2019版一轮优化探究物理(鲁科版)练习:第十章 第2讲 法拉第电磁感应定律 自感 涡流 Word版含解析

合集下载

高考物理一轮复习 第十章 电磁感应 专题提升(十)电磁感应的综合应用教案 鲁科版-鲁科版高三全册物理

高考物理一轮复习 第十章 电磁感应 专题提升(十)电磁感应的综合应用教案 鲁科版-鲁科版高三全册物理

专题提升(十) 电磁感应的综合应用电磁感应中的能量问题(1)能量转化(2)求解焦耳热Q的三种方法(1)确定研究对象(导体棒或回路);(2)弄清电磁感应过程中,哪些力做功,哪些形式的能量相互转化;(3)根据功能关系或能量守恒定律列式求解.角度1 应用能量守恒定律求解电磁感应能量问题[例1]如图所示,两平行金属导轨位于同一水平面上,相距l,左端与一电阻R相连;整个系统置于匀强磁场中,磁感应强度大小为B,方向竖直向下.一质量为m的导体棒置于导轨上,在水平外力作用下沿导轨以速率v匀速向右滑动,滑动过程中始终保持与导轨垂直并接触良好.已知导体棒与导轨间的动摩擦因数为μ,重力加速度大小为g,导轨和导体棒的电阻均可忽略.求:(1)电阻R消耗的功率.(2)水平外力的大小.解析:(1)导体棒切割磁感线产生的电动势E=Blv由于导轨与导体棒的电阻均可忽略,则R两端电压等于电动势U=E则电阻R 消耗的功率P R =2U R综合以上三式可得P R =222B l v R. (2)设水平外力大小为F,由能量守恒有 Fv=P R +μmgv 故得F=22vB l R+μmg. 答案:见解析角度2 应用焦耳定律求解电磁感应能量问题[例2] (2019·东城区模拟)随着新技术的应用,手机不断地更新换代.新机型除了常规的硬件升级外,还支持快充和无线充电.图(甲)为兴趣小组制作的无线充电装置中的输电线圈示意图,已知线圈匝数n=100,电阻r=1.0 Ω,线圈的横截面积S=1.5×10-3m 2,外接电阻R=5.0 Ω.线圈处在平行于线圈轴线的磁场中,磁场的磁感应强度随时间变化如图(乙)所示,求:(1)t=1.0×10-2s 时线圈中的感应电动势E; (2)0~2.0×10-2 s 内通过电阻R 的电荷量q; (3)0~3.0×10-2 s 内电阻R 上产生的热量Q. 解析:(1)由图(乙)可知,t=0.01 s 时刻ΔΔBt=4 T/s 根据法拉第电磁感应定律得E=n ΔΔt Φ=n ΔΔS Bt解得E=0.6 V. (2)0~0.02 s 内,I=ER r+=0.1 A 电荷量q=IΔt 解得q=2.0×10-3 C.(3)0~0.02 s 内,E=0.6 V,I=0.1 A,根据焦耳定律可以得到,R 上产生的焦耳热为 Q 1=I 2Rt 1=1.0×10-3 J0.02~0.03 s内,E′=1.2 V,I′=0.2 A,根据焦耳定律可以得到,R上产生的焦耳热为Q2=I′2Rt2=2.0×10-3 J所以Q=Q1+Q2=3.0×10-3 J.答案:(1)0.6 V (2)2.0×10-3 C (3)3.0×10-3 J求解焦耳热应分清两类情况(1)若回路中电流恒定,可以利用电路结构及W=UIt或Q=I2Rt直接进行计算.(2)若电流变化,则①利用安培力做的功求解:电磁感应中产生的焦耳热等于克服安培力所做的功;②利用能量守恒求解:若只有电能与机械能的转化,则机械能的减少量等于产生的焦耳热;③利用功能关系求解:若除重力、安培力做功外,还有其他力做功,则其他力做功等于增加的机械能和产生的焦耳热.1.(2019·某某七市二模)(多选)在如图所示的倾角为θ的光滑斜面上,存在着两个磁感应强度大小均为B的匀强磁场,区域Ⅰ的磁场方向垂直斜面向上,区域Ⅱ的磁场方向垂直斜面向下,磁场的宽度均为L,一个质量为m、电阻为R、边长也为L的正方形导线框,由静止开始沿斜面下滑,当ab边刚越过GH进入磁场Ⅰ区时,恰好以速度v1做匀速直线运动;当ab边下滑到JP与MN的中间位置时,线框又恰好以速度v2做匀速直线运动,从ab边越过GH到到达MN与JP的中间位置的过程中,线框的动能变化量为ΔE k,重力对线框做功大小为W1,安培力对线框做功大小为W2,下列说法中正确的有( CD)A.在下滑过程中,由于重力做正功,所以有v2>v1B.从ab边越过GH到到达MN与JP的中间位置的过程中,线框的机械能守恒C.从ab边越过GH到到达MN与JP的中间位置的过程中,有W1-ΔE k的机械能转化为电能D.从ab边越过GH到到达MN与JP的中间位置的过程中,线框动能的变化量大小ΔE k=W1-W2解析:ab 边越过JP 后回路感应电动势增大,感应电流增大,因此所受安培力增大,安培力阻碍线框下滑,因此ab 边越过JP 后开始做减速运动,使感应电动势和感应电流均减小,安培力减小,当安培力减小到与重力沿斜面向下的分力mgsin θ相等时,以速度v 2做匀速运动,因此v 2<v 1,A 错误;由于有安培力做功,线框机械能不守恒,B 错误;线框克服安培力做功,将机械能转化为电能,克服安培力做了多少功,就有多少机械能转化为电能,由动能定理得W 1-W 2=ΔE k ,W 2=W 1-ΔE k ,故C,D 正确.2.(2019·某某某某二模)(多选)如图所示,质量为3m( ABD )2gh2222B L gh mgC.线框通过磁场的过程中产生的热量Q=2mghD.线框通过磁场的过程中产生的热量Q=4mgh解析:从初始时刻到线框上边缘刚进入磁场,由机械能守恒定律得3mg×2h=mg×2h+242mv ,解得线框刚进入磁场时的速度v=2gh ,故A 正确;线框上边缘刚进磁场时,恰好做匀速直线运动,故受合力为零,3mg=BIL+mg,I=BLv R ,解得线框的电阻R=2222B L gh mg,故B 正确;线框匀速通过磁场的距离为2h,产生的热量等于系统重力势能的减少量,即Q=3mg×2h -mg×2h=4mgh,故C 错误,D 正确.电磁感应中的动量和能量问题角度1 用动量定理解决电磁感应问题 [例3](2019·某某某某模拟)(多选)水平放置的足够长光滑平行导轨,电阻不计,间距为L,左端连接的电源电动势为E 、内阻为r,质量为m 的金属杆垂直静放在导轨上,金属杆处于导轨间的部分的电阻为R.整个装置处在磁感应强度大小为B 、方向竖直向下的匀强磁场中,闭合开关,金属杆沿导轨做变加速运动直至达到最大速度,下列说法正确的是( AC )222mEB L 222mE B L 2222mE B L 解析:开关闭合瞬间,电流通过金属杆,则金属杆在安培力作用下加速运动,同时由于金属杆切割磁感线产生感应电动势,方向与E 相反,故金属杆做加速度减小的加速运动,当感应电动势等于电源电动势E 时,金属杆加速度为0,速度最大,由BLv m =E,得v m =EBL,A 正确;整个过程中对金属杆应用动量定理有B I L·t=mv m ,则q=I t=m mv BL=22mEB L ,B 错误;电源提供的电能为E 电=qE=222mE B L ,C 正确;对整个过程由功能关系可知电源提供的能量转化为金属杆的动能和电路产生的热量,即E 电=Q 总+E k ,得222mE B L =Q 总+12m 222E B L ,故Q 总=Q r +Q R =2222mE B L ,金属杆的热量为Q R =R R r +Q 总=2222mE B L ·R R r+,D 错误. 角度2 用动量守恒定律解决电磁感应问题[例4] (2019·丰台期末)如图所示,两根足够长的平行金属导轨固定于同一水平面内,导轨间的距离为L,导轨上平行放置两根导体棒ab 和cd,构成矩形回路.已知两根导体棒的质量均为m 、电阻均为R,其他电阻忽略不计,整个导轨处于竖直向上的匀强磁场中,磁感应强度为B,导体棒均可沿导轨无摩擦的滑行.开始时,导体棒cd 静止、ab 有水平向右的初速度v 0,两导体棒在运动中始终不接触.求:(1)开始时,导体棒ab 中电流的大小和方向;(2)从开始到导体棒cd 达到最大速度的过程中,矩形回路产生的焦耳热; (3)当ab 棒速度变为34v 0时,cd 棒加速度的大小. 解析:(1)ab 棒产生的感应电动势E ab =BLv 0 ab 棒中电流I=2ab E R=02BLv R 方向由a→b.(2)当ab 棒与cd 棒速度相同时,cd 棒的速度最大,设最大速度为v 由动量守恒定律得mv 0=2mv 解得v=12v 0由能量守恒定律得Q=12m 20v -12(2m)v 2解得Q=14m 20v .(3)设ab 棒的速度为34v 0时,cd 棒的速度为v′ 由动量守恒定律得mv 0=m 34v 0+mv′ 解得v′=14v 0. E ab =BL 34v 0; E cd =BL 14v 0;I=2ab cdE E R-=0031()442BL v v R- 解得I=4BLv Rcd 棒受力为F=IBL=2204B L v R; 此时cd 棒加速度为a==.答案:见解析动量定理及动量守恒定律在电磁感应中的应用技巧(1)在电磁感应中,动量定理应用于单杆切割磁感线运动,可求解变力的时间、速度、位移和电荷量.①求电荷量或速度:B I lΔt=mv 2-mv 1,q=I t. ②求时间:Ft-I 冲=mv 2-mv 1,I 冲=BIlΔt=Bl ΔR Φ总. ③求位移:-BIlΔt=-=0-mv 0,即-22B l R 总s=m(0-v 0). (2)电磁感应中对于双杆切割磁感线运动,若双杆系统所受合外力为零,运用动量守恒定律结合能量守恒定律可求解与能量有关的问题.1.滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最小距离之比为( C )A.1∶1B.1∶2C.2∶1D.1∶1 解析:杆2固定:对回路:q 1=Δ2R Φ=12Bds R. 对杆1:-B 1I d·Δt=0-mv 0,q 1=·Δt 联立解得s 1=222mRv B d . 杆2不固定:q 2=22Bds R对杆2:Bd·Δt=mv 2-0 全程动量守恒:mv 0=mv 1+mv 2 末态两棒速度相同,v 1=v 2,q 2=·Δt 联立解得s 2=22mRv B d . s 1∶s 2=2∶1,C 正确.2.(2019·某某黔东南二模)如图所示,宽度为L 的平行光滑的金属轨道,左端为半径为r 1的四分之一圆弧轨道,右端为半径为r 2的半圆轨道,中部为与它们相切的水平轨道.水平轨道所在的区域有磁感应强度为B 的竖直向上的匀强磁场.一根质量为m 的金属杆a 置于水平轨道上,另一根质量为M 的金属杆b 由静止开始自左端轨道最高点滑下,当b 滑入水平轨道某位置时,a 就滑上了右端半圆轨道最高点(b 始终运动且a,b 未相撞),并且a 在最高点对轨道的压力大小为mg,此过程中通过a 的电荷量为q,a,b 杆的电阻分别为R 1,R 2,其余部分电阻不计.在b 由静止释放到a 运动到右端半圆轨道最高点过程中,求:(1)在水平轨道上运动时b 的最大加速度是多大;(2)自b 释放到a 到达右端半圆轨道最高点过程中,系统产生的焦耳热是多少; (3)a 刚到达右端半圆轨道最低点时b 的速度是多大. 解析:(1)由机械能守恒定律得12M 21b v =Mgr 1 解得v b112grb 刚滑到水平轨道时加速度最大,E=BLv b1,I=12ER R +, 由牛顿第二定律有F 安=BIL=Ma 解得221122B L gr .(2)由动量定理有-B I Lt=Mv b2-Mv b1, 即-BLq=Mv b2-Mv b1 解得v b212gr -BLqM根据牛顿第三定律得:a 在最高点受支持力N=N′=mg,mg+N=m 212a v r解得v a122gr 由能量守恒定律得Mgr 1=12M 22b v +12m 21a v +mg2r 2+Q 解得Q=BLq 12gr -3mgr 2-2222B L q M. (3)由能量守恒定律有2mgr 2=12m 22a v -12m 21a v 解得v a2=26gr由动量守恒定律得Mv b1=Mv b3+mv a2 解得v b3=12gr -26m gr M.答案:(1)221122()B L gr M R R +(2)BLq 12gr -3mgr 2-2222B L q M(3)12gr -26m gr M1.( AD )A.物块c 的质量是2msin θB.b 棒放上导轨前,物块c 减少的重力势能等于a,c 增加的动能C.b 棒放上导轨后,物块c 减少的重力势能等于回路消耗的电能D.b 棒放上导轨后,a 棒中电流大小是sin mg BLθ解析:b 棒静止说明b 棒受力平衡,即安培力和重力沿斜面向下的分力平衡,a 棒匀速向上运动,说明a 棒受细线的拉力和重力沿斜面向下的分力大小以及沿斜面向下的安培力三个力平衡,c 匀速下降则c 所受重力和细线的拉力大小平衡.由b 平衡可知,安培力大小F 安=mgsin θ,由a 平衡可知F 线=F 安+mgsin θ=2mgsin θ,由c 平衡可知F 线=m c g;因为线中拉力大小相等,故2mgsin θ=m c g,即物块c 的质量为2msin θ,故A 正确;b 放上之前,a,c 系统的机械能守恒,c 减少的重力势能转化为a,c 的动能和a 的重力势能,故B 错误;放上b 后,a 匀速上升重力势能在增加,根据能量守恒知c 减小的重力势能等于回路消耗的电能和a 增加的重力势能之和,C 错误;根据b 棒的平衡可知F 安=mgsin θ,又因为F 安=BIL,故I=sin mg BL,故D 正确. 2.(2018·某某卷,9)(多选)如图所示,竖直放置的“( BC )A.刚进入磁场Ⅰ时加速度方向竖直向下B.穿过磁场Ⅰ的时间大于在两磁场之间的运动时间D.释放时距磁场Ⅰ上边界的高度h 可能小于2244g 2m R B L 解析:穿过磁场Ⅰ后,金属杆在磁场之间做加速运动,在磁场Ⅱ上边缘速度大于从磁场Ⅰ出来时的速度,即进入磁场Ⅰ时速度等于进入磁场Ⅱ时速度且大于从磁场Ⅰ出来时的速度,故金属杆在刚进入磁场Ⅰ中时做减速运动,加速度方向向上,选项A 错误. 金属杆刚进入磁场Ⅰ中时,由牛顿第二定律知BIL-mg=22vB L R-mg=maa 随着减速过程逐渐变小,即在前一段做加速度减小的减速运动,若出磁场Ⅰ前a 减为零则再做匀速运动.金属杆在磁场之间做加速度为g 的匀加速直线运动,两个过程位移大小相等,由v t 图象(以金属杆在磁场Ⅰ中一直减速为例),如图所示,可以看出前一段用时多于后一段用时(若金属杆在磁场Ⅰ中先减速再匀速可以得出同样的结论),选项B 正确.由于进入两磁场时速度相等,从金属杆刚进入磁场Ⅰ到刚进入磁场Ⅱ的过程,由动能定理知, W 安1+mg·2d=0, 则W 安1=-2mgd,可知通过磁场Ⅰ产生的热量为2mgd,故穿过两磁场产生的总热量为4mgd,选项C 正确. 设刚进入磁场Ⅰ时速度为v,则由机械能守恒定律知mgh=12mv 2,进入磁场时BIL-mg=22v B L R -mg=ma 解得v=22()m a g R B L +, 联立得h=22244(a g)2gm R B L +>2244g 2m R B L ,选项D 错误. 3.(2019·某某某某二模)如图所示,质量M=1 kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=1 kg 的导体棒自ce 端的正上方h=2 m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于X 围足够大的竖直方向的匀强磁场中,导体棒在凹槽内运动过程中与导轨接触良好.已知磁场的磁感应强度B=0.5 T,导轨的间距与导体棒的长度均为L=0.5 m,导轨的半径r=0.5 m,导体棒的电阻R=1 Ω,其余电阻均不计,重力加速度g=10 m/s 2,不计空气阻力.(1)求导体棒刚进入凹槽时的速度大小;(2)求导体棒从开始下落到最终静止的过程中系统产生的热量;(3)若导体棒从开始下落到第一次通过导轨最低点的过程中产生的热量为16 J,求导体棒第一次通过最低点时回路中的电功率.解析:(1)根据机械能守恒定律,得mgh=12mv 2解得10 m/s.Q=mg(h+r)=25 J.(3)设导体棒第一次通过最低点时速度大小为v 1,凹槽速度大小为v 2,导体棒在凹槽内运动时系统在水平方向动量守恒,故有mv1=Mv2由能量守恒,得12m21v+12M22v=mg(h+r)-Q1导体棒第一次通过最低点时感应电动势E=BLv1+BLv2回路电功率P=2ER联立解得P=94W.答案:(1)210 m/s (2)25 J (3)94W4.(2019·某某某某调研)如图所示,将不计电阻的长导线弯折成P1P2P3,Q1Q2Q3形状,P1P2P3和Q1Q2Q31P2,Q1Q2的倾角均为θ,P2P3,Q2Q3在同一水平面上,P2Q2⊥P2P3,整个导轨在方向竖直向上、磁感应强度大小为B的匀强磁场中,质量为m电阻为R的金属杆CD从斜导轨上某处静止释放,然后沿水平导轨滑动一段距离后停下.杆CD始终垂直导轨并与导轨保持良好接触,导轨和空气阻力均不计,重力加速度大小为g,导轨倾斜段和水平段都足够长,求:(1)杆CD能达到的最大速度;(2)杆CD在距P2Q2为L处释放,滑到P2Q2处恰达到最大速度,则沿倾斜导轨下滑的时间Δt1及在水平导轨上滑行的最大距离.解析:(1)杆CD达到最大速度时,杆受力平衡,则有Bcos θ·dI m=mgsin θ此时杆CD切割磁感线产生的感应电动势为E=Bcos θ·dv m由欧姆定律可得I m=ER,解得v m =222sin cos θmgR B d θ. (2)在杆CD 沿倾斜导轨下滑的过程中,根据动量定理有 mgsin θ·Δt 1-Bcos θ1I d·Δt 1=mv m -01I =E R =1ΔΔRt Φ=1cos ΔR B Ld t θ 解得Δt 1=222cos θmR B d +222Lcos θsin B d mgR θ在杆CD 沿水平导轨运动的过程中,根据动量定理有 -B 2I d·Δt 2=0-mv m该过程中通过R 的电荷量为q 2=2I Δt 2,得q 2=m mv Bd杆CD 沿水平导轨运动的过程中,通过的平均电流为 2I =E R =2ΔBsd R t ,q 2=2I Δt 2=Bds R解得s=22442g sin cos θm R B d θ. 答案:(1)222sin cos θmgR B d θ (2)222cos θmR B d +222Lcos θsin B d mgR θ22442g sin cos θm R B d θ。

高考物理一轮复习 第十章 电磁感应 专题提升(九)电磁感应的规律应用作业与检测(含解析)鲁科版-鲁科

高考物理一轮复习 第十章 电磁感应 专题提升(九)电磁感应的规律应用作业与检测(含解析)鲁科版-鲁科

专题提升(九) 电磁感应的规律应用根底必备1.(2019·河南焦作一模)(多项选择)如下列图,两根足够长的光滑金属导轨水平平行放置,间距为l=1 m,cd间、de间、cf间分别接着阻值R=10 Ω的电阻.一阻值R=10 Ω的导体棒ab以速度v=4 m/s匀速向左运动,导体棒与导轨接触良好;导轨所在平面存在磁感应强度大小B=0.5 T、方向竖直向下的匀强磁场.如下说法正确的答案是( BD )A.导体棒ab中电流的流向为由b到aB.cd两端的电压为1 VC.de两端的电压为1 VD.fe两端的电压为1 V解析:由右手定如此可知ab中电流方向为a→b,选项A错误;导体棒ab切割磁感线产生的感应电动势E=Blv,ab为电源,cd间电阻R为外电路负载,de和cf间电阻中无电流,de和cf间无电压,因此cd和fe两端电压相等,即U=·R==1 V,选项B,D正确,C错误.2.(2019·湖北宜昌调研)(多项选择)如下列图,电阻不计的平行金属导轨固定在一绝缘斜面上,两根一样的金属导体棒a,b垂直于导轨静止放置,且与导轨接触良好,匀强磁场垂直穿过导轨平面.现用一平行于导轨的恒力F作用在a的中点,使其向上运动.假设b始终保持静止,如此它所受摩擦力可能( AB )A.变为0B.先减小后不变C.等于FD.先增大再减小解析:a导体棒在恒力F作用下加速运动,闭合回路中产生感应电流,导体棒b受到安培力方向应沿斜面向上,且逐渐增大,最后不变.b受到的安培力大小与a受到的安培力相等,方向沿斜面向上,所以b导体棒受摩擦力可能先减小后不变,可能减小到0保持不变,也可能减小到0然后反向增大保持不变,所以选项A,B正确,C,D错误.3.(2019·河北保定模拟)如下列图为有理想边界的两个匀强磁场,磁感应强度均为B=0.5 T,两边界间距s=0.1 m,一边长L=0.2 m的正方形线框abcd由粗细均匀的电阻丝围成,总电阻为R=0.4 Ω,现使线框以v=2 m/s的速度从位置Ⅰ匀速运动到位置Ⅱ,如此如下能正确反映整个过程中线框a,b两点间的电势差U ab随时间t变化的图线是( A )解析:ab边切割磁感线产生的感应电动势为E=BLv=0.2 V,线框中感应电流为I==0.5 A,由右手定如此知感应电流顺时针转动,ab边相当于电源,U ab为路端电压,所以在0~5×10-2 s时间内,a,b两点间电势差为U1=I·R=0.15 V.在5×10-2~10×10-2 s时间内,线框中感应电流为0,但是a,b两点间电势差U2=E=0.2 V,在10×10-2~15×10-2 s时间内ab处于外电路,a,b两点间电势差为U3=I·R=0.05 V,选项A正确.4.(多项选择)如图(a)所示,圆形线圈P静止在水平桌面上,其正上方悬挂一一样的线圈Q,P和Q共轴,Q中通有变化的电流,电流变化的规律如图(b)所示,P所受的重力为G,桌面对P的支持力为F N,如此( AD )A.t1时刻,F N>GB.t2时刻,F N>GC.t3时刻,F N<GD.t4时刻,F N<G解析:t1时刻电流增大,其磁场增强,如此穿过P的磁通量变大,由楞次定律可知P将阻碍磁通量的变大,如此P有向下运动的趋势,对桌面的压力增大,故F N>G,A正确;t2时刻电流减小,如此磁场减弱,如此穿过P的磁通量变小,由楞次定律可知P将阻碍磁通量的变小,如此P有向上运动的趋势,对桌面的压力减小,故F N<G,B错误;t3时刻电流增大,与A情况一样,F N>G,C错误;t4时刻电流减小,与B情况一样,F N<G,D正确.5.如下列图,宽为L的光滑导轨竖直放置,左边有与导轨平面垂直的区域足够大匀强磁场,磁感应强度为B,右边有两块水平放置的金属板,两板间距为d.金属板和电阻R都与导轨相连.要使两板间质量为m、带电荷量为-q的油滴恰好处于静止状态,阻值也为R的金属棒ab在导轨上的运动情况可能为(金属棒与导轨始终接触良好)( A )A.向右匀速运动,速度大小为B.向左匀速运动,速度大小为C.向右匀速运动,速度大小为D.向左匀速运动,速度大小为解析:要使两板间质量为m、带电荷量为-q的油滴恰好处于静止状态,水平放置的金属板上极板带正电,由右手定如此可判断出金属棒ab在导轨上向右匀速运动.由mg=,U=E,E=BLv,联立解得v=.选项A正确.6.(2019·福建厦门质检) (多项选择)如下列图,在倾角为θ的光滑固定斜面上,存在着磁感应强度大小为B的匀强磁场,磁场方向垂直斜面向上,磁场的宽度为2L.一边长为L的正方形导线框,由静止开始沿斜面下滑,当ab边刚越过GH进入磁场瞬间和刚越过MN穿出磁场瞬间速度刚好相等.从ab边刚越过GH处开始计时,规定沿斜面向上为安培力的正方向,如此线框运动的速率v与线框所受安培力F随时间变化的图线中,可能正确的答案是( AC )解析:根据楞次定律可得线框进入磁场的过程中电流方向为顺时针;根据法拉第电磁感应定律可得感应电动势E=BLv,感应电流I=,所受的安培力大小为F=BIL=,ab边刚越过GH进入磁场瞬间和刚越过MN穿出磁场瞬间速度刚好相等,线框进磁场时做加速度逐渐减小的减速运动,完全进入磁场后做匀加速运动,出磁场时做加速度逐渐减小的减速运动,结合图象知A正确,B错误;根据左手定如此可得线框进入磁场的过程中安培力方向沿斜面向上,为正,且F=BIL=,线框完全进入磁场后,线框所受安培力为零;出磁场的过程中安培力方向沿斜面向上,且出磁场时的安培力等于进入磁场时的安培力,所以C正确,D错误.7.(多项选择)如图(甲)所示,导体框架abcd放置于水平面内,ab平行于cd,导体棒MN与两导轨垂直并与导轨接触良好,整个装置放置于垂直于框架平面的磁场中,磁感应强度B随时间变化规律如图(乙)所示,MN始终保持静止.规定竖直向上为磁场正方向,沿导体棒由M到N为感应电流的正方向,水平向右为导体棒所受安培力F的正方向,水平向左为导体棒所受摩擦力F f的正方向,如下图象中正确的答案是( BD )解析:由题图(乙)可知,回路中产生的感应电动势先为零,后恒定不变,感应电流先为零,后恒定不变,回路中感应电流方向为逆时针,故A错误,B正确;在0~t1时间内,导体棒MN不受安培力;在t1~t2时间内,导体棒MN所受安培力方向水平向右,由F=BIL可知,B均匀减小,MN所受安培力均匀减小;在t2~t3时间内,导体棒MN所受安培力方向水平向左,由F=BIL可知,B均匀增大,MN 所受安培力均匀增大;根据平衡条件得到,棒MN受到的摩擦力大小F f=F,二者方向相反,即在0~t1时间内,没有摩擦力,而在t1~t2时间内,摩擦力方向向左,大小均匀减小,在t2~t3时间内,摩擦力方向向右,大小均匀增大,故C错误,D正确.8.(2019·福建厦门模拟)如下列图,两个垂直于纸面的有界匀强磁场方向相反,磁感应强度的大小均为B,磁场区域的宽度均为a.高为a的正三角形导线框ABC从图示位置沿x轴正方向匀速穿过两磁场区域.以逆时针方向为电流的正方向,在如下图象中能正确描述感应电动势E与线框移动距离x变化关系的是( B )解析:在移动距离0~a内,由楞次定律可判断出感应电流方向为逆时针方向,电动势为正值.线框有效切割长度为L=2(a-x)tan 30°=(a-x),产生的感应电动势E=BLv=Bv(a-x),由此可知,随着x的增大,E均匀减小,当x=a时,E=0.在移动距离a~2a内,线框的AB边和AC,BC两边都切割磁感线,由楞次定律可判断出感应电流方向为顺时针方向,电动势为负值,线框在两个磁场区域切割磁感线产生的感应电动势在回路中方向一样,线框有效切割长度为L=2(2a-x)tan 30°=(2a-x),产生的感应电动势E=B·2Lv=Bv(2a-x),由此可知,随着x的增大,E均匀减小,当x=2a时,E=0.在移动距离2a~3a内,由楞次定律可判断出感应电流方向为逆时针方向,电动势为正值,线框有效切割长度为L=2(3a-x)tan 30°=(3a-x),产生的感应电动势E=BLv=Bv(3a-x),由此可知,随着x的增大,E均匀减小.当x=3a时,E=0.综上可知,正确描述感应电动势E随线框移动距离x变化的关系的图象为图B.能力培养9.(2019·安徽六安模拟)如图(甲)所示,导体棒MN置于水平导轨上,PQMN所围的面积为S,PQ 之间有阻值为R的电阻,不计导轨和导体棒的电阻.导轨所在区域内存在沿竖直方向的匀强磁场,规定磁场方向竖直向上为正,在0~2t0时间内磁感应强度的变化情况如图(乙)所示,导体棒MN始终处于静止状态.如下说法正确的答案是( B )A.在0~t0和t0~2t0时间内,导体棒受到的导轨的摩擦力方向一样B.在0~t0时间内,通过导体棒的电流方向为N到MC.在t0~2t0时间内,通过电阻R的电流大小为D.在0~2t0时间内,通过电阻R的电荷量为解析:导体棒MN始终静止,与导轨围成的线框面积不变,根据法拉第电磁感应定律可得感应电动势E==S,即感应电动势与B t图象斜率成正比,0~t0时间内的感应电流I1==S=S,t0~2t0时间内的感应电流I2==S=S,选项C错误.0~t0时间内竖直向上的磁感应强度减小,根据楞次定律感应电流的磁场方向竖直向上,感应电流为N到M,选项B正确.0~t0时间内磁通量在减小,根据楞次定律要阻碍磁通量的减小,导体棒有向右运动的趋势,摩擦力水平向左.t0~2t0时间内磁通量增大,同理可判断导体棒有向左运动趋势,摩擦力水平向右,选项A错误.在0~2t0时间内,通过电阻R的电荷量Q=×Δt=×Δt=S×Δt==,选项D错误.10.(2019·安徽安庆二模)(多项选择)如图(甲)所示,光滑平行金属导轨MN,PQ所在平面与水平面成θ角,M,P两端接一电阻R,整个装置处于方向垂直导轨平面向上的匀强磁场中.t=0时对金属棒施加一平行于导轨的外力F,使金属棒由静止开始沿导轨向上运动,金属棒电阻为r,导轨电阻忽略不计.通过电阻R的感应电流I随时间t变化的关系如图(乙)所示.如下关于棒的运动速度v、外力F、流过R的电荷量q以与闭合回路中磁通量的变化率随时间变化的图象正确的答案是( AB )解析:根据题图(乙)所示的I t图象可知I=kt,其中k为比例系数,由闭合电路欧姆定律可得I==kt,可推出E=kt(R+r),而E=,所以有=kt(R+r),t图象是一条过原点且斜率大于零的直线,故B正确;因E=Blv,所以v=t,v t图象是一条过原点且斜率大于零的直线,说明金属棒做的是初速度为零的匀加速直线运动,即v=at,故A正确;对金属棒在沿导轨方向有F-BIl=ma,而I=,v=at,得到F=+ma,可见F t图象是一条斜率大于零且与纵轴正半轴有交点的直线,故C错误;q=Δt===t2,q t图象是一条开口向上的抛物线,故D错误.11.(2019·某某实验中学模拟)如下列图,固定光滑金属导轨间距为L,导轨电阻不计,上端a,b间接有阻值为R的电阻,导轨平面与水平面的夹角为θ,且处在磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场中.质量为m、电阻为r的导体棒与固定弹簧相连后放在导轨上.初始时刻,弹簧恰处于自然长度,导体棒具有沿导轨向上的初速度v0.整个运动过程中导体棒始终与导轨垂直并保持良好接触.弹簧的劲度系数为k,弹簧的中心轴线与导轨平行.(1)求初始时刻通过电阻R的电流的大小和方向;(2)当导体棒第一次回到初始位置时,速度变为v,求此时导体棒的加速度大小a.解析:(1)导体棒产生的感应电动势为E1=BLv0根据闭合电路欧姆定律得通过R的电流大小为I1==根据右手定如此判断得知电流方向为b→a.(2)导体棒第一次回到初始位置时产生的感应电动势为E2=BLv根据闭合电路欧姆定律得感应电流为I2==导体棒受到的安培力大小为F=BI2L=,方向沿斜面向上.导体棒受力如下列图.根据牛顿第二定律有mgsin θ-F=ma解得a=gsin θ-.答案:(1)b→a(2)gsin θ-12.(2019·江南十校联考)如图,MN,PQ为两根足够长的水平放置的平行金属导轨,间距L=1 m;整个空间以OO'为边界,左侧有垂直导轨平面向上的匀强磁场,磁感应强度大小B1=1 T,右侧有方向一样、磁感应强度大小B2=2 T的匀强磁场.两根完全一样的导体棒a,b,质量均为m=0.1 kg,与导轨间的动摩擦因数均为μ=0.2,其在导轨间的电阻均为R=1 Ω.开始时,a,b棒均静止在导轨上,现用平行于导轨的恒力F=0.8 N向右拉b棒.假定a棒始终在OO'左侧运动,b棒始终在OO'右侧运动,除导体棒外其余电阻不计,滑动摩擦力和最大静摩擦力大小相等,g取10 m/s2.(1)a棒开始滑动时,求b棒的速度大小;(2)当b棒的加速度为1.5 m/s2时,求a棒的加速度大小.解析:(1)设a棒开始滑动时电流为I,b棒的速度为v由共点力平衡知识,得μmg=B1IL由法拉第电磁感应定律和欧姆定律知I=联立解得v=0.2 m/s.(2)设a棒的加速度为a1,b棒的加速度为a2.由牛顿第二定律知B1IL-μmg=ma1F-B2IL-μmg=ma2联立解得a1=0.25 m/s2.答案:(1)0.2 m/s (2)0.25 m/s2。

高考物理一轮复习 第十章 电磁感应 第2节 法拉第电磁感应定律 自感和涡流教案 鲁科版-鲁科版高三全

高考物理一轮复习 第十章 电磁感应 第2节 法拉第电磁感应定律 自感和涡流教案 鲁科版-鲁科版高三全

第2节法拉第电磁感应定律自感和涡流一、法拉第电磁感应定律(1)概念:在电磁感应现象中产生的电动势.(2)产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关.(3)方向判断:感应电动势的方向用楞次定律或右手定则判断.(1)内容:电路中感应电动势的大小与穿过这一电路的磁通量变化率成正比.(2)公式:E=nΔΔt,其中n为线圈匝数.(1)垂直切割:E=Blv.(2)倾斜切割:E=Blvsin θ,其中θ为v与B的夹角.(3)旋转切割(以一端为轴):E=12Bl2ω.自主探究如图所示,导体棒CD在均匀磁场中运动.(1)自由电荷会随着导体棒运动,并因此受到洛伦兹力.导体棒中自由电荷相对于纸面的运动大致沿什么方向?为了方便,可以认为导体棒中的自由电荷是正电荷.(2)导体棒一直运动下去,自由电荷是否总会沿着导体棒运动?为什么?(3)导体棒哪端的电势比较高?(4)如果用导线把C,D两端连到磁场外的一个用电器上,导体棒中的电流是沿什么方向的?答案:(1)D→C (2)达到电场力和洛伦兹力平衡就不会沿导体棒运动下去 (3)C 端(4)D→C(1)概念:电动机转动时,线圈中也会产生感应电动势,这个感应电动势总要削弱电源电动势的作用,我们把这个电动势称为反电动势. (2)作用:反电动势阻碍电动机线圈的转动. 二、自感和涡流由于通过导体自身的电流变化而产生的电磁感应现象.(1)定义:由导体自身电流变化所产生的感应电动势. (2)表达式:E=LΔΔI t. (3)自感系数L:①相关因素:与线圈的大小、形状、匝数以及是否有铁芯等因素有关. ②单位:亨利(H),1 mH=10-3H,1 μH=10-6H.(1)涡流:块状金属放在变化的磁场中,穿过金属块的磁通量发生变化,金属块内产生的旋涡状感应电流.(2)产生原因:金属块内磁通量变化→感应电动势→感应电流.(3)涡流的利用:冶炼金属的高频感应炉利用炉内金属中涡流产生焦耳热使金属熔化;家用电磁炉也是利用涡流原理制成的.(4)涡流的减少:各种电动机和变压器中,用涂有绝缘漆的硅钢片叠加成的铁芯,以减少涡流.(1)线圈中磁通量变化越大,产生的感应电动势越大.( × ) (2)公式E=Blv 中的l 是导体棒的总长度.( × )(3)磁场相对导体棒运动时,导体棒中也能产生感应电动势.( √ ) (4)线圈中的感应电动势大小与线圈的匝数无关.( × )(5)对于同一线圈,当电流变化越快时,线圈中的自感电动势越大.( √ ) 2.(多选)如图所示,用相同导线绕成的两个单匝线圈a,b 的半径分别为r 和2r,圆形匀强磁场B 的边缘恰好与a 线圈重合,若磁场的磁感应强度均匀增大,开始时的磁感应强度不为0,则( BD )A.任意时刻,穿过a,b 两线圈的磁通量之比均为1∶4B.任意时刻,穿过a,b 两线圈的磁通量之比均为1∶1C.a,b 两线圈中产生的感应电动势之比为1∶2D.a,b 两线圈中产生的感应电动势之比为1∶1解析:任意时刻,穿过a,b 两线圈的磁感线条数相等,磁通量相等,故磁通量之比为1∶1,故A 错误,B 正确;根据法拉第电磁感应定律得E=ΔΔB tS,S 为线圈在磁场X 围内的有效面积,S=πr 2,因为S 相等,ΔΔBt也相等,所以a,b 两线圈中产生的感应电动势相等,感应电动势之比为1∶1,故C 错误,D 正确. 3.如图所示,电路中A,B 是两个完全相同的灯泡,L 是一个自感系数很大、电阻可忽略的自感线圈,C 是电容很大的电容器.当S 闭合时,A,B 灯泡的发光情况是( A ) A.S 闭合后,A 亮一下又逐渐熄灭,B 逐渐变亮 B.S 闭合后,B 亮一下又逐渐变暗,A 逐渐变亮 C.S 闭合足够长时间后,A 和B 一样亮 D.S 闭合足够长时间后,A,B 都熄灭解析:S 闭合后,A,B 都变亮,且A 比B 亮,之后A 逐渐熄灭,B 逐渐变亮,A 项正确,B 项错误.S 闭合足够长时间后,A 熄灭,B 一直都是亮的,C,D 项错误.( A )D.电磁炉的上表面一般都用金属材料制成,以加快热传递,减少热损耗解析:涡流是由高频交变电流产生的磁场引起的电磁感应现象,频率越大,产生的涡流越大,直流电不产生涡流,A 项正确,B 项错误;电磁炉表面一般用绝缘材料制成,避免产生涡流,而锅体用金属制成,利用涡流加热食物,C,D 项错误.考点一 法拉第电磁感应定律的理解与应用(1)公式E=nΔΔtΦ求解的是一个回路中某段时间内的平均电动势,在磁通量均匀变化时,瞬时值才等于平均值.(2)感应电动势的大小由线圈的匝数和穿过线圈的磁通量的变化率ΔΔtΦ共同决定,而与磁通量Φ的大小、变化量ΔΦ的大小没有必然联系. (3)磁通量的变化率ΔΔtΦ对应Φt 图线上某点切线的斜率. (4)通过回路截面的电荷量q=Δn RΦ,与n,ΔΦ和回路电阻R 有关.(1)回路与磁场垂直的面积S 不变,磁感应强度发生变化,则ΔΦ=ΔB·S,E=nΔΔBt ·S. (2)磁感应强度B 不变,回路与磁场垂直的面积发生变化,则ΔΦ=B·ΔS,E=nBΔΔSt. (3)磁通量的变化是由面积和磁场变化共同引起的,则根据定义求,ΔΦ=Φ2-Φ1,E=n2211ΔB S B S t-. [例1] (2019·某某某某二模)(多选)如图(甲)所示,abcd 是匝数为100匝、边长为10 cm( ACD )B.在t=2.5 s 时导线圈产生的感应电动势为1 VC.在0~2 s 内通过导线横截面的电荷量为20 CD.在t=1 s 时,导线圈内电流的瞬时功率为10 W 解析:在0~2 s 内,磁感应强度变化率为11ΔΔB t =1 T/s,根据法拉第电磁感应定律,产生的感应电动势为E 1=nS11ΔΔB t 2×1 V=1 V;在2~3 s 内,磁感应强度变化率为=2 T/s,根据法拉第电磁感应定律,产生的感应电动势为E 22×2 V=2 V.导线圈中产生的感应电流为方波交变电流,选项A 正确;在t=2.5 s 时,产生的感应电动势为E 2=2 V,选项B 错误.在0~2 s 内,感应电流I=1E R=10 A,通过导体横截面的电荷量为q=IΔt 1=20 C,选项C 正确;在t=1 s 时,导线圈内感应电流的瞬时功率P=UI=I 2R=102×0.1 W=10 W,选项D 正确.求电荷量三法(1)q=It(式中I 为回路中的恒定电流、t 为时间)①由于导体棒匀速切割磁感线产生感应电动势使闭合回路中的电流恒定,根据电流定义式可知q=It.②闭合线圈中磁通量均匀增大或减小且回路中电阻保持不变,则电路中的电流I 恒定,时间t 内通过线圈横截面的电荷量q=It. (2)q=nΔR(其中R 为回路电阻、ΔΦ为穿过闭合回路的磁通量的变化量) ①闭合回路中的电阻R 不变、并且只有磁通量变化为电路提供电动势.②从表面来看,穿过回路的磁通量与时间无关;但ΔΦ与时间有关、随时间而变化. (3)Δq=CBlΔv(式中C 为电容器的电容、B 为匀强磁场的磁感应强度、l 为导体棒切割磁感线的有效长度、Δv 为导体棒切割速度的增量).在匀强磁场中,电容器接在切割磁感线的导体棒两端,不计一切电阻,电容器两极板间的电压等于导体棒切割磁感线产生的电动势E,电容器的充电(或放电)电流I=ΔΔq t =ΔΔC Ut,又E=Blv,则ΔU=Bl(Δv)可得Δq=CBlΔv.1.(2019·某某某某摸底)如图所示,边长为l 的正方形单匝金属线框ABCD,左半部分处在方向垂直于线框平面向里的匀强磁场中,磁感应强度大小为B,线框的AD 边从图中位置按俯视的逆时针方向,以线速度v 绕固定对称轴OO′匀速转动90°,则此过程线框中( D ) A.感应电流方向沿A→D→C→B→A22πBlv解析:由楞次定律结合安培定则,可知感应电流方向应为A→B→C→D→A,A 项错误;通过线框的磁通量的最大值为Φ=BS=12Bl 2,B 项错误;由法拉第电磁感应定律可知,线框转过90°过程中线框的平均感应电动势为=ΔΔt ,ΔΦ=12Bl 2,Δt=π4l v ,联立可得E =2πBlv ,C 项错误,D 项正确. 2.( AC )C.线框和圆环中的电流大小之比为2D.线框和圆环中的电流大小之比为1∶2解析:依据楞次定律,当磁场均匀减弱时,圆环和线框中的电流方向都为顺时针,故A 正确,B 错误;设正方形的边长为2a.由几何关系可知,外接圆的半径2则根据法拉第电磁感应定律得,正方形回路中的感应电动势与外接圆中感应电动势之比为E 正∶E圆=ΔΔB t (2a)2∶ΔΔB tπ(2a)2=2∶π,根据电阻定律得,正方形回路中的电阻与外接圆的电阻之比为R 正∶R 圆=ρ8aS∶ρ2π2a S ⋅=22∶π,由欧姆定律得正方形回路中的感应电流与外接圆中感应电流之比为I 正∶I 圆=E R 正正∶E R 圆圆=1∶2,故C 正确,D 错误. 考点二 导体切割磁感线产生感应电动势的计算1.公式E=Blv 的使用条件 (1)匀强磁场.(2)B,l,v 三者相互垂直. 2.E=Blv 的“四性”(1)正交性:本公式是在一定条件下得出的,除磁场为匀强磁场外,还需B,l,v 三者互相垂直. (2)瞬时性:若v 为瞬时速度,则E 为相应的瞬时感应电动势. (3)有效性:公式中的l 为导体切割磁感线的有效长度. 如图所示,导体的有效长度为a,b 间的距离.(4)相对性:E=Blv 中的速度v 是导体相对磁场的速度,若磁场也在运动,应注意速度间的相对关系. 3.公式E=nΦt∆∆与E=Blv 的区别与联系 E=nΦt∆∆ E=Blv区 别 研究对象闭合回路垂直切割磁感线的那部分导体研究求的是Δt 时间内的平均感应电动势,E 与某段时间或某个过程对应(1)若v 为瞬时速度,则求的是瞬时感应电动势内容(2)若v 为平均速度,则求的是平均感应电动势联系 (1)本质上是统一的,E=Blv 可由E=nΦt∆∆在一定条件下推导出来 (2)当导体切割磁感线运动时用E=Blv 求E 方便;当得知穿过回路的磁通量发生变化时,用E=nΦt∆∆求E 比较方便 [例2](2019·某某名校联盟测试)如图所示,光滑水平面内有一正方形导体线框abcd,置于垂直水平面向里、边界为MN 的匀强磁场外,线框的ab 边平行磁场边界MN,线框以垂直于MN 的速度v 匀速进入磁场,线框进入磁场过程中,产生的焦耳热为Q 1,通过线框导体横截面的电荷量为q 1,若线框以速度2v 匀速进入磁场,进入磁场过程中,产生的焦耳热为Q 2,通过线框导体横截面的电荷量为q 2,则下列选项正确的是( B )2=2Q 1,q 2=2q 12=2Q 1,q 2=q 1 2=Q 1,q 2=q 12=4Q 1,q 2=2q 1解析:根据I=Blv R及F=BIl 可得F=22v B l R ,安培力做的功转化为电能,然后转化为焦耳热,由Q=W=Fl=23v B l R 可知产生的焦耳热与速度成正比,所以Q 2=2Q 1;根据q=I·t,t=l v得q=2Bl R ,可知通过线框导体横截面的电荷量与速度无关,q 2=q 1,选项B 正确.导体切割磁感线的三种方式切割方式 感应电动势的表达式垂直切割E=Blv 倾斜切割E=Blvsin θ,其中θ为v 与B 的夹角旋转切割(以一端为轴)E=Bl 2ω1.( AC )2ω2ω4Bl RD.P,Q 两点电势满足φP >φQ解析:M 端线速度为v=ωl,OM 切割磁感线的平均速度为v =2v ,OM 转动切割磁感线产生的电动势恒为E=Bl 2v =12Bl 2ω,A 正确,B 错误;当M 位于最下端时圆环接入电路的电阻为0,此时有最大电流I max =2E R =2ω4Bl R ,根据右手定则可得电流方向从Q 到P,P,Q 两点电势满足φP <φQ ,C 正确,D 错误. 2.(2019·某某某某质检)(多选)如图所示,空间存在两个磁场,磁感应强度大小均为B,方向相反且垂直于纸面,MN,PQ 为其边界,OO′为其对称轴.一导线折成边长为l 的正方形闭合回路abcd,回路在纸面内以恒定速度v 0向右运动,当运动到关于OO′对称的位置时( ABD )解析:由题意知,穿过回路的磁通量Φ=0,A项正确;由右手定则判断,ab边与cd边切割磁感线产生的感应电动势相当于两个电源串联,回路中的感应电动势E=Bl ab v0+Bl cd v0=2Blv0,B项正确;由右手定则可知,感应电流的方向为逆时针方向,C项错误;由左手定则可知,ab边与cd边所受的安培力方向均向左,D项正确.考点三自感和涡流(1)自感电动势总是阻碍导体中原电流的变化.(2)通过线圈中的电流不能发生突变,只能缓慢变化.(3)电流稳定时,自感线圈相当于普通导体.(4)线圈的自感系数越大,自感现象越明显,自感电动势只是延缓了过程的进行,但它不能使过程停止,更不能使过程反向.2.自感中“闪亮”与“不闪亮”问题与线圈串联的灯泡与线圈并联的灯泡电路图通电时电流逐渐增大,灯泡逐渐变亮电流突然增大,然后逐渐减小达到稳定与线圈串联的灯泡与线圈并联的灯泡断电时电流逐渐减小,灯泡逐渐变暗,电流方向不变电路中稳态电流为I1,I2:①若I2≤I1,灯泡逐渐变暗;②若I2>I1,灯泡闪亮后逐渐变暗. 两种情况下灯泡中电流方向均改变[例3] (2019·某某某某检测)(多选)在(甲)、(乙)所示的电路中,电阻R和自感线圈L的阻值都很小,且小于灯泡A的电阻,接通S,使电路达到稳定,灯泡A发光,则( AD)A.在电路(甲)中,断开S后,A将逐渐变暗B.在电路(甲)中,断开S后,A将先变得更亮,然后才逐渐变暗C.在电路(乙)中,断开S后,A将逐渐变暗D.在电路(乙)中,断开S后,A将变得更亮,然后才逐渐变暗解析:题图(甲)所示的电路中,灯A和线圈L串联,电流相同,断开S时,线圈上产生自感电动势,阻碍原电流的减小,通过R,A形成回路,灯A逐渐变暗,A项正确,B项错误;题图(乙)所示的电路中,电阻R和灯A串联,灯A所在支路的电阻大于线圈L所在支路的电阻,电流则小于线圈L 中的电流,断开S时,电源不给灯供电,而线圈L产生自感电动势阻碍电流的减小,通过R,A形成回路,灯A中电流比原来大,A将变得更亮,然后逐渐变暗,C项错误,D项正确.分析自感现象时的注意事项(1)通过自感线圈中的电流不能发生突变,即通电过程中,电流是逐渐变大,断电过程中,电流是逐渐变小,此时线圈可等效为“电源”,该“电源”与其他电路元件形成回路.(2)断电自感现象中灯泡是否“闪亮”问题的判断,在于对电流大小的分析,若断电后通过灯泡的电流比原来大,则灯泡先闪亮一下后慢慢熄灭.1.(2019·某某某某期中)(多选)如图所示的电路中,L为一个自感系数很大、直流电阻不计的线圈,D1,D2是两个完全相同的灯泡,E是一内阻不计的电源.t=0时刻,闭合开关S,经过一段时间后,电路达到稳定,t11,I2分别表示通过灯泡D1和D2的电流,规定图中箭头所示的方向为电流正方向,以下各图中能定性描述电流I随时间t变化关系的是( AC)解析:当S闭合时,L的自感作用会阻碍其中的电流变大,电流从D1流过;当L的阻碍作用变小时,L中的电流变大,D1中的电流变小至零;D2中的电流为电路总电流,电流流过D1时,电路总电阻较大,电流较小,当D1中电流为零时,电流流过L与D2,总电阻变小,电流变大至稳定;当S再断开时,D2马上熄灭,D1与L组成回路,由于L的自感作用,D1慢慢熄灭,电流反向且减小,故A,C 项正确.2.( CD)B.由于金属球没有形成闭合电路,所以金属球中不会产生感应电流解析:金属球在运动过程中,穿过金属球的磁通量不断变化,在金属球内形成闭合回路,产生涡流,金属球受到的安培力做负功,金属球产生的热量不断地增加,机械能不断地减少,直至金属球停在半圆轨道的最低点,C正确,A,B错误;由于最终小球静止于最低点,根据能量守恒定律得系统产生的总热量为mgR,D正确.1.(2019·全国Ⅰ卷,20)(多选)空间存在一方向与纸面垂直、大小随时间变化的匀强磁场,其边界如图(a)中虚线MN所示,一硬质细导线的电阻率为ρ、横截面积为S,将该导线做成半径为r的圆环固定在纸面内,圆心O在MN上.t=0时磁感应强度的方向如图(a)所示;磁感应强度B随时间t的变化关系如图(b)所示.则在t=0到t=t1的时间间隔内( BC)00rS 4ρB t 200π4B r t 解析:根据B t 图象结合楞次定律可知,圆环中感应电流方向一直为顺时针方向,在t 0时刻,磁场的方向发生变化,安培力方向发生变化,故A 错误,B 正确;根据法拉第电磁感应定律得感应电动势E=ΔΔt Φ=200π2B r t ,根据电阻定律得R=ρ2πr S ,由闭合电路欧姆定律得I=E R ,解得I=00rS 4ρB t ,故C 正确,D 错误.2.(2019·某某某某检测)(多选)两根相距为l 的足够长的金属弯角光滑导轨如图所示放置,它们各有一边在同一水平面内,另一边与水平面的夹角为37°,质量均为m 的金属细杆ab,cd 与导轨垂直接触形成闭合回路,导轨的电阻不计,回路总电阻为2R,整个装置处于磁感应强度大小为B,方向竖直向上的匀强磁场中,当ab 杆在平行于水平导轨的拉力F 作用下以速度v 沿导轨匀速运动时,cd 杆恰好处于静止状态,重力加速度为g,以下说法正确的是( AD )A.ab 杆所受拉力F 的大小为mgtan 37°sin37mg Bl︒ C.回路中电流的总功率为mgvsin 37°D.m 与v 大小的关系为m=22v 2tan37B l Rg ︒解析:对cd 杆,BIlcos 37°=mgsin 37°,对ab 杆,F=BIl,即ab 杆所受拉力F=mgtan 37°,故A 正确;回路中电流为I=tan37mg Bl︒,故B 错误;回路中电流的总功率为Fv=mgvtan 37°,故C 错误;I=2Blv R ,又I=tan37mg Bl ︒,解得m=22v 2tan37B l Rg ︒,故D 正确. 3.(2019·某某卷,11)如图所示,固定在水平面上间距为l 的两条平行光滑金属导轨,垂直于导轨放置的两根金属棒MN 和PQ 长度也为l 、电阻均为R,两棒与导轨始终接触良好.MN 两端通过开关S 与电阻为R 的单匝金属线圈相连,线圈内存在竖直向下均匀增加的磁场,磁通量变化率为常量k.图中虚线右侧有垂直于导轨平面向下的匀强磁场,磁感应强度大小为B.PQ 的质量为m,金属导轨足够长、电阻忽略不计.(1)闭合S,若使PQ 保持静止,需在其上加多大的水平恒力F,并指出其方向;(2)断开S,PQ 在上述恒力作用下,由静止开始到速度大小为v 的加速过程中流过PQ 的电荷量为q,求该过程安培力做的功W.解析:(1)设线圈中的感应电动势为E,由法拉第电磁感应定律E=ΔΔtΦ,则 E=k①设PQ 与MN 并联的电阻为R 并,有R 并=2R ② 闭合S 时,设线圈中的电流为I,根据闭合电路欧姆定律得I=RE R +并③ 设PQ 中的电流为I PQ ,有I PQ =12I④设PQ 受到的安培力为F 安,有F 安=BI PQ l⑤保持PQ 静止,由受力平衡,有F=F 安⑥联立①②③④⑤⑥式得F=3Bkl R ⑦ 方向水平向右.(2)设PQ 由静止开始到速度大小为v 的加速过程中,PQ 运动的位移为x,所用时间为Δt,回路中的磁通量变化为ΔΦ,平均感应电动势为,有=ΔΔt ⑧其中ΔΦ=Blx⑨设PQ 中的平均电流为,有I =2ER ⑩根据电流的定义得I =Δqt由动能定理,有Fx+W=12mv 2-0联立⑦⑧⑨⑩式得W=12mv 2-23kq.答案:(1)3BklR ,方向水平向右(2)12mv 2-23kq。

高考一轮复习物理练习(新教材鲁科版)第十二章电磁感应第2练法拉第电磁感应定律自感和涡流

高考一轮复习物理练习(新教材鲁科版)第十二章电磁感应第2练法拉第电磁感应定律自感和涡流

1.如图所示,在某次阅兵盛典上,我国预警机“空警-2000”在通过天安门上空时机翼保持水平,以×102 km/h的速度自东向西飞行.该机的翼展(两翼尖之间的距离)为50 m,北京地区地磁场向下的竖直分量大小为×10-5 T,则()A.两翼尖之间的电势差为VB.两翼尖之间的电势差为VC.飞机左方翼尖的电势比右方翼尖的电势高D.飞机左方翼尖的电势比右方翼尖的电势低2.(多选)(2023·福建省莆田二中高三月考)穿过一单匝线圈的磁通量随时间变化的规律如图所示,图像是关于过C与横轴垂直的虚线对称的抛物线.则下列说法正确的是()A.线圈中0时刻感应电动势为0B.线圈中C时刻感应电动势为0C.线圈中A时刻感应电动势最大D.线圈从0至C时间内平均感应电动势大小为V3.如图,线圈L的自感系数极大,直流电阻忽略不计;D1、D2是两个二极管,当电流从“+”流向“-”时能通过,反之不通过;R0是保护电阻,则()A.闭合S之后,B灯慢慢变亮B.闭合S之后,A灯亮且亮度不变C.断开S瞬时,A灯闪一下再慢慢熄灭D.断开S瞬时,B灯闪一下再慢慢熄灭4.(2023·广东省模拟)在油电混合小轿车上有一种装置,刹车时能将车的动能转化为电能,启动时再将电能转化为动能,从而实现节能减排.图中,甲、乙磁场方向与轮子的转轴平行,丙、丁磁场方向与轮子的转轴垂直,轮子是绝缘体,则采取下列哪个措施,能有效地借助磁场的作用,让转动的轮子停下()A.如图甲,在轮上固定如图绕制的线圈B.如图乙,在轮上固定如图绕制的闭合线圈C.如图丙,在轮上固定一些细金属棒,金属棒与轮子转轴平行D.如图丁,在轮上固定一些闭合金属线框,线框长边与轮子转轴平行5.磁电式仪表的基本组成部分是磁体和线圈.缠绕线圈的骨架常用铝框,铝框、指针固定在同一转轴上.线圈未通电时,指针竖直指在表盘中央;线圈通电时发生转动,指针随之偏转,由此就能确定电流的大小.如图所示,线圈通电时指针向右偏转,在此过程中,下列说法正确的是()A.俯视看线圈中通有逆时针方向的电流B.穿过铝框的磁通量减少C.俯视看铝框中产生顺时针方向的感应电流D.使用铝框做线圈骨架能够尽快使表针停在某一刻度处6.(多选)(2023·湖北省模拟)如图所示,在距地面高h=m处固定有两根间距为l=m水平放置的平行金属导轨,导轨的左端接有电源E,右端边缘处静置有一长l=m、质量m=kg、电阻R=Ω的导体棒ab,导体棒所在空间有磁感应强度大小B=T、方向竖直向上的匀强磁场.闭合开关后,导体棒ab以某一初速度水平向右抛出,已知导体棒落地点到抛出点的水平距离d=m,重力加速度g=10 m/s2,则()A .在空中运动过程中,导体棒a 端的电势低于b 端的电势B .导体棒抛出时的初速度大小为5 m/sC .在空中运动过程中,导体棒上产生的感应电动势大小恒定D .在空中运动过程中,导体棒的速度逐渐变大,棒上产生的感应电动势增大7.如图所示,在半径为R 的圆形区域内存在垂直于平面向里的匀强磁场,磁感应强度为B ,圆外无磁场.一根长为2R 的导体杆ab 水平放置,a 端处在圆形磁场的下边界,现使杆绕a 端以角速度ω逆时针匀速旋转180°,在旋转过程中( )A .b 端的电势始终高于a 端B .ab 杆的电动势最大值E =BR 2ωC .全过程中,ab 杆平均电动势E =BR 2ωD .当杆旋转θ=120°时,ab 间电势差U ab =12BR 2ω8.(多选)(2023·广东深圳市光明区高级中学模拟)发光竹蜻蜓是一种常见的儿童玩具.某同学对竹蜻蜓的电路作如下简化:如图所示,导电圆环绕垂直于圆环平面、通过圆心O 的金属轴O 1O 2以角速度ω逆时针(俯视)匀速转动.圆环上接有三根金属辐条OP 、OQ 、OR ,辐条互成120°角.在圆环左半部分张角也为120°角的范围内(两条虚线之间)分布着垂直圆环平面向下、磁感应强度大小为B 的匀强磁场,在转轴O 1O 2与圆环的边缘之间通过电刷M 、N 与一个LED 灯(二极管)相连.除LED 灯电阻外,其他电阻不计.下列说法中正确的是( )A .若OP 棒进入磁场中,P 点电势小于O 点电势B.金属辐条在磁场中旋转产生的是正弦式交变电流C.若导电圆环顺时针转动(俯视),也能看到LED灯发光D.角速度比较大时,能看到LED灯更亮9.(2022·重庆卷·13)某同学以金属戒指为研究对象,探究金属物品在变化磁场中的热效应.如图所示,戒指可视为周长为L、横截面积为S、电阻率为ρ的单匝圆形线圈,放置在匀强磁场中,磁感应强度方向垂直于戒指平面.若磁感应强度大小在Δt时间内从0均匀增加到B0,求:(1)戒指中的感应电动势和电流;(2)戒指中电流的热功率.10.(多选)(2022·山东卷·12)如图所示,xOy平面的第一、三象限内以坐标原点O为圆心、半径为2L的扇形区域充满方向垂直纸面向外的匀强磁场.边长为L的正方形金属框绕其始终在O点的顶点、在xOy平面内以角速度ω顺时针匀速转动,t=0时刻,金属框开始进入第一象限.不考虑自感影响,关于金属框中感应电动势E随时间t变化规律的描述正确的是()A.在t=0到t=π2ω的过程中,E一直增大B.在t=0到t=π2ω的过程中,E先增大后减小C.在t=0到t=π4ω的过程中,E的变化率一直增大D.在t=0到t=π4ω的过程中,E的变化率一直减小11.(多选)如图甲所示,足够长的光滑金属导轨处在垂直于导轨平面向里的匀强磁场中,其磁感应强度B 随时间t 的变化图像如图乙所示.导轨左端接有一个电阻值恒为R 的灯泡.从0时刻开始,垂直于导轨的导体棒ab 在水平外力F 的作用下从导轨的左端沿导轨以速度v 水平向右匀速运动.导体棒ab 的长度为l ,导体棒运动过程中与导轨接触良好,导体棒与导轨的电阻均不计.在导体棒ab 向右运动的过程中,下列说法正确的是( )A .灯泡亮度不变B .灯泡逐渐变亮C .在t 0时刻,F =2B 02l 2v RD .在t 0时刻,F =B 02l 2vR。

2019高考物理第一轮复习 专题 电磁感应学案 鲁科版

2019高考物理第一轮复习 专题 电磁感应学案 鲁科版

电磁感应【本讲教育信息】一、教学内容:电磁感应本章的知识点:(一)本章要点及高考展望1、本章以电场和磁场等知识为基础,重点讨论了楞次定律和法拉第电磁感应定律。

2、楞次定律不仅含义深刻,且可结合的知识点多,在高考中以选择为主,但有一定的难度。

3、法拉第电磁感应定律常综合几乎所有的力学知识及大部分电学知识,多为中档以上的题目,区分度较大,分值也较多。

4、本章的学习要处理好基础知识和综合能力的关系,要重视对物理过程、物理现象的分析,要建立正确的物理情景,深刻理解基本知识、基本规律的内涵、外延,在掌握一般解题方法的基础上,掌握综合性问题的分析思路和方法,形成较完整的解题策略。

(二)知识结构重点和难点分析:一、产生感应电流的条件、楞次定律1、产生感应电流的条件是穿过闭合电路的磁通量发生变化。

它有两种情况:⑴切割2、右手定则适用于判断闭合电路中一部分导体切割磁感线时感应电流的方向。

3、楞次定律的实质是能量守恒定律在电磁感应现象中的体现,其应用步骤:⑴明确闭合电路中的原磁场方向;⑵分析穿过闭合电路的磁通量的变化;⑶根据楞次定律判定感应电流的磁场方向;⑷利用安培定则,判定感应电流的方向。

二、法拉第电磁感应定律1、公式tn E ∆∆=φ⑴感应电动势的大小与电路的电阻及电路是否闭合等无关; ⑵一般而言,公式求的是Δt 内的平均感应电动势;⑶在电磁感应中,产生感应电动势的那部分导体可等效成一个电源,感应电动势的方向和导体(电源)内的电流方向一致。

2、公式θsin Blv E =⑴若B 、l 、v 三者互相垂直,Blv E =;若直导线与B 、v 不垂直,则应取B 、l 、v 互相垂直的分量; ⑵若导体是弯曲的,则l 应取与B 、v 垂直的有效长度;⑶若v 是瞬时速度,则E 为瞬时电动势;若v 为平均速度,则E 为平均电动势。

3、公式ω221Bl E =为导体棒绕其一端转动切割磁感线时产生的感应电动势。

三、自感由于线圈自身的电流发生变化而产生感应电动势的电磁感应现象。

2019版高考物理鲁科版大一轮复习讲义:第十章电磁感应基础课1word版含解析.doc

2019版高考物理鲁科版大一轮复习讲义:第十章电磁感应基础课1word版含解析.doc

选修3-2_第1草*磁感应I局考导航1篡础课1 电磁施应现象梧次定律课前双基过关紧抓教材自主落实知识排查知识点一磁通量1.磁通量(1)定义:把磁场中穿过磁场某一面积S的磁感线的鱼鍫定义为穿过该面积的磁通量。

(2)公式:0=巡5丄S);单位:韦伯(Wb)。

(3)矢标性:磁通量是标量,但有正负。

2.磁通量的变化量:△必=少2—少1。

3.磁通量的变化率(磁通量变化的快慢):磁通量的变化量与所用吋间的比值,即A 0与线圈的匝数无关。

知识点二电磁感应现象1.电磁感应现象因磁通量变化而产生虫遮的现象。

2.产生感应电流的条件(1)闭合电路;(2)磁通量发生变化。

MiS/S三感应电流的方向1.楞次定律:感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

适用于一切电磁感应现象。

2.右手定则:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线穿入掌心,右手拇指指向导线运动方向,这时其余四指指向就是感应电流的方向。

适用于导线切割磁感线产生感应电流。

小题速练1.思考判断(1)磁通量是矢量,有正、负之分。

()(2)当导体切割磁感线运动时,导体中一定产生感应电流。

()(3)感应电流的磁场总是与原磁场方向相反。

()(4)电路中磁通量发生变化时,就一定会产生感应电流。

()答案(1)X (2)X (3)X (4)X2.[鲁科版选修3 — 2 ■ P24■讨论与交流改编](多选)如图2所示,一轻质绝缘横杆两侧各阀定一金属环,横杆可绕中心点自由转动,老师拿一条形磁铁插向其中一个小环,后又取出插向另一个小环,同学们看到的现象及现象分析正确的是A. 磁铁插句左环,横杆发生转动B. 磁铁插向右环,横杆发生转动C. 磁铁插向左环,左环中不产生感应电动势和感应电流D. 磁铁插向右环,右环中产生感应电动势和感应电流 答案BD课堂5动探究I研透考点核心突破考点置L 电磁感应现象的判断 常见的产生感应电流的三种情况I 跟进题组 ______________________ 多角练透1. [鲁科版选修3—2T 8 T 4改编]如图3所示的匀强磁场屮有一个矩形闭合导线框。

2019届高三物理鲁科版一轮复习课件第十章电磁感应 基础课2法拉第电磁感应定律 自感 涡流

2019届高三物理鲁科版一轮复习课件第十章电磁感应 基础课2法拉第电磁感应定律 自感 涡流

【典例】
轻质细线吊着一质量为m=0.42 kg、边长为L=1 m、匝数n=10的正方
形线圈,其总电阻为r=1 Ω。在线圈的中间位置以下区域分布着磁场,如图1甲 所示。磁场方向垂直纸面向里,磁感应强度大小随时间变化的关系如图乙所示。 (取g=10 m/s2)
图1
解析
(1)由楞次定律知感应电流的方向为逆时针方向。
A.感应电动势的大小与线圈的匝数无关
B.穿过线圈的磁通量越大,感应电动势越大 C.穿过线圈的磁通量变化越快,感应电动势越大 D.感应电流产生的磁场方向与原磁场方向始终相同 答案 C
法拉第电磁感应定律的理解和应用 1.法拉第电磁感应定律的理解
ΔΦ (1)感应电动势的大小由线圈的匝数和穿过线圈的磁通量的变化率 共同决定,而 Δt 与磁通量 Φ 的大小、变化量 ΔΦ 的大小没有必然联系。 ΔΦ (2)磁通量的变化率 对应 Φ-t 图线上某点切线的斜率。 Δt
2.涡流 感应电流 在金 将整块金属放在变化的磁场中,穿过金属块的磁通量发生变化,__________ 属块内部形成闭合回路就像旋涡一样,所以叫涡流。
小题速练 1.思考判断
ΔΦ (1)Φ=0, 不一定等于 0。( Δt )
ΔΦ (2)感应电动势 E 与线圈匝数 n 有关,所以 Φ、ΔΦ、 的大小均与线圈匝数有关。 Δt ( ) ) )
应用电磁感应定律需注意的三个问题 ΔΦ (1)公式 E=n 求解的是一个回路中某段时间内的平均电动势,在磁通量均 Δt
匀变化时,瞬时值才等于平均值。 ΔB (2)利用公式 E=nS 求感应电动势时,S 为线圈在磁场范围内的有效面积。 Δt (3)通过回路截面的电荷量 q 仅与 n、 ΔФ 和回路电阻 R 有关, 与时间长短无关, nΔΦ nΔΦ 与 Φ 是否均匀变化无关。推导如下:q= I Δt= Δt= R 。 ΔtR

2019高考物理一轮复习 第十章 电磁感应 第2节 法拉第电磁感应定律及其应用讲义 新人教版

2019高考物理一轮复习 第十章 电磁感应 第2节 法拉第电磁感应定律及其应用讲义 新人教版
B
解析 答案
知识梳理 考点自诊
3.如图所示,闭合金属导线框水平放置在竖直向上的匀强磁场中, 磁场的磁感应强度B的大小随时间变化而变化。下列说法正确的 是( )
关闭
据法A.拉当第B增电大磁时感,应线定框律中的E=感nΔ应������电,可流得一E定=n增������ ·大Δ ������,感应电动势与Δ ������成正 比 感 小D ,应 也BCD当...电 无当当当磁动 法BBB感增减减势 确应大 小小的 定强时 时时大 ,度 A,,,、小线 线线BB不框 框框增、能中中中大C确的的的或错定感感感减误,应应应Δ再小,���D���电电电据时正流流流欧,并确一一可姆不。定定能定能减减不律确Δ小小变可������定知ΔΔ������,������是 感增 应大 电或 流减I=Δ小������������������的,所大以关闭
①定义:在自感现象中产生的感应电动势叫作 自感电动势 。
������
②表达式:E= L Δ������ 。
(3)自感系数L
①相关因素:与线圈的 大小
有关。
②单位:亨利(H),1 mH= 10-3
、形状、 匝数 H,1 μH= 10-6
以及是否有铁芯 H。
知识梳理 考点自诊
2.涡流 当线圈中的电流发生变化时,在它附近的任何导体中都会产生 感应电流 ,这种电流像水的漩涡所以叫涡流。 3.电磁阻尼 导体在磁场中运动时,感应电流会使导体受到安培力,安培力的 方向总是 阻碍 导体的运动。 4.电磁驱动 如果磁场相对于导体转动,在导体中会产生 感应电流 使导体 受到安培力而运动起来。
������t
3.在有关图象问题中,磁通量的变化率
������ ������
是Φ-t图象上某点切线

法拉第电磁感应定律(含视频)教学课件(28张PPT)高中物理鲁科版(2019)选择性必修第二册

法拉第电磁感应定律(含视频)教学课件(28张PPT)高中物理鲁科版(2019)选择性必修第二册
产生感应电流的条件是什么? (1)闭合电路 (2)磁通量变化 ,即:△Φ≠0
1、感应电动势
试比较甲、乙两电路中电流产生的原因
S
A
甲E

NE
产生电动势的那部 分导体相当于电源
在电磁感应现象中产Hale Waihona Puke 的电动势叫感应电动势电源?
电流表指针为什么会偏转?
Φ变化
产生E
有I
电流表指针偏转角的大小和哪些因素有关
E n 2 1
t
导体切割磁感线时的感应电动势
回路在时间Δt内增大的面积为 ΔS=LvΔt
穿过回路的磁通量的变化为: ΔΦ=BΔS=BLvΔt
× × a× × × ×a ×
×××××
G× × × v× × × ×
×××××
b
b
产生的感应电动势为: E BLvt
t
t
匀强磁场
平均速度或瞬时速度 L应为切割磁感线的有效长度
E BS BL2 8104 V t 2 2
如图,有一匀强磁场B=1.0×10-3T,在垂直磁场的平面内,有一 金属棒AO,绕平行于磁场的O轴顺时针转动,已知棒长L=0.20m, 角速度ω=20rad/s,求:棒产生的感应电动势有多大?
解法2:取棒中点的速度代表棒的平均速度
E
Blv中
BL
L
【解析】 AB切割磁感线相当于电源,其等效电路如图所示, E=Blv=0.2×0.5×10 V=1 V
由闭合电路欧姆定律得I=R+E r R1、R2并联,由并联电路电阻关系得R1=R11+R12 解得:R=RR1+1RR2 2=1.0 Ω,IAB=I=0.5 A
因为R1=R2,所以流过R1的电流为I1=2I = 0.25 A. 【答案】 0.25 A

2019版一轮优化探究物理(鲁科版)练习:第十章 第3讲 电磁感应规律的综合应用 Word版含解析

2019版一轮优化探究物理(鲁科版)练习:第十章 第3讲 电磁感应规律的综合应用 Word版含解析

[课时作业] 单独成册 方便使用[基础题组]一、单项选择题1.如图所示是两个相互连接的金属圆环,小金属环的电阻是大金属环电阻的二分之一,磁场垂直穿过大金属环所在区域.当磁感应强度随时间均匀变化时,在大环内产生的感应电动势为E ,则a 、b 两点间的电势差为( )A.12EB.13EC.23E D .E解析:a 、b 间的电势差等于路端电压,而小环电阻占电路总电阻的13,故U ab =13E ,B 正确.答案:B2.(2018·广东四校联考)如图所示,在一磁感应强度B =0.5 T 的匀强磁场中,垂直于磁场方向水平放置着两根相距L =0.1 m 的平行金属导轨MN 和PQ ,导轨电阻忽略不计,在两根导轨的端点N 、Q 之间连接一阻值R =0.3 Ω的电阻.导轨上正交放置着金属棒ab ,其电阻r =0.2 Ω.当金属棒在水平拉力作用下以速度v =4.0 m/s 向左做匀速运动时( )A .ab 棒所受安培力大小为0.02 NB .N 、Q 间电压为0.2 VC.a端电势比b端电势低D.回路中感应电流大小为1 A解析:ab棒产生的电动势E=BL v=0.2 V,电流I=ER+r=0.4 A,ab棒受的安培力F=BIL=0.02 N,A正确,D错误;N、Q之间的电压U=R R+rE=0.12 V,B错误;由右手定则得a端电势较高,C错误.答案:A3.如图所示,在一匀强磁场中有一U形导线框abcd,线框处于水平面内,磁场与线框平面垂直,R为一电阻,ef为垂直于ab的一根导体杆,它可在ab、cd上无摩擦地滑动.杆ef及线框中导线的电阻都可不计.开始时,给ef一个向右的初速度,则()A.ef将减速向右运动,但不是匀减速B.ef将匀减速向右运动,最后停止C.ef将匀速向右运动D.ef将往返运动解析:ef向右运动,切割磁感线,产生感应电动势和感应电流,会受到向左的安培力而做减速运动,直到停止,但不是匀减速,由F=BIL=B2L2v R=ma知,ef做的是加速度减小的减速运动,故A正确.答案:A4.如图所示,有两根与水平方向成α角的光滑平行的金属轨道,上端接有可变电阻R,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感应强度为B.一根质量为m的金属杆(电阻忽略不计)从轨道上由静止滑下,经过足够长的时间后,金属杆的速度会趋近于一个最大速度v m,则()A .如果B 增大,v m 将变大B .如果α增大,v m 将变大C .如果R 变小,v m 将变大D .如果m 变小,v m 将变大解析:金属杆从轨道上由静止滑下,经足够长时间后,速度达最大值v m ,此后金属杆做匀速运动.杆受重力mg 、轨道的支持力N 和安培力F ,如图所示.而F =B 2L 2v m R ,对金属杆有mg sin α=B 2L 2v m R ,即v m =mgR sin αB 2L 2.由此式可知,B 增大,v m 减小;α增大,v m 增大;R 变小,v m 变小;m 变小,v m 变小.因此选项A 、C 、D 错误,选项B 正确.答案:B二、多项选择题5.(2018·江淮十校联考)如图甲所示,一个匝数为n 的圆形线圈(图中只画了2匝),面积为S ,线圈的电阻为R ,在线圈外接一个阻值为R 的电阻和一个理想电压表.将线圈放入垂直线圈平面指向纸内的磁场中,磁感应强度随时间变化规律如图乙所示.下列说法正确的是( )A .0~t 1时间内P 点电势低于Q 点电势B .0~t 1时间内电压表的读数为n (B 1-B 0)S 2t 1C .t 1~t 2时间内R 上的电流为nB 1S 2(t 2-t 1)RD .0~t 2时间内线圈中的电流方向不变解析:根据楞次定律可知:0~t 1时间内,线圈中感应电流方向为逆时针,所以P 点电势高,A 错误.0~t 1时间内的感应电动势E =n ΔB Δt ·S =n (B 1-B 0)·S t 1,而电压表的读数是路端电压,所以U =R 2R ·E =n (B 1-B 0)·S 2t 1·S ,B 正确.t 1~t 2时间内,感应电动势E ′=n ΔΦ′Δt ′=n B 1S t 2-t 1,感应电流I ′=E ′2R =nB 1S 2(t 2-t 1)R,C 正确.t 1~t 2时间内,感应电流的方向为顺时针,D 错误.答案:BC6.如图所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab 、cd 与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒ab 、cd 的质量之比为2∶1.用一沿导轨方向的恒力F 水平向右拉金属棒cd ,经过足够长时间以后( )A .金属棒ab 、cd 都做匀速运动B .金属棒ab 上的电流方向是由b 向aC .金属棒cd 所受安培力的大小等于2F 3D .两金属棒间距离保持不变解析:对两金属棒ab 、cd 进行受力和运动分析可知,两金属棒最终将做加速度相同的匀加速直线运动,且金属棒ab 速度小于金属棒cd 速度,所以两金属棒间距离是变大的,由楞次定律判断金属棒ab 上的电流方向是由b 到a ,A 、D 错误,B 正确;以两金属棒整体为研究对象有F =3ma ,隔离金属棒cd 分析,有F -F 安=ma ,可求得金属棒cd 所受安培力的大小F 安=23F ,C 正确.答案:BC7.(2018·山西四校联考)如图所示,两根等高光滑的14圆弧轨道,半径为r 、间距为L ,轨道电阻不计.在轨道顶端连有一阻值为R 的电阻,整个装置处在一竖直向上的匀强磁场中,磁感应强度为B .现有一根长度稍大于L 、电阻不计的金属棒从轨道最低位置cd 开始,在拉力作用下以初速度v 0向右沿轨道做匀速圆周运动至ab 处,则该过程中( )A .通过R 的电流方向由外向内B .通过R 的电流方向由内向外C .R 上产生的热量为πrB 2L 2v 04RD .流过R 的电荷量为πBLr 2R解析:金属棒从cd 运动至ab 处的过程中,闭合回路中的磁通量减小,再由楞次定律及安培定则可知,回路中电流方向为逆时针方向(从上向下看),则通过R 的电流为由外向内,故A 对,B 错.通过R 的电荷量为q =ΔΦR =BrL R ,D 错.R 上产生的热量为Q =U 2R t =(BL v 0/2)2R πr 2v 0=πrB 2L 2v 04R ,C 对.答案:AC[能力题组]一、选择题8.(2018·河北唐山模拟)如图所示,在水平光滑的平行金属导轨左端接一定值电阻R ,导体棒ab 垂直导轨放置,整个装置处于竖直向下的匀强磁场中.现给导体棒一向右的初速度,不考虑导体棒和导轨电阻,下列图线中,导体棒速度随时间的变化和通过电阻R 的电荷量q 随导体棒位移的变化描述正确的是( )解析:导体棒运动过程中受向左的安培力F =B 2L 2v R ,安培力阻碍棒的运动,速度减小,由牛顿第二定律得棒的加速度大小a =F m =B 2L 2v Rm ,则a减小,v -t 图线斜率的绝对值减小,故B 项正确,A 项错误.通过R 的电荷量q =ΔΦR =BL R x ,可知C 、D 项错误.答案:B9.如图所示,一足够长的光滑平行金属轨道,轨道平面与水平面成θ角,上端与一电阻R 相连,处于方向垂直轨道平面向上的匀强磁场中.质量为m 、电阻为r的金属杆ab ,从高为h 处由静止释放,下滑一段时间后,金属杆开始以速度v 匀速运动直到轨道的底端.金属杆始终保持与轨道垂直且接触良好,轨道的电阻及空气阻力均可忽略不计,重力加速度为g .则( )A .金属杆加速运动过程中的平均速度为v 2B .金属杆加速运动过程中克服安培力做功的功率大于匀速运动过程中克服安培力做功的功率C .当金属杆的速度为v 2时,它的加速度大小为g sin θ2D .整个运动过程中电阻R 产生的焦耳热为mgh -12m v 2解析:对金属杆分析知,金属杆ab 在运动过程中受到重力、轨道支持力和安培力作用,先做加速度减小的加速运动,后做匀速运动,因金属杆加速运动过程不是匀加速,故其平均速度不等于v 2,A 错误.当安培力等于重力沿斜面的分力,即mg sin θ=B 2l 2v R 时,杆ab 开始匀速运动,此时v 最大,安培力最大,故匀速运动时克服安培力做功的功率大,B 错误;当金属杆速度为v 2时,F 安=B 2l 2·v 2R =12mg sin θ,所以F 合=mg sin θ-F 安=12mg sin θ=ma ,得a =g sin θ2,C 正确;由能量守恒可得mgh -12m v 2=Q ab+Q R ,即mgh -12m v 2应等于电阻R 和金属杆上产生的总焦耳热,D 错误.答案:C10.(多选)如图所示,有一个磁感应强度为B 的匀强磁场,磁场方向垂直纸面向里,一半径为r 、电阻为2R 的金属圆环放置在磁场中,金属圆环所在的平面与磁场垂直.金属杆Oa 一端可绕环的圆心O 旋转,另一端a 搁在环上,电阻值为R ;另一金属杆Ob 一端固定在O 点,另一端b 固定在环上,电阻值也是R .已知Oa 杆以角速度ω匀速旋转,所有接触点接触良好,Ob 不影响Oa 的转动,则下列说法正确的是( )A .流过Oa 的电流可能为Bωr 25RB .流过Oa 的电流可能为6Bωr 225RC .Oa 旋转时产生的感应电动势的大小为Bωr 2D .Oa 旋转时产生的感应电动势的大小为12Bωr 2解析:Oa 旋转时产生的感应电动势的大小为E =12Bωr 2,D 正确,C 错误;当Oa 旋转到与Ob 共线但不重合时,等效电路如图甲所示,此时有I min =E 2.5R =Bωr 25R ,当Oa 与Ob 重合时,环的电阻为0,等效电路如图乙所示,此时有I max =E 2R =Bωr 24R ,所以Bωr 25R ≤I ≤Bωr 24R ,A 、B 正确. 答案:ABD二、非选择题11.(2018·北京东城模拟)如图所示,两根足够长平行金属导轨MN 、PQ 固定在倾角θ=37°的绝缘斜面上,顶部接有一阻值R =3 Ω的定值电阻,下端开口,轨道间距L =1 m .整个装置处于磁感应强度B =2 T 的匀强磁场中,磁场方向垂直斜面向上.质量m =1 kg 的金属棒ab 置于导轨上,ab 在导轨之间的电阻r =1 Ω,电路中其余电阻不计.金属棒ab 由静止释放后沿导轨运动时始终垂直于导轨,且与导轨接触良好.不计空气阻力影响.已知金属棒ab 与导轨间动摩擦因数μ=0.5,sin 37°=0.6,cos 37°=0.8,取g =10 m/s 2.(1)求金属棒ab 沿导轨向下运动的最大速度v m ;(2)求金属棒ab 沿导轨向下运动过程中,电阻R 上的最大电功率P R ;(3)若从金属棒ab 开始运动至达到最大速度过程中,电阻R 上产生的焦耳热总共为1.5 J,求流过电阻R 的总电荷量q .解析:(1)金属棒由静止释放后,沿斜面做变加速运动,加速度不断减小,当加速度为零时有最大速度v m由牛顿第二定律有mg sin θ-μmg cos θ-F 安=0F 安=BILI =E R +rE =BL v m由以上各式代入数据解得v m =2.0 m/s.(2)金属棒以最大速度v m 匀速运动时,电阻R 上的电功率最大,此时P R =I 2R ,解得P R =3 W.(3)设金属棒从开始运动至达到最大速度过程中,沿导轨下滑距离为x 由能量守恒定律得mgx sin θ=μmgx cos θ+Q R +Q r +12m v 2m根据焦耳定律有Q R Q r =R r联立解得x =2.0 m根据q =I Δt ,I =ER +r,E =ΔΦΔt ,ΔΦ=BLx , 解得q =BLx R +r =1.0 C. 答案:(1)2.0 m/s(2)3 W(3)1.0 C12.如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角为θ,导轨间距为l ,所在平面的正方形区域abcd 内存在有界匀强磁场,磁感应强度大小为B ,方向垂直于斜面向上.将阻值相同、质量均为m 的相同甲、乙两金属杆放置在导轨上,甲金属杆处在磁场的上边界,甲、乙相距l .从静止释放两金属杆的同时,在金属杆甲上施加一个沿着导轨的外力,使甲金属杆在运动过程中始终沿导轨向下做匀加速直线运动,且加速度大小为a =g sin θ,乙金属杆刚进入磁场时做匀速运动.(1)求每根金属杆的电阻R 的大小.(2)从刚释放金属杆时开始计时,写出从计时开始到甲金属杆离开磁场的过程中外力F 随时间t 的变化关系式,并说明F 的方向.(3)若从开始释放两杆到乙金属杆离开磁场,乙金属杆共产生热量Q ,试求此过程中外力F 对甲做的功.解析:(1)甲、乙匀加速运动时加速度相同,所以,当乙进入磁场时,甲刚出磁场,乙进入磁场时的速度v =2gl sin θ.根据平衡条件有mg sin θ=B 2l 2v2R .解得R =B 2l 22gl sin θ2mg sin θ.(2)甲在磁场中运动时,外力F 始终等于安培力,F =B 2l 2v 2R ,v =g sin θ·t ,将R =B 2l 22gl sin θ2mg sin θ代入得F =mg 2sin 2θ2gl sin θt ,方向沿导轨向下.(3)乙进入磁场前,甲、乙产生相同热量,设为Q 1,则有F 安l =2Q 1, 又F =F 安,故外力F 对甲做的功W F =Fl =2Q 1.甲出磁场以后,外力F 为零,乙在磁场中,甲、乙产生相同热量,设为Q 2,则有F 安′l =2Q 2,又F 安′= mg sin θ,Q =Q 1+Q 2,解得W F =2Q -mgl sin θ.答案:(1)B 2l 22gl sin θ2mg sin θ (2)F =mg 2sin 2 θ2gl sin θt ,方向沿导轨向下 (3)2Q -mgl sin θ。

2019版一轮优化探究物理(鲁科版)练习:第十章法拉第电磁感应定律自感涡流 含解析

2019版一轮优化探究物理(鲁科版)练习:第十章法拉第电磁感应定律自感涡流 含解析

[课时作业] 单独成册 方便使用[基础题组]一、单项选择题1、将闭合多匝线圈置于仅随时间变化的磁场中,线圈平面与磁场方向垂直、关于线圈中产生的感应电动势和感应电流,下列表述正确的是( )A 、感应电动势的大小与线圈的匝数无关B 、穿过线圈的磁通量越大,感应电动势越大C 、穿过线圈的磁通量变化越快,感应电动势越大D 、感应电流产生的磁场方向与原磁场方向始终相同解析:由法拉第电磁感应定律E =n ΔΦ,Δt )知,感应电动势的大小与线圈匝数有关,A 错误;感应电动势正比于ΔΦΔt ,与磁通量的大小无直接关系,B 错误,C 正确;根据楞次定律知,感应电流的磁场总是阻碍引起感应电流的磁通量的变化,即“增反减同”,D 错误、答案:C2.A 、B 两闭合圆形导线环用相同规格的导线制成,它们的半径之比r A ∶r B =2∶1,在两导线环包围的空间内存在一正方形边界的匀强磁场区域,磁场方向垂直于两导线环所在的平面,如图所示、在磁场的磁感应强度随时间均匀增大的过程中,下列说法正确的是( )A 、两导线环内所产生的感应电动势相等B 、A 环内所产生的感应电动势大于B 环内所产生的感应电动势C 、流过A 、B 两导线环的感应电流的大小之比为1∶4D 、流过A 、B 两导线环的感应电流的大小之比为1∶1解析:某一时刻穿过A 、B 两导线环的磁通量均为穿过磁场所在区域面积上的磁通量,设磁场区域的面积为S ,则Φ=BS ,由E =ΔΦΔt =ΔB Δt S (S 为磁场区域面积),对A 、B 两导线环,有E A E B =1,所以A 正确,B 错误;I =E R ,R =ρl S 1(S 1为导线的横截面积),l =2πr ,所以I A I B =E A r B E B r A=12,C 、D 错误、 答案:A3.如图为无线充电技术中使用的受电线圈示意图,线圈匝数为n ,面积为S .若在t 1到t 2时间内,匀强磁场平行于线圈轴线向右穿过线圈,其磁感应强度大小由B 1均匀增加到B 2,则该段时间线圈两端a 和b 之间的电势差φa -φb ( )A 、恒为nS (B 2-B 1)t 2-t 1B 、从0均匀变化到nS (B 2-B 1)t 2-t 1C 、恒为-nS (B 2-B 1)t 2-t 1D 、从0均匀变化到-nS (B 2-B 1)t 2-t 1解析:根据法拉第电磁感应定律,E =n ΔΦΔt =n S (B 2-B 1)t 2-t 1,由楞次定律可以判断a 点电势低于b 点电势,所以a 、b 两点之间的电势差为-n S (B 2-S 1)t 2-t 1,C 项正确、答案:C4.(2018·贵州七校联考)如图所示,两根相距为l 的平行直导轨ab 、cd ,b 、d 间连有一定值电阻R ,导轨电阻可忽略不计、MN 为放在ab 和cd 上的一导体杆,与ab 垂直,其电阻也为R .整个装置处于匀强磁场中,磁感应强度的大小为B ,磁场方向垂直于导轨所在平面(指向图中纸面内)、现对MN 施力使它沿导轨方向以速度v (如图)做匀速运动、令U 表示MN 两端电压的大小,则( )A 、U =12Bl v ,流过定值电阻R 的感应电流由b 到dB 、U =12Bl v ,流过定值电阻R 的感应电流由d 到bC 、U =Bl v ,流过定值电阻R 的感应电流由b 到dD 、U =Bl v ,流过定值电阻R 的感应电流由d 到b解析:由右手定则可知,通过MN 的电流方向为N →M ,电路闭合,流过电阻R 的电流方向由b 到d ,B 、D 项错误;导体杆切割磁感线产生的感应电动势E =Bl v ,导体杆为等效电源,其电阻为等效电源内电阻,由闭合电路欧姆定律和部分电路欧姆定律可知,U =IR =E 2R ·R =12Bl v ,A 项正确,C 项错误、答案:A5、如图所示,A 、B 是两个完全相同的灯泡,L 是自感系数较大的线圈,其直流电阻忽略不计、当开关K 闭合时,下列说法正确的是( )A 、A 比B 先亮,然后A 熄灭B 、B 比A 先亮,然后B 逐渐变暗,A 逐渐变亮C 、A 、B 一齐亮,然后A 熄灭D 、A 、B 一齐亮,然后A 逐渐变亮,B 的亮度不变解析:开关闭合的瞬间,线圈由于自感阻碍电流通过,相当于断路,B 灯先亮,之后线圈阻碍作用减弱,相当于电阻减小,则总电阻减小,总电流增大,路端电压减小,B 灯所在支路电流减小,B 灯变暗,A 灯所在支路电流增大,A 灯变亮、答案:B二、多项选择题6.如图所示,闭合金属导线框放置在竖直向上的匀强磁场中,匀强磁场的磁感应强度随时间变化、下列说法正确的是( )A 、当磁感应强度增加时,线框中的感应电流可能减小B 、当磁感应强度增加时,线框中的感应电流一定增大C 、当磁感应强度减小时,线框中的感应电流一定增大D 、当磁感应强度减小时,线框中的感应电流可能不变解析:线框中的感应电动势为E =ΔB Δt S ,设线框的电阻为R ,则线框中的电流I =E R =ΔB Δt ·S R ,B 增大或减小时,ΔB Δt 可能减小,也可能增大,也可能不变、线框中的感应电动势的大小只和磁通量的变化率有关,和磁通量的变化量无关、故选项A 、D 正确、答案:AD7.(2016·高考全国卷Ⅱ)法拉第圆盘发电机的示意图如图所示、铜圆盘安装在竖直的铜轴上,两铜片P 、Q 分别与圆盘的边缘和铜轴接触、圆盘处于方向竖直向上的匀强磁场B 中、圆盘旋转时,关于流过电阻R 的电流,下列说法正确的是( )A 、若圆盘转动的角速度恒定,则电流大小恒定B 、若从上向下看,圆盘顺时针转动,则电流沿a 到b 的方向流动C 、若圆盘转动方向不变,角速度大小发生变化,则电流方向可能发生变化D 、若圆盘转动的角速度变为原来的2倍,则电流在R 上的热功率也变为原来的2倍解析:由右手定则知,圆盘按如题图所示的方向转动时,感应电流沿a 到b的方向流动,选项B 正确;由感应电动势E =12Bl 2ω知,角速度恒定,则感应电动势恒定,电流大小恒定,选项A 正确;角速度大小变化,感应电动势大小变化,但感应电流方向不变,选项C 错误;若ω变为原来的2倍,则感应电动势变为原来的2倍,电流变为原来的2倍,由P =I 2R 知,电流在R 上的热功率变为原来的4倍,选项D 错误、答案:AB8.如图所示,a 、b 两个闭合正方形线圈用同样的导线制成,匝数均为10匝,边长l a =3l b ,图示区域内有垂直纸面向里的匀强磁场,且磁感应强度随时间均匀增大,不考虑线圈之间的相互影响,则( )A 、两线圈内产生顺时针方向的感应电流B 、a 、b 线圈中感应电动势之比为9∶1C 、a 、b 线圈中感应电流之比为3∶4D 、a 、b 线圈中电功率之比为27∶1解析:由于磁感应强度随时间均匀增大,则根据楞次定律知两线圈内产生的感应电流方向皆沿逆时针方向,则A 项错误;根据法拉第电磁感应定律E =N ΔΦΔt =NS ΔB Δt ,而磁感应强度均匀变化,即ΔB Δt 恒定,则a 、b 线圈中的感应电动势之比为E a E b =S a S b =l 2a l 2b=9,故B 项正确;根据电阻定律R =ρL S ′,且L =4Nl ,则R a R b =l a l b=3,由闭合电路欧姆定律I =E R 得,a 、b 线圈中的感应电流之比为I a I b =E a E b ·R b R a=3,故C 项错误;由功率公式P =I 2R 知,a 、b 线圈中的电功率之比为P a P b =I 2a I 2b ·R a R b=27,故D 项正确、 答案:BD[能力题组]一、选择题9.如图所示是利用交流电焊接某环形金属零件的原理示意图,其中外圈A是通交流电的线圈,内圈B是环形零件,a是待焊的接口,接口处电阻较大,则下列说法不正确的是()A、当A中通有交流电时,B中会产生感应电动势,使得接口处金属熔化而焊接起来B、在其他条件不变的情况下,交流电频率越高,焊接越快C、在其他条件不变的情况下,交流电频率越低,焊接越快D、焊接过程中,接口a处被熔化而零件的其他部分并不很热解析:交流电频率越高,磁通量变化率越大,由法拉第电磁感应定律可知,感应电动势和感应电流越大,产生的热功率越大,焊接越快,选项A、B正确,C 错误;因为接口处电阻大,串联电路中电流处处相等,电阻大的地方产生的热量多,可将接口处熔化而零件的其他部分并不很热,选项D正确、答案:C10、(2018·陕西渭南教学质量检测)如图所示,纸面内有一矩形导体线框abcd,置于垂直纸面向里、边界为MN的匀强磁场外,线框的ab边平行磁场边界MN,线框以垂直于MN的速度匀速地完全进入磁场,线框上产生的热量为Q1,通过线框导体横截面的电荷量为q1.现将线框进入磁场的速度变为原来的两倍,线框上产生的热量为Q2,通过线框导体横截面的电荷量为q2,则有()A、Q2=Q1,q2=q1B、Q2=2Q1,q2=2q1C 、Q 2=2Q 1,q 2=q 1D 、Q 2=4Q 1,q 2=2q 1解析:设ab 长为L ,ad 长为L ′,则电动势E =BL v ,感应电流I =E R =BL v R ,产生的热量Q =I 2Rt =B 2L 2v 2R 2·R ·L ′v =B 2L 2v L ′R,与速度成正比,所以Q 2=2Q 1;通过导体横截面的电荷量q =I Δt ,I =E R ,E =ΔΦΔt ,三式联立解得q=ΔΦR =BLL ′R ,与速度无关,所以q 1=q 2,选项C 正确、答案:C11.(多选)(2018·山东潍坊高三质检)半径为a 、右端开小口的导体圆环和长为2a 的导体直杆,单位长度的电阻均为R 0.圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B .杆在圆环上以速度v平行于直径CD 向右做匀速直线运动,杆始终有两点与圆环良好接触,从圆环中心O 开始,杆的位置由θ确定,如图所示,则( )A 、θ=0时,杆产生的感应电动势为2Ba vB 、θ=π3时,杆产生的感应电动势为3Ba vC 、θ=0时,杆受的安培力大小为2B 2a v (π+2)R 0D 、θ=π3时,杆受的安培力大小为3B 2a v (5π+3)R 0解析:根据法拉第电磁感应定律可得E =Bl v ,其中l 为有效长度,当θ=0时,l=2a ,则E =2Ba v ;当θ=π3时,l =a ,则E =Ba v ,故选项A 正确,B 错误、根据通电直导线在磁场中所受安培力大小的计算公式可得F =BIl ,根据闭合电路欧姆定律可得I =E r +R,当θ=0时,l =2a ,E =2Ba v ,r +R =(π+2)aR 0,解得F =4B 2a v (π+2)R 0;当θ=π3时,l =a ,E =Ba v ,r +R =(5π3+1)aR 0,解得F =3B 2a v (5π+3)R 0,故选项C 错误,D 正确、 答案:A D二、非选择题12.小明同学设计了一个“电磁天平”,如图甲所示,等臂天平的左臂为挂盘,右臂挂有矩形线圈,两臂平衡、线圈的水平边长L =0.1 m,竖直边长H =0.3 m,匝数为N 1.线圈的下边处于匀强磁场内,磁感应强度B 0=1.0 T,方向垂直线圈平面向里、线圈中通有可在0~2.0 A 范围内调节的电流I .挂盘放上待测物体后,调节线圈中电流使天平平衡,测出电流即可测得物体的质量、(重力加速度g 取10 m/s 2)(1)为使电磁天平的量程达到0.5 kg,线圈的匝数N 1至少为多少?(2)进一步探究电磁感应现象,另选N2=100匝、形状相同的线圈,总电阻R =10 Ω,不接外电流,两臂平衡、如图乙所示,保持B 0不变,在线圈上部另加垂直纸面向外的匀强磁场,且磁感应强度B 随时间均匀变大,磁场区域宽度d =0.1 m 、当挂盘中放质量为0.01 kg 的物体时,天平平衡,求此时磁感应强度的变化率ΔB Δt .解析:(1)线圈受到的安培力F =N 1B 0IL天平平衡mg =N 1B 0IL代入数据得N 1=25.(2)由电磁感应定律得E =N 2ΔΦΔt即E =N 2ΔB Δt Ld由欧姆定律得I ′=E R线圈受到的安培力F ′=N 2B 0I ′L天平平衡m ′g =N 22B 0ΔB Δt ·dL 2R代入数据可得ΔB Δt =0.1 T/s.答案:(1)25 (2)0.1 T/s13、(2018·河南重点中学联考)如图所示,ab 、cd 为间距为l 的光滑倾斜金属导轨,与水平面的夹角为θ,导轨电阻不计,a 、c 间接有阻值为R 的电阻,空间存在磁感应强度为B 0、方向竖直向上的匀强磁场、将一根阻值为r 、长度为l 的金属棒从轨道顶端由静止释放,金属棒沿导轨向下运动的过程中始终与导轨接触良好、已知当金属棒向下滑行距离x 到达MN 处时已经达到稳定速度,重力加速度为g .求:(1)金属棒下滑到MN 的过程中通过电阻R 的电荷量;(2)金属棒的稳定速度的大小、解析:(1)金属棒下滑到MN 的过程中的平均感应电动势为E =n ΔΦΔt =B 0lx cos θΔt根据欧姆定律,电路中的平均电流为I =E R +r =B 0lx cos θ(R +r )Δt则q =I Δt =B 0lx cos θR +r. (2)稳定时金属棒切割磁感线产生的感应电动势为E ′=B 0l v cos θ电路中产生的电流为I ′=E ′R +r金属棒受的安培力为F =B 0I ′l稳定时金属棒的加速度为零,则mg sin θ-F cos θ=0联立解得稳定时金属棒的速度v=mg(R+r)sin θB20l2cos2θ.答案:见解析。

《第2节 法拉第电磁感应定律》(同步训练)高中物理选择性必修 第二册_鲁科版

《第2节 法拉第电磁感应定律》(同步训练)高中物理选择性必修 第二册_鲁科版

《第2节法拉第电磁感应定律》同步训练(答案在后面)一、单项选择题(本大题有7小题,每小题4分,共28分)1、法拉第电磁感应定律揭示了电荷运动与磁场的关系。

以下是关于法拉第电磁感应定律的相关描述,其中正确的是()A、闭合电路中产生的感应电动势的大小与穿过电路的磁通量大小成正比。

B、闭合电路中产生的感应电动势的大小与穿过电路平面的磁通量变化率成正比。

C、感应电流的方向总是与原磁场方向相同。

D、感应电流的变化方向与原磁场的产生方向相反。

2、一个匀强磁场中有一个平面线圈,线圈面积为S,与磁感应强度B垂直。

当线圈以角速度ω旋转时,穿过线圈的磁通量变化率ΔΦ/Δt是()A、ΔΦ/Δt = BωSB、ΔΦ/Δt = BSC、ΔΦ/Δt = BωS/ΔtD、ΔΦ/Δt = 03、题干:在法拉第电磁感应现象中,以下哪个说法是正确的?A、只有导体运动切割磁感线才能产生感应电流B、任何闭合电路中只要磁通量发生变化,就会产生感应电流C、感应电流的方向总是与导体运动的方向一致D、感应电流的大小与导体切割磁感线的速度无关4、题干:一个面积为S的矩形线圈,在垂直于磁场方向以速度v穿过均匀磁场,磁感应强度为B。

以下关于感应电动势大小的说法中,正确的是:A、感应电动势的大小与线圈的速度v成正比B、感应电动势的大小与线圈的面积S成正比C、感应电动势的大小与磁感应强度B成正比D、感应电动势的大小与线圈穿过磁场的速度v、面积S和磁感应强度B均成正比5、一闭合线圈在均匀磁场中旋转,线圈平面始终垂直于磁场方向。

若转动轴经过线圈的中心,且线圈的半个周期内,线圈的平面从与磁场垂直的位置转过90°,此时线圈中产生的感应电动势大小为E1;若线圈完整一个周期后,线圈的平面从与磁场垂直的位置转过180°,此时线圈中产生的感应电动势大小为E2。

下列关于E1和E2的关系正确的是()。

A、E1 = 0.5E2B、E1 = E2C、E1 = 2E2D、E1 = 4E26、一个闭合线圈在通过线圈平面的磁感应强度减小的均匀磁场中运动,磁感应强度在t=0时刻为B0,线圈面积为S。

法拉第电磁感应定律课件-高二物理(鲁科版2019选择性必修第二册)

法拉第电磁感应定律课件-高二物理(鲁科版2019选择性必修第二册)
第二章 电磁感应及其应用
第2节 法拉第电磁感应定律
思考
为什么闭合回路的
磁通量发生变化时,
会产生感应电流?
新课学习 感应电动势
在电磁感应现象中
产生的电动势叫做
感应电动势
感应电动势的大小与磁
通量的变化有何关系?
新课学习 感应电动势
感应电动势的大小与磁通量的变化快慢有
关。磁通量变化越快,感应电动势越大
金属框中的感应电动势E;
∆∅ ∆
=
=
= 0.08


例题 如图所示,A、B两个线圈套在同一个铁芯上模仿法拉第
发现电磁感应的实验,下列说法正确的是( BD )
A.2 断开状态下,突然闭合1 ,电流表中有感应电流
B.2 闭合状态下,突然闭合1 ,电流表中有感应电流
C.1 闭合状态下,突然闭合2 ,电流表中有感应电流
1.平动切割
=
动生电动势的计算
左手定
正交性、平均性、瞬时性、有效性

有效长度为a到b的距离
重点过关
2.转动切割
动生电动势的计算
左手定

= ഥ

+
=

= 源自随堂练习(1)只要产生感应电动势,就会产生感应电流.(
×
(2)回路中产生感应电流,不一定产生感应电动势.(
(3)磁通量的变化量越大,感应电动势越大.(
(4)磁通量变化越快,感应电动势越大.(

×
)
)
)
×
)
例题 在一个磁感应强度大小随时间均匀变化的磁
场中,垂直于磁场方向放一个面积为0.1 2 的线圈。
在0.2s内磁场各点的磁感应强度由0增大到0.3T,

法拉第电磁感应定律课件(16张PPT)物理鲁科版(2019)选择性必修第二册

法拉第电磁感应定律课件(16张PPT)物理鲁科版(2019)选择性必修第二册

【例3】如图,匀强磁场的磁感应强度为B, 长为L的金属棒ab在垂直于B的平面内运动,
速度v与L成θ角,求金属棒ab产生的感应
电动势。 a
θ
v
b
【例4】如图,长为L的铜杆OA以O为轴在垂
直于匀强磁场的平面内以角速度ω匀速转
动,磁场的磁感应强度为B,求杆OA两端的电
势差.
A' ω
A
O
【例5】如图,边长为a的正方形闭合线框
三、导体切割磁感线时的感应电动势
如图所示闭合线框一部分导体ab长l,处 于匀强磁场中,磁感应强度是B,ab以速度v
匀速切割磁感线,求产生的感应电动势
a
a
×××××××
× G
×
×v ×
×
×××××××
×××××
b
b
(V是相对于磁场的速度)
三、导体切割磁感线时的感应电动势
若导体运动方向跟磁感应强度方向有夹角 感应电动势如何求解?(导体斜切磁感线)
ABCD在匀强磁场中绕AB边匀速转动,磁 感应强度为B,初始时刻线框所在的平面 与磁感线垂直,经过t时间转过1200角,
求:
(1)线框内感应电动
势在时间t内的平均值.
(2)转过1200角时感
应电动势的瞬时值.
再见!
思考与交流2:在实验中,将条形磁铁从 同一高度插入线圈中同一位置,快插入 和慢插入有什么相同和不同?
思考与交流3:感应电动势的大小与什么 因素有关呢?
二、法拉第电磁感应定律
1.内容:电路中感应电动势的大小,跟穿
过这一电路的磁通量的变化率成
正比。
2.公式: E Φ E n Φ
t
t
n为线圈的匝数

2019版一轮优化探究物理(鲁科版)练习:第十章法拉第电磁感应定律自感涡流 含解析

2019版一轮优化探究物理(鲁科版)练习:第十章法拉第电磁感应定律自感涡流 含解析

[课时作业] 单独成册 方便使用[基础题组];;一、单项选择题;;1.将闭合多匝线圈置于仅随时间变化的磁场中,线圈平面与磁场方向垂直.关于线圈中产生的感应电动势和感应电流,下列表述正确的是( );;A .感应电动势的大小与线圈的匝数无关B .穿过线圈的磁通量越大,感应电动势越大C .穿过线圈的磁通量变化越快,感应电动势越大D .感应电流产生的磁场方向与原磁场方向始终相同解析:由法拉第电磁感应定律E =n ΔΦ,Δt )知,感应电动势的大小与线圈匝数有关,A 错误;感应电动势正比于ΔΦΔt ,与磁通量的大小无直接关系,B 错误,C 正确;根据楞次定律知,感应电流的磁场总是阻碍引起感应电流的磁通量的变化,即“增反减同”,D 错误.;;答案:C2.A 、B 两闭合圆形导线环用相同规格的导线制成,它们的半径之比r A ∶r B =2∶1,在两导线环包围的空间内存在一正方形边界的匀强磁场区域,磁场方向垂直于两导线环所在的平面,如图所示.在磁场的磁感应强度随时间均匀增大的过程中,下列说法正确的是( );;A .两导线环内所产生的感应电动势相等B .A 环内所产生的感应电动势大于B 环内所产生的感应电动势C .流过A 、B 两导线环的感应电流的大小之比为1∶4D .流过A 、B 两导线环的感应电流的大小之比为1∶1;解析:某一时刻穿过A 、B 两导线环的磁通量均为穿过磁场所在区域面积上的磁通量,设磁场区域的面积为S ,则Φ=BS ,由E =ΔΦΔt =ΔB Δt S (S 为磁场区域面积),对A 、B两导线环,有E A E B =1,所以A 正确,B 错误;I =E R ,R =ρl S 1(S 1为导线的横截面积),l=2πr ,所以I A I B =E A r B E B r A=12,C 、D 错误. 答案:A3.如图为无线充电技术中使用的受电线圈示意图,线圈匝数为n ,面积为S .若在t 1到t 2时间内,匀强磁场平行于线圈轴线向右穿过线圈,其磁感应强度大小由B 1均匀增加到B 2,则该段时间线圈两端a 和b 之间的电势差φa -φb ( )A .恒为nS (B 2-B 1)t 2-t 1B .从0均匀变化到nS (B 2-B 1)t 2-t 1C .恒为-nS (B 2-B 1)t 2-t 1D .从0均匀变化到-nS (B 2-B 1)t 2-t 1解析:根据法拉第电磁感应定律,E =n ΔΦΔt =n S (B 2-B 1)t 2-t 1,由楞次定律可以判断a 点电势低于b 点电势,所以a 、b 两点之间的电势差为-n S (B 2-S 1)t 2-t 1,C 项正确. 答案:C4.(2018·贵州七校联考)如图所示,两根相距为l 的平行直导轨ab 、cd ,b 、d 间连有一定值电阻R ,导轨电阻可忽略不计.MN为放在ab 和cd 上的一导体杆,与ab 垂直,其电阻也为R .整个装置处于匀强磁场中,磁感应强度的大小为B ,磁场方向垂直于导轨所在平面(指向图中纸面内).现对MN 施力使它沿导轨方向以速度v (如图)做匀速运动.令U 表示MN 两端电压的大小,则( )A .U =12Bl v ,流过定值电阻R 的感应电流由b 到dB .U =12Bl v ,流过定值电阻R 的感应电流由d 到bC .U =Bl v ,流过定值电阻R 的感应电流由b 到dD .U =Bl v ,流过定值电阻R 的感应电流由d 到b解析:由右手定则可知,通过MN 的电流方向为N →M ,电路闭合,流过电阻R 的电流方向由b 到d ,B 、D 项错误;导体杆切割磁感线产生的感应电动势E =Bl v ,导体杆为等效电源,其电阻为等效电源内电阻,由闭合电路欧姆定律和部分电路欧姆定律可知,U =IR =E 2R ·R =12Bl v ,A 项正确,C 项错误.答案:A5.如图所示,A 、B 是两个完全相同的灯泡,L 是自感系数较大的线圈,其直流电阻忽略不计.当开关K 闭合时,下列说法正确的是( )A .A 比B 先亮,然后A 熄灭B .B 比A 先亮,然后B 逐渐变暗,A 逐渐变亮C .A 、B 一齐亮,然后A 熄灭D .A 、B 一齐亮,然后A 逐渐变亮,B 的亮度不变解析:开关闭合的瞬间,线圈由于自感阻碍电流通过,相当于断路,B 灯先亮,之后线圈阻碍作用减弱,相当于电阻减小,则总电阻减小,总电流增大,路端电压减小,B 灯所在支路电流减小,B 灯变暗,A 灯所在支路电流增大,A 灯变亮.答案:B二、多项选择题6.如图所示,闭合金属导线框放置在竖直向上的匀强磁场中,匀强磁场的磁感应强度随时间变化.下列说法正确的是( )A .当磁感应强度增加时,线框中的感应电流可能减小B .当磁感应强度增加时,线框中的感应电流一定增大C .当磁感应强度减小时,线框中的感应电流一定增大D .当磁感应强度减小时,线框中的感应电流可能不变解析:线框中的感应电动势为E =ΔB Δt S ,设线框的电阻为R ,则线框中的电流I =E R =ΔB Δt ·S R ,B 增大或减小时,ΔB Δt 可能减小,也可能增大,也可能不变.线框中的感应电动势的大小只和磁通量的变化率有关,和磁通量的变化量无关.故选项A 、D 正确. 答案:AD7.(2016·高考全国卷Ⅱ)法拉第圆盘发电机的示意图如图所示.铜圆盘安装在竖直的铜轴上,两铜片P 、Q 分别与圆盘的边缘和铜轴接触.圆盘处于方向竖直向上的匀强磁场B 中.圆盘旋转时,关于流过电阻R 的电流,下列说法正确的是( )A .若圆盘转动的角速度恒定,则电流大小恒定B .若从上向下看,圆盘顺时针转动,则电流沿a 到b 的方向流动C .若圆盘转动方向不变,角速度大小发生变化,则电流方向可能发生变化D .若圆盘转动的角速度变为原来的2倍,则电流在R 上的热功率也变为原来的2倍 解析:由右手定则知,圆盘按如题图所示的方向转动时,感应电流沿a 到b 的方向流动,选项B 正确;由感应电动势E =12Bl 2ω知,角速度恒定,则感应电动势恒定,电流大小恒定,选项A 正确;角速度大小变化,感应电动势大小变化,但感应电流方向不变,选项C 错误;若ω变为原来的2倍,则感应电动势变为原来的2倍,电流变为原来的2倍,由P =I 2R 知,电流在R 上的热功率变为原来的4倍,选项D 错误.答案:AB8.如图所示,a 、b 两个闭合正方形线圈用同样的导线制成,匝数均为10匝,边长l a =3l b ,图示区域内有垂直纸面向里的匀强磁场,且磁感应强度随时间均匀增大,不考虑线圈之间的相互影响,则( )A .两线圈内产生顺时针方向的感应电流B .a 、b 线圈中感应电动势之比为9∶1C .a 、b 线圈中感应电流之比为3∶4D .a 、b 线圈中电功率之比为27∶1解析:由于磁感应强度随时间均匀增大,则根据楞次定律知两线圈内产生的感应电流方向皆沿逆时针方向,则A项错误;根据法拉第电磁感应定律E=N ΔΦΔt=NSΔBΔt,而磁感应强度均匀变化,即ΔBΔt恒定,则a、b线圈中的感应电动势之比为E aE b=S aS b=l2al2b=9,故B项正确;根据电阻定律R=ρLS′,且L=4Nl,则R aR b=l al b=3,由闭合电路欧姆定律I=ER得,a、b线圈中的感应电流之比为I aI b=E aE b·R bR a=3,故C项错误;由功率公式P=I2R知,a、b线圈中的电功率之比为P aP b=I2aI2b·R aR b=27,故D项正确.答案:BD[能力题组]一、选择题9.如图所示是利用交流电焊接某环形金属零件的原理示意图,其中外圈A是通交流电的线圈,内圈B是环形零件,a是待焊的接口,接口处电阻较大,则下列说法不正确的是()A.当A中通有交流电时,B中会产生感应电动势,使得接口处金属熔化而焊接起来B.在其他条件不变的情况下,交流电频率越高,焊接越快C.在其他条件不变的情况下,交流电频率越低,焊接越快D.焊接过程中,接口a处被熔化而零件的其他部分并不很热解析:交流电频率越高,磁通量变化率越大,由法拉第电磁感应定律可知,感应电动势和感应电流越大,产生的热功率越大,焊接越快,选项A、B正确,C错误;因为接口处电阻大,串联电路中电流处处相等,电阻大的地方产生的热量多,可将接口处熔化而零件的其他部分并不很热,选项D正确.答案:C10.(2018·陕西渭南教学质量检测)如图所示,纸面内有一矩形导体线框abcd,置于垂直纸面向里、边界为MN的匀强磁场外,线框的ab边平行磁场边界MN,线框以垂直于MN的速度匀速地完全进入磁场,线框上产生的热量为Q1,通过线框导体横截面的电荷量为q 1.现将线框进入磁场的速度变为原来的两倍,线框上产生的热量为Q 2,通过线框导体横截面的电荷量为q 2,则有( )A .Q 2=Q 1,q 2=q 1B .Q 2=2Q 1,q 2=2q 1C .Q 2=2Q 1,q 2=q 1D .Q 2=4Q 1,q 2=2q 1解析:设ab 长为L ,ad 长为L ′,则电动势E =BL v ,感应电流I =E R =BL v R ,产生的热量Q =I 2Rt =B 2L 2v 2R 2·R ·L ′v =B 2L 2v L ′R,与速度成正比,所以Q 2=2Q 1;通过导体横截面的电荷量q =I Δt ,I =E R ,E =ΔΦΔt ,三式联立解得q =ΔΦR =BLL ′R ,与速度无关,所以q 1=q 2,选项C 正确.答案:C11.(多选)(2018·山东潍坊高三质检)半径为a 、右端开小口的导体圆环和长为2a 的导体直杆,单位长度的电阻均为R 0.圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B .杆在圆环上以速度v 平行于直径CD 向右做匀速直线运动,杆始终有两点与圆环良好接触,从圆环中心O 开始,杆的位置由θ确定,如图所示,则( )A .θ=0时,杆产生的感应电动势为2Ba vB .θ=π3时,杆产生的感应电动势为3Ba vC .θ=0时,杆受的安培力大小为2B 2a v (π+2)R 0D .θ=π3时,杆受的安培力大小为3B 2a v (5π+3)R 0解析:根据法拉第电磁感应定律可得E =Bl v ,其中l 为有效长度,当θ=0时,l =2a ,则E =2Ba v ;当θ=π3时,l =a ,则E =Ba v ,故选项A 正确,B 错误.根据通电直导线在磁场中所受安培力大小的计算公式可得F =BIl ,根据闭合电路欧姆定律可得I =E r +R ,当θ=0时,l =2a ,E =2Ba v ,r +R =(π+2)aR 0,解得F =4B 2a v(π+2)R 0;当θ=π3时,l =a ,E =Ba v ,r +R =(5π3+1)aR 0,解得F =3B 2a v (5π+3)R 0,故选项C 错误,D 正确.答案:A D二、非选择题12.小明同学设计了一个“电磁天平”,如图甲所示,等臂天平的左臂为挂盘,右臂挂有矩形线圈,两臂平衡.线圈的水平边长L =0.1 m ,竖直边长H =0.3 m ,匝数为N 1.线圈的下边处于匀强磁场内,磁感应强度B 0=1.0 T ,方向垂直线圈平面向里.线圈中通有可在0~2.0 A 范围内调节的电流I .挂盘放上待测物体后,调节线圈中电流使天平平衡,测出电流即可测得物体的质量.(重力加速度g 取10 m/s 2)(1)为使电磁天平的量程达到0.5 kg ,线圈的匝数N 1至少为多少?(2)进一步探究电磁感应现象,另选N2=100匝、形状相同的线圈,总电阻R =10 Ω,不接外电流,两臂平衡.如图乙所示,保持B 0不变,在线圈上部另加垂直纸面向外的匀强磁场,且磁感应强度B 随时间均匀变大,磁场区域宽度d =0.1 m .当挂盘中放质量为0.01 kg 的物体时,天平平衡,求此时磁感应强度的变化率ΔB Δt .解析:(1)线圈受到的安培力F =N 1B 0IL天平平衡mg =N 1B 0IL代入数据得N 1=25.(2)由电磁感应定律得E =N 2ΔΦΔt即E =N 2ΔB Δt Ld由欧姆定律得I ′=E R线圈受到的安培力F ′=N 2B 0I ′L天平平衡m ′g =N 22B 0ΔB Δt ·dL 2R代入数据可得ΔB Δt =0.1 T/s.答案:(1)25 (2)0.1 T/s13.(2018·河南重点中学联考)如图所示,ab 、cd 为间距为l 的光滑倾斜金属导轨,与水平面的夹角为θ,导轨电阻不计,a 、c 间接有阻值为R 的电阻,空间存在磁感应强度为B 0、方向竖直向上的匀强磁场.将一根阻值为r 、长度为l 的金属棒从轨道顶端由静止释放,金属棒沿导轨向下运动的过程中始终与导轨接触良好.已知当金属棒向下滑行距离x 到达MN 处时已经达到稳定速度,重力加速度为g .求:(1)金属棒下滑到MN 的过程中通过电阻R 的电荷量;(2)金属棒的稳定速度的大小.解析:(1)金属棒下滑到MN 的过程中的平均感应电动势为E =n ΔΦΔt =B 0lx cos θΔt根据欧姆定律,电路中的平均电流为I =E R +r =B 0lx cos θ(R +r )Δt 则q =I Δt =B 0lx cos θR +r . (2)稳定时金属棒切割磁感线产生的感应电动势为E ′=B 0l v cos θ电路中产生的电流为I ′=E ′R +r金属棒受的安培力为F =B 0I ′l稳定时金属棒的加速度为零,则mg sin θ-F cos θ=0联立解得稳定时金属棒的速度v=mg(R+r)sin θB20l2cos2θ.答案:见解析。

2019版一轮优化探究物理(沪科版)练习:第十章 第1讲 电磁感应现象 楞次定律 Word版含解析

2019版一轮优化探究物理(沪科版)练习:第十章 第1讲 电磁感应现象 楞次定律 Word版含解析

[课时作业]单独成册方便使用[基础题组]一、单项选择题1.在法拉第时代,下列验证“由磁产生电”的设想实验中,能观察到感应电流的是()A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化C.将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化解析:将绕在磁铁上的线圈与电流表组成一闭合回路,因线圈中的磁通量没有变化,故不能观察到感应电流,选项A不符合题意;在一通电线圈旁放置一连有电流表的闭合线圈时,如果通电线圈通以恒定电流,产生不变的磁场,则在另一线圈中不会产生感应电流,选项B 不符合题意;在线圈中插入条形磁铁后,再到相邻房间去观察电流表时,磁通量已不再变化,因此也不能观察到感应电流,选项C不符合题意;绕在同一铁环上的两个线圈,在给一个线圈通电或断电的瞬间,线圈产生的磁场变化,使穿过另一线圈的磁通量变化,因此,能观察到感应电流,选项D符合题意.答案:D2.如图所示,闭合圆形导体线圈放置在匀强磁场中,线圈平面与磁场平行.当磁感应强度逐渐增大时,以下说法正确的是() A.线圈中产生顺时针方向的感应电流B.线圈中产生逆时针方向的感应电流C.线圈中不会产生感应电流D.线圈面积有缩小的倾向解析:由于线圈平面与磁场平行,所以穿过线圈的磁通量为0.当磁感应强度增大时,穿过线圈的磁通量仍然为0,则线圈中不会产生感应电流,故只有C正确.答案:C3.如图所示,左侧有一个竖直放置的超导体圆环,O点为圆环的圆心,右侧有一条形磁铁.一开始圆环中没有电流,条形磁铁由静止沿轴线向左加速运动,当N极到达圆心O所在位置时,突然静止不动.下列说法正确的是() A.条形磁铁运动的过程中,线圈中有逆时针电流(从左向右看) B.条形磁铁N极运动到O点静止瞬间,线圈中的电流消失C.条形磁铁运动的过程中,线圈对条形磁铁有向右的作用力D.条形磁铁运动的过程中,条形磁铁对线圈始终没有作用力解析:根据楞次定律“增反减同”的结论,条形磁铁运动的过程中,线圈中有顺时针电流(从左向右看),选项A错误;线圈是超导体,条形磁铁静止瞬间,线圈中的电流不会消失,选项B错误;根据楞次定律“来拒去留”,条形磁铁运动的过程中,线圈对条形磁铁有向右的作用力,条形磁铁对线圈有向左的作用力,选项C正确,选项D 错误.答案:C4.如图所示,通有恒定电流的导线MN与闭合金属框共面,第一次将金属框由Ⅰ平移到Ⅱ,第二次将金属框绕cd边翻转到Ⅱ,设先后两次通过金属框的磁通量变化量大小分别为ΔΦ1和ΔΦ2,则()A.ΔΦ1>ΔΦ2,两次运动中线框中均有沿adcba方向的电流出现B.ΔΦ1=ΔΦ2,两次运动中线框中均有沿abcda方向的电流出现C.ΔΦ1<ΔΦ2,两次运动中线框中均有沿adcba方向的电流出现D.ΔΦ1<ΔΦ2,两次运动中线框中均有沿abcda方向的电流出现解析:设金属框在位置Ⅰ的磁通量为ΦⅠ,金属框在位置Ⅱ的磁通量为ΦⅡ,由题可知ΔΦ1=|ΦⅡ-ΦⅠ|,ΔΦ2=|-ΦⅡ-ΦⅠ|,所以金属框的磁通量变化量大小ΔΦ1<ΔΦ2,由安培定则知两次磁通量均向里减小,所以由楞次定律知两次运动中线框中均出现沿adcba方向的电流,C对.答案:C5.如图所示,螺线管与灵敏电流计相连,磁铁从螺线管的正上方由静止释放,向下穿过螺线管.下列说法正确的是()A.电流计中的电流先由a到b,后由b到aB.a点的电势始终低于b点的电势C.磁铁减少的重力势能等于回路中产生的热量D.磁铁刚离开螺线管时的加速度小于重力加速度解析:电流计中的电流先由b到a,后由a到b,A错误.a点的电势先比b点低,后比b点高,B错误.磁铁减少的机械能等于回路中产生的热量,C错误.根据楞次定律,感应电流的磁场总是阻碍磁铁与闭合回路间的相对运动,磁铁刚离开螺线管时,受到向上的磁场力,加速度小于重力加速度,D正确.答案:D二、多项选择题6.如图,匀强磁场垂直于软导线回路平面,由于磁场发生变化,回路变为圆形.则该磁场()A.逐渐增强,方向向外B.逐渐增强,方向向里C.逐渐减弱,方向向外D.逐渐减弱,方向向里解析:由于磁场变化,线圈变为圆形,面积变大,根据楞次定律可知,磁场逐渐减弱,方向可以是向里也可以是向外,C、D两项正确.答案:CD7.如图是磁悬浮的原理,图中A是圆柱形磁铁,B是用高温超导材料制成的超导圆环.将超导圆环水平放在磁铁A上,它就能在磁力的作用下悬浮在磁铁A上方的空中,则()A.将B放入磁场的过程中,B中将产生感应电流,稳定后,感应电流消失B.将B放入磁场的过程中,B中将产生感应电流,稳定后,感应电流仍存在C.如A的N极朝上,B中感应电流为顺时针方向(俯视)D.如A的N极朝上,B中感应电流为逆时针方向(俯视)解析:当将B环靠近A时,由于越靠近磁铁A,磁场就越强,磁感线就越密,所以在靠近过程中穿过B环的磁通量发生改变,即在该环中会产生感应电流;由于发生了超导,即B环没有电阻,所以稳定后B 环中的电流不会变小,且永远存在,故A错误,B正确.此时B环水平放在磁铁A上且悬浮在磁铁A的上方空中,即其相互排斥,说明B环的下面是N极,故B环中感应电流为顺时针方向(俯视),故C 正确,D错误.答案:BC8.(2018·江苏镇江模拟)航母上飞机弹射起飞所利用的电磁驱动原理如图所示.当固定线圈上突然通过直流电时,线圈左侧的金属环被弹射出去.现在线圈左侧同一位置,先后放上用横截面积相等的铜和铝导线制成的形状、大小相同的两个闭合环,电阻率ρ铜<ρ铝.则合上开关S 的瞬间()A.从右侧看,环中产生沿逆时针方向的感应电流B.铜环受到的安培力大于铝环受到的安培力C.若将金属环置于线圈右侧,环将向右弹射D.电池正、负极调换后,金属环仍能向左弹射解析:闭合开关S的瞬间,金属环中向右的磁通量增大,根据楞次定律,从右侧看,环中产生沿顺时针方向的感应电流,A错误;由于电阻率ρ铜<ρ铝,先后放上用横截面积相等的铜和铝导线制成的形状、大小相同的两个闭合环,铜环中产生的感应电流大于铝环中产生的感应电流,由安培力公式可知,铜环受到的安培力大于铝环受到的安培力,B正确;若将金属环置于线圈右侧,则闭合开关S的瞬间,环将向右弹射,C正确;电池正、负极调换后,同理可以得出金属环仍能向左弹射,D正确.答案:BCD[能力题组]选择题9.(2018·湖南长沙模拟)自1932年磁单极子概念被狄拉克提出以来,不管是理论物理学家还是实验物理学家都一直在努力寻找,但迄今仍然没能找到它们存在的确凿证据.近年来,一些凝聚态物理学家找到了磁单极子存在的有力证据,并通过磁单极子的集体激发行为解释了一些新颖的物理现象,这使得磁单极子艰难的探索之路出现了一丝曙光.如果一个只有N极的磁单极子从上向下穿过如图所示的闭合超导线圈,则从上向下看,这个线圈中将出现()A.先是逆时针方向,然后是顺时针方向的感应电流B.先是顺时针方向,然后是逆时针方向的感应电流C.逆时针方向的持续流动的感应电流D.顺时针方向的持续流动的感应电流解析:N极磁单极子穿过超导线圈的过程中,当磁单极子靠近线圈时,穿过线圈的磁通量增加,且磁场方向从上向下,所以由楞次定律可知感应电流方向为逆时针;当磁单极子远离线圈时,穿过线圈的磁通量减小,且磁场方向从下向上,所以由楞次定律可知感应电流方向为逆时针.因此线圈中产生的感应电流方向不变.由于超导线圈中没有电阻,因此感应电流将长期维持下去,故A、B、D错误,C正确.答案:C10.(2018·陕西西安模拟)如图所示,矩形闭合线圈abcd竖直放置,OO′是它的对称轴,通电直导线AB与OO′平行,且AB、OO′所在平面与线圈平面垂直.若要在线圈中产生abcda方向的感应电流,可行的做法是()A.AB中电流I逐渐增大B.AB中电流I先增大后减小C.AB正对OO′,逐渐靠近线圈D.线圈绕OO′轴逆时针转动90°(俯视)解析:选项A、B、C中通过线圈的磁通量始终为零,故不能产生感应电流,A、B、C错误;选项D中,线圈中的磁通量增加,且原磁场方向逆时针穿过线圈,根据楞次定律可判断感应电流为顺时针穿过线圈,由安培定则可得感应电流方向为abcda,D正确.答案:D11.(2018·湖南长沙重点高中联考)MN、GH为光滑的水平平行金属导轨,ab、cd为跨在导轨上的两根金属杆,匀强磁场垂直穿过MN、GH所在的平面,如图所示,则()A.若固定ab,使cd向右滑动,则abdc回路有电流,电流方向由a 到b到d到cB.若ab、cd以相同的速度一起向右滑动,则abdc回路有电流,电流方向由c到d到b到aC.若ab向左、cd向右同时运动,则abdc回路电流为零D.若ab、cd都向右运动,且两棒速度v cd>v ab,则abdc回路有电流,电流方向由c到d到b到a解析:若固定ab,使cd向右滑动,由右手定则知应产生顺时针方向的电流,故A错.若ab、cd同向运动且速度大小相同,ab、cd所围的面积不变,磁通量不变,则不产生感应电流,故B错.若ab向左、cd向右同时运动,则abdc中有顺时针方向的电流,故C错.若ab、cd均向右运动,且v cd>v ab,则ab、cd所围的面积增大,磁通量也增大,则产生由c到d到b到a的电流,故D正确.答案:D12.(2018·山东潍坊模拟)如图所示,线圈A内有竖直向上的磁场,磁感应强度B随时间均匀增大;等离子气流(由高温高压的等电荷量的正、负离子组成)由左方连续不断地以速度v0射入P1和P2两极板间的匀强磁场中,发现两直导线a、b互相吸引.由此可以判断P1、P2两极板间的匀强磁场的方向为()A.垂直纸面向外B.垂直纸面向里C.水平向左D.水平向右解析:线圈A内有竖直向上的磁场,磁感应强度B随时间均匀增大,根据楞次定律可知a中电流的方向向下,a、b相互吸引,说明b中电流的方向也向下,则P1带正电,说明正离子向上偏转,根据左手定则可知P1、P2间磁场的方向垂直于纸面向里,B正确.答案:B13.(多选)如图所示,倾角为α的斜面上放置着光滑导轨,金属棒KN置于导轨上,在以ab和cd为边界的区域内存在磁感应强度为B的匀强磁场,磁场方向垂直导轨平面向上.在cd左侧的无磁场区域cdPM内有一半径很小的金属圆环L,圆环与导轨在同一平面内.当金属棒KN在重力作用下从磁场右边界ab处由静止开始向下运动后,则下列说法正确的是() A.圆环L有收缩趋势B.圆环L有扩张趋势C.圆环内产生的感应电流变小D.圆环内产生的感应电流不变解析:由于金属棒KN在重力的作用下向下运动,则KNMP回路中产生逆时针方向的感应电流,则在圆环处产生垂直于轨道平面向上的磁场,随着金属棒向下加速运动,圆环的磁通量将增加,依据楞次定律可知,圆环将有收缩的趋势以阻碍圆环磁通量的增加;又由于金属棒向下运动的加速度减小,磁通量的变化率减小,所以在圆环中产生的感应电流不断减小.故A、C正确.答案:AC14.(多选)如图所示,通过水平绝缘传送带输送完全相同的铜线圈,线圈等距离排列,且与传送带以相同的速度匀速运动.为了检测出个别未闭合的不合格线圈,让传送带通过一固定匀强磁场区域,磁场方向垂直于传送带运动方向,根据穿过磁场后线圈间的距离,就能够检测出不合格线圈.通过观察图形,判断下列说法正确的是()A.若线圈闭合,进入磁场时,线圈中感应电流方向从上向下看为逆时针B.若线圈闭合,传送带以较大速度匀速运动时,磁场对线圈的作用力增大C.从图中可以看出,第2个线圈是不合格线圈D.从图中可以看出,第3个线圈是不合格线圈解析:由楞次定律可知,若线圈闭合,进入磁场时,线圈中感应电流方向从上向下看为顺时针,A错误.若线圈闭合,传送带以较大速度匀速运动时,线圈通过磁场区域更快,由法拉第电磁感应定律可知,产生的感应电动势更大,感应电流更大,安培力也更大,B正确.由图知1、2、4、…线圈都发生了相对滑动,而第3个线圈没有,故第3个线圈为不合格线圈,C错误,D正确.答案:BD15.(多选)如图甲所示,等离子气流由左边连续以方向如图所示的速度v0射入P1和P2两金属板间的匀强磁场中,ab直导线与P1、P2相连接,线圈A与直导线cd连接.线圈A内有如图乙所示的变化磁场,且磁场B的正方向规定为向左,如图甲所示.下列说法正确的是()A.0~1 s内ab、cd导线互相排斥B.1~2 s内ab、cd导线互相排斥C.2~3 s内ab、cd导线互相排斥D.3~4 s内ab、cd导线互相排斥解析:由题图甲左侧电路可以判断ab中电流方向为由a到b;由右侧电路及题图乙可以判断,0~2 s内cd中感应电流方向为由c到d,跟ab中的电流同向,因此ab、cd相互吸引,选项A、B错误.2~4 s 内cd中感应电流方向为由d到c,跟ab中电流反向,因此ab、cd 相互排斥,选项C、D正确.答案:CD。

近年届高考物理一轮复习第十章电磁感应第2节法拉第电磁感应定律、自感和涡流练习新人教版(2021年整

近年届高考物理一轮复习第十章电磁感应第2节法拉第电磁感应定律、自感和涡流练习新人教版(2021年整

2019届高考物理一轮复习第十章电磁感应第2节法拉第电磁感应定律、自感和涡流练习新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届高考物理一轮复习第十章电磁感应第2节法拉第电磁感应定律、自感和涡流练习新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届高考物理一轮复习第十章电磁感应第2节法拉第电磁感应定律、自感和涡流练习新人教版的全部内容。

第十章第二节法拉第电磁感应定律、自感和涡流[A级—基础练]1.(08787028)(2018·江西新余四中第二次模拟)某同学为了验证断电自感现象,找来带铁芯的线圈L、小灯泡A、开关S和电池组E,用导线将它们连接成如图所示的电路.检查电路后,闭合开关S,小灯泡发光;再断开开关S,小灯泡仅有不显著的延时熄灭现象.虽经多次重复,仍未见老师演示时出现的小灯泡闪亮现象,可能的原因是( )A.电源的内阻偏大B.线圈电阻偏大C.小灯泡电阻偏大D.线圈的自感系数较大解析:B [灯泡能否发生闪亮,取决于通过灯泡的电流有没有增大,与电源的内阻无关,故A错误.线圈电阻偏大,稳定时流过灯泡的电流大于流过线圈的电流,断开开关时,根据楞次定律,流过灯泡的电流从线圈原来的电流逐渐减小,灯泡不发生闪亮现象,故B正确.小灯泡电阻偏大,稳定时流过灯泡的电流小于流过线圈的电流,断开开关时,根据楞次定律,流过灯泡的电流从线圈原来的电流逐渐减小,灯泡将发生闪亮现象,故C错误.线圈的自感系数较大,产生的自感电动势较大,但不能改变稳定时灯泡和线圈中电流的大小,故D错误.]2.(08787029)(2018·广东百校联考)光滑金属导轨宽L=0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[课时作业]单独成册方便使用[基础题组]一、单项选择题1.将闭合多匝线圈置于仅随时间变化的磁场中,线圈平面与磁场方向垂直.关于线圈中产生的感应电动势和感应电流,下列表述正确的是()A.感应电动势的大小与线圈的匝数无关B.穿过线圈的磁通量越大,感应电动势越大C.穿过线圈的磁通量变化越快,感应电动势越大D.感应电流产生的磁场方向与原磁场方向始终相同解析:由法拉第电磁感应定律E=nΔΦ,Δt)知,感应电动势的大小与线圈匝数有关,A错误;感应电动势正比于ΔΦΔt,与磁通量的大小无直接关系,B错误,C正确;根据楞次定律知,感应电流的磁场总是阻碍引起感应电流的磁通量的变化,即“增反减同”,D错误.答案:C2.A、B两闭合圆形导线环用相同规格的导线制成,它们的半径之比r A∶r B=2∶1,在两导线环包围的空间内存在一正方形边界的匀强磁场区域,磁场方向垂直于两导线环所在的平面,如图所示.在磁场的磁感应强度随时间均匀增大的过程中,下列说法正确的是()A.两导线环内所产生的感应电动势相等B.A环内所产生的感应电动势大于B环内所产生的感应电动势C .流过A 、B 两导线环的感应电流的大小之比为1∶4D .流过A 、B 两导线环的感应电流的大小之比为1∶1解析:某一时刻穿过A 、B 两导线环的磁通量均为穿过磁场所在区域面积上的磁通量,设磁场区域的面积为S ,则Φ=BS ,由E =ΔΦΔt =ΔB Δt S (S 为磁场区域面积),对A 、B 两导线环,有E A E B=1,所以A 正确,B 错误;I =E R ,R =ρl S 1(S 1为导线的横截面积),l =2πr ,所以I A I B =E A r B E B r A=12,C 、D 错误. 答案:A3.如图为无线充电技术中使用的受电线圈示意图,线圈匝数为n ,面积为S .若在t 1到t 2时间内,匀强磁场平行于线圈轴线向右穿过线圈,其磁感应强度大小由B 1均匀增加到B 2,则该段时间线圈两端a 和b 之间的电势差φa -φb ( )A .恒为nS (B 2-B 1)t 2-t 1B .从0均匀变化到nS (B 2-B 1)t 2-t 1C .恒为-nS (B 2-B 1)t 2-t 1D .从0均匀变化到-nS (B 2-B 1)t 2-t 1解析:根据法拉第电磁感应定律,E =n ΔΦΔt =n S (B 2-B 1)t 2-t 1,由楞次定律可以判断a 点电势低于b 点电势,所以a 、b 两点之间的电势差为-n S (B 2-S 1)t 2-t 1,C 项正确.答案:C4.(2018·贵州七校联考)如图所示,两根相距为l 的平行直导轨ab 、cd ,b 、d 间连有一定值电阻R ,导轨电阻可忽略不计.MN 为放在ab 和cd 上的一导体杆,与ab 垂直,其电阻也为R .整个装置处于匀强磁场中,磁感应强度的大小为B ,磁场方向垂直于导轨所在平面(指向图中纸面内).现对MN 施力使它沿导轨方向以速度v (如图)做匀速运动.令U 表示MN 两端电压的大小,则( )A .U =12Bl v ,流过定值电阻R 的感应电流由b 到dB .U =12Bl v ,流过定值电阻R 的感应电流由d 到bC .U =Bl v ,流过定值电阻R 的感应电流由b 到dD .U =Bl v ,流过定值电阻R 的感应电流由d 到b解析:由右手定则可知,通过MN 的电流方向为N →M ,电路闭合,流过电阻R 的电流方向由b 到d ,B 、D 项错误;导体杆切割磁感线产生的感应电动势E =Bl v ,导体杆为等效电源,其电阻为等效电源内电阻,由闭合电路欧姆定律和部分电路欧姆定律可知,U =IR =E 2R ·R =12Bl v ,A 项正确,C 项错误.答案:A5.如图所示,A 、B 是两个完全相同的灯泡,L 是自感系数较大的线圈,其直流电阻忽略不计.当开关K 闭合时,下列说法正确的是( )A .A 比B 先亮,然后A 熄灭B .B 比A 先亮,然后B 逐渐变暗,A 逐渐变亮C .A 、B 一齐亮,然后A 熄灭D .A 、B 一齐亮,然后A 逐渐变亮,B 的亮度不变解析:开关闭合的瞬间,线圈由于自感阻碍电流通过,相当于断路,B 灯先亮,之后线圈阻碍作用减弱,相当于电阻减小,则总电阻减小,总电流增大,路端电压减小,B 灯所在支路电流减小,B 灯变暗,A 灯所在支路电流增大,A 灯变亮.答案:B二、多项选择题6.如图所示,闭合金属导线框放置在竖直向上的匀强磁场中,匀强磁场的磁感应强度随时间变化.下列说法正确的是( )A .当磁感应强度增加时,线框中的感应电流可能减小B .当磁感应强度增加时,线框中的感应电流一定增大C .当磁感应强度减小时,线框中的感应电流一定增大D .当磁感应强度减小时,线框中的感应电流可能不变解析:线框中的感应电动势为E =ΔB Δt S ,设线框的电阻为R ,则线框中的电流I =E R =ΔB Δt ·S R ,B 增大或减小时,ΔB Δt 可能减小,也可能增大,也可能不变.线框中的感应电动势的大小只和磁通量的变化率有关,和磁通量的变化量无关.故选项A 、D 正确.答案:AD7.(2016·高考全国卷Ⅱ)法拉第圆盘发电机的示意图如图所示.铜圆盘安装在竖直的铜轴上,两铜片P 、Q 分别与圆盘的边缘和铜轴接触.圆盘处于方向竖直向上的匀强磁场B 中.圆盘旋转时,关于流过电阻R 的电流,下列说法正确的是( )A .若圆盘转动的角速度恒定,则电流大小恒定B .若从上向下看,圆盘顺时针转动,则电流沿a 到b 的方向流动C .若圆盘转动方向不变,角速度大小发生变化,则电流方向可能发生变化D .若圆盘转动的角速度变为原来的2倍,则电流在R 上的热功率也变为原来的2倍解析:由右手定则知,圆盘按如题图所示的方向转动时,感应电流沿a 到b 的方向流动,选项B 正确;由感应电动势E =12Bl 2ω知,角速度恒定,则感应电动势恒定,电流大小恒定,选项A 正确;角速度大小变化,感应电动势大小变化,但感应电流方向不变,选项C 错误;若ω变为原来的2倍,则感应电动势变为原来的2倍,电流变为原来的2倍,由P =I 2R 知,电流在R 上的热功率变为原来的4倍,选项D 错误.答案:AB8.如图所示,a 、b 两个闭合正方形线圈用同样的导线制成,匝数均为10匝,边长l a =3l b ,图示区域内有垂直纸面向里的匀强磁场,且磁感应强度随时间均匀增大,不考虑线圈之间的相互影响,则( )A .两线圈内产生顺时针方向的感应电流B .a 、b 线圈中感应电动势之比为9∶1C .a 、b 线圈中感应电流之比为3∶4D .a 、b 线圈中电功率之比为27∶1解析:由于磁感应强度随时间均匀增大,则根据楞次定律知两线圈内产生的感应电流方向皆沿逆时针方向,则A 项错误;根据法拉第电磁感应定律E =N ΔΦΔt =NS ΔB Δt ,而磁感应强度均匀变化,即ΔB Δt 恒定,则a 、b 线圈中的感应电动势之比为E a E b =S a S b =l 2a l 2b=9,故B 项正确;根据电阻定律R =ρL S ′,且L =4Nl ,则R a R b =l a l b=3,由闭合电路欧姆定律I =E R 得,a 、b 线圈中的感应电流之比为I a I b =E a E b ·R b R a=3,故C 项错误;由功率公式P =I 2R 知,a 、b 线圈中的电功率之比为P a P b =I 2a I 2b ·R a R b=27,故D 项正确. 答案:BD[能力题组]一、选择题9.如图所示是利用交流电焊接某环形金属零件的原理示意图,其中外圈A 是通交流电的线圈,内圈B 是环形零件,a 是待焊的接口,接口处电阻较大,则下列说法不正确的是( )A .当A 中通有交流电时,B 中会产生感应电动势,使得接口处金属熔化而焊接起来B .在其他条件不变的情况下,交流电频率越高,焊接越快C .在其他条件不变的情况下,交流电频率越低,焊接越快D .焊接过程中,接口a 处被熔化而零件的其他部分并不很热解析:交流电频率越高,磁通量变化率越大,由法拉第电磁感应定律可知,感应电动势和感应电流越大,产生的热功率越大,焊接越快,选项A 、B 正确,C 错误;因为接口处电阻大,串联电路中电流处处相等,电阻大的地方产生的热量多,可将接口处熔化而零件的其他部分并不很热,选项D 正确.答案:C10.(2018·陕西渭南教学质量检测)如图所示,纸面内有一矩形导体线框abcd ,置于垂直纸面向里、边界为MN 的匀强磁场外,线框的ab 边平行磁场边界MN ,线框以垂直于MN 的速度匀速地完全进入磁场,线框上产生的热量为Q 1,通过线框导体横截面的电荷量为q 1.现将线框进入磁场的速度变为原来的两倍,线框上产生的热量为Q 2,通过线框导体横截面的电荷量为q 2,则有( )A .Q 2=Q 1,q 2=q 1B .Q 2=2Q 1,q 2=2q 1C .Q 2=2Q 1,q 2=q 1D .Q 2=4Q 1,q 2=2q 1解析:设ab 长为L ,ad 长为L ′,则电动势E =BL v ,感应电流I =E R =BL v R ,产生的热量Q =I 2Rt =B 2L 2v 2R 2·R ·L ′v =B 2L 2v L ′R,与速度成正比,所以Q 2=2Q 1;通过导体横截面的电荷量q =I Δt ,I =E R ,E =ΔΦΔt ,三式联立解得q =ΔΦR =BLL ′R ,与速度无关,所以q 1=q 2,选项C 正确.答案:C11.(多选)(2018·山东潍坊高三质检)半径为a 、右端开小口的导体圆环和长为2a 的导体直杆,单位长度的电阻均为R 0.圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B .杆在圆环上以速度v平行于直径CD 向右做匀速直线运动,杆始终有两点与圆环良好接触,从圆环中心O 开始,杆的位置由θ确定,如图所示,则( )A .θ=0时,杆产生的感应电动势为2Ba vB .θ=π3时,杆产生的感应电动势为3Ba vC .θ=0时,杆受的安培力大小为2B 2a v (π+2)R 0D .θ=π3时,杆受的安培力大小为3B 2a v (5π+3)R 0解析:根据法拉第电磁感应定律可得E =Bl v ,其中l 为有效长度,当θ=0时,l =2a ,则E =2Ba v ;当θ=π3时,l =a ,则E =Ba v ,故选项A 正确,B 错误.根据通电直导线在磁场中所受安培力大小的计算公式可得F =BIl ,根据闭合电路欧姆定律可得I =E r +R,当θ=0时,l =2a ,E =2Ba v ,r +R =(π+2)aR 0,解得F =4B 2a v (π+2)R 0;当θ=π3时,l =a ,E =Ba v ,r +R =(5π3+1)aR 0,解得F =3B 2a v(5π+3)R 0,故选项C 错误,D 正确.答案:A D二、非选择题12.小明同学设计了一个“电磁天平”,如图甲所示,等臂天平的左臂为挂盘,右臂挂有矩形线圈,两臂平衡.线圈的水平边长L =0.1 m,竖直边长H =0.3 m,匝数为N 1.线圈的下边处于匀强磁场内,磁感应强度B 0=1.0 T,方向垂直线圈平面向里.线圈中通有可在0~2.0 A 范围内调节的电流I .挂盘放上待测物体后,调节线圈中电流使天平平衡,测出电流即可测得物体的质量.(重力加速度g 取10 m/s 2)(1)为使电磁天平的量程达到0.5 kg,线圈的匝数N 1至少为多少?(2)进一步探究电磁感应现象,另选N2=100匝、形状相同的线圈,总电阻R =10 Ω,不接外电流,两臂平衡.如图乙所示,保持B 0不变,在线圈上部另加垂直纸面向外的匀强磁场,且磁感应强度B 随时间均匀变大,磁场区域宽度d =0.1 m .当挂盘中放质量为0.01 kg 的物体时,天平平衡,求此时磁感应强度的变化率ΔB Δt .解析:(1)线圈受到的安培力F =N 1B 0IL天平平衡mg =N 1B 0IL代入数据得N 1=25.(2)由电磁感应定律得E =N 2ΔΦΔt即E =N 2ΔB Δt Ld由欧姆定律得I ′=E R线圈受到的安培力F ′=N 2B 0I ′L天平平衡m ′g =N 22B 0ΔB Δt ·dL 2R代入数据可得ΔB Δt =0.1 T/s.答案:(1)25 (2)0.1 T/s13.(2018·河南重点中学联考)如图所示,ab 、cd 为间距为l 的光滑倾斜金属导轨,与水平面的夹角为θ,导轨电阻不计,a 、c 间接有阻值为R 的电阻,空间存在磁感应强度为B 0、方向竖直向上的匀强磁场.将一根阻值为r 、长度为l 的金属棒从轨道顶端由静止释放,金属棒沿导轨向下运动的过程中始终与导轨接触良好.已知当金属棒向下滑行距离x 到达MN 处时已经达到稳定速度,重力加速度为g .求:(1)金属棒下滑到MN 的过程中通过电阻R 的电荷量;(2)金属棒的稳定速度的大小.解析:(1)金属棒下滑到MN 的过程中的平均感应电动势为E =n ΔΦΔt =B 0lx cos θΔt根据欧姆定律,电路中的平均电流为I =E R +r =B 0lx cos θ(R +r )Δt则q =I Δt =B 0lx cos θR +r. (2)稳定时金属棒切割磁感线产生的感应电动势为E ′=B 0l v cos θ 电路中产生的电流为I ′=E ′R +r金属棒受的安培力为F =B 0I ′l稳定时金属棒的加速度为零,则 mg sin θ-F cos θ=0联立解得稳定时金属棒的速度v =mg (R +r )sin θB 20l 2cos 2θ.答案:见解析。

相关文档
最新文档