不规则图形面积的计算(一)

合集下载

不规则图形面积的计算

不规则图形面积的计算

❖ 梯形面积=(上底+下底)×高÷2
❖ 用字母表示为S=(a+b)h÷2
❖ 长方形面积=长×宽用字母表示为S=a×b
❖ 正方形面积=边长×边长用字母表示为
❖S=a×a= a 2
精选
22
下面是某自然保护区一个湖泊的平面图 (每个小方格表示1公顷)。你能估计这 个湖泊的面积大约是多少公顷吗?
先数整格,再数不满整格, 你准备怎样估计? 不满精选整格作半格计算。 23
精选
16
小结
方法:一分图形 二找条件 三算面积
关键:学会运用“分割”与“添补” 的方
法计算组合图形面积.
精选
17
作业
课本23页练习四1到4题
精选
18
学校开运动会要制作一 些锦旗,式样如右图。 一面锦旗需要多少平方 厘米面料?
(60+45) ×(30÷2) ÷2×2 =105×15÷2×2 =1575(㎝²)
此课件下载可自行编辑修改,此课件供参考! 部分内容来源于网络,如有侵权请与我联系删除!感谢你的观看!
12m
方法三:分割法 4m
10m
15m
❖ 草坪的面积=梯形面积+三角形面积 ❖ 梯形的面积:(4+10)×12÷2=84㎡ ❖ 三角形的面积:10-4=6m,15×6÷2=45㎡ ❖ 草坪的面积:84+45=129㎡ ❖ 答:这块草坪的面积是129㎡
精选
7
方法四:补的方法
12m
4m
10m
15m
❖ 草坪的面积=长方形的面积-梯形的面积 ❖ 长方形的面积:15×10=150㎡ ❖ 梯形的面积:15-12=3m,(4+10) ×3÷2=21㎡ ❖ 草坪的面积:150-21=129㎡ ❖ 答:这块草坪的面积是129㎡.

不规则图形面积的计算

不规则图形面积的计算

不规则图形面积的计算不规则图形的另外一种情况,就是由圆、扇形、弓形与三角形、正方形、长方形等规则图形组合而成的,这是一类更为复杂的不规则图形,为了计算它的面积,常常要变动图形的位置或对图形进行适当的分割、拼补、旋转等手段使之转化为规则图形的和、差关系,同时还常要和“容斥原理”合并使用才能解决。

例1:如下图(1),在一个正方形内,以正方形的三条边为直径向内作三个半圆,求阴影部分的面积。

(1)(2)解法一:把上图靠下边的半圆换成(面积与它相等)右边的半圆,得到图(2)。

这时,右图中阴影部分与不含阴影部分的大小形状完全一样,因此它们的面积相等。

所以上图中阴影部分的面积等于正方形面积的一半。

解法二:将上半个“弧边三角形”从中间切开,分别补贴在下半圆的上侧边上,如图(3)所示。

阴影部分的面积是正方形面积的一半。

(3) (4)解法三:将下面的半圆从中间切开,分别贴补在上面弧边三角形的两侧,如图(4)所示。

阴影部分的面积是正方形的一半。

例2:如下图,正方形ABCD 的边长为4厘米,分别以B 、D 为圆心以4厘米为半径在正方形内画圆,求阴影部分面积。

解:由容斥原理, S 阴影=S 扇形ACB +S 扇形ACD -S 正方形ABCD=4π×AB 2×2-AB 2=4π×42×2-42 =16×(2π-1)≈16×2214.3-=9.12(平方厘米)。

例3:如下图,矩形ABCD 中,AB=6厘米,BC=4厘米,扇形ABE 半径AE=6厘米,扇形CBF 的半径CB=4厘米。

求阴影部分的面积。

EB解:S 阴景=S 扇形ABE +S 扇形CBF -S 矩形ABCD =41×π×62+41×π×42-6×4 =41×π(36+16)-24 =13π-24=15(平方厘米)(取π=3)例4:如下图,直角三角形ABC 中,AB 是圆的直径,且AB=20厘米,如果阴影(1)的面积比阴影(2)的面积大7平方厘米,求BC 长。

七年级数学:平面直角坐标系中不规则图形面积的计算

七年级数学:平面直角坐标系中不规则图形面积的计算

2
2
2
1
1
1
4 4 (1 4) 2 1 2 2
2
2
2
4
巩固练习
• 1、如图所示的直角坐标系中,四边形ABCD
各个顶点的坐标分别是A(0,0),B(3,6),
C(14,8),D(16,0),确定这个四边形的
面积.
y C (14,8)
B (3,6)
A(0,0)
x D(16,0)
尖子生思维训练
平面直角坐标系中 不规则图形面积的计算
例题一: 已知A(2,0),B(0,3),C(4,2), 求△ABC的面积。
2
方法 1 y 4 3 2 1
O
B(4, 4)
E(4,1)
A(2,1)
F(4,0)
1 234
x
SOAB SOFB S梯形AEOF SAEB
1 OF BF 1 (AE OF) EF 1 AE BE
6
• 3、已知,如图在平面直角坐标系中, S△ABC=24,OA=OB,BC=12,求 △ABC三个顶点的坐标.
• 4、如图,△ABC在直角坐标系中,
• (1)请写出△ABC各点的坐标;
• (2)求出S△ABC ;
• (3)若把△ABC向上平移2个单位,再向右 平移2个单位得△A′B′C′,在图中画出 △ABC变化位置,并写出A′、B′、C′的坐 标.
2
2
2
1 4 4 1 (2 4)1 1 23 2
3
2
2
2
方法 2
y
4
3
B(4, 4)
2
1
A(2,1)
F(4,0)

五年级不规则图形面积计算(供参考)

五年级不规则图形面积计算(供参考)

五年级不规则图形⾯积计算(供参考)五年级不规则图形⾯积计算我们曾经学过的三⾓形、长⽅形、正⽅形、平⾏四边形、梯形、菱形、圆和扇形等图形,⼀般称为基本图形或规则图形.我们的⾯积及周长都有相应的公式直接计算.如下表:实际问题中,有些图形不是以基本图形的形状出现,⽽是由⼀些基本图形组合、拼凑成的,它们的⾯积及周长⽆法应⽤公式直接计算.⼀般我们称这样的图形为不规则图形。

那么,不规则图形的⾯积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等⽅法将它们转化为基本图形的和、差关系,问题就能解决了。

⼀、例题与⽅法指导例1 如右图,甲、⼄两图形都是正⽅形,它们的边长分别是10厘⽶和12厘⽶.求阴影部分的⾯积。

思路导航:阴影部分的⾯积等于甲、⼄两个正⽅形⾯积之和减去三个“空⽩”三⾓形(△ABG、△BDE、△EFG)的⾯积之和。

例2 如右图,正⽅形ABCD的边长为6厘⽶,△ABE、△ADF 与四边形AECF的⾯积彼此相等,求三⾓形AEF的⾯积.思路导航:∵△ABE 、△ADF 与四边形AECF 的⾯积彼此相等,∴四边形 AECF 的⾯积与△ABE 、△ADF 的⾯积都等于正⽅形ABCD 的1 3。

在△ABE 中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,∴△ECF 的⾯积为2×2÷2=2。

所以S △AEF=S 四边形AECF-S △ECF=12-2=10(平⽅厘⽶)。

例3两块等腰直⾓三⾓形的三⾓板,直⾓边分别是10厘⽶和6厘⽶。

如右图那样重合.求重合部分(阴影部分)的⾯积。

思路导航:在等腰直⾓三⾓形ABC 中∵AB=10∵EF=BF=AB-AF=10-6=4,∴阴影部分⾯积=S △ABG-S △BEF=25-8=17(平⽅厘⽶)。

例4如右图,A 为△CDE 的DE 边上中点,BC=CD ,若△ABC(阴影部分)⾯积为5平⽅厘⽶. 求△ABD 及△ACE 的⾯积.BC思路导航:取BD中点F,连结AF.因为△ADF、△ABF和△ABC等底、等⾼,所以它们的⾯积相等,都等于5平⽅厘⽶.∴△ACD的⾯积等于15平⽅厘⽶,△ABD的⾯积等于10平⽅厘⽶。

求不规则图形面积的五种方法

求不规则图形面积的五种方法

求不规则图形面积的五种方法
一、相加法:临方法是将不规则图形分解转化成几个基本规测图形,分别计算它们的面积,然后相加求出整个图形的面积。

二、相减法:这种方法是将所求的不规则图形的面积看成是若千个基本规则图形的面积之差.
三、直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积
四、重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可4个角处,这时采用相减法就可求出其面积了.
五、割补法:这种方法是把原图形的受部分切割下来补在图形中的另部分使之成为基本规则图形,从而使问题得到解决。

不规则图形面积的计算-精品文档

不规则图形面积的计算-精品文档

法计算组合图形面积.
作业
课本23页练习四1到4题
=105×15÷2×2 =1575(㎝² ) 答:一面锦旗需要1575平方厘 米面料。
60cm
(60+45) ×(30÷2) ÷2×2
45cm
学校开运动会要制作一 些锦旗,式样如右图。 一面锦旗需要多少平方 厘米面料?
30cm
1、草坪的面积有多少平方米?
草坪的面积=梯形面积+三角形面积 梯形的面积:(4+10)×12÷2=84㎡
三角形的面积:10-4=6m,15×6÷2=45㎡
草坪的面积:84+45=129㎡
答:这块草坪的面积是129㎡
方法四:补的方法
4m
12m
10m
15m
草坪的面积=长方形的面积-梯形的面积
长方形的面积:15×10=150㎡ 梯形的面积:15-12=3m,(4+10) 草坪的面积:150-21=129㎡ 答:这块草坪的面积是129㎡.
2、现在要给小路铺上地砖,如果9块 地砖正好铺1m2,那么至少需要多少 块地砖?
复习旧知:
平行四边形的面积=底×高
用字母表示为S=a×h
三角形面积=底×高÷2
用字母表示为S=a×h÷2
梯形面积=(上底+下底)×高÷2
用字母表示为S=(a+b)h÷2
长方形面积=长×宽用字母表示为S=a×b
×3÷2=21㎡
“割”、“补”的方法是我们今后计算复 杂图形时常用的方法,方法越简单越好。
在进行图形计算割补时,要注意以下几点:
(1)要根据原来图形的特点进行思考。 (2)要便于利用已知条件计算简单图形的面积。 (3)可以用不同的方法进行割补。

六年级数学-不规则图形面积计算

六年级数学-不规则图形面积计算
形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表:
实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。
例2如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积.
思路导航:
∵△ABE、△ADF与四边形AECF的面积彼此相等,
∴四边形 AECF的面积与△ABE、△ADF的面积都等于正方形ABCD的 。
在△ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,
∴△ECF的面积为2×2÷2=2。
所以S△AEF=S四边形AECF-S△ECF=12-2=10(平方厘米)。
例3两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。如右图那样重合.求重合部分(阴影部分)的面积。
思路导航:
在等腰直角三角形ABC中
∵AB=10
∵EF=BF=AB-AF=10-6=4,
∴阴影部分面积=S△ABG-S△BEF=25-8=17(平方厘米)。
例4如右图,A为△CDE的DE边上中点,BC=CD,若△ABC(阴影部分)面积为5平方厘米.
求△ABD及△ACE的面积.
思路导航:
取BD中点F,连结AF.因为△ADF、△ABF和△ABC等底、等高,
所以它们的面积相等,都等于5平方厘米.
一、 相加法:
这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如,右图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了.

【思维拓展】数学五年级思维拓展之不规则图形面积的计算1(附答案) 必考知识点

【思维拓展】数学五年级思维拓展之不规则图形面积的计算1(附答案) 必考知识点

五年级奥数不规则图形面积的计算(一)我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。

那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。

例1如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。

解:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。

练习题1.如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积.2.两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。

如右图那样重合.求重合部分(阴影部分)的面积。

C3如右图,A 为△CDE 的DE 边上中点,BC=CD,若△ABC(阴影部分)面积为5平方厘米.求△ABD 及△ACE 的面积.4如右图,在正方形ABCD 中,三角形ABE 的面积是8平方厘米,它是三角形DEC 的面积的45,求正方形ABCD 的面积。

5如右图,已知:S△ABC=1,AE=ED,BD=23BC.求阴影部分的面积。

6如右图,正方形ABCD 的边长是4厘米,CG=3厘米,矩形DEFG 的长DG 为5厘米,求它的宽DE 等于多少厘米?D7如右图,梯形ABCD的面积是45平方米,高6米,△AED的面积是5平方米,BC=10米,求阴影部分面积.8如右图,四边形ABCD和DEFG都是平行四边形,证明它们的面积相等.参考答案1解:∵△ABE、△ADF与四边形AECF的面积彼此相等,∴四边形AECF的面积与△ABE、△ADF的面积都等于正方形ABCD的1 3。

五年级不规则图形面积计算

五年级不规则图形面积计算

五年级不规那么图形面积计算我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为根本图形或规那么图形.我们的面积及周长都有相应的公式直接计算.如下表:实际问题中,有些图形不是以根本图形的形状出现,而是由一些根本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规那么图形。

那么,不规那么图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为根本图形的和、差关系,问题就能解决了。

一、例题与方法指导例1 如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影局部的面积。

思路导航:阴影局部的面积等于甲、乙两个正方形面积之和减去三个“空白〞三角形〔△ABG、△BDE、△EFG〕的面积之和。

例2 如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积. 思路导航:∵△ABE 、△ADF 与四边形AECF 的面积彼此相等,∴四边形 AECF 的面积与△ABE 、△ADF 的面积都等于正方形ABCD 的13。

在△ABE 中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2, ∴△ECF 的面积为2×2÷2=2。

所以S △AEF=S 四边形AECF-S △ECF=12-2=10〔平方厘米〕。

例3 两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。

如右图那样重合.求重合局部〔阴影局部〕的面积。

思路导航:在等腰直角三角形ABC 中∵AB=10∵EF=BF=AB-AF=10-6=4,∴阴影局部面积=S △ABG-S △BEF=25-8=17〔平方厘米〕。

例4 如右图,A 为△CDE 的DE 边上中点,BC=CD ,假设△ABC 〔阴影局部〕面积为5平方厘米.求△ABD 及△ACE 的面积.B C思路导航:取BD中点F,连结AF.因为△ADF、△ABF和△ABC等底、等高,所以它们的面积相等,都等于5平方厘米.∴△ACD的面积等于15平方厘米,△ABD的面积等于10平方厘米。

不规则图形面积的计算(方法总结及详解)

不规则图形面积的计算(方法总结及详解)

不规则图形计算的方法总结总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决.常用的基本方法有:一、相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如,右图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了.二、相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如,右图,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可.三、直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积.如下页右上图,欲求阴影部分的面积,通过分四、重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求右图中阴影部分面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了.五、辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.如右图,求两个正方形中阴影部分的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便.六、割补法:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如,如右图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半.七、平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如,如上页最后一图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。

八、旋转法:这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积.例如,欲求上图(1)中阴影部分的面积,可将左半图形绕B点逆时针方向旋转180°,使A与C重合,从而构成如右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积.九、对称添补法:这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半.例如,欲求右图中阴影部分的面积,沿AB在原图下方作关于AB为对称轴的对称扇形ABD.弓形CBD的面积的一半就是所求阴影部分的面积。

五年级下册数学不规则图形面积的计算

五年级下册数学不规则图形面积的计算
∵三角形ABC是等腰直角三角形,以AC为对角线再作一个全等的等腰直角三角形ACE,则ABCE为正方形(利用对称性质)。
∴S阴影=(S正方形ABCE+S半圆-S△ADE)÷2
=(10×10+π×52÷2- ×10×15)÷2
=(100+39.25-75)÷2
=64.25÷2
=32.125
BC的长=[3.14×( )2÷2-7] ×2÷20
=(157-7)×2÷20
=15(厘米)
例3.如图,矩形ABCD中,AB=6厘米,BC=4厘米,扇形ABE半径AE=6厘米,扇形CBF的半CB=4厘米,求阴影部分的面积。
S阴影=S扇形ABE+S扇形CBF-S矩形ABCD
= ×π×62+ ×π×42-6×4
= ×π(36+16)-24=1 Nhomakorabeaπ-24
=15(平方厘米)(取π=3)。
例4.如图,两个正方形边长分别是10厘米和6厘米,求阴影部分的面积。
S阴影=S三角形ACD-(S正方形BCDE-S扇形EBD)
= ×(10+6)×6-(6×6- ×π×62)
=48-9(取π=3)
=39(平方厘米)
例5.如图,ABC是等腰直角三角形,D是半圆周上的中点,BC是半圆的直径,且AB=BC=10,求阴影部分面积(π取3.14)。
五年级数学重点—不规则图形面积的计算
例1.如图,正方形ABCD的边长为4厘米,分别以B、D为圆心以4厘米为半径在正方形内画圆,求阴影部分面积。
S阴影=S扇形ACB+S扇形ACD-S正方形ABCD
= ×AB2×2-AB2
= ×42×2-42
=16× ≈16×
=9.12(平方米)

不规则图形面积的求法

不规则图形面积的求法

不规则图形面积的求法求不规则图形面积的基本思路是通过分割、重叠、等积替换等方法把不规则图形转化为规则图形或规则图形面积的和差。

一、等积替换(1)三角形等积替换依据:等底等高的三角形面积相等或全等的三角形面积相等。

例1、如图1所示,半圆O 中,直径AB 长为4,C 、D 为半圆O 的三等分点.,求阴影部分的面积.解:连结OC 、OD , 由C 、D 为半圆O 的三等分点知:∠COD=60°,且∠ADC=∠DAB=30°, ∴CD ∥AB ,所以ODC ADC S S ∆∆=(同底等高的三角形面积相等)∴==扇形阴影O CD S S ππ323602602=⨯⨯例2、如图2所示,在矩形ABCD 中,AB=1,以AD 为直径的半圆与BC 切于M 点,求阴影部分面积.解:由AB =1,半圆与BC 相切,得AD =2 取AD 的中点O ,则OD =BM =1。

连结OM 交 BD 于E; 则△OED ≌△MEB∴MEB OED S S ∆∆= (全等三角形面积相等)∴==扇形阴影O M D S S 43601902ππ=⨯⨯ (2)弓形等积替换依据:等弧所对的弓形面积相等。

例3、 在RT △ABC 中,∠B=90°,AB=BC=4,AB 为直径的⊙O 交AC 于点D, 求图中两个阴影部分的面积之和.解:连结BD ,由AB 为⊙O 的直径得∠ADB =90°, RT △ABC 中∠B =90°AB =BC =4,得∠A =45°且AC=AD =BD =CD=∴A D BnD S S 弓形m 弓形=∴CDB 11S CD BD 422S ∆⨯⨯⨯阴影===例4、点A、B、C、D是圆周上四点,且 AB + CD= AC + BD , 弦AB=8,CD=4,求两个阴影部分的面积之和。

解:作⊙ O 的直径BE 连结AE ,则∠BAE =90°,AB AE =+半圆;A图2图4又∵ AB + CD= AC + BD = 1AB CD AC BD 2(+++)=半圆, ∴ AE = CD ,所以A E C DS m n S 弓形弓形=,AE=CD=4。

五年级上册数学 《不规则图形的面积》计算方法

五年级上册数学 《不规则图形的面积》计算方法

五年级上册数学 《不规则图形的面积》计算方法
1.学校园里有一块草坪(如下图),它的面积是多少平方米?
方法一:分成一个长方形和一个梯形 12×4+(12+15)×6÷2 =129(m ²) 答:这块草坪的面积是129m2。

方法二:分成一个三角形和一个梯形 15×6÷2+(4+10)×12÷2=129(m ²) 答:这块草坪的面积是129m ²。

方法三:分成一个三角形和一个长方形 3×6÷2+12×10 =129(m ²) 答:这块草坪的面积是129m2。

方法四:添补成一个长方形
15×10-(4+10)×3÷2 =129(m ²) 答:这块草坪的面积是129m ²。

五年级上册数学 《不规则图形的面积》计算方法
2.求阴影部分的面积。

正方形面积:5×5=25(cm ²)
三角形面积:8×5÷2=20(cm ²)
阴影面积:25+20=45(cm ²)
3.求下面图形的面积。

长方形面积:10×8=80(cm ²)
梯形面积:(10+6)×2÷2=16(cm
²) 组合图形面积:80-16=64(cm ²)
4.计算下面图形的面积。

14×4÷2+14×6÷2=70(cm ²)。

不规则图形面积的计算

不规则图形面积的计算

不规则图形面积的计算(一)我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。

那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。

例1 如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。

解:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。

又因为S甲+S乙=12×12+10×10=244,所以阴影部分面积=244-(50+132+12)=50(平方厘米)。

例2 如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积.解:因为△ABE、△ADF与四边形AECF的面积彼此相等,所以四边形AECF的面积与△ABE、△ADF的面积都等于正方形ABCD在△ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,∴△ECF的面积为2×2÷2=2。

所以S△AEF=S四边形AECF-S△ECF=12-2=10(平方厘米)。

例3 两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。

如右图那样重合.求重合部分(阴影部分)的面积。

解:在等腰直角三角形ABC中∵AB=10∵EF=BF=AB-AF=10-6=4,∴阴影部分面积=S△ABG-S△BEF=25-8=17(平方厘米)。

例4 如右图,A为△CDE的DE边上中点,BC=CD,若△ABC(阴影部分)面积为5平方厘米.求△ABD及△ACE的面积.解:取BD中点F,连结AF.因为△ADF、△ABF和△ABC等底、等高,所以它们的面积相等,都等于5平方厘米.所以△ACD的面积等于15平方厘米,△ABD的面积等于10平方厘米。

六年级第十四讲、不规则图形的面积的计算(一)

六年级第十四讲、不规则图形的面积的计算(一)

六年级第十四讲、不规则图形面积的计算一、知识访法我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。

那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。

二、例题探究【例1】如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。

【同步练习1】如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF 的面积彼此相等,求三角形AEF的面积.【例2】两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。

如右图那样重合.求重合部分(阴影部分)的面积。

【同步练习2】如右图,A为△CDE的DE边上中点,BC=CD,若△ABC(阴影部分)面积为5平方厘米.求△ABD及△ACE的面积.【例3】如下页右上图,在正方形ABCD中,三角形ABE的面积是8平方厘【同步练习3】如右图,已知:S△ABC=1,【例4】如下页右上图,正方形ABCD的边长是4厘米,CG=3厘米,矩形DEFG的长DG为5厘米,求它的宽DE等于多少厘米?【同步练习4】如右图,梯形ABCD的面积是45平方米,高6米,△AED的面积是5平方米,BC=10米,求阴影部分面积.三、测测你自己1.如右图,ABCD为长方形,AB=10厘米,BC=6厘米,E、F分别为AB、AD中点,且FG=2GE.求阴影部分面积。

2.如右图,正方形ABCD的边长为5厘米,△CEF的面积比△ADF的面积大5平方厘米.求CE的长。

3.如右图,已知CF=2DF,DE=EA,三角形BCF的面积为2,四边形BEDF的面积为4.求三角形ABE的面积.4.如右图,直角梯形ABCD的上底BC=10厘米,下底AD=14厘米,高CD=5厘米.又三角形ABF、三角形BCE和四边形BEDF的面积相等。

不规则图形面积的计算(方法总结及详解)

不规则图形面积的计算(方法总结及详解)

不规则图形计算的方法总结总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决.常用的基本方法有:一、相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如,右图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了.二、相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如,右图,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可.三、直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积.如下页右上图,欲求阴影部分的面积,通过分四、重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求右图中阴影部分面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了.五、辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.如右图,求两个正方形中阴影部分的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便.六、割补法:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如,如右图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半.七、平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如,如上页最后一图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。

八、旋转法:这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积.例如,欲求上图(1)中阴影部分的面积,可将左半图形绕B点逆时针方向旋转180°,使A与C重合,从而构成如右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积.九、对称添补法:这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半.例如,欲求右图中阴影部分的面积,沿AB在原图下方作关于AB为对称轴的对称扇形ABD.弓形CBD的面积的一半就是所求阴影部分的面积。

不规则图形面积的计算(练习题)及详细讲解

不规则图形面积的计算(练习题)及详细讲解

第一讲不规则图形面积得计算(一)习题一(及详细答案)一、填空题(求下列各图中阴影部分得面积):二、解答题:1、如右图,ABCD为长方形,AB=10厘米,BC=6厘米,E、F分别为AB、AD中点,且FG=2GE、求阴影部分面积。

2、如右图,正方形ABCD与正方形DEFG得边长分别为12厘米与6厘米、求四边形CMGN (阴影部分)得面积、3、如右图,正方形ABCD得边长为5厘米,△CEF得面积比△ADF得面积大5平方厘米、求CE得长。

4、如右图,已知CF=2DF,DE=EA,三角形BCF得面积为2,四边形BEDF得面积为4、求三角形ABE得面积、5、如右图,直角梯形ABCD得上底BC=10厘米,下底AD=14厘米,高CD=5厘米、又三角形ABF、三角形BCE与四边形BEDF得面积相等。

求三角形DEF得面积、6、如右图,四个一样大得长方形与一个小得正方形拼成一个大正方形,其中大、小正方形得面积分别就就是64平方米与9平方米、求长方形得长、宽各就就是多少?7、如右图,有一三角形纸片沿虚线折叠得到右下图,它得面积与原三角形面积之比为2:3,已知阴影部分得面积为5平方厘米、求原三角形面积、8、如右图,ABCD得边长BC=10,直角三角形BCE得直角边EC长8,已知阴影部分得面积比△EFG得面积大10、求CF得长、习题一解答一、填空题:二、解答题:ﻫﻫ3、CE=7厘米、ﻫ可求出BE=12、所以CE=BE-5=7厘米、4、3、提示:加辅助线BD∴CE=4,DE=CD-CE=5-4=1。

同理AF=8,DF=AD-AF=14-8=6,6、如右图,大正方形边长等于长方形得长与宽得与、中间小正方形得边长等于长方形得长与宽得差、而大、小正方形得边长分别就就是8米与3米,所以长方形得宽为(8-3)÷2=2、5(米),长方形得长为8-2、5=5、5(米)、7、15平方厘米、解:如右图,设折叠后重合部分得面积为x平方厘米,ﻫx=5、所以原三角形得面积为2×5+5=15平方厘米、∴阴影部分面积就就是:10x-40+S△GEF由题意:S△GEF+10=阴影部分面积,∴10x-40=10,x=5(厘米)、。

不规则图形面积的计算(一)

不规则图形面积的计算(一)

不规则图形面积的计算(一)我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。

那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。

例1 如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。

解:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG 、△BDE 、△EFG )的面积之和。

又因为S甲+S乙=12×12+10×10=244,所以阴影部分面积=244-(50+132+12)=50(平方厘米)。

例2 如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF 的面积彼此相等,求三角形AEF的面积.解:因为△ABE、△ADF与四边形AECF的面积彼此相等,所以四边形AECF的面积与△ABE、△ADF的面积都等于正方形ABCD在△ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,∴△ECF的面积为2×2÷2=2。

所以S△AEF=S四边形AECF-S△ECF=12-2=10(平方厘米)。

例3 两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。

如右图那样重合.求重合部分(阴影部分)的面积。

解:在等腰直角三角形ABC中∵AB=10∵EF=BF=AB-AF=10-6=4,∴阴影部分面积=S△ABG-S△BEF=25-8=17(平方厘米)。

例4 如右图,A为△CDE的DE边上中点,BC=CD,若△ABC(阴影部分)面积为5平方厘米.求△ABD及△ACE的面积.解:取BD中点F,连结AF.因为△ADF、△ABF和△ABC等底、等高,所以它们的面积相等,都等于5平方厘米.所以△ACD的面积等于15平方厘米,△ABD的面积等于10平方厘米。

第1讲 不规则图形面积的计算(一)

第1讲 不规则图形面积的计算(一)

第1讲不规则图形面积的计算(一)解题思路:通过实施割补、剪拼等方法将不规则图形转化为基本图形的和、差关系例1 如图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。

例2 如图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积.例3 两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。

如右图那样重合.求重合部分(阴影部分)的面积。

例4 如图,A 为△CDE 的DE 边上中点,BC=13CD ,若△ABC (阴影部分)面积为5平方厘米.求△ABD 及△ACE 的面积.例5 如图,在正方形ABCD 中,三角形ABE 的面积是8平方厘米,它是三角形DEC 的面积的45.求正方形ABCD 的面积。

例6 如图,已知:S △ABC=1, AE=ED ,BD=23BC ,求阴影部分的面积。

例7 如下图,正方形ABCD 的边长是4厘米,CG=3厘米,矩形DEFG 的长DG 为5厘米,求它的宽DE 等于多少厘米?例8 如图,梯形ABCD的面积是45平方米,高6米,△AED的面积是5平方米,BC=10米,求阴影部分面积.例9 如图,四边形ABCD和DEFG都是平行四边形,证明它们的面积相等.习题一、填空题(求下列各图中阴影部分的面积):二、解答题:1.如图,ABCD为长方形,AB=10厘米,BC=6厘米,E、F分别为AB、AD中点,且FG=2GE.求阴影部分面积。

2.如图,正方形ABCD与正方形DEFG的边长分别为12厘米和6厘米.求四边形CMGN(阴影部分)的面积.3.如图,正方形ABCD的边长为5厘米,△CEF的面积比△ADF的面积大5平方厘米.求CE的长。

4.如图,已知CF=2DF,DE=EA,三角形BCF的面积为2,四边形BEDF的面积为4.求三角形ABE的面积.5.如图,直角梯形ABCD的上底BC=10厘米,下底AD=14厘米,高CD=5厘米.又三角形ABF、三角形BCE和四边形BEDF的面积相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不规则图形面积的计算(一)
我们曾经学过三角形、长方形、正方形、平行四边形、梯形等基本图形(也叫规则图形)的面积计算,但在实际问题中,有些图形的面积是由一些基本图形通过组合、平凑而成的,他们的面积及周长无法用公式直接计算,我们通常称这些图形为不规则图形。

那么,我们怎样计算不规则图形的面积和周长呢?
我们一般是将这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,从而较轻松的解决问题。

【例1】如图,正方形的边长是4,求阴影部分面积
【分析】正方形的对角线将正方形平分,又因所截其直线平行于正方形的边,故阴影和空白处的面积相等。

【例2】如图,ABCD为长方形,AB=10厘米,BC=6厘米,E、F分别为AB、AD中点,且FG=2GE。

求阴影部分的面积。

【分析】由FG=2GE可知,G点是线段EF的三等分点,故阴影部分的面积是
三角形CEF面积的三分之一。

【例3】如图,平行四边形ABCD的边长BC=10,直角三角形BCE的直角边EC=8,已知阴影部分的面积比三角形EFG的面积大10。

求CF的长。

【分析】本题看似没有思路,重要是要理清各个面积之间的联系。

提示语对于求不规则图形的面积,首先要看清题目所给的条件,及通过题目所给条件可以得出什么?一般利用加辅助线,可以通过剪、拼、凑的方法得出答案。


自己练
1、求下列图形阴影部分面积:单位:厘米
2、解答题:
直角梯形ABCD的上底BC=10厘米,下底AD=14厘米,高CD=5厘米。

又三角形ABF、三角形BCE和四边形BEDF的面积相等。

求三角形DEF的面积。

(3)、有一三角形纸片沿虚线折叠到右下图,他的面积与原三角形面积之比为2:3,已知阴影部分的面积为5平方厘米。

求原三角形面积。

【提高题】求阴影部分面积(字母是为解题方便加的)
(1)
(2)(3)。

相关文档
最新文档