沪教版八年级下23.2 概率的计算--巩固练习 (有答案)
沪教版(上海)八年级数学第二学期第二十三章概率初步综合练习试题(含答案及详细解析)
八年级数学第二学期第二十三章概率初步综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列事件是随机事件的是()A.2021年全年有402天B.4年后数学课代表会考上清华大学C.刚出生的婴儿体重50公斤D.袋中只有10个红球,任意摸出一个球是红球2、下列事件中,属于必然事件的是()A.射击运动员射击一次,命中10环B.打开电视,正在播广告C.投掷一枚普通的骰子,掷得的点数小于10D.在一个只装有红球的袋中摸出白球3、投掷一枚质地均匀的硬币m次,正面向上n次,下列表达正确的是()A.nm的值一定是12B.nm的值一定不是12C.m越大,nm的值越接近12D.随着m的增加,nm的值会在12附近摆动,呈现出一定的稳定性4、下列事件中,是随机事件的为()A.通常加热到100℃时,水沸腾B.任意画一个三角形,其内角和是360°C.三角形中,任意两边之和大于第三边D.随意翻到一本书的某页,这页的页码是奇数5、下列事件中,属于必然事件的是()A.任意购买一张电影票,座位号是奇数B.抛一枚硬币,正面朝上C.五个人分成四组,这四组中有一组必有2人D.打开电视,正在播放动画片6、做随机抛掷一枚纪念币的试验,得到的结果如下表所示:下面有3个推断:①当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;②随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;③若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次.其中所有合理推断的序号是()A.②B.①③C.②③D.①②③7、如图,将一个棱长为3的正方体表面涂上颜色,把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,有三个面被涂色的概率为()A.2027B.827C.29D.4278、下列事件中,属于不可能事件的是()A.射击运动员射击一次,命中靶心B.从一个只装有白球和红球的袋中摸球,摸出黄球C.班里的两名同学,他们的生日是同一天D.经过红绿灯路口,遇到绿灯9、下列事件中是必然事件的是()A.小菊上学一定乘坐公共汽车B.某种彩票中奖率为1%,买10000张该种票一定会中奖C.一年中,大、小月份数刚好一样多D.将豆油滴入水中,豆油会浮在水面上10、把一副普通扑克牌中13张黑桃牌洗匀后正面向下放在桌子上.从中随机抽取一张,抽出的牌上的数小于6的概率为()A.813B.713C.613D.513第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、从分别标有数字﹣3,﹣2,﹣1,0,1,2,3的七张卡片中,随机抽取一张,所抽卡片上数的绝对值不小于2的概率是_______.2、掷一枚质地均匀的硬币8次,其中3次正面朝上,5次反面朝上,现再掷一次,正面朝上的概率是 _____.3、如图,在一块边长为30cm的正方形飞镖游戏板上,有一个半径为10cm的圆形阴影区域,飞镖投向正方形任何位置的机会均等,则飞镖落在阴影区域内的概率为________(结果保留π).4、在一个不透明的布袋中,黄色、红色的乒乓球共10个,这些球除颜色外其他都相同.小刚通过多次摸球实验后发现其中摸到黄球的频率稳定在60%,则布袋中红色球的个数很可能是___个.5、小明训练飞镖,在木板上画了直径为20cm和30cm的同心圆,如图,他在距木板5米开外将一个飞镖随机投掷到该图形内,则飞镖落在阴影区域的概率为 _______.三、解答题(5小题,每小题10分,共计50分)1、如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等(指针停在分割线上再转一次).(1)现随机转动转盘一次,停止后,指针指向1的概率为_______.(2)小明和小华利用这个转盘做游戏,若采用下列游规则:随机转动转盘两次、停止后,指针各指向一个数字,若两数之积为偶数,则小明胜;否则小华胜.你认为对双方公平吗?请用列表或画树状图的方法说明理由.2、盲盒为消费市场注入了活力.某商家将1副单价为60元的蓝牙耳机、2个单价为40元的多接口优盘、1个单价为30元的迷你音箱分别放入4个外观相同的盲盒中.(1)如果随机抽一个盲盒,直接写出抽中多接口优盘的概率;(2)如果随机抽两个盲盒,求抽中总价值不低于80元商品的概率.3、为答谢全国人民的真情关爱,从8月8日开始,湖北举办“与爱同行惠游湖北”活动,湖北近400家A级旅游景区对全国游客免门票开放.已知A、B、C、D四个景点实行免门票活动,甲、乙都有去旅游的打算.(1)若甲随机选择一个景点游玩,求甲选择A景点的概率;(2)利用列表或画树状图的方法,求甲、乙两人选择的两个景点不同的概率.4、落实“双减”政策,丰富课后服务,为了发展学生兴趣特长,梁鄂中学七年级准备开设A(窗花剪纸)、B(书法绘画)、C(中华武术)、D(校园舞蹈)四门选修课程(每位学生必须且只选其中一门),甲、乙两位同学分别随机选择其中一门选修课程参加学习.用列表法或画树状图法求:(1)甲、乙都选择A(窗花剪纸)课程的概率;(2)甲、乙选择同一门课程的概率.5、在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球各一个,现在有甲,乙,丙三个同学,甲先从纸箱里摸取一个小球,记下颜色后放回,乙再摸取,记下颜色后放回,最后丙摸取,记下颜色.(1)请同学们利用树状图计算三个人摸取的小球颜色相同的概率.(2)按照以上的摸取方式,如果想使总的可能结果超过100种,至少需要几个人?(直接写出结论即可)-参考答案-一、单选题1、B【分析】随机事件是指在一定的条件下可能发生也可能不发生的事件,据此逐项判断即可.【详解】解:A、2021年全年有402天,是不可能事件,不符合题意;B、4年后数学课代表会考上清华大学,是随机事件,符合题意;C、刚出生的婴儿体重50公斤,是不可能事件,不符合题意;D、袋中只有10个红球,任意摸出一个球是红球,是必然事件,不符合题意,故选:B.【点睛】本题考查随机事件,理解随机事件的概念是解答的关键.2、C【分析】根据事件发生的可能性大小判断即可.【详解】解:A、射击运动员射击一次,命中10环,是随机事件;B、打开电视,正在播广告,是随机事件;C、投掷一枚普通的骰子,掷得的点数小于10,是必然事件;D、在一个只装有红球的袋中摸出白球,是不可能事件;故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3、D【分析】根据频率与概率的关系以及随机事件的定义判断即可【详解】投掷一枚质地均匀的硬币正面向上的概率是12,而投掷一枚质地均匀的硬币正面向上是随机事件,n m 是它的频率,随着m的增加,nm的值会在12附近摆动,呈现出一定的稳定性;故选:D【点睛】本题考查对随机事件的理解以及频率与概率的联系与区别.解题的关键是理解随机事件是都有可能发生的时间.4、D【分析】根据随机事件的定义:在一定条件下,可能发生也可能不发生的事件叫做随机事件,进行逐一判断即可.【详解】解:A、通常加热到100℃时,水沸腾,这是必然事件,不符合题意;B、任意画一个三角形,其内角和是360°这是不可能事件,不符合题意;C、三角形中,任意两边之和大于第三边,这是必然事件,不符合题意;D、随意翻到一本书的某页,这页的页码是奇数,也可能是偶数,这是随机事件,符合题意;故选D.【点睛】本题主要考查了随机事件的定义,熟知定义是解题的关键.5、C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、任意购买一张电影票,座位号是奇数是随机事件;B、抛一枚硬币,正面朝上是随机事件;C、五个人分成四组,这四组中有一组必有2人是必然事件;D、打开电视,正在播放动画片是随机事件;故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6、C【分析】根据概率公式和图表给出的数据对各项进行判断,即可得出答案.【详解】解:①当抛掷次数是1000时,“正面向上”的频率是0.512,所以“正面向上”的概率是0.512;随着试验次数的增加,“正面向上”的频率总在什么数值附近摆动,才能用频率估计概率,故错误;②随着试验次数的增加,“正面向上”的频率总在0.520附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.520;正确;③若再次做随机抛掷该纪念币的实验,则当抛掷次数为3000时,出现“正面向上”的次数不一定是1558次.正确;故选:C.【点睛】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,利用数形结合的思想解答.7、B【分析】直接根据题意得出恰有三个面被涂色的有8个,再利用概率公式求出答案.【详解】解:由题意可得:小立方体一共有27个,恰有三个面被涂色的为棱长为3的正方体顶点处的8个小正方体;故取得的小正方体恰有三个面被涂色.的概率为827.故选:B.【点睛】此题主要考查了概率公式的应用,正确得出三个面被涂色.小立方体的个数是解题关键.8、B【分析】根据不可能事件的意义,结合具体的问题情境进行判断即可.【详解】解:A、射击运动员射击一次,命中靶心,是随机事件;故A不符合题意;B、从一个只装有白球和红球的袋中摸球,摸出黄球,是不可能事件,故B符合题意;C、班里的两名同学,他们的生日是同一天,是随机事件;故C不符合题意;D、经过红绿灯路口,遇到绿灯,是随机事件,故D不符合题意;故选:B.【点睛】本题考查随机事件,不可能事件,必然事件,理解随机事件,不可能事件,必然事件的意义是正确判断的前提.9、D【分析】必然事件就是一定发生的事件,根据定义即可解答.【详解】解:A、小菊上学乘坐公共汽车是随机事件,不符合题意;B、买10000张一定会中奖也是随机事件,尽管中奖率是1%,不符合题意;C、一年中大月份有7个,小月份有5个,不相等,是不可能事件,不符合题意;D、常温下油的密度<水的密度,所以油一定浮在水面上,是必然事件,符合题意.故选:D.【点睛】用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10、D【分析】共有13种等可能结果,小于6的有5种,利用概率公式计算即可.解:一副普通扑克牌中13张黑桃牌洗匀后正面向下放在桌子上.从中随机抽取一张,共有13种等可能结果,小于6的有5种,抽出的牌上的数小于6的概率为513,故选:D.【点睛】本题考查了概率的求法,解题关键是熟记概率公式,准确列出所有可能.二、填空题1、4 7【分析】由标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的有3种情况,直接利用概率公式求解即可求得答案.【详解】解:∵标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,一共有七中可能情况,其中所抽卡片上的数的绝对值不小于2的有﹣3,-2,2,3四种情况,∴随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是:47.故答案为47.【点睛】本题考查列举法求概率,掌握列举法求概率方法,熟记概率公式是解题关键.2、12##直接利用概率的意义分析得出答案. 【详解】解:∵掷质地均匀硬币的试验,每次正面向上和向下的概率相同, ∴再次掷出这枚硬币,正面朝上的概率是12. 故答案为:12. 【点睛】此题主要考查了概率的意义,正确把握概率的意义是解题关键. 3、9π## 【分析】根据概率的公式,利用圆的面积除以正方形的面积,即可求解 【详解】解:根据题意得:飞镖落在阴影区域内的概率为2210309ππ⨯=故答案为:9π 【点睛】本题考查了概率公式:熟练掌握随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数;P (必然事件)=1;P (不可能事件)=0是解题的关键. 4、4 【分析】设出黄球的个数,根据黄球的频率求出黄球的个数即可解答. 【详解】设黄球的个数为x ,∵共有黄色、红色的乒乓球10个,黄球的频率稳定在60%, ∴60%10x=, 解得:6x =,∴布袋中红色球的个数很可能是1064-=(个). 故答案为:4. 【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率,关键是根据黄球的频率得到相应的等量关系,列出方程. 5、59【分析】首先计算出大圆和小圆的面积,进而可得阴影部分的面积,再求出阴影部分面积与总面积之比即可得到飞镖击中阴影区域的概率. 【详解】解:大圆面积:π×(302)2=225π (cm 2), 小圆面积:π×(202)2=100π(cm 2), 阴影部分面积:225π−100π=125π(cm 2), 飞镖落在阴影区域的概率为:12552259ππ=. 故答案为:59. 【点睛】此题主要考查了概率,一般用阴影区域表示所求事件(A );然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.三、解答题1、(1)1 3(2)不公平,理由见解析【分析】(1)利用概率公式直接进行计算即可;(2)先画树状图,得到所有的等可能的结果数与积为偶数的结果数,再利用概率公式计算即可. (1)解:随机转动转盘一次,停止后,指针指向1的概率为:1 . 3故答案为:1 3(2)解:如图,画树状图如下:由树状图可得:所有的等可能的结果数有9个,积为偶数的结果数有5个,所以小明胜的概率为:5,9P小华胜的概率为:4,9而54,99所以游戏不公平.【点睛】本题考查的是利用列表法或画树状图的方法求解简单随机事件的概率,掌握“画树状图的方法”是解本题的关键.2、(1)抽中多接口优盘的概率为12;(2)P(抽中商品总价值不低于80元)23=.【分析】(1)利用列举法求解即可;(2)先用列表法或树状图法得出所有的等可能的结果数,然后找到总价值不低于80元商品的结果数,最后根据概率公式求解即可.【详解】解:(1)∵随机抽取一个盲盒可以抽到蓝牙耳机,多接口优盘1,多接口优盘2,迷你音箱,一共4种等可能性的结果,其中抽到多接口优盘的结果数有2种,∴P抽到多接口优盘21 42==;(2)将蓝牙耳机记为A,多接口U盘记为1B、2B,迷你音箱记作C.则从4个盲盒中随机抽取2个的树状图如下:由上图可知,随机抽两个盲盒,所获商品可能出现的结果有12种,它们出现的可能性相等,其中抽中商品总价值不低于80元的结果有8种.∴P(抽中商品总价值不低于80元)82 123 ==.【点睛】本题主要考查了列举法求解概率,树状图或列表法求解概率,解题的关键在于能够熟练掌握相关知识进行求解.3、(1)14;(2)34.【分析】(1)由概率公式即可得出答案;(2)根据甲、乙两人在A、B、C、D四个景点中选择去不同的两个景点,画出树状图,根据概率公式进行计算即可.【详解】解:(1)若甲随机选择一个景点游玩,则甲选择A景点的概率为14,故答案为:14;(2)画树状图如图所示:∵共有16种等可能出现的结果,其中甲、乙两人在A、B、C、D四个景点中选择去不同的两个景点的结果有12种,∴甲、乙两人在A、B、C、D四个景点中选择去不同的两个景点的概率=123 164.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.4、(1)116;(2)14【分析】(1)由题意先用列表法得出所有等可能的结果数,进而用甲、乙都选择A(窗花剪纸)课程的情况数除以所有等可能的结果数即可;(2)由题意直接用甲、乙选择同一门课程的情况数除以所有等可能的结果数即可.【详解】解:(1)由题意列表,由图表可知共有16种等可能的情况数,其中甲、乙都选择A(窗花剪纸)课程的情况数为1种,所以甲、乙都选择A(窗花剪纸)课程的概率为116.(2)由(1)图表可知共有16种等可能的情况数,其中甲、乙选择同一门课程的情况数为4种,所以甲、乙选择同一门课程的概率为41 164.【点睛】本题考查列表法和画树状图法求概率,正确列表和画出树状图是解题的关键.用到的知识点为:概率=所求情况数与总情况数之比.5、(1)19;(2)使总的可能结果超过100种,至少需要5个人【分析】(1)利用树状图表示出所有可能的结果数以及三个人摸取的小球颜色相同的结果数,即可求解; (2)设需要n 个人,则由题意可得,3100n >,求解即可. 【详解】解:(1)树状图如下图:所有可能的结果数为3327=,三个人摸取的小球颜色相同的结果数为3, 三个人摸取的小球颜色相同的概率为31279=, (2)设需要n 个人,则总的结果有3n 个, 由题意可得,3100n >, 当4n =时,4381100=<, 当5n =时,53243100=>,所以使总的可能结果超过100种,至少需要5个人. 【点睛】此题考查了树状图求解概率的方法,涉及了有理数乘方的运算,解题的关键是掌握树状图求解概率的方法.。
沪教版八年级下册数学第二十三章 概率初步含答案(真题汇编)
沪教版八年级下册数学第二十三章概率初步含答案一、单选题(共15题,共计45分)1、袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是()A. B. C. D.2、衣柜不透明的盒子中有3个红球和2个白球,它们除颜色外都相同,若从中任何摸出一个球,则下列叙述正确的是().A.摸到红球是必然事件B.摸到黑球与摸到白球是随机事件C.摸到红球比摸到白球的可能性大D.摸到白球比摸到红球的可能性大3、下列说法中,正确的是()A.一个游戏中奖的概率是,则做10次这样的游戏一定会中奖B.为了了解一批炮弹的杀伤半径,应采用全面调查的方式 C.一组数据8,7,7,10,6,7,9的众数和中位数都是7 D.若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小4、黑色不透明口袋里装有红色、白色球共10个,它们除颜色外都相同.从口袋中随机摸出一个球,记下颜色后放回,并摇匀,不断重复上述实验1000次,其中200次摸到红球,则可估计口袋中红色球的个数是()A.2B.4C.6D.85、下列事件中,属于必然事件的是()A.随意翻到一本书的某页,这页的页码是奇数B.测量某天的最低气温,结果为﹣150℃C.把4个球放到3个抽屉里,其中一个抽屉里至少有2个球D.我市天气预报中说“明天降雪的概率是80%”,表示明天我市有80%的地区降雪6、下列说法正确的是()A.一组数据2,5,5,3,4的众数和中位数都是5B.“掷一次骰子,向上一面的点数是1”是必然事件C.掷一枚硬币正面朝上的概率是表示每抛硬币2次就有1次正面朝上 D.计算甲组和乙组数据,得知= =10,=0.1,=0.2,则甲组数据比乙组数据稳定7、从某班学生中随机选取一名学生是女生的概率为,则该班女生与男生的人数比是()A. B. C. D.8、下列说法正确的是()A.一个游戏的中奖概率是,则做5次这样的游戏一定会中奖.B.为了解深圳中学生的心理健康情况,应该采用普查的方式. C.事件“小明今=0.01,乙年中考数学考95分”是可能事件. D.若甲组数据的方差S 2甲=0.1,则乙组数据更稳定.组数据的方差S 2乙9、在四张完全相同的卡片上分别印有等边三角形、平行四边形、等腰梯形、圆的图案,现将印有这些图案的一面朝下,混合后从中一次性随机抽取两张,则抽到的卡片上印有的图案是轴对称图形的是( )A. B. C. D.10、下列事件属于必然事件的是()A.打开电视,正在播出系列专题片“航拍中国”B.将一组数据中的每一个数都加上同一个数,这组数据的方差不变C.一个命题的原命题和它的逆命题都是真命题D.在数轴上任取一点,则这点表示的数是有理数11、一只小鸟自由自在地在空中飞行,然后随意落在如图所示的某个方格中(每个方格除颜色外完全一样),那么小鸟停在黑色方格中的概率是()A. B. C. D.12、下列说法正确的是( )A.为了解我国中学生课外阅读的情况,应采用全面调查的方式B.一组数据1,2,5,5,5,3,3的中位数和众数都是5C.抛掷一枚硬币100次,一定有50次“正面朝上” D.甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定13、如图示一个黑白小方块相同的长方形,李明用一个小球在上面随意滚动,球停在黑色方块(每个小方块的大小相同)的概率()A. B. C. D.14、从口袋中随机摸出一球,再放回口袋中,不断重复上述过程,共摸了150次,其中有50次摸到黑球,已知口袋中有黑球10个和若干个白球,由此估计口袋中大约有多少个白球().A.10个B.20个C.30个D.无法确定15、如图,随机闭合开关,,中的两个,则能让两盏灯泡同时发光的概率为()A. B. C. D.二、填空题(共10题,共计30分)16、两个全等的转盘A、B,A盘被平均分为12份,颜色顺次为红、绿、蓝.B 盘被平均分为红、绿、蓝3份.分别自由转动A盘和B盘,则A盘停止时指针指向红色的概率________B盘停止时指针指向红色的概率.(用“>”、“<”或“=”号填空)17、30张牌,牌面朝下,每次抽出一张记下花色后再放回,洗牌后再抽,抽到红心、黑桃、草花、方块的频率依次为20%,32%,44%,4%,则四种花色的牌各约有________ .(按红心、黑桃、草皮、方块的顺序填写)18、现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是________.19、在一次摸球实验中,摸球箱内放有白色、黄色乒乓球共50个,这两种乒乓球的大小、材质都相同.小明发现,摸到白色乒乓球的频率稳定在60%左右,则箱内黄色乒乓球的个数很可能是________.20、有5张扑g牌,牌面朝下,随机抽出一张记下花色后放回,洗牌后再这样抽,经历多次试验后,得到随机抽出一张牌是红桃的频率是0.2,则红桃大约有________张.21、一个袋子中装有个球,其中个黑球个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出两个球为白球的概率是________.22、在一个不透明的袋中装有除颜色外其余均相同的n个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球,以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数100 1000 5000 10000 50000 100000摸出黑球次数46 487 2506 5008 24996 50007根据列表,可以估计出n的值是________.23、如图,转盘中6个小扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,指针指向红色区域的概率为________.24、布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出两个球,摸出的球都是白球的概率是________。
精品试卷沪教版(上海)八年级数学第二学期第二十三章概率初步专项练习试题(含答案解析)
八年级数学第二学期第二十三章概率初步专项练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某林业部门要考察某幼苗的成活率,于是进行了试验,表中记录了这种幼苗在一定条件下移植的成活情况,则下列说法不正确的是()A.在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率B.可以用试验次数累计最多时的频率作为概率的估计值C.由此估计这种幼苗在此条件下成活的概率约为0.9D.如果在此条件下再移植这种幼苗20000株,则必定成活18000株2、“抚顺市明天降雪的概率是70%”,对此消息,下列说法中正确的是()A.抚顺市明天将有70%的地区降雪B.抚顺市明天将有70%的时间降雪C.抚顺市明天降雪的可能性较大D.抚顺市明天肯定不降雪3、小张同学去展览馆看展览,该展览馆有A、B两个验票口(可进可出),另外还有C、D两个出口(只出不进).则小张从不同的出入口进出的概率是()A.12B.13C.14D.344、下列事件是必然事件的是()A.任意选择某电视频道,它正在播新闻联播B.温州今年元旦当天的最高气温为15℃C.在装有白色和黑色的袋中摸球,摸出红球D.不在同一直线上的三点确定一个圆5、如图,正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A.13B.23C.16D.566、抛掷一枚质地均匀的硬币2021次,正面朝上最有可能接近的次数为()A.800 B.1000 C.1200 D.14007、下列事件为必然事件的是()A.打开电视,正在播放广告B.抛掷一枚硬币,正面向上C.挪一枚质地均匀的般子,向上一面的点数为7D.实心铁块放入水中会下沉8、下列事件是必然事件的是()A.抛一枚硬币正面朝上B.若a为实数,则a2≥0C.某运动员射击一次击中靶心D.明天一定是晴天9、下列说法正确的有()①等边三角形、菱形、正方形、圆既是轴对称图形又是中心对称图形.3和4之间.0,π,227,6这五个数中随机抽取一个数,抽到无理数的概率是35.④一元二次方程2210x x-+=有两个不相等的实数根.⑤若n边形的内角和是外角和的3倍,则它是八边形.A.2个B.3个C.4个D.5个10、在一个不透明的袋中装有仅颜色不同的白球和红球共20个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球,记下颜色后再放回袋中;然后重复上述步骤……如表是实验中记录的部分统计数据:则袋中的红球个数可能有()A.16个B.8个C.4个D.2个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在一个不透明的袋子里,有2个白球和2个红球,它们只有颜色上的区别,从袋子里随机摸出两个球,则摸到两个都是红球的概率是_______.2、掷一枚质地均匀的硬币8次,其中3次正面朝上,5次反面朝上,现再掷一次,正面朝上的概率是 _____.3、在不透明的袋中装有仅颜色不同的一个红球和一个蓝球,从此袋中随机摸出一个小球,然后放回,再随机摸出一个小球,则两次摸出的球颜色不同的概率是______4、在一个不透明的口袋中装有若干个只有颜色不同的球,如果已知袋中只有4个红球,且摸出红球的概率为25,那么袋中的球共有_______个.5、在一个不透明的袋子中装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次实验发现,摸出黄球的频率稳定在0.30左右,则袋子中黄球的数量可能是 _____个.三、解答题(5小题,每小题10分,共计50分)1、甲、乙两个家庭有各自的生育规划,假定生男生女的概率一样.(1)甲家庭已有一个男孩,准备再生一个孩子,则第2个孩子是女孩的概率是;(2)乙家庭没有孩子,准备生2个孩子,用列表或画树状图的方法求至少有一个孩子是女孩的概率.2、某公园有A、B两个出口,进去游玩的甲、乙两人各自随机选择A、B两个出口中的一个离开,请用列表或画树状图法求他们两人选择同一个出口离开的概率.3、在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.(1)如果只能沿着图中实线向右或向下走,则从点A走到点E有条不同的路线.(2)先从A、B、C中任意取一点,再从D、E、F中任选两个点,用这三个点组成三角形,用树状图或列表的方法求所画三角形是直角三角形的概率.4、将正面分别写着字母A,B,C的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其它方面完全相同,若背面向上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记下卡片上的字母;放回卡片洗匀后,背面向上放在桌面上,再从卡片中随机抽取一张卡片,记下卡片上的字母.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出所有可能出现的结果;(2)求取出的两张卡片上的字母相同的概率.5、“垃圾分类”进校园,锦江教育出实招.锦江区编写小学生《垃圾分类校本实施指导手册》,给同学们介绍垃圾分类科学知识,要求大家将垃圾按A,B,C,D四类分别装袋投放.其中A类指有害垃圾,B类指厨余垃圾,C类指可回收垃圾,D类指其他垃圾.小明和小亮各有一袋垃圾,需投放到小区如图所示的垃圾桶.(1)“小明投放的垃圾恰好是有害垃圾”这一事件是______.(请将正确答案的序号填写在横线上)①必然事件②不可能事件③随机事件(2)请用列表或画树状图的方法,求小明与小亮投放的垃圾是同类垃圾的概率.A.有害垃圾 B.厨余垃圾C.可回收垃圾 D.其他垃圾-参考答案-一、单选题1、D【分析】根据频率估计概率逐项判断即可得.【详解】解:A.在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率,则此选项说法正确;B.可以用试验次数累计最多时的频率作为概率的估计值,则此选项说法正确;C.由此估计这种幼苗在此条件下成活的概率约为0.9,则此选项说法正确;D.如果在此条件下再移植这种幼苗20000株,则大约成活18000株,则此选项说法错误;故选:D.【点睛】本题考查了频率估计概率,掌握理解利用频率估计概率是解题关键.2、C【分析】概率值只是反映了事件发生的机会的大小,不是会一定发生.不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1.【详解】解:“抚顺市明天降雪的概率是70%”,正确的意思是:抚顺市明天降雪的机会是70%,明天降雪的可能性较大.故选C.【点睛】本题考查概率的意义,解题关键是理解概率的意义反映的只是这一事件发生的可能性的大小.3、D【分析】先画树状图得到所有的等可能性的结果数,然后找到小张从不同的出入口进出的结果数,最后根据概率公式求解即可.【详解】解:列树状图如下所示:由树状图可知一共有8种等可能性的结果数,其中小张从不同的出入口进出的结果数有6种,∴P小张从不同的出入口进出的结果数63 84==,故选D.【点睛】本题主要考查了用列表法或树状图法求解概率,解题的关键在于能够熟练掌握用列表法或树状图法求解概率.4、D【分析】由题意依据必然事件指在一定条件下一定发生的事件逐项进行判断即可.【详解】解:A. 任意选择某电视频道,它正在播新闻联播,是随机事件,选项不符合;B. 温州今年元旦当天的最高气温为15℃,是随机事件,选项不符合;C. 在装有白色和黑色的袋中摸球,摸出红球,是不可能事件,选项不符合;D. 不在同一直线上的三点确定一个圆,是必然事件,选项符合.故选:D.【点睛】本题考查确定事件和不确定事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5、B【分析】根据题意,涂黑一个格共6种等可能情况,结合轴对称的意义,可得到轴对称图形的情况数目,结合概率的计算公式,计算可得答案.【详解】解:如图所示:根据题意,涂黑每一个格都会出现一种等可能情况,共出现6种等可能情况,只有4种是轴对称图形,分别标有1,2,3,4;使黑色部分的图形仍然构成一个轴对称图形的概率是:42 63 =.故选:B.【点睛】本题考查几何概率的求法,解题的关键是掌握如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)mn =.6、B【分析】由抛掷一枚硬币正面向上的可能性约为0.5求解可得.【详解】解:抛掷一枚质地均匀的硬币2021次,正面朝上的次数最有可能为1000次,故选B.【点睛】本题主要考查了事件的可能性,解题的关键在于能够理解抛掷一枚硬币正面向上的可能性约为0.5.7、D【分析】根据必然事件的定义:在一定条件下,一定会发生的事件,进行逐一判断即可.【详解】解:A、打开电视,可以正在播放广告,也可以不在播放广告,不是必然事件,不符合题意;B、抛掷一枚硬币,正面可以向上,反面也可以向上,不是必然事件,不符合题意;C、挪一枚质地均匀的般子,向上一面的点数为7,这是不可能发生的,不是必然事件,不符合题意;D、实心铁块放入水中会下沉,这是一定会发生的,是必然事件,符合题意;故选D.【点睛】本题主要考查必然事件,熟知必然事件的定义是解题的关键.8、B【分析】根据必然事件的定义对选项逐个判断即可.【详解】解:A 、抛一枚硬币正面朝上,是随机事件,不符合题意;B 、若a 为实数,则a 2≥0,是必然事件,符合题意;C 、某运动员射击一次击中靶心,是随机事件,不符合题意;D 、明天一定是晴天,是随机事件,不符合题意,故选:B【点睛】本题主要考查了必然事件的定义,熟练掌握必然事件,在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件是解题的关键.9、A【分析】根据概率公式、无理数的定义、轴对称图形、中心对称图形、根的判别式以及多边形的内角和计算公式和外角的关系,对每一项进行分析即可得出答案.【详解】解:①菱形,正方形,圆既是轴对称图形又是中心对称图形,等边三角形是轴对称图形,故本选项错误,不符合题意;②在3和4之间,正确,故本选项符合题意;③,0,π,227,6,π,共2个,则抽到无理数的概率是25,故本选项错误,不符合题意;④因为2(2)4110=--⨯⨯=,则一元二次方程2210x x -+=有两个相等的实数根,故本选项错误,不符合题意;⑤若n 边形的内角和是外角和的3倍,则它是八边形,正确,故本选项符合题意;正确的有2个;故选:A.【点睛】此题考查了概率公式、无理数、轴对称图形、中心对称图形、根的判别式以及多边形的内角与外角,熟练掌握定义和计算公式是解题的关键.10、C【分析】首先估计摸到红球的概率,然后求得白球概率,根据球的总个数求得答案即可.【详解】解:∵摸球800次红球出现了160次,∴摸到红球的概率约为1601= 8005,∴20个球中有白球20×15=4个,故选:C.【点睛】本题考查用频率估计概率,大量反复试验下频率稳定值即为概率,掌握相关知识是解题关键.二、填空题1、故答案为:【点睛】本题考查由频率估计概率,以及已知概率求数量;大量重复试验后,某种情况出现的频率稳定在某个值附近时,这个值即为该事件发生的概率,掌握概率公式是解题关键.8.1 6【分析】先用列表法分析所有等可能的结果和摸到两个都是红球的结果数,然后根据概率公式求解即可.【详解】解:记红球为12,a a ,白球为12,b b ,列表得:∵一共有12种情况,摸到两个都是红球有2种,∴P (两个球都是红球)21==126, 故答案是16. 【点睛】本题主要考查了用列表法或画树状图法求概率,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.2、12##【分析】直接利用概率的意义分析得出答案.【详解】解:∵掷质地均匀硬币的试验,每次正面向上和向下的概率相同,∴再次掷出这枚硬币,正面朝上的概率是12.故答案为:12.【点睛】此题主要考查了概率的意义,正确把握概率的意义是解题关键.3、12【分析】根据题意,列表分析所有可能,然后运用概率公式求解即可.【详解】解:列表如下,R表示红球,B表示蓝球总共4种情况,两次摸出的球颜色不同的2种.所以两次摸出的球颜色不同的概率是21 42故答案是:12.【点睛】本题考查了列表法求概率,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果数,概率=所求情况数与总情况数之比.4、10【分析】设袋中共有x个球,再由袋中只装有4个红球,且摸出红球的概率为25求出x的值即可.【详解】解:设袋中共有x个球,∵袋中只装有4个红球,且摸出红球的概率为25,∴425x,解得x=10.经检验,x=10是分式方程的解,且符合题意,故答案为:10.【点睛】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.5、6【分析】由题意直接根据黄球出现的频率和球的总数,可以计算出黄球的个数.【详解】解:由题意可得,20×0.30=6(个),即袋子中黄球的个数最有可能是6个.故答案为:6.【点睛】本题考查利用频率估计概率,解答本题的关键是明确题意,计算出黄球的个数.三、解答题1、(1)12;(2)34【分析】(1)直接利用概率公式求解;(2)画树状图展示所有4种等可能的结果数,再找出至少有一个孩子是女孩的结果数,然后根据概率公式求解.【详解】解:(1)第二个孩子是女孩的概率=12;故答案为:12;(2)画树状图为:共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,所以至少有一个孩子是女孩的概率=34.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.2、12【分析】画出树状图,然后根据概率公式列式计算即可得解.【详解】解:根据题意画出树状图如下:甲、乙、两人各自随机选择一个出口离开的所有可能出现的结果有:(AA )、(AB )、(BA )、(BB ),共有4种,它们出现的可能性相同,所有的结果中,满足“两人选择同一个出口离开”(记为事件A )的结果有2种,所以P (A )=24=12.【点睛】本题考查了列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.3、(1)6;(2)13【分析】(1)根据题意只能沿着图中实线向右或向下走,枚举所有可能即可求解;(2)根据网格的特点判断直角三角形,根据列表法求得概率【详解】(1)如图,从点A 出发,只能向右或向下,先向右的路线为:A H I C E →→→→,A H O C E →→→→,A H O D E →→→→先向下的路线为:A B O C E →→→→,A B O D E →→→→,A B G C E →→→→共6条路线故答案为:6(2)列表如下, BDE CDE BDF CDF BEF CEF 根据列表可知共有9种等可能情况,只有CDE ,CDF , CEF 是直角三角形则所画三角形是直角三角形的概率为31=93【点睛】本题考查了枚举法,列表法求概率,掌握列举法和列表法求概率是解题的关键.4、(1)列表见解析;(2)13【分析】(1)首先根据题意画出表格,然后由表格即可求得所有等可能的结果;(2)由(1)中的表格,可求取出的两张卡片上的字母相同的情况,然后利用概率公式求解即可求得答案.【详解】解:(1)根据题意列表得由表格知共有9种等可能性结果:(,)A A ,(,)A B ,(A,C),(,)B A ,(,)B B ,(,)B C ,(C,A),(,)C B ,(,)C C .(2)其中两张卡片上的字母相同有3种结果,() 3193P ==字母相同. 【点睛】 此题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.5、(1)③(2)14【分析】(1)根据随机事件的相关概念可直接进行求解;(2)根据列表法可直接进行求解概率.(1)解:“小明投放的垃圾恰好是有害垃圾”这一事件是随机事件;故答案为③;(2)解:列表如下:由上表可知,共有16种等可能情况,其中两人投放同种垃圾的有(A,A),(B,B),(C,C),(D,D)共4种.∴41164P==.【点睛】本题主要考查随机事件及概率,熟练掌握利用列表法求解概率是解题的关键.。
强化训练沪教版(上海)八年级数学第二学期第二十三章概率初步章节练习试题(含解析)
八年级数学第二学期第二十三章概率初步章节练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、为了深化落实“双减”工作,促进中小学生健康成长,教育部门加大了实地督查的力度,对我校学生的作业、睡眠、手机、读物、体质“五项管理”要求的落实情况进行抽样调查,计划从“五项管理”中随机抽取两项进行问卷调查,则抽到“作业”和“手机”的概率为()A.14B.15C.110D.2252、明明和强强是九年级学生,在本周的体育课体能检测中,检测项目有跳远,坐位体前屈和握力三项.检测要求三选一,并且采取抽签方式取得,那么他们两人都抽到跳远的概率是().A.13B.19C.23D.293、甲、乙两位同学在一次用频率去估计概率的实验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚正六面体的骰子,出现1点的概率B.一个袋子中有2个白球和1个红球,从中任取一个球,则取到红球的概率C.抛一枚硬币,出现正面的概率D.任意写一个整数,它能被2整除的概率4、下列说法正确的是().A.“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件B.“打开电视机,正在播放乒乓球比赛”是必然事件C.“面积相等的两个三角形全等”是不可能事件D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定是50次5、在进行一个游戏时,游戏的次数和某种结果出现的频率如表所示,则该游戏是什么,其结果可能是什么?下面分别是甲、乙两名同学的答案:甲:掷一枚质地均匀的骰子,向上的点数与4相差1;乙:在“石头、剪刀、布”的游戏中,琪琪随机出的是“剪刀”()A.甲正确,乙错误B.甲错误,乙正确C.甲、乙均正确D.甲、乙均错误6、下列事件是必然发生的事件是()A.在地球上,上抛的篮球一定会下落B.明天的气温一定比今天高C.中秋节晚上一定能看到月亮D.某彩票中奖率是1%,买100张彩票一定中奖一张7、下列说法正确的是()A.“经过有交通信号的路口遇到红灯”是必然事件B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C.“心想事成,万事如意”描述的事件是随机事件D.天气预报显示明天为阴天,那么明天一定不会下雨8、小张同学去展览馆看展览,该展览馆有A、B两个验票口(可进可出),另外还有C、D两个出口(只出不进).则小张从不同的出入口进出的概率是()A.12B.13C.14D.349、下列四幅图的质地大小、背面图案都一样,把它们充分洗匀后翻放在桌面上,则从中任意抽取一张,抽到的图案是中心对称图形的概率是()A.14B.12C.34D.110、同时抛两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1~6的点数,则下列事件中是必然事件的是()A.点数之和为奇数B.点数之和为偶数C.点数之和大于13D.点数之和小于13第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,大⊙O与小⊙O分别是正△ABC的外接圆和内切圆,随意向水平放置的大⊙O内部区域抛一个小米粒,则小米粒落在小⊙O内部(阴影)区域的概率为 __.2、在一个不透明袋子中有3个红球和2个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则取出红球的概率是________.3、下图是由9个小正方形组成的图案,从图中随机取一点,这点在阴影部分的概率是________.4、在0,1,2,3,4,5这六个数中,随机取出一个数记为a,使得关于x的一元二次方程2310++=有实数解的概率是______.ax x5、一个密闭不透明的盒子里装有若干个质地、大小均完全相同的白球和黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球4000次,其中800次摸到黑球,则估计从中随机摸出一个球是黑球的概率为_________.三、解答题(5小题,每小题10分,共计50分)1、一个布袋里装有3个只有颜色不同的球,其中2个红球,1个白球.(1)求摸出一个球是白球的概率.(2)第一次摸出1个球,记下颜色,放回摇匀,再摸出1个球,求两次摸出颜色相同的球的概率(用树状图或列表来表示分析过程).2、如图,某校开设了A、B、C三个测温通道.某天早晨,该校小明和小丽两位同学将随机通过测温通道进入校园.(1)小明从A测温通道通过的概率是;(2)利用画树状图或列表的方法,求小明和小丽从同一个测温通道通过的概率.3、一个不透明的口袋中装有2个红球和1个白球,小球除颜色外其余均相同.(1)从口袋中随机摸出一个小球,小球的颜色是白色的概率是;(2)从口袋中随机摸出一个小球,记下颜色后放回,再随机摸出一个小球.请用画树状图(或列表)的方法,求两次摸出的小球颜色相同的概率.4、5、在一个不透明的盒子中有3个红球和1个白球,它们除颜色外其它都一样,从盒子中摸出两个球,求摸出的两个球都是红球的概率.-参考答案-一、单选题1、C【分析】根据列表法或树状图法表示出来所有可能,然后找出满足条件的情况,即可得出概率.【详解】解:将作业、睡眠、手机、读物、体质“五项管理”简写为:业、睡、机、读、体,利用列表法可得:根据表格可得:共有20种可能,满足“作业”和“手机”的情况有两种,∴ 抽到“作业”和“手机”的概率为:212010P==,故选:C.【点睛】题目主要考查列表法或树状图法求概率,熟练掌握列表法或树状图法是解题关键.2、B【分析】根据题意,采用列表法或树状图法表示出所有可能,然后找出满足条件的可能性,即可得出概率.【详解】解:分别记跳远为“跳”,坐位体前屈为“坐”,握力为“握”,列表如下:由表中可知,共有9种不同得结果,两人都抽到跳远的只有1种可能,则两人抽到跳远的概率为:19P ,故选:B.【点睛】题目主要考查利用树状图或列表法求概率,熟练掌握树状图法或列表法是解题关键.3、B【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解:A、掷一枚正六面体的骰子,出现1点的概率为16,故此选项不符合题意;B、一个袋子中有2个白球和1个红球,从中任取一个球,则取到红球的概率13≈0.33,故此选项符合题意;C、掷一枚硬币,出现正面朝上的概率为12,故此选项不符合题意;D、任意写出一个整数,能被2整除的概率为12,故此选项不符合题意.故选:B.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.4、A【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】解:A、“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件,故此选项正确;B、“打开电视机,正在播放乒乓球比赛” 是随机事件,故此选项错误;C、“面积相等的两个三角形全等” 是随机事件,故此选项错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数不一定是50次,故此选项错误;故选:A.【点睛】本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5、C【分析】由表可知该种结果出现的概率约为13,对甲乙两人所描述的游戏进行判断即可.【详解】由表可知该种结果出现的概率约为1 3∵掷一枚质地均匀的骰子,向上的点数有1、2、3、4、5、6 ∴向上的点数与4相差1有3、5∴掷一枚质地均匀的骰子,向上的点数与4相差1的概率为21 63∴甲的答案正确又∵“石头、剪刀、布”的游戏中,琪琪随机出的是“剪刀”概率为1 3∴乙的答案正确综上所述甲、乙答案均正确.故选C.【点睛】本题考查了用频率估计概率,其做法是取多次试验发生的频率稳定值来估计概率.6、A【分析】根据必然事件的概念(必然事件指在一定条件下一定发生的事件)可判断正确答案.【详解】解:A、在地球上,上抛的篮球一定会下落是必然事件,符合题意;B、明天的气温一定比今天的高,是随机事件,不符合题意;C、中秋节晚上一定能看到月亮,是随机事件,不符合题意;D、某彩票中奖率是1%,买100张彩票一定中奖一张,是随机事件,不符合题意.故选:A.【点睛】本题考查了必然事件的概念,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.关键是理解必然事件指在一定条件下一定发生的事件.7、C【详解】解:A、“经过有交通信号的路口遇到红灯”是随机事件,故本选项不符合题意;B、已知某篮球运动员投篮投中的概率为0.6,则他投10次不一定可投中6次,故本选项不符合题意;C、“心想事成,万事如意”描述的事件是随机事件,故本选项符合题意;D、天气预报显示明天为阴天,那么明天可能不会下雨,故本选项符合题意;故选:C【点睛】本题考查的是对随机事件和必然事件的概念的理解,熟练掌握必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件是解题的关键.8、D【分析】先画树状图得到所有的等可能性的结果数,然后找到小张从不同的出入口进出的结果数,最后根据概率公式求解即可.【详解】解:列树状图如下所示:由树状图可知一共有8种等可能性的结果数,其中小张从不同的出入口进出的结果数有6种,∴P小张从不同的出入口进出的结果数63 84==,故选D.【点睛】本题主要考查了用列表法或树状图法求解概率,解题的关键在于能够熟练掌握用列表法或树状图法求解概率.9、C【分析】根据中心对称图形的定义,即把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称和概率公式计算即可;【详解】根据已知图形可得,中心对称图形是,,,共有3个,∴抽到的图案是中心对称图形的概率是34.故选C.【点睛】本题主要考查了概率公式应用和中心对称图形的识别,准确分析计算是解题的关键.10、D【分析】根据必然事件的定义:在一定条件下,一定会发生的事件,进行逐一判断即可【详解】解:A、两次骰子的点数之和可能是奇数也可能是偶数,不是必然事件,不符合题意;B、两次骰子的点数之和可能是奇数也可能是偶数,不是必然事件,不符合题意;C、∵骰子的最大点数是12,∴两次点数之和不可能大于13,不是必然事件,不符合题意;D、∵骰子的最大点数是12,∴两次点数之和小于13,是必然事件,符合题意;故选D.【点睛】本题主要考查了必然事件的定义,熟知定义是解题的关键.二、填空题1、14【分析】小米粒落在内切圆区域的概率就是内切圆的面积与外接圆面积的比. 【详解】如图所示,记O 分别与AB 、BC 相切于点E 、点D ,连接OE ,OD ,OB , ABC 是正三角形,∴60ABC ∠=︒,∴30OBE ∠=︒,90OEB ∠=︒, 设OE a =,则2=OB a ,则小米粒落在小⊙O 内部(阴影)区域的概率为221(2)4a a ππ=. 故答案为:14.【点睛】本题考查了几何概率,关键是得到内切圆的面积与外接圆面积的比.2、35##【分析】用列举的方法一一列出可能出现的情况,进而即可求得恰好是红球的概率.解:根据题意,可能出现的情况有: 红球;红球;红球;黑球;黑球; 则恰好是红球的概率是35,故答案为:35. 【点睛】本题主要考查了简单概率的计算,通过列举法进行计算是解决本题的关键. 3、59【分析】直接根据几何概率求解即可. 【详解】解:图中共有9个小正方形,其中阴影部分共有5个小正方形, ∴从图中随机取一点,这点在阴影部分的概率是59,故答案为:59. 【点睛】本题考查几何概率求解,理解并掌握几何概率是解题关键. 4、13【分析】根据题意,分0a =,0a ≠时,进而求得一元二次方程根的判别式不小于0的情形数量,即可求得概率.解:当0a =时,该方程不是一元二次方程, 当0a ≠时,2494b ac a ∆=-=-0≥ 解得94a ≤1,2a ∴=时,关于x 的一元二次方程2310ax x ++=有实数解∴随机取出一个数记为a ,使得关于x 的一元二次方程2310ax x ++=有实数解的概率是21=63故答案为:13【点睛】本题考查了利用概率公式计算概率,一元二次方程根的判别式判断根的情况,一元二次方程的定义,掌握以上知识是解题的关键.当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程没有实数根.5、15【分析】可根据“黑球数量÷黑白球总数=黑球所占比例”来列等量关系式,“黑球所占比例=随机摸到的黑球次数÷总共摸球的次数”. 【详解】解:∵共摸球4000次,其中800次摸到黑球, ∴从中随机摸出一个球是黑球的概率为8001=40005, 故答案为:15【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比. 三、解答题 1、(1)13;(2)59【分析】(1)根据概率公式列式计算即可得解;(2)画出树状图或列出图表,然后根据概率公式列式计算即可得解. 【详解】解(1)摸出一个球的所有可能结果总数3n =,摸到是白球的可能结果数1m =,∴摸出一个球是白球的概率为13.(2)画树状图如下:由树状图知,一共有9种情况,两次摸出颜色相同的球有5种, 所以两次摸出颜色相同的球的概率59. 【点睛】本题考查的是用列表法或树状图法求概率,解题的关键是掌握公式:概率=所求情况数与总情况数之比2、(1)13;(2)小明和小丽从同一个测温通道通过的概率为13. 【分析】(1)直接根据概率公式求解即可;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【详解】解:(1)小明从A测温通道通过的概率是13,故答案为:13;(2)根据题意列表如下:由表可知,共有9种等可能结果,其中小明和小丽从同一个测温通道通过的有3种结果,则小明和小丽从同一个测温通道通过的概率为39=13.【点睛】本题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.3、(1)13;(2)59【分析】(1)根据概率公式计算即可;(2)画出树状图即可得解;【详解】(1)根据题意可得,小球的颜色是白色的概率是13;故答案是:13;(2)根据题意画出树状图如下:则两次摸出的小球颜色相同的概率为59.【点睛】本题主要考查了概率公式的应用和画树状图求概率,准确画图计算是解题的关键.4、7 12【分析】画出树状图,然后根据概率公式列式进行计算即可得解.【详解】解:设甲、乙、丙、丁4人的礼物分别记为a、b、c、d,根据题意画出树状图如图:一共有12种等可能的结果,甲、乙2人抽到的都不是自己带来的礼物的结果有7个,∴甲、乙两人抽到的都不是自己带来的礼物的概率为712.【点睛】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.5、12【分析】画树状图,共有12个等可能的结果,再找出符合条件的结果数,然后由概率公式求解即可.【详解】解:画树状图为:共有12个等可能的结果,一次摸出的两个球都是红球的情况有6个∴P(一次摸出的两个球都是红球)61 122==.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.。
强化训练沪教版(上海)八年级数学第二学期第二十三章概率初步综合测试试题(含答案及详细解析)
八年级数学第二学期第二十三章概率初步综合测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列事件是必然事件的是()A.明天会下雨B.抛一枚硬币,正面朝上C.通常加热到100℃,水沸腾D.经过城市中某一有交通信号灯的路口,恰好遇到红灯2、不透明的布袋内装有形状、大小、质地完全相同的1个白球,2个红球,3个黑球,若随机摸出一个球恰是黑球的概率为()A.13B.12C.23D.343、假如每个鸟卵都可以成功孵化小鸟,且孵化出的小鸟是雄性和雌性的可能性相等.现有2枚鸟卵,孵化出的小鸟恰有一个雌性一个雄性的概率是()A.18B.14C.38D.124、下列事件中,是必然事件的是()A.同位角相等B.打开电视,正在播出特别节目《战疫情》C.经过红绿灯路口,遇到绿灯D.长度为4,6,9的三条线段可以围成一个三角形.5、在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中黑球1个,红球2个,从中随机摸出一个小球,则摸出的小球是黑色的概率是()A.12B.13C.23D.166、在进行一个游戏时,游戏的次数和某种结果出现的频率如表所示,则该游戏是什么,其结果可能是什么?下面分别是甲、乙两名同学的答案:甲:掷一枚质地均匀的骰子,向上的点数与4相差1;乙:在“石头、剪刀、布”的游戏中,琪琪随机出的是“剪刀”()A.甲正确,乙错误B.甲错误,乙正确C.甲、乙均正确D.甲、乙均错误7、下列四幅图的质地大小、背面图案都一样,把它们充分洗匀后翻放在桌面上,则从中任意抽取一张,抽到的图案是中心对称图形的概率是()A.14B.12C.34D.18、在一个口袋中有2个完全相同的小球,它们的标号分别为1,2从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和是3的概率是()A .14B .12C .13 D .349、下列说法正确的是( ).A .“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件B .“打开电视机,正在播放乒乓球比赛”是必然事件C .“面积相等的两个三角形全等”是不可能事件D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定是50次10、下列事件中,属于必然事件的是( )A .射击运动员射击一次,命中10环B .打开电视,正在播广告C .投掷一枚普通的骰子,掷得的点数小于10D .在一个只装有红球的袋中摸出白球第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、把一副普通扑克牌中的13张黑桃牌洗匀后正面朝下放在桌子上,从中随机抽取一张,则抽出的牌上的数小于5的概率为 _____.2、第24届冬季奥林匹克运动会将于2022年2月4日在北京开幕,小健通过统计数据了解到:从2002年到2018年的五届冬奥会上,中国队每届比赛均有金牌入账,共斩获了13枚金牌,于是,小健对同学们说:“2022年北京冬奥会中国队获得2枚以上金牌的可能性大小是100%”.你认为小健的说法______(填“合理”或“不合理”)理由是______.3、有6张除数字外无差别的卡片,上面分别写着1,2,3,4,5,6.随机抽取一张记作a ,放回并混合在一起,再随机抽一张记作b ,组成有序实数对(),a b ,则点(),a b 在直线2y x =+上的概率为______4、在一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,如果从中随机摸出一个,那么摸到黄球的可能性大小是________.5、用黑白两种全等的等腰直角三角形地砖铺成如图所示的方形地面,一只小虫在方形地面上任意爬行,并随机停留在方形地面某处,则小虫停留在黑色区域的概率是______.三、解答题(5小题,每小题10分,共计50分)1、2021年是中国辛丑牛年,小明将收集到的以下3张牛年邮票分别放到A、B、C三个完全相同的不透明盒子中,现从中随机抽取一个盒子.(1)“小明抽到面值为80分的邮票”是______事件(填“随机”“不可能”或“必然”);(2)小明先随机抽取一个盒子记下邮票面值后将盒子放回,再随机抽取一个盒子记下邮票面值,用画树状图(或列表)的方法,求小明抽到的两个盒子里邮票的面值恰好相等的概率.2、一张连排休息座椅设有4个座位,甲先坐在如图所示的座位上,乙、丙2人等可能地坐到①、②、③中的2个座位上.(1)乙坐在②号座位的概率是__________.(2)用画树状图或列表的方法,求乙与丙相邻而坐的概率.3、圣诞节快到了,已知东方商城推出A,B,C,D四种礼盒套餐,甲乙两人任选其中一种购买.(1)甲从中随机选取A套餐的概率是;(2)甲乙分别选取一种套餐,请画出树状图(或列表),并求甲、乙2人选取相同套餐的概率.4、为答谢全国人民的真情关爱,从8月8日开始,湖北举办“与爱同行惠游湖北”活动,湖北近400家A级旅游景区对全国游客免门票开放.已知A、B、C、D四个景点实行免门票活动,甲、乙都有去旅游的打算.(1)若甲随机选择一个景点游玩,求甲选择A景点的概率;(2)利用列表或画树状图的方法,求甲、乙两人选择的两个景点不同的概率.5、4张相同的卡片上分别写有数字0、1、2、3,将卡片的背面朝上,洗后从中任意抽取1张,将卡片上的数字记录下来;再从余下的3张卡片中任意抽取1张,同样将卡片上的数字记录下来.(1)第一次抽取的卡片上数字是非负数的概率为______;(2)小敏设计了如下游戏规则:当第一次记录下来的数字减去第二次记录下来的数字所得结果为非负数时,甲获胜;否则,乙获胜.小敏设计的游戏规则公平吗?为什么?(请用树状图或列表等方法说明理由)-参考答案-一、单选题1、C【分析】根据必然事件就是一定发生的事件逐项判断即可.【详解】A.明天会下雨,属于随机事件,故该选项不符合题意;B.抛一枚硬币,正面朝上,属于随机事件,故该选项不符合题意;C.通常加热到100℃,水沸腾,属于必然事件,故该选项符合题意;D.经过城市中某一有交通信号灯的路口,恰好遇到红灯,属于随机事件,故该选项不符合题意;故选C.【点睛】本题主要考查了必然事件的概念,掌握必然事件指在一定条件下一定发生的事件是解答本题的关键.2、B【分析】由在不透明的布袋中装有1个白球,2个红球,3个黑球,利用概率公式直接求解即可求得答案.【详解】解:∵在不透明的布袋中装有1个白球,2个红球,3个黑球,∴从袋中任意摸出一个球,摸出的球是红球的概率是:31 1232=++.故选:B.【点睛】此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.3、D【分析】用A表示雄性,B表示雌性,画出树状图,共有4个等可能的结果,孵化出的小鸟恰有两个雌性一个雄性的结果有2个,然后根据概率公式计算即可.【详解】解:用A表示雄性,B表示雌性,画树状图如图:共有4个等可能的结果,孵化出的小鸟恰有一个雌性一个雄性的结果有2个,∴孵化出的小鸟恰有两个雌性一个雄性的概率为12;【点睛】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.4、D【分析】根据必然事件的概念即可得出答案.【详解】解:∵同位角不一定相等,为随机事件,∴A选项不合题意,∵打开电视,不一定正在播出特别节目《战疫情》,为随机事件,∴B选项不合题意,∵车辆随机到达一个路口,可能遇到红灯,也可能遇到绿灯,为随机事件,∴C选项不合题意,∵4+6>9,∴长度为4,6,9的三条线段可以围成一个三角形为必然事件,.∴D选项符合题意,故选:D.【点睛】本题主要考查必然事件的概念,必然事件是指一定会发生的事件,关键是要牢记必然事件的概念.5、B【分析】用黑色的小球个数除以球的总个数即可解题.解:从中摸出一个小球,共有3种可能,其中摸出的小球是黑色的情况只有1种,故摸出的小球是黑色的概率是:1 3故选:B.【点睛】本题考查概率公式,解题关键是掌握随机事件发生的概率.6、C【分析】由表可知该种结果出现的概率约为13,对甲乙两人所描述的游戏进行判断即可.【详解】由表可知该种结果出现的概率约为1 3∵掷一枚质地均匀的骰子,向上的点数有1、2、3、4、5、6 ∴向上的点数与4相差1有3、5∴掷一枚质地均匀的骰子,向上的点数与4相差1的概率为21 63∴甲的答案正确又∵“石头、剪刀、布”的游戏中,琪琪随机出的是“剪刀”概率为1 3∴乙的答案正确综上所述甲、乙答案均正确.故选C.【点睛】本题考查了用频率估计概率,其做法是取多次试验发生的频率稳定值来估计概率.7、C【分析】根据中心对称图形的定义,即把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称和概率公式计算即可;【详解】根据已知图形可得,中心对称图形是,,,共有3个,∴抽到的图案是中心对称图形的概率是34.故选C.【点睛】本题主要考查了概率公式应用和中心对称图形的识别,准确分析计算是解题的关键.8、B【分析】列表展示所有4种等可能的情况数,找出符合条件的情况数,然后根据概率公式求解即可.【详解】解:列表如下:由表知,共有4种等可能结果,其中两次摸出的小球的标号之和是3的有2种结果,所以两次摸出的小球的标号之和是3的概率为21 42 ,故选:B.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.9、A【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【详解】解:A、“抛掷一枚质地均匀的硬币,落地后正面朝上”是随机事件,故此选项正确;B、“打开电视机,正在播放乒乓球比赛” 是随机事件,故此选项错误;C、“面积相等的两个三角形全等” 是随机事件,故此选项错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数不一定是50次,故此选项错误;故选:A.【点睛】本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10、C【分析】根据事件发生的可能性大小判断即可.【详解】解:A、射击运动员射击一次,命中10环,是随机事件;B、打开电视,正在播广告,是随机事件;C、投掷一枚普通的骰子,掷得的点数小于10,是必然事件;D、在一个只装有红球的袋中摸出白球,是不可能事件;故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题1、4 13【分析】抽出的牌的点数小于5有1,2,3,4共4个,总的样本数目为13,由此可以容易知道事件抽出的牌的点数小于5的概率.【详解】解:∵抽出的牌的点数小于5有1,2,3,4共4个,总的样本数目为13,∴从中任意抽取一张,抽出的牌点数小于5的概率是:413.故答案为:413.【点睛】此题主要考查了概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.2、不合理 获得金牌是随机事件【分析】随机事件是指可能发生也可能不发生的事件,根据随机事件的定义进行解答即可.【详解】解:小健的说法不合理,因为获得金牌是随机事件,故答案为:不合理,获得金牌是随机事件.【点睛】本题考查了随机事件的应用,能理解随机事件的定义是解此题的关键.3、19【分析】画树状图表示所有等可能的结果,再计算点(),a b 在直线2y x =+上的概率.【详解】解:画树状图为:共有36种机会均等的结果,其中组成有序实数对(),a b ,则点(),a b 在直线2y x =+上的有4种,所以点(),a b 在直线2y x =+上的概率为41=369, 故答案为:19.【点睛】本题考查用树状图或列表法表示概率,是重要考点,难度较小,掌握相关知识是解题关键.4、38【分析】从袋中随机摸出一个球共有8种等可能的结果,其中摸到黄球有3种结果,再利用概率公式即可得.【详解】解:由题意,从袋中随机摸出一个球共有358+=种等可能的结果,其中摸到黄球有3种结果,则如果从中随机摸出一个,那么摸到黄球的可能性大小是38,故答案为:38.【点睛】本题考查了简单事件的概率计算,熟练掌握概率公式是解题关键.5、12##【分析】先由图得出地砖的总数及黑色地砖的块数,让黑色地砖的块数除以地砖总数即可.【详解】解:可观察图形,黑色地砖与白色地砖的面积相等,停在黑色和白色地砖上的概率是相同的,由此可知小虫停在黑地砖上的概率为81=, 162,故答案为:12【点睛】本题考查了几何概率,掌握“几何概率=相应的面积与总面积之比.”是解本题的关键.三、解答题1、(1)不可能;(2)P(两个盒子里邮票的面值恰好相等)13=.(1)由三张邮票里面没有80分的邮票即可判断这是不可能事件;(2)列树状图先得到所有的等可能性的结果数,然后找到两个盒子里邮票的面值恰好相等的结果数,再由概率公式求解即可.【详解】解:(1)∵三张邮票里面没有80分的邮票∴“小明抽到面值为80分的邮票”是不可能事件,故答案为:不可能;(2)设A、B、C分别代表120分、150分、50分的邮票,列树状图如下所示:由树状图可知一共有9种等可能性的结果数,其中两个盒子里邮票的面值恰好相等的结果数有三种∴P(两个盒子里邮票的面值恰好相等)31 93 ==.【点睛】本题主要考查了事件发生的可能性,树状图法或列表法求解概率,熟练掌握相关知识是解题的关键.2、(1)13;(2)见解析,P(乙丙相邻而坐)13=【分析】(1)直接根据概率公式计算即可;(2)画树状图,共有6种等可能的结果,甲与乙相邻而坐的结果有2种,再由概率公式求解即可.解:(1)∵甲坐了1个座位,还剩3个座位∴乙坐在②号座位的概率是13;(2)画树状图如图:共有6种等可能的结果,乙与丙恰好相邻而坐的结果有2种,∴乙与丙相邻而坐的概率为21 63 .【点睛】本题考查了列表法与树状图法求概率,解题的关键是能够正确画处列表法或树状图.3、(1)14;(2)14.【分析】(1)直接根据概率公式求解即可;(2)画树状图展示所有16种等可能的情况数,找出符合条件的结果数,然后根据概率公式求解.【详解】解:(1)由题意,∵推出A,B,C,D四种礼盒套餐,∴甲从中随机选取A套餐的概率是14;故答案为:14.(2)根据题意,画树状图为:共有16种等可能的情况数,其中甲乙两人选择相同套餐的有4种,∴甲、乙2人选取相同套餐的概率为:41 164.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.4、(1)14;(2)34.【分析】(1)由概率公式即可得出答案;(2)根据甲、乙两人在A、B、C、D四个景点中选择去不同的两个景点,画出树状图,根据概率公式进行计算即可.【详解】解:(1)若甲随机选择一个景点游玩,则甲选择A景点的概率为14,故答案为:14;(2)画树状图如图所示:∵共有16种等可能出现的结果,其中甲、乙两人在A、B、C、D四个景点中选择去不同的两个景点的结果有12种,∴甲、乙两人在A、B、C、D四个景点中选择去不同的两个景点的概率=123 164.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.5、(1)3 4(2)此游戏公平,理由见解析.【分析】(1)利用概率公式求解即可;(2)利用列表法列举出所有可能,进而利用概率公式进而得出甲、乙获胜的概率即可得出答案.(1)解:第一次抽取的卡片上数字是非负数的概率为34,故答案为:34.(2)解:列表如下:由表可知,共有12种等可能结果,其中结果为非负数的有6种结果,结果为负数的有6种结果,所以甲获胜的概率=乙获胜的概率=612=12,∴此游戏公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.。
基础强化沪教版(上海)八年级数学第二学期第二十三章概率初步专项练习试题(含详细解析)
八年级数学第二学期第二十三章概率初步专项练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,一只小狗在如图所示的方砖上走来走去,最终停留在阴影方砖上的概率是()A.14B.13C.415D.152、下列事件中,属于不可能事件的是()A.射击运动员射击一次,命中靶心B.从一个只装有白球和红球的袋中摸球,摸出黄球C.班里的两名同学,他们的生日是同一天D.经过红绿灯路口,遇到绿灯3、经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,甲、乙两辆汽车经过这个十字路口时,一辆车向左转,一辆车向右转的概率是()A.16B.12C.29D.494、明明和强强是九年级学生,在本周的体育课体能检测中,检测项目有跳远,坐位体前屈和握力三项.检测要求三选一,并且采取抽签方式取得,那么他们两人都抽到跳远的概率是().A.13B.19C.23D.295、下列词语所描述的事件,属于必然事件的是()A.守株待兔B.水中捞月C.水滴石穿D.缘木求鱼6、下列说法中,正确的是()A.“射击运动员射击一次,命中靶心”是必然事件B.事件发生的可能性越大,它的概率越接近1C.某种彩票中奖的概率是1%,因此买100张该种彩票就一定会中奖D.抛掷一枚图钉,“针尖朝上”的概率可以用列举法求得7、“2022年春节期间,中山市会下雨”这一事件为()A.必然事件B.不可能事件C.确定事件D.随机事件8、下列四幅图的质地大小、背面图案都一样,把它们充分洗匀后翻放在桌面上,则从中任意抽取一张,抽到的图案是中心对称图形的概率是()A.14B.12C.34D.19、下列说法中,正确的是()A.随机事件发生的概率为12B.不可能事件发生的概率为0 C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次10、把一副普通扑克牌中13张黑桃牌洗匀后正面向下放在桌子上.从中随机抽取一张,抽出的牌上的数小于6的概率为()A.813B.713C.613D.513第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、小明训练飞镖,在木板上画了直径为20cm和30cm的同心圆,如图,他在距木板5米开外将一个飞镖随机投掷到该图形内,则飞镖落在阴影区域的概率为 _______.2、“熊猫蛋糕店”推出“熊猫不走”的游戏,凡是订购蛋糕者,可玩一次丢骰子游戏:丢一枚质地均匀、六个面分别刻有1到6点数的正方体骰子两次,若两次正面朝上点数之和大于7,可领取蛋糕店准备的熊猫玩偶,那么订购者获得熊猫玩偶的概率为_______.3、投掷一枚均匀的立方体骰子(六个面上分别标有1点,2点,……,6点),标有6点的面朝上的概率是________.4、掷一枚质地均匀的硬币8次,其中3次正面朝上,5次反面朝上,现再掷一次,正面朝上的概率是 _____.5、一个转盘盘面被分成6块全等的扇形区域,其中2块是红色,4块是蓝色.用力转动转盘,当转盘停止后,指针对准红色区域的可能性大小是________.三、解答题(5小题,每小题10分,共计50分)1、有A,B,C三种款式的帽子,甲,乙两种款式的围巾,穿戴时小华任意选一顶帽子和一条围巾.(1)用列表法或树状图表示搭配的所有可能性结果.(2)求小华恰好选中她所喜欢的A款帽子和乙款围巾的概率.2、一个口袋中有10个黑球和若干个白球,从口袋中随机摸出一球,记下其颜色后再把它放回口袋中摇匀,重复上述过程,共试验100次,其中75次摸到白球,估计袋中共有多少球?3、“双减”意见下,各级教育行政部门都对课后作业作了更明确的要求.为了解某学校七年级学生课后作业时长情况,某部门针对某校七年级学生进行了问卷调查,调查结果分四类显示:A表示“40分钟以内完成”,B表示“40—70分钟以内完成”,C表示“70—90分钟以内完成”,D表示“90分钟以上完成”.根据调查结果,绘制成两种不完整的统计图.请结合统计图,回答下列问题.(1)这次调查的总人数是人;(2)扇形统计图中,B类扇形的圆心角是°;(3)在D类学生中,有2名男生和2名女生,再需从这4名学生中抽取2名学生作进一步访谈调查,请用树状图或列表的方法,求所抽2名学生恰好是1名男生和1名女生的概率.4、九年级十班的甲、乙两位同学练习百米赛跑;操场上从内道到外道,标有1,2,3,4四个跑道.他们抽签占跑道.(1)若甲抽到2道,则乙抽到3道的概率是______________;(2)请列表或画树状图求甲、乙在相邻跑道的概率.5、盒中有1枚黑棋和3白棋,这些棋除颜色外无其他差别,某同学一次摸出两枚棋,请通过列表或树状图计算这两枚棋颜色不同的概率.-参考答案-一、单选题1、B【分析】由题意,只要求出阴影部分与矩形的面积比即可.【详解】解:由题意,假设每个小方砖的面积为1,则所有方砖的面积为15,而阴影部分的面积为5,由几何概型公式得到最终停在阴影方砖上的概率为:51 153;故选:B.【点睛】本题将概率的求解设置于黑白方砖中,考查学生对简单几何概率的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.2、B【分析】根据不可能事件的意义,结合具体的问题情境进行判断即可.【详解】解:A、射击运动员射击一次,命中靶心,是随机事件;故A不符合题意;B、从一个只装有白球和红球的袋中摸球,摸出黄球,是不可能事件,故B符合题意;C、班里的两名同学,他们的生日是同一天,是随机事件;故C不符合题意;D、经过红绿灯路口,遇到绿灯,是随机事件,故D不符合题意;故选:B.【点睛】本题考查随机事件,不可能事件,必然事件,理解随机事件,不可能事件,必然事件的意义是正确判断的前提.3、C【分析】可以采用列表法或树状图求解:可以得到一共有9种情况,一辆向右转,一辆向左转有2种结果数,根据概率公式计算可得.【详解】画“树形图”如图所示:∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种,;∴一辆向右转,一辆向左转的概率为29故选C.【点睛】此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解4、B【分析】根据题意,采用列表法或树状图法表示出所有可能,然后找出满足条件的可能性,即可得出概率.【详解】解:分别记跳远为“跳”,坐位体前屈为“坐”,握力为“握”,列表如下:由表中可知,共有9种不同得结果,两人都抽到跳远的只有1种可能,则两人抽到跳远的概率为:19P ,故选:B.【点睛】题目主要考查利用树状图或列表法求概率,熟练掌握树状图法或列表法是解题关键.5、C【分析】根据必然事件就是一定发生的事件逐项判断即可.【详解】A.守株待兔是随机事件,故该选项不符合题意;B.水中捞月是不可能事件,故该选项不符合题意;C.水滴石穿是必然事件,故该选项符合题意;D.缘木求鱼是不可能事件,故该选项不符合题意.故选:C.【点睛】本题主要考查了必然事件的概念,掌握必然事件指在一定条件下一定发生的事件是解答本题的关键.6、B【分析】根据随机事件,必然事件,不可能事件的定义可判断A,根据随机事件发生的机会大小,估计概率的大小可判断B,可判断C,不规则物体的概率只能通过大数次的实验,使频率达到稳定时用频率估计概率可判断D.【详解】解:“射击运动员射击一次,命中靶心”可能会发生,也可都能不会发生是随机事件不是必然事件,故选项A不正确;事件发生的可能性越大,说明发生的机会越大,它的概率越接近1,故选项B正确;某种彩票中奖的概率是1%,因此买100张该种彩票每一张彩票中奖的概率都是1%,可能会中奖,但一定会中奖机会很小,故选项C不正确;图钉是不规则的物体,抛掷一枚图钉,“针尖朝上”的概率只能通过实验,大数次的实验,使频率稳定时,可用频率估计概率,不可以用列举法求得,故选项D不正确.故选择B.【点睛】本题考查事件,事件发生的可能性,概率,实验概率,掌握事件,事件发生的可能性,概率,实验概率知识是解题关键.7、D【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:“2022年年春节期间,中山市会下雨”这一事件为随机事件,故选:D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8、C【分析】根据中心对称图形的定义,即把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称和概率公式计算即可;【详解】根据已知图形可得,中心对称图形是,,,共有3个,∴抽到的图案是中心对称图形的概率是34.故选C.【点睛】本题主要考查了概率公式应用和中心对称图形的识别,准确分析计算是解题的关键.9、B【分析】根据事件发生可能性的大小进行判断即可.【详解】解:A、随机事件发生的概率为0到1之间,选项错误,不符合题意;B、不可能事件发生的概率为0,选项正确,符合题意;C、概率很小的事件可能发生,选项错误,不符合题意;D、投掷一枚质地均匀的硬币 100 次,正面朝上的次数可能是 50 次,选项错误,不符合题意;故选:B【点睛】本题考查随机事件与不可能事件的概率,掌握随机事件发生的概率在0到1之间,不可能事件发生的概率为0是关键.10、D【分析】共有13种等可能结果,小于6的有5种,利用概率公式计算即可.【详解】解:一副普通扑克牌中13张黑桃牌洗匀后正面向下放在桌子上.从中随机抽取一张,共有13种等可能结果,小于6的有5种,抽出的牌上的数小于6的概率为513,故选:D.【点睛】本题考查了概率的求法,解题关键是熟记概率公式,准确列出所有可能.二、填空题1、5 9【分析】首先计算出大圆和小圆的面积,进而可得阴影部分的面积,再求出阴影部分面积与总面积之比即可得到飞镖击中阴影区域的概率.【详解】解:大圆面积:π×(302)2=225π(cm2),小圆面积:π×(202)2=100π(cm 2), 阴影部分面积:225π−100π=125π(cm 2), 飞镖落在阴影区域的概率为:12552259ππ=. 故答案为:59.【点睛】此题主要考查了概率,一般用阴影区域表示所求事件(A );然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.2、512【分析】根据题意列出表格或画出树状图,表示出所有可能的情况,再找到符合题意的情况,最后利用概率公式计算即可.【详解】根据题意可列表格如下:根据表格可知共有36种可能的情况,其中两次正面朝上点数之和大于7的情况有15种,所以订购者获得熊猫玩偶的概率为155 3612.故答案为512.【点睛】本题考查利用列表法或画树状图法求概率.根据题意正确的列出表格或画出树状图是解答本题的关键.3、1 6【分析】让朝上一面的数字是6的情况数除以总情况数6即为所求的概率.【详解】解:∵抛掷六个面上分别刻有的1,2,3,4,5,6的骰子有6种结果,其中朝上一面的数字为6点的只有1种,∴朝上一面的数字为6点的概率为16,故答案为:16.【点睛】此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.4、12##【分析】直接利用概率的意义分析得出答案.【详解】解:∵掷质地均匀硬币的试验,每次正面向上和向下的概率相同,∴再次掷出这枚硬币,正面朝上的概率是12.故答案为:12.【点睛】此题主要考查了概率的意义,正确把握概率的意义是解题关键.5、1 3【分析】根据简单概率公式进行计算即可.【详解】解:根据题意,共有6块全等的扇形区域,其中2块是红色,4块是蓝色.则指针对准红色区域的可能性大小是21 63故答案为:1 3【点睛】本题考查了几何概率,立即题意是解题的关键.三、解答题1、(1)见解析;(2)16.【分析】(1)由题意直接用列表法表示所有可能出现的结果情况即可;(2)根据题意列举出所有可能出现的结果情况,从中得出A 款帽子和乙款围巾的情况,进而求出相应的概率.【详解】解:(1)用列表法表示搭配的所有可能性结果如下:共有6种所有可能出现的结果;(2)共有6种所有可能出现的结果,A 款帽子和乙款围巾的有1种,所以A 款帽子和乙款围巾的概率为:16. 【点睛】本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是解决问题的关键.2、40【分析】根据频率稳定性定理,用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率,进而得出得到白球的概率,即可得出等式求出即可.【详解】解:设小球共有x 个,根据题意可得:1075100x x -= 解得:x =40.经检验x =40,为方程的解且符合题意,答:袋中共有40个球【点睛】此题主要考查了分式方程的应用和利用频率估计概率,得出求白球的频率公式是解题关键.3、(1)40;(2)108;(3)2 3【分析】(1)根据A类别人数及其所占百分比可得被调查的总人数;(2)用360°乘以B类别人数所占比例即可;(3)画树状图,共有12种等可能的结果,其中恰好选中1名男生和1名女生的结果数为8种,再根据概率公式求解即可.【详解】解:(1)参加这次调查的学生总人数为6÷15%=40(人);故答案为:40;(2)扇形统计图中,B部分扇形所对应的圆心角是360°×1240=108°,故答案为:108;(3)画树状图为:共有12种等可能的结果,其中恰好选中1名男生和1名女生的结果为8种,∴所抽取的2名学生恰好是1名男生和1名女生的概率为82123.【点睛】本题考查了列表法与树状图法,正确画树状图是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.也考查了统计图.4、(1)13;(2)12【分析】(1)因为甲已经抽到了2道,故乙只能在1、3、4三条跑道中抽取,乙抽到3道的概率P=13.(2)如图所示列表格,因为甲乙不能在同一条跑道,故共有12种可能,其中(1,2)、(2,3)、(3、4)、(2,1)、(3,2)、(4,3)为甲、乙跑道相邻的情况,故甲、乙在相邻跑道的概率为12.【详解】(1)∵甲已经抽到2号跑道∴乙只能在1、3、4三条跑道中抽取∴乙抽到3道的概率P=1 3(2)如图所示列表格可知(1,2)、(2,3)、(3、4)、(2,1)、(3,2)、(4,3)时甲、乙在相邻跑道故甲、乙在相邻跑道的概率为61 122.【点睛】本题考查了事件概率的计算以及列表法求概率,当事件中涉及两个因素,并且可能出现的结果数目较多时,用表格不重不漏地列出所有可能的结果,这种方法叫列表法.列表法的一般步骤:(1)把所有可能发生的试验结果一一列举出来,要求:①不重不漏;②所有可能结果有规律地填入表格(2)把所求事件发生的可能结果都找出来(3)代入计算公式:()P A =所求事件所有可能出现的结果数所有可能出现的结果数. 5、12P =【分析】 用列表法列举所有可能出现的结果,再找出所求事件可能出现的结果,由()P A =所求事件所有可能出现的结果数所有可能出现的结果数即可求出相应概率. 【详解】如表所示由表可知共有12种情况,其中摸出两枚棋子的颜色不同的情况有6种故P =61122=. 【点睛】当事件中涉及两个因素,并且可能出现的结果数目较多时,用表格不重不漏地列出所有可能的结果,这种方法叫列表法,列表法的一般步骤:把所有可能发生的试验结果一一列举出来,要求:①不重不漏;②所有可能结果有规律地填入表格,把所求事件发生的可能结果都找出来代入计算公式:()P A =所求事件所有可能出现的结果数所有可能出现的结果数,当事件的发生只经过两个步骤时,一般用列表法就能将所有的可能结果列举出来,当经过多个步骤时,表格就不够清晰了,而画树状图法的适用面更广,特别是多个步骤时,层次清楚,一目了然.。
沪教版八年级下册数学第二十三章 概率初步含答案
沪教版八年级下册数学第二十三章概率初步含答案一、单选题(共15题,共计45分)1、现有四张完全相同的卡片,上面分别标有数字0,1,2,3,把卡片背面朝上洗匀,然后从中随机抽取两张卡片组成一个两位数,则这个两位数是偶然的概率是()A. B. C. D.2、下列说法不正确的是()A.“某射击运动员射击一次,正中靶心”属于随机事件B.“13名同学至少有两名同学的出生月份是相同的”属于必然事件C.“在标准大气压下,当温度降到-5℃时,水结成冰”属于随机事件D.“某袋中有8个质地均匀的球,且都是红球,任意摸出一球是白球”属于不可能事件3、现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两个粽子都没有蛋黄的概率是()A. B. C. D.4、现有三张质地大小完全相同的卡片,上面分别标有数字﹣2,﹣1,1,把卡片背面朝上洗匀,从中任意抽取一张卡片,记下数字后放回,洗匀,再任意抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是()A. B. C. D.5、下列说法中正确是()A.“明天降雨的概率为”,表示明天有半天都在降雨B.“抛一枚硬币,正面朝上的概率为”,表示每抛掷两次就有一次正面朝上C.“抛一枚均匀的正方体骰子,朝上的点数是6的概率为”,表示随着抛掷次数的增加,“抛出朝上的点数是6”这一事件发生的概率稳定在附近 D.某种彩票的中奖概率为,买1000张这种彩票一定有一张中奖6、下列事件不可能发生的是()A.打开电视机,CCTV – 1正在播放新闻B.我们班的同学将来会有人当选为劳动模范C.在空气中,光的传播速度比声音的传播速度快D.若实数C<0,则3C>2C7、经过某十字路口的汽车,它可以继续直行,也可以向左转或向右转.如果这三种可能性大小相同,则两辆汽车经过这个十字路口全部继续直行的概率是A. B. C. D.8、下列事件是不确定事件的是()A.三角形一条中线把三角形分成面积相等的两部分B.在图形的旋转变换中,面积不会改变C.掷一枚硬币,停止后正面朝上D.抛出的石子会下落9、下列说法正确的是()A.了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查B.甲乙两人跳绳各10次,其成绩的平均数相等,,则甲的成绩比乙稳定C.三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是 D.“任意画一个三角形,其内角和是”这一事件是不可能事件10、下列事件中,必然事件是( )A.抛掷1个均匀的骰子,出现6点向上B.两条直线被第三条直线所截,同位角相等C.367人中至少有2人的生日相同D.实数的绝对值是正数11、下列说法中正确的是()A.“打开电视,正在播放《新闻联播》”是必然事件.B.想了解某种饮料中含色素的情况,宜采用抽样调查.C.数据1,1,2,2,3的众数是3. D.一组数据的波动越大,方差越小.12、气象台预报:“本市明天降水概率是80%”,但据经验,气象台预报的准确率仅为80%,则在此经验下,本市明天降水的概率为()A.84%B.80%C.68%D.64%13、用长为4cm,5cm,6cm的三条线段围成一个三角形,该事件是()A.随机事件B.必然事件C.不可能事件D.无法确定14、口袋中有白球和红球共10个,这些球除颜色外其它都相同.小明将口袋中的球搅匀后随机从中摸出一个球,记下颜色后放回口袋中,小明继续重复这一过程,共摸了100次,结果有40次是红球,请你估计口袋中红球的个数是()A.3B.4C.5D.615、下列事件中是必然事件的是()A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.抛出一枚硬币,落地后正面朝上D.实心铁球投入水中会沉入水底二、填空题(共10题,共计30分)16、袋子中有红球、白球共10个,这些球除颜色外都相同,将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断重复这一过程,摸了100次后,发现有30次摸到红球,请你估计这个袋中红球约有________个.17、一个布袋里放有红色、黄色、黑色三种球,它们除颜色外其余都相同.红色、黄色、黑色的个数之比为4:3:2,则从布袋里任意摸出1个球不是红球的概率是________.18、连续投掷两次骰子,把朝上的一面的数字相加,如果和大于5,小刚得l 分;否则小明得一分,该游戏规则对________更有利一些.19、不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,则第一次摸到红球,第二次摸到绿球的概率为________.20、如图,地面上有一个不规则的封闭图形ABCD,为求得它的面积,小明在此封闭图形内画出一个半径为1米的圆后,在附近闭上眼睛向封闭图形内掷小石子(可把小石子近似地看成点),记录如下:50 50 300 …石子落在圆内(含圆上)次数m 14 48 89 …石子落在圆以外的阴影部分(含外缘上)次数30 95 180 …n(1)当投掷的次数很大时,则m:n的值越来越接近________ ;(2)若以小石子所落的有效区域为总数(即m+n),则随着投掷次数的增大,小石子落在圆内(含圆上)的频率值稳定在________ ;(3)请你利用(2)中所得频率的值,估计整个封闭图形ABCD的面积是________ 米2(结果保留π)21、某车间生产的零件不合格的概率为.如果每天从他们生产的零件中任取10个做试验,那么在大量的重复试验中,平均来说,________ 天会查出1个次品.22、一个不透明的口袋中有四个完全相同的小球,把它们分别标号为,随机取出一个小球后不放回,再随机取出一个小球,则两次取出的小球标号的和等于4的概率是________.23、为估计某天鹅湖中天鹅的数量,先捕捉10只,全部做上记号后放飞.过了一段时间后,重新捕捉40只,其中带有标记的天鹅有2只.据此可估算出该地区大约有天鹅________只.24、从分别标有1、2、3、4的四张卡片中一次同时抽出两张,则抽取两张卡片中数字的和为奇数的概率是________25、小芳掷一枚硬币次,有次正面向上,当她掷第次时,正面向上的概率为________.三、解答题(共5题,共计25分)26、有3个完全相同的小球,把它们分别标号为1,2,3,放在一个不透明的口袋中,从口袋中随机摸出一个小球,记下标号后放回,再从口袋中随机摸出一个小球,记下标号.用画树状图(或列表)的方法,求两次摸出的小球号码恰好都大于1的概率.27、一个不透明的口袋中装有4张卡片,卡片上分别标有数字1,﹣3,﹣5,7,这些卡片数字外都相同,小芳从口袋中随机抽取一张卡片,小明再从剩余的三张卡片中随机抽取一张,请你用画树状图或列表的方法,求两人抽到的数字符号相同的概率.28、如图是一副扑g牌中的三张牌,将它们正面向下洗匀,甲同学从中随机抽取一张牌后放回,洗匀,乙同学再从中随机抽取一张牌,用画树状图或列表的方法,求抽出的两张牌中牌面上的数字都是偶数的概率.29、在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.30、下表记录了一名球员在罚球线上投篮的结果,投篮次数(n)50 100 150 209 250 300 350投中次数(m)28 60 78 104 123 152 175投中频率(n/m)0.56 0.60 0.52 0.50 0.49 0.51 0.58 (1)计算并填写表中的投中频率(精确到0.01);(2)这名球员投篮一次,投中的概率约是多少(精确到0.1)?参考答案一、单选题(共15题,共计45分)1、B2、C3、B4、A5、C6、D7、A8、C10、C11、B12、C13、B14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率的计算--巩固练习
【巩固练习】
一、选择题
1. 用1、2、3、4、5这5个数字(数字可重复,如“522”)组成3位数,这个3位数是奇数的概率
为( ).
A. B. C.D.
2.下列说法正确的是( ).
A.抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会一样大;
B.为了解汉口火车站某一天中通过的列车车辆数,可采用全面调查的方式进行;
C.彩票中奖的机会是1%,买100张一定会中奖;
D.中学生小亮,对他所在的那栋住宅楼的家庭进行调查,发现拥有空调的家庭占100%,是他得出
全市拥有空调家庭的百分比为100%的结论.
3.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是( ).
A.B. C.D.
4.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()
A.频率就是概率
B.频率与试验次数无关
C.概率是随机的,与频率无关
D.随着试验次数的增加,频率一般会越来越接近概率
5. 要在一只口袋中装入若干个形状与大小都完全相同的球,使得从袋中摸到红球的概率为,四位
同学分别采用了下列装法,你认为他们中装错的是( ).
A.口袋中装入10个小球,其中只有两个红球;
B.装入1个红球,1个白球,1个黄球,1个蓝球,1个黑球;
C.装入红球5个,白球13个,黑球2个;
D.装入红球7个,白球13个,黑球2个,黄球13个.
6.现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A
立方体朝上的数字为、小明掷B立方体朝上的数字为来确定点P(),那么它们各掷一次所
确定的点P落在已知抛物线上的概率为( ).
A. B. C. D.
二. 填空题
7.甲、乙两人玩游戏,把一个均匀的小正方体的每个面上分别标上数字1,2,3,4,5,6,任意掷出小正方体后,若朝上的数字比3大,则甲胜;若朝上的数字比3小,则乙胜,你认为这个游戏对甲、乙双方公平吗?.
8.你喜欢玩游戏吗?现请你玩一个转盘游戏.如图所示的两上转盘中指针落在每一个数字上的机会均等,现同时自由转动甲、乙两个转盘,转盘停止后,指针各指向一个数字,用所指的两个数字作乘积,所有可能得到的不同的积分别为_______________________;数字之积为奇数的概率为
__________________.
9.有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1、2、3、4、5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是___________.
10. 在一个不透明的盒子中装有2个白球,个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则___________.
11. 一个口袋中有12个白球和若干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:先从口袋中摸出10个球,求出其中白球数与10的比值,再把球放回口袋中摇匀,不断重复上述过程5次,得到的白球数与10的比值分别为:0.4,0.1,0.2,0.1,0.2,根据上述数据,小亮可估计口袋内大约有________个黑球.
12. 从-2、-1、0、1、2这5个数中任取一个数,作为关于x的一元二次方程的k 值,则所得的方程中有两个不相等的实数根的概率是_______.
三. 综合题
13. 现有三个自愿献血者,两人血型为O型,一人血型为A型.若在三人中随意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所抽血的血型均为O型的概率.(要求:用列表或画树状图的方法解答)
14.某商场“五一”期间为进行有奖销售活动,设立了一个可以自由转动的转盘.商场规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下
(1)完成上述表格;(结果全部精确到0.1)
(2)请估计当n很大时,频率将会接近,假如你去转动该转盘一次,你获得“可乐”的概率约是;(结果全部精确到0.1)
(3)转盘中,表示“洗衣粉”区域的扇形的圆心角约是多少度?
15. 在一个不透明的布袋中装有相同的三个小球,其上面分别标注数字1、2、3、,现从中任意摸出一个小球,将其上面的数字作为点M的横坐标;将球放回袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点M的纵坐标.
(1)写出点M坐标的所有可能的结果;
(2)求点M在直线y=x上的概率;
(3)求点M的横坐标与纵坐标之和是偶数的概率.
【答案与解析】
一、选择题
1.【答案】A.
【解析】5个数字组成3位数(可以重复)有5×5×5=125种,是奇数的有5×5×3=75,所以概率为75÷125=.
2.【答案】B.
3.【答案】C.
【解析】第一次摸出红球的概率是21
=
42
,第二次摸出红球的概率是
1
3
,
所以P(都摸到红球)=111
= 236 .
4.【答案】D.
【解析】∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,∴D选项说法正确.
5.【答案】C.
【解析】P(摸到红球)=
51
=
5+13+24
.
6.【答案】B.
【解析】两人各掷一次出现的结果有36种,而满足点P落在抛物线上的点有3种:(1,3), (2,4),(3,3),所以P(点P落在已知抛物线上)=
二、填空题
7.【答案】不公平.
【解析】∵掷得朝上的数字比3大可能性有:4,5,6,
∴掷得朝上的数字比3大的概率为:=,
∵朝上的数字比3小的可能性有:1,2,
∴掷得朝上的数字比3小的概率为:=,
∴这个游戏对甲、乙双方不公平.
8.【答案】1,2,3,4,5,6,8,9,10,12,15,16,18,20,24 ; .
9.【答案】.
10.【答案】 1 .
11.【答案】48 .
【解析】由白球与10的比值可以确定P(白球在10个球里)=0.2,所以总球数是12÷0.2=60,即黑球的个数是60-12=48.
12.【答案】.
【解析】因为方程中有两个不相等的实数根,所以△=1-4k>0,即k<1
4
,k=-2,-1,0,
所以P(有不等实数根)= .
三、解答题
13.
所以两次所抽血型为O型的概率为.
树状图如下:
所以两次所抽血型为O型的概率为.
14.【解析】解:(1)298÷500≈0.6;0.59×800=472;
(2)估计当n很大时,频率将会接近0.6,假如你去转动该转盘一次,你获得“可乐”的概率约是
0.6;
(3)(1﹣0.6)×360°=144°,
所以表示“洗衣粉”区域的扇形的圆心角约是144°.
15.【解析】(1
∴点M坐标的所有可能的结果有九个:
(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3).(2)P(点M在直线y=x上)=P(点M的横、纵坐标相等)==.
(3)∵
∴P(点M的横坐标与纵坐标之和是偶数)=.。