24.1.4圆周角2
人教版九年级数学上册《第24章 圆 24.1.4圆周角2》课件
C
O
B
1.知识链接
完成导学案4、5、6
C
C
O
A
O
B
A (图1)
B
(图2)
C
A
O
B
D (图3)
2.自主学习
完成导学案自主学习1 圆内接多边形定义:如果一个多边形的所有顶点都在 同一
个圆上,这个多边形叫做圆内接多边形, 这个圆叫做这个多边形的外接圆.
学科网
D
A
观察圆内接四边形对角之间有什么关系?
完成导学案当堂检测3题
• 3、如图,点A、B、C、D在圆上, AB=8,BC=6,AC=10,CD=4.求AD的长.
A组: 全品77页78页 B组:全品77页78页删掉18题 C组:全品75页9、10题和77
24.1.4 圆周角(2)
学科网
复习旧知:圆周角定理
在同圆(或等圆)中,同弧或 等弧所对的圆周角相等, 都 等于该弧所对的圆心角的一 半;相等的圆周角所对的弧 相等。
同弧或等弧所对的圆周角相等.
如图,线段AB是⊙O的直径,那么圆周角, ∠ACB会是怎样的角?
半圆(或直径)所对的圆周角是直角
A
思考 90°的圆周角所对的弦是什么?
B
C
•1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。” •2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 •3、反思自我时展示了勇气,自我反思是一切思想的源泉。 •4、好的教师是让学生发现真理,而不只是传授知识。 •5、数学教学要“淡化形式,注重实质.
6、“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。2021年11月2021/11/72021/11/72021/11/711/7/2021
24.1.4圆周角(2)
4. 判断:圆上任意两点之间分圆周为两条弧, 这两条弧的度数和为3600( √ )
新课讲解:
若一个多边形各顶点都在同一 个圆上,那么,这个多边形叫做圆 内接多边形,这个圆叫做这个多边 形的外接圆。
D E C B
O
B
C
A
A F
O
D E
补充练习:
若ABCD为圆内接四边形,则下列哪 个选项可能成立( B )
D E
80
B C B
100 D O C
(2)四边形ABCD内接于⊙O,∠AOC=100° 则∠B=______∠D=______ 50° 130° (3)四边形ABCD内接于⊙O, ∠A:∠C=1:3,则 45° ∠A=_____,
练习:如图 AB是⊙O的直径, C ,D是圆上
50° 的两点,若∠ABD=40°,则∠BCD=__.
24.1.4
圆周角(2)
同弧或等弧所对的圆周角相等。
D
.
A
C
.
O
· .
B
E
在同圆或等圆中,同弧或等弧所对的 圆周角相等,都等于这条弧所对的圆 心角的一半.
半圆(或直径)所对的圆周 角是直角; 90°的圆周角所对的弦是直径.
C2 C1 C3
A
O
·
B
思考:判断正误: 1.同弧或等弧所对的圆周角相等 (√ )
课堂练习
(4)梯形ABCD内接于⊙O,AD∥BC,
75° ∠B=750,则∠C=_____
圆的内接梯形一定是_____梯形。
返回
1、如图,四边形ABCD内接于⊙O,如果 ∠BOD=130°,则∠BCD的度数是(A) A、115° B、130° C、65° D、50° 2、 如图,等边三角形ABC内接于⊙O,P是
人教版数学九年级上册24.1.4:圆周角的概念和圆周角的定理(教案)
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
3.培养学生的数学抽象能力:让学生从具体的圆周角实例中抽象出一般性规律,理解圆周角与圆心角、弧和弦之间的关系,提升数学抽象思维。
4.培养学生的数学建模能力:通过解决与圆周角相关的问题,使学生能够建立数学模型,运用所学知识解决实际问题,提高数学应用能力。
三、教学难点与重点
1.教学重点
-圆周角的概念:强调圆周角定义中“顶点在圆上,两边分别与圆相交”的特点,以及与圆心角的关系。
a.圆周角定理:圆周角等于其所对的圆心角的一半。
b.圆周角推论:在同圆或等圆中,相等的圆周角所对的弧相等,所对的弦也相等。
二、核心素养目标
1.培养学生的几何直观能力:通过观察圆周角与圆心角的关系,使学生能够直观理解圆周角的概念及定理,提高空间想象力和几何直观感知。
2.发展学生的逻辑推理能力:在学习圆周角定理及其推论的过程中,引导学生运用严密的逻辑推理,掌握证明方法,增强解决问题的能力。
-掌握圆周角定理的证明:学生需要掌握如何运用严密的逻辑推理证明圆周角定理,并能够灵活运用。
-圆周角推论的应用:学生需学会将圆周角推论应用于解决实际问题,如求弧长、弦长等。
举例1:针对圆周角定义的难点,教师可通过以下步骤帮助学生理解:
a.展示不同类型的角,让学生辨别哪些是圆周角,哪些是圆心角。
b.通过动态演示,让学生观察圆周角与圆心角的变化关系,加深理解。
人教版九年级数学上册24.1.4圆周角第2课时圆内接四边形优秀教学案例
3.小组合作与互动交流:将学生分成若干小组,进行合作研究,鼓励学生互相讨论、分享和借鉴,培养了他们的团队合作意识和沟通能力。同时,小组合作的形式也使得学生可以从不同的角度和思路去思考问题,丰富了他们的思维,提高了他们的学习效果。
3.结合实际问题,展示如何运用圆内接四边形的性质进行计算和解决几何问题。
(三)学生小组讨论
1.将学生分成若干小组,每组选定一个圆内接四边形进行研究和证明;
2.鼓励学生互相讨论、分享和借鉴,培养他们的团队合作意识和沟通能力;
3.各小组展示研究成果,其他小组进行评价和提问,促进知识的交流和深化理解。
(四)总结归纳
3.培养学生的自主学习能力和团队合作意识,使他们能够独立思考和解决问题;
4.培养学生的创新意识和思维能力,使他们能够积极探索和创造。
三、教学策略
(一)情景创设
1.利用多媒体展示一些实际生活中的圆内接四边形场景,如车轮、自行车把手等,让学生感受到数学与生活的紧密联系;
2.设计一些有趣的数学问题,如寻找特殊的圆内接四边形,让学生在解决问题的过程中自然引入圆内接四边形的概念;
2.动手操作:让学生亲自动手画出圆内接四边形,并尝试证明其性质;
3.小组讨论:让学生分组进行讨论,分享各自的发现和证明方法,互相学习和借鉴;
4.总结和归纳:引导学生总结圆内接四边形的性质,并能够运用到实际问题中。
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,使他们感受到数学的乐趣和魅力;
2.培养学生的耐心和毅力,使他们能够克服困难,坚持探究;
24.1.4圆周角2
圆周角
南寨中学:谢世明
回 忆
1.什么叫圆周角? 顶点在圆上,两边都和圆 相交的角叫圆周角 2. 圆心角、弧、弦、圆周角四个量之 间关系有个什么结论? 在同圆(或等圆)中,如果圆心角、弧、弦、圆周角有一 组量相等,那么它们所对应的其余三给量都分别相等。同 弧(或等弧)所对的圆周角等于圆心角的一半.
O
110
P
x
B
A
解:由题意得 2x =110o ∴x =55o
能力练习:
1、如图,在⊙O中,ABC=50°, 则∠AOC等于( D ) A、50°; B、80°; C、90°; D、100°
A B O C
2、如图,△ABC与A、B重 合,则∠BPC等于( B ) A、30°; B、60°; C、90°; D、45°
O
·
D
又在Rt△ABD中,AD2+BD2=AB2,
2 2 AD BD AB 10 5 2(cm) 2 2
1、在⊙O中,∠CBD=30° ,∠BDC=20°,求, ∠C和 ∠A的度数。
像四边形ABCD这样,所有的顶点都在同一个 圆上 的多边形,叫做圆内接多边形,这个圆叫做这 个多边形的外接圆。 圆内接四边形的对角互补
推
论
直径(或半圆)所对的圆周角是 直角, 90°的圆周角所对的弦是 直径.
巩固练习
1、判断: (1)等弧所对的圆周角相等. ( √ ) (2)相等的圆周角所对的弧也相等.( X ) 。 (3)90 的角所对的弦是直径。 ( )X (4)同弦所对的圆周角相等。 (X)
A
B C
C
O
A
O E
B
基础练习、
C
A P
24.1.4圆周角(2)
A P B C
例 如图⊙O1与⊙O2都经过A、B两点, 如图⊙ 两点, 经过点A的直线CD与⊙O1 交于点C,与 ⊙O2 交于点D。经过点B的直线EF与⊙O1 交于点E,与⊙O2 交于点F。 求证:CE∥DF 求证:
D A 1 C E O1 B O 2 F
C
证明: 证明: 以AB为直径作⊙O, 为直径作⊙ , 为直径作 ∵AO=BO, CO= 1AB, ,
2
A · O B
∴AO=BO=CO. ∴点C在⊙O上. 在 上 为直径, 又∵AB为直径 为直径 ∴∠ACB=
1 ×180°= 90°. 2
为直角三角形. ∴ △ABC 为直角三角形
拓展练习
如图,点P是⊙O外一点,点A、B、Q是⊙O上 的点。(1)求证∠P< ∠AQB (2)如果点P在⊙O内, ∠P与∠AQB有 A 怎样的关系?为什么?
2.若ABCD为圆内接四边形,则下列 2.若ABCD为圆内接四边形, 为圆内接四边形 B ) 哪个选项可能成立(
(A)∠A∶∠ ∶∠ ∶∠ = 1∶2∶3∶4 ∶∠B∶∠ ∶∠D ) ∶∠ ∶∠C∶∠ ∶ ∶ ∶ ∶∠B∶∠ ∶∠D (B)∠A∶∠ ∶∠ ∶∠ = 2∶1∶3∶4 ) ∶∠ ∶∠C∶∠ ∶ ∶ ∶ ∶∠B∶∠ ∶∠D (C)∠A∶∠ ∶∠ ∶∠ = 3∶2∶1∶4 ) ∶∠ ∶∠C∶∠ ∶ ∶ ∶ ∶∠B∶∠ ∶∠D (D)∠A∶∠ ∶∠ ∶∠ = 4∶3∶2∶1 ) ∶∠ ∶∠C∶∠ ∶ ∶ ∶
课本 练 习
3.求证:如果三角形一边上的中线等于这边的一半,那么这个 求证:如果三角形一边上的中线等于这边的一半, 求证 三角形是直角三角形.(提示:作出以这条边为直径的圆.) .(提示 三角形是直角三角形.(提示:作出以这条边为直径的圆 ) 1 已知: 边上的中线, 已知:△ABC 中,CO为AB边上的中线, CO= AB 为 边上的中线 且 2 求证: 为直角三角形. 求证: △ABC 为直角三角形
九年级数学人教版上册24.1.4圆周角第2课时圆内接四边形教学设计
2.学生在几何证明过程中的逻辑思维能力,注重培养学生严谨的推理和证明习惯。
3.学生在解决圆内接四边形问题时,对图形的观察和分析能力,引导学生运用性质解决问题。
4.关注学生的学习兴趣和积极性,激发学生的学习动力,提高课堂参与度。
三、教学重难点和教学设想
(一)教学重难点
1.重点:圆内接四边形的性质及其应用。
2.难点:圆内接四边形对角互补的证明过程及其在实际问题中的应用。
(二)教学设想
1.对于重点内容的处理:
a.采用直观演示和动态图示相结合的方式,让学生形象地理解圆内接四边形的性质。
b.通过典型例题的讲解,引导学生运用性质解决实际问题,巩固重点知识。
4.教师对本节课的教学进行总结,指出学生的优点和不足,鼓励学生继续努力。
五、作业布置
为了巩固学生对圆内接四边形性质的理解和应用,以及提高学生的解题能力,特布置以下作业:
1.基础巩固题:
(1)判断以下图形是否为圆内接四边形,并说明理由。
(2)已知圆内接四边形ABCD,求证:∠A+∠C=180°,∠B+∠D=180°。
6.教学拓展:
a.引导学生探究圆内接四边形的性质在生活中的应用,提高学生的应用意识。
b.激发学生对几何学的兴趣,鼓励学生参加数学竞赛和课外活动,拓展知识面。
四、教学内容与过程
(一)导入新课
1.复习导入:通过提问方式复习圆周角定理,引导学生回顾圆周角的概念及其性质。在此基础上,提出问题:“圆内接四边形是否具有特殊的性质?”引发学生思考,为新课的学习做好铺垫。
b.计算题:计算圆内接四边形的对角线长度或角度。
c.应用题:运用圆内接四边形的性质解决实际问题。
九年级数学: 24.1.4 圆周角 (2)
温馨提示:此套题为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word 文档返回原板块。
24.1.4 圆周角1.如图24-1-42,点A ,B ,C 均在⊙O 上,若∠B =40°,则∠AOC 的度数为( ) A .40° B .60° C .80°D .90°图24-1-42 图24-1-432.如图24-1-43,BD 是⊙O 的直径,点A ,C 在⊙O 上,AB ︵=BC ︵,∠AOB =60°,则∠BDC 的度数是( )A .60°B .45°C .35°D .30°3.如图24-1-44,在⊙O 中,弦AC ∥半径OB ,∠BOC =50°,则∠OAB 的度数为( )A .25°B .50°C .60°D .30°图24-1-44 图24-1-454.如图24-1-45,四边形ABCD 为⊙O 的内接四边形,已知∠C =∠D ,则AB 与CD 的位置关系是________.5.如图24-1-46,AB 是⊙O 的直径,点C 是⊙O 上的一点,若BC =6,AB =10,OD ⊥BC 于点D ,则OD 的长为________.6.如图24-1-47所示,BC 为⊙O 的直径,弦AD ⊥BC 于E ,∠C =60°.求证:△ABD 为等边三角形.图24-1-47图24-1-467.如图24-1-48,在⊙O中,A,B是圆上的两点,已知∠AOB=40°,直径CD∥AB,连接AC,则∠BAC=________.8.如图24-1-49,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2.图24-1-499.已知:如图24-1-50所示,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连接AD.求证:(1)∠DAC=∠DBA;(2)点P是线段AF的中点.图24-1-48图24-1-50参考答案1.C 2.D 3.A 4.AB∥CD 5.46.略7.35°8.(1)78°(2)略9.略关闭Word文档返回原板块。
九年级数学上册高效课堂(人教版)24.1.4圆周角(第2课时)教学设计
1.学生需独立完成作业,诚实守信,不得抄袭。
2.做题过程中,要求学生保持书写规范,注意作图的准确性。
3.鼓励学生遇到问题时,积极思考、讨论,培养解决问题的能力。
4.家长需关注学生的学习情况,协助学生完成作业,并及时与教师沟通,共同促进学生的成长。
5.教师在批改作业时,要关注学生的解题思路和方法,给予针对性的指导和建议。
8.融入德育教育,提升综合素质
在教学过程中,适时融入德育教育,培养学生的集体主义精神、合作意识和社会责任感,提升他们的综合素质。
四、教学内容与过程
(一)导入新课
1.教学活动设计
在本节课的导入环节,我将采用生活情境导入法,让学生从日常生活中发现数学问题,激发他们的学习兴趣。
2.教学过程
(1)展示图片:向学生展示自行车轮胎、时钟表盘等生活中常见的圆形物体,引导学生观察这些物体上的圆周角。
(3)学生展开讨论,教师巡回指导,解答学生的疑问。
(4)各小组汇报讨论成果,分享解题方法和心得。
(四)课堂练习
1.教学活动设计
此环节通过课堂练习,让学生巩固所学知识,提高解题能力。
2.教学过程
(1)设计具有代表性的练习题,涵盖圆周角定理的基础知识和应用。
(2)学生独立完成练习题,教师巡回指导,解答学生的问题。
(3)教师点评学生的总结,强调重点知识,指出易错点。
(4)布置课后作业,巩固所学知识,拓展思维。
五、作业布置
为了巩固本节课所学知识,提高学生的解题能力和思维品质,特布置以下作业:
1.基础知识巩固题:完成课本第24.1.4节后的练习题1、2、3,让学生通过练习,加深对圆周角定理及其推论的理解。
2.应用题:选取两道与圆周角相关的实际问题,要求学生运用所学知识解决问题。例如,计算圆形跑道中某一段弧的长度,或者求解圆形花园中两条相交弦所夹的圆周角度数。
初中数学人教版九年级上册《24142圆周角(2)》教案
人教版数学九年级上24.1.4.2圆周角(2)教学设计一、复习旧知1、还记得圆周角的定义吗?2、请你说出圆周角定理及推论。
圆周角定理:一条弧所对的圆周角等于它所对圆心角的一半.推论1:同弧或等弧所对的圆周角相等.推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.二、探究新知活动1,抢答:1.你能用三角尺画出下面这个圆的圆心吗?2.填空:如图,∠BAC=55°,∠CAD=45°,则∠DBC=_____°,∠BDC=_____°,∠BCD=______°3.如图,BD是⊙O的直径,∠ABC=130°则∠ADC=______°活动2:讨论请看我们做的抢答习题第2、3题,同学们有没有发现什么规律,请大家以小组为单位讨论后发言。
学生小组1回答:这个四边形的四个顶点,点A,点B,点C,点D都在⊙O上。
学生小组2回答:这个四边形的对角和是180°。
学生小组3回答:……学生小组4回答:……教师总结:同学们真是火眼金睛,找到的特点很多。
这个四边形有一个特点,四边形的四个顶点,点A,点B,点C,点D都在⊙O上,我们把这个四边形叫做圆内接四边形(板书:⊙O叫做四边形ABCD的外接圆)师:出示圆内接三角形图片,并指出:这是一个三角形,这个三角形的所有顶点都在这个圆上,我们把这个三角形叫做圆内接三角形,把这个圆叫做这个三角形的外接圆.师:出示圆内接五边形图片,并指出:这是五边形,这个五边形的所有顶点都在这个圆上,我们把这个五边形叫做圆内接五边形,把这个圆叫做这个五边形的外接圆.师:(出示圆内接六边形图片)归纳总结:现在,同学们能总结出“圆内接多边形”的定义了吗?一般地说,如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.刚才有同学说习题中的四边形的对角和是180°,我们再来看圆内接四边形有什么性质。
人教版数学九年级上册24.1.4圆周角(第2课时)教学设计
(一)导入新课
1.教学活动设计:
-利用多媒体展示生活中含有圆周角的物体,如时钟、风扇、自行车轮等,引导学生观察并思考这些物体上的圆周角特点。
-提问学生:“你们知道什么是圆周角吗?圆周角有哪些特点?”激发学生对圆周角的兴趣。
2.教学目的:
-通过生活中的实例,让学生感知圆周角的存在,为新课的学习做好铺垫。
2.自主探究,构建概念:
-让学生通过画圆、量角等活动,直观感受圆周角的特点。
-引导学生通过小组合作,探讨圆周角的定义,推导圆周角定理及推论。
-教师适时给予提示和引导,帮助学生理解圆周角的性质和定理。
3.实践应用,巩固知识:
-设计具有挑战性的练习题,让学生独立完成,巩固圆周角的知识。
-通过实际案例,如园林设计、道路规划等,让学生运用圆周角知识解决实际问题。
-对本节课学习的圆周角的定义、定理、推论进行梳理和归纳。
-总结圆周角知识在实际生活中的应用。
2.教学方法:
-学生分享学习体会,总结圆周角知识的关键点。
-教师点评学生的发言,强调重点知识,并对本节课进行总结。
五、作业布置
为了巩固学生对圆周角知识的掌握,提高学生的应用能力和思维能力,特布置以下作业:
1.基础知识巩固:
-激发学生的好奇心,引导学生积极思考,为新知的探究奠定基础。
(二)讲授新知
1.教学内容:
-圆周角的定义:从圆上任意两点分别向圆内引两条不重合的射线,所形成的角叫做圆周角。
-圆周角定理:ห้องสมุดไป่ตู้周角的度数等于它所对圆弧的度数的一半。
-圆周角推论:圆内接四边形的对角互补。
2.教学方法:
-采用讲解、演示、举例等教学方法,让学生理解圆周角的定义及性质。
24.1.4 第2课时 圆内接四边形 初中数学人教版数学九年级上册课件
∴ ∠C = 180°- ∠CBD - ∠BDC = 130°;
O
∴ ∠A = 180°- ∠C = 50°;
B
D
(圆内接四边形对角互补)
C
学习目标
概念剖析
典型例题
当堂检测
课堂总结
5. 已知 ∠OAB = 40°,求 ∠C 的度数.
解:延长 AO 至 D,交圆心于点 D,连接 BD;
D
O
∵ ∠OAB = 40°且 AD 是直径,
O B
( (
( (
∵ BCD 和BAD 所对的圆心角之和为 360°,
C
D
又 ∠BCD 和 ∠BAD 分别为 BCD 和BAD 所对的圆周角,
∴ ∠BCD + ∠BAD = 180°; 同理,∠ABC + ∠ADC = 180°.
总结:圆内接四边形的性质:圆内接四边形的对角互补.
学习目标
概念剖析
典型例题
形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.
A 如图:
四边形 ABCD 为 ⊙ O 的内接四边形;
B
O
⊙ O 为四边形 ABCD 的外接圆.
C
D
学习目标
概念剖析
典型例题
当堂检测
课堂总结
问题 1:如图,圆内接四边形的四个角之间有什么关系?
A
猜想:∠A + ∠C = 1_80_°_,∠B + ∠D = _1_80_°. B
当堂检测
课堂总结
(一)圆内接四边形的性质
例 1:如图所示,已知四边形 ABCD 为 ☉O 的内接四边形,∠ADE 为四
边形 ABCD 的一个外角. 求证:∠ABC = ∠ADE.
2022九年级数学上册 第24章 圆 24.1圆的有关性 4圆周角第2课时 圆内接四边形习题课件 (
11.如图,五边形ABCDE内接于⊙O,假设∠CAD=35°,那么∠B+∠E 的度数B 是( )
A.210°
B.215° C.235° D.250°
第二十四章 圆
24.1 圆的有关性质 24.1.4 圆周角
第2课时 圆内接四边形
知识点 圆内接四边形的性质
1.(2021․兰州)如图,四边形ABCD内接于⊙O,假设∠A=40°,那么∠C等
于 D
( )
A.110°
B.120° C.135° D.140°
2.如图,点A,B,C,D在⊙O上,假设∠B=100°, C
拔尖角度二 利用圆内接四边形的性质探究规律 15.如图,⊙O的内接四边形ABCD的两组对边的延长线分别交于点E,F. (1)假设∠E=∠F,求证:∠ADC=∠ABC; (2)假设∠E=∠F=42°,求∠A的度数; (3)假设∠E=α,∠F=β,且α≠β,请你用含α,β的式子表示∠,∠E=∠F,又∵∠ADC=∠E+∠DCE,∠ABC
12.(2021․盐城)如图,点A,B,C,D,E在⊙O上,且 那么∠E+∠C=_1_5_5_____°.
的度数为50°,
考查角度 利用圆内接四边形的性质求角度
13.如图,四边形ABCD是⊙O的内接四边形,DB平分∠ADC,连接OC, OC⊥BD. (1)求证:AB=CD; (2)假设∠A=66°,求∠ADB的度数.
(1) 证明:∵DB 平分∠ADC,∴A⌒B=⌒BC.∵⌒OC⊥⌒BD,∴B⌒C=⌒CD, ∴AB=CD,∴AB=CD.
(2)解:∵四边形 ABCD 是⊙O 的内接四边形,∴∠BCD=180°-∠A=114°. ∵︵BC=C︵D,∴BC=CD,∴∠BDC=12×(180°-114°)=33°.∵DB 平分∠ADC, ∴∠ADB=∠BDC=33°.
九年级数学上册 24.1.4 圆周角(2)教案 新人教版(2021-2022学年)
一、复习旧知
1、圆周角的定义;
2、圆周角定理及推论。
(教师提出问题,学生思考作答)
二、探究新知
1。
例 4 :如图,⊙O直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D,求BC、AD、BD的长.
(教师引导学生独立思考,理清题意,整理思路,教师规范板书)
2.自学课本87、88页,注意理解蓝体字
回答:什么是圆内接多边形?什么叫多边形的外接圆?圆内接四边形的性质是什么?
(学生带着问题自学课本,同伴交流后,教师提问,师生共同评价)
三、当堂训练
1、完成课本88页,练习3、5
2、如图24-1-23,在⊙O 的内接四边形ABCD
中,∠BCD=130°,则∠BOD的度数是__________.
3、如图24—1-20,已知BD是⊙O 的直径,⊙O 的弦AC⊥BD于点E,若∠AOD=60°,则∠DBC 的度数
为:
4、如图 24-1—19 是中国共产主义青年团团旗上的图
案,点A,B,C,D,E五等分圆,则∠A+∠B+∠C+∠D+∠E=
5、如图24-1-21,已知四边形ABCD内接于⊙O,∠BOD=80°,求∠BAD 和∠BCD 的度数.
四、课堂小结
1、定理:圆的内接四边形的对角互补,并且任何一个外角
都等于它的内对角.
2、利用圆周角定理解题应注意哪些问题?
五、课后作业
习题24.1作业本:第5题、第8题
学案:P82、P85巩固训练。
ﻬ。
人教版九年级数学上册24.1.4 圆周角(二) 教案
数学学科课时教学设计
课时
它是学生已经掌握圆周角的定理、圆周角的定理的推导及运用它们解题基础上,对圆内接四边形的性质进行探索,在圆的有关说理、作图、计算中有应用,是角度转换的重要方法。
学生已经掌握圆周角的定理、圆周角的定理的推导及运用它们解题
展知识应用、拓展迁移:投影展示,学生说出解
决问题方法、思路;拓展迁移:学生板书并讲
解
(教师不代讲、少干预,引导恰当,用短语激励
学生,对学生明显错误的地方可及时纠正)
各小组派代表发
言,组内补充。
其
他小组帮助解决
发言小组提出的
共同疑难,展示时
有补充、有纠错、
有质疑、有挑战。
评展示结束后,教师精讲。
1、强调圆内接四边形性质的几何语言描述。
2、圆内接四边形性质的应用。
全体学生认
真听讲,适时通过
红笔做好笔记,并
和老师一起思考
总结归纳
检
ppt投影出堂测两道题,教师留给学生足够的时
间进行思考,并简单加以点拨。
所有学生必做
堂测设计在⊙O中,点C为劣弧AB的中点,连接AC并延长至D,使CA=CD,连接DB 并延长交⊙O于点E,连接AE.
(1)求证:AE是⊙O的直径;
(2)求证:AE=DE
板书设计
教学反思
检查结果及修改意见:合格不合格
组长(签字):
检查日期:年月日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例题讲解 拓展:如图,AD、BE 是△ABC 的两条高. 求证:∠CED=∠ABC. C E A D
B
课堂小结
(1)本节课主要学习了哪些内容? (2)本节课学到了哪些思想方法?
圆内接多边形:如果一个多边形的所有顶点 都在圆上,像这样的多边形叫做 圆内接多边形 , ⊙O叫做多边形的 外接圆 ;
新课探究 思考:
(1)⊙O中任意一个内接四边形,其对角和都是180°吗?为 什么,请写出理由? (2)若∠A=70°,则对角∠C的度数为多少?若∠D=100°, 则对角∠D的度数为多少?
24.1.4
圆周角(2)
复习回顾
(1)圆周角定理:一个弧所对的圆周角等于它所对的圆心角 的 一半 ; (2)推论1:同弧或等弧所对的圆周角 相等
;
推论2:半圆(或直径)所对的圆周角是 直角 圆周角所对的弦是 直径 .
,90°的
复习回顾
1.如图,AC是圆O的直径,点B,D在圆O上,那么图中等于 BOC题)
(第2题)
2.若AB为⊙O直径,则圆心角∠AOB=______,圆周角∠AC1B=_____,∠AC2B=_____, ∠AC3B=_______; 3.求下列“?”的角;
新课探究
圆内接四边形:如图,四边形ABCD的四个顶 点都在圆上,像这样的四边形叫做 圆内接四边形, ⊙O叫做四边形的 外接圆 ;
C
D
新课探究
圆内接四边形的性质:
圆内接四边形的对角 互补 外角都等于它的 内对角 . ,并且任何一角的
A BCD 180 , B ADC 180
DCE A
例题讲解
已知:△ABC 中,AB=AC,D 是△ABC 外接圆 上的点(不与 A,C 重合),延长 BD 到 E. 求证:AD 的延长线平分∠CDE.