组合数学2019年7月真题及答案
2019年高中数学联合竞赛(A卷)参考答案及评分标准
2019年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时, 请依据本评分标准. 填空题只设8分和0分两档; 其他各题的评阅, 请严格按照本评分标准的评分档次给分, 不得增加其他中间档次.2. 如果考生的解答方法和本解答不同, 只要思路合理、步骤正确, 在评卷时可参考本评分标准适当划分档次评分, 解答题中第9小题4分为一个档次, 第10、11小题5分为一个档次, 不得增加其他中间档次.一、填空题: 本大题共8小题, 每小题8分, 满分64分.1. 已知正实数a 满足()89aaa a =, 则()log 3a a 的值为 .答案:916.解: 等式两边同时开8a 次方根, 有189a a =. 这样9163a a ==, 所以()9log 316a a =. 2. 若实数集合{}1,2,3,x 的最大元素与最小元素之差等于该集合的所有元素之和, 则x 的值为 .答案: 32-. 解: 假设0x ≥, 则最大、最小元素之差不超过{}max 3,x , 而所有元素之和大于{}max 3,x , 不符合条件. 故0x <, 即x 为最小元素. 于是36x x -=+, 解得32x =-. 3. 在平面直角坐标系中, e 是单位向量, 向量a 满足2a e ⋅= , 且25a a te ≤+对任意实数t 成立, 则a的取值范围是 .答案: .解: 不妨设()1,0e = . 由于2a e ⋅= , 可设()2,a s =. 又因为对任意实数t , 有2245s a a te +=≤+=这等价于245s s +≤, 解得[]1,4s ∈, 即[]21,16s ∈. 于是a = .4. 设,A B 为椭圆Γ的长轴顶点, ,E F 为Γ的两个焦点, 4,2AB AF ==+, P 为Γ上一点, 满足2PE PF ⋅=, 则PEF ∆的面积为 .答案: 1.解: 不妨设平面直角坐标系中Γ的标准方程为()222210x y a b a b+=>>. 根据条件, 得24,2a AB a AF ==±==+.可知2,1a b ==, 且EF ==.由椭圆的第一定义知24PE PF a +==, 结合2PE PF ⋅=得到()2222212PE PF PE PFPE PF EF +=+-⋅==.所以EPF ∠为直角, 进而112122PEF S PE PF ∆=⋅=⨯=. 5. 在1,2,3,,10 中随机选出一个数a , 在1,2,3,,10---- 中随机选出一个数b , 则2a b +被3整除的概率为 .答案:37100. 解: 数组(),a b 共有210100=种等概率的选法.考虑其中使得2a b +被3整除的选法数N . 若a 被3整除, 则b 也被3整除. 此时,a b 各有3种选法, 这样的(),a b 有239=组. 若a 不被3整除, 则()21mod 3a ≡, 从而()1mod 3b ≡-. 此时a有7种选法, b 有4种选法, 这样的(),a b 有7428⨯=组.因此92837N =+=, 于是所求概率为37100. 6. 对任意闭区间I , 用I M 表示函数sin y x =在I 上的最大值. 若正数a 满足[][]0,,22a a a M M =,则a 的值为 .答案:56π或1312π. 解: 假如02a π<≤, 则由正弦函数图像性质得[][]0,,20sin a a a M a M <=≤, 与条件不符. 因此2a π>, 此时[]0,1a M =, 故[],212a a M =. 于是, 存在非负整数k , 使得51322266k a a k ππππ+≤<≤+,且该不等式中“≤”至少有一处取到等号.当0k =时, 得56a π=或1326a π=. 经检验513,612a ππ=均满足条件. 当1k ≥时, 由于13522266k k ππππ⎛⎫+<+ ⎪⎝⎭, 故不存在满足上述不等式的a . 综上, a 的值为56π或1312π. 7. 如图, 正方体ABCD EFGH -的一个截面经过顶点,A C 及棱EF 上一点K , 且将正方体分成体积比为3:1的两部分, 则EKKF的值为 .答案:解: 记α为截面所在的平面. 延长,AK BF 交于点P , 则P 在α上, 故直线CP 是α与平面BCGF 的交线. 设CP 与FG 交于点L , 则四边形AKLC 为截面.因平面ABC 平行于平面KFL , 且,,AK BF CL 共点P , 故ABC KFL -为棱台. 不妨设正方体棱长为1, 则正方体的体积为1, 结合条件知, 棱台ABC KFL -的体积为14V =. 设PF h =, 则1KF FL PF hAB BC PB h ===+. 注意到,PB PF 分别是凌锥P ABC -与凌锥P KFL -的高, 于是14P ABC P KFL V V V --==-1166AB BC PB KF FL PF =⋅⋅-⋅⋅ ()()3221331116161h h h h h h ⎛⎫++⎛⎫=+-= ⎪ ⎪ ⎪+⎝⎭+⎝⎭. 化简得231h =,故h =从而1EK AE KF PF h ===8. 将6个数2,0,1,9,20,19按任意次序排列成一行, 拼成一个8位数(首位不为0), 则产生的不同的8位数的个数为 .答案: 498.解: 将2,0,1,9,20,19的首位不为0的排列的全体记为A , 易知55!600A =⨯=(这里及以下,X 表示有限集X 的元素个数.)将A 中2的后一项是0, 且1的后一项是9的排列的全体记为B ; A 中2的后一项是0, 但1的后一项不是9的排列的全体记为C ; A 中1的后一项是9, 但2的后一项不是0的排列的全体记为D .将1和9, 2和0按顺序捆绑产生的元素19, 20分别看作两个新的元素,a b . 它们与之前的两个元素19,20产生的元构成B 的全体, 故4!B =; 将2和0按顺序捆绑产生的元素与之前的四个元素产生的元构成B C 的全体, 故5!B C +=; 将1和9按顺序捆绑产生的元素与之前的四个元素产生的首位不为0的元素构成B D 的全体, 故44!B D +=⨯. 从而24,96,72B C D ===.由B 中排列产生的每个8位数, 恰对应B 中的224⨯=个排列(这样的排列中, 20可与“2,0”互换, 19可与“1,9”互换). 类似地, 由C 或D 中排列产生的每个8位数, 恰对应C 或D 中的2个排列. 因此满足条件的8位数的个数为()3\60018483649842422B C D B C DA B C D A +++=---=---= .二、解答题: 本大题共3小题, 满分56分. 解答应写出文字说明、证明过程或演算步骤. 9. (本题满分16分) 在ABC ∆中, ,,BC a CA b AB c ===. 若b 是a 与c 的等比中项, 且sin A 是()sin B A -与sin C 的等差中项, 求cos B 的值.解: 因b 是a 与c 的等比中项, 故存在0q >, 满足2,b qa c q a ==. ①因sin A 是()sin B A -与sin C 的等差中项, 故()()()2sin sin sin sin sin 2sin cos A B A C B A B A B A =-+=-++=.………………… (4分)结合正、余弦定理, 得222sin cos sin 2a A b c a A b B bc+-===, 即2222b c a ac +-=. ………………… (8分)将①代入并化简, 可知24212q q q +-=, 即421q q =+. 所以212q +=. ………………… (12分) 进而2224222111cos 222a cb q q B ac q q +-+--====. ………………… (16分) 10. (本题满分20分) 在平面直角坐标系xOy 中, 圆Ω与抛物线2:4y x Γ=恰有一个公共点, 且圆Ω与x 轴相切于Γ的焦点F . 求圆Ω的半径.解: 显然Γ的焦点F 的坐标为()1,0. 设圆Ω的半径为()0r r >. 由对称性, 不妨设Ω在x 轴上方与x 轴相切于F , 故Ω的方程为()()2221x y r r -+-=. ①将24yx =代入①并化简, 得2221204y y ry ⎛⎫-+-= ⎪⎝⎭. 显然0y >, 故 ()222224112432y y r y y y ⎛⎫+⎛⎫⎪=-+= ⎪ ⎪⎝⎭⎝⎭. ② ………………… (5分)根据条件, ②恰有一个正数解y , 该y 值对应Ω与Γ的唯一公共点.考虑()()224,032y f y y y+=>的最小值.由平均值不等式,知224444333y y +=+++≥从而 ()1329f y y ≥⋅=, 当且仅当243y =,即3y =时, ()f y取到最小值9. ………………… (15分)由②有解可知9r ≥.假设9r >, 因()f y 随y 连续变化, 且0y +→及y →+∞时()f y 均可任意大,故②在0,3⎛⎫ ⎪ ⎪⎝⎭及,3⎛⎫+∞ ⎪ ⎪⎝⎭上均有解, 与解的唯一性矛盾. 综上,仅有9r =满足条件(此时1,33⎛⎫ ⎪ ⎪⎝⎭是Ω与Γ的唯一公共点).………………… (20分) 11. (本题满分20分) 称一个复数数列{}n z 为“有趣的”, 若11z =, 且对任意正整数n , 均有2211420n n n n z z z z ++++=. 求最大的常数C , 使得对一切有趣的复数数列{}n z 及任意正整数m , 均有12m z z z C +++≥ .解: 考虑有趣的复数数列{}n z . 由归纳法可知*0,N n z n ≠∈. 由条件得2*114210,N n n n n z z n z z ++⎛⎫⎛⎫++=∈ ⎪ ⎪⎝⎭⎝⎭.解得*11,N 4n n z n z +-±=∈.因此1112n n n nz z z z ++===, 故 1*1111,N 22n n n z z n --⎛⎫=⋅=∈ ⎪⎝⎭. ① ………………… (5分)进而, 有*11111,N 22n n n n n n nz z z z n z ++-+=⋅+==∈. ② 记*12,N m m T z z z m =+++∈ . 当*2,N m s s =∈时,利用②可得12212212212222223sm k kk k k k k k T z z z z z z ∞∞---===≥+-+>-+=-=∑∑∑. ………………… (10分)当*21,N m s s =+∈时,利用①、②可知2121222121211111111212222442s k k s s s s k k k s k s k s z z z ∞∞∞+----=+=+=+==⋅<====+∑∑∑,故12212212122223sm k k s k k k k T z z z z z z z ∞-+-==≥+-+->-+=∑∑.当1m =时, 1113T z ==>.以上表明3C =满足要求. ………………… (15分) 另一方面,当*1221221111,,,N 22k k k k z z z n ++-+--===∈时, 可验证{}n z 为有趣的复数数列. 此时()2112211131lim lim lim 11233sss k k s s s k k T z z z ++→∞→∞→∞==-=++=+=+⋅=∑, 这表明C不能大于3. 综上, 所求的C为3. ………………… (20分)2019年全国高中数学联合竞赛加试(A 卷)参考答案及评分标准说明:1. 评阅试卷时, 请严格按照本评分标准的评分档次给分.2. 如果考生的解答方法和本解答不同, 只要思路合理、步骤正确, 在评卷时可参考本评分标准适当划分档次评分, 10分为一个档次, 不得增加其他中间档次.一、(本题满分40分) 如图, 在锐角ABC ∆中, M 是BC 边的中点. 点P 在ABC ∆内, 使得AP 平分BAC ∠. 直线MP 与,ABP ACP ∆∆的外接圆分别相交于不同于点P 的两点,D E . 证明: 若DE MP =, 则2BC BP =.(答题时请将图画在答卷纸上)解: 延长PM 到点F , 使得MF ME =. 连接,,BF BD CE .由条件可知, BDP BAP CAP CEP CEM ∠=∠=∠=∠=∠. ………………… (10分)因为BM CM =且EM FM =, 所以BF CE =且//BF CE .于是F CEM BDP ∠=∠=∠, 进而BD BF =.………………… (20分)又DE MP =, 所以DP DE EP MP PE EM =+=+=,故DP FM =.于是, 在等腰BDF ∆中, 由对称性得BP BM =. 从而22BC BM BP ==. ………………… (40分)二、(本题满分40分) 设整数122019,,,a a a 满足122019199a a a =≤≤≤= . 记()()2222123201913243520172019f a a a a a a a a a a a a =++++-++++ ,求f 的最小值0f , 并确定使0f f =成立的数组()122019,,,a a a 的个数.解: 由条件知()2017222221220182019212i i i f a a aaa a +==++++-∑. ①由于12,a a 及2,1,2,,2016i i a a i +-= 均为非负整数, 故有221122,a a a a ≥≥, 且()222,1,2,,2016i i i i a a a a i ++-≥-= .于是()()201620162221221222017201811i i i i i i a a aa a a a a a a ++==++-≥++-=+∑∑. ②………………… (10分)由①、②得()2222017201820192017201820192f a a a a a a ≥++-++,结合201999a =及201820170a a ≥>, 可知 ()()()2222201720172017201712999949740074002f a a a a ≥+-++=-+≥. ③ ………………… (20分)另一方面, 令()1219201920211920220191,1,2,,49,99k k a a a a a k k a +-+======== ,此时可验证上述所有不等式均取到等号, 从而f 的最小值07400f =. ………………… (30分)以下考虑③的取等条件. 此时2017201849a a ==, 且②中的不等式均取等号, 即{}1221,0,1,1,2,,2016i i a a a a i +==-∈= .因此122018149a a a =≤≤≤= , 且对每个()149k k ≤≤, 122018,,,a a a 中至少有两项等于k . 易验证这也是③取等的充分条件.对每个()149k k ≤≤, 设122018,,,a a a 中等于k 的项数为1k n +, 则k n 为正整数, 且()()()124911119202492018n n n ++++++=+⨯= ,即12491969n n n +++= .该方程组的正整数解()1249,,,n n n 的组数为49148196911968C C --=, 且每组解唯一对应一个使③取等号的数组()122019,,,a a a , 故使0f f =成立的数组()122019,,,a a a 有481968C 个.………………… (40分)三、(本题满分50分) 设m 为整数, 2m ≥. 整数数列123,,a a a 满足: 12,a a 不全为零, 且对任意正整数n , 均有21n n n a a ma ++=-.证明: 若存在整数(),2r s r s >≥使得1r s a a a ==, 则r s m -≥. 证明: 不妨设12,a a 互素, 否则, 若()12,1a a d =>, 则1a d 与2a d 互素, 并且用312,,,a a a d d d代替123,,,a a a , 条件和结论均不改变.由数列的递推关系知()()()2123mod ,1,2,3,mod ,3,4,5,mod ,4,5,6,n n k s a a m n a a m k a a m s ++⎧≡=⎪≡=⎪⎨≡=⎪⎪⎩①以下证明: 对任意整数3n ≥, 有()()()22123mod n a a a n a m m≡-+-. ②………………… (10分)事实上, 当3n =时②显然成立. 假设n k =时②成立(其中k 为某个大于2的整数), 注意到①,有()212mod k ma ma m-≡. 结合归纳假设, 有()()()()21121223mod k k k a a ma a a k a m ma m +-=-≡-+--()()()()22122mod a a k a m m ≡-+-,即1n k =+时②也成立. 因此②对任意整数3n ≥均成立. ………………… (20分)注意, 当12a a =时, ②对2n =也成立.设整数(),2r s r s >≥, 满足1r s a a a ==. 若12a a =, 由②对2n ≥均成立, 可知()()()()()()222122123mod 3mod r s a a r a m m a a a a s a m m -+-≡=≡-+-,即()()()121233mod a r a a s a m +-≡+-, 亦即()()20mod r s a m -≡. ③若12a a =/, 则12r s a a a a ===/, 故3r s >≥. 此时由于②对3n ≥均成立, 故类似可知③仍成立. ………………… (30分)我们证明2,a m 互素.事实上, 假设2a 与m 存在一个公共素因子p , 则由①知, p 为234,,,a a a 的公因子, 而12,a a 互素, 故1|p a /, 这与1r s a a a ==矛盾.因此, 由③得()0mod r s m -≡. 又r s >, 所以r s m -≥. ………………… (50分) 四、(本题满分50分) 设V 是空间中2019个点构成的集合, 其中任意四点不共面. 某些点之间连有线段, 记E 为这些线段构成的集合. 试求最小的正整数n , 满足条件: 若E 至少有n 个元素, 则E 一定含有908个二元子集, 其中每个二元子集中的两条线段有公共端点, 且任意两个二元子集的交为空集.解: 为了叙述方便, 称一个图中的两条相邻的边构成一个“角”.先证明一个引理: 设(),G V E =是一个简单图, 且G 是连通的, 则G 含有2E ⎡⎤⎢⎥⎣⎦个两两无公共边的角(这里[]α表示实数α的整数部分).引理的证明: 对E 的元素个数E 归纳证明. 当0,1,2,3E =时, 结论显然成立. 下面假设4E ≥, 并且结论在E 较小时均成立. 只需证明, 在G 中可以选取两条边,a b 构成一个角, 在G 中删去,a b 这两条边后, 剩下的图含有一个连通分支包含2E -条边. 对这个连通分支应用归纳假设即得结论成立.考虑G 中的最长路12:k P v v v , 其中12,,,k v v v 是互不相同的顶点. 因为G 连通, 故3k ≥.情形1: ()1deg 2v ≥. 由于P 是最长路, 1v 的邻点均在2,,k v v 中, 设1i v v E ∈, 其中3i k ≤≤, 则{}121,i v v v v 是一个角, 在E 中删去这两条边. 若1v 处还有第三条边, 则剩下的图是连通的; 若1v 处仅有被删去的两条边, 则1v 成为孤立点, 其余顶点仍互相连通. 总之在剩下的图中有一个连通分支含有2E -条边.情形2: ()()12deg 1,deg 2v v ==. 则{}1223,v v v v 是一个角, 在G 中删去这两条边后, 12,v v 都成为孤立点, 其余的点互相连通, 因此有一个连通分支含有2E -条边.情形3: ()()12deg 1,deg 3v v =≥, 且2v 与4,,k v v 中某个点相邻. 则{}1223,v v v v 是一个角, 在G 中删去这两条边后, 1v 成为孤立点, 其余点互相连通, 因此有一个连通分支含有2E -条边.情形4: ()()12deg 1,deg 3v v =≥, 且2v 与某个{}13,,,k u v v v ∉ 相邻. 由于P 是最长路, 故u 的邻点均在2,,k v v 之中. 因{}122,v v v u 是一个角, 在G 中删去这两条边, 则1v 是孤立点. 若u 处仅有边2uv , 则删去所述边后u 也是孤立点, 而其余点互相连通. 若u 处还有其他边,3i uv i k ≤≤, 则删去所述边后, 除1v 外其余点互相连通. 总之, 剩下的图中有一个连通分支含有2E -条边.引理获证. ………………… (20分) 回到原题, 题中的V 和E 可看作一个图(),G V E =. 首先证明2795n ≥.设{}122019,,,V v v v = . 在1261,,,v v v 中, 首先两两连边. 再删去其中15条边 (例如1213,v v v v ,116,v v ), 共连了261151815C -=条边, 则这61个点构成的图是连通图. 再将剩余的201961-=1958个点配成979对, 每对两点之间连一条边, 则图G 中一共连了181********+=条线段. 由上述构造可见, G 中的任何一个角必须使用1261,,,v v v 相连的边, 因此至多有18159072⎡⎤=⎢⎥⎣⎦个两两无公共边的角. 故满足要求的n 不小于2795. ………………… (30分)另一方面, 若2795E ≥, 可任意删去若干条边, 只考虑2795E =的情形.设G 有k 个连通分支, 分别有1,,k m m 个点, 及1,,k e e 条边. 下面证明1,,k e e 中至多有979个奇数.反证法, 假设1,,k e e 中有至少980个奇数, 由于12795k e e ++= 是奇数, 故1,,k e e 中至少有981个奇数, 故981k ≥. 不防设12981,,,e e e 都是奇数, 显然12981,,,2m m m ≥ .令9812k m m m =++≥ , 则有()229811980,i m i m k C e i C e e ≥≤≤≥++ , 故98022112795ik imm i i e C C===≤+∑∑. ①利用组合数的凸性, 即对3x y ≥≥, 有222211x y x y C C C C +-+≤+, 可知当1980,,,m m m 由980个2以及一个59构成时, 980221imm i C C =+∑取得最大值. 于是 9802222592198026912795imm i C C C C =+≤+=<∑, 这与①矛盾, 从而1,,k e e 中至多有979个奇数. ………………… (40分)对每个连通分支应用定理, 可知G 中含有N 个两两无公共边的角, 其中()11119792795979908222kki i i i e N e ==⎛⎫⎡⎤=≥-=-= ⎪⎢⎥⎣⎦⎝⎭∑∑.综上, 所求最小的n 是2795. ………………… (50分)。
2019年高考数学真题分类汇编专题13:排列组合与概率统计(基础题含解析)
2019年高考数学真题分类汇编专题13:排列组合与概率统计(基础题)一、单选题1.(2019•浙江)设0<a<1随机变量X的分布列是则当a在(0,1)内增大时()A. D(X)增大B. D(X)减小C. D(X)先增大后减小D. D(X)先减小后增大2.(2019•全国Ⅲ)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A. B. C. D.3.(2019•全国Ⅲ)(1+2x2)(1+x)2的展开式中x3的系数为()A. 12B. 16C. 20D. 244.(2019•卷Ⅱ)生物实验室有5只兔子,其中只有3只测量过某项指标。
若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A. B. C. D.5.(2019•卷Ⅱ)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A. 中位数B. 平均数C. 方差D. 极差6.(2019•卷Ⅰ)某学校为了解1000名新生的身体素质,将这些学生编号为1,2,……,1000。
从这些新生中用系统抽样方法等距抽取1000名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是()A. 8号学生B. 200号学生C. 616号学生D. 815号学生7.(2019•卷Ⅰ)我国古代典籍《周易》用“卦”描述万物的变化。
每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“--",下图就是一重卦。
在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A. B. C. D.二、填空题8.(2019•江苏)已知一组数据6,7,8,8,9,10,则该组数据的方差是________.9.(2019•江苏)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是________.10.(2019•卷Ⅱ)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.11.(2019•卷Ⅰ)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束)。
学2019届高三7月段考数学(理)试题(附答案)
新余四中2019届(7月份)月考数学理科试题总分:150分 考试时间:120分钟一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的. 1.复数(i 为虚数单位)的共轭复数是( )A. 1+iB. 1−iC. −1+iD. −1−i2.已知全集U={1,2,3,4,5},A={1,3},则( )A. B. {1,3} C. {2,4,5} D. {1,2,3,4,5} 3.已知集合{}{}0,1,2,3,|13A B x x ==-≤<,则A B ⋂=( ) A. {}1,2 B. {}0,1,2 C. {}0,1,2,3 D. ∅ 4.“x >1”是“220x x +>”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 5.若方程C : 221yx a+=(a 是常数)则下列结论正确的是( )A. 0a ∀>,方程C 表示椭圆B. 0a ∀<,方程C 表示双曲线C. 0a ∃<,方程C 表示椭圆D. a R ∃∈,方程C 表示抛物线 6.函数的定义域是( )A.B.C.D.7.已知奇函数满足,且当时,,则( ) A. 41- B. 31-C.31 D.218.已知奇函数满足,则( )A. 函数是以2为周期的周期函数B. 函数是以为周期的周期函数C. 函数是奇函数 D. 函数是偶函数9.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,过动点,法向量为的直线的点法式方程为,化简得,类比上述方法,在空间直角坐标系中,经过点,且法向量为的平面的点法式方程应为( )A.B.C. D.10.定义在上的偶函数在单调递增,且,则的的取值范围是( )A.B.C.D.11.已知椭圆的左、右顶点分别为,且以线段为直径的圆与直线相切,则的离心率为( )A.B.C. D.12.已知函数,在区间上任取三个数均存在以为边长的三角形,则的取值范围是( )A. B.C.D.二、填空题:本大题共4小题,每小题5分,共20分,请把正确的答案填写在答题卡相应的横线上. 13.曲线在处的切线方程是__________. 14.已知抛物线的准线方程为,点为抛物线上的一点,则点到直线的距离的最小值为_________.15.已知函数,若函数有三个不同的零点,则实数的取值范围是__________.16.设函数c bx x x x f ++=)(,给出四个命题: ①0=c 时,有)()(x f x f -=-成立;②c b ,0=﹥0时,方程0)(=x f ,只有一个实数根; ③)(x f y =的图象关于点(0,c )对称; ④方程0)(=x f ,至多有两个实数根.上述四个命题中所有正确的命题序号是__________.三、解答题:(共6题,10+12+12+12+12+12共70分本大题共六小题,解答应写出文字说明、证明过程或求解演算步骤。
贵州省2019年7月普通高中学业水平考试数学试卷高清答案版
贵州省2019年7月普通高中学业水平考试数 学 试 卷参考公式:柱体体积公式:V=Sh ;锥体体积公式:V=31Sh(S 为底面面积,h 为高)。
第I 卷(第Ⅰ卷包括35小题,每题3分,共计105分)一、选择题:每小题给出的四个选项中,只有一项是符合题意的。
1.已知A={x|x<2},B={1,2,3},则A ∩B=A .{ 1}B .{2}C .{2,3}D .{0,1,3} 2.函数f (x)=2-x 的定义域为A .{x|x ≥1}B .{x ≥2}C .{x|x ≤1}D .{x|x ≤2} 3.以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体是A .圆柱B .圆锥C .圆台D .球体 4.已知向量a =(1,-2),b =(2,3),则a -b =A .(4,-1)B .(2,5))C .(-3,2)D .(-1,-5) 5.设等差数列{a n }的前n 项和是S n ,若首项a 1=1,公差d =2,则S 3=A .7B .9C .11D .13 6.函数f (x)=(k+3)x+1在R 上是增函数,则实数k 的取值范围是A .k>-3B .k<-3C .k>-2D . k<-27.如图,九宫格由九个小正方形组成在该九宫格内随机取一点P ,则点P 在阴影部分的概率为A .91 B .61 C .31 D .21 8.已知向量a =(2,7),则|a |=A .2B .3C .4D .59.各项均为正数的等比数列{a n }满足a 3=1.a 5=36,则a 4=A .3B .4C .5D .6 10.函数y=|x-1|的图象是A B C D11已知直线/:y=4x-5,其斜率为A .1B .2C .3D .412.右图是某城市2017年各月的平均气温(°C)数据的茎叶图,则这组数据的众数为A .17B .19C .21D .2313.角a 的顶点与原点O 重合,始边与x 轴的非负半轴重合,若a 的终边经过点P(2,2),则tan a 的值为A .1B .2C .3D .4 14.幂函数f (x)=x a 的图象经过点(2,4),则f (x)的解析式为A .f (x)=x -1B . f(x)=xC . f(x)=x 2D . f(x)=x 3 15.已知sin a =31,则sin(a +2 )的值为 A .-31 B .31 C .-61 D .6116.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .若A=60°,a =3,b=1,则BA .30°B .45°C .60°D .135°17.某班有男生30名,女生24名.现用分层抽样的方法从全班同学中抽取若干名同学参加一项活动,若男生抽取5名,则女生抽取的人数为A .2B .3C .4D .518.如图,在直二面角A-BC-D 中,M ,N 分别是线段AB ,AC 的中点,则直线MN 与平面BCD 的位置关系是A .直线M 在平面BCD 内B .直线MN 与平面BCD 平行C .直线MN 与平面BCD 相交1 1xy 01 1xy1 1xy1 1xyAB CDMND .以上位置关系均有可能 19.已知函数f (x)=e x +e -x ,则f (x)为A .奇函数B .偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数20.掷一枚质地均匀的骰子一次,出现点数不大于5的的概率为A .31 B .21 C .32D .65 21.已知a ,b ,c 均为实数,且a >b ,则以下选项正确的是A .a 2>b 2B . ac> bcC .a-c>b-cD .ba 11> 22.计算sin17°cos28°+cos17°sin28°的结果等于A .-23 B .-22 C .22 D .2323.已知log a 4=1,则a 的值为A .3B .4C .5D .624已知e 1与e 2为两个不共线的向量,则与e 1+2e 2平行的向量是A .e 1+ e 2B .2 e 1+ e 2C .2 e 1+3 e 2D .2 e 1+4 e 2 25.△ABC 的内角A ,B ,C 对边分是a ,b ,c ,a =3,b =5,c =7,则C 的大小为A .120°B .90°C . 45°D .30° 26.函数f (x)=x 3-10的零点所在的区间是A .(0,1)B .(1,2)C .(2,3)D .(3,4) 27.甲与乙进行象棋比赛,甲获胜的概率为31,甲与乙和棋(平局)的概率为61,则乙获胜的概率为A .21 B .41 C .61D .8128.若变量x ,y 满足约束条件⎪⎩⎪⎨⎧≥+≥+≤-0,2y -x 0,y x ,02x ,则z=3x+y 的最大值是A .-2B .4C .8D .10 29.已知a =30.2,b =30.5,c =30.9,则a ,b ,c 的大小关系为A .a<b<cB . c<a<bC . a<c<bD .b<c<a30.为了落实“振兴乡村战略”,某市拟定从2018年至2023年,年投入“振兴乡村战略”的项目资金从200亿元增加到300亿元,则这几年间该市投入该项目资金的年平均增长率x 应满足的关系式为A.200(1+x)=300B .200x=300C .200(1+x)5=300D .200x 5=300 31.将函数y=cos 2x-sin 2x 的图象上所有点向左平移6π个单位长度,所得图象的函数解析式为A .y=cos(2x+6π) B . y =cos(2x-6π) C .y=cos(2x+3π) D . y=cos(2x-3π)32.已知正实数a ,b 满足a +b =2,则b a 11+,的最小值是A .2B .49C .38D .82533.△ABC 的内角A ,B ,C 的对边分别是a ,b ,c .若△ABC 的面积是)(123222a cb -+则A=A .90°B .60°C .45°D .30° 34.定义bc ad dc b a -=,则函数f (x)=132cos 2sin x x 的图象的一个对称中心为A .(4π,0) B .(3π,0) C .(125π,0) D .(32π,0)35.若函数f (x)=x 2-2x+m 在区间[1,n]上的值域仍为[1,n] ( n>1),则m+n 的值为A .3B .4C .3或4D .0第Ⅱ卷(第Ⅱ卷包括8小题,共45分)二、填空题:本大题共5小题,每小题3分,共15分。
2019年高考数学真题合集(含解析)
解析设某人身高为 *34!脖子下端至肚脐的长度为+34!
则由腿长为!#534!可 得*!&#!5#5%槡5"&!&#!'!6!解 得 *
%!'$!6$#! 由 头 顶 至 脖 子 下 端 的 长 度 为 "'34!
$#!$本小题满分 !$ 分 %已 知 函 数 *$#%'9/:#(1:$!0#%# *7$#%为 *$#%的导数!证明,
$ % $!%*7$#%在区间 (!#$ 存在唯一极大值点-
$$%*$#%有 且 仅 有 $ 个 零 点 !
第 !4 题 图
$!!$本小题满分!$分%为治疗 某 种 疾 病#研 制 了 甲/乙 两 种 新 药#希望知道哪种新药更有效#为 此 进 行 动 物 试 验!试 验 方 案如下,每一轮 选 取 两 只 白 鼠 对 药 效 进 行 对 比 试 验!对 于 两只白鼠#随机选一只施以甲 药#另 一 只 施 以 乙 药!一 轮 的 治疗结果得出后#再 安 排 下 一 轮 试 验!当 其 中 一 种 药 治 愈 的白鼠比另一 种 药 治 愈 的 白 鼠 多 ) 只 时#就 停 止 试 验#并 认为治愈只数多的药更有效!为 了 方 便 描 述 问 题#约 定,对 于每轮试验#若施以甲药的白 鼠 治 愈 且 施 以 乙 药 的 白 鼠 未
解析由 ""&"&'"#!得 ""&(#"")"#"#!解 得 &""" "(! 即 #* $"#&""""(%!+ $ $# * $"#&"""""%!故 选 %!
2019年高考数学真题分类汇编:专题(11)排列组合、二项式定(理科)及答案
专题十一 排列组合、二项式定理1.【2018高考陕西,理4】二项式(1)()n x n N ++∈的展开式中2x 的系数为15,则n =( ) A .4 B .5 C .6 D .7 【答案】C【解析】二项式()1nx +的展开式的通项是1C r rr n x +T =,令2r =得2x 的系数是2C n ,因为2x 的系数为15,所以2C 15n =,即2300n n --=,解得:6n =或5n =-,因为n +∈N ,所以6n =,故选C .【考点定位】二项式定理.【名师点晴】本题主要考查的是二项式定理,属于容易题.解题时一定要抓住重要条件“n +∈N ”,否则很容易出现错误.解本题需要掌握的知识点是二项式定理,即二项式()na b +的展开式的通项是1C k n k k k n a b -+T =.2.【2018高考新课标1,理10】25()x x y ++的展开式中,52x y 的系数为( ) (A )10 (B )20 (C )30 (D )60 【答案】C【解析】在25()x x y ++的5个因式中,2个取因式中2x 剩余的3个因式中1个取x ,其余因式取y,故52x y 的系数为212532C C C =30,故选 C.【考点定位】本题主要考查利用排列组合知识计算二项式展开式某一项的系数.【名师点睛】本题利用排列组合求多项展开式式某一项的系数,试题形式新颖,是中档题,求多项展开式式某一项的系数问题,先分析该项的构成,结合所给多项式,分析如何得到该项,再利用排列组知识求解. 3.【2018高考四川,理6】用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有( )(A )144个 (B )120个 (C )96个 (D )72个 【答案】B 【解析】据题意,万位上只能排4、5.若万位上排4,则有342A ⨯个;若万位上排5,则有343A ⨯个.所以共有342A ⨯343524120A +⨯=⨯=个.选B.【考点定位】排列组合.【名师点睛】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.在本题中,万位与个位是两个特殊位置,应根据这两个位置的限制条件来进行分类.4.【2018高考湖北,理3】已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式 系数和为( ) A.122 B .112 C .102D .92【答案】D【解析】因为(1)n x +的展开式中第4项与第8项的二项式系数相等,所以73nn C C =,解得10=n , 所以二项式10(1)x +中奇数项的二项式系数和为9102221=⨯. 【考点定位】二项式系数,二项式系数和.【名师点睛】二项式定理中应注意区别二项式系数与展开式系数,各二项式系数和:n n n n n n C C C C 2210=+⋅⋅⋅+++,奇数项的二项式系数和与偶数项的二项式系数和相等=⋅⋅⋅++++420n n n C C C 15312-=⋅⋅⋅++++n n n n C C C .5、【2018高考广东,理12】某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了 条毕业留言.(用数字作答) 【答案】1560.【考点定位】排列问题.【名师点睛】本题主要考查排列问题,属于中档题,解答此题关键在于认清40人两两彼此给对方仅写一条毕业留言是个排列问题.6.【2018高考重庆,理12】53x ⎛ ⎝的展开式中8x 的系数是________(用数字作答).【答案】52【解析】二项展开式通项为7153521551()()2k k kkk k k T C x C x --+==,令71582k-=,解得2k =,因此8x 的系数为22515()22C =. 【考点定位】二项式定理【名师点晴】()na b +的展开式的二项式系数与该项的系数是两个不同的概念,前者只是指kn C ,它仅是与二项式的幂的指数n 及项数有关的组合数,而与a ,b 的值无关;而后者是指该项除字母外的部分,即各项的系数不仅与各项的二项式系数有关,而且也与a ,b 的系数有关.在求二项展开式特定项的系数时要充分注意这个区别. 7.【2018高考广东,理9】在4)1(-x 的展开式中,x 的系数为 . 【答案】6.【解析】由题可知()()44214411r rrrrr r T CC x--+=-=-,令412r-=解得2r =,所以展开式中x 的系数为()22416C -=,故应填入6.【考点定位】二项式定理.【名师点睛】本题主要考查二项式定理和运算求解能力,属于容易题,解答此题关键在于熟记二项展开式的通项即展开式的第1r +项为:()*12,r n r rr n T C a b n N n r N -+=∈≥∈且.8.【2018高考四川,理11】在5(21)x -的展开式中,含2x 的项的系数是 (用数字作答). 【答案】40-. 【解析】55(21)(12)x x -=--,所以2x 的系数为225(2)40C -⨯-=-.【考点定位】二项式定理.【名师点睛】涉及二项式定理的题,一般利用其通项公式求解.9.【2018高考天津,理12】在614x x ⎛⎫- ⎪⎝⎭ 的展开式中,2x 的系数为 .【答案】1516【解析】614x x ⎛⎫- ⎪⎝⎭展开式的通项为6621661144rrr r r r r T C x C x x --+⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,由622r -=得2r =,所以222236115416T C x x ⎛⎫=-= ⎪⎝⎭,所以该项系数为1516.【考点定位】二项式定理及二项展开式的通项.【名师点睛】本题主要考查二项式定理及二项展开式的通项的应用.应用二项式定理典型式的通项,求出当2r =时的系数,即可求得结果,体现了数学中的方程思想与运算能力相结合的问题.10.【2018高考安徽,理11】371()x x+的展开式中5x 的系数是 .(用数字填写答案) 【答案】35【解析】由题意,二项式371()x x +展开的通项372141771()()rr r r r r T C x C x x--+==,令2145r -=,得4r =,则5x 的系数是4735C =.【考点定位】1.二项式定理的展开式应用.【名师点睛】常规问题直接利用二项式定理求解,其中通项是核心,运算是保证;比较复杂的问题要回到最本质的计数原理去解决,而不是一味利用公式.另外,概念不清,涉及幂的运算出现错误,或者不能从最本质的计数原理出发解决问题,盲目套用公式都是考试中常犯的错误.11.【2018高考福建,理11】()52x + 的展开式中,2x 的系数等于 .(用数字作答) 【答案】80【解析】()52x + 的展开式中2x 项为2325280C x =,所以2x 的系数等于80.【考点定位】二项式定理.【名师点睛】本题考查二项式定理的特定项问题,往往是根据二项展开式的通项和所求项的联系解题,属于基础题,注意运算的准确度.12.【2018高考北京,理9】在()52x +的展开式中,3x 的系数为 .(用数字作答)【答案】40【考点定位】本题考点为二项式定理,利用通项公式,求指定项的系数.【名师点睛】本题考查二项式定理,利用通项公式求出指定项的系数,本题属于基础题,要求正确使用通项公式1r n r r r n T C a b -+=,准确计算指定项的系数.13.【2018高考新课标2,理15】4()(1)a x x ++的展开式中x 的奇数次幂项的系数之和为32,则a =__________. 【答案】3【解析】由已知得4234(1)1464x x x x x +=++++,故4()(1)a x x ++的展开式中x 的奇数次幂项分别为4ax ,34ax ,x ,36x ,5x ,其系数之和为441+6+1=32a a ++,解得3a =.【考点定位】二项式定理.【名师点睛】本题考查二项式定理,准确写出二项展开式,能正确求出奇数次幂项以及相应的系数和,从而列方程求参数值,属于中档题.【2018高考湖南,理6】已知5的展开式中含32x 的项的系数为30,则a =( )C.6 D-6 【答案】D. 【解析】试题分析:r rr rr x a C T -+-=2551)1(,令1=r ,可得6305-=⇒=-a a ,故选D.【考点定位】二项式定理.【名师点睛】本题主要考查了二项式定理的运用,属于容易题,只要掌握nb a )(+的二项展开式的通项第1+r 项为rr n r n r b a C T -+=1,即可建立关于a 的方程,从而求解.【2018高考上海,理11】在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为 (结果用数值表示).【答案】45【解析】因为10101019102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++⎪ ⎪⎝⎭⎝⎭,所以2x 项只能在10(1)x +展开式中,即为8210C x ,系数为81045.C = 【考点定位】二项展开式【名师点睛】(1)求二项展开式中的指定项,一般是利用通项公式进行化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数r+1,代回通项公式即可.(2)对于三项式问题一般先变形化为二项式再解决.【2018高考上海,理8】在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为(结果用数值表示).【答案】120【解析】由题意得,去掉选5名女教师情况即可:55961266120.C C-=-=【考点定位】排列组合【名师点睛】涉及排列与组合问题,区分的关键是看选出的元素是否与顺序有关,排列问题与顺序有关,组合问题与顺序无关.“含”与“不含”的问题:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.通常用直接法分类复杂时,考虑逆向思维,用间接法处理.。
2019年全国高中数学联合竞赛A卷试题(含答案)
一、填空题:本大题共 8小題,每小题8分,满分64分。
1•已知正实数a满足a a=(9a)8a,则log a(3a)的值为__________2•若实数集合{1,2,3,x}的最大元素与最小元素之差等于该集合的所有元素之和,则X的值为一、(本题满分40分)如图,在锐角厶 ABC中,M是BC边的中点。
点 P在厶ABC内,使得AP 平分∠ BAC直线MP与厶ABR A ACP的外接圆分别相交于不同于点P的两点D,E证明:若DE=MP贝U BC=2BP—、(本题满分40分)设整数aι,a2…,a20i9,满足 1= aι ≤ a2≤ …≤ a20i9=99 记 f=(a^+a^+ …+a20192)-(a1a3+a2a4+a3a5+…+a2017a2019).求f的最小值f0∙并确定使f=f0成立的数组佝,a2,∙∙∙ ,a2019)的个数三、(本題满分50分)设m为整数,≥2.整数数列a1,a2,…满足:a1,a2不全为零,且对任意正整数n,均有a n+2=a∏+1-ma∏.证明:若存在整效r,s(r>s≥ 2)使得a r=a s,=a1,则r-s≥.四、(本题满分50分)设V是空间中2019个点构成的集合,其中任意四点不共面。
某些点之间连有线段,记 E为这些线段构成的集合。
试求最小的正整数n,满足条件:若 E至少有n个元素,则E一定含有908个二元子集,其中每个二元子集中的两条线段有公共端点,且任意两个二元子集的交为空集2019年全国高中数学联合竞赛一试(A卷》参考答案及评分标准1.评阅试雜时.请依据本评分标准•填空屋只设*分和O分两档,其他各般的评闽.请严格按照本即分标准的评分档次給分P不得堆加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步•正甌在评卷时可參考本评分标准适当划分档次评分.解答题中第9小AU分为一个档次■第Kh H小题$分为一个档次,不得増加其他中间档次.一、填空题;本大题共8小込每小题8分.满分64分.I.己知正实数“满足= __________ 则IOM3①的們为・W: Ih 条件l3S59^ —.故5α = >fi)a ∙ a = a tfl•所W IogJ 3d)=—・2.___________________ 若实数集合}I.2J.Λ∣的处大兀索勺用小元索Z密⅛于该集合的所付元盘之和,则T的值为___ ・解:1K⅛χ>0.则凰大•凰小元衣Z羌不超过max{3∕∙而所有元董之和大:Inax{3,x∣.不符合条件.故*V0■即N为最小元索.3-x=6÷x.解3.____________________________________ 平而"J坐折系4 ;足唯位向氐向越満足二;=2・叫可≤平皿对任童实血成立.则Pl的取值范用足 -答案:∣√5.2√5∣.M:不妨JQe = (U))-由Fa e= 2.耐设Cf=(2.$) •姻对任意实数f∙仃这笞价T4+?<5|J|.解得μ∣∈[U4]> 即√∈[U6].于是Pl = √4+7 ∈ [√5.2金]•4.R为椭関I、的长轴顶点,F,F为】5勺两个焦点.I^I = 4. ∣.4Γ∣ = 2÷√3, P为1•上■点•满处∣PE∣∙∣M∣ = 2・则△/":/的曲枳为___________________ .答案,I.解:不妨设平面I•询坐标系屮「的标准方程为4+4=∣(Λ>A>0).(T Λ*根据条件ft∣2fl =∣.IΛ∣≡i 4. a±Ja z—Λ2⅛ ∣JΛ∣ = 2÷>A. ∏IS∣Λ = 2.ft = I ,H. ∣f∕∣=2√α∙-A2=2j3.由椭阴定义知IM|十IMl =加=4 •结仟|P£|・∖PF∖ "紂|?£f 十IPFI l= (∣∕1f∣+∣PFO i-2∣ff∣∙∣PΓ∣ = l2 = ∣^ .所以厶EPF为Il«1.进而E Vt F = 1∙∣∕^∣∙∣PΛ∙∣= I.5.的.2.3.…』)中碗机选岀一个数S崔-L-2-3∙∙∙∙.-10中勃机选岀一个豺∙Uh "心;整除的槪率为_________________ ・**∙ Ioo eM:数组(""JHilO j = IOO忡導悅帑的选法・考虑真中便a2÷∕>½ 3廉除的迭法数N•若“帔3協除.则b也被3整除・此时“上各冇3种选法•这祥的(Gb)冇护=9组.若口平被 3 醱除∙K∙∣√≡l(m□d3).从iΛjft≡ Km(Xl3).此时αU 7 选法./>有4种选法•这样(Kj(tf,Λ)^7x4≡28fa.37因此* = 9十28=≡37∙ F是所求概率为二.1006.对任盘闭(XfIiH・fl] M l /<示函数」∙ = Mir在/上的Q大(t'[.若IE数α满足Λ∕lυ βl= 2Λ∕lιf jβl・则“ W l fft 为__ .VJkt 或F jr•6 12M:假如OVd∙≤专・则曲Il:效園数图像性质得OVMlM = SinmSMχa∣∙与条件不符.因此«>y・此时MMd=丨,故M b.纽=!,F是存在菲负烙数R・使紂2Λπ÷-s<α<2(∕ <2AΛ⅛-π•①6 6且①中两处"≤ w至少有一处取到零号.”*=0时•得“=丄J T或加=匕注・经检脸・a=^π.-π均満足糸件・6 6 6 12-1U >1 时.fllT∙2A∙7Γ-t-^r<2∣2jt7r + ~r∣ ・故不存在満足①的“.综上.“的值为丄兀或匕帀・6 127.如图.正方体ABC D-EFCH一个截而纾过顶点A9C及投EF上一点K∙ O IE方体分成体枳比为3:1的两都分,则黑的值为_________________________ ・Ar答第√3.脈记料为蔽面所6:Tm.延—不交•「点尸•则P在α上•故直线CPα与他BMF的交练设CP与甩?交于点J割四边形AKLC为裁面•因平而.4 眈平IT TT而K"∙ H AK9 Bl∖ CL点尸∙^ABC-KI-L 7^0.不舫设正方体梭长为l ∙则正方体休枳为l ∙讎合条件^^ABC-KFLtfJ 休积y=}∙4 r紗—烷=鈴唱=倉臓到Ps分别足棱钳Γ - IfiC 1I 稜推P-KFL 的高•『址化简得3∕, = l ∙故Λ=ψ•从而^Γ=⅛ = 7=√3.√3 A? PK hR 将6个救2.0J9,20,19按任磁次序排成行■拼成个8位效睛位不 为0人则产生的不同的8位数的个数为 ______________________________________ •答案:498.解:将2,0∙ L9. 20, 19¾ιv f G (4<为()的捋列的全体记为儿 ⅛>liM≡5x5∙=6CO 〈这里及以下.M 表示有限集X β⅛元索个数〉・V2的肓一项是0∙ HJ 的后一项建9的排列的全体记为5: A 屮2的后 一顼是0∙但I 的后一项不是9的It 列的全体记为r : A 中I 的后一项是9∙但2 的后一项不是0的排列的全体记为D •⅛to∣β∣ = 4?. ∣β∣÷(c∣=5!. ∣Λ∣+∣D∣ =4×4!> β∏∣B∣= 24, ∣C∣ = 96t ∣D∣= 72 ・由P 中排列产生的毎个8{⅛βl,恰对应〃中的2x2=4个禅列(这样的排列 中.20可与-IO M 互换.!9可I J M L9 H 互换)•类似地.由「或D 中推列产 生的每个8位数•恰对应(7或。
2019年全国高三统一联合考试数学(文)答案
㊃ 文科数学 ㊃
㊃ 文科数学 ㊃
二㊁ 填空题 5 1 3. 4
2 ʌ , 解析 ɔ 因为aʅ ( 所以a㊃( a+ k b) a+ k b) = a +
参考答案及解析
1+2+3+4 ( ) 解: 因为 x= 1 8. 1 =2. 5, 4 5 5+6 9+7 1+8 5 =7 0, y= 4
即 y=2l o x, l o x= l o g g g 2 2 2
2 ) , , 则f 所以当 t<9 '( t) = -1 2 t +7 2 t= -1 2 t( t-6) ) 时, 单 调 递 增; 当tɪ ( 时, tɪ ( 0, 6 '( t) >0, t) 6, 9) f f(
a2 2 2 2 4 2 , , 则a 所 以 V2 = ( =2 t( 0< t<9) a h) =a h = 2 2 3 2 3 2 令 f( 4 t( 9 t) =-4 t +3 6 t. t) = -4 t +3 6 t ( 0<
) , , 又 a= ( 所 以 5+k( k a㊃ b=0. -2, 1 b= ( 3, 2) -6+ ) 解得 k= 2 =0, 5 . 4 ʌ 解 析ɔ 不 同 年 龄 段 的 人 对 移 动 支 付 的 熟
2分
3 因为在 әA 所以 s i nA . B C 中s i nA ʂ0, 2
分层抽样 1 4. 知程度不同 , 因此应该按照年龄进行分层抽样 . 解析 ɔ 所 求 目 标 函 数 的 值 可 转 化 为 可 行 域 ( 包括 1 5. 5 ʌ ) 到 直 线l: 且最大 A( 2, 4 3 x +4 y +3=0 的 距 离 最 大 , | 3ˑ2+4ˑ4+3 | 值为 =5. 5 边界 ) 上的点到直线l: 显然点 3 x +4 y +3=0 的 距 离 ,
新高考数学全国卷真题组合卷(附参考答案和详解)
绝密★启用前普通高等学校招生模拟考试真题组合试卷(2)数学(适用新高考地区)总分:150分 考试时间:120分钟★祝考试顺利★注意事项:1、本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:选出每小题答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸、答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内,写在试题卷、草稿纸、答题卡上的非答题区域均无效。
4、考试结束后,将本试卷和答题卡一并上交。
第I 卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2019天津卷·文)设集合{1,1,2,3,5}A =-,{2,3,4}B =,{|13}C x x =∈≤<R ,则()A C B =( )A.{2}B.{2,3}C.{1,2,3}-D.{1,2,3,4}2.(2019北京卷·文)已知复数2i z =+,则z z ⋅=( )C.3D.53.(2019全国卷Ⅱ·理)已知(2,3)AB =,(3,)AC t =,||1BC =,则AB BC ⋅=( )A.3-B.2-C.2D.34.(2019全国卷Ⅲ·理)24(12)(1)x x ++的展开式中3x 的系数为( )A.12B.16C.20D.245.(2019浙江卷)渐近线方程为0x y ±=的双曲线的离心率是( )B.1 D.26.(2019天津卷·理)已知52log a =,0.5log 0.2b =,0.20.5c =,则a ,b ,c 的大小关系为( )A.a c b <<B.a b c <<C.b c a <<D.c a b <<7.(2019浙江卷)设01a <<,则随机变量X 的分布列是X 0 a 1P13 13 13a 在()0,1内增大时( )A.()D X 增大B.()D X 减小C.()D X 先增大后减小D.()D X 先减小后增大8.(2019全国卷Ⅲ·文)如图,点N 为正方形ABCD 的中心,ECD △为正三角形,平面ECD ABCD ⊥平面,M 是线段ED 的中点,则( )A.BM EN =,且直线BM ,EN 是相交直线B.BM EN ≠,且直线BM ,EN 是相交直线C.BM EN =,且直线BM ,EN 是异面直线D.BM EN ≠,且直线BM ,EN 是异面直线二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.(2017全国卷Ⅲ·理改编)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论正确的是( ) A.月接待游客量逐月增加 B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳10.(2019江苏卷改编)如图,在直三棱柱111-ABC A B C 中,D ,E 分别为BC ,AC 的中点,AB BC =,且90ABC ∠=︒,设直三棱柱111-ABC A B C 的体积为V ,三棱锥1-C CED 的体积为1V ,则下列结论正确的有( )A.111A B DEC 平面B.平面11BB C C ⊥平面11BB A AC.1BE C E ⊥D.119V V =11.(2019北京卷·文改编)已知双曲线222:1(0)x C y a a-=>,则( )A.a =12B.C 的渐近线方程为12y x =±C.0⎛ ⎝⎭,是C 的一个焦点的坐标D.10y --=与C 有两个相异公共点12.(2017山东卷·理改编)若函数e ()x f x (e 2.71828≈是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.对于下列四个选项中的函数,其中具有M 性质的函数为( ). A.()2x f x -=B.()3x f x -=C.3()f x x =D.2()2f x x =+.第Ⅱ卷本卷包括填空题和解答题两部分,共90分. 三、填空题:本题共4小题,每小题5分。
2019湖南高考数学排列组合专项练习及答案精品教育.doc
2019年湖南高考数学排列组合专项练习及答案排列组合是组合学最基本的概念,下面是排列组合专项练习及答案,查字典数学网希望考生可以取得更好的成绩。
题型一、利用归纳推理求解相关问题例1:如图所示,是某小朋友在用火柴拼图时呈现的图形,其中第1个图形用了3根火柴,第2个图形用了9根火柴,第3个图形用了18根火柴,则第2019个图形用的火柴根数为________。
破题切入点:观察图形的规律,写成代数式归纳可得。
答案:30212019解析:由题意,第1个图形需要火柴的根数为3第2个图形需要火柴的根数为3(1+2);第3个图形需要火柴的根数为3(1+2+3);由此,可以推出,第n个图形需要火柴的根数为3(1+2+3++n)。
所以第2019个图形所需火柴的根数为3(1+2+3++2019)=3=30212019。
题型二、利用类比推理求解相关问题例2:如图所示,在平面上,用一条直线截正方形的一个角,截下的是一个直角三角形,有勾股定理c2=a2+b2。
空间中的正方体,用一平面去截正方体的一角,截下的是一个三条侧棱两两垂直的三棱锥,若这三个两两垂直的侧面的面积分别为S1,S2,S3,截面面积为S,类比平面中的结论有________。
破题切入点:由平面图形中各元素到空间几何体中各元素的类比。
答案:S2=S+S+S解析:建立从平面图形到空间图形的类比,在由平面几何的性质类比推理空间立体几何的性质时,注意平面几何中点的性质可类比推理空间几何中线的性质,平面几何中线的性质可类比推理空间几何中面的性质,平面几何中面的性质可类比推理空间几何中体的性质。
所以三角形类比空间中的三棱锥,线段的长度类比图形的面积,于是作出猜想:S2=S+S+S。
总结提高:(1)归纳推理的三个特点①归纳推理的前提是几个已知的特殊对象,归纳所得到的结论是未知的一般现象,该结论超越了前提所包含的范围;②由归纳推理得到的结论具有猜测的性质,结论是否准确,还需要经过逻辑推理和实践检验,因此归纳推理不能作为数学证明的工具;③归纳推理是一种具有创造性的推理,通过归纳推理得到的猜想,可以作为进一步研究的起点,帮助发现问题和提出问题。
2019年高考数学13套试卷及解析答案
2019 考数学 卷 I 理科 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 001 2019 考数学 卷 I 理科 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .006 2019 考数学 卷 I 文科 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 016 2019 考数学 卷 I 文科 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .021 2019 考数学 卷 II 理科 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 029 2019 考数学 卷 II 理科 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 034 2019 考数学 卷 II 文科 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 043 2019 考数学 卷 II 文科 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 048 2019 考数学 卷 III 理科 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 056 2019 考数学 卷 III 理科 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 062 2019 考数学 卷 III 文科 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 073 2019 考数学 卷 III 文科 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 078 2019 考数学北京卷理科 题. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .088 2019 考数学北京卷理科 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 093 2019 考数学北京卷文科 题. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 2019 考数学北京卷文科 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 2019 考数学 卷理科 题. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114 2019 考数学 卷理科 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 2019 考数学 卷文科 题. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128 2019 考数学 卷文科 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 2019 考数学浙江卷 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 2019 考数学浙江卷 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 2019 考数学江苏卷 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 2019 考数学江苏卷 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 2019 考数学上海卷 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 2019 考数学上海卷 题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
【上海卷】2019年普通高等学校招生全国统一考试数学真题(Word版,含解析)
2019年普通高等学校招生全国统一考试(上海卷)数 学一、填空题(本大题共12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.(4分)已知集合{1A =,2,3,4,5},{3B =,5,6},则AB = .2.(4分)计算22231lim 41n n n n n →∞-+=-+ .3.(4分)不等式|1|5x +<的解集为 . 4.(4分)函数2()(0)f x x x =>的反函数为 .5.(4分)设i 为虚数单位,365z i i -=+,则||z 的值为 6.(4分)已知22214x y x a y a +=-⎧⎨+=⎩,当方程有无穷多解时,a 的值为 . 7.(5分)在6(x+的展开式中,常数项等于 .8.(5分)在ABC ∆中,3AC =,3sin 2sin A B =,且1cos 4C =,则AB = . 9.(5分)首届中国国际进口博览会在上海举行,某高校拟派4人参加连续5天的志愿者活动,其中甲连续参加2天,其他人各参加1天,则不同的安排方法有 种(结果用数值表示)10.(5分)如图,已知正方形OABC ,其中(1)OA a a =>,函数23y x =交BC 于点P ,函数12y x -=交AB 于点Q ,当||||AQ CP +最小时,则a 的值为 .11.(5分)在椭圆22142x y +=上任意一点P ,Q 与P 关于x 轴对称,若有121F P F P …,则1F P 与2F Q 的夹角范围为 .12.(5分)已知集合[A t =,1][4t t ++,9]t +,0A ∉,存在正数λ,使得对任意a A ∈,都有A aλ∈,则t 的值是 .二、选择题(本大题共4题,每题5分,共20分) 13.(5分)下列函数中,值域为[0,)+∞的是( ) A .2xy =B .12y x =C .tan y x =D .cos y x =14.(5分)已知a 、b R ∈,则“22a b >”是“||||a b >”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分又非必要条件15.(5分)已知平面α、β、γ两两垂直,直线a 、b 、c 满足:a α⊆,b β⊆,c γ⊆,则直线a 、b 、c 不可能满足以下哪种关系( ) A .两两垂直B .两两平行C .两两相交D .两两异面16.(5分)以1(a ,0),2(a ,0)为圆心的两圆均过(1,0),与y 轴正半轴分别交于1(y ,0),2(y ,0),且满足120lny lny +=,则点1211(,)a a 的轨迹是( ) A .直线 B .圆 C .椭圆 D .双曲线三、解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,在正三棱锥P ABC -中,2,PA PB PC AB BC AC =====. (1)若PB 的中点为M ,BC 的中点为N ,求AC 与MN 的夹角; (2)求P ABC -的体积.18.(14分)已知数列{}n a ,13a =,前n 项和为n S . (1)若{}n a 为等差数列,且415a =,求n S ;(2)若{}n a 为等比数列,且lim 12n n S →∞<,求公比q 的取值范围.19.(14分)改革开放40年,我国卫生事业取得巨大成就,卫生总费用增长了数十倍.卫生总费用包括个人现在支出、社会支出、政府支出,如表为2012年2015-年我国卫生货用中个人现金支出、社会支出和政府支出的费用(单位:亿元)和在卫生总费用中的占比.(数据来源于国家统计年鉴)(1)指出2012年到2015年之间我国卫生总费用中个人现金支出占比和社会支出占比的变化趋势:(2)设1t =表示1978年,第n 年卫生总费用与年份t 之间拟合函数 6.44200.1136357876.6053()1tf t e -=+研究函数()f t 的单调性,并预测我国卫生总费用首次超过12万亿的年份.20.(16分)已知抛物线方程24y x =,F 为焦点,P 为抛物线准线上一点,Q 为线段PF 与抛物线的交点,定义:||()||PF d P FQ =. (1)当8(1,)3P --时,求()d P ;(2)证明:存在常数a ,使得2()||d P PF a =+;(3)1P ,2P ,3P 为抛物线准线上三点,且1223||||PP P P =,判断13()()d P d P +与22()d P 的关系.21.(18分)已知等差数列{}n a 的公差(0d ∈,]π,数列{}n b 满足sin()n n b a =,集合{}*|,n S x x b n N ==∈.(1)若120,3a d π==,求集合S ; (2)若12a π=,求d 使得集合S 恰好有两个元素;(3)若集合S 恰好有三个元素:n T n b b +=,T 是不超过7的正整数,求T 的所有可能的值.2019年上海市春季高考数学试卷参考答案与试题解析一、填空题(本大题共12题,满分54分,第1-6题每题4分,第7-12题每题5分) 1.(4分)已知集合{1A =,2,3,4,5},{3B =,5,6},则A B = {3,5} .【解答】解:集合{1A =,2,3,4,5}, {3B =,5,6}, {3AB ∴=,5}.故答案为:{3,5}.2.(4分)计算22231lim 41n n n n n →∞-+=-+ 2 .【解答】解:2222312231lim lim 241411n n n n n n n n n n→∞→∞-+-+==-+-+. 故答案为:2.3.(4分)不等式|1|5x +<的解集为 (6,4)- . 【解答】解:由|1|5x +<得515x -<+<,即64x -<< 故答案为:{6-,4).4.(4分)函数2()(0)f x x x =>的反函数为1()0)f x x -=> . 【解答】解:由2(0)y x x =>解得x =,1()0)f x x -∴=>故答案为1f -()0)x x =>5.(4分)设i 为虚数单位,365z i i -=+,则||z 的值为【解答】解:由365z i i -=+,得366z i =+,即22z i =+,||||z z ∴===故答案为:6.(4分)已知22214x y x a y a +=-⎧⎨+=⎩,当方程有无穷多解时,a 的值为 2- .【解答】解:由题意,可知: 方程有无穷多解,∴可对①2⨯,得:442x y +=-.再与②式比较,可得:2a =-. 故答案为:2-. 7.(5分)在6(x+的展开式中,常数项等于 15 .【解答】解:6(x+展开式的通项为36216r r r T C x-+=令3902r -=得2r =, 故展开式的常数项为第3项:2615C =. 故答案为:15.8.(5分)在ABC ∆中,3AC =,3sin 2sin A B =,且1cos 4C =,则AB【解答】解:3sin 2sin A B =,∴由正弦定理可得:32BC AC =, ∴由3AC =,可得:2BC =,1cos 4C =, ∴由余弦定理可得:2221324232AB +--=⨯⨯,∴解得:AB =.9.(5分)首届中国国际进口博览会在上海举行,某高校拟派4人参加连续5天的志愿者活动,其中甲连续参加2天,其他人各参加1天,则不同的安排方法有 24 种(结果用数值表示)【解答】解:在五天里,连续的2天,一共有4种,剩下的3人排列,故有33424A =种, 故答案为:24.10.(5分)如图,已知正方形OABC ,其中(1)OA a a =>,函数23y x =交BC 于点P ,函数12y x -=交AB 于点Q ,当||||AQ CP +最小时,则a【解答】解:由题意得:P点坐标为,)a ,Q点坐标为(a ,||||AQ CP +=,当且仅当a =11.(5分)在椭圆22142x y +=上任意一点P ,Q 与P 关于x 轴对称,若有121F P F P …,则1F P 与2F Q 的夹角范围为 1[arccos 3π-,]π .【解答】解:设(,)P x y ,则Q 点(,)x y -,椭圆22142x y +=的焦点坐标为(,0),,0),121F P F P …,2221x y ∴-+…,结合22142x y +=可得:2[1y ∈,2]故1F P 与2F Q 的夹角θ满足:222122212238cos 3[122(F P F Qy y y F P F Q x θ-====-+∈-++,1]3-故1[arccos 3θπ∈-,]π故答案为:1[arccos 3π-,]π12.(5分)已知集合[A t =,1][4t t ++,9]t +,0A ∉,存在正数λ,使得对任意a A ∈,都有A aλ∈,则t 的值是 1或3- .【解答】解:当0t >时,当[a t ∈,1]t +时,则[4t aλ∈+,9]t +,当[4a t ∈+,9]t +时,则[t aλ∈,1]t +,即当a t =时,9t a λ+…;当9a t =+时,t a λ…,即(9)t t λ=+;当1a t =+时,4t a λ+…,当4a t =+时,1t a λ+…,即(1)(4)t t λ=++,(9)(1)(4)t t t t ∴+=++,解得1t =.当104t t +<<+时,当[a t ∈,1]t +时,则[t aλ∈,1]t +.当[4a t ∈+,9]t +,则[4t aλ∈+,9]t +,即当a t =时,1t aλ+…,当1a t =+时,t a λ…,即(1)t t λ=+,即当4a t =+时,9t a λ+…,当9a t =+时,4t a λ+…,即(4)(9)t t λ=++,(1)(4)(9)t t t t ∴+=++,解得3t =-.当90t +<时,同理可得无解. 综上,t 的值为1或3-. 故答案为:1或3-.二、选择题(本大题共4题,每题5分,共20分) 13.(5分)下列函数中,值域为[0,)+∞的是( ) A .2xy =B .12y x =C .tan y x =D .cos y x =【解答】解:A ,2x y =的值域为(0,)+∞,故A 错B ,y =的定义域为[0,)+∞,值域也是[0,)+∞,故B 正确.C ,tan y x =的值域为(,)-∞+∞,故C 错D ,cos y x =的值域为[1-,1]+,故D 错. 故选:B .14.(5分)已知a 、b R ∈,则“22a b >”是“||||a b >”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分又非必要条件【解答】解:22a b >等价,22||||a b >,得“||||a b >”,∴ “22a b >”是“||||a b >”的充要条件,故选:C .15.(5分)已知平面α、β、γ两两垂直,直线a 、b 、c 满足:a α⊆,b β⊆,c γ⊆,则直线a 、b 、c 不可能满足以下哪种关系( ) A .两两垂直B .两两平行C .两两相交D .两两异面【解答】解:如图1,可得a 、b 、c 可能两两垂直; 如图2,可得a 、b 、c 可能两两相交; 如图3,可得a 、b 、c 可能两两异面;故选:B .16.(5分)以1(a ,0),2(a ,0)为圆心的两圆均过(1,0),与y 轴正半轴分别交于1(y ,0),2(y ,0),且满足120lny lny +=,则点1211(,)a a 的轨迹是( ) A .直线 B .圆 C .椭圆 D .双曲线【解答】解:因为11|1|r a =-=21112y a =-,同理可得22212y a =-, 又因为120lny lny +=, 所以121y y =, 则12(12)(12)1a a --=, 即12122a a a a =+, 则12112a a +=,设1211x a y a ⎧=⎪⎪⎨⎪=⎪⎩,则2x y +=为直线,故选:A .三、解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,在正三棱锥P ABC -中,2,PA PB PC AB BC AC =====. (1)若PB 的中点为M ,BC 的中点为N ,求AC 与MN 的夹角; (2)求P ABC -的体积.【解答】解:(1)M ,N 分别为PB ,BC 的中点,//MN PC ∴, 则PCA ∠为AC 与MN 所成角,在PAC ∆中,由2PA PC ==,AC =,可得222cos 2PC AC PA PCA PC AC +-∠==,AC ∴与MN的夹角为; (2)过P 作底面垂线,垂直为O ,则O 为底面三角形的中心, 连接AO 并延长,交BC 于N ,则32AN =,213AO AN ==.PO ∴==.∴11333224P ABC V -=⨯=.18.(14分)已知数列{}n a ,13a =,前n 项和为n S . (1)若{}n a 为等差数列,且415a =,求n S ;(2)若{}n a 为等比数列,且lim 12n n S →∞<,求公比q 的取值范围.【解答】解:(1)4133315a a d d =+=+=,4d ∴=, 2(1)3422n n n S n n n -∴=+⨯=+; (2)3(1)1n n q S q -=-,lim n n S →∞存在,11q ∴-<<,∴lim n n S →∞存在,11q ∴-<<且0q ≠,∴3(1)3lim lim 11n n n n q S q q→∞→∞-==--, ∴3121q <-,34q ∴<,10q ∴-<<或304q <<, ∴公比q 的取值范围为(1-,0)(0⋃,3)4.19.(14分)改革开放40年,我国卫生事业取得巨大成就,卫生总费用增长了数十倍.卫生总费用包括个人现在支出、社会支出、政府支出,如表为2012年2015-年我国卫生货用中个人现金支出、社会支出和政府支出的费用(单位:亿元)和在卫生总费用中的占比.(数据来源于国家统计年鉴)(1)指出2012年到2015年之间我国卫生总费用中个人现金支出占比和社会支出占比的变化趋势:(2)设1t =表示1978年,第n 年卫生总费用与年份t 之间拟合函数 6.44200.1136357876.6053()1tf t e-=+研究函数()f t 的单调性,并预测我国卫生总费用首次超过12万亿的年份.【解答】解:(1)由表格数据可知个人现金支出占比逐渐减少,社会支出占比逐渐增多. (2) 6.44200.1136t y e -=是减函数,且 6.44200.11360t y e -=>, 6.44200.1136357876.6053()1tf t e-∴=+在N 上单调递增, 令6.44200.1136357876.60531200001te ->+,解得50.68t >,∴当51t …时,我国卫生总费用超过12万亿,∴预测我国到2028年我国卫生总费用首次超过12万亿.20.(16分)已知抛物线方程24y x =,F 为焦点,P 为抛物线准线上一点,Q 为线段PF 与抛物线的交点,定义:||()||PF d P FQ =. (1)当8(1,)3P --时,求()d P ;(2)证明:存在常数a ,使得2()||d P PF a =+;(3)1P ,2P ,3P 为抛物线准线上三点,且1223||||PP P P =,判断13()()d P d P +与22()d P 的关系.【解答】解:(1)抛物线方程24y x =的焦点(1,0)F ,8(1,)3P --,84323PFk ==,PF 的方程为4(1)3y x =-,代入抛物线的方程,解得14Q x =, 抛物线的准线方程为1x =-,可得10||3PF ==, 15||144QF =+=,||8()||3PF d P QF ==; (2)证明:当(1,0)P -时,2()||2222a d P PF =-=⨯-=, 设(1,)P P y -,0P y >,:1PF x my =+,则2P my =-,联立1x my =+和24y x =,可得2440y my --=,2Q y m =+2()||22(22P P Q y d P PF y m m -==+2122m +-=-=,则存在常数a ,使得2()||d P PF a =+; (3)设11(1,)P y -,22(1,)P y -,33(1,)P y -,则1321322[()()]4()||||2||d P d p d P PF P F P F +-=+-==,由221313[()16]28y y y y -++=-,2222221313131313(4)(4(4)4()84()0y y y y y y y y y y ++-+=+-=->,则132()()2()d P d P d P +>.21.(18分)已知等差数列{}n a 的公差(0d ∈,]π,数列{}n b 满足sin()n n b a =,集合{}*|,n S x x b n N ==∈.(1)若120,3a d π==,求集合S ; (2)若12a π=,求d 使得集合S 恰好有两个元素;(3)若集合S 恰好有三个元素:n T n b b +=,T 是不超过7的正整数,求T 的所有可能的值. 【解答】解:(1)等差数列{}n a 的公差(0d ∈,]π,数列{}n b 满足sin()n n b a =,集合{}*|,n S x x b n N ==∈.∴当120,3a d π==,集合{S =,0. (2)12a π=,数列{}n b 满足sin()n n b a =,集合{}*|,n S x x b n N ==∈恰好有两个元素,如图:根据三角函数线,①等差数列{}n a 的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时d π=,②1a 终边落在OA 上,要使得集合S 恰好有两个元素,可以使2a ,3a 的终边关于y 轴对称,如图OB ,OC ,此时23d π=, 综上,23d π=或者d π=.(3)①当3T =时,3n n b b +=,集合1{S b =,2b ,3}b ,符合题意.②当4T =时,4n n b b +=,sin(4)sin n n a d a +=,42n n a d a k π+=+,或者42n n a d k a π+=-,等差数列{}n a 的公差(0d ∈,]π,故42n n a d a k π+=+,2k d π=,又1k ∴=,2 当1k =时满足条件,此时{S =-,1,1}-.③当5T =时,5n n b b +=,sin(5)sin n n a d a +=,52n n a d a k π+=+,或者52n n a d k a π+=-,因为(0d ∈,]π,故1k =,2. 当1k =时,{sin10S π=,1,sin}10π-满足题意. ④当6T =时,6n n b b +=,sin(6)sin n n a d a +=,所以62n n a d a k π+=+或者62n n a d k a π+=-,(0d ∈,]π,故1k =,2,3.当1k =时,S =,满足题意. ⑤当7T =时,7n n b b +=,sin(7)sin sin n n n a d a a +==,所以72n n a d a k π+=+,或者72n n a d k a π+=-,(0d ∈,]π,故1k =,2,3当1k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=,227d m n ππ==-,7m n -=,7m >,不符合条件. 当2k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=,247d m n ππ==-,m n -不是整数,不符合条件. 当3k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=或者4π,267d m n ππ==-,或者467d m n ππ==-,此时,m n -均不是整数,不符合题意.综上,3T =,4,5,6.。
贵州省2019年7月普通高中学业水平考试数学试卷高清答案版
贵州省2019年7月普通高中学业水平考试数学试卷高清答案版普通高中学业水平考试数学试卷选择题本题包括35小题,每小题3分,共计105分,每小题给出的四个先项中,只有一项....是符合题意的。
一.选择题(3*35=105)1.已知集合=?==N M c b N b a M ,则},{},,{()A .}{aB . {b}C .{c}D .{a,b,c} 2.函数x y =的定义域为()A. {}0≥x xB.{0>x x }C. {0≤x x }D.{0<="" n="" p="" x="" }="" )="" ,则中,(="">5 D. 34.直线13+=x y 的倾斜角为() A. 30 B. 60 C. 120 D. 1505.函数x y sin 2+=的最大值是( )A .1B . 2C . 3D . 4 6.掷一枚质地均匀的骰子,向上的点数小于3的概率是()A.61 B. 31 C. 21 D. 327.已知)(x f y =是定义在R 上的偶函数,)(,3)(a f a f 则有=-=()A. 3B. -3C.31 D. 31- 8.将一个球的半径扩大为原来的2倍,则它的表面积扩大为原来的()倍A . 2B . 3C . 4D . 89.等边ABC ?中,D 、E 、F 分别是AB 、BC 、CA 的中点,在ABC ?内随机取一点,则该点恰好在DEF ?内的概率为()A. 21B. 41C. 61D. 8110.化简328=()A. 4B. 6C. 8D. 1611.已知向量m m 则且,),,3(),2,1(⊥=-=的值是()A.23 B. 23- C. 4 D. 4- 12.已知xx x 1,0+>则的最小值是()A. 21B. 1C. 2D. 2 13.一个扇形的圆心角为4π,半径为4,则该扇形的弧长为()A. 4πB. 2πC. πD. π4 14.化简5lg 2lg +=()A. 0B. 1C. 7D. 10 15. 在平面中,化简=++CD BC AB () A. BD B. BE C. AC D. AD 16.不等式0322<--x x 的解集是()A. )(1-,3-B.),(13-C.)(3,1-D.),(31 17.已知某几何体的三视图如下所示,它的体积为()A. πB. 2πC. 3πD. 4πE18. 执行如上图所示的程序框图,若S =4,则b=() A. 1 B. 2 C.3 D. 419.已知1>a ,则函数x y a log =的图像大致是()A B C D20.某班有学生40人,现用系统抽样的方法,从中抽取一个容量为4的样本,已知样本中学生的座位号分别为4,x ,24,34,那么x 的值应是() A. 12 B. 13 C. 14 D. 1521.如图,已知几何体1111D C B A ABCD -是正方体,则与平面C AB 1垂直的一条直线是()A. BDB. 1BDC. 11C AD. 11D A22.已知一个回归直线方程为}5,4,3,2,1{,12∈+=∧x x y ,则数据y 的平均值为y =() A. 3 B. 5 C. 7 D. 9 23.以下四个不等式,成立的是() A. 5.1-2.1-33< B. 2.1-5.133< C. 5.1-2.133< D. 5.12.133<24.某校为了了解高三学生的食堂状况,抽取了100名女生的体重。
江苏省2019年高考[数学]考试真题与答案解析
4.函数的定义域是276y x x =+-5.已知一组数据6,7,8,8,6.从3名男同学和2名女同学中任选1名女同学的概率是.7.在平面直角坐标系中,若双曲线xOy 线方程是 .8.已知数列是等差数列,*{}()n a n ∈N 是.10.在平面直角坐标系中,P 是曲线xOy 的距离的最小值是 .13.已知,则的值是tan 2α=-πsin 2α⎛⎫+19.设函数、()()()(),,,f x x a x b x c a b c =---∈R (f '(1)若a=b=c ,f (4)=8,求a 的值;②设m 为正整数,若存在“M -数列”{c n },对任意正整数k ,当k ≤m 时,都有*()n ∈N 成立,求m 的最大值.1k k k c b c +……答案解析一、填空题1、2、23、54、5、6、 7、{1,6}[1,7]-537102y x=±8、169、10 10、4 11、 12、13、14、(e, 1)321012,34⎡⎫⎪⎢⎪⎣⎭二、解答题15.解:(1)因为,23,2,cos 3a cb B ===由余弦定理,得,即。
所以.222cos 2a c b B ac +-=2222(3)(2)323c c c c +-=⨯⨯213c =33c =(2)因为,sin cos 2A B a b=由正弦定理,得,所以.sin sin a b A B =cos sin 2B Bb b=cos 2sin B B =从而,即,故.22cos (2sin )B B =()22cos 41cos B B =-24cos 5B =因为,所以,从而,因此.sin 0B >cos 2sin 0B B =>25cos 5B =π25sin cos 25B B ⎛⎫+== ⎪⎝⎭16.证明:(1)因为D ,E 分别为BC ,AC 的中点,所以ED ∥AB.在直三棱柱ABC-A 1B 1C 1中,AB ∥A 1B 1,所以A 1B 1∥ED.又因为ED ⊂平面DEC 1,A 1B 1平面DEC 1,所以A 1B 1∥平面DEC 1.⊄(2)因为AB=BC ,E 为AC 的中点,所以BE ⊥AC.因为三棱柱ABC-A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC.又因为BE ⊂平面ABC ,所以CC 1⊥BE.因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC=C ,所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E.17.解:(1)设椭圆C 的焦距为2c ,因为F 1(-1,0),F 2(1,0),所以F 1F 2=2,c=1.又因为DF 1=,AF 2⊥x 轴,所以DF 2=,52222211253()222DF F F -=-=因此2a=DF 1+DF 2=4,从而a=2.由b 2=a 2-c 2,得b 2=3。
2019全国各高三上期数学联考试题重组专项题型七选考系列(教师版)
2019全国各高三上期数学联考试题重组专项题型七选考系列(教师版)注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解! 题型七 选考系列【备 考 要 点】选考内容由各省市自行选择内容和数量,选修系列包括几何证明选讲〔选修4-1〕、矩阵与变换〔选修4-2〕、坐标系与参数方程〔选修4-4〕、不等式选讲〔选修4-5〕等几部分内容。
纵观近几年来的全国卷与各省市的试卷,试题在选择题、填空题、解答题中都有可能出现,题目不难;通常与其它数学内容联系而构成组合题,主要考查数形结合与分类讨论等数学思想与方法的灵活应用能力。
从各地的高考试卷看,考生在备考时,应从以下考点夯实基础,做到以不变应万变:〔1〕理解三角形和圆的知识、〔2〕理解直线、圆和圆锥曲线的参数方程及应用、〔3〕了解矩阵与变换的内容、〔4〕掌握绝对值不等式、数学归纳法等证明方法。
【2017高考题型】几何证明选讲是高考的选考内容,主要考查相似三角形的判定与性质,射影定理,平行线分线段成比例定理;圆的切线定理,切割线定理,相交弦定理,圆周角定理以及圆内接四边形的判定与性质等、题目难度不大,以容易题为主、对本部分的考查主要是一道选考解答题,预测2018年仍会如此,难度不会太大、矩阵与变换主要考查二阶矩阵的基本运算,主要是以解答题的形式出现、预测在2018年高考主要考查(1)矩阵的逆矩阵;(2)利用系数矩阵的逆矩阵求点的坐标或曲线方程、坐标系与参数方程重点考查直线与圆的极坐标方程,极坐标与直角坐标的互化;直线,圆与椭圆的参数方程,参数方程与普通方程的互化,题目不难,考查“转化”为目的、预测2018高考中,极坐标、参数方程与直角坐标系间的互化仍是考查的热点,题目容易、不等式选讲是高考的选考内容之一,主要考查绝对值的几何意义,绝对值不等式的解法以及不等式证明的基本方法(比较法、分析法、综合法)、关于含有绝对值的不等式的问题、预测2018年高考在本部分可能会考查不等式的证明或求最值问题、【原题】〔在〔1〕〔2〕中任选作一题,如两题都做,按第〔1〕题记分〕〔1〕参数方程〕在极坐标系中,定点A 〔2,π〕,动点B在直线sin()4πρθ+=2上运动,那么线段AB 的最短长 度为、 〔2〕(几何证明选讲〕如图,在半径为2的⊙O 中,∠AOB=90°,D 为OB 的中点,AD 的延长线交⊙O于点E ,那么线段DE 的长为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
组合数学2019年7月真题及答案
1. (10分)3个0,2个1和3个7构成的8位数共有多少个?
答:
如果1作为首位,则7!/3!3! = 140
如果7作为首位,则7!/3!2!2! = 210
根据加法原则,共有140+210= 350个
2. (10分)某网红奶茶店有三种不同的奶茶。
小王买了5杯奶茶,问共有多少种不同的奶茶组合?
答:有C(7,2)=21种不同的组合
3. (10分)设序列a1,a2,…a2019各项都是正整数,证明在这个序列中必存在若干个连续项组成的子序列,其各项之和为2019的倍数。
答:(同2019年1月真题)
序列a1,a2,...a2019中的任意数,除以2019的余数只可能是0,1,2,3, (2018)
余数相加能被2019整除的数相加,一定能整除2019。
所以在此序列中,一定存在若干个连续项,使得每一项除以2019的余数之和为2019,即它们相加一定是2019的整数倍。
4. (10分)求满足递推关系hn=hn-1+9hn-2-9hn-3的hn的表达式,其中初始条件h1=0,h1=1, h2=2.
答:
根据hn=hn-1+9hn-2-9hn-3得:特征方程为q^3=q^2+9q-9,解方程得:
q1=1, q2=3, q3=-3
则通解为hn=c1*(1)^n+c2*(3)^n+c3*(-3)^n
将初始条件h1=0,h1=1, h2=2代入得:从c1=-1/4, c2=1/3, c3=-1/12
所以通解为hn=-1/4+1/3*(3)^n-1/12*(-3)^n
5. (10分)证明组合恒等式
证明:(2019年国考真题)
C(n+m+1, k+1) = C(n+m, k+1) + C(n+m, k)
C(n+m, k+1) = C(n+m-1, k+1) + C(n+m-1, k)
C(n+n-1, k+1) = C(n+m-2, k+1) + C(n+m-2, k)
...
C(n, k+1) = C(n, k+1) + C(n, k)
依次代入整理即:
C(n+m+1, k+1) = C(n, k+1) + C(n, k) + C(n+1, k) + C(n+2, k) + ... + C(n+m, k)
6. (10分)求方程x1+x2+x3+x4=17整数解的个数,其中x1≥2,x2≥3,x3≥1,x4≥4.
答:
令y1=x1-2, y2=x2-3, y3=x3-1, y4=x4-4
则原方程可看作是方程y1+2+y2+3+y3+1+y4+4=17, y1, y2, y3, y4≥0的非负整数解的个数,即y1+y2+y3+y4=7,非负整数解的个数为C(4+7-1, 7)=120个
7. (10分)设图G是具有12个顶点的二部图。
图G最多有多少条边?图G的顶点染色数是多少?
答:
图G最有36条边
顶点染色数是2
8. (10分)证明空间中不可能存在这样的多面体,它的面数是奇数,并且每个面由奇数条线段围成。
证明:(同2019年1月真题)
假设存在这样的多面体
由于每条边被两个面公用
所以每个面的边数和= 多面体边数* 2
由于它具有奇数个面,而且每一个面都有奇数条边,因此每个面的边数和是奇数*奇数也是奇数,这与多面体边数* 2一定是偶数,矛盾
因此假设不成立,即不存在这样的多面体
9. (10分)图G有16个顶点,30条边,每个顶点的度只能是3、5、或6。
已知图G有度为6的顶点2个,问度为3的顶点有多少个?度为5的顶点有多少个?
答:
设度为3的顶点有x个,度为5的顶点有y个
则x+y+2=16
6*2+3x+5y=30*2
解方程得:x=11, y= 3
即度为3的顶点有11个,度为5的顶点有3个
10. (10分)设Kn是n个顶点的完全图,用红蓝两种颜色给它的边任意染色。
1)证明当n=9时,图中必有蓝色的K4或红色的K3;
2)证明当n=14时,图中必定有蓝色的K5或红色的K3.
证明:(同2019年1月真题,2018年国考真题)
根据Ramsey定理,同时满足1),2)条件的最小的n=9,不妨这两题都取n=9,设9个顶点为v1,v2,v3,v4,v5,v6,v7,v8,v9
1)对9个顶点的完全图的边用红,蓝亮色任意着色,其结果必不可能使所有的顶点与之关联的边中都正好有3条边着红色或者蓝色。
这是因为如若不然,既每个顶点正好三条边着红色,3*9=27,是奇数,是不可能的。
因为每条红色的边都在两断点各计算一次,所得到的结果应该是偶数,这就证明了9个顶点中至少存在一个顶点,该顶点的8条边中着红色的边数
不是3.
2)假设顶点v9的8条边中,着红色的边数多于3,至少有4条,设这四条边为v1v9, v2v9,v3v9,v4v9.只要在v1,v2,v3,v4中任意两点的连线着红色,设ViVj为红色边,则ViVjV9为红色边的三角形,其中i≠j,否则v1,v2,v3,v4是蓝色的边的完全四边形(见下图)
若v9的8条边中着红色的边数少于3条,最多不超过2条,则v9的蓝色边数至少有6条,设为v1v9,v2v9,v3v9,v4v9,v5v9,v6v9,由v1,v2,v3,v4,v5,v6,这6个顶点构成的完全图必有两个同色的三角形,若一个同色三角形是红色三角形,则满足问题的结论。
如若是蓝色三角形,ViVjVk,则V9ViVjVk便是蓝色的完全四边形(见下图)。