概率论第三章边缘分布
概率论-第三章-3.2 边缘分布
整体大于部分之和!
例 假设5件产品中有3件正品,2件次品,从中取两
次,每次取一件,记
1, 第i次取到正品 Xi i 1,2 0, 第i次取到次品
分别对有放回抽样和无放回抽样两种情况,求(X1,X2)的
联合分布律和边缘分布律. 解 (1)有放回的情形.此时
例 已知二维随机变量 X , Y 的联合密度函数为
A x e y 0 x y f x, y 其它 0 求 (1) 常 数 A ; (2) P X Y 2 ; (3) 边 缘 密 度 函 数
f X x , fY y .
解 (1) 因为 即
0 y 1 其他
二维正态分布
若二维随机变量 X , Y 的联合密度函数为
f x, y 1 2 1 2 1 2
e
2 1 2
1
2 x 2 x y y 1 1 2 2 2 1 2 2 1
对于离散型随机变量(X,Y),分布律为
P( X xi, Y y j ) pij, i, j 1, 2,
X,Y的边缘分布律为:
P(Y y j ) P( X ,Y y j ) pij == p j j 1, 2,
记为
P( X xi ) P( X xi,Y ) pij == pi i 1, 2,
若 ( X , Y ) ~ N ( μ1 , μ2 , σ1 , σ 2 , ρ) ,则
2 2
X ~ N 1 ,
2 1
, Y ~ N , .
概率论与数理统计教学课件-3-2边缘分布
边缘分布与联合分布的关系
联合分布
描述多个随机变量同时发生的概率分 布。
关系
对于离散型随机变量,边缘分布可以 通过求和联合分布中相应事件的概率 得到;对于连续型随机变量,边缘分 布可以通过积分联合分布得到。
边缘分布的几何意义
几何解释
在概率空间中,边缘分布描述了一个随机变量在固定其他随机变量取值时的概 率分布情况。
边缘分布的数学表达式为 $f(x) = frac{1}{b-a}$,其中 $a$ 和 $b$ 是给定的范围。
对于均匀分布,其概率密度函 数为 $f(x) = frac{1}{b-a}$,其 中 $a$ 和 $b$ 是随机变量 $X$ 的取值范围。这个表达式表示 在给定范围内,随机变量 $X$ 的取值是均匀分布的。
3
边缘分布的计算
对于超几何分布,其边缘分布就是抽取某一特定 类型的样本的概率。
04
边缘分布的应用场景
统计分析
描述性统计
在统计分析中,边缘分布用于描 述数据的基本特征,如均值、中 位数、众数等。这些统计量可以 帮助我们了解数据的集中趋势和 离散程度。
异常值检测
通过比较数据点与边缘分布的统 计量,可以检测出异常值,这些 值可能对数据分析产生重大影响。
在概率论与数理统计中,边缘分布在处理多维随机变量问 题时具有重要作用,可以帮助我们简化问题,提取所需的 信息。
下节预告
条件分布的概念
在概率论与数理统计中,条件分布是指在某个随机变量取值的条件下,其他随机变量的 概率分布。
条件分布的性质
条件分布具有依赖性,即条件分布的取值受其他随机变量的影响;同时,条件分布的取 值范围和概率密度函数形式与联合概率分布有关。
数据可视化
边缘分布可以用于绘制直方图、 箱线图等,帮助我们直观地了解 数据分布情况。
《概率论与数理统计》3-3 边缘分布
2
2
2
1 arctan x 2
同理 ,
x ,
1 FY y lim F x, y 2 arctan y x 2 2 2
求 :⑴ C , ⑵ P X Y 1 . 解 又 ⑴由性质 :
x, y D,
其它 ,
f x, y d 1.
y
2 1
D1
O
1
x
f x, y d 0 dx0 Cxydy
1 1 2 C x y dx 2C xdx 0 2 0 0 1 2
P X ,Y D f x, y dxdy.
D
注: 注意分块积分. 只对密度函数为正的部分积分.
例1 设 D 是由 x 0, y 0, x 1, y 2 所围成的平面区
域 , 二维随机变量 X , Y 的联合概率密度函数为:
Cxy f x, y 0
fY y
所以
f x, y dx y 1dx 2 2 y,
0 y 1,
其它 .
2 y
2 2 y fY y 0
y
1 yx
y 2 x
O
1
2x
2 , , 定理 3.6 设 X , Y ~ N 1 , 2 , 12 , 2
2 1
,Y
.
证明 :
f X x
y 2
边缘分布律怎么求
边缘分布律怎么求在概率论与数理统计中,边缘分布律(marginal distribution)是指在多维随机变量中,将其中几个变量固定,得到的某一个变量的概率分布。
对于一个具有两个或多个随机变量的概率分布,我们通常关注某一个或几个变量的概率分布情况。
而边缘分布律可以帮助我们实现这一点。
边缘分布律的求解方法取决于问题的具体情况。
下面我们将介绍两种常见的方法:离散型变量和连续型变量的求解方法。
1. 离散型变量的边缘分布律的求解方法:假设有两个离散型随机变量X和Y,它们的联合概率分布律为P(X=x, Y=y)。
要求X的边缘分布律,我们需要将Y变量固定,然后对所有可能取值求和,即:P(X=x) = Σ P(X=x, Y=y)其中Σ 表示对Y的所有可能取值求和。
2. 连续型变量的边缘分布律的求解方法:假设有两个连续型随机变量X和Y,它们的联合概率密度函数为f(x, y)。
要求X的边缘分布律,我们需要将Y变量固定,然后对X进行积分,即:fX(x) = ∫ f(x, y) dy其中∫ 表示对Y的所有取值进行积分。
需要注意的是,在求解边缘分布律时,我们需要考虑变量的范围。
如果X和Y的范围是有限的,那么在将变量固定时,需要限定积分或求和的范围。
此外,边缘分布律还可以通过累积分布函数(CDF)求得。
对于离散型变量,边缘分布律可以通过对联合分布函数求偏导得到。
对于连续型变量,边缘分布律可以通过对联合概率密度函数求偏导得到。
总之,边缘分布律是概率论与数理统计中的一个重要概念,可以帮助我们研究多维随机变量的概率分布。
根据变量的类型(离散型或连续型),我们可以选择不同的方法来求解边缘分布律。
无论是离散型还是连续型变量,求解边缘分布律都需要将其他变量固定,然后对概率分布进行求和或积分。
掌握求解边缘分布律的方法,对于我们研究随机变量的概率分布具有重要的意义。
边缘分布律
边缘分布律摘要:边缘分布律是概率论和统计学中的一个重要概念,用于描述多维随机变量中各个维度的分布情况。
本文将介绍边缘分布律的定义、性质以及应用,并举例说明其在实际问题中的应用。
1. 引言在概率论和统计学中,边缘分布律是研究多维随机变量的重要工具。
多维随机变量是指具有两个或更多维度的随机变量。
通过研究各个维度上的分布情况,我们可以更好地理解随机变量之间的关系以及它们对整体随机过程的影响。
2. 边缘分布律的定义设有一个二维随机变量(X,Y),其边缘分布函数分别为F(x)和G(y)。
那么X的边缘分布律可以定义为P(X=x),表示随机变量X等于x的概率。
类似地,Y的边缘分布律可以定义为P(Y=y)。
边缘分布律可以通过边缘分布函数来推导得到。
3. 边缘分布律的性质边缘分布律具有以下性质:(1) 非负性:边缘分布律是非负的,即P(X=x)和P(Y=y)大于等于零。
(2) 归一性:边缘分布律的和等于1,即∑P(X=x)=1和∑P(Y=y)=1。
(3) 独立性:如果X和Y是相互独立的,那么X的边缘分布律和Y的边缘分布律也是相互独立的。
这些性质使得边缘分布律成为研究多维随机变量的重要工具,可以用于计算随机变量的期望、方差等统计量。
4. 边缘分布律的应用边缘分布律在实际问题中有广泛的应用。
在金融领域中,我们经常需要分析多个金融指标之间的关系,如股票价格与利率之间的关系。
通过计算这些指标的边缘分布律,可以更好地理解它们各自的走势以及它们之间的相关性。
另一个应用领域是医学研究。
我们经常需要研究多种因素对人体健康的影响,如饮食习惯、运动量和遗传因素等。
通过分析这些因素的边缘分布律,可以更好地理解它们对健康状况的影响程度,从而为制定健康政策和预防措施提供科学依据。
此外,边缘分布律还可以应用于气候模拟、经济预测等领域。
通过分析多个变量的边缘分布律,可以为决策者提供更准确的信息,从而做出更合理的决策。
5. 示例应用为了更好地理解边缘分布律的应用,我们举一个简单的例子。
概率论与数理统计-基于R 第三章 第三节 边缘分布
p·j 2/5 3/5 1
注:由上表可知,两种情形下X和Y的边缘分布律相同,但联 合分布律不同,故边缘分布律不能确定联合分布律.
三、边缘密度函数 设(X,Y)为连续型随机变量,其联合分布函数
和联合概率密度分别为F(x,y)和f(x,y),则
FX x P X x P X x,Y x
f
X
(
x
)
6e(3 x2 y)dy,
0
0,
x 0 3e3x ,
其它 0,
x0 其它
同理,关于Y的边缘概率密度为
2e2 y , y 0
fY
(
y)
0,
其它 .
例. 设(X,Y) 服从以原点为圆心,R为半径的 圆形区域上的均匀分布,求(X,Y)关于X,Y 的边缘概率密度。
y
1
2
arctan
x
x
FY
y
lim
x
F
(
x,
y)
lim
x
1
2
2
arctan
x
2
arctan
y
1
2
arctan
y
y
二、边缘分布律
y
y
x FX(x)
x FY(y)
例 设二维随机变量(X,Y)的联合分布函数为
F ( x,
y)
1
概率论第三章-边缘分布
P{ X xi } P{ X xi , (Y y j )}
P{ X xi , Y y j }
j 1
j 1
,i 1 , 2 ,
记做 pi
同理 P{Y y j }
p
i 1
ij
, j 1 , 2 , 记做 p j
o
1
x
注:联合分布 书69页:例5,6
维正态分布; ② 边缘分布与ρ无关,说明了由边缘分布不能确 定联合分布。
0 1/4 0 1/4 1/2
1 0 1/2 0 1/2
1/4
三、连续型随机变量的边缘概率密度
若 是二维连续型随机变量, 其概率密度为
f ( x , y ) , 则:
FX ( x) F ( x , ) f X (x)
同理
x
f (u , v) dv du
0 1/2
1 1/2
pi · 1/4
且P{XY=0}=1,求(X,Y)的分布律 解、 P{XY≠0}=0= P{X≠0, Y≠0} Y X =P{X=-1, Y=1}+ P{X=1, Y=1} 从而P{X=-1, Y=1}=P{X=1, Y=1}=0 -1 0 1 pi · p· j 1/4 1/2
y
解:
的概率密度为
0 1
y=x x
当0 x 1 当 x other
f X (x) f ( x , y )dy 0 2 dy 2 x
f X ( x) 0
x
f X ( x)
例2. 上服从均匀分布, 密度 和 的概率密度为
《概率论》第3章§2边缘分布解析
(关X ,于Y ) 的 第三Y章 多边维缘随密机变度量(及函其数分)布
例 设随机变量 X 和Y 具有联合概率密度
6, x2 y x,
f (x, y) 0,
其他.
求边缘概率密度 fX ( x), fY ( y).
解
fX (x)
f (x, y)d y
y
(1,1)
当 0 x 1时,
y x
p11 p21 pi1
p12 p22 pi 2
p1 j
p2 j pij
P{ X xi } pij , i 1,2,; P{Y y j } pij , j 1,2,.
j 1
i 1
2020年11月24日星期二
§2 边缘分布
6/29
设 从r.v X 四1个, 2数,3,中4 等可能取值,又设
2020年11月24日星期二
例 设( X ,Y ) 的联合密度为
f
(x,
y)
kxy,
0,
0 x y,0 y 1, 其他
其中k 为常数. 求
(1)常数 k ;
(2) P ( X + Y 1) , P ( X < 0.5); (3) 联合分布函数 F (x,y); (4) 边缘密度与边缘分布函数
1
0.5
y
dy 1 y
8xydx
5
/
6.
y
1
y=x
yy 11
0.5 00
y y==x x xx
0
0.5
2020年11月24日星期二
P( X 0.5)
x
0.5
1
0 dxx8xydy 7 /16.
的分段区域 y
x0
概率论与数理统计
三
、二维连续型随机变量的边际分布
设X和Y的联合概率密度为 p(x, y) 和 的联合概率密度为 则X与Y 的边际分布函数为 与
FX (x) = ∫ (∫ p(u, v)dv)du
F ( y) = ∫ (∫ p(u, v)du)dv Y
−∞ −∞
x
+∞
−∞ y
−∞ +∞
求导得X与 求导得 与Y 的边际密度函数分别为
X P -1 0 1 Y P 0 0.5 1 0.5
0.25 0.5 0.25
如果P(XY=0) = 1 ,试求 如果 试求 (1). (X,Y)的联合分布列 的联合分布列 (2). X与Y是否独立 是否独立? (P151) 与 是否独立
注: 若两随机变量相互独立 且又有相同 若两随机变量相互独立, 的分布, 不能说这两个随机变量相等. 的分布 不能说这两个随机变量相等 如
F(x, y) = FX (x)F ( y) Y
若P(AB)=P(A)P(B) 则称事件A,B独立 则称事件 独立
离散型 X与Y 独立 与 对一切 i , j 有 P(X = xi ,Y = yj ) = P(X = xi )P(Y = yj ) 即 pij = pi p j 连续型
p(x, y) = pX (x) pY ( y)
设(X,Y)服从三项分布 M (n, p1 , p2 , p3 ) 服从三项分布 其联合分布列为
n! i P( X = i,Y = j) = p1 p2j (1− p1 − p2 )n−i− j , i! j!(n −i − j)! i, j = 0,1 ,2,..., n, i + j ≤ n
则
X ~ b(n, p1 ), Y ~ b(n, p2 )
概率论第三章ch3_2
例题:已知二维随机变量( X , Y )的联合概率密度为
求关于X,Y 的边缘概率密度 fX(x), fY ( y ) .
解:
对称区间上的 奇函数!
仅由概率密度 函数无法确定 联合概率密度 函数!但是如 果还有它们之 间联系的条件 则可能!
例题:已知二维随机变量( X , Y )的边缘分布律为
并且P{XY=0}=1,求关于X,Y 的联合分布律。 解:
所以 X服从正态分布即
同理可得Y的分布密度:
二元正态分布的边缘分布是一元正态分布并且与 参数ρ无关。
例题:已知二维随机变量( X , Y )的联合概率密度为
求关于Y 的边缘概率密度 fY ( y ) . 解:
当0<y<1与y>1 时被积函数非0 区域不同!
二维随机变量( X , Y )的联合概率密度图
解:X=1,2,3,4,而 Y=1,。。。,X
故所求的边缘分布律与联合分布律为:
边缘密度函数的求法
若已知连续型随机向量(X,Y)的联合概率密度函数f(x,y), 则也可求出它的边缘概率密度函数。事实上:
例4:设区域D是由曲线y=x2与直线y=x围成,并且随机向量 (X,Y)服从D上的均匀分布,求联合概率密度与边缘概率 密度函数。
二维随机变量( X , Y )的联合概率密度图
function bbb
[x,y]=meshgrid(0:0.1:4);
z=f(x,y); mesh(x,y,z);
function z=f(x,y) z=zeros(size(x));
l=(x>=1&y>1./x&y<=x);
z(l)=1./(2*x(l).^2.*y(l));
概率论与数理统计第三章多维随机变量及其分布第二节边缘分布
24 5
y(2
f
0
x,
x), 0 x 1,0 , 暂时固定其它
ydy
y
x
y
当 x 1或 x 0时,y ,,
x
概率论
y x
都有 f x, y 0,故 fX x 0 . x 0 x 1 x x
当 0 x 1时,
fX
x
0
f
x,
y dy
x
0
f
x,
y dy
x
f
x,
y dy
一、边缘分布函数 (marginal distribution)
概率论
二维随机变量 (X, Y) 作为一个整体, 具有分布函数 F(x, y), 而 X 和 Y 都是随机变量, 也有各自的分布函数, 分别记为 FX(x), FY(y), 依次称为二维随机变量 (X, Y) 关于 X 和 Y 的边缘分布函数.
FX x PX x PX x,Y F x, FY y PY y PX ,Y y F , y
二、离散型随机变量的边缘分布律
概率论
一般地, 对离散型 r.v. (X,Y ), X 和 Y 的联合分布律为:
P( X xi ,Y y j ) pij , i, j 1, 2,
3
13
0 18 38 0 38 0 0 18
概率论
P{X=0}=P{X=0, Y=1}+P{X=0, Y=3}=1/8, P{X=1}=P{X=1, Y=1}+P{X=1, Y=3}=3/8, P{X=2}= P{X=2, Y=1}+P{X=2, Y=3}=3/8, P{X=3}=P{X=3, Y=1}+P{X=3, Y=3}=1/8.
则 (X, Y) 关于X 的边缘分布律为:
概率论与数理统计(二维随机变量的边缘分布)
(2) n维随机变量的概率密度函数
若存在非负函数 f ( x1, x2 ,, xn ), 使对于任意 实数 x1, x2 ,, xn 有
F ( x1, x2,, xn )
xn
xn1
x1
f ( x1, x2,, xn ) d x1 d x2 d xn,
f ( x, y)dx 为(X,Y)关于Y的边缘
概率密度.
3.2.3 二维连续型随机变量的边缘概率密度
【例3.10】设二维随机变量(X,Y)的联合概率密度
为
f
(
x,
y)
1, 0,
0 x 1,| y | x 其它
求边缘概率密如图:
x
6 d y,
x2
0d
y,
0 x1 其他
y (1,1)
y x
6( x x2 ), 0 x 1
0,
其他
O
y x2
x
由于
6( x x2 ),
fX (x)
0,
x
FX ( x) fX ( x)dx
x
0dx,
2 1
所以
fX (x)
f ( x, y)dy
1
e
(
x 1
2
2 1
)2
exp{
1
( y 2 x 1 )2}dy
2 1 2 1 2
2(1 2 ) 2
1
令t 1 ( y 2 x 1 ),则有
《概率论》第3章§2边缘分布
F (x,y) =
2x2–x4 , 0 x <1, y 1 y4 , x 1, 0 y < 1 1, x 1, y 1
2013年8月5日星期一
(4)
0, 2x2–x4 , 1, 0,
x < 0, 0 x < 1, x1 y<0
FX ( x) F ( x,) =
FY ( y ) F (, y ) =
y4 ,
1,
0 y < 1,
y1
2013年8月5日星期一
4 x 4 x , 0 x 1 f X ( x) 其他 0,
3
4 y , 0 y 1 fY ( y ) 其他 0,
3
2013年8月5日星期一
当然也可直接由联合密度求边缘密度,例 如
6/29
§2
故 X , Y的联合分布律为
Y X
P{X i, Y j} P{Y j | X i} P{X i} 1 1 (1 j i) i 4
1 1/ 4 0 0 0
1 4
1 2 3 4
pi
2 1/ 8 1/ 8 0 0
1 4
3 1/12 1/12 1/12 0
y
故 r.v X的密度函数为 同理 Y的分布函数为
Y的密度函数为
( x )
FY ( y ) f ( x, v)dxdv
fY ( y ) f ( x, y )dx
( y )
称 f X ( x)为 ( X , Y )关于 X的边缘密度(函数) 称 f Y ( y) 为 ( X , Y )关于 Y 的边缘密度(函数) 第三章 多维随机变量及其分布
概率论与数理统计:边缘分布
边缘分布一、边缘分布函数1定义:二维随机向量(,)X Y 作为一个整体, 有分布函数(,)F x y ,其分量X 与Y 都是随机变量,有各自的分布函数,分别(),()X Y F x F y 记为分别称为X 的边缘分布函数和Y 的边缘分布函数;称(,)X Y 为的联合分布函数。
2求法:同理(){}{,}lim (,)(,)Y x F y P Y y P X Y y F x y F y →+∞=≤=≤+∞≤==∞注:X 与Y 的边缘分布函数实质上就是一维随机变量X 或Y 的分布函数。
称其为边缘分布函数的,是相对于(,)X Y 的联合分布而言的。
同样地,(,)X Y 的联合分布函数(,)F x y 是相对于(,)X Y 的分量X 与Y 的分布而言的。
例1: ()X Y 设二维随机变量,的联合分布函数为解:⑴.由分布函数的性质,得 ()122F A B C ππ⎛⎫⎛⎫=+∞+∞=++ ⎪⎪⎝⎭⎝⎭,二、离散型随机变量的边缘概率分布1边缘分布函数对于二维离散型随机变量(,)X Y ,已知其联合概率分布为{}()12i j ijP X x Y y P i j ====,,,,,其分布函数为(,)i j ij x x y yF x y p ≤≤=∑∑则它关于X 的边缘分布函数为()1(,)i X ij x x j F x F x p ∞≤==+∞=∑∑它关于Y 的边缘分布函数为()1(,)j Y ij i y yF y F y p ∞=≤=+∞=∑∑2边缘概率分布 随机变量X 的概率分布3已知联合概率分布求边缘概率分布X Y 以及的边缘概率分布可由下表表示三、连续型随机变量的边缘概率密度上式表明: X 是连续型随机变量, 且其密度函数为:,),()(⎰+∞∞-=dy y x f x f X同理,由(){}()Y F y P Y y F y =≤=+∞,()yf x y dx dy +∞-∞-∞⎡⎤=⎢⎥⎣⎦⎰⎰, Y 是连续型随机变量, 且其密度函数为⎰+∞∞-=dx y x f y f Y ),()(()(,)Y f x X Y Y 称为关于的边缘概率密度例2:设),(Y X 服从有界区域G 上的均匀分布, 其中G 是由x 轴,y 轴及直线12xy +=所围成的三角形区域,求),(Y X 关于X 和Y 的边缘概率密度. 解: 区域G 的面积为1,所以),(Y X 的概率密度为1,(,),(,)0,x y G f x y ∈⎧=⎨⎩其他则),(Y X 关于X 的边缘概率密度为120d 102,()(,)d 20,.x X xy x f x f x y y -+∞-∞⎧=-≤≤⎪==⎨⎪⎩⎰⎰其他 ),(Y X 关于Y 的边缘概率密度为2(1)0d 2(1),01()(,)d 0,.y Y x y y f y f x y x -+∞-∞⎧=-≤≤⎪==⎨⎪⎩⎰⎰其他 例3;(,)X Y 设二维随机变量在区域 2{(,)|01,}G x y x x y x =≤≤≤≤ 解:(,)X Y 的概率密度 则226d 6(),01,()(,)d 0,.xx X y x x x f x f x y y +∞-∞⎧=-≤≤⎪==⎨⎪⎩⎰⎰其他 (,),X Y G 虽然的联合分布是在上服从均匀分布但是它们的边缘分布却不是均匀分布。
边缘分布函数和边缘密度函数
边缘分布函数和边缘密度函数边缘分布函数和边缘密度函数,是概率论和数理统计学中的重要概念。
它们能够帮助我们更加深入地理解随机变量之间的关系,为我们的模型和分析提供便利和支持。
边缘分布函数,又称为边际概率分布函数,是指在一个多维随机变量的联合分布函数中,只保留其中一个或部分随机变量的分布函数。
我们可以通过对多维随机变量的联合分布函数进行求导得到边缘概率密度函数,从而计算出随机变量的概率分布,也就是得到该随机变量的“边缘分布”。
以一个例子来说明,假设我们有两个随机变量X和Y,它们的联合分布函数可以表示为F(x,y)。
如果我们只关注变量X,那么我们可以通过对联合分布函数F(x,y)求偏导数,得到变量X的边缘分布函数。
同样地,如果我们只关注变量Y,那么我们也可以通过对F(x,y)求偏导得到变量Y的边缘分布函数。
边缘分布函数一般表示为F(x)或F(y),其中F(x)表示变量X的边缘分布函数,F(y)表示变量Y的边缘分布函数。
那么边缘密度函数呢?边缘密度函数,也叫边际概率密度函数,是边缘分布函数的导数,它描述了单个随机变量的概率密度分布情况。
与边缘分布函数类似,边缘密度函数同样可以通过多维随机变量的联合密度函数求解得到。
比如在上述例子中,如果我们已知多维随机变量(X,Y)的联合概率密度函数,那么我们可以通过对其求偏导获得变量X和变量Y的边缘密度函数f(x)和f(y)。
边缘密度函数可以被看作是概率的“密度”,即它代表了在一个小区间内随机变量取某个特定值的概率。
同样地,边缘密度函数也可以被用于计算概率和期望等几乎所有统计分析中的重要量。
那么这两个概念有什么实际用途呢?我们可以通过边缘分布函数和边缘密度函数来分析和预测不同随机变量之间的关系。
例如,在金融领域中,我们可以通过使用边缘分布函数和边缘密度函数来分析不同投资组合中各个资产的风险和收益特征。
又如在医学领域中,我们可以通过边缘分布函数和边缘密度函数来检验某种药物对不同性别、不同年龄、不同身体状况的人群的疗效表现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定联合分布。
y
y=x
0
1
x
x
当 0 x 1
f X (x) f (x , y)dy
2 dy 2x
0
当 xother f X (x) 0
fX (x)
例2.
上服从均匀分布,
密度
和
解:
的概率密度为
y
y=x
0
1
x
当 0 y 1
fY ( y) f (x , y)dx
1
2 dx 2(1 y)
解:
关于 的边缘分布函数为
同理,
二、 离散型随机变量的边缘分布律
设 ( X ,Y )的分布律为
P{X xi ,Y yj} pij (i, j 1,2, )
则( X ,Y )关于 X 的边缘分布律为
P{X xi} P{X xi , (Y y j )}
j 1
P{X xi ,Y y j }
6 dy
x2
o
6(x x2 )
当 xother f X (x) 0 合并即可
fY ( y)
f
(x,
y)dx
y
6dx 6(
y
0,
y y),
1x
0 y 1, 其它.
注:联合分布 书69页:例5,6 说明:
边缘分布
① 二维正态分布的边缘分布为一维正态分布;
② 边缘分布与ρ无关,说明了由边缘分布不能确
0
1 pi ·
01 1/2 1/2
0
1
p·j
1/4 0 1/4
0
1/2 1/2
1/4 0 1/4
1/2 1/2
三、连续型随机变量的边缘概率密度
若
是二维连续型随机变量, 其概率密度为
f (x , y), 则:
FX (x) F(x, )
x
f
(u ,v) dv
du
f X (x) f (x, y)dy
y
当 y other fY ( y) 0
fY
(
y)
2(1
0
Байду номын сангаас
y), ,
0 y1 其它
6, 例4 已知 ( X ,Y ) ~ f (x, y)
0, 求 fX (x) , fY ( y) 。
x2 y x, 其它.
y y x2
解 当0 x1
1
yx
x
fX (x)
f (x, y)dy
同理
fY ( y) f (x, y)dx
分别是 ( X ,Y ) 关于X 和Y 的边缘概率密度。
例3. 设G (x, y) | 0 x 1, 0 y x, (X ,Y ) 在G
上服从均匀分布, 求 (X ,Y ) 关于 X 和Y 的边缘概率
密度 f X (x)和 fY ( y)
解:
的概率密度为
,i 1, 2 ,
j 1
记做 pi•
同理 P{Y y j } pi j , j 1 , 2 , 记做 p• j
i 1
通常用以下表格表示 ( X ,Y )的分布律和边缘分布律
例 将骰子抛两次,X—第一次出现的点数,
Y—第二次出现的点数,求(X , Y)的分布律。
解:X Y 1 2 3
4
5
研究问题:已知联合分布,怎样求 X,Y 的边缘分布。
一、 边缘分布函数
设
的联合分布函数为
分别
记
的分布函数为FX (x) 和 FY ( y),称为关于 和
的边缘分布函数。
边缘分布函数的计算:
FX (x)
同理可得
F(, y)
F(x,)
例1: 已知
的分布函数为
求
关于
的边缘分布函数
和
问
各服从什么分布?
6
1
2
3
4 5 6
例2、已知随机变量X和Y的分布列分别为
X -1 0 1
Y
pi · 1/4 1/2 1/4
. p·j
且P{XY=0}=1,求(X,Y)的分布律
解、
P{XY≠0}=0= P{X≠0, Y≠0}
Y
=P{X=-1, Y=1}+ P{X=1, Y=1} X
从而P{X=-1, Y=1}=P{X=1, Y=1}=0 -1