转中心的距离相等。
(2)两组对应点分别与旋转中心的连线所成的角相 等,都等于旋转角。 (3)旋转中心是唯一不动的点。 (4)旋转不改变图形的大小和形状。
例 如图,如果把钟表的指针看做四边形AOBC,它绕O点旋转得 到四边形DOEF。 在这个旋转过程中:
中心对称图形是特殊的旋转对称图形,不 同之处在于旋转角度不一样,中心对称图形的 旋转角度是180°,而旋转对称图形的旋转角度 是在0°到 360°之间,一个旋转对称图形的旋 转角可以是一个,也可以是多个。
练习
1.如图,在正方形ABCD中,E是CB延长线上一点,△ABE经过 旋转后得到△ADF,请按图回答: 90° (1)旋转中心是哪一点? 点A (2)旋转角是多少度? E G (3)∠EAF等于多少度? 90° B A (4)经过旋转,点B与点E分别转到 什么位置? 点D、点F (5)若点G是线段BE的中点,经过旋转后, 点G转到了什么位置?请在图形上作出。
圆的基本概念和点与圆的位置关系
圆是生活中常见的图形,许多物体都给我们以圆的形象。
探究发现
在一个平面内,线段OP绕它固定的一个端点O旋转 一周,另一个端点P所形成的封闭曲线叫做圆。
固定的端点O叫做圆心; 线段OP的长叫做半径; 以点O为圆心的圆,记作“⊙O”,读作“圆O”。
归纳总结
从画圆的过程可以看出: (1)圆上各点到定点(圆心O)的距离都等于定长 (半径r);
1.成中心对称的两个图形具有图形旋转的一切性质。 2.成中心对称的两个图形,对称点连线都经过对称 中心,并且被对称中心平分。
例:已知四边形ABCD和点O,试画出四边形ABCD关 于点O成中心对称的图形A′B′C′D′ 。
沪科版九年级数学下册全册全套ppt课件【最新版】
∴∠A1=∠C1=∠C,∠A1=∠C1EC,
∴A1B∥CE,
A
∴四边形A1BCE是平行四边形, D E
又∵ A1B=BC,
A1
C1
∴□A1BCE是菱形.
F
B
C
三 旋转对称图形
合作探究 活动 如图,在硬纸板上剪下两张如下图形,然后将它 们叠放在一起,在其中心钉上一枚图钉,然后旋转上 面的硬纸板,旋转一定角度后,它能与下面的硬纸板 重合吗?
到△A1BC1的位置,AB与A1C1相交于点D,AC与
A1C1,BC1分别交于点E,F.
(1)求证:△BA1D≌△BCF;
(2)当∠C=α°时,判定四边形A1BCE的形状,并说
明理由.
A
DE
A1
C1
F
B
C
(1)证明:∵△ABC是等腰三角形,
∴AB=BC,∠A=∠C.
由旋转的性质,可得
A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBF,
B
A
C
O
F
D
E
归纳: 确定一次图形的旋转时,必须明确 旋转中心 旋转角 旋转方向
注意:①旋转的范围是“平面内”,其中“旋转中心、 旋转方向、旋转角度”称为旋转的三要素; ②旋转变换同样属于全等变换.
典例精析
例1 如图,点A、B、C、D都在方格纸的格点上,若
△AOB绕点O按逆时针方向旋转到△COD的位置,则
知识要点
旋转的定义 在平面内,一个图形绕着一个 定点,旋转一定的角度,得到 另一个图形的变换,叫做旋转.
这个定点叫做旋转中心.
P
对
应
旋转角 点
O
旋转中心
P′
转动的角称为旋转角.
完整版沪科版九年级数学下册全册全套课件ppt
知识要点
旋转的定义 在平面内,一个图形绕着一个 定点,旋转一定的角度,得到 另一个图形的变换,叫做旋转.
这个定点叫做旋转中心.
P
对
应
旋转角 点
O
旋转中心
P′
转动的角称为旋转角.
图中的点 P 旋转后成为点 P',这两个点叫做对应
点.
填一填: 若叶片 A 绕 O 顺时针旋转到叶片 B,则旋转中心
是___O___,旋转角是__∠__A_O__B__,旋转角等于_6_0_°_, 其中的对应点有__A_与__B__、 __B_与__C__、 __C_与__D__、 __D_与__E__、 __E_与__F__、 __F_与__A__ .
观察下图,你能 找到相等的角和 线段吗?
A' A
B'
C
B
O
C'
角:∠AOA'=∠BOB' =∠COC'
线段: AO=A'O ,BO=B'O ,CO =C'O
知识要点
A E
F
B
D 旋转的性质
O
C
1. 对应点到旋转中心的距离相等;
2. 两组对应点分别与旋转中心的连线所成的角相等, 都等于旋转角;
3. 旋转中心是唯一不动的点.
B
A
思考:怎样来定 义这种图形变换?
把时针当成一个图形,那么它可以绕着中心 固定点转动一定角度.
钟表的指针在不停地转动,从12时到4时,时 针转动了__1_2_0__度.
怎样来定义这 种图形变换?
把叶片当成一个平面图形,那么它可以绕着 平面内中心固定点转动一定角度. 风车风轮的每个叶片在风的吹动下转动到新的位置.
沪科版九年级数学下册全册全套课件
知识要点
旋转的定义 在平面内,一个图形绕着一个 定点,旋转一定的角度,得到 另一个图形的变换,叫做旋转.
这个定点叫做旋转中心.
P
对
应
旋转角 点
O
旋转中心
P′
转动的角称为旋转角.
图中的点 P 旋转后成为点 P',这两个点叫做对应
点.
填一填: 若叶片 A 绕 O 顺时针旋转到叶片 B,则旋转中心
是___O___,旋转角是__∠__A_O__B__,旋转角等于_6_0_°_, 其中的对应点有__A_与__B__、 __B_与__C__、 __C_与__D__、 __D_与__E__、 __E_与__F__、 __F_与__A__ .
B
A
思考:怎样来定 义这种图形变换?
把时针当成一个图形,那么它可以绕着中心 固定点转动一定角度.
钟表的指针在不停地转动,从12时到4时,时 针转动了__1_2_0__度.
怎样来定义这 种图形变换?
把叶片当成一个平面图形,那么它可以绕着 平面内中心固定点转动一定角度. 风车风轮的每个叶片在风的吹动下转动到新的位置.
的菱形重合,那么旋转的角度至少是
(C)
A.360° B.270° C.180° D.90°
解析:∵菱形是中心对称图形,∴把菱形绕它的中心 旋转,使它与原来的菱形重合,旋转角为180°的整数 倍,∴旋转角至少是180°.故选C.
B
A
C
O
F
D
E
归纳: 确定一次图形的旋转时,必须明确 旋转中心 旋转角 旋转方向
注意:①旋转的范围是“平面内”,其中“旋转中心、 旋转方向、旋转角度”称为旋转的三要素; ②旋转变换同样属于全等变换.
典例精析