【初中数学】相似单元测试题2 人教版
(人教版)石家庄市九年级数学下册第二单元《相似》测试卷(含答案解析)
一、选择题1.如图,在ABC中,中线BE,CD相交于点O,连接DE,下列结论:①12DEBC=;②12SS=△DOE△COB;③AD OEAB OB=;④16ODEADCSS=△△.其中结论正确的是().A.①②B.①③C.①②③D.①③④2.如图,已知D、E分别为AB、AC上的两点,且DE∥BC,AE=2CE,AB=12,则AD的长为()A.4 B.6 C.5 D.83.如图,在Rt△ABC中,∠B=90⁰,34BCAB=,D是AB边上一点,过D作DE⊥AB交AC于点E,过D作DF∥AC交BC于点F,连接BE交DF于H.若DH=DE,则DEHFBHSS∆∆为()A.23B.34C.49D.9164.如图,在正方形ABCD中,E为BC中点,3DF FC=.联结AE AF EF、、.那么下列结果错误的是( )△与ECF相似A.ABE△与AEF相似B.ABE△与ADF相似C.ABED.AEF与ECF相似5.如图△BCD中,BE⊥CD,AE=CE=3,BE=DE=4.BC=5,DA的延长线交BC于F,则AF=()A.1 B.0.6 C.1.2 D.0.86.已知两个相似三角形一组对应高分别是15和5,面积之差为80,则较大三角形的面积为()A.90 B.180 C.270 D.36007.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上.若光源到幻灯片的距离为30cm,光源到屏幕的距离为90cm,且幻灯片中的图形的高度为7cm,则屏幕上图形的高度为()A.21cm B.14cm C.6cm D.24cm8.如图,地面上点A处有一只兔子,距它10米的B处有一根高1.6米的木桩,大树、木桩和兔子刚好在一条直线上.一只老鹰在9.6米高的树顶上刚好看见兔子,则大树C离木桩B( )米.A .60B .50C .40D .459.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=5:2,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .5:7B .10:4C .25:4D .25:49 10.如图,ABC 是等边三角形,被一平行于BC 的矩形所截(即:FG ∥BC),若AB 被截成三等分,则图中阴影部分的面积是ABC 的面积的( )A .19B .29C .13D .4911.如图,直线l 1//l 2//l 3,分别交直线m 、n 于点A 、B 、C 、D 、E 、F .若AB ∶BC =5∶3,DE =15,则EF 的长为( )A .6B .9C .10D .2512.如图,11AOB 与22A OB 位似,位似中心为O 且11AOB 与22A OB 在原点O 的两侧,若11AOB 与22A OB 的周长之比为1:2,点1A 的坐标为()1,2-,则点1A 的对应点2A 的坐标为( )A .()1,4-B .()2,4-C .()4,2-D .()2,1-二、填空题13.如图,一次函数y =﹣34x +6的图象与x 轴交于点B ,与y 轴交于点A ,过线段AB 的中点P (4,3)作一条直线与△AOB 交于点Q ,使得所截新三角形与△AOB 相似,则点Q 坐标是_____.14.如图,已知Rt ABC 中,AC=b ,BC=a ,D 1是斜边AB 的中点,过D 1作D 1E 1⊥AC 于E 1,连结BE 1交CD 1于D 2;过D 2作D 2E 2⊥AC 于E 2,连结BE 2交CD 1于D 3;过D 3作D 3E 3⊥AC 于E 3,…,如此继续,可以依次得到点D 4,D 5,…,D n ,分别记BD 1E 1,BD 2E 2,BD 3E 3,…,BD n E n 的面积为S 1,S 2,S 3,…S n .则(1)1E C =__________,(2)S n =__________.15.如图,已知点M 是△ABC 的重心,AB =123,MN ∥AB ,则MN =__________16.如图,小思作出了边长为1的第1个等边三角形111A B C △,然后分别取111A B C △三边的中点2A ,2B ,2C ,作出了第2个等边三角形222A B C △,用同样的方法作出了第3等边三角形333A B C △.(1)111A B C △与222A B C △的面积比为______.(2)依此方法作下去,可得第n 次作出的等边三角形n n n A B C 的面积是______. 17.如图,在平行四边形ABCD 中,点E 在边BC 上,EC =2BE ,连接AE 交BD 于点F ,若△BFE 的面积为2,则△AFD 的面积为_____.18.如图,在四边形ABCD 中,点E 在AD 上,EC//AB ,EB//DC ,若△ABE 面积为5 , △ECD 的面积为1,则△BCE 的面积是________.19.若233a b c ==,且233a b c ++=,则a b c -+=__________. 20.如图,在△ABC 中,AE AF EB FC =,动点P 在射线EF 上,BP 交CE 于点D ,∠CBP 的平分线交CE 于点Q ,当CQ =13CE 时,EP +BP =20,则BC 的长为________.三、解答题21.如图1,四边形ABCD 是正方形,G 是CD 边上的一个动点(点G 与C ,D 不重合),以CG 为一边在正方形ABCD 外作正方形CEFG ,连接BG ,DE .我们探究下列图中线段BG 、线段DE 的长度关系及所在直线的位置关系:(1)①猜想如图1中线段BG .线段DE 的长度关系及所在直线的位置关系; ②将图1中的正方形CEFG 绕着点C 按顺时针(或逆时针)方向旋转任意角度α,得到如图2,如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断;(2)将原题中正方形改为矩形(如图4-6)且AB a ,BC b =,CE ka =,(),0CG kb a b k =≠>,第(1)题①中得到C 的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由;(3)在第(2)题图5中,连接DG 、BE ,且3a =,2b =,12k =,求22BE DG +的值.22.综合与实践将矩形ABCD 和Rt CEF △按如图1的方式放置,已知点D 在CF 上(2CF CD >),90FCE ∠=︒,连接BF ,DE .特例研究(1)如图1,当AD CD =,CE CF =时,线段BF 与DE 之间的数量关系是_______;直线BF 与直线DE 之间的位置关系是_______;(2)在(1)条件下中,将矩形ABCD 绕点C 旋转到如图2的位置,试判断(1)中结论是否仍然成立,并说明理由;探究发现(3)如图3,当2CF CE =,2CB CD =时,试判断线段BF 与DE 之间的数量关系和直线BF 与直线DE 之间的位置关系,并说明理由;知识应用(4)如图4,在(3)的条件下,连接BE ,FD ,若22CE CD ==,请直接写出22BE FD +的值.23.如图,在等边ABC ∆中,点D 是边AC 上一动点(不与点,A C 重合),连接BD ,作AH BD ⊥于点H ,将线段AH 绕点A 逆时针旋转60︒至线段AE ,连接CE (1)①补全图形;②判断线段BH 与线段CE 的数量关系,并证明;(2)已知4AB =,点M 在边AB 上,且1BM=,作直线HE . ①是否存在一个定点P ,使得对于任意的点D ,点P 总在直线HE 上,若存在,请指出点P 的位置,若不存在,请说明理由;②直接写出点M 到直线HE 的距离的最大值.24.四边形ABCD 内接于,O AB 是直径,延长AD BC 、交于点E ;若AB BE =.(1)求证:DC DE = (2)若6,43DE CE ==,求AB 的长.25.如图,△ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径.求证:△ABE ~△ADC .26.如图,在ABC ∆中,点D 、E 、F 分别在AB 、AC 、BC 上,DE //BC ,EF //AB .(1)求证:ADE ∆∽EFC ∆;(2)如果6AB =,4=AD ,求ADE EFCS S ∆∆的值.【参考答案】***试卷处理标记,请不要删除一、选择题1. D 解析:D【分析】先判断DE 为ABC 的中位线,则根据三角形中位线性质得到//DE BC ,12DE BC =,于是可对①进行判断;证明DOE △∽COB △,利用相似比得到12OE DE OD OB BC OC ===,14DOE COB S S =△△,则可对②进行判断;加上12AD AB =,则可对③进行判断;利用三角形面积公式得到13ODE DCE S S =△△,12DCE ADC S S =△△,则可对④进行判断. 【详解】解:∵BE 、CD 为ABC 的中线,∴DE 为ABC 的中位线,∴//DE BC ,12DE BC =,所以①正确;∵//DE BC ,∴DOE △∽COB △, ∴12OE DE OD OB BC OC ===,214DOE COB S DE S CB ⎛⎫== ⎪⎝⎭△△,所以②错误; ∵12AD AB =, ∴AD OE AB OB=,所以③正确; ∵:1:2OD OC =, ∴13ODE DCE S S =△△, ∵AE CE =, ∴12DCE ADC S S =△△, ∴16ODE ADC S S =△△,所以④正确. 故选D .【点睛】本题考查相似三角形的性质和判定,解题的关键是熟练运用相似三角形的性质和判定定理. 2.D解析:D【分析】先根据平行线分线段成比例定理得出比例式,代入后得出AD=23AB ,代入求出即可. 【详解】解:∵DE ∥BC , ∴AD AE AB AC=, ∵AE=2CE , ∴2223AE CE AC EC EC ==+ 又AB=12, ∴AD=23AB=8, 故选:D .【点睛】 本题考查了平行线分线段成比例定理,能根据定理得出正确的比例式是解此题的关键. 3.C解析:C【分析】易证DE ∥BC ,可得34BC DE AB AD ==,因为DH=DE ,得35DE DH AE AE ==,又因为DF ∥AC ,所以35BH DH BE AE ==,所以32BH HE =,根据相似三角形的面积比等于相似比的平方即可求得.【详解】∵DE ⊥AB ,∴∠ADE=90°,∵∠B=90°,∴∠ADE=∠B ,∴DE ∥BC ∴34BC DE AB AD ==,△DEH ∽△FBH ∴35DE AE = 又∵DH=DE ∴35DE DH AE AE == ∵DF ∥AC ∴35BH DH BE AE == ∴32BH HE = ∴4=9DEH FBH S S ∆∆ 故选C【点睛】本题考查相似三角形的性质与判定,掌握相似三角形的面积比等于相似比的平方是解题关键.4.C解析:C【分析】根据正方形的性质及勾股定理逆定理可以判断△AEF 是直角三角形,再根据三角形相似的判定可以选出结果错误的选项.【详解】解:设正方形边长为1 ,则由已知可得:54AE EF AF ======, ∴222552541616AE EF AF +=+==,∴△AEF 是直角三角形, ∴在RT △ABE 、RT △ECF 、RT △ADF 、RT △AEF 中, ∠B=∠C=∠AEF=∠D ,42,3AB EC AE AD BE CF EF DF ====, ∴RT △ABE 、RT △ECF 、RT △AEF 两两相似,但是△ABE 与 △ADF 不相似,∴A 、B 、D 正确,C 错误,故选C .【点睛】本题考查正方形与三角形相似的综合应用,灵活运用正方形的性质和三角形相似的判定是解题关键.5.B解析:B【分析】根据条件和判断Rt △CEB ≌Rt △AED ,然后得到角相等,证明△BEC ∽△BFA ,利用比例关系计算.【详解】解:∵AE=3,BE=4∴BA=BE-AE=1∴在Rt △CEB 与Rt △AED 中AE CE AD CB =⎧⎨=⎩∴Rt △CEB ≌Rt △AED∴∠EBC=∠BAF ∵∠ADE+∠EAD=90°,∠BAF=∠EAD∴∠EBC+∠BAF=90°∵∠BEC=∠BFA=90°∴△BEC ∽△BFA ∴AF BA CE BC =即135AF = ∴AF=0.6故选:B【点睛】 本题考查相似和全等的结合,通过全等得到角关系,然后证相似得到比例关系计算边长即可..6.A解析:A【分析】由两个三角形的高之比可得出两个三角形的相似比,进而得出两个三角形的面积之比,根据两个三角形的面积之比设未知数,列方程,求出较大三角形的面积即可.【详解】由题意得,两个三角形的相似比为:15∶5=3∶1,故面积比为:9∶1,设两个三角形的面积分别为9x,x,则9x-x=80,解得:x=10,故较大三角形的面积为:9x=90.故选:A.【点睛】本题主要考查相似三角形的性质,熟记相似三角形的高之比等于相似比,面积之比等于相似比的平方是解题关键.7.A解析:A【分析】根据题意可画出图形,再根据相似三角形的性质对应边成比例解答即可.【详解】解:如图所示,∵DE∥BC,∴△AED∽△ABC,∴AE DEAC BC=,设屏幕上的图形高是x cm,则307 90x=,解得:x=21.答:屏幕上图形的高度为21cm,故选:A.【点睛】本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.8.B解析:B【分析】如图,证明△ABE ∽△ACD ,根据相似三角形的性质列式求解即可.【详解】解:如图,根据题意得,△ABE ∽△ACD , ∴AB BE AC CD= ∵AB=10m ,BE=1.6m ,CD=9.6m ∴10 1.6=9.6AC ∴AC=60m ∴BC=AC-AB=60-10=50m故选:B .【点睛】此题主要考查了相似三角形的应用,善于观察题目的信息是解题以及学好数学的关键. 9.D解析:D【分析】 根据题意证明DEFBAF ,再利用相似比得到面积比. 【详解】解:∵四边形ABCD 是平行四边形,∴//CD AB ,CD AB =,∵:5:2DE EC =,∴:5:7DE DC =,∴:5:7DE AB =, ∵DEF BAF , ∴22::25:49DEF BAF S S DE AB ==.故选:D .【点睛】本题考查相似三角形的性质,解题的关键是掌握相似三角形相似比和面积比的关系. 10.C解析:C【分析】AB 被截成三等分,可得AB=3AE ,AF=2AE ,由EH ∥FG ∥BC ,可得△AEH ∽△AFG ∽△ABC ,则S △AEH :S △AFG :S △ABC =AE 2:AF 2:AB 2,S 阴影= S △AFG - S △AEH =13S △ABC . 【详解】∵AB 被截成三等分,∴AB=3AE ,AF=2AE ,∵EH ∥FG ∥BC ,∴△AEH ∽△AFG ∽△ABC , ∴S △AEH :S △AFG :S △ABC =AE 2:AF 2:AB 2=AE 2:(2AE )2:(3AE )2=1:4:9,∴S △AEH =19S △ABC , S △AFG =4 S △AEH , S 阴影= S △AFG - S △AEH =3 S △AEH =3×19 S △ABC =13S △ABC . 故选择:C .【点睛】 本题考查阴影部分面积问题,关键是利用相似三角形的面积比等于相似比的平方,找到阴影面积与△AEH 的关系,由△AEH 与△ABC 的关系来转化解决问题.11.B解析:B【分析】根据平行线分线段成比例定理列出比例式,代入计算得到答案.【详解】解:∵l 1∥l 2∥l 3,DE=15, ∴53DE AB EF BC ==,即1553EF =, 解得,EF=9,故选:B .【点睛】 本题考查了平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键. 12.B解析:B【分析】根据位似变换的概念得到△A 1OB 1∽△A 2OB 2,△A 1OB 1与△A 2OB 2的相似比为1:2,根据位似变换的性质计算,得到答案.【详解】解:∵△A 1OB 1与△A 2OB 2位似,∴△A 1OB 1∽△A 2OB 2,∵△A 1OB 1与△A 2OB 2的周长之比为1:2,∴△A 1OB 1与△A 2OB 2的相似比为1:2,∵A 1的坐标为(-1,2),△A 1OB 1与△A 2OB 2在原点O 的两侧,∴点A1的对应点A2的坐标为(2,-4),故选:B.【点睛】本题考查的是位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.二、填空题13.(03)或(0)或(40)【分析】首先确定AB两点坐标分两种情形:①当PQ∥OB时②当PQ′⊥AB时分别求解即可【详解】∵一次函数y=﹣x+6的图象与x轴交于点B与y轴交于点A∴A(06)B(80)解析:(0,3)或(74,0)或(4,0)【分析】首先确定A,B两点坐标,分两种情形:①当PQ∥OB时,②当PQ′⊥AB时,分别求解即可.【详解】∵一次函数y=﹣34x+6的图象与x轴交于点B,与y轴交于点A,∴A(0,6),B(8,0),∴OA=6,OB=8,AB=22OA OB+=2268+=10,如图有两种情形:①当PQ∥OB时,满足条件.∵AP=PB,∴AQ=OQ,∴Q(0,3).②当PQ′⊥AB时,满足条件.连接AQ′.∵PA=PB,PQ′⊥AB,∴Q′A=Q′B,设Q′A=Q′B=m,在Rt△AOQ′中,则有m2=62+(8﹣m)2,解得m=254,∴OQ′=8﹣254=74,∴Q′(74,0). ③当PQ ∥y 轴时,同法可得P (4,0). 综上所述,满足条件的点Q 的坐标为(0,3)或(74,0)或(4,0). 【点睛】本题考查一次函数的应用,相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.14.b 【分析】根据直角三角形的性质以及相似三角形的性质利用在△ACB 中D2为其重心可得D2E1=BE1然后从中找出规律即可解答【详解】解:∵D1E1⊥ACBC ⊥AC ∴D1E1∥BC ∴∵D1是斜边AB 的中 解析:12b 22(1)ab n + 【分析】根据直角三角形的性质以及相似三角形的性质,利用在△ACB 中,D 2为其重心可得D 2E 1=13BE 1,然后从中找出规律即可解答. 【详解】解:∵D 1E 1⊥AC ,BC ⊥AC ,∴D 1E 1∥BC , ∴1111AE AD CE BD =, ∵D 1是斜边AB 的中点,∴AD 1=BD 1, ∴11111AE AD CE BD ==, ∵AC =b ,∴AE 1=E 1C =12b , ∵D 1E 1∥BC , ∴BD 1E 1与CD 1E 1同底同高,面积相等,以此类推;根据直角三角形的性质以及相似三角形的性质可知:D 1E 1=12BC ,CE 1=12AC ,S 1=212S △ABC ; ∴在ACB 中,D 2为其重心,∴D 2E 1=13BE 1,∴D 2E 2=13BC ,CE 2=13AC ,S 2=213S △ABC , ∵D 2E 2:D 1E 1=2:3,D 1E 1:BC =1:2, ∴BC :D 2E 2=2D 1E 1:23D 1E 1=3, ∴CD 3:CD 2=D 3E 3:D 2E 2=CE 3:CE 2=3:4,∴D 3E 3=14D 2E 2=14×13BC =14BC ,CE 3=34CE 2=14×13AC =14AC ,S 3=214S △ABC …; ∴S n =21(1)n +S △ABC =21(1)n +×12ab =22(1)ab n +. 故答案为:12b ,22(1)ab n +.【点睛】此题主要考查相似三角形的判定与性质和三角形的重心等知识,解决本题的关键是根据直角三角形的性质以及相似三角形的性质得到第一个三角形的面积与原三角形的面积的规律.也考查了重心的性质即三角形三边中线的交点到顶点的距离等于它到对边中点距离的两倍.15.【分析】根据三角形重心的性质可得AD=BD=CM :CD=2:3由MN ∥AB 可得△CMN ∽△CDB 再根据相似三角形的性质求解即可【详解】解:∵点M 是△ABC 的重心∴AD=BD=CM :CD=2:3∵MN解析:3【分析】根据三角形重心的性质可得AD=BD=1632AB =CM :CD=2:3,由MN ∥AB 可得△CMN ∽△CDB ,再根据相似三角形的性质求解即可.【详解】解:∵点M 是△ABC 的重心, ∴AD=BD=1632AB =CM :CD=2:3, ∵MN ∥AB ,∴△CMN ∽△CDB ,∴23MN CM DB CD ==,23=,解得MN =.故答案为:【点睛】本题考查了三角形的重心和相似三角形的性质,熟练掌握上述知识是解题的关键. 16.4:1;【分析】(1)由三角形中位线定理可得A2B2∥A1B1A2B2=A1B1=可证△C2B2A2∽△C1A1B1由相似三角形的性质可求解;(2)由三角形的中位线定理可求△AnBnCn 的边长为由等解析:4:1;22n 【分析】(1)由三角形中位线定理可得A 2B 2∥A 1B 1,A 2B 2=12A 1B 1=12,可证△C 2B 2A 2∽△C 1A 1B 1,由相似三角形的性质可求解; (2)由三角形的中位线定理可求△A n B n C n 的边长为112n -⎛⎫ ⎪⎝⎭,由等边三角形的性质可求解.【详解】(1)∵A 2,B 2,C 2分别是等边三角形三边B 1C 1,C 1A 1,A 1 B 1的中点, ∴A 2B 2∥A 1B 1,A 2B 2=12A 1B 1=12,△C 2B 2A 2也是等边三角形, ∴222C B A ∽△111C A B , ∴22211114C B A C A B SS =, ∴△111C A B 与222C B A 的面积比为=4:1; 故答案为:4:1;(2)由题意得,△A 2B 2C 2的边长为12, △A 3B 3C 3的边长为212⎛⎫ ⎪⎝⎭, △A 4B 4C 4的边长为312⎛⎫ ⎪⎝⎭, ,∴△A n B n C n 的边长为112n -⎛⎫ ⎪⎝⎭,∵边长是1的等边三角形的面积=,∴等边三角形△A n B n C n的面积2121422nn-⎡⎤⎛⎫==⎢⎥⎪⎝⎭⎢⎥⎣⎦,【点睛】本题考查了相似三角形的判定和性质,等边三角形的性质,三角形中位线定理,根据规律求出第n个等边三角形的边长是解题的关键.17.18【分析】根据平行四边形的性质可得BC∥AD进而可判定△ADF∽△EBF 然后用相似三角形面积的比等于相似比的平方即可求出△AFD的面积【详解】解:∵ABCD是平行四边形∴AD∥BCAD=BC∴△A解析:18【分析】根据平行四边形的性质可得BC∥AD,进而可判定△ADF∽△EBF,然后用相似三角形面积的比等于相似比的平方即可求出△AFD的面积.【详解】解:∵ABCD是平行四边形,∴AD∥BC,AD=BC,∴△ADF∽△EBF,∵EC=2BE,∴BC=3BE,即AD=3BE,∴S△AFD=9S△EFB=18.故答案为:18.【点睛】本题考查了平行四边形的性质和相似三角形的判定和性质,属于常考题型,熟练掌握上述知识是解题的关键.18.【分析】由EC∥ABEB∥DC可得∠A=∠CED∠AEB=∠D证得△ABE与△ECD 相似由△ABE的面积为5△CDE的面积为1可得AB:CE=:1又由EC∥AB可得△ABE与△BCE等高然后由等高三【分析】由EC∥AB,EB∥DC,可得∠A=∠CED,∠AEB=∠D,证得△ABE与△ECD相似,由△ABE的面积为5,△CDE的面积为1,可得AB:1又由EC∥AB,可得△ABE与△BCE等高,然后由等高三角形的面积比等于对应底的比,求得△BCE的面积.【详解】∵EC∥AB,∴∠A=∠CED ,∵EB ∥DC∴∠AEB=∠D ,∴△ABE ∽△ECD , ∴22ABE ECD 551S BE AB CD CES ⎛⎫⎛⎫====⎪ ⎪⎝⎭⎝⎭, ∴AB CE =AB =, ∵△ABE 以AB 为底边的高与△BCE 以CE 为底的高相等,∴ABEBCE S AB S CE ==BCE S ∴==【点睛】本题考查了相似三角形的判定与性质.注意相似三角形的面积比等于相似比的平方、等高三角形面积的比等于其对应底的比.19.66【分析】设a=2kb=3kc=3k 代入求出k 值进而求得abc 然后代入所求代数式中求解即可【详解】解:由可设a=2kb=3kc=3k 代入得:4k+3k+3k=33解得:k=33∴a=66b=c=9解析:6.6【分析】设a=2k ,b=3k ,c=3k ,代入233a b c ++=,求出k 值,进而求得a 、b 、c ,然后代入所求代数式中求解即可.【详解】解:由233a b c ==可设a=2k ,b=3k ,c=3k , 代入233a b c ++=得:4k+3k+3k=33,解得:k=3.3,∴a=6.6,b=c=9.9,∴a b c -+=a =6.6,故答案为:6.6.【点睛】本题考查了比例的性质、代数式求值,熟练掌握比例的性质,巧妙设参是解答的关键. 20.10【分析】延长BQ 交射线EF 于点M 先证明△BCQ ∽△MEQ 然后可得=根据EM=20即可得出答案【详解】解:如图延长BQ 交射线EF 于点M ∵EF 是ABAC 的中点∴EF 是△ABC 的中位线∴EF ∥BC ∴∠解析:10【分析】延长BQ 交射线EF 于点M ,先证明△BCQ ∽△MEQ ,然后可得EM BC=2EQ CQ =,根据EM=20,即可得出答案.【详解】解:如图,延长BQ 交射线EF 于点M ,∵E ,F 是AB ,AC 的中点,∴EF 是△ABC 的中位线,∴EF ∥BC ,∴∠BME=∠MBC ,∵BQ 平分∠CBP ,∴∠PBM=∠MBC ,∴∠BME=∠PBM ,∴BP=PM ,∴EP+BP=EM=20,∵CQ =13CE , ∴2EQ CQ=, ∵EF ∥BC ,∴△BCQ ∽△MEQ ,∴EM BC=2EQ CQ =, ∵EM=20,∴202BC=,即BC=10, 故答案为:10.【点睛】 本题考查了相似三角形的判定和性质,三角形中位线定理,判定△BCQ ∽△MEQ 是解题关键.三、解答题21.(1)①BG DE =,BG DE ⊥.②BG DE =,BG DE ⊥仍然成立.详见解析;(2)BG DE ⊥成立,BG DE =不成立,详见解析;(3)654. 【分析】(1)①利用正方形的性质,证明BCG DCE ≌△△,利用全等三角形的性质可得:BG=DE ,∠CBG=∠CDE ,再证明:∠EDC+∠DGO=90°,从而可得结论;②同①,先证明:BCG DCE ≌△△,利用全等三角形的性质可得:BG DE =,CBG CDE ∠=∠,再证明:90CDE DHO ∠+∠=︒,从而可得结论;(2)利用矩形的性质,证明BCG DCE △∽△,可得:CBG CDE ∠=∠,再证明90CDE DHO ∠+∠=︒,从而可得结论;(3)连接,,BD GE 利用BG DE ⊥,结合勾股定理证明:2222BE DG BD GE +=+,再把3a =,2b =,12k =代入,即可得到答案. 【详解】解:(1)①BG DE =,BG DE ⊥.理由如下:如图1,延长BG 交DE 于O ,∵四边形ABCD 、CGFE 是正方形,∴BC=CD=AB ,CG=CE ,∠BCD=∠ECD=90°,∵在BCG 和DCE 中BC CD BCG DCE CG CE =⎧⎪∠=∠⎨⎪=⎩,∴BCG DCE ≌△△,∴BG=DE ,∠CBG=∠CDE ,∵∠CBG+∠BGC=90°,又∵∠DGO=∠BGC ,∴∠EDC+∠DGO=90°,∴∠DOG=1809090︒-︒=︒,∴BG ⊥DE ,即BG=DE ,BG ⊥DE ;②BG DE =,BG DE ⊥仍然成立.如图2,∵四边形ABCD 、四边形CEFG 都是正方形,∴BC CD =,CG CE =,90BCD ECG ∠=∠=︒,∴BCG DCE ∠=∠,∵在BCG 与DCE 中,,BC CD BCG DCE CG CE =⎧⎪∠=∠⎨⎪=⎩∴BCG DCE ≌△△,∴BG DE =,CBG CDE ∠=∠,又∵BHC DHO ∠=∠,90CBG BHC ∠+∠=︒,∴90CDE DHO ∠+∠=︒,∴90DOH ∠=︒,∴BG DE ⊥.(2)BG DE ⊥成立,BG DE =不成立.如图5,∵四边形ABCD 、四边形CEFG 都是矩形,且AB CD a ==,BC b =,CG kb =,(),0CE ka a b k =≠>, ∴BC CG b DC CE a==,90BCD ECG ∠=∠=︒, ∴BCG DCE ∠=∠, ∴BCG DCE △∽△,∴CBG CDE ∠=∠,又∵BHC DHO ∠=∠,90CBG BHC ∠+∠=︒,∴90CDE DHO ∠+∠=︒,∴90DOH ∠=︒,∴BG DE ⊥.显然:.BG DE ≠(3)如图5,连接,,BD GE∵BG DE ⊥,∴222OB OD BD +=,222OE OG GE +=,222OB OE BE +=,222OG OD DG += ∴22222222BE DG OB OE OG OD BD GE +=+++=+,又∵3a =,2b =,12k =,CE ka =,CG kb =, 2222222211323321222BD GE ⎛⎫⎛⎫⎛⎫∴=+=⨯+⨯=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,, ∴22222236523124BD GE ⎛⎫+=+++= ⎪⎝⎭, ∴22654BE DG +=. 【点睛】本题考查的是勾股定理的应用,正方形,矩形的性质,三角形全等的判定与性质,三角形相似的判定与性质,掌握以上知识是解题的关键.22.(1)BF DE =,BF DE ⊥;(2)(1)中结论仍然成立,理由见解析;(3)2BF DE =,BF DE ⊥,理由见解析;(4)22BE FD +的值为25.【分析】(1)先证FBC EDC ∆∆≌,便可证得BF=DE ,∠BFC=∠CED ,再根据直角三角形两锐角互余及直角三角形判定不难证得BF ⊥DE ;(2)方法同(1),问题易证;(3)利用CED ∆∽CFB ∆证得∠BFC=∠CED ,再根据直角三角形两锐角互余及、对顶角相等及直三角形的判定即可证得结论成立;(4)延长ED 交BF 于点G ,根据勾股定理求出EB 2,FD 2,FE 2,不难求出结果.【详解】解:(1)在矩形ABCD 中,∠BCD =90︒ ,BC=CD ,在Rt CEF △,∠FCE=90︒,FC=CE ,∴∠BCD=∠FCE ,∴FBC EDC ∆∆≌,∴BF DE =,∠BFC=∠DEC∵∠BFC+∠FBC=90︒,∴∠FBC+∠DEC=90︒,∴BF DE ⊥故答案为:BF=DE ,BF DE ⊥(2)(1)中结论仍然成立.理由如下:如图,延长ED 交FB 于点G ,交FC 于点H ,四边形ABCD 是矩形,90BCD ∴∠=︒,AD BC =,90BCF FCD ∴∠+∠=︒,90FCE ∠=︒,90DCE FCD ∴∠+∠=︒,BCF DCE ∴∠=∠.AD CD =,BC CD ∴=,在FBC ∆和EDC ∆中,BC DC =,BCF DCE ∠=∠,CF CE =,()FBC EDC SAS ∴∆≅∆.BF DE ∴=,BFC DEC ∠=∠.90FCE ∠=︒,90DEC CHD ∴∠+∠=︒,FHG CHD ∠=∠,90BFC FHG ∴∠+∠=︒,90FGE ∴∠=︒,BF DE ∴⊥.∴(1)中结论仍然成立.(3)2BF DE =,BF DE ⊥.如图,延长ED 交CF 于M ,交FB 于N .四边形ABCD 是矩形,90BCD ∴∠=︒,90BCF FCD ∴∠+∠=︒,90FCE ∠=︒,90DCE FCD ∴∠+∠=︒,BCF DCE ∴∠=∠.2CF CE =,2CB CD =,12CE CD CF CB ∴==.CED CFB ∴∠=∠,12DE BF =. 2BF DE ∴=.90CME CED ∠+∠=︒,90CME CFB ∴∠+∠=︒.CME FMN ∠=∠,90FMN CFB ∴∠+∠=︒.90FNE ∴∠=︒.BF DE ∴⊥.(4)如图,延长ED 交BF 于点G ,则EG ⊥BF 于G ,∵22CE CD ==,2CF CE =,2CB CD =∴CD=1,CF=4,BC=2,∵在RtFGD 中,GF 2+GD 2=FD 2,在RtGBE 中,GE 2+GB 2=BE 2,∴BE 2+FD 2=(GF 2+GE 2)+(GB 2+GD 2)=22EF BD +连接BD ,则BD 2=225BC CD += ,∵在Rt △FCE 中,EF 2=22222420CF CE +=+=∴BE 2+FD 2=20+5=25.【点睛】本题考查了正方形的性质,直角三角形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质及旋转变换等知识,侧重考查了对知识的综合应用.23.(1)①见解析;②BH CE =,证明见解析;(2)①存在,点P 是边BC 的中点;3【分析】(1)①按要求画出图形即可;②根据全等三角形对应边相等来回答;(2)①点P 为直线HE 与BC 的交点;②通过△BPM ∽△BAP 问题可解;【详解】(1)①如图;②BH CE =证明ABH ACE ∆≅∆即可(2)①存在点P 是边BC 的中点,理由:设直线HE 与边BC 交于点P可由60ACB AEP ︒∠=∠=得点,,,A E C P 共圆,因为90AEC ︒∠=,所以90APC ︒∠=,即P 是BC 的中点.②如图, 当MP ⊥HE 时,MP 最大,理由:4,2,1AB BP BM ===, BM BP BP AB ∴=, B B ∠∠=,∴△BPM ∽△BAP ,∴∠BMP=∠BPA=90︒ ,2222213BP BP BP ∴=-=-=【点睛】本题考查等腰三角形的性质,全等三角形的判定和性质,点到直线的距离,旋转,相似三角形的判定和性质,勾股定理和圆的有关知识知识,综合性较强.24.(1)见详解;(2)63【分析】(1)根据四边形ABCD 内接于O ,∠BCD+∠ECD=180°,得出∠BAD=∠ECD ,再根据AB=EB,可得∠BED=∠ECD,即可得证;(2)连接OD,先求出AE,然后证明△BAE∽△DCE,根据CEAE=DEBE,即CE AE =DEBC+CE,求出BC,即可求出答案.【详解】(1)∵四边形ABCD内接于O,∴∠BAD+∠BCD=180°,∵∠BCD+∠ECD=180°,∴∠BAD=∠ECD,∵AB=EB,∴∠BAD=∠BED,∴∠BED=∠ECD,∴DC=DE;(2)连接OD,∵OA=OD,∴∠OAD=∠ODA,又∵∠BAE=∠E,∴∠ODA=∠E,∴OD∥BE,∵O是AB中点,∴D为AE中点,∴DA=DE=6,∴AE=12,∵∠BAD=∠ECD,∠E=∠E,∴△BAE∽△DCE,∴CEAE =DE BE,∴CEAE =DEBC+CE,43BC+43解得BC=23∴BE=BC+CE=∴AB=BE=【点睛】本题考查了等腰三角形的性质,圆的内接四边形的性质,相似三角形的判定和性质,中位线的性质,掌握这些知识点灵活运用是解题关键.25.见解析.【分析】根据∠AEB =∠ACB (同弧所对的圆周角相等)和AD 是△ABC 的高,AE 是⊙O 的直径,利用一个三角形的两个角与另一个三角形的两个角对应相等,即可证明.【详解】证明:∵AB=AB∴∠AEB =∠ACB (同弧所对的圆周角相等),∵AE 为直径,∴∠ABE =90°(直径所对的圆周角是直角),又∵AD ⊥BC ,即∠ADC =90°,∴∠ABE =∠ADC ,∴△ABE ∽△ADC .【点睛】此题主要考查学生对相似三角形的判定和圆周角定理的理解和掌握,解题的关键是利用同弧上的圆周角相等,先求证∠AEB =∠ACB ,然后即可得出结论.26.(1)证明见解析;(2)4.【分析】(1)根据平行线的性质可得∠A =∠CEF ,∠AED =∠C ,即可得结论;(2)根据线段的和差关系可得BD 的长,由DE //BC ,EF //AB 可得四边形DBFE 是平行四边形,根据平行四边形的性质可得EF 的长,根据相似三角形的面积比等于相似比的平方即可得答案.【详解】(1)∵DE//BC ,EF//AB ,∴∠A =∠CEF ,∠AED =∠C ,∴△ADE ∽△EFC .(2)∵AB =6,AD =4,∴DB =6-4=2,∵DE//BC ,EF//AB ,∴四边形DBFE 是平行四边形,∴EF =DB=2,∵△ADE ∽△EFC ,224()()42∆∆===ADE EFC S AD S EF . 【点睛】本题考查平行线的性质、平行四边形的判定与性质及相似三角形的判定与性质,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;相似三角形的面积比等于相似比的平方;熟练掌握相关判断定理及性质是解题关键.。
人教版数学 《相似》单元测试题(含答案)
《相似》单元测试题本试卷满分120分,考试时间120分钟一、选择题(本大题共10小题,每小题3分,满分30分)1.已知点C,D在线段AB上,且AC=CD=DB,则ACBC的值是( B )A.2 B.12C.13D.12.如图,在△PAB中,CD∥AB,AB=6,CD=4,PC=5,则PA 的长是( C )A.103B.205C.152D.52第2题3.若mn=23,则m+nn-m的值是( A )A.5 B.-5 C.15D.-154.用位似将一个图形放大或缩小,位似中心的位置可以选在( D )A.原图形的外部B.原图形的内部C.原图形的边上D.任意位置5.如图,AB ,CD ,EF 相交于点O ,AC ∥BD ,则图中相似的三角形有( B )A .2对B .3对C .4对D .5对第5题6.在△ABC 中,D ,E ,F 分别是边AB ,BC ,CA 边上中点,则△DEF 的周长是△ABC 周长的( B )A .2倍 B.12 C.14D .1倍 7.如图,在△ABC 中,EF ∥AB ,且EF 将△ABC 的面积二等分,若AB =10cm ,则EF 的长为( B )A .5cmB .52cm C.10cm D.552cm第7题8.已知△ABC 的三边之比为3∶4∶5,△ABC ∽△A 1B 1C 1,△A 1B 1C 1的最长边为10,则△A 1B 1C 1的面积是( B )A .12B .24C .36D .1209.在△ABC 中,AD 是BC 边上高,∠B =30°,并且AD 2=BD ·DC ,则∠BCA 的度数为( C )A .30°B .45°C .60°D .无法确定10.平面直角坐标系中,已知点O (0,0),A (0,2),B (1,0),点P 是反比例函数y =-1x图象上的一个动点,过点P 作PQ ⊥x 轴,垂足为点Q ,若以点O ,P ,Q 为顶点的三角形与△OAB 相似,则相应的点P 共有( D )A .1个B .2个C .3个D .4个二、填空题(本大题共8小题,每小题3分,满分24分)11.已知3a -4b =0,则a +b b = 73 . 12.若线段a ,b ,c ,d 是成比例线段,其中a =5cm ,b =7cm ,c =4cm ,则d = 354cm 或207cm 或285cm . 13.有一个钳子,AB =2BC ,BD =2BE ,在钳子前面有一个长方体硬物,PQ 厚为6cm ,如图所示.如果想用夹子的尖端A ,D 两点夹住P ,Q 两点,那么手握的地方EC 至少要张开 3 cm.第13题14.如图,在△ABC中,MN∥BC,若∠C=68°,AM∶MB=1∶2,则∠MNA= 68°,AN∶AC= 1∶3 .第14题15.如图,已知E是平行四边形ABCD的一边AD延长线上的一点,AD=3DE,则DF=14AB.16.相同时刻的物高与影长成比例.小明的身高为1.5米,在地面上的影长为2米,同一时刻一古塔在地面上的影长为40米,则古塔高为 30米 .17.如图,在梯形ABCD 中,AD ∥BC ,AC ,BD 交于O 点,S △AOD ∶S △COB =1∶9,则S △DOC ∶S △BOC = 1∶3 .第17题18.如图,两个大小不同的三角板放在同一平面内,直角顶点重合于点C ,点D 在AB 上,∠BAC =∠DEC =30°,AC 与DE 交于点F ,连接AE ,若BD =1,AD =5,则CF EF = 3 .三、解答题(本大题共7小题,满分66分)19.(8分)作四边形ABCD 的位似图形,使其位似中心为点P ,位似比为12.解:连接PA ,PB ,PC ,PD ,取它们的中点E ,F ,G ,H ,四边形EFGH 为所要画的位似图形(图略,答案不唯一).20.(8分)如图,过平行四边形ABCD 的顶点C ,作CF ⊥AD 于点F ,作CE ⊥AB 于点E ,试判断△CDF 和△CBE 是否是相似形,并说明理由.解:△CDF ∽△CBE .理由:∵AD ∥BC ,DC ∥AB ,∴∠FDC =∠DCB=∠CBE ,又CF ⊥AD 于点F ,CE ⊥AB 于点E ,∴∠CFD =∠CEB =90°,∴△CDF ∽△CBE .K21.(9分)已知四边形ABCD 是正方形,且EF =FG ,FD =DG . 求证:EC =3BC .证明:∵EF =FG ,FD =DG ,∴EF =2FD =2DG .又四边形ABCD 是正方形,∴AD ∥BC ,AB =BC =CD =DA ,∴△ADF ∽△BEF ,∴AD EB =DF EF =12,∴EB =2AD =2BC ,即EC =3BC .22.(9分)如图所示的网格中有A ,B ,C 三点.(1)请你以网格线所在直线为坐标轴建立平面直角坐标系,使A ,B 两点的坐标分别为A (2,-4),B (4,-2),则C 点的坐标是 (6,-4) ;(2)连接AB ,BC ,CA ,先以坐标原点O 为位似中心,按比例尺1∶2在y 轴的左侧画出△ABC 缩小后的△A ′B ′C ′,再写出点C 对应点C ′的坐标 (-3,2) .解:如图所示,△A′B′C′即为所求.23.(10分)如图,四边形ABCD为矩形,把纸片ABCD折叠,使点B恰好落在CD的中点E处,折痕为AF,若CD=12,求AF的长.解:∵∠B =∠E =∠C =∠D =90°,∴∠DAE +∠DEA =90°,∠CEF +∠DEA =90°,∴∠DAE =∠CEF ,∴△ADE ∽△ECF ,∴AE EF =DE FC,即12EF =6FC ,∴EF =2FC .由勾股定理得EF 2=FC 2+EC 2,即EF 2=⎝ ⎛⎭⎪⎫EF 22+62,∴EF =4 3.AF 2=EF 2+AE 2=(43)2+122,∴AF =8 3.24.(10分)如图,在矩形ABCD 中,点E 从点B 出发沿BC 方向,以每秒3cm 在BC 之间移动,点F 从点C 出发沿CD 方向,以每秒2cm 在CD 之间移动,AD =30cm ,AB =20cm.设点E ,F 同时出发,移动时间为t 秒,是否存在t ,使△ABD 和△CEF 相似,若存在,求出t .解:∵EC =(30-3t )cm ,CF =2t cm ,当AB CF =AD CE时,△ABD ∽△CFE ,即202t =3030-3t,解得t =5,则当t =5时,点E ,F 分别在BC ,DC 上,△ABD 和△CEF 相似,符合题意;当AB CE =AD CF 时,△ABD ∽△CEF ,即2030-3t =302t ,解得t =9013,当t =9013时,点E ,F 分别在BC ,DC 上,△ABC 和△DEF 相似,符合题意.∴当t =5或t =9013时,△ABC 和△DEF 相似.25.(12分)正方形ABCD 边长为4,M ,N 分别是BC ,CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直,(1)求证:Rt △ABM ∽Rt △MCN ;(2)设BM =x ,四边形ABCN 的面积为y ,求y 与x 之间的函数解析式;当M 点运动到什么位置时,四边形ABCN 面积最大,并求出最大面积;(3)当M 点运动到什么位置时Rt △ABM ∽Rt △AMN ,求此时x 的值.解:(1)证明:在正方形ABCD 中,AB =BC =CD =4,∠B =∠C =90°,∵AM ⊥MN ,∴∠AMN =90°,∴∠CMN +∠AMB =90°.在Rt △ABM 中,∠MAB +∠AMB =90°,∴∠CMN =∠MAB ,∴Rt △ABM ∽Rt △MCN . (2)解:∵Rt △ABM ∽Rt △MCN ,∴AB MC =BM CN ,∴44-x =x CN,∴CN =-x 2+4x 4,∴y =S 梯形ABCN =12⎝ ⎛⎭⎪⎫-x 2+4x 4+4·4=-12x 2+2x +8=-12(x -2)2+10,当x =2时,y 取最大值,最大值为10. (3)解:∵∠B =∠AMN =90°,∴要使Rt △ABM ∽Rt △AMN ,必须有AM MN =AB BM ,由(1)知AM MN =AB MC,∴BM =MC ,当点M 运动到BC 的中点时,Rt △ABM ∽Rt △AMN ,此时x =2.。
新人教版初中数学九年级数学下册第二单元《相似》测试题(包含答案解析)(1)
一、选择题1.如图,在平行四边形ABCD 中,点E ,F 分别为,AB BC 的中点,则三角形BEF 与多边形EFCDA 的面积之比为( )A .1∶4B .1∶5C .1∶7D .1∶82.如图,在平行四边形ABCD 中,:2:1AE BE =,F 是AD 的中点,射线EF 与AC 交于点G ,与CD 的延长线交于点P ,则AGGC的值为( ).A .5:8B .3:8C .3:5D .2:53.如图,在ABC 中,//DE BC ,6AD =,3DB =,4AE =,则AC 的长为( )A .1B .2C .4D .64.如图,在平面直角坐标系中,ABC 的顶点坐标分别是()1,2A ,()1,1B ,()3,1C ,以原点为位似中心,在原点的同侧画DEF ,使DEF 与ABC 成位似图形,且相似比为2:1,则线段DF 的长度为( )A .5B .2C .4D .55.如图,在边长为2的正方形ABCD中,对角线AC与BD相交于点O,点P是BD上的一个动点,过点P作EF∥AC,分别交正方形的两条边于点E,F,连接OE,OF,设BP=x,△OEF的面积为y,则能大致反映y与x之间的函数关系的图像为()A.B.C.D.6.如图,AB为⊙O的直径,AC交⊙O于E点,BC交⊙O于D点,CD=BD,∠C=70°,现给出以下四个结论:①∠A=45°;②AC=AB;③AE=BE;④2CE•AB=BC2,其中正.确.结论有()A.1个B.2个C.3个D.4个7.如图,直线l1//l2//l3,分别交直线m、n于点A、B、C、D、E、F.若AB∶BC=5∶3,DE=15,则EF的长为()A .6B .9C .10D .258.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与图中△ABC 相似的是( )A .B .C .D .9.如图,已知点E 是正方形ABCD 的边AB 边上的黄金分割点,且,AE EB >若1S 表示AE 为边长的正方形面积,2S 表示以BC 为长,BE 为宽的矩形面积,3S 表示正方形ABCD 除去1S 和2S 剩余的面积,则32:S S 的值为( )A .512B .512C .352D .352+ 10.如图,11AOB 与22A OB 位似,位似中心为O 且11AOB 与22A OB 在原点O 的两侧,若11AOB 与22A OB 的周长之比为1:2,点1A 的坐标为()1,2-,则点1A 的对应点2A 的坐标为( )A .()1,4-B .()2,4-C .()4,2-D .()2,1-11.如图,在△ABC 中,DE ∥BC ,12AD BD =,则AEEC=( )A .13B .12C .23D .3212.如图,△ABC 中,DE ∥BC ,25AD AB =,DE =3,则BC 的长为( )A .7.5B .4.5C .8D .6二、填空题13.如图,在矩形ABCD 中,6,AD AE BD =⊥,垂足为,3E ED BE =,动点,P Q分别在,BD AD 上,则AE 的值为__________,AP PQ +的最小值为_____________.14.如图,在△ABC 中,中线BE ,CD 相交于点G ,则EDG BDG S S ∆∆:=__________.15.如图,已知菱形ABCD 的边长为4,点E 、F 分别是AB 、AD 上的点,若BE =AF =1,∠BAD =120°,GFEG=_____.16.如图,点D 是ABC 的边AB 上的一点,//DE BC 交AC 于点E ,作//DF AC 交BC 于点F ,分别记ADE ,BDF ,平行四边形DFCE ,ABC 的面积为1S ,2S ,3S ,S 有以下结论:①若12S S ,则DE 为ABC 的中位线;②若13S S =,则23BC DE =; ③()212S S S =+;④3122S S S =.其中正确的是______.(把所有正确结论的序号都填上)17.若14b a b =-,则ab的值为__________. 18.已知:如图,ABC 内接于O ,且BC 是O 的直径,AD BC ⊥于D ,F 是弧BC 中点,且AF 交BC 于E ,6AB =,8AC =.则CD =_________________.AF =_________________.19.如图,ABC 是等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,则图中阴影部分的面积是ABC 的面积的______.20.如图,在直角三角形ABC 中,90,C AD ︒∠=是BAC ∠的平分线,且35,22CD DB ==,则AB =____.三、解答题21.如图,在每个小正方形的边长为1的网格中,△ABC 的项点A ,B ,C 均落在格点上:(I )AC 的长等于_________;(II )点P 落在格点上,M 是边BC 上任意一点,点B 关于直线AM 的对称点为B ',当PB '最短时,请在如图所示的网格中,用无刻度的直尺,画出点B ',并简要说明点B '的位置是如何找到的.(不要求证明)22.如图1,四边形ABCD 是正方形,G 是CD 边上的一个动点(点G 与C ,D 不重合),以CG 为一边在正方形ABCD 外作正方形CEFG ,连接BG ,DE .我们探究下列图中线段BG 、线段DE 的长度关系及所在直线的位置关系:(1)①猜想如图1中线段BG .线段DE 的长度关系及所在直线的位置关系; ②将图1中的正方形CEFG 绕着点C 按顺时针(或逆时针)方向旋转任意角度α,得到如图2,如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断;(2)将原题中正方形改为矩形(如图4-6)且AB a ,BC b =,CE ka =,(),0CG kb a b k =≠>,第(1)题①中得到C 的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由;(3)在第(2)题图5中,连接DG 、BE ,且3a =,2b =,12k =,求22BE DG +的值.23.如图,在△ABC 中,AB =23,AC 43=,点D 在AC 上,且AD =12AB , (1)用尺规作图作出点D(保留作图痕迹,不必写作法); (2)连接BD ,并证明:△ABD ∽△ACB .24.如图,BCD △内接于O ,且BD CD =,A 是是BD 上的一点,E 在BA 的延长线上,连结AC 交BD 于F ,连结AD .(1)求证:AD 平分E AC ∠;(2)若DA DF =,求证:BCF BDC △△∽.25.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,ABC 的三个顶点坐标分别为()3,1A -,()1,1B -,()0,3C .(1)画出ABC 关于y 轴对称的111A B C △;(2)画出ABC 以点O 为位似中心的位似图形222A B C △,ABC 与222A B C △的位似比为1:2(画一个即可) . 26.阅读下面材料 (问题情境)课外兴趣小组活动时,老师提出了如下问题:如图①.在△ABC 中,若AB =8,AC =6,求BC 边上的中线AD 取值范围,小明在组内经过合作交流,得到了如下的解决方法:延长AD 到点E ,使DE =AD ,请根据小明方法思考:(1)由已知和作图能得到△ADC ≌△EDB 的理由是( ) A .SSS B .SAS C .AAS D .HL (2)由三角形三边的关系可求得AD 长的取值范围是( )A .6<AD <8B .6≤AD ≤8C .1<AD <7 D .1≤AD ≤7 (解后感悟)解题时,条件中若出现“中点”“中线”字样可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到一个三角形中. (灵活运用)如图②,AD 是△ABC 的中线,BE 交AC 于E ,交AD 于F ,且AE =EF 若EF =4,EC =3,求线段BF 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】连接AC ,根据中位线定理得//EF AC ,12EF AC =,即可由BEF BAC ,根据相似比求出面积比,设BEFS k =,则4BACSk =,再用k 表示出多边形EFCDA 的面积,即可求出结果. 【详解】解:如图,连接AC ,∵E 、F 分别是AB 和BC 的中点, ∴//EF AC ,12EF AC =, ∴BEFBAC ,∴221124BEF BAC S EF SAC ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 设BEFSk =,则4BACSk =, ∴3AEFC BACBEFS S Sk =-=,∵四边形ABCD 是平行四边形,∴4ACDBACSSk ==,∴7EFCDA AEFC ACDS S S k =+=,∴::71:7BEFEFCDA SS k k ==.故选:C . 【点睛】本题考查相似三角形的性质,解题的关键是掌握相似三角形面积比等于相似比的平方的性质.2.D解析:D 【分析】证明AFE △≌△()DFP AAS ,推出=AE DP ,由:2:1AE BE =,设BE k =,2AE k =,推出3AB CD k ==,5PC k =,由//AE BC ,可得AG AEGC CP=的值.【详解】∵四边形ABCD 是平行四边形, ∴//AB PC ,AB CD =, ∴AEF P ∠=∠,∵AFE DFP ∠=∠,AF DF =, ∴AFE △≌△()DFP AAS , ∴=AE DP ,∵:2:1AE BE =,设BE k =,2AE k =, ∴3AB CD k ==,5PC k =, ∵//AE BC ,∴2255AG AE k GC CP k ===, 故选:D . 【点睛】本题考查了平行四边形的性质,全等三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是学会利用已知条件证明三角形全等、利用参数解决问题,属于中考常考题型.3.D解析:D 【分析】根据平行线分线段成比例求出EC ,即可解答. 【详解】 解:∵DE ∥BC ,∴AD AEDB EC =,即643EC =, 解得:EC=2,∴AC=AE+EC=4+2=6; 故选:D . 【点睛】本题考查了平行线分线段成比例定理,解决本题的关键是熟记平行线分线段成比例定理.4.A解析:A 【分析】根据位似图形的性质可得DF =2AC ,然后根据两点间的距离公式求出AC 即可解决问题. 【详解】解:∵DEF 与ABC 是位似图形,且相似比为2:1,∴DF =2AC ,∵AC ==∴DF =故选:A .【点睛】本题考查了位似图形的性质和两点间的距离,熟练掌握位似图形的性质是解题的关键. 5.C解析:C【分析】根据题意易得BO =EF 与x 的关系,进而分两种情况,依情况来判断函数图像即可.【详解】解:∵四边形ABCD 是正方形,边长为2,∴AC BD ==12BO OD BD ===①当P 在OB 上时,即0x ≤≤∵EF ∥AC ,∴△BEF ∽△BAC , ∴EF BP AC OB=, ∴22EF BP x ==, ∵OP x =,∴)2122y x x x =⨯⨯=-+;②当P 在OD x <≤∵EF ∥AC ,∴△DEF ∽△DAC , ∴EF DP AC OD =,=,∴)2EF x =,∵BP=x , ∴OP x =∴(()21242y x x x =⋅=-+-, 这是一个二次函数,根据二次函数的性质可知:二次函数的图像是一条抛物线,开口向下,故选C .【点睛】本题主要考查相似三角形的性质与判定、二次函数的图像与性质及正方形的性质,关键是利用三角形相似和面积来列出二次函数的解析式,进而求解.6.B解析:B【分析】连结AD、BE,DE,如图,根据圆周角定理得∠ADB=90°,则AD⊥BC,加上CD=BD,根据等腰三角形的判定即可得到AC=AB;再根据等腰三角形的性质和三角形内角和定理可计算出∠BAC=40°;由AB为直径得到∠AEB=90°,则∠ABE=50°,根据圆周角定理可判断AE BE≠;接着证明△CED∽△CBA,利用相似比得到CD CEAC BC=,然后利用等线段代换即可判断④.【详解】解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°.∵CD=BD,∴AD是BC的垂直平分线,∴AC=AB,故②正确;∵AC=AB,∴∠ABC=∠C=70°,∴∠BAC=40°,故①错误;连接BE,DE,∵AB为⊙O的直径,∴∠AEB=90°,∵∠BAC=40°,∴∠ABE=50°,∴∠BAC≠∠ABE,∴AE≠BE,∴AE BE≠,故③错误;∵四边形ABDE是圆内接四边形,∴∠CDE=∠CAB,∴△CDE∽△CAB,∴CD CE AC BC=, ∴CE•AC=CD·BC , ∴CE•AB=12BC·BC , ∴2CE •AB =BC 2,故④正确.故选B .【点睛】本题考查了相似三角形的判定和性质,圆周角定理,根据题意作出辅助线,构造出圆周角是解题的关键.7.B解析:B【分析】根据平行线分线段成比例定理列出比例式,代入计算得到答案.【详解】解:∵l 1∥l 2∥l 3,DE=15, ∴53DE AB EF BC ==,即1553EF =, 解得,EF=9,故选:B .【点睛】 本题考查了平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键. 8.B解析:B【分析】本题主要应用两三角形相似判定定理,三边对应成比例,分别对各选项进行分析即可得出答案.【详解】解:由勾股定理得:AB ,BC =2,AC ,∴AC :BC :AB =1A 、三边之比为1,图中的三角形(阴影部分)与△ABC 不相似;B 、三边之比:1△ABC 相似;C 3,图中的三角形(阴影部分)与△ABC 不相似;D 、三边之比为2△ABC 不相似. 故选:B .【点睛】此题考查三角形相似判定定理的应用,解答关键是应用勾股定理求出边长.9.A解析:A【分析】设正方形ABCD 的边长为a ,关键黄金分割点的性质得到51AE AB 和BE AE =,用a 表示出1S 、2S 和3S 的面积,再求比例.【详解】解:设正方形ABCD 的边长为a ,∵点E 是AB 上的黄金分割点,∴51AEAB ,则AE =,∴12BE AE =,则2BE a ==⎝⎭,∵22211322S AE a a ⎛⎫-=== ⎪ ⎪⎝⎭,22S BE BC =⋅=,∴)222232S a a =-=,∴)2232:2S S a a ==. 故选:A .【点睛】本题考查黄金分割点,解题的关键是掌握黄金分割点的性质. 10.B解析:B【分析】根据位似变换的概念得到△A 1OB 1∽△A 2OB 2,△A 1OB 1与△A 2OB 2的相似比为1:2,根据位似变换的性质计算,得到答案.【详解】解:∵△A 1OB 1与△A 2OB 2位似,∴△A 1OB 1∽△A 2OB 2,∵△A 1OB 1与△A 2OB 2的周长之比为1:2,∴△A 1OB 1与△A 2OB 2的相似比为1:2,∵A 1的坐标为(-1,2),△A 1OB 1与△A 2OB 2在原点O 的两侧,∴点A 1的对应点A 2的坐标为(2,-4),故选:B .【点睛】本题考查的是位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k .11.B解析:B【分析】直接利用平行线分线段成比例定理得出答案即可.【详解】解:∵DE ∥BC , ∴AE EC =12AD BD =. 故选:B .【点睛】 本题考查了平行线分线段成比例定理,了解定理的内容是解答此题的关键.12.A解析:A【分析】先判断△ADE ∽△ABC ,然后利用相似比求BC 的长.【详解】解:∵DE ∥BC ,∴△ADE ∽△ABC , ∴25DE AD BC AB ==, ∴5515.3222BC DE ==⨯=. 故选:A .【点睛】 本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了等腰三角形的性质.二、填空题13.3【分析】在Rt △ABE 中利用三角形相似可求得AEDE 的长设A 点关于BD 的对称点A′连接A′D 可证明△ADA′为等边三角形当PQ ⊥AD 时则PQ 最小所以当A′Q ⊥AD 时AP +PQ 最小从而可求得AP +P解析:3【分析】在Rt △ABE 中,利用三角形相似可求得AE 、DE 的长,设A 点关于BD 的对称点A′,连接A′D ,可证明△ADA′为等边三角形,当PQ ⊥AD 时,则PQ 最小,所以当A′Q ⊥AD 时AP +PQ 最小,从而可求得AP +PQ 的最小值等于DE 的长.【详解】设BE x =,则3DE x =,∵四边形ABCD 为矩形,且AE BD ⊥,90BAE ABE ︒∴∠+∠=,90BAE DAE ︒∠+∠=,ABE DAE ∴∠=∠,又AEB DEA ∠=∠,ABE DAE ∴∽,2AE BE DE ∴=⋅,即223AE x =, 3AE x ∴=,在Rt ADE △中,由勾股定理可得222AD AE DE =+,即2226(3)(3)x x =+,解得:3x =,3,33AE DE ∴==,如图,设A 点关于BD 的对称点为A ',连接,A D PA '', 则26,6A A AE AD AD A D ''=====,AA D '∴是等边三角形,PA PA '=,∴当A '、P Q 、三点在一条线上时,A P PQ '+最小,由垂线段最短可知当PQ AD ⊥时,A P PQ '+最小,33AP PQ A P PQ A Q DE ''∴+=+===.故答案是:3;33.【点睛】本题主要考查轴对称的应用,利用最小值的常规解法确定出A 的对称点,从而确定出AP +PQ 的最小值的位置是解题的关键,利用条件证明△A′DA 是等边三角形,借助几何图形的性质可以减少复杂的计算.14.1:2【分析】设△ABC 的面积为1ΔEDG 的面积为xΔBDG 的面积为y 则由题意可得关于xy 的二元一次方程组解方程组得到xy 的值后可得问题解答【详解】解:设△ABC 的面积为1ΔEDG 的面积为xΔBDG解析:1:2【分析】设△ABC 的面积为1,ΔE DG 的面积为x ,ΔBDG 的面积为y ,则由题意可得关于x 、y 的二元一次方程组,解方程组得到x 、y 的值后可得问题解答.【详解】解:设△ABC 的面积为1,ΔEDG 的面积为x ,ΔBDG 的面积为y ,∵DE 为三角形ABE 的中位线,∴三角形DEB 的面积为三角形ABE 面积的一半或者三角形ABC 面积的四分之一, ∴x+y=14, 又由题意可得:△DGE ∽△CGB , ∴214DGE CGB S DE S BC ⎛⎫== ⎪⎝⎭, 即()111442CBD GBD x S S y ⎛⎫=-=- ⎪⎝⎭, ∴ 1184x y =-,所以有: 141184x y x y ⎧+=⎪⎪⎨⎪=-⎪⎩, 解之得: 11216x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴1112126EDG BDG S S x y ===::::, 故答案为1:2.【点睛】本题考查三角形中线、中位线的应用和相似三角形的判定及性质,熟练掌握“三角形中线把三角形分成面积相等的两部分”和相似三角形的判定及性质是解题关键 .15.【分析】过点E 作EM ∥BC 交AC 下点M 点根据菱形的性质可得△AEM 是等边三角形则EM=AE=3由AF ∥EM 对应线段成比例即可得结论【详解】解:过点E 作EM ∥BC 交AC 于点M ∵四边形ABCD 是菱形∴A解析:13【分析】过点E 作EM ∥BC 交AC 下点M 点,根据菱形的性质可得△AEM 是等边三角形,则EM=AE=3,由AF ∥EM ,对应线段成比例即可得结论.【详解】解:过点E 作EM ∥BC 交AC 于点M ,∵四边形ABCD 是菱形,∴AB =4,AD ∥BC ,∴∠AEM =∠B =60°,∠AME =∠ACB =60°,∴△AEM 是等边三角形,则EM =AE =3,∵AF ∥EM ,∴13GF AF GE EM ==, 故答案为:13. 【点睛】 本题考查了平行线分线段成比例,菱形的性质,熟练运用菱形的性质、等边三角形性质是解题的关键.16.①②③④【分析】①根据相似三角形的面积比等于相似比的平方得出AD=BD 求出AE=CE 即可得出答案;②根据相似三角形的面积比等于相似比的平方得出AM=2MN 即可得出答案;③由平行线可得对应线段成比例再 解析:①②③④【分析】①根据相似三角形的面积比等于相似比的平方得出AD=BD ,求出AE=CE ,即可得出答案; ②根据相似三角形的面积比等于相似比的平方得出AM=2MN ,即可得出答案; ③由平行线可得对应线段成比例,再由相似三角形的面积比等于对应边的平方比,进而代入求解即可;④先判断出△BFD ∽△DEA ,然后根据面积比等于相似比的平方得出△ABC 的面积,进而根据S 3=S ABC -S ADE -S DBF 可得出答案【详解】解:①、∵DE ∥BC ,DF ∥AC ,∴△ADE ∽△ABC ,△BDF ∽△BAC ,∵S 1=S 2,22()()∴=AD BD AB AB∴AD=BD ,∵DE ∥BC ,∴AE=EC ,∴DE 是△ABC 的中位线,∴①正确;②、过A 作AN ⊥BC 于N ,交DE 于M ,∵DE ∥BC ,∴AN ⊥DE ,∵DE ∥BC ,DF ∥AC ,∴四边形DECF 是平行四边形,∴DE=CF ,∵S 1=S 3,12∴⨯⨯=⨯DE AM CF MN ∴AM=2MN ,∵DE ∥BC ,∴△ADE ∥△ABC ,2223∴===+DE AM MN BC AN MN MN ∴2BC=3DE ,∴②正确;③、∵DE ∥BC ,DF ∥AC ∴四边形DECF 是平行四边形,∴DE=CF ,DF=CE ,∵相似三角形的面积比等于对应边的平方比, 12==S S AD BD AB AB S S 121+=+=S S AD BD AB AB S S 12S S S =∴212S S S =;∴③正确; ④∵由题意得:△BFD ∽△DEA ,∴可得:=BD AD∴=BD AB=x ∵ABC S =S ,22()∴=S BD S AB∴可得122=++S S S S 又∵△ADE 、△DBF 的面积分别为S 1和S 2,32S =--==ABC ADE DBF S S S S ,∴④正确; 故答案为:①②③④.【点睛】本题考查了面积及等积变换、相似三角形的性质和判定等,难度适中,对于此类题目要先根据相似得出比例式,然后根据比例的性质得出要求图形的面积表达式,进而得出答案. 17.5【分析】根据比例的性质可用b 表示a 代入可得答案【详解】解:由得4b=a-b 得a=5b ∴=5故答案是:5【点睛】本题考查了比例的性质利用比例的性质得出b 表示a 是解题关键解析:5【分析】根据比例的性质,可用b 表示a ,代入可得答案.【详解】 解:由14b a b =-,得4b=a-b . 得a=5b , ∴5a b b b==5, 故答案是:5.【点睛】 本题考查了比例的性质,利用比例的性质得出b 表示a 是解题关键.18.【分析】根据直径所对的圆周角是直角求出BC 的长再用等面积法求出AD长在用勾股定理求出CD 的长然后连接OF 证明利用对应边成比例求出DE 和OE 的长再利用两次勾股定理分别求出AE 和EF 的长最终得到AF 的长 解析:325【分析】根据直径所对的圆周角是直角,求出BC 的长,再用等面积法求出AD 长,在Rt ACD △用勾股定理求出CD 的长,然后连接OF ,证明ADE FOE ,利用对应边成比例求出DE 和OE 的长,再利用两次勾股定理分别求出AE 和EF 的长,最终得到AF 的长.【详解】解:∵BC 是O 的直径,∴90BAC ∠=︒,∵6AB =,8AC =,∴10BC =, 利用等面积法,求出245AB ACAD BC ⋅==,在Rt ACD △中,325CD ==,如图,连接OF ,∵F 是弧BC 的中点,∴OF BC ⊥,∵AD BC ⊥,∴//OF AD ,∴ADE FOE , ∴ADDEFO OE =, ∵327555DO CD OC =-=-=,∴设DE x =,75OE x =-, ∴245755x x =-,解得2435x =, ∴2435DE =,57OE =,在Rt ADE △中,AE ==在Rt EFO中,EF ==∴2422527277AF AE EF =+=+=.故答案是:325;2. 【点睛】 本题考查圆周角定理,垂径定理,相似三角形的性质和判定,解题的关键是掌握这些性质定理进行证明求解.19.【分析】根据题意易证△AEH ∽△AFG ∽△ABC 利用相似三角形的性质解决问题即可【详解】解:∵AB 被截成三等分∴△AEH ∽△AFG ∽△ABC ∴∴S △AFG :S △ABC=4:9S △AEH :S △ABC=解析:13【分析】根据题意,易证△AEH ∽△AFG ∽△ABC ,利用相似三角形的性质解决问题即可. 【详解】 解:∵AB 被截成三等分,∴△AEH ∽△AFG ∽△ABC ,∴11,,23AE AE AF AB ==, ∴S △AFG :S △ABC =4:9,S △AEH :S △ABC =1:9, ∴S 阴影部分的面积=49S △ABC -19S △ABC =13S △ABC , ∴图中阴影部分的面积是ABC 的面积的13. 故答案为:13. 【点睛】 本题主要考查了利用三等分点求得各相似三角形的相似比,从而求出面积比计算阴影部分的面积,难度适中.20.5【分析】过D 作DE ⊥AB 于E 根据角平分线的性质得到根据勾股定理得到根据相似三角形的性质即可得到结论【详解】过作于是的平分线故答案为:【点睛】本题考查了角平分线的性质相似三角形的判定和性质勾股定理正 解析:5【分析】过D 作DE ⊥AB 于E ,根据角平分线的性质得到32CD DE ==,根据勾股定理得到22BE BD DE =-2253222⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,根据相似三角形的性质即可得到结论. 【详解】过D 作DE AE ⊥于E ,90,C AD ︒∠=是BAC ∠的平分线32CD DE ∴==52DB = 4BC BD CD ∴=+= 22BE BD DE ∴=-2253222⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭90,C DEB B B ︒∠=∠=∠=∠BDE BAC ∴∆∆ BC BE BD AB∴= 5224AB∴= 故答案为:5【点睛】本题考查了角平分线的性质,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.三、解答题21.(I )29;(II )见解析.【分析】(I )利用勾股定理即可解决问题.(2)连接AP ,想办法在AP 上取一点B′,使得AB′=2时,PB′的值最小.方法:取格点G ,H ,连接GH 交AP 于点B′,由平行线分线段成比例定理可知AB′=2,点B′即为所求.【详解】解:(I )222529AC =+=. 故答案为29.(II )如图,点B′即为所求.取格点G ,H ,连接GH 交AP 于点B′,由平行线分线段成比例定理可知AB′=2,点B′即为所求.【点睛】本题考查作图-复杂作图,勾股定理,平行线分线段成比例定理,轴对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题.22.(1)①BG DE =,BG DE ⊥.②BG DE =,BG DE ⊥仍然成立.详见解析;(2)BG DE ⊥成立,BG DE =不成立,详见解析;(3)654. 【分析】(1)①利用正方形的性质,证明BCG DCE ≌△△,利用全等三角形的性质可得:BG=DE ,∠CBG=∠CDE ,再证明:∠EDC+∠DGO=90°,从而可得结论;②同①,先证明:BCG DCE ≌△△,利用全等三角形的性质可得:BG DE =,CBG CDE ∠=∠,再证明:90CDE DHO ∠+∠=︒,从而可得结论;(2)利用矩形的性质,证明BCG DCE △∽△,可得:CBG CDE ∠=∠,再证明90CDE DHO ∠+∠=︒,从而可得结论;(3)连接,,BD GE 利用BG DE ⊥,结合勾股定理证明:2222BE DG BD GE +=+,再把3a =,2b =,12k =代入,即可得到答案. 【详解】解:(1)①BG DE =,BG DE ⊥.理由如下:如图1,延长BG 交DE 于O ,∵四边形ABCD 、CGFE 是正方形,∴BC=CD=AB ,CG=CE ,∠BCD=∠ECD=90°,∵在BCG 和DCE 中BC CD BCG DCE CG CE =⎧⎪∠=∠⎨⎪=⎩,∴BCG DCE ≌△△,∴BG=DE ,∠CBG=∠CDE ,∵∠CBG+∠BGC=90°,又∵∠DGO=∠BGC ,∴∠EDC+∠DGO=90°,∴∠DOG=1809090︒-︒=︒,∴BG ⊥DE ,即BG=DE ,BG ⊥DE ;②BG DE =,BG DE ⊥仍然成立.如图2,∵四边形ABCD 、四边形CEFG 都是正方形,∴BC CD =,CG CE =,90BCD ECG ∠=∠=︒,∴BCG DCE ∠=∠,∵在BCG 与DCE 中,,BC CD BCG DCE CG CE =⎧⎪∠=∠⎨⎪=⎩∴BCG DCE ≌△△,∴BG DE =,CBG CDE ∠=∠,又∵BHC DHO ∠=∠,90CBG BHC ∠+∠=︒,∴90CDE DHO ∠+∠=︒,∴90DOH ∠=︒,∴BG DE ⊥.(2)BG DE ⊥成立,BG DE =不成立.如图5,∵四边形ABCD 、四边形CEFG 都是矩形,且AB CD a ==,BC b =,CG kb =,(),0CE ka a b k =≠>, ∴BC CG b DC CE a==,90BCD ECG ∠=∠=︒, ∴BCG DCE ∠=∠, ∴BCG DCE △∽△,∴CBG CDE ∠=∠,又∵BHC DHO ∠=∠,90CBG BHC ∠+∠=︒,∴90CDE DHO ∠+∠=︒,∴90DOH ∠=︒,∴BG DE ⊥.显然:.BG DE ≠(3)如图5,连接,,BD GE∵BG DE ⊥,∴222OB OD BD +=,222OE OG GE +=,222OB OE BE +=,222OG OD DG += ∴22222222BE DG OB OE OG OD BD GE +=+++=+,又∵3a =,2b =,12k =,CE ka =,CG kb =, 2222222211323321222BD GE ⎛⎫⎛⎫⎛⎫∴=+=⨯+⨯=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,, ∴22222236523124BD GE ⎛⎫+=+++= ⎪⎝⎭,∴22654BE DG +=. 【点睛】 本题考查的是勾股定理的应用,正方形,矩形的性质,三角形全等的判定与性质,三角形相似的判定与性质,掌握以上知识是解题的关键.23.(1)见解析;(2)见解析【分析】(1)先尺规作线段AB 的垂直平分线,再以点A 为圆心,以AB 的一半作弧,与AC 的交点即为点D 的位置;(2)根据两边成比例且夹角相等证明即可.【详解】解:(1)点D 的位置如图所示:(2)∵31231,222343AD AB AB AC ====,且∠A=∠A , ∴△ABD ∽△ACB .【点睛】本题考查了线段垂直平分线的尺规作图和相似三角形的判定,熟练掌握上述知识是解题的关键.24.(1)见解析;(2)见解析.【分析】(1)据等边对等角,判定∠DCB=∠DBC ,再据同弧所对圆周角相等,判定∠DAC=∠DBC ,再据圆内接四边形性质判定∠EAD=∠DCB ,最后得证AD 平分E AC ∠;(2)运用等边对等角和同弧所对圆周角相等证得∠CFB=∠DCB ,据△BCF 和△BDC 还有一个公共角,由有两个角对应相等的三角形相似,证得BCF BDC △△∽.【详解】如下图(1)∵BD CD =∴DBC DCB ∠=∠又∵DAC DBC ∠=∠,DAE DCB ∠=∠∴DAE DAC ∠=∠,即AD 平分EAC ∠.(2)∵DA DF =∴DFA DAC ∠=∠又∵CFB DFA ∠=∠,DCB DBC DAC ∠=∠=∠∴CFB DCB ∠=∠又∵CBF DBC ∠=∠∴BCF BDC △△∽.【点睛】此题考查圆周角的相关知识及圆内接四边形的性质.找准图形正确运用相关知识是关键. 25.(1)图见解析;(2)图见解析.【分析】(1)先画出点,,A B C 关于y 轴的对称点111,,A B C ,再顺次连接即可得;(2)先根据位似中心、位似比得出点222,,A B C 的坐标,再画出点222,,A B C ,然后顺次连接即可得.【详解】(1)先画出点,,A B C 关于y 轴的对称点111,,A B C ,再顺次连接即可得111A B C △,如图所示:(2)()3,1A -,()1,1B -,()0,3C ,且位似比为1:2,()()()22232,12,12,12,20,3A B C ∴⨯-⨯⨯--⨯⨯,即()()()2226,2,2,0,62,C A B ---,先画出点222,,A B C ,再顺次连接即可得222A B C △,如图所示:【点睛】本题考查了画轴对称图形和位似图形,熟练掌握轴对称图形和位似图形的画法是解题关键.26.(1)B ;(2)C ;应用:7.【分析】(1)由已知AD 是△ABC 的中线,和作图延长AD 到点E ,使DE =AD ,CD=BD, ∠ADC=∠EDB, AD=DE 得到△ADC ≌△EDB (SAS) 即可,(2) 由△ADC ≌△EDB ,则BE=AC=6,AE=2AD ,AB=8,在ΔABE 中,AB-BE<AE<AB+BE ,即则2<2AD<14即可,【灵活运用】延长AD 到G ,使DG=AD ,连接BG ,由(1)知△ADC ≌△GDB ,BG=AC=AE+EC=7 ∠G=∠DAC 可以判定BG ∥AC ,由∠BFG=∠AFE ,得ΔGBF ∽ΔAEF ,由性质BG BF AE EF=. 【详解】(1)由已知AD 是△ABC 的中线,和作图延长AD 到点E ,使DE =AD ,CD=BD, ∠ADC=∠EDB, AD=DE 得到△ADC ≌△EDB (SAS)故选择:B ,(2) 由△ADC ≌△EDB ,则BE=AC=6,AE=2AD ,AB=8,在ΔABE 中,AB-BE<AE<AB+BE ,即AB-BE=8-6=2,AB+BE=14,则2<2AD<14,1<AD<7故选择:C ,灵活运用延长AD 到G ,使DG=AD ,连接BG ,由(1)知△ADC ≌△GDB ,BG=AC=AE+EC=7,∠G=∠DAC ,BG ∥AC ,∠BFG=∠AFE ,ΔGBF ∽ΔAEF ,BG BF AE EF=, 744BF =, BF=7.【点睛】本题考查中线加倍问题,由中线加倍,利用SAS推出三角形全等,把问题转化为三角形中的问题,用三角形的三边关系,确定取值范围,由△ADC≌△GDB,∠G=∠DAC可以判定BG∥AC,由∠BFG=∠AFE,得ΔGBF∽ΔAEF,用相似三角形的性质解决问题.。
新人教版初中数学九年级数学下册第二单元《相似》测试卷(含答案解析)(2)
一、选择题1.下列判断正确的是( )A .对角线相等的四边形是矩形B .将一个矩形风景画的四周镶上宽度相等的金边后得到的新矩形与原矩形相似C .如果两个相似多边形的面积比为16:9,那么这两个相似多边形的周长比可能是4:3D .若点C 是AB 的黄金分割点,且AB =6cm ,则BC 的长约为3.7cm2.如图,在平行四边形ABCD 中,以对角线AC 为直径的圆O 分别交BC ,CD 于点M ,N ,若13AB =,14BC =,9CM =,则线段MN 的长为( )A .18013B .10C .12613D .13.如图,在正方形ABCD 中,点E 是边BC 的中点,连接AE ,EF AE ⊥交CD 边于点F ,已知4AB =,则CF 的长为( )A .1B .5C .3D .24.如图,直线////a b c ,直线m 分别交直线a ,b ,c 于点A ,B ,C ,直线n 分别交直线a ,b ,c 于点D ,E ,F ,若23=AB BC ,则DE DF 的值为( )A .13B .23C .25D .355.如图,已知D 、E 分别为AB 、AC 上的两点,且DE ∥BC ,AE=2CE ,AB=12,则AD 的长为( )A .4B .6C .5D .86.如图,在Rt ABC 中,90,ACB AC BC ∠==,点D 、E 在AB 边上,45DCE ∠=,若3,4AD BE ==,则ABC ∣的面积为( )A .20B .24C .32D .367.如图,正方形ABCD 中,ABC ∆绕点A 逆时针旋转到AB C ''∆,AB '、AC '分别交对角线BD 于点E 、F ,若4AE =则EF ED ⋅的值为( )A .4B .6C .8D .168.如图,在ABC ∆中,,D E 分别是边,BC AC 上的点,且11,BD BC AE AC n m ==,连接,AD BE 交于点F ,则AF AD的值为( )A .1m n -B .1m m n +-C .1n m n +-D .1n m - 9.如图,在□ABCD 中,AC 与BD 相交于点O ,E 为OD 的中点,连接AE 并延长交DC 于点F ,则△DEF 与四边形EFCO 的面积比为( )A .1: 4B .1:5C .1:6D .1: 710.如图,直线12//l l ,:2:3AF FB =,:2:1BC CD =,则:AE EC 是( )A .1:2B .1:4C .2:1D .3:211.如图,已知在ABC ∆中,点D 、E 分别是AB 和AC 的中点,BE 、CD 相交于点O ,若2DOE S ∆=,则BOC S ∆=( )A .4B .6C .8D .1012.下列判断中,不正确的有( )A .三边对应成比例的两个三角形相似B .两边对应成比例,且有一个角相等的两个三角形相似C .有一个锐角相等的两个直角三角形相似D .有一个角是100°的两个等腰三角形相似二、填空题13.如图,△ABC 中,∠C =90°,BC =8cm ,AC =6cm ,点P 沿BC 边以2cm/s 的速度从点B 向点C 移动,同时点Q 沿CA 边以1cm/s 的速度从点C 向点A 移动.若以点C 、P 、Q 构成的三角形与△ABC 相似,则运动时间为____________秒.14.如图,将△ABC 沿BC 边上的中线AD 平移到A′B′C′的位置,如果点A′恰好是△ABC 的重心,A′B′、A′C′分别于BC 交于点M 、N ,那么△A′MN 面积与△ABC 的面积之比是_____.15.如图,已知点M 是△ABC 的重心,AB =123,MN ∥AB ,则MN =__________16.如图,EF 是ABC 纸片的中位线,将AEF 沿EF 所在的直线折叠,点A 落在BC 边上的点D 处,已知AEF 的面积为7,则图中阴影部分的面积为______.17.已知a c b d ==12020(b +d ≠0),则a c b d ++的值为_______ . 18.如图,在正方形ABCD 中,15AB =,点,E F 分别为AB ,DC 上的点,将正方形沿EF 折叠,使点A 落在A '处,点D 落在D 处,FD '交BC 于点G ,A D ''交BC 于点H ,若10DF =,203CG =,则BH 的长为___________.19.如图,在ABC ∆中,,D E 分别是边,AC AB 的中点,BD 与CE 交于点O ,连接DE .下列结论:①OE OD OB OC =;②12DE BC =;③12DOE BOC S S ∆∆=;④13DOE DBE S S ∆∆=. 其中,正确的有__________.20.如图,BC 为半圆O 的直径,EF ⊥BC 于点F ,且BF:FC=5:1,若AB=8,AE=2,则AD 的长为__________.三、解答题21.如图,在平面直角坐标系xOy 中,OAB 如图放置,点P 是AB 边上的一点,过点P 的反比例函数(0,0)k y k x x=>>与OA 边交于点E ,连接OP .(1)如图1,若点A 的坐标为(3,4),点B 的坐标为(5,0),且OPB △的面积为5,求直线AB 和反比例函数的解析式;(2)如图2,若60AOB ︒∠=,过P 作//PC OA ,与OB 交于点C ,若12PC OE =,并且OPC 33,求OE 的长. (3)在(2)的条件下,过点P 作//PQ OB ,交OA 于点Q ,点M 是直线PQ 上的一个动点,若OEM △是以OE 为直角边的直角三角形,则点M 的坐标为______. 22.下图是由边长为1的小正方形组成的5×4网格,A 、B 、C 、D 、E 、F 、P 、Q 均为网格格点,请用无刻度直尺作图,保留作图痕迹,不写画法.(1)在线段AB 上找到一点M ,使△AQM ≌△BPM.(2)在线段CD 上找点N ,使△ECN ∽△FDN.23.如图,已知O 的半径长为1,AB 、AC 是O 的两条弦,且=AB AC ,BO 的延长线交AC 于点D ,联结OA 、OC .(1)求证:OAD ABD ∽△△.(2)当OCD 是直角三角形时,求B 、C 两点的距离.(3)记AOB 、AOD △、COD △的面积分别为1S 、2S 、3S ,如果2S 是1S 和3S 的比例中项,求OD 的长.24.如图,ABC 内接于⊙O ,AB AC =,过点C 作AB 的垂线CD ,垂足为点E ,交O 于点F ,连接AD ,并使AD BC ∥.(1)求证:AD 为O 的切线;(2)若5AC =,2BE =,求AD 的长.25.如图是一块三角形钢材ABC ,其中边60cm BC =,高40cm AD =,把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB ,AC 上,这个正方形零件的边长是多少?26.已知ABC ,延长BC 到D ,使CD BC =.取AB 的中点F ,连结FD 交AC 于点E .(1)求AE AC的值; (2)若18AB =,FB EC =,求AC 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】A .利用矩形的判定定理对角线相等的平行四边形可判断;B .一个矩形风景画的四周镶上宽度相等的金边后得到的新矩形与原矩形相似应满足长与宽相等时可以,而矩形的长与宽一般不等;C.利用相似图形的性质即可;D .利用黄金分割法可求出BC 有两个值即可.【详解】解:A 、对角线相等的平行四边形是矩形,故此选项错误;B 、将一个矩形风景画的四周镶上宽度相等的金边后得到的新矩形与原矩形不一定相似,故此选项错误;C 、如果两个相似多边形的面积比为16:9,则两个相似多边形的相似比为4:3,那么这两个相似多边形的周长比等于相似比是4:3,故此选项正确;D 、若点C 是AB 的黄金分割点,且AB =6cm ,则BC 的长约为3.7cm 或2.3cm ,故此选项错误;故选择:C .【点睛】本题综合性考查矩形,矩形相似,相似多边形的性质,黄金分割问题,掌握矩形的判定方法,矩形相似的判定方法,相似多边形的性质,会求黄金分割中线段的长是解题关键. 2.A解析:A【分析】连结AM ,AN ,根据圆周角定理可知△ABM 是直角三角形,利用勾股定理即可求出AC 的长;易证△AMN ∽△ACD ,根据相似三角形的性质即可求出MN 的长.【详解】解:连结AM ,AN ,∵AC 是⊙O 的直径,∴∠AMC=90°,∠ANC=90°,∵AB=13,BM=5,∴22AB BM -,∵CM=9,∴AC=15,∵∠MCA=∠MNA ,∠MCA=∠CAD ,∴∠MNA=∠CAD ,∵∠AMN=∠ACN ,∴∠AMN=∠ACN ,∵△NMA ∽△ACD ,∴AM :MN=CD :AC ,∴12:MN=13:15,∴MN=18013. 故选:A .【点睛】本题考查了圆周角定理运用、勾股定理的运用、相似三角形的判定和性质,题目的综合性较强,难度中等,解题的关键是添加辅助线构造相似三角形.3.A解析:A【分析】根据相似三角形的性质与判定即可求出答案.【详解】解:由题意可知:2BE CE ==,∵90AEF B C ∠=∠=∠=︒,∴BAE AEB AEB CEF ∠+∠=∠+∠,∴BAE CEF ∠=∠,∴AEB EFC ∆∆∽, ∴AB BE CE CF=,∴422CF=, ∴1CF =,故选:A .【点睛】 本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.4.C解析:C【分析】 先由23AB BC =得出25AB AC =,再根据平行线分线段成比例定理即可得到结论. 【详解】 ∵23AB BC =, ∴25AB AC =, ∵a ∥b ∥c , ∴25DE AB DF AC ==, 故选:C .【点睛】 本题考查了平行线分线段成比例定理,掌握三条平行线截两条直线,所得的对应线段成比例是解题的关键.5.D解析:D【分析】先根据平行线分线段成比例定理得出比例式,代入后得出AD=23AB ,代入求出即可. 【详解】解:∵DE ∥BC , ∴AD AE AB AC=, ∵AE=2CE , ∴2223AE CE AC EC EC ==+ 又AB=12, ∴AD=23AB=8,故选:D .【点睛】本题考查了平行线分线段成比例定理,能根据定理得出正确的比例式是解此题的关键. 6.D解析:D【分析】设DE x =,则7AB x =+,然后根据相似三角形的判定及性质以及勾股定理求出x 的值,最后利用直角三角形面积公式求解即可.【详解】设DE x =,则7AB x =+,45DCE CAE DBC ∠=∠=∠=︒,ACE CDE BDC ∴△△△.设,CD a CE b ==,则有以下等式:()::3x b b x =+,()::4x a a x =+,::x a b AC =,整理得()()223,4,b x x a x x x AC ab =+=+⋅=, ()()()22222227342x x x x x a b x AC +++===, 解得5x =,12AB ∴=,AC BC ∴== 1362ABC S ∴=⨯=△, 故选:D .【点睛】本题主要考查相似三角形的判定及性质,勾股定理,利用方程的思想是解题的关键. 7.D解析:D【分析】根据正方形的性质得到∠BAC=∠ADB=45°,根据旋转的性质得到∠EAF=∠BAC=45°,根据相似三角形的性质即可得到结论.【详解】解:∵四边形ABCD 是正方形,∴∠BAC=∠ADB=45°,∵把△ABC 绕点A 逆时针旋转到△AB'C',∴∠EAF=∠BAC=45°,∵∠AEF=∠DEA ,∴△AEF ∽△DEA ,∴AE EF DE AE=, ∴EF•ED=AE 2,∵AE=4, ∴EF•ED 的值为16,故选:D .【点睛】本题考查了旋转的性质,正方形的性质,相似三角形的判定和性质,找出相关的相似三角形是解题的关键.8.C解析:C【分析】过D 作DG ∥AC 交BE 于G ,易证△BDG ∽△BCE ,△DGF ∽△AEF,利用三角形相似的性质即可解答.【详解】解:过D 作DG ∥AC 交BE 于G ,则△BDG ∽△BCE , ∴DG BD CE BC=, ∵1BD BC n =, ∴1DG BD CE BC n==, ∵1AE AC m =, ∴1m CE AC m-=, ∴DG=11m CE AC n mn-⋅= ∵DG ∥AC ,∴△DGF ∽△AEF , ∴111m AC DF DG m mn AF AE n AC m--===, ∴1AD m n AF n +-=,即1AF n AD m n =+-, 故选:C .【点睛】本题考查了相似三角形的判定与性质、比例性质,熟练掌握相似三角形的判定与性质,添加辅助线构造相似三角形是解答的关键.9.B解析:B【分析】设△DEF的面积为S,分别用S表示出△AEB,△AOB,△DOC的面积,即可解决问题.【详解】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AB=CD,AD=BC,设△DEF的面积为S,∵DF∥AB,DE:EB=1:3,∴△ABE的面积为9S,∵EO:BO=1:2,∴△AOB的面积=△DOC的面积=6S,∴四边形FEOC的面积为6S-S=5S,∴15DEFSS EFOC四边形=1:5,故选:B.【点睛】本题考查了相似三角形的性质、平行四边形的性质等知识,解题的关键是熟练掌握相似三角形的性质.10.C解析:C【分析】为了便于计算,可设AF=2x,BF=3x,BC=2y,CD=y,利用AG∥BD,可得△AGF∽△BDF,从而可求出AG,那么就可求出AE:EC的值.【详解】解:如图所示,∵AF :FB =2:3,BC :CD =2:1∴设AF =2x ,BF =3x ,BC =2y ,CD =y∵12//l l ,∴△AGF ∽△BDF , ∴AG BD =AF BF∴3AG y =23∴AG =2y∴AE :EC =AG :CD =2y :y =2:1故选:C .【点睛】根据三角形相似,找到各对相似三角形的共公边,建立起不同三角形之间的联系,是解答此题的关键.11.C解析:C【分析】根据三角形中位线定理得到DE=12BC ,DE ∥BC ,得到△DOE ∽△COB ,根据相似三角形的面积比等于相似比的平方计算,得到答案.【详解】 ∵D 、E 分别是AB 和AC 的中点, ∴12DE BC =,//DE BC , ∴DOE COB ∆∆∽, ∴2DOE COB S DE S BC ∆∆⎛⎫= ⎪⎝⎭,即BOC214S ∆=, 解得,8BOC S ∆=,故选:C .【点睛】本题考查了相似三角形的判定和性质、三角形中位线定理,掌握相似三角形的判定定理和性质定理是解题的关键.12.B解析:B【分析】由相似三角形的判定依次判断可求解.【详解】解:A 、三边对应成比例的两个三角形相似,故A 选项不合题意;B 、两边对应成比例,且夹角相等的两个三角形相似,故B 选项符合题意;C 、有一个锐角相等的两个直角三角形相似,故C 选项不合题意;D 、有一个角是100°的两个等腰三角形,则它们的底角都是40°,所以有一个角是100°的两个等腰三角形相似,故D 选项不合题意;故选:B .【点睛】本题考查了相似三角形的判定,熟练运用相似三角形的判定是本题的关键.二、填空题13.或【分析】首先设点P 移动t 秒时△CPQ 与△ABC 相似然后分别从当即时△CPQ ∽△CBA 与当即时△CPQ ∽△CAB 去分析求解即可求得答案【详解】设点P 移动t 秒时△CPQ 与△ABC 相似∵点P 从点B 以2c 解析:125或3211【分析】 首先设点P 移动t 秒时△CPQ 与△ABC 相似,然后分别从当CP CQ CB CA =,即8286t t -=时,△CPQ ∽△CBA ,与当CQ CP CB CA =,即8286t t -=时,△CPQ ∽△CAB ,去分析求解即可求得答案.【详解】设点P 移动t 秒时△CPQ 与△ABC 相似,∵点P 从点B 以2cm/s 的速度向点C 移动,点Q 以1cm/s 的速度从点C 向点A 移动, ∴BP =2tcm ,CQ =tcm ,则CP =CB−BP =8−2t (cm ),∵∠C 是公共角,∴当CP CQ CB CA=,即8286t t -=时,△CPQ ∽△CBA , 解得:t =125; 当CQ CP CB CA=,即8286t t -=时,△CPQ ∽△CAB , 解得:t =3211,∴点P 移动125s 或3211s 时△CPQ 与△ABC 相似. 故答案为:125或3211【点睛】 此题考查了相似三角形的判定.此题难度适中,注意掌握数形结合思想、分类讨论思想以及方程思想的应用.14.【分析】由重心的性质可得AD =AD 由相似三角形的性质可得△A′MN 面积与△ABC 的面积之比=【详解】解:∵点A′恰好是△ABC 的重心∴AD =AD ∵将△ABC 沿BC 边上的中线AD 平移到A′B′C′的位 解析:19【分析】由重心的性质可得A 'D =13AD ,由相似三角形的性质可得△A ′MN 面积与△ABC 的面积之比=21()9A D AD '=. 【详解】 解:∵点A′恰好是△ABC 的重心,∴A'D =13AD , ∵将△ABC 沿BC 边上的中线AD 平移到A′B′C′的位置,∴△ABC ∽△A'MN ,∴△A′MN 面积与△ABC 的面积之比=21()9A D AD '=, 故答案为:19. 【点睛】本题考查了相似三角形的判定和性质以及重心的性质,掌握重心的性质是本题的关键. 15.【分析】根据三角形重心的性质可得AD=BD=CM :CD=2:3由MN ∥AB 可得△CMN ∽△CDB 再根据相似三角形的性质求解即可【详解】解:∵点M 是△ABC 的重心∴AD=BD=CM :CD=2:3∵MN解析:【分析】根据三角形重心的性质可得AD=BD=12AB =CM :CD=2:3,由MN ∥AB 可得△CMN ∽△CDB ,再根据相似三角形的性质求解即可.【详解】解:∵点M 是△ABC 的重心,∴AD=BD=12AB =CM :CD=2:3, ∵MN ∥AB ,∴△CMN ∽△CDB , ∴23MN CM DB CD ==,23=,解得MN =.故答案为:【点睛】本题考查了三角形的重心和相似三角形的性质,熟练掌握上述知识是解题的关键. 16.14【分析】根据三角形的中位线定理结合相似三角形的性质可以求得△ABC 的面积再根据折叠的性质得到△DEF 的面积从而求解【详解】∵EF 是△ABC 的中位线∴EF ∥BCEF=BC ∴△AEF ∽△ACB ∴∵△解析:14【分析】根据三角形的中位线定理,结合相似三角形的性质可以求得△ABC 的面积,再根据折叠的性质得到△DEF 的面积,从而求解.【详解】∵EF 是△ABC 的中位线,∴EF ∥BC ,EF=12BC , ∴△AEF ∽△ACB , ∴22AEF ACB 1124S EF S BC ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, ∵△AEF 的面积为7,∴△ABC 的面积=28,由折叠的性质得△DEF 的面积为7,∴图中阴影部分的面积为28-7-7=14.故答案为:14.【点睛】本题综合考查了折叠问题,三角形的中位线定理和相似三角形的判定和性质.关键是掌握三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半. 17.【分析】根据已知条件求出abcd 之间的关系再代入计算即可【详解】∵=∴∴故答案为【点睛】本题考查比例的性质熟练根据比例性质把比例式转换成乘积式是解题的关键解析:12020【分析】根据已知条件求出ab 、cd 之间的关系,再代入计算即可.【详解】 ∵a cb d ==12020∴2020,2020b a d c == ∴1202020202020()2020a c a c a cb d ac a c +++===+++ 故答案为12020【点睛】 本题考查比例的性质。
新人教版初中数学九年级数学下册第二单元《相似》测试卷(有答案解析)(2)
一、选择题1.在ABC 中,D ,E 分别为,BC AC 上的点,且2AC EC =,连结,AD BE ,交于点F ,设:,:x CD BD y AF FD ==,则( ) A .1y x =+B .1x y x+=C .413y x =+ D .21xy x-=- 2.如图,在△ABC 中,DE ∥BC ,∠ADE =∠EFC ,AD:BD=5:3,CF =6,则DE 的长为( )A .6B .8C .10D .123.如图,在ABC 中,AB AC ≠,AC 3AD =,3AB AE =,点F 为边BC 上一点,则下列条件不能保证FDB △与ADE 相似的是( )A .A BFD ∠=∠B .//DF AC C .BD DFDE AD= D .BD BFAE DE= 4.如图,ABC 中,DE ∥BC ,AD:BD=1:3,则OE :OB=( )A .1:3B .1:4C .1:5D .1:65.若234a b c ==,则a b b c+-的值为( ) A .5B .15C .-5D .-156.如图,在Rt△ABC中,∠B=90⁰,34 BCAB=,D是AB边上一点,过D作DE⊥AB交AC于点E,过D作DF∥AC交BC于点F,连接BE交DF于H.若DH=DE,则DEHFBHSS∆∆为()A.23B.34C.49D.9167.若点C为线段AB的黄金分割点,且AC BC>,则下列各式中不正确的是().A.::AB AC AC BC=B.35BC AB-=C.51AC AB+=D.0.618AC AB≈8.如图,在矩形、三角形、正五边形、菱形的外边加一个宽度一样的外框,保证外框的边界与原图形对应边平行,则外框与原图一定相似的有()A.1个B.2个C.3 D.4个9.如图,△ABC是等腰直角三角形,∠ACB=90°,点E、F分别是边BC、AC的中点,P是AB上一点,以PF为一直角边作等腰直角△PFQ,且∠FPQ=90°,若AB=12,PB=3,则QE的值为()A.2B.4 C.2D.310.如图,已知在ABC 中,D 为BC 上一点,//EG BC ,分别交AB ,AD ,AC 于点E ,F ,G ,则下列比例式正确的是( )A .AE EFBE BD = B .EF AFDC AD = C .AC FGCG DC= D .AE FGAB DC= 11.如图,已知点E 是正方形ABCD 的边AB 边上的黄金分割点,且,AE EB >若1S 表示AE 为边长的正方形面积,2S 表示以BC 为长,BE 为宽的矩形面积,3S 表示正方形ABCD 除去1S 和2S 剩余的面积,则32:S S 的值为( )A .512- B .512+ C .352D .352+ 12.已知两个三角形相似,其中一个三角形的两个内角分别为72,63︒︒,则另一个三角形的最小内角为( ) A .72︒B .63︒C .45︒D .不能确定二、填空题13.如图,在ABC 中,//DE BC ,若9AB =,8AC =,3AD =,则EC 的长是______.14.如图1,课本中有一道例题:有一块三角形余料ABC ,它的边120BC mm =,高80AD mm =.要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB ,AC 上.设PN xmm =,用x 的代数式表示AE =________mm ,由//PN BC ,可得APN ABC ∽△△,再利用相似三角形对应高的比等于相似比,可求得PN =________mm .拓展:原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图2,此时,PN =________mm .15.已知⊙O 的半径为2,A 为圆上一定点,P 为圆上一动点,以AP 为边作等腰Rt △APG ,P 点在圆上运动一周的过程中,OG 的最大值为____.16.如图,在ABC 中,点D 是线段BC 的黄金分割点(DC BD >),若ABD △的面积是252-,则ABC 的面积是_______.17.如图,已知△ABC 中,∠B =90°,BC =3,AB =4,D 是边AB 上一点,DE ∥BC 交AC 于点E ,将△ADE 沿DE 翻折得到△A ′DE ,若△A ′EC 是直角三角形,则AD 长为_____.18.如图,Rt △ABC 中,AC =5,BC =12,O 为BC 上一点,⊙O 分别与边AB 、AC 切于E 、C ,则⊙O 半径是________.19.如果23a cb d ==,其中20b d +≠,那么22a cb d +=+________. 20.若25x y =,则x yy+=____________. 三、解答题21.如图,已知AD 与BC 相交于点O ,AB //CD ,23OB OC =,5AB =,6OA =,求AD 和CD 的长.22.如图,在平面直角坐标系xOy 中,OAB 如图放置,点P 是AB 边上的一点,过点P 的反比例函数(0,0)ky k x x=>>与OA 边交于点E ,连接OP .(1)如图1,若点A 的坐标为(3,4),点B 的坐标为(5,0),且OPB △的面积为5,求直线AB 和反比例函数的解析式;(2)如图2,若60AOB ︒∠=,过P 作//PC OA ,与OB 交于点C ,若12PC OE =,并且OPC 33,求OE 的长. (3)在(2)的条件下,过点P 作//PQ OB ,交OA 于点Q ,点M 是直线PQ 上的一个动点,若OEM △是以OE 为直角边的直角三角形,则点M 的坐标为______.23.如图,在1010⨯的正方形网格中,每个小正方形的边长为1,建立如图所示的坐标系,ABC 的三个顶点均在格点上.(1)若将ABC 沿x 轴对折得到111A B C △,则1C 的坐标为________.(2)以点B 为位似中心,将ABC 各边放大为原来的2倍,得到22A BC ,请在这个网格中画出22A BC .(3)在(2)的条件下,求22A BC 的面积是多少?24.如图,建筑物BC 上有一个旗杆AB ,小明和数学兴趣小组的同学计划用学过的知识测量该建筑物的高度,他们制订了测量方案,并利用课余时间完成了实地测量,测量方法如下:在该建筑物底部所在的平地上有一棵小树ED ,小明沿CD 后退,发现地面上的点F 、树顶E 、旗杆顶端A 恰好在一条直线上,继续后退,发现地面上的点G 、树顶E 、建筑物顶端B 恰好在一条直线上,已知旗杆3AB =米,4DE =米,5DF =米,1.5FG =米,点、、A B C 在一条直线上,点C D F G 、、、在一条直线上,AC ED 、均垂直于CG ,根据以上信息,请求出这座建筑物的高BC .25.如图1,点()8,1A 、(),8B n 都在反比例函数()0my x x=>的图象上,过点A 作AC x ⊥轴于C ,过点B 作BD y ⊥轴于D .(1)求m 的值和直线AB 的函数关系式;(2)动点P 从O 点出发,以每秒2个单位长度的速度沿线段OD 向点D 运动,同时动点Q 从O 点出发,以每秒1个单位长度的速度沿线段OC 向C 点运动,当动点P 运动到点D 时,点Q 也停止运动,设运动的时间为t 秒.如图2,当点P 运动时,如果作OPQ△关于直线PQ 的对称图形'O PQ △,是否存在某时刻t ,使得点'O 恰好落在反比例函数的图象上?若存在,求'O 的坐标和t 的值﹔若不存在,请说明理由.26.将ABC 绕点A 逆时针方向旋转θ,并使各边长变为原来的n 倍,得到AB C ''△,我们将这种变换记为[],n θ.(1)问题发现如图①,对ABC 作变换603⎡⎤︒⎣⎦得AB C ''△,则:AB C ABC S S ''=△△______;直线BC 与直线B C ''所夹的锐角度数为______.(2)拓展探究如图②,ABC 中,35BAC ∠=︒且:2AB AC =,连结BB ',CC '.对ABC 作变换603⎡︒⎣得AB C ''△,求:ABB ACC S S ''△△的值及直线BB '与直线CC '相交所成的较小角的度数,并就图②的情形说明理由. (3)问题解决如图③,ABC 中,30BAC ∠=︒,90ACB ∠=︒,对ABC 作变换[],n θ得AB C ''△,使点B 、C 、C '在同一直线上,且四边形ABB C ''为矩形,请直接写出n 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】过D 作DG ∥AC 交BE 于G ,可得△BDG ∽△BCE ,△DGF ∽△AEF ,根据相似三角形的性质可得x 与y 的数量关系. 【详解】解:如图,过D 作DG ∥AC 交BE 于G , ∴△BDG ∽△BCE ,△DGF ∽△AEF , ∴BD DG BC CE=,DG DFAE AF =,∵AC =2EC , ∴AE =CE , 则BD DFBC AF = ∴BD DFBD CD AF=+,∴BD CD AFBD DF+=, ∵x =CD :BD ,y =AF :FD , ∴1+x =y , ∴y =x +1, 故选:A ..【点睛】本题考查相似三角形的性质和应用,恰当作辅助线构建相似三角形是解题的关键.2.C解析:C 【分析】由DE //BC 可得出53AD AE BD EC ==,∠AED =∠C ,结合∠ADE =∠EFC 可得出△ADE ∽△EFC ,根据相似三角形的性质可得出53AE DE EC FC ==,再根据CF =6,即可求出DE 的长度. 【详解】 解:∵DE //BC ,∴53AD AE BD EC ==,∠AED =∠C . 又∵∠ADE =∠EFC , ∴△ADE ∽△EFC ,∴53AE DE EC FC ==, ∵CF =6,∴563DE =, ∴DE =10. 故选C 【点睛】本题考查了相似三角形的判定与性质、平行线分线段成比例定理,根据平行线分线段成比例定理和相似三角形的性质列出比例式是解题的关键.3.C解析:C 【分析】先根据已知条件可证得ADE ACB ∽,由此可得AED B ∠=∠,再利用相似三角形的判定对选项逐个判断即可. 【详解】解:∵AC 3AD =,3AB AE =,∴AD AE 1AC AB 3==, 又∵A A ∠=∠, ∴ADE ACB ∽, ∴AED B ∠=∠,A 选项:∵A BFD ∠=∠,B B ∠=∠,∴BFD BAC ∽, 故选项A 正确;B 选项:∵//DF AC ,∴C BFD ∠=∠,∠=∠A BDF , ∴BFD BCA △∽△,故选项B 正确; C 选项:BD DFDE AD=无法证明FDB △与ADE 相似; D 选项:∵BD BFAE DE=, AED B ∠=∠, ∴BFD EDA △∽△, 故选项D 正确; 故选:C . 【点睛】本题考查了相似三角形的判定及性质,熟练掌握相似三角形的判定是解决本题的关键.4.B解析:B 【分析】先根据DE ∥BC ,得出ADE ∽ABC ,进而得出1=4AD DE AB BC = ,再根据DE ∥BC ,得到ODE ∽OCB ,进而得到1=1:44OE DE OB CB ==. 【详解】 解:∵DE ∥BC , ∴ADE ∽ABC , ∴=AD DEAB BC , 又∵1=3AD BD , ∴1=4AD DE AB BC =, ∵DE ∥BC ,∴ODE ∽OCB ,∴1=1:44OE DE OB CB ==. 故选:B . 【点睛】本题主要考查了相似三角形的判定与性质,平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似.5.C解析:C 【分析】 设234a b ck ===,则2a k =,3b k =,4c k =,然后代入求值即可.【详解】 解:设234a b c k ===,则2a k =,3b k =,4c k =, ∴a b b c +-=2334k k k k +-=5-k k=﹣5, 故选:C .【点睛】本题考查了比例的性质、分式的求值,设参数求解是解答的关键.6.C解析:C【分析】易证DE ∥BC ,可得34BC DE AB AD ==,因为DH=DE ,得35DE DH AE AE ==,又因为DF ∥AC ,所以35BH DH BE AE ==,所以32BH HE =,根据相似三角形的面积比等于相似比的平方即可求得.【详解】∵DE ⊥AB ,∴∠ADE=90°,∵∠B=90°,∴∠ADE=∠B ,∴DE ∥BC ∴34BC DE AB AD ==,△DEH ∽△FBH ∴35DE AE = 又∵DH=DE ∴35DE DH AE AE == ∵DF ∥AC ∴35BH DH BE AE == ∴32BH HE = ∴4=9DEH FBH S S ∆∆ 故选C【点睛】本题考查相似三角形的性质与判定,掌握相似三角形的面积比等于相似比的平方是解题关键.7.C解析:C【分析】根据黄金分割点的定义逐项排除即可.【详解】解:∵点C 为线段AB 的黄金分割点,且AC BC >,∴2AC BC AB =⋅,∴::AB AC AC BC =,则选项A 正确;∵点C 为线段AB 的黄金分割点,且AC BC >,∴0.618AC AB =≈,则选项C 错误;选项D 正确;1322BC AB AC AB AB AB =-=-=,则选项B 正确. 故选:C .【点睛】 本题考查了成比例线段,熟练掌握黄金分割的定义成为解答本题关键.8.C解析:C【分析】根据相似多边形的判定定理对各个选项进行分析,从而确定最后答案.【详解】矩形的原图与外框不相似,因为其对应角的度数一定相同,但对应边的比值不一定相等,不符合相似的条件;锐角三角形的原图与外框相似,因为其对应角均相等,对应边均对应成比例,符合相似的条件;正五边形相似,因为它们的边长都对应成比例、对应角都相等,符合相似的条件;菱形的原图与外框相似,因为其对应角均相等,对应边均对应成比例,符合相似的条件. 综上,外框与原图一定相似的有3个,故选:C .【点睛】本题主要考查了相似图形的概念,注意边数相同、各角对应相等、各边对应成比例的两个多边形是相似多边形.9.C解析:C【分析】取AB 的中点D ,连结FD ,根据等腰直角三角形的性质得到∠A=45°,根据三角形中位线定理得到EF ∥AB ,EF=12AB=6,DF=12BC=32,证明△FDP ∽△FEQ ,根据相似三角形的性质列出比例式,代入计算,得到答案.【详解】解:如图,取AB 的中点D ,连结FD ,∵△ABC 为等腰直角三角形,AB=12,∴2∠A=45°, ∵点D 、E 、F 分别是△ABC 三边的中点,AB=12,PB=3,∴AD=BD=6,DP=DB-PB=6-3=3,EF 、DF 为△ABC 的中位线,∴EF ∥AB ,EF=12AB=6,DF=122,∠EFP=∠FPD , ∴∠FDA=45°,322DF EF ==, ∴∠DFP+∠DPF=45°,∵△PQF 为等腰直角三角形,∴∠PFE+∠EFQ=45°,FP=PQ ,∴∠DFP=∠EFQ ,∵△PFQ 是等腰直角三角形,∴22PF FQ =, ∴DF PF EF FQ=, ∵DF PF EF FQ=,∠DFP=∠EFQ , ∴△FDP ∽△FEQ ,∴2QE EF DP DF ==,即23QE =, 解得,2,故选:C .【点睛】本题考查了等腰直角三角形,相似三角形的判定和性质,根据题意作出辅助线,构造出三角形的中位线是解题的关键.10.D解析:D【分析】根据相似三角形的判定推出△AEF∽△ABD,△AFG∽△ADC,△AEG∽△ABC,再根据相似三角形的性质得出比例式即可.【详解】A、∵EG∥BC,即EF∥BD,∴△AEF∽△ABD,∴AE EF=,AB BD≠,故本选项不符合题意;∵AB BEB、∵EF∥BD,∴△AEF∽△ABD,∴EF AF=,BD AD∵BD≠DC,故本选项不符合题意;C、∵EG∥BC,即FG∥DC,∴△AFG∽△ADC,∴AG FG=,AC DC∵AG AC≠,故本选项不符合题意;AC CGD、∵EG∥BC,∴△AEG∽△ABC,∴AE AG=,AB AC∵FG∥DC,∴△AFG∽△ADC,∴AG FG=,AC DC∴AE FG=,故本选项符合题意;AB DC故选:D【点睛】本题考查了相似三角形的性质和判定,能正确的识别图形、灵活运用定理进行推理是解此题的关键.11.A解析:A【分析】设正方形ABCD 的边长为a ,关键黄金分割点的性质得到512AE AB 和12BE AE =,用a 表示出1S 、2S 和3S 的面积,再求比例.【详解】解:设正方形ABCD 的边长为a ,∵点E 是AB 上的黄金分割点,∴512AE AB ,则12AE a =,∴BE AE =,则21322BE a a ⎛⎫== ⎪ ⎪⎝⎭,∵2221S AE ⎫===⎪⎪⎝⎭,2232S BE BC a =⋅=,∴)2222333222S a a a a -=--=,∴)223231:2:22S S a a ==. 故选:A .【点睛】本题考查黄金分割点,解题的关键是掌握黄金分割点的性质. 12.C解析:C【分析】根据相似三角形的性质、三角形的内角和定理可得出另一个三角形的三个内角度数,由此即可得.【详解】由相似三角形的性质得:另一个三角形的两个内角分别为72,63︒︒,则另一个三角形的第三个内角为180726345︒-︒-︒=︒,因此,另一个三角形的最小内角为45︒,故选:C .【点睛】本题考查了相似三角形的性质、三角形的内角和定理,熟练掌握相似三角形的性质是解题关键.二、填空题13.【分析】先根据相似三角形的判定与性质可得从而可得AE 的长再根据线段的和差即可得【详解】解得则故答案为:【点睛】本题考查了相似三角形的判定与性质熟练掌握相似三角形的判定与性质是解题关键 解析:163【分析】 先根据相似三角形的判定与性质可得AD AE AB AC =,从而可得AE 的长,再根据线段的和差即可得.【详解】//DE BC ,ADE ABC ∴,AD AE AB AC∴=, 9AB =,8AC =,3AD =,398AE ∴=, 解得83AE =, 则816833EC AC AE =-=-=, 故答案为:163. 【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键. 14.48【分析】根据相似三角形的性质可得对应高的比等于相似比进行计算然后根据矩形的性质可设则进行求解即可;【详解】设则∵PN ∥BC ∴∴即解得∴拓展:设则∵PN ∥BC ∴∴∴解得∴;故答案是:;48;【点睛解析:80x -484807 【分析】根据相似三角形的性质可得对应高的比等于相似比进行计算,然后根据矩形的性质可设BQ x =,则2PN x =,80AE x =-,进行求解即可;【详解】设PN xmm =,则PN PQ ED xmm ===,()80AE AD ED x mm =-=-,∵PN ∥BC ,∴APN ABC ,∴PN AE BC AD =, 即8012080x x -=,解得48x =, ∴48PN mm =,拓展:设PQ xmm =,则2PN xmm =,()80AE AD ED x mm =-=-,∵PN ∥BC ,∴APN ABC , ∴PN AE BC AD =, ∴28012080x x -=,解得2407x =, ∴48027PN x ==; 故答案是:80x -;48;4807. 【点睛】 本题主要考查了相似三角形的应用,准确分析计算是解题的关键.15.【分析】连接OA 作OH ⊥OA 交⊙O 于点H 连接AHHCOP 首先证明∠OAP ∽△HAG 推出由OP=2可得HG=2由OG≤OH+HG 推出OG≤2+2由此即可解决问题;【详解】解:连接OA 作OH ⊥OA 交⊙O解析:222+【分析】连接OA ,作OH ⊥OA 交⊙O 于点H ,连接AH ,HC ,OP .首先证明∠OAP ∽△HAG ,推出2OP OA HG AH ==,由OP=2,可得HG=22,由OG≤OH+HG ,推出OG≤2+22,由此即可解决问题;【详解】解:连接OA ,作OH ⊥OA 交⊙O 于点H ,连接AH ,HG ,OP .∵OA =OH ,∠AOH =90°,∴AHOA ,∴AP =PG ,∠APG =90°,∴AGAP ,∴OA AP AH AG == ∵∠OAH =∠PAG =45°,∴∠OAP ∽△HAG ,∴2OP OA HG AH ==. ∵OP =2,∴HG.∵OG ≤OH +HG ,∴OG,∴OG 的最大值为.故答案为:.【点睛】本题考查旋转变换,等腰直角三角形的性质,相似三角形的判定和性质,三角形的三边关系等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会用转化的思想思考问题.16.【分析】根据黄金分割的定义以及等高的两个三角形面积之比等于底之比即可求出的面积【详解】解:∵在中点是线段的黄金分割点()∴∵的面积是∴的面积故答案为:【点睛】本题考查了黄金分割的概念也考查了三角形的解析:2【分析】根据黄金分割的定义,以及等高的两个三角形面积之比等于底之比,即可求出ABC 的面积.【详解】解:∵在ABC 中,点D 是线段BC 的黄金分割点(DC BD >),∴BD BC 1==: ∵ABD △的面积是2∴ABC 的面积()3222=÷=故答案为:2.【点睛】本题考查了黄金分割的概念,也考查了三角形的面积公式,解题的关键是正确理解黄金分割的概念.17.或【分析】先根据勾股定理得到AC =5再根据平行线分线段成比例得到AD :AE =AB :AC =4:5设AD =x 则AE =A′E =xEC =5﹣xA′B =2x ﹣4在Rt △A′BC 中根据勾股定理得到A′C 再根据△ 解析:78或258 【分析】 先根据勾股定理得到AC =5,再根据平行线分线段成比例得到AD :AE =AB :AC =4:5,设AD =x ,则AE =A ′E =54x ,EC =5﹣54x ,A ′B =2x ﹣4,在Rt △A ′BC 中,根据勾股定理得到A ′C ,再根据△A ′EC 是直角三角形,根据勾股定理得到关于x 的方程,解方程即可求解.【详解】解:在△ABC 中,∠B =90°,BC =3,AB =4,∴AC =5,∵DE ∥BC ,∴AD :AB =AE :AC ,即AD :AE =AB :AC =4:5,设AD =x ,则AE =A ′E =54x ,EC =5﹣54x ,A ′B =24x ﹣, 在Rt △A ′BC 中,A ′C =22(24)3x -+,∵△A ′EC 是直角三角形,∴①当A '落在边AB 上时,∠EA ′C =90°,∠BA ′C =∠ACB ,A ′B =3×cot ∠ACB =39344⨯=, ∴AD =1974248⎛⎫-= ⎪⎝⎭;②点A 在线段AB 22(24)3x -+2+(5﹣54x )2=(54x )2, 解得x 1=4(不合题意舍去),x 2=258.故AD 长为78或258. 故答案为:78或258. 【点晴】 本题考查了勾股定理和平行线等分线段成比例定理,掌握相关知识是解决问题的关键. 18.【分析】连接EO 根据切线性质定理得OE ⊥AB 可得到△BEO ∽△BCA 根据相似三角形的性质可求出圆半径的长【详解】解:∵⊙O 分别与边ABAC 切于EC 连接OE 则OE ⊥ABBC ⊥AC ∴∠BEO=∠BCA 又 解析:103【分析】连接EO ,根据切线性质定理得OE ⊥AB ,可得到△BEO ∽△BCA ,根据相似三角形的性质,可求出圆半径的长.【详解】解:∵⊙O 分别与边AB 、AC 切于E 、C ,连接OE ,则OE ⊥AB ,BC ⊥AC∴∠BEO=∠BCA ,又∠B=∠B∴△BEO ∽△BCA ∴=BO OE AB AC又AC=5,BC=12,∴22AC BC ,设圆的半径为r , ∴12r r =135- ∴r=103∴圆的半径是103 , 故答案为:103.【点睛】此题考查了切线的性质及相似三角形的判定与性质,解题关键在于熟练掌握切线性质定理及相似三角形的性质与判定定理.19.【分析】根据已知条件得出再根据b+2d≠0即可得出答案【详解】解:∵∴∵b+2d≠0∴;故答案为:【点睛】本题考查了比例的性质熟练掌握比例的性质是解题的关键解析:23【分析】根据已知条件得出2223a c b d ==,再根据b+2d≠0,即可得出答案. 【详解】解:∵23a c b d ==, ∴2223a cb d ==, ∵b+2d≠0,∴2223a cb d +=+; 故答案为:23. 【点睛】本题考查了比例的性质,熟练掌握比例的性质是解题的关键.20.【分析】由根据比例的性质即可求得的值【详解】解:∵∴=故答案为:【点睛】此题考查了比例的性质此题比较简单注意熟记比例变形解析:75【分析】 由25x y =,根据比例的性质,即可求得x y y+的值. 【详解】 解:∵25x y = ∴x y y +=2+57=55. 故答案为:75. 【点睛】此题考查了比例的性质,此题比较简单,注意熟记比例变形.三、解答题21.15,7.5AD CD ==【分析】证明OAB ∆∽ODC ∆,再根据相似三角形的性质列式计算即可.【详解】解:∵AB //CD , ∴23OA OB OD OC == 又∵6OA =, ∴623OD =,解得9OD = ∴6915AD OA OD =+=+=∵AB //CD ,∴OAB ∆∽ODC ∆, ∴23AB OB CD OC == 又∵5AB =, ∴523CD =,解得7.5CD = 【点睛】 本题考查的是平行线分线段成比例定理以及相似三角形的判定与性质,灵活运用定理、找准线段的对应关系是解题的关键.22.(1)210y x =-+,8y x =;(2)4OE =;(3)(-或(5.【分析】(1)过点P 作PD ⊥OB 于点D ,根据点B 的坐标为(5,0),且OPB △的面积为5求出PD 的长,求出直线AB 的解析式,故可得出P 点坐标,利用待定系数法求出反比例函数的解析式即可;(2)作EF ⊥OB 于F ,PD ⊥OB 于D ,则//EF PD ,先证明OEF CPD ∽,设OE=m ,根据相似三角形对应边成比例求得1133,,22OF OE m EF OE m ====13,,4CD m PD m ==进而求得P 的坐标,求得OC 的长,然后根据OPC 的面积为33,列出关于m 的方程,解方程求得即可. (3)先求得,E P 的坐标,再根据//,PQ OB 设(),3,M x 分两种情况讨论,当90MOE ∠=︒,90OEM ∠=︒, 再利用勾股定理列方程,解方程可得答案. 【详解】解:(1)如图1,过点P 作PD ⊥OB 于点D ,∵点B 的坐标为(5,0), OPB △的面积为 5,∴152OB PD =, 552PD ∴=, 解得:PD=2, 设直线AB 的解析式为 y=ax+b (a≠0),∵A (3,4),B (5,0),∴ 3450a b a b +=⎧⎨+=⎩, 解得:210a b =-⎧⎨=⎩, ∴直线AB 的解析式为210y x =-+,当y=2时,-2x+10=2,解得x=4,∴P ( 4,2),∵点P 的反比例函数k y x= (x >0)上,∴2=4k ,解得:k=8, ∴反比例函数的解析式为:8y x =; (2)如图2,作EF ⊥OB 于F ,PD ⊥OB 于D ,则//EF PD ,∵//PC OA , 12PC OE =∴OEF CPD ∽, ∴2OF EF OE CD PD CP===, 设OE=m , ∵∠AOB=60°, ∴1133,,22OF OE m EF ==== ∴13,,4CD m PD == ∴13,22E m m ⎛⎫ ⎪ ⎪⎝⎭,P 3m , ∵E 、P 都是反比例函数k y x =(k >0,x >0)上的点, ∴设P 的横坐标为x ,则 133224m m =, x m ∴=,∴OD=m ,∴1344OC OD CD m m m =-=-=, ∵OPC 33, ∴1332OC PD = 1333324m ⨯= 解得:m=4,(负根舍去)∴OE=4.(3)∵()223E ,, ()43,P , //,PQ OB 如图3,当∠EOM=90°时,设(),3,M x由222,OM OE ME +=()()()()22222232232323,x x ∴+++=-+- 412,x ∴-=3,x ∴=- ()33,M ∴-, 如图4,当∠OEM=90°时,由222,OE EM OM += (()222222232333,x x ∴++-+=+ 420,x ∴-=-5,x ∴=(53.M ∴,∴M 的坐标为(3-或(53,.故答案为:(3-或(53,.【点睛】本题考查的是反比例函数综合题,涉及到用待定系数法求一次函数及反比例函数的解析式,相似三角形的判定与性质,勾股定理的应用,掌握以上知识是解题的关键. 23.(1)(4,)1-;(2)画图见解析;(3)12.【分析】(1)直接利用关于x 轴对称图形的性质得出得出对应点位置即可;(2)直接利用位似图形的性质得出对应点位置进而得出答案;(3)直接运用三角形面积公式求出△A 2BC 2的面积即可.【详解】解:(1)如图所示:111A B C △,即为所求,则1C 的坐标为:(4,)1-.故答案为:(4,)1-.(2)如图所示:22A BC ,即为所求.(3)22164122A BC S =⨯⨯=. 【点睛】此题主要考查了位似变换以及轴对称变换,正确得出对应点位置是解题关键. 24.这座建筑物的高BC 为 14米【分析】根据两组相似三角形ACF EDF ∆∆∽和BCG EDG ∆∆∽,利用对应边成比例,列出CD 和BC 的关系式,然后解方程求出BC 的长.【详解】解:由题意可得90ACF EDF AFC EFD ︒∠∠∠∠==,=,ACF EDF ∴∆∆∽,AC CF ED DF∴=, 即3545BC CD ++=,554BC CD -∴=, 由题意可得,90BCG EDG BGC EGD ︒∠∠∠∠==,=,BCG EDG ∴∆∆∽,BC CG ED DG∴=, 即5 1.545 1.5BC CD ++=+, 6.54( 6.5)BC CD ∴+=,556.54264BC BC -∴=⨯+, 14BC ∴=,∴这座建筑物的高BC 为 14米.【点睛】本题考查相似三角形的应用,解题的关键是利用相似三角形对应边成比例的性质列式求边长.25.(1)直线AB 的解析式为9y x =-+;(2)存在,()'4,2O ,52t =,见解析; 【分析】 (1)由于点A (8,1)、B (n ,8)都在反比例函数m y x=的图象上,根据反比例函数的意义求出m ,n ,再由待定系数法求出直线AB 的解析式;(2)①由题意知:OP=2t ,OQ=t ,由三角形的面积公式可求出解析式;②通过三角形相似,用t 的代数式表示出O′的坐标,根据反比例函数的意义可求出t 值.【详解】 解:(1)∵点()8,1A 、(),8B n 都在反比例函数m y x =的图象上, ∴818=⨯=m , ∴8y x =, ∴88n=,即1n =. 设AB 的解析式为y kx b =+,把()8,1、()1,8B 代入上式得:818k b k b +=⎧⎨+=⎩,解得:19k b =-⎧⎨=⎩. ∴直线AB 的解析式为9y x =-+.(2)存在.当'O 在反比例函数的图象上时,作PE y ⊥轴,'O F x ⊥轴于F ,交PE 于E ,则90E ∠=︒,'2PO PO t ==,'QO QO t ==.由题意知:'PO Q POQ ∠=∠,'90'QO F PO E ∠=︒-∠,'90'EPO PO E ∠=︒-∠,∴''PEO O FQ △△, ∴''''PE EO PO O F QF QO ==, 设QF b =,'O F a =,则PE OF t b ==+,'2O E t a =-, ∴22t b t a a b+-==, 解得:45a t =,35b t =, ∴84',55O t t ⎛⎫ ⎪⎝⎭, 当'O 在反比例函数的图象上时,84855t t ⋅=, 解得:52t =±, ∵反比例函数的图形在第一象限,∴0t >, ∴52t =, ∴()'4,2O , 当52t =秒时,'O 恰好落在反比例函数的图象上. 【点睛】 本题主要考查了反比例函数的意义,利用图象和待定系数法求函数解析式,相似三角形的判定和性质,熟练掌握反比例函数的意义和能数形结合是解决问题的关键.26.(1)3:1,60;(2)35︒,理由见解析;(3)2n =.【分析】(1)利用新定义得出[],n θ的意义,利用旋转的性质得到AB C ''△∽ABC ,且相似比,60BAB '∠=︒,进而求出面积比,通过外角的性质得到DEB '∠即可求出直线BC 与直线B C ''所夹的锐角度数;(2)利用新定义得出[],n θ的意义,得到::AB AB AC AC ''==35BAC B AC ''∠=∠=︒,进而可以得到BAB CAC ''∠=∠,下证BAB '△∽CAC '△,通过题中给的相似比即可求出面积之比,延长CC '交BB '于D ,通过DEB AEC ''∠=∠,BB A CC A ''∠=∠,可以证得DEB '△∽AEC ',从而得到C DB ''∠的度数,即可得直线BB '与直线CC '相交所成的较小角的度数;(3)由四边形ABB C ''为矩形,得到90BAC '∠=︒,进而求出CAC '∠的度数,利用含30角的直角三角形的性质即可得到AC AC'的值,进而求出n 的值. 【详解】解:(1)由题意可知:对ABC 作变换60⎡︒⎣得AB C ''△,∴AB C ''△∽ABC ,60BAB '∠=︒,∴B B '∠=∠,∴()2:3:1AB C ABC S S ''==, ADE B BAB '∠=∠+∠,ADE B DEB ''∠=∠+∠,∴60DEB BAB ''∠=∠=︒,即直线BC 与直线B C ''所夹的锐角度数为:60︒.故答案为:3:1,60.(2)根据题意得:::1:AB AB AC AC ''==35BAC B AC ''∠=∠=︒, ∴BAC B AC B AC B AC ''''∠+∠=∠+∠,∴BAB CAC ''∠=∠,∴BAB '△∽CAC '△,∴相似比AB k AC=,BB A CC A ''∠=∠,:AB AC =,∴2:2ABB ACC S S ''==,延长CC '交BB '于D ,如图,设CC '交AB '于E .DEB AEC ''∠=∠,BB A CC A ''∠=∠,∴DEB '△∽AEC ',∴35C DB B AC ''''∠=∠=︒,∴:2ABB ACC S S ''=△△,直线BB '与直线CC '相交所成的较小角的度数为35︒. (3)四边形ABB C ''为矩形,∴90BAC '∠=︒,30BAC ∠=︒,∴60CAC BAC BAC ''∠=∠-∠=︒,90ACB ∠=︒,∴90ACC '∠=︒,在Rt ACC '△中,12AC AC '=, ∴21AC AC '=, ∴2AC n AC'==, 即n 的值为2.【点睛】本题考查了图形的旋转,相似三角形的判定和性质,新定义运算,三角形的外角性质以及含30角的直角三角形的性质,解题的关键是根据题意得出[],n θ的意义.。
新人教版初中数学九年级数学下册第二单元《相似》测试题(答案解析)(1)
一、选择题1.如图,在Rt ABC 中,90C ∠=︒,7AC =,24BC =,将它绕着BC 中点D 顺时针旋转一定角度后到A B C ''',恰好使//B C AB '',A C ''与边AB 交于点E ,则A E '的长为( )A .72B .4924C .8425D .91252.下列图形中一定是相似形的是( )A .两个等腰三角形B .两个菱形C .两个矩形D .两个正方形 3.如图所示,在矩形ABCD 中,AB =2,BC =2,对角线AC 、BD 相交于点O ,过点O 作OE 垂直AC 交AD 于点E ,则AE 的长是( )A .2B .3C .1D .1.54.如图,在Rt ABC 中,90,ACB AC BC ∠==,点D 、E 在AB 边上,45DCE ∠=,若3,4AD BE ==,则ABC ∣的面积为( )A .20B .24C .32D .36 5.如图,在正方形ABCD 中,E 为BC 中点,3DF FC =. 联结AE AF EF 、、.那么下列结果错误的是( )A .ABE △与ECF 相似B .ABE △与AEF 相似C .ABE △与ADF 相似D .AEF 与ECF 相似6.如图,在ABC 中,//DE BC ,6AD =,3DB =,4AE =,则AC 的长为( )A .1B .2C .4D .67.如图,正方形ABCD 中,ABC ∆绕点A 逆时针旋转到AB C ''∆,AB '、AC '分别交对角线BD 于点E 、F ,若4AE =则EF ED ⋅的值为( )A .4B .6C .8D .168.如图,在ABC ∆中,,D E 分别是边,BC AC 上的点,且11,BD BC AE AC n m ==,连接,AD BE 交于点F ,则AF AD的值为( )A .1m n -B .1m m n +-C .1n m n +-D .1n m -9.有下列四种说法:其中说法正确的有( )①两个菱形相似;②两个矩形相似;③两个平行四边形相似;④两个正方形相似. A .4个B .3个C .2个D .1个 10.如果两个相似三角形的对应高之比是1:2,那么它们的周长比是( ) A .1:2B .1:4C .1:2D .2:1 11.如图,直线l 1//l 2//l 3,分别交直线m 、n 于点A 、B 、C 、D 、E 、F .若AB ∶BC =5∶3,DE =15,则EF 的长为( )A .6B .9C .10D .2512.如图,在△ABC 中,DE ∥BC ,12AD BD =,则AE EC=( )A .13B .12C .23D .32二、填空题13.如图,点D 是ABC 的边AB 上的一点,//DE BC 交AC 于点E ,作//DF AC 交BC 于点F ,分别记ADE ,BDF ,平行四边形DFCE ,ABC 的面积为1S ,2S ,3S ,S 有以下结论:①若12S S ,则DE 为ABC 的中位线;②若13S S =,则23BC DE =;③212S S S =;④3122S S S =.其中正确的是______.(把所有正确结论的序号都填上)14.已知线段=AB 6,点c 是线段AB 的黄金分割点,AC BC >.那么AC BC -=________.15.己知034x z y ==≠,则345x y z x y z -+=++________. 16.如图,在Rt ACB 中,90C ∠=︒,30ABC ∠=︒,4AC =,N 是斜边AB 上方一点,连接BN ,点D 是BC 的中点,DM 垂直平分BN ,交AB 于点E ,连接DN ,交AB 于点F ,当ANF 为直角三角形时,线段AE 的长为________.17.如图,在矩形ABCD 中,M N 、分别是边AD BC 、的中点,点P Q 、在DC 边上,且14PQ DC =.若8,10AB BC ==,则图中阴影部分的面积是_____________18.已知:如图,ABC 内接于O ,且BC 是O 的直径,AD BC ⊥于D ,F 是弧BC 中点,且AF 交BC 于E ,6AB =,8AC =.则CD =_________________.AF =_________________.19.如图,ED 为△ABC 的中位线,点G 是AD 和CE 的交点,过点G 作GF ∥BC 交AC 于点F ,如果GF =4,那么线段BC 的长是________.20.如图,AB 是⊙O 的直径,AB =20cm ,弦BC =12cm ,F 是弦BC 的中点.若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,设运动时间为t (s )(0≤t≤10),连接EF ,当△BEF 是直角三角形时,t (s )的值为_______.三、解答题21.如图,在边长为1的55 的正方形网格上有两个三角形,它们顶点都在格点上.(1)ABC 与DEF 是否相似?请说明理由.(2)请在空白网格上画出MNP ABC △∽△,并指出相似比.(要求MNP △三个顶点都在格点上,并与ABC ,DEF 都不全等)MNP ABC △∽△,相似比为__________.22.如图,已知O 的半径长为1,AB 、AC 是O 的两条弦,且=AB AC ,BO 的延长线交AC 于点D ,联结OA 、OC .(1)求证:OAD ABD ∽△△.(2)当OCD 是直角三角形时,求B 、C 两点的距离.(3)记AOB 、AOD △、COD △的面积分别为1S 、2S 、3S ,如果2S 是1S 和3S 的比例中项,求OD 的长.23.如图,ABC ∆中,∠C =90°,AC =3cm ,BC =4cm ,动点P 从点B 出发以2cm/s 速度向点C 移动,同时动点Q 从C 出发以1cm/s 的速度向点A 移动,设它们的运动时间为t 秒.(1)根据题意知:CQ = cm ,CP = cm ;(用含t 的代数式表示)(2)t 为何值时,CPQ ∆与ABC ∆相似.24.如图,Rt △ABC 中,∠C=90°.(1)在斜边AB 上确定一点E ,使点E 到点B 距离和点E 到AC 的距离相等;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若BC=6,点E 到AC 的距离为ED=4,求BD 的长.25.如图,△ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径.求证:△ABE ~△ADC .26.如图,在△ABC 中,AB =AC =10,BC =12,正方形DEFG 的顶点D 、G 分别在AB 、AC 上,EF 在BC 上,AH ⊥BC 于H ,交DG 于点M ,求正方形DEFG 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】过点D 作DF ⊥AB 于F ,易证四边形EFDC´是矩形,可得C´E=DF ,由勾股定理求得AB 的长,根据已知和相似三角形的判定可证明△ACB ∽△DFB ,可得AC AB DF BD=,J 进而求得DF 值,由A´E=A´C´﹣C´即可求解.【详解】解:过点D 作DF ⊥AB 于F ,则∠DFB=90°,∵△ABC 绕着BC 中点D 顺时针旋转一定角度后到A B C ''',恰好使//B C AB '',∴∠C=∠C´=∠A´EB=90°,AC=A´C´=7,CD=BD=12,∴四边形EFDC´为矩形,∴C´E=DF ,∵在Rt △ACB 中,∠C=90°,AC=7,BC=24,∴25==,∵∠C=∠DFE ,∠B=∠B ,∴△ACB ∽△DFB , ∴AC AB DF BD =即72512DF =, ∴DF=8425=C´E , ∴A´E=A´C´﹣C´E=7﹣8425=9125, 故选:D .【点睛】本题考查了旋转的性质、矩形的判定与性质、相似三角形的判定与性质、勾股定理等知识,熟练掌握这些知识的灵活运用,添加恰当的辅助线是解答的关键.2.D解析:D【分析】根据对应角相等,对应边成比例的两个图形,叫做相似图形进行判断即可.【详解】A 、两个等腰三角形,三个角不一定相等,因此不一定相似,故本选项错误,不符合题意.B 、两个菱形对应角不一定相等,故本选项不符合题意;C 、两个矩形的边不一定成比例,故不一定相似,故本选项错误,不符合题意.D 、两个正方形四个角相等,各边一定对应成比例,所以一定相似,故本选项正确,符合题意;故选:D .【点睛】本题考查了相似图形的判定,掌握对应角相等,对应边成比例的两个图形,叫做相似图形是解题的关键.3.D解析:D【分析】先求出AC ,进而求出OA ,再证明△AOE ∽△ADC ,得到AE OA AC AD =,即可求解. 【详解】解:∵四边形ABCD 是矩形,∴∠ABC =∠ADC =90°,AD =BC =2,CD =ABOA =OC =12AC ,∴AC=∴OA ∵OE ⊥AC , ∴∠AOE =90°,∴∠AOE =∠ADC ,又∵∠OAE =∠DAC ,∴△AOE ∽△ADC , ∴AE OA AC AD=,22AE =, ∴AE =1.5.故选:D .【点睛】本题考查了矩形的性质,勾股定理,相似三角形的性质与判定等知识,能根据已知条件判定△AOE ∽△ADC 是解题关键.4.D解析:D【分析】设DE x =,则7AB x =+,然后根据相似三角形的判定及性质以及勾股定理求出x 的值,最后利用直角三角形面积公式求解即可.【详解】设DE x =,则7AB x =+,45DCE CAE DBC ∠=∠=∠=︒,ACE CDE BDC ∴△△△.设,CD a CE b ==,则有以下等式:()::3x b b x =+,()::4x a a x =+,::x a b AC =,整理得()()223,4,b x x a x x x AC ab =+=+⋅=, ()()()22222227342x x x x x a b x AC +++===, 解得5x =,12AB ∴=,AC BC ∴== 1362ABC S ∴=⨯=△, 故选:D .【点睛】本题主要考查相似三角形的判定及性质,勾股定理,利用方程的思想是解题的关键. 5.C解析:C【分析】根据正方形的性质及勾股定理逆定理可以判断△AEF 是直角三角形,再根据三角形相似的判定可以选出结果错误的选项.【详解】解:设正方形边长为1 ,则由已知可得:5,244AE EF AF ======, ∴222552541616AE EF AF +=+==,∴△AEF 是直角三角形, ∴在RT △ABE 、RT △ECF 、RT △ADF 、RT △AEF 中, ∠B=∠C=∠AEF=∠D ,42,3AB EC AE AD BE CF EF DF ====, ∴RT △ABE 、RT △ECF 、RT △AEF 两两相似,但是△ABE 与 △ADF 不相似,∴A 、B 、D 正确,C 错误,故选C .【点睛】本题考查正方形与三角形相似的综合应用,灵活运用正方形的性质和三角形相似的判定是解题关键.6.D解析:D【分析】根据平行线分线段成比例求出EC ,即可解答.【详解】解:∵DE ∥BC , ∴AD AE DB EC =,即643EC=, 解得:EC=2,∴AC=AE+EC=4+2=6;故选:D .【点睛】 本题考查了平行线分线段成比例定理,解决本题的关键是熟记平行线分线段成比例定理. 7.D解析:D【分析】根据正方形的性质得到∠BAC=∠ADB=45°,根据旋转的性质得到∠EAF=∠BAC=45°,根据相似三角形的性质即可得到结论.【详解】解:∵四边形ABCD 是正方形,∴∠BAC=∠ADB=45°,∵把△ABC 绕点A 逆时针旋转到△AB'C',∴∠EAF=∠BAC=45°,∵∠AEF=∠DEA ,∴△AEF ∽△DEA , ∴AE EF DE AE=, ∴EF•ED=AE 2,∵AE=4, ∴EF•ED 的值为16,故选:D .【点睛】本题考查了旋转的性质,正方形的性质,相似三角形的判定和性质,找出相关的相似三角形是解题的关键.8.C解析:C【分析】过D 作DG ∥AC 交BE 于G ,易证△BDG ∽△BCE ,△DGF ∽△AEF,利用三角形相似的性质即可解答.【详解】解:过D 作DG ∥AC 交BE 于G ,则△BDG ∽△BCE , ∴DG BD CE BC=, ∵1BD BC n =, ∴1DG BD CE BC n==, ∵1AE AC m =, ∴1m CE AC m-=, ∴DG=11m CE AC n mn-⋅= ∵DG ∥AC ,∴△DGF ∽△AEF ,∴111mACDFDG mmnAF AE nACm--===,∴1AD m nAF n+-=,即1AF nAD m n=+-,故选:C.【点睛】本题考查了相似三角形的判定与性质、比例性质,熟练掌握相似三角形的判定与性质,添加辅助线构造相似三角形是解答的关键.9.D解析:D【分析】直接利用相似图形的判定方法分别判断得出答案.【详解】解:①两个菱形不一定相似,因为对应角不一定相等;②两个矩形不一定相似,因为对应边不一定成比例;③两个平行四边形不一定相似,因为形状不一定相同;④两个正方形相似,正确.故选:D.【点睛】本题考查了相似多边形的判定,正确掌握判定方法是解题的关键.10.A解析:A【分析】根据相似三角形对应高的比等于相似比,周长的比等于相似比解答.【详解】解:∵对应高之比是1:2,∴相似比=1:2,∴对应周长之比是1:2.故选:A.【点睛】本题主要考查相似三角形的性质,周长的比等于相似比.11.B解析:B【分析】根据平行线分线段成比例定理列出比例式,代入计算得到答案.【详解】解:∵l 1∥l 2∥l 3,DE=15, ∴53DE AB EF BC ==,即1553EF =, 解得,EF=9,故选:B .【点睛】 本题考查了平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键. 12.B解析:B【分析】直接利用平行线分线段成比例定理得出答案即可.【详解】解:∵DE ∥BC , ∴AE EC =12AD BD =. 故选:B .【点睛】 本题考查了平行线分线段成比例定理,了解定理的内容是解答此题的关键.二、填空题13.①②③④【分析】①根据相似三角形的面积比等于相似比的平方得出AD=BD 求出AE=CE 即可得出答案;②根据相似三角形的面积比等于相似比的平方得出AM=2MN 即可得出答案;③由平行线可得对应线段成比例再 解析:①②③④【分析】①根据相似三角形的面积比等于相似比的平方得出AD=BD ,求出AE=CE ,即可得出答案; ②根据相似三角形的面积比等于相似比的平方得出AM=2MN ,即可得出答案; ③由平行线可得对应线段成比例,再由相似三角形的面积比等于对应边的平方比,进而代入求解即可;④先判断出△BFD ∽△DEA ,然后根据面积比等于相似比的平方得出△ABC 的面积,进而根据S 3=S ABC -S ADE -S DBF 可得出答案【详解】解:①、∵DE ∥BC ,DF ∥AC ,∴△ADE ∽△ABC ,△BDF ∽△BAC ,∵S 1=S 2, 22()()∴=AD BD AB AB∴AD=BD ,∵DE ∥BC ,∴AE=EC ,∴DE 是△ABC 的中位线,∴①正确;②、过A 作AN ⊥BC 于N ,交DE 于M ,∵DE ∥BC ,∴AN ⊥DE ,∵DE ∥BC ,DF ∥AC ,∴四边形DECF 是平行四边形,∴DE=CF ,∵S 1=S 3,12∴⨯⨯=⨯DE AM CF MN ∴AM=2MN ,∵DE ∥BC ,∴△ADE ∥△ABC ,2223∴===+DE AM MN BC AN MN MN ∴2BC=3DE ,∴②正确;③、∵DE ∥BC ,DF ∥AC ∴四边形DECF 是平行四边形,∴DE=CF ,DF=CE ,∵相似三角形的面积比等于对应边的平方比, 12==S S AD BD AB AB S S 121+=+=S S AD BD AB ABS S 12S S S =∴2S =;∴③正确; ④∵由题意得:△BFD ∽△DEA ,∴可得:=BD AD∴=BD AB=x ∵ABC S =S ,22()∴=S BD S AB∴可得122=++S S S S 又∵△ADE 、△DBF 的面积分别为S 1和S 2,32S =--==ABC ADE DBF S S S S ,∴④正确; 故答案为:①②③④.【点睛】本题考查了面积及等积变换、相似三角形的性质和判定等,难度适中,对于此类题目要先根据相似得出比例式,然后根据比例的性质得出要求图形的面积表达式,进而得出答案. 14.【分析】根据黄金比值为进行计算即可得到答案【详解】解:∵点C 为线段AB 的黄金分割点AB=6∴AC=×6=3-3BC=6-(3-3)=9-3AC-BC=3-3-(9-3)=6-12;故答案为:【点睛】解析:12【分析】根据黄金比值为12进行计算即可得到答案. 【详解】解:∵点C 为线段AB 的黄金分割点,AB=6,∴, BC=6-(),(;故答案为:12【点睛】本题考查的是黄金分割的知识和二次根式的计算,理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键.15.【分析】可设则x=3ky=kz=4k 代入所求式子中求解即可【详解】解:设则x=3ky=kz=4k 则===故答案为:【点睛】本题考查比例的性质分式的求值熟练掌握比例的性质巧妙设参数是解答的关键 解析:43【分析】 可设=34x z y k ==,则x=3k ,y=k ,z=4k ,代入所求式子中求解即可. 【详解】 解:设=34x z y k ==,则x=3k ,y=k ,z=4k , 则345x y z x y z -+++ =3344354k k k k k k-+⨯++ =1612k k=43, 故答案为:43. 【点睛】本题考查比例的性质、分式的求值,熟练掌握比例的性质,巧妙设参数是解答的关键. 16.或【分析】(1)分别在中应用含角的直角三角形的性质以及勾股定理求得再根据垂直平分线的性质等边三角形的判定和性质等腰三角形的判定求得最后利用线段的和差即可求得答案;根据垂直平分线的性质全等三角形的判定 解析:6或285【分析】(1)分别在Rt ACB ∆、Rt BDF ∆、Rt DEF ∆中应用含30角的直角三角形的性质以及勾股定理求得1EF =,2DE =,再根据垂直平分线的性质、等边三角形的判定和性质、等腰三角形的判定求得2BE =,最后利用线段的和差即可求得答案;根据垂直平分线的性质、全等三角形的判定和性质、分线段成比例定理可证得//DM CN ,然后根据平行线的性质、相似三角形的判定和性质列出方程,解方程即可求得125BE =,最后利用线段的和差即可求得答案.【详解】解:①当90AFN ∠=︒时,如图1:∵在Rt ACB ∆中,90C ∠=︒,4AC =,30ABC ∠=︒∴28AB AC == ∴2243BC AB AC∵90AFN DFB ∠=∠=︒,30ABC ∠=︒∴60FDB ∠=︒∵3==CD DB ∴132DF BD ==∴ 在Rt DEF △中,设EF x =,则22DE EF x == ∵222EF DF DE +=∴()22223x x -= ∴1x =∴1EF =,2DE =∵DM 垂直平分线段BN∴DBDN ∵60FDB ∠=︒ ∴BDN 是等边三角形∴30FDM EDB EBD ∠=∠=∠=︒∴2BE DE ==∴826=-=-=AE AB BE ;②当90ANF ∠=︒时,连接AD 、CN 交于点O ,过点E 作⊥EH DB 于H ,如图2:设EH x =,则3BH x =,233DH x = ∵DM 垂直平分线段BN ,点D 是BC 的中点∴CD DN BD ==∵AD AD = ∴()Rt ACD Rt AND HL ≌∵AC AN =∵CD DN =∴AD 垂直平分线段CN∴90AON ∠=︒∵CD DB =,MN BM =∴//DM CN∴90ADM AON ∠=∠=︒∵90ACD EHD ∠=∠=︒∴90ADC EDH ∠+∠=︒,90EDH DEH ∠+∠=︒∴∠=∠ADC DEH∴ACD DHE ∽ ∴AC CD DH EH = ∴23233=-x∴65x =∴1225==BE x ∴1228855=-=-=AE AB BE . ∴综上所述,满足条件的AE 的值为6或285. 故答案是:6或285【点睛】本题考查了垂直平分线的性质和判定、含30角的直角三角形的性质、勾股定理、全等三角形的判定和性质、平行线的判定和性质、相似三角形的判定和性质、等边三角形的判定和性质等,渗透了逻辑推理的核心素养以及分类讨论的数学思想.17.【分析】连接MN 过点O 作于点E 交CD 于点F 先证明得到相似比是然后求出和的面积用矩形MNCD 的面积减去这两个三角形的面积得到阴影部分面积【详解】解:如图连接MN 过点O 作于点E 交CD 于点F ∵四边形ABC 解析:23【分析】连接MN ,过点O 作OE MN ⊥于点E ,交CD 于点F ,先证明OMN PQO ,得到相似比是4:1,然后求出OMN 和PQO 的面积,用矩形MNCD 的面积减去这两个三角形的面积得到阴影部分面积.【详解】解:如图,连接MN ,过点O 作OE MN ⊥于点E ,交CD 于点F ,∵四边形ABCD 是矩形,∴//AD BC ,AD BC =,∵M 、N 分别是边AD 、BC 的中点,∴DM CN =,∴四边形MNCD 是平行四边形,∴//MN CD ,∴OMN PQO ,相似比是:4:1MN PQ =,∴:4:1OE OF =, ∵152EF BC ==, ∴4OE =,1OF =, ∴184162MNO S =⨯⨯=,12112PQOS =⨯⨯=,8540MNCD S =⨯=, ∴4016123S =--=阴影.【点睛】本题考查相似三角形的性质和判定,解题的关键是掌握相似三角形的性质和判定. 18.【分析】根据直径所对的圆周角是直角求出BC 的长再用等面积法求出AD长在用勾股定理求出CD 的长然后连接OF 证明利用对应边成比例求出DE 和OE 的长再利用两次勾股定理分别求出AE 和EF 的长最终得到AF 的长 解析:325【分析】根据直径所对的圆周角是直角,求出BC 的长,再用等面积法求出AD 长,在Rt ACD △用勾股定理求出CD 的长,然后连接OF ,证明ADE FOE ,利用对应边成比例求出DE 和OE 的长,再利用两次勾股定理分别求出AE 和EF 的长,最终得到AF 的长.【详解】解:∵BC 是O 的直径,∴90BAC ∠=︒,∵6AB =,8AC =,∴10BC =, 利用等面积法,求出245AB ACAD BC ⋅==,在Rt ACD △中,325CD ==,如图,连接OF ,∵F 是弧BC 的中点,∴OF BC ⊥,∵AD BC ⊥,∴//OF AD ,∴ADE FOE , ∴ADDEFO OE =, ∵327555DO CD OC =-=-=,∴设DE x =,75OE x =-, ∴245755x x =-,解得2435x =, ∴2435DE =,57OE =,在Rt ADE △中,AE == 在Rt EFO中,EF ==∴2422527277AF AE EF =+=+=.故答案是:325;2. 【点睛】 本题考查圆周角定理,垂径定理,相似三角形的性质和判定,解题的关键是掌握这些性质定理进行证明求解.19.12【分析】先判断点G 为△ABC 的重心得到AG=2GD 再证明△AGF ∽△ADC 然后利用相似比求出CD 的长从而得到BC 的长【详解】解:∵ED 为△ABC 的中位线∴DE//ACDE=ADCE 为△ABC 的中解析:12.【分析】先判断点G 为△ABC 的重心得到AG=2GD ,再证明△AGF ∽△ADC ,然后利用相似比求出CD 的长,从而得到BC 的长.【详解】解:∵ED 为△ABC 的中位线,∴DE//AC ,DE=12AC ,AD 、CE 为△ABC 的中线, ∴△DEG ∽△ACG∴12DG DE AG AC == ∴AG=2GD ,∵GF ∥BC ,∴△AGF ∽△ADC , ∴23GF AG CD AD ==, ∴CD=32GF=32×4=6, ∴BC=2CD=12.故答案为12.【点睛】本题考查了重心的性质:重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了三角形中位线和相似三角形的判定与性质.20.5或82【分析】求出BF和AO的长分为两种情况①∠EFB=90°②∠FEB=90°分别利用三角形中位线的性质以及相似三角形的判定和性质求出AE的长再求出t即可【详解】∵AB是⊙O的直径∴∠C=90°解析:5或8.2【分析】求出BF和AO的长,分为两种情况,①∠EFB=90°,②∠FEB=90°,分别利用三角形中位线的性质以及相似三角形的判定和性质求出AE的长,再求出t即可.【详解】∵AB是⊙O的直径,∴∠C=90°,∵AB=20cm,弦BC=12cm,F是弦BC的中点,∴BF=1BC=6cm,2有两种情况:①当∠EFB=90°时,如图:∵AB是⊙O的直径,∴∠C=90°,∵∠EFB=90°,∴AC∥EF,∵F为BC的中点,∴E为AB的中点,即E和O重合,∵AB=20cm,∴AE=AO=1AB=10cm,2∴105t==;2②当∠FEB=90°时,如图:∵∠B=∠B ,∠FEB=∠C=90°,∴△FEB ∽△ACB , ∴BE BF BC AB =, ∴61220BE =, 解得:BE=3.6(cm ),∵AB=20cm ,∴AE=AB-BE=16.4cm , ∴16.48.22t ==; 故答案为:5或8.2.【点睛】本题考查了圆周角定理,三角形中位线定理,相似三角形的性质和判定等知识点,分类讨论是解此题的关键.三、解答题21.(1)ABC DEF ∽△,理由见解析;(221【分析】(1)先根据勾股定理求得每条边的长度,再根据相似三角形的判定定理即可证明; (2)先画出MNP △,再根据似三角形的判定即可证明,由此可得答案.【详解】解:(1)ABC DEF ∽△,理由如下:∵在边长为1的55⨯的正方形网格上,有两个三角形,它们顶点都在格点上. ∴22112AB =+=2AC =,221310BC ,22125DE =+=221310DF =+=5EF =, ∴2105AB DE ==1010AC DF ==10BC EF =, ∴AB AC BC DE DF EF ==, ∴ABC DEF ∽△;(2)如图,MNP ABC △∽△,理由如下:由题意可知:22222MP =+=2MN =,224225NP =+= ∴222MP AC ==,22MN AB ==25210NP BC == ∴2MP MN NP AC AB BC=== ∴MNP ABC △∽△, 2:1, 21.【点睛】本题考查了相似三角形的判定及勾股定理,熟练掌握相似三角形的判定方法是解决本题的关键.22.(1)见解析;(2)3BC =2;(3)51OD -=. 【分析】(1)由△AOB ≌△AOC ,推出∠C=∠B ,由OA=OC ,推出∠OAC=∠C=∠B ,由∠ADO=∠ADB ,即可证明△OAD ∽△ABD ;(2)如图2中,当△OCD 是直角三角形时,需要分类讨论解决问题;(3)如图3中,作OH ⊥AC 于H ,设OD=x .想办法用x 表示AD 、AB 、CD ,再证明AD 2=AC•CD ,列出方程即可解决问题;【详解】解:(1)在AOB 和AOC △中, OA OA AB AC OB OC =⎧⎪=⎨⎪=⎩,∴AOB AOC △≌△,C B ∴∠=∠,又∵OA OC =,OAC C B ∴∠=∠=∠,而ADO ADB ∠=∠,OAD ABD ∴∽△△.(2)如图:①当90ODC ∠=︒时,BD AC ⊥,OA OC =,AD DC ∴=,BA BC AC ∴==,ABC ∴是等边三角形,在Rt OAD 中,1OA =,30OAD ∠=︒,1122OD OA ∴==, 2232AD OA OD ∴=-=, 23BC AC AD ∴===.②90COD ∠=︒,90BOC ∠=°,22112BC =+=.③OCD ∠显然90≠︒,不需要讨论.综上所述,3BC =或2.(3)如图:作OH AC ⊥于H ,设OD x =,DAO DBA ∽△△,AD OD OA DB AD AB∴==.11AD x x AD AB∴==+.AD ∴=,AB =. 又2S 是1S 和3S 的比例中项,2213S S S ∴=⋅, 而212S AD OH =⋅,112OAC S S AC OH ==⋅△,312S CD OH =⋅⨯, 2111222AD OH AC OH CD OH ⎛⎫⎛⎫∴⋅=⋅⋅⋅ ⎪ ⎪⎝⎭⎝⎭, 即2AD AC CD =⋅,又AC AB =,CD AC AD =-=, 代入上式可得:210x x +-=,求得x =,或12,经检验,x =12OD ∴=. 【点睛】 本题属于圆的综合题、全等三角形的判定和性质、相似三角形的判定和性质、比例中项等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.23.(1)t ;(4﹣2t );(2)要使CPQ ∆与CBA ∆相似,运动的时间为1.2或1611秒. 【分析】(1)结合题意,直接得出答案即可;(2)若两三角形相似,则由相似三角形性质可知,其对应边成比例.设经过t 秒后两三角形相似,则可分下列两种情况进行求解:①若Rt ABC Rt QPC ∆∆∽,②若Rt ABC Rt PQC ∆∆∽,然后列方程求解.【详解】解:(1)经过t 秒后,CQ =t ,CP =4﹣2t ,故答案为:t ;(4﹣2t ).(2)设经过t 秒后两三角形相似,则可分下列两种情况进行求解,①若Rt ABC Rt QPC ∆∆∽,则AC QC BC PC =,即3442t t=-,解得t =1.2;②若Rt ABC Rt PQC ∆∆∽,则PC AC QC BC =,即4234t t -=,解得t =1611; 由P 点在BC 边上的运动速度为2cm/s ,Q 点在AC 边上的速度为1cm/s ,可求出t 的取值范围应该为0<t <2,验证可知①②两种情况下所求的t 均满足条件.答:要使CPQ ∆与CBA ∆相似,运动的时间为1.2或1611秒. 【点睛】本题综合考查了相似三角形的性质以及一元一次方程的应用问题,并且需要用到分类讨论的思想,解题时应注意解答后的验证.24.(1)见解析;(2)43【分析】(1)先作B 的角平分线,与AC 交于点D ,再以D 为圆心DC 为半径画弧,在AD 上截取DF=DC ,再作CF 的垂直平分线,交AB 于点E ,此时BE=DE ; (2)根据ADE ACB 得DE AE BC AB=,求出AE 的长,再用勾股定理求出AC 和AD 的长,从而得到CD 的长,最后再用勾股定理求出BD 的长.【详解】解:(1)如图所示,证明过程如下:∵BD 平分B , ∴EBD CBD ∠=∠,∵ED AC ⊥,BC AC ⊥,∴//ED BC ,∴CBD EDB ∠=∠,∴EBD EDB ∠=∠,∴BE DE =;(2)∵//DE BC ,∴ADE ACB ,∴DE AE BC AB =, ∵4DE =,4AB AE BE AE =+=+,6BC =,∴464AE AE =+,解得8AE =, ∴8412AB =+=,根据勾股定理,AC =AD ==, ∴CD =-=∴BD =【点睛】本题考查尺规作图,勾股定理,相似三角形的性质和判定,解题的关键是掌握尺规作图的方法,以及利用几何的性质定理进行证明求解.25.见解析.【分析】根据∠AEB =∠ACB (同弧所对的圆周角相等)和AD 是△ABC 的高,AE 是⊙O 的直径,利用一个三角形的两个角与另一个三角形的两个角对应相等,即可证明.【详解】证明:∵AB=AB∴∠AEB =∠ACB (同弧所对的圆周角相等),∵AE 为直径,∴∠ABE =90°(直径所对的圆周角是直角),又∵AD ⊥BC ,即∠ADC =90°,∴∠ABE =∠ADC ,∴△ABE ∽△ADC .【点睛】此题主要考查学生对相似三角形的判定和圆周角定理的理解和掌握,解题的关键是利用同弧上的圆周角相等,先求证∠AEB =∠ACB ,然后即可得出结论.26.23.04【分析】根据正方形的性质得到DG ∥BC ,推出△ADG ∽△ABC ,利用相似三角形对应边上高的比等于相似比,列方程求解即可.【详解】解:设正方形DEFG 的边长为x ,DE =DG =x .∵四边形DEFG 为正方形∴DG ∥BC ,∠DEC =90︒∴△ADG ∽△ABC ∴12AM AH DG x BC == 又∵ AB =AC =10,BC =12,AH ⊥BC ∴ BH =12BC =6,∠DEC =∠AHC =90︒ 在Rt △ABH 中,根据勾股定理得AH 8==∴AM =AH -MH =AH -DE =8-x∴88AM x AH -= ∴8128x x -=,解得x =4.8 ∴S 正方形DEFG =x 2=23.04【点睛】 本题考查了相似三角形的判定与性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程.。
人教版初中数学九年级数学下册第二单元《相似》测试(含答案解析)(1)
一、选择题1.下列各组线段的长度成比例的是()A.2cm,4cm,6cm,8cm B.10cm,20cm,30cm,40cmC.2.2cm,3.3cm,5cm,8cm D.20cm,30cm,60cm,40cm2.如图,在△ABC中,点D在BC边上,连接AD,点E在AC边上,过点E作//EF BC,交AD于点F,过点E作//EG AB,交BC于G,则下列式子一定正确的是()A.AE EFEC CD=B.BF EGCD AB=C.AF BCFD GC=D.CG AFBC AD=3.如图所示,一电线杆AB的影子分别落在了地上和墙上,某一时刻,小明竖起1米高的直杆,量得其影长为0.5米,此时,他又量得电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米,小明用这些数据很快算出了电线杆AB的高,请你计算,电线杆AB的高为()A.5米B.6米C.8米D.10米4.如图,在四边形ABCD中,对角线BD平分∠ABC,∠DBC=30°,∠BAD=∠BDC=90°,E为BC的中点,AE与BD相交于点F,若CD=2,则BF的长为()A.35B.233C.635D.355.如图,点D、E分别在CA、BA中的延长线上,若DE∥BC,AD=5,AC=10,DE=6,则BC 的值为()A .10B .11C .12D .136.如图,已知////AB CD EF ,它们依次交直线1l 、2l 于点A 、D 、F 和点B 、C 、E ,如果:3:1AD DF =,10BE =,那么CE 等于( )A .103B .203C .52D .1527.如图,在平面直角坐标系中,ABC 的顶点坐标分别是()1,2A ,()1,1B ,()3,1C ,以原点为位似中心,在原点的同侧画DEF ,使DEF 与ABC 成位似图形,且相似比为2:1,则线段DF 的长度为( )A .5B .2C .4D .58.如图,在ABC ∆中,,D E 分别是边,BC AC 上的点,且11,BD BC AE AC n m ==,连接,AD BE 交于点F ,则AF AD的值为( )A .1m n -B .1m m n +-C .1n m n +-D .1n m - 9.如图,地面上点A 处有一只兔子,距它10米的B 处有一根高1.6米的木桩,大树、木桩和兔子刚好在一条直线上.一只老鹰在9.6米高的树顶上刚好看见兔子,则大树C 离木桩B( )米.A .60B .50C .40D .4510.下列相似图形不是位似图形的是( )A .B .C .D . 11.如图,ABC 是等边三角形,被一平行于BC 的矩形所截(即:FG ∥BC),若AB 被截成三等分,则图中阴影部分的面积是ABC 的面积的( )A .19B .29C .13D .4912.如图在ABC 中,其中D 、E 两点分别在AB 、AC 上,且31AD =,29DB =,30AE =,32EC =.若50A ∠=︒,则图中1∠、2∠、3∠、4∠的大小关系正确的是( ).A .13∠=∠B .24∠∠=C .23∠∠=D .14∠<∠二、填空题13.如图,在Rt ABC 中,90ACB ︒∠=,5AC =,12BC =,D 、E 分别是边BC 、AC 上的两个动点,且8DE =,P 是DE 的中点,连接PA ,PB ,则13PA PB +的最小值为________.14.如图,直线////AF BE CD ,直线AC 交BE 于B ,直线FD 交BE 于E ,2AB cm =,1BC cm =, 1.8EF cm =,求DE 的长为______cm .15.在梯形ABCD 中,//AD BC ,两条对角线AC 、BD 相交于点O ,:1:9AOD COB S S =,那么BOC DOC S S =△△:__________.16.如图,在四边形ABCD 中,AC 平分∠BAD ,AD=AC ,以A 为圆心,AB 长为半径画弧,交AC 于点E ,连接DE 、BE ,并延长BE 交CD 于点F ,下列结论:①△BAC ≌ △EAD ,②BC+CF=DE+EF ,③∠ABE+∠ADE=∠BCD ,其中正确的有____(填序号)17.如图,EF 是ABC 纸片的中位线,将AEF 沿EF 所在的直线折叠,点A 落在BC 边上的点D 处,已知AEF 的面积为7,则图中阴影部分的面积为______.18.如图,ABC 是等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,则图中阴影部分的面积是ABC 的面积的______.19.如图,⊙O 的直径为5,在⊙O 上位于直径AB 的异侧有定点C 和动点P ,已知BC :CA =4:3,点P 在半圆弧AB 上运动(不与A ,B 重合),过C 作CP 的垂线CD 交PB 的延长线于D 点.则△PCD 的面积最大为______________.20.如图,在四边形ABCD 中,点E 在AD 上,EC//AB ,EB//DC ,若△ABE 面积为5 , △ECD 的面积为1,则△BCE 的面积是________.三、解答题21.如图,王华同学在晚上由路灯AC 走向路灯BD ,当他走到点P 时,发现身后他影子的顶部刚好接触到路灯AC 的底部,当他向前再步行12 m 到达Q 点时,发现身前他影子的顶部刚好接触到路灯BD 的底部.已知王华同学的身高是1.6 m ,两个路灯的高度都是9.6 m(1)求两个路灯之间的距离;(2)当王华同学走到路灯BD 处时,他在路灯AC 下的影子长是多少?22.如图,在等边三角形ABC 中,点D ,E 分别在BC ,AB 上,且60ADE ∠=︒. 求证:ADC ∽DEB .23.如图1,点()8,1A 、(),8B n 都在反比例函数()0m y x x=>的图象上,过点A 作AC x ⊥轴于C ,过点B 作BD y ⊥轴于D .(1)求m 的值和直线AB 的函数关系式;(2)动点P 从O 点出发,以每秒2个单位长度的速度沿线段OD 向点D 运动,同时动点Q 从O 点出发,以每秒1个单位长度的速度沿线段OC 向C 点运动,当动点P 运动到点D 时,点Q 也停止运动,设运动的时间为t 秒.如图2,当点P 运动时,如果作OPQ △关于直线PQ 的对称图形'O PQ △,是否存在某时刻t ,使得点'O 恰好落在反比例函数的图象上?若存在,求'O 的坐标和t 的值﹔若不存在,请说明理由.24.如图,在ABC ∆中,AD 平分,BAC E ∠是AD 上一点,且BE BD =.(1)求证:ABE ACD ∆~∆;(2)若E 是线段AD 的中点,求BD CD的值..25.如图,△ABC 中,E 、F 分别是边AB 、AC 的中点,EF =a ,动点P 在射线EF 上,BP 交CE 于D ,∠CBP 的平分线交CE 于Q , (1)当CQ =12CE 时,求EP+BP 的值. (2)当CQ =13CE 时,求EP+BP 的值. (3)当CQ =1nCE 时,直接写出EP+BP 的值.26.如图,△ABC是⊙O的内接三角形,AD是△ABC的高,AE是⊙O的直径.求证:△ABE~△ADC.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段,对每一项进行分析即可.【详解】解:A、2×8≠4×6,故本选项错误;B、10×40≠20×30,故选项错误;C、2.2×8≠3.3×5,故选项错误;D、20×60=30×40,故本选项正确.故选:D.【点睛】此题考查了比例线段,用到的知识点是成比例线段的概念,注意在相乘的时候,最小的和最大的相乘,另外两个相乘,看它们的积是否相等.2.C解析:C【分析】根据平行线分线段成比例性质进行解答便可.【详解】解:∵EF∥BC,∴AF AE=,FD EC∵EG∥AB,∴AE BG=,EC GC∴AF BC=,FD GC故选:C.【点睛】本题考查了平行线分线段成比例性质,关键是熟记定理,找准对应线段.3.C解析:C【分析】根据同一时刻,物体的实际高度和影长成正比例列出比例式即可解答.【详解】解:如图,假设没有墙,电线杆AB的影子落在E处,∵同一时刻,物体的实际高度和影长成正比例,∴CD:DE=1:0.5=2:1,∴AB:BE=2:1,∵CD=2,BE=BD+DE,∴BE=3+1=4,∴AB:4=2:1,∴AB=8,即电线杆AB的高为8米,故选:C.【点睛】本题考查了相似三角形的应用、比例的性质,解答的关键是理解题意,将实际问题转化为相似三角形中,利用同一时刻,物体的实际高度和影长成正比例列出方程求解.4.C解析:C【分析】连接DE,根据直角三角形的性质求出BC,根据勾股定理求出BD,再求出AB,根据DE ∥AB ,得到B DE AB DF F =,把已知数据代入计算,得到答案. 【详解】 解:连接DE ,∵∠BDC =90°,∠CBD =30°,CD =2, ∴BC =2CD =4,由勾股定理得,BD 22BC CD -2242-23∵E 是BC 的中点,∴DE =12BC =BE =2, ∴∠BDE =∠CBD =30°,∵对角线BD 平分∠ABC ,∴∠ABD =∠CBD =∠BDE ,∴DE ∥AB ,∴BDE AB DF F =, 在Rt △ABD 中,∠ABD =30°, ∴AD =12BD 3 ∴AB 22BD AD -3, ∴23DF FB =, 2332BF =-, 解得,BF =35故选:C .【点睛】 本题考查的是勾股定理、角平分线的性质、直角三角形30度角的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题.5.C解析:C【分析】根据平行线的性质得出∠E=∠B ,∠D=∠C ,根据相似三角形的判定定理得出△EAD ∽△BCA ,根据相似三角形的性质求出即可【详解】解:∵DE ∥BC ,∴∠E=∠B ,∠D=∠C ,∴△EAD ∽△CAB ,∴AC :AD=BC :DE ,∵AD =5,AC =10,DE =6,∴10:5=BC :6.∴BC=12.故选:C .【点睛】本题考查了平行线的性质,相似三角形的性质和判定的应用,能推出△EAD ∽△BAC 是解此题的关键.6.C解析:C【分析】 根据平行线分线段成比例得到BC AD CE DF =,代入已知解答即可. 【详解】解:∵////AB CD EF , ∴BC AD CE DF=, ∵:3:1AD DF =,10BE =, ∴1031CE CE -=, 解得:CE=52, 故选:C .【点睛】 本题考查平行线分线段成比例、比例的性质,掌握平行线分线段成比例是解答的关键,注意对应线段的顺序.7.A解析:A【分析】根据位似图形的性质可得DF =2AC ,然后根据两点间的距离公式求出AC 即可解决问题.【详解】解:∵DEF 与ABC 是位似图形,且相似比为2:1,∴DF =2AC ,∵AC ==∴DF =故选:A .【点睛】本题考查了位似图形的性质和两点间的距离,熟练掌握位似图形的性质是解题的关键. 8.C解析:C【分析】过D 作DG ∥AC 交BE 于G ,易证△BDG ∽△BCE ,△DGF ∽△AEF,利用三角形相似的性质即可解答.【详解】解:过D 作DG ∥AC 交BE 于G ,则△BDG ∽△BCE ,∴DG BD CE BC=, ∵1BD BC n =, ∴1DG BD CE BC n==, ∵1AE AC m =, ∴1m CE AC m-=, ∴DG=11m CE AC n mn-⋅= ∵DG ∥AC ,∴△DGF ∽△AEF ,∴111m AC DF DG m mn AF AE n AC m --===, ∴1AD m n AF n +-=,即1AF n AD m n =+-, 故选:C .【点睛】本题考查了相似三角形的判定与性质、比例性质,熟练掌握相似三角形的判定与性质,添加辅助线构造相似三角形是解答的关键.9.B解析:B【分析】如图,证明△ABE∽△ACD,根据相似三角形的性质列式求解即可.【详解】解:如图,根据题意得,△ABE∽△ACD,∴AB BEAC CD∵AB=10m,BE=1.6m,CD=9.6m∴10 1.6=AC9.6∴AC=60m∴BC=AC-AB=60-10=50m故选:B.【点睛】此题主要考查了相似三角形的应用,善于观察题目的信息是解题以及学好数学的关键.10.D解析:D【分析】根据位似变换的概念判断即可.【详解】解:D中两个图形,对应边不互相平行,不是位似图形,A 、B 、C 中的图形符合位似变换的定义,是位似图形,故选:D .【点睛】本题考查的是位似变换,如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形.11.C解析:C【分析】AB 被截成三等分,可得AB=3AE ,AF=2AE ,由EH ∥FG ∥BC ,可得△AEH ∽△AFG ∽△ABC ,则S △AEH :S △AFG :S △ABC =AE 2:AF 2:AB 2,S 阴影= S △AFG - S △AEH =13S △ABC . 【详解】∵AB 被截成三等分,∴AB=3AE ,AF=2AE ,∵EH ∥FG ∥BC ,∴△AEH ∽△AFG ∽△ABC ,∴S △AEH :S △AFG :S △ABC =AE 2:AF 2:AB 2=AE 2:(2AE )2:(3AE )2=1:4:9,∴S △AEH =19S △ABC , S △AFG =4 S △AEH , S 阴影= S △AFG - S △AEH =3 S △AEH =3×19 S △ABC =13S △ABC . 故选择:C .【点睛】 本题考查阴影部分面积问题,关键是利用相似三角形的面积比等于相似比的平方,找到阴影面积与△AEH 的关系,由△AEH 与△ABC 的关系来转化解决问题.12.C解析:C【分析】根据31AD =,30AE =,可得21∠<∠;根据题意,通过计算AB 和CD ,可得12AD AE AC AB ,即证明ADE ACB ∽,即可得到各个角度的大小关系. 【详解】∵31AD =,30AE =∴21∠<∠∵31AD =,29DB =,30AE =,32EC =∴60AB AD BD =+=,62AC AE EC =+= ∴12AD AEAC AB∵50A ∠=︒∴ADE ACB ∽∴14∠=∠,23∠∠=∴13∠>∠,24∠<∠故选:C .【点睛】 本题考查了相似三角形的知识;解题的关键是熟练掌握相似三角形的性质,从而完成求解.二、填空题13.【分析】在BC 上截取CF =连接PFCPAF 通过证明△ACP ∽△PCF 可得则PA+PB =PA+PF 当点A 点P 点F 共线时PA+PB 的最小值为AF 由勾股定理可求解【详解】解:如图:在BC 上截取CF =连接P 解析:2413 【分析】 在BC 上截取CF =43,连接PF ,CP ,AF .通过证明△ACP ∽△PCF ,可得31=PF BP ,则PA 13+PB =PA+PF ,当点A 点P ,点F 共线时.PA+13PB 的最小值为AF ,由勾股定理可求解.【详解】 解:如图:在BC 上截取CF =43,连接PF ,CP ,AF .∵DE =8,P 是DE 的中点,∴CP =12DE =4 ∵5AC =,12BC =,∵41132==CP BC ,41334==CF CP ;∴=CP CF BC CP,且∠FCP =∠BCP ∴△PCF ∽△BCP , ∴13==PF CF BP CP , ∴PF =13BP , ∵PA+13PB =PA+PF , 当点A 、点P 、点F 共线时,PA+13PB 的最小值为AF∴AF 3.故答案为:3. 【点睛】本题考查了相似三角形的性质和判定,勾股定理,添加恰当的辅助线是解答本题的关键. 14.09【分析】直接根据平行线分线段成比例定理求解即可【详解】解:∵∴即:∴DE=09cm 故答案为:09【点睛】此题主要考查了平行线分线段成比例定理熟练运用定理是解答此题的关键解析:0.9【分析】直接根据平行线分线段成比例定理求解即可.【详解】解:∵////AF BE CD , ∴AB EF BC DE= 即:2 1.8=1DE∴DE=0.9cm故答案为:0.9【点睛】 此题主要考查了平行线分线段成比例定理,熟练运用定理是解答此题的关键15.3:1【分析】根据在梯形ABCD 中AD ∥BC 易得△AOD ∽△COB 且S △COB :S △AOD=9:1可求=3:1则S △BOC :S △DOC=3:1【详解】解:根据题意AD ∥BC ∴△AOD ∽△COB ∵S △解析:3:1【分析】根据在梯形ABCD 中,AD ∥BC ,易得△AOD ∽△COB ,且S △COB :S △AOD =9:1,可求BO OD=3:1,则S △BOC :S △DOC =3:1. 【详解】解:根据题意,AD ∥BC ,∴△AOD ∽△COB ,∵S △AOD :S △COB =1:9, ∴BO OD=3:1, 则S △BOC :S △DOC =3:1,故答案为:3:1.【点睛】本题考查了相似三角形的性质与判定,掌握相似三角形面积的比等于相似比的平方是解题的关键.16.①②③【分析】先由已知条件利用SAS 证明△BAC ≌△EAD 得到①;由全等得到BC=DE 然后再通过证明△ABE ∽△ACD 得到∠ABE=∠ACD=∠AEB 进而再得到CF=EF 得到BC+CF=DE+EF 即解析:①②③【分析】先由已知条件利用SAS 证明△BAC ≌ △EAD ,得到①;由全等得到BC=DE ,然后再通过证明△ABE ∽△ACD ,得到∠ABE=∠ACD=∠AEB ,进而再得到CF=EF ,得到BC+CF=DE+EF ,即②正确;由∠ABE=∠ACD ,∠BCA=∠EDA ,可得到∠ABE+∠ADE=∠BCD ,即③正确.【详解】解:由题意可知,∠BAC=∠CAD ,AB=AE ,在△BAC 和△EAD 中,AB AE BAC CAD AC AD =⎧⎪=⎨⎪=⎩∠∠∴△BAC ≌ △EAD ,故①正确;∵△BAC ≌ △EAD ,∴BC=ED ,∠BCA=∠EDA ,由于AB=AE ,AC=AD ,∠BAC=∠CAD , ∴AB AE AC AD=, ∴△ABE ∽△ACD ,且△ABE 和△ACD 都为等腰三角形,∴∠ABE=∠ACD=∠AEB ,∵∠AEB=∠CEF ,∴∠ECF=∠CEF ,∴CF=EF,∴BC+CF=DE+EF,故②正确;由以上过程知道∠ABE=∠ACD,∠BCA=∠EDA,∴∠ABE+∠ADE=∠ACD+∠BCA=∠BCD,故③正确.故答案为:①②③.【点睛】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,正确找到全等三角形是解题的关键.17.14【分析】根据三角形的中位线定理结合相似三角形的性质可以求得△ABC的面积再根据折叠的性质得到△DEF的面积从而求解【详解】∵EF是△ABC的中位线∴EF∥BCEF=BC∴△AEF∽△ACB∴∵△解析:14【分析】根据三角形的中位线定理,结合相似三角形的性质可以求得△ABC的面积,再根据折叠的性质得到△DEF的面积,从而求解.【详解】∵EF是△ABC的中位线,∴EF∥BC,EF=12BC,∴△AEF∽△ACB,∴22AEFACB1124 S EFS BC⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭,∵△AEF的面积为7,∴△ABC的面积=28,由折叠的性质得△DEF的面积为7,∴图中阴影部分的面积为28-7-7=14.故答案为:14.【点睛】本题综合考查了折叠问题,三角形的中位线定理和相似三角形的判定和性质.关键是掌握三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.18.【分析】根据题意易证△AEH∽△AFG∽△ABC利用相似三角形的性质解决问题即可【详解】解:∵AB被截成三等分∴△AEH∽△AFG∽△ABC∴∴S△AFG:S△ABC=4:9S△AEH:S△ABC=解析:1 3【分析】根据题意,易证△AEH∽△AFG∽△ABC,利用相似三角形的性质解决问题即可.【详解】解:∵AB 被截成三等分,∴△AEH ∽△AFG ∽△ABC , ∴11,,23AE AE AF AB ==, ∴S △AFG :S △ABC =4:9,S △AEH :S △ABC =1:9, ∴S 阴影部分的面积=49S △ABC -19S △ABC =13S △ABC , ∴图中阴影部分的面积是ABC 的面积的13. 故答案为:13. 【点睛】 本题主要考查了利用三等分点求得各相似三角形的相似比,从而求出面积比计算阴影部分的面积,难度适中.19.【分析】由圆周角定理可知再由可证明最后根据相似三角形对应边成比例及已知条件BC :CA =4:3结合三角形面积公式解题即可【详解】为直径又BC :CA =4:3当点P 在弧AB 上运动时当PC 最大时取得最大值而 解析:503【分析】由圆周角定理可知A P ∠=∠,再由90ACB PCD ∠=∠=︒可证明~ACB PDC ,最后根据相似三角形对应边成比例,及已知条件BC :CA =4:3,结合三角形面积公式解题即可.【详解】 AB 为直径,90ACB ∴∠=︒PC CD ⊥,90PCD ∴∠=︒又CAB CPD ∠=∠~ACB PDC ∴AC BC CP CD∴= BC :CA =4:3,43CD PC ∴= 当点P 在弧AB 上运动时, 12PCD S PC CD =⋅△2142233PCD S PC PC PC ∴=⨯⋅= 当PC 最大时,PCD S 取得最大值而当PC 为直径时最大,22505=33PCD S ∴=⨯. 【点睛】本题考查圆周角定理、三角形面积、相似三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.20.【分析】由EC ∥ABEB ∥DC 可得∠A=∠CED ∠AEB=∠D 证得△ABE 与△ECD 相似由△ABE 的面积为5△CDE 的面积为1可得AB :CE=:1又由EC ∥AB 可得△ABE 与△BCE 等高然后由等高三【分析】由EC ∥AB ,EB ∥DC ,可得∠A=∠CED ,∠AEB=∠D ,证得△ABE 与△ECD 相似,由△ABE 的面积为5,△CDE 的面积为1,可得AB :1又由EC ∥AB ,可得△ABE 与△BCE 等高,然后由等高三角形的面积比等于对应底的比,求得△BCE 的面积.【详解】∵EC ∥AB ,∴∠A=∠CED ,∵EB ∥DC∴∠AEB=∠D ,∴△ABE ∽△ECD , ∴22ABE ECD 551S BE AB CD CE S⎛⎫⎛⎫====⎪ ⎪⎝⎭⎝⎭, ∴AB CE =AB =, ∵△ABE 以AB 为底边的高与△BCE 以CE 为底的高相等,∴ABEBCE SAB S CE ==BCE S ∴==【点睛】本题考查了相似三角形的判定与性质.注意相似三角形的面积比等于相似比的平方、等高三角形面积的比等于其对应底的比.三、解答题21.(1)18;(2)3.6【分析】(1)依题意得到△APM ∽△ABD ,得到MP AP BD AB =再由它可以求出AB ; (2)设王华走到路灯BD 处头的顶部为E ,连接CE 并延长交AB 的延长线于点F 则BF 即为此时他在路灯AC 的影子长,容易知道△EBF ∽△CAF ,再利用它们对应边成比例求出现在的影子.【详解】 解:(1)由对称性可知AP =BQ ,设AP =BQ =x m ,∵MP ∥BD ,∴△APM ∽△ABD ,∴MP AP BD AB = , ∴1.69.6=212x x +, 解得x =3,∴AB =2x +12=18(m),即两个路灯之间的距离为18米(2)设王华走到路灯BD 处头的顶部为E ,连接CE 并延长交AB 的延长线于点F ,则BF 即为此时他在路灯AC 下的影子长,设BF =y m ,∵BE ∥AC ,∴△FEB ∽△FCA ,∴BE BF AC FA = ,即1.69.6=18y y +, 解得y =3.6,当王华同学走到路灯BD 处时,他在路灯AC 下的影子长3.6米.【点睛】此题主要考查相似三角形的应用,两个问题都主要利用了相似三角形的性质:对应边成比例.22.见解析【分析】根据ABC 是等边三角形,即可得到60B C ∠=∠=︒,再根据 CAD BDE ∠=∠,即可判定~ADC DEB △△.【详解】证明:∵ABC 是等边三角形,∴60B C ∠=∠=︒, ∴60ADB CAD C CAD ∠=∠+∠=∠+︒,∵60ADE ∠=︒,∴60ADB BDE ∠=∠+︒,∴CAD BDE ∠=∠,∴ADC DEB △△. 【点睛】本题考察了相似三角形的判定与性质,解题的关键是掌握三角形相似的判定条件. 23.(1)直线AB 的解析式为9y x =-+;(2)存在,()'4,2O ,52t =,见解析; 【分析】 (1)由于点A (8,1)、B (n ,8)都在反比例函数m y x=的图象上,根据反比例函数的意义求出m ,n ,再由待定系数法求出直线AB 的解析式;(2)①由题意知:OP=2t ,OQ=t ,由三角形的面积公式可求出解析式;②通过三角形相似,用t 的代数式表示出O′的坐标,根据反比例函数的意义可求出t 值.【详解】 解:(1)∵点()8,1A 、(),8B n 都在反比例函数m y x =的图象上, ∴818=⨯=m , ∴8y x =, ∴88n=,即1n =. 设AB 的解析式为y kx b =+,把()8,1、()1,8B 代入上式得:818k b k b +=⎧⎨+=⎩,解得:19k b =-⎧⎨=⎩. ∴直线AB 的解析式为9y x =-+.(2)存在.当'O 在反比例函数的图象上时,作PE y ⊥轴,'O F x ⊥轴于F ,交PE 于E ,则90E ∠=︒,'2PO PO t ==,'QO QO t ==.由题意知:'PO Q POQ ∠=∠,'90'QO F PO E ∠=︒-∠,'90'EPO PO E ∠=︒-∠,∴''PEO O FQ △△, ∴''''PE EO PO O F QF QO ==, 设QF b =,'O F a =,则PE OF t b ==+,'2O E t a =-, ∴22t b t a a b+-==, 解得:45a t =,35b t =, ∴84',55O t t ⎛⎫ ⎪⎝⎭, 当'O 在反比例函数的图象上时,84855t t ⋅=, 解得:52t =±, ∵反比例函数的图形在第一象限,∴0t >, ∴52t =, ∴()'4,2O , 当52t =秒时,'O 恰好落在反比例函数的图象上. 【点睛】 本题主要考查了反比例函数的意义,利用图象和待定系数法求函数解析式,相似三角形的判定和性质,熟练掌握反比例函数的意义和能数形结合是解决问题的关键.24.(1)见解析;(2)12【分析】(1)根据三角形相似的判定定理,即可得证;(2)根据△ABE ∽△ACD ,可得: AE BE AD CD =,再由等量代换即可求解. 【详解】(1)∵BE=BD ,∴∠BED=∠BDE ,∴∠AEB=180°-∠BED=180°-∠BDE=∠ADC ,∵AD 平分∠BAC ,∴∠BAE=∠CAD ,∴△ABE ∽△ACD ;(2)∵△ABE ∽△ACD ,∴AE BE AD CD=, ∵E 是线段AD 的中点,1=2AE BE AD CD = ∵BE=BD ,∴1=2BD CD 【点睛】 本题主要考查相似三角形的判定定理和性质定理,熟练掌握相似三角形的判定和性质,是解题的关键.25.(1)2a ;(2)4a ;(3)2an ﹣2a .【分析】(1)延长BQ 交EF 的延长线于点G ,根据三角形中位线定理求出BC ,证明△BQC ∽△GQE ,根据相似三角形的性质得到EG=BC=2a ,根据角平分线的定义、平行线的性质得到PB=PG ,得到答案;(2)(3)仿照(1)的解法解答.【详解】解:(1)如图1,延长BQ 交EF 的延长线于点G ,∵E 、F 分别是边AB 、AC 的中点,∴EF 是△ABC 的中位线,∴BC=2EF=2a ,EF ∥BC ,∴△BQC ∽△GQE , ∴1EG EQ BC QC==, ∴EG=BC=2a ,∵BQ 是∠CBP 的平分线,∴∠PBQ=∠CBQ ,∵EF ∥BC ,∴∠EGQ=∠CBQ ,∴∠PBQ=∠EGQ ,∴PB=PG ,∴PE+PB=PE+PG=EG=2a ;(2)如图2,延长BQ 交EF 的延长线于点M ,由(1)可知,△BQC ∽△MQE ,∴1.2BC CQ EM EQ ==, ∴EM=2BC=4a ,∴PE+PB=PE+PM=EM=4a ;(3)如图2,当1CQ CE n=时,则EQ=(n-1)CQ , 由EF ∥BC 得,△MEQ ∽△BCQ , ∴1EM EQ n BC QC==-, ∴EM=(n-1)BC=2a (n-1),即EP+BP=2an-2a .【点睛】本题考查了相似三角形的判定与性质、角平分线的定义、平行线的性质,延长BQ 构造出相似三角形,求出EP+BP=EM 并得到相似三角形是解题的关键.26.见解析.【分析】根据∠AEB=∠ACB(同弧所对的圆周角相等)和AD是△ABC的高,AE是⊙O的直径,利用一个三角形的两个角与另一个三角形的两个角对应相等,即可证明.【详解】证明:∵AB=AB∴∠AEB=∠ACB(同弧所对的圆周角相等),∵AE为直径,∴∠ABE=90°(直径所对的圆周角是直角),又∵AD⊥BC,即∠ADC=90°,∴∠ABE=∠ADC,∴△ABE∽△ADC.【点睛】此题主要考查学生对相似三角形的判定和圆周角定理的理解和掌握,解题的关键是利用同弧上的圆周角相等,先求证∠AEB=∠ACB,然后即可得出结论.。
新人教版初中数学九年级数学下册第二单元《相似》测试(答案解析)(1)
一、选择题1.如图,直线////a b c,直线m分别交直线a,b,c于点A,B,C,直线n分别交直线a,b,c于点D,E,F,若23=ABBC,则DEDF的值为()A.13B.23C.25D.352.如图,在平面直角坐标系中,矩形ABCO的边CO、OA分别在x轴、y轴上,点E在边BC上,将该矩形沿AE折叠,点B恰好落在边OC上的F处.若()0,8A,4CF=,则点E的坐标是()A.()8,4-B.()10,3-C.()10,4-D.()8,3-3.如图,ABC中,DE∥BC,AD:BD=1:3,则OE:OB=()A.1:3 B.1:4 C.1:5 D.1:64.如图,在Rt△ABC中,∠B=90⁰,34BCAB=,D是AB边上一点,过D作DE⊥AB交AC于点E,过D作DF∥AC交BC于点F,连接BE交DF于H.若DH=DE,则DEHFBHSS∆∆为()A .23B .34C .49D .9165.如图,练习本中的横格线都平行且相邻两条横格线间的距离都相等,同一条直线上的三个点A ,B ,C 都在横格线上.若线段AB =6,则线段AC 的长为( )A .12B .18C .24D .306.有下列四种说法:其中说法正确的有( )①两个菱形相似;②两个矩形相似;③两个平行四边形相似;④两个正方形相似. A .4个 B .3个 C .2个 D .1个7.如图,在ABC ,AB AC a ==,点D 是边BC 上的一点,且BD a =,1AD DC ==,则a 等于( )A .512 B .512C .1D .28.已知a 3b 4=,则下列变形错误的是( ) A .34a b = B .34a b = C .4a=3b D .43b a = 9.已知如图,DE 是△ABC 的中位线,AF 是BC 边上的中线,DE 、AF 交于点O .现有以下结论:①DE ∥BC ;②OD =14BC ;③AO =FO ;④AOD S =14ABC S .其中正确结论的个数为( )A .1B .2C .3D .410.如图在ABC 中,其中D 、E 两点分别在AB 、AC 上,且31AD =,29DB =,30AE =,32EC =.若50A ∠=︒,则图中1∠、2∠、3∠、4∠的大小关系正确的是( ).A .13∠=∠B .24∠∠=C .23∠∠=D .14∠<∠ 11.下列判断中,不正确的有( )A .三边对应成比例的两个三角形相似B .两边对应成比例,且有一个角相等的两个三角形相似C .有一个锐角相等的两个直角三角形相似D .有一个角是100°的两个等腰三角形相似12.如图,△ABC 中,DE ∥BC ,25AD AB =,DE =3,则BC 的长为( )A .7.5B .4.5C .8D .6二、填空题13.如图,在矩形纸片ABCD 中,AB=6,BC=10,点E 在CD 上,将△BCE 沿BE 折 叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,有下列结论:①∠EBG=45°;②△DEF ∽△ABG ;③S △ABG = 1.5 S △FGH ;④AG+DF=FG ;其中正确的是______________.(填写正确结论的序号)14.如图,D 是AC 上一点,//BE AC ,BE AD =,AE 分别交BD 、BC 于点F 、G ,12∠=∠.若8DF =,4FG =,则GE =________.15.如图,身高1.6m 的小华站在距路灯5m 的C 点处,测得她在灯光下的影长CD 为2.5m ,则路灯的高度AE 为________.16.下列五组图形中,①两个等腰三角形;②两个等边三形;③两个菱形;④两个矩形;⑤两个正方形.一定相似的有_______(填序号)17.如图,直线////a b c ,直线m ,n 分别与a ,b ,c 相交于点A ,B ,C ,D ,E ,F ,若2AB =,3BC =,3DE =,则EF =_______.18.如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,AH交OB 于点E,若OB=4,S菱形ABCD=24,则OE的长为_____.19.如图,点A在反比例函数kyx=(k≠0)的图像上,点B在x轴的负半轴上,直线AB交y轴与点C,若12ACBC=,△AOB的面积为12,则k的值为_______.20.如图,在△ABC中,AE AFEB FC=,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于点Q,当CQ=13CE时,EP+BP=20,则BC的长为________.三、解答题21.如图,在每个小正方形的边长为1的网格中,△ABC的项点A,B,C均落在格点上:(I )AC 的长等于_________;(II )点P 落在格点上,M 是边BC 上任意一点,点B 关于直线AM 的对称点为B ',当PB '最短时,请在如图所示的网格中,用无刻度的直尺,画出点B ',并简要说明点B '的位置是如何找到的.(不要求证明)22.下图是由边长为1的小正方形组成的5×4网格,A 、B 、C 、D 、E 、F 、P 、Q 均为网格格点,请用无刻度直尺作图,保留作图痕迹,不写画法.(1)在线段AB 上找到一点M ,使△AQM ≌△BPM.(2)在线段CD 上找点N ,使△ECN ∽△FDN.23.如图,AB 是O 的直径,C ,D 是O 上两点,且AD 平分CAB ∠,作DE AB⊥于E .(1)求证://AC OD ;(2)求证:12OE AC =. 24.在如图小正方形的边长均为1的正方形网格中,△ABC 的顶点都在格点上.(1)以点O 为位似中心画△ABC 的位似图形△A 1B 1C 1,位似比为1:2.(2)在(1)中所画得图形中,△ABC 的中线CD 与△A 1B 1C 1的中线C 1D 1的位置关系为 .25.如图是一块三角形钢材ABC ,其中边60cm BC =,高40cm AD =,把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB ,AC 上,这个正方形零件的边长是多少?26.△ABC 在边长为1的正方形网格中如图所示.(1)以点C 为位似中心,作出△ABC 的位似图形△A 1B 1C 1,使其位似比为1:2.且△A 1B 1C 1位于点C 的异侧,并表示出A 1的坐标.(2)作出△ABC 绕点C 顺时针旋转90°后的图形△A 2B 2C 2.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】 先由23AB BC =得出25AB AC =,再根据平行线分线段成比例定理即可得到结论. 【详解】 ∵23AB BC =, ∴25AB AC =, ∵a ∥b ∥c , ∴25DE AB DF AC ==, 故选:C .【点睛】 本题考查了平行线分线段成比例定理,掌握三条平行线截两条直线,所得的对应线段成比例是解题的关键.2.B解析:B【分析】根据题意可求得CE 、OF 的长度,根据点E 在第二象限,从而可以得到点E 的坐标.【详解】解:∵四边形ABCO 是矩形∴90ECF FOA B ∠=∠=∠=︒∵将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若()0,8A∴90AFE B ∠=∠=︒∴90CEF CFE OFA CFE ∠+∠=∠+∠=︒∴CEF OFA ∠=∠∴Rt ECF Rt FOA ∽根据题意可设CE x =,则8BE x =-,则8BE x =-∵4CF =∴在Rt ECF △中,()22248x x +=- ∴3x =根据题意可设OF y =∵Rt ECF Rt FOA ∽ ∴CE CF OF OA= ∴348y = ∴6y =∴6OF =∴10CO CF OF =+=∴点E 的坐标为()10,3-.故选:B【点睛】本题考查了勾股定理、矩形的性质、翻折变换、坐标与图形变化(轴对称)、相似三角形的判定和性质等知识点,解题的关键是明确题意找出所求问题需要的条件,利用数形结合的思想进行解答.3.B解析:B【分析】先根据DE ∥BC ,得出ADE ∽ABC ,进而得出1=4AD DE AB BC = ,再根据DE ∥BC ,得到ODE ∽OCB ,进而得到1=1:44OE DE OB CB ==. 【详解】解:∵DE ∥BC , ∴ADE ∽ABC , ∴=AD DE AB BC, 又∵1=3AD BD , ∴1=4AD DE AB BC =, ∵DE ∥BC , ∴ODE ∽OCB , ∴1=1:44OE DE OB CB ==. 故选:B .【点睛】 本题主要考查了相似三角形的判定与性质,平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似.4.C解析:C【分析】易证DE ∥BC ,可得34BC DE AB AD ==,因为DH=DE ,得35DE DH AE AE ==,又因为DF ∥AC ,所以35BH DH BE AE ==,所以32BH HE =,根据相似三角形的面积比等于相似比的平方即可求得.【详解】∵DE ⊥AB ,∴∠ADE=90°,∵∠B=90°,∴∠ADE=∠B ,∴DE ∥BC ∴34BC DE AB AD ==,△DEH ∽△FBH ∴35DE AE = 又∵DH=DE ∴35DE DH AE AE == ∵DF ∥AC ∴35BH DH BE AE == ∴32BH HE = ∴4=9DEH FBH S S ∆∆ 故选C【点睛】本题考查相似三角形的性质与判定,掌握相似三角形的面积比等于相似比的平方是解题关键.5.C解析:C【分析】根据已知图形构造相似三角形,进而得出△ABD ∽△ACE ,即可求出AC 的长.【详解】解:如图所示:过点A 作平行线的垂线,交点分别为D ,E ,可得:△ABD ∽△ACE , 则AB AD AC AE =, 即628AC =, 解得:AC=24,故选:C .【点睛】此题主要考查了相似三角形的应用,根据题意得出△ABD ∽△ACE 是解题关键. 6.D解析:D【分析】直接利用相似图形的判定方法分别判断得出答案.【详解】解:①两个菱形不一定相似,因为对应角不一定相等;②两个矩形不一定相似,因为对应边不一定成比例;③两个平行四边形不一定相似,因为形状不一定相同;④两个正方形相似,正确.故选:D .【点睛】本题考查了相似多边形的判定,正确掌握判定方法是解题的关键.7.A解析:A【分析】证明△ABC ∽△DAC 得AB BC DA AC=,然后列方程求解即可. 【详解】解:∵AB AC a ==,∴∠B=∠C又∵1AD DC ==,∴∠C=∠DAC∴△ABC ∽△DAC ∴AB BC DA AC= ∴11a a a +=解得,12a +=或152a (舍去) 故选:A【点睛】本题考查了相似三角形的判定与性质,解题的关键是理解题意,灵活运用所学知识解决问题. 8.A解析:A【分析】 根据两内项之积等于两外项之积对各选项分析判断即可得解.【详解】解:由34a b =得,4a=3b , A 、由等式性质可得:ab=12,原变形错误,故这个选项符合题意;B 、由等式性质得到4a=3b ,原变形正确,故这个选项不符合题意;C 、由等式性质可得:4a=3b ,原变形正确,故这个选项不符合题意;D 、由等式性质可得:4a=3b ,原变形正确,故这个选项不符合题意;故选:A .【点睛】本题考查比例的性质.熟练掌握内项之积等于外项之积是解题的关键.9.C解析:C【分析】①根据三角形中位线定理进行判断;②根据三角形中位线定理进行判断;③根据三角形中位线定理进行判断;④由相似三角形△ADO ∽△ABF 的面积之比等于相似比的平方进行判断.【详解】∵DE 是△ABC 的中位线,∴DE ∥BC ,故①正确;∴DE=12BC , ∴OD=12BF , ∵AF 是BC 边上的中线,∴BF=12BC , ∴OD=12BF=14BC ,故②正确; ∵DE 是△ABC 的中位线,∴AD=DB ,DE ∥BC ,∴AO =FO ,故③正确;④∵DE ∥BC ,即DO ∥BF ,∴△ADO ∽△ABF , ∴22ADO ABF 1124S AD S AB ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 又∵AF 是BC 边上的中线,∴ABF ABC 12SS =, ∴ADO ABC18S S =,故④错误. 综上所述,正确的结论是①②③,共3个.故选:C .【点睛】本题考查了三角形中位线定理、相似三角形的判定与性质.本题利用了“相似三角形的面积之比等于相似比的平方”的性质.正确的识别图形是解题的关键.10.C 解析:C【分析】根据31AD =,30AE =,可得21∠<∠;根据题意,通过计算AB 和CD ,可得12AD AEAC AB,即证明ADE ACB ∽,即可得到各个角度的大小关系. 【详解】∵31AD =,30AE =∴21∠<∠ ∵31AD =,29DB =,30AE =,32EC =∴60AB AD BD =+=,62AC AE EC =+= ∴12AD AE AC AB ∵50A ∠=︒∴ADE ACB ∽∴14∠=∠,23∠∠= ∴13∠>∠,24∠<∠故选:C .【点睛】本题考查了相似三角形的知识;解题的关键是熟练掌握相似三角形的性质,从而完成求解.11.B解析:B【分析】由相似三角形的判定依次判断可求解.【详解】解:A 、三边对应成比例的两个三角形相似,故A 选项不合题意;B 、两边对应成比例,且夹角相等的两个三角形相似,故B 选项符合题意;C 、有一个锐角相等的两个直角三角形相似,故C 选项不合题意;D 、有一个角是100°的两个等腰三角形,则它们的底角都是40°,所以有一个角是100°的两个等腰三角形相似,故D 选项不合题意;故选:B .【点睛】本题考查了相似三角形的判定,熟练运用相似三角形的判定是本题的关键.12.A解析:A【分析】先判断△ADE ∽△ABC ,然后利用相似比求BC 的长.【详解】解:∵DE ∥BC ,∴△ADE ∽△ABC , ∴25DE AD BC AB ==, ∴5515.3222BC DE ==⨯=. 故选:A .【点睛】 本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了等腰三角形的性质.二、填空题13.①③④【分析】根据矩形的性质和折叠的性质可知DF 的长度利用勾股定理可求出AGGFGHHF 的长度结合题意逐个判断即可【详解】①:根据题意可知∴即故①正确;②:∴∴∴∵∴设AG=x 则GH=xGF=8-x解析:①③④【分析】根据矩形的性质和折叠的性质,可知45EBF GBH ∠+∠=︒,DF 的长度.利用勾股定理可求出AG 、GF 、GH 、HF 的长度,结合题意逐个判断即可.【详解】①:根据题意可知EBC EBF ∠=∠,GBA GBH ∠=∠,90EBC EBF GBA GBH ∠+∠+∠+∠=︒,∴45EBF GBH ∠+∠=︒,即45EBG ∠=︒.故①正确;②:90EFD AFB ∠+∠=︒,90ABF AFB ∠+∠=︒,∴EFD ABF ∠=∠,∴ABF DFE , ∴AB AF DF DE=,∵8AF ===, ∴8463DE AF DF AB ===. 设AG =x ,则GH =x ,GF =8-x ,HF =BF -BH =10-6=4.又∵在Rt GHF 中,222GH HF GF +=,∴2224(8)x x +=-解得x =3,即AG =3, ∴623AB AG ==. ∴AB DE AG DF≠ 故DEF 和△ABG 不相似.故②错误;③:由②得GH =3,1163922ABG S AB AG ==⨯⨯=,1134622GFH S GH HF ==⨯⨯=. ∴:9:6 1.5ABG GFH S S ==.故③正确.④:DF =10-8=2,由②可知AG +DF =3+2=5,GF =8-3=5.∴AG +DF =GF .故④正确.故答案为①③④.【点睛】本题考查折叠的性质、矩形的性质、三角形相似的判定和性质结合勾股定理来解题.本题利用勾股定理计算出AG 的长度是解题的关键.14.12【分析】利用AAS 判定△FEB ≌△FAD 得BF=DF 根据有两组角对应相等的两个三角形相似可得到△BFG ∽△EFB 根据相似三角形的对应边成比例即可得到BF2=FG•EF 由条件可求出EF 长则GE 长可解析:12【分析】利用AAS 判定△FEB ≌△FAD ,得BF=DF ,根据有两组角对应相等的两个三角形相似,可得到△BFG ∽△EFB ,根据相似三角形的对应边成比例即可得到BF 2=FG•EF ,由条件可求出EF 长,则GE 长可求出.【详解】解:∵AD//BE ,∴∠1=∠E .在△FEB 和△FAD 中1E EFB AFD BE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△FEB ≌△FAD ;∴BF=DF ,∵∠1=∠E ,∠1=∠2,∴∠2=∠E .又∵∠GFB=∠BFE ,∴△BFG ∽△EFB , ∴BF FG EF BF=, ∴BF 2=FG•EF ,∴DF 2=FG•EF ,∵DF=8,FG=4,∴EF=16,∴GE=EF-FG=16-4=12.故答案为:12.【点睛】本题考查了三角形全等、相似的性质和判定,熟练掌握全等三角形的判定及相似三角形的判定是关键.15.【分析】由于人和地面是垂直的即和路灯平行构成相似三角形根据对应边成比例列方程解答即可【详解】即解得:即路灯的高度为48米【点睛】本题考查了相似三角形的应用把实际问题抽象到相似三角形中利用相似三角形的 解析:4.8m【分析】由于人和地面是垂直的,即和路灯平行,构成相似三角形.根据对应边成比例,列方程解答即可.【详解】//CE AB,ADB EDC∴∽,::AB CE BD CD∴=,即:1.67.5:2.5AB=,解得: 4.8mAB=.即路灯的高度为4.8米.【点睛】本题考查了相似三角形的应用.把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出路灯的高度,体现了转化的思想.16.②⑤【分析】根据相似图形的性质对各个选项逐个分析即可得到答案【详解】两个等腰三角形的顶角不一定相等故不一定相似;两个等边三角形一定相似;两个菱形的内角不一定相等故不一定相似;两个矩形的相邻边长比例不解析:②⑤【分析】根据相似图形的性质对各个选项逐个分析,即可得到答案.【详解】两个等腰三角形的顶角不一定相等,故不一定相似;两个等边三角形一定相似;两个菱形的内角不一定相等,故不一定相似;两个矩形的相邻边长比例不一定相等,故不一定相似;两个正方形一定相似;故答案为:②⑤.【点睛】本题考查了图形相似的知识;解题的关键是熟练掌握相似图形的性质,从而完成求解.17.【分析】根据平行线分线段成比例定理得到然后根据比例的性质求EF的长【详解】解:∵直线a∥b∥c∴即∴EF=故答案为:【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线所得的对应线段成比例解析:9 2【分析】根据平行线分线段成比例定理得到AB DEBC EF=,然后根据比例的性质求EF的长.【详解】解:∵直线a∥b∥c,∴AB DE BC EF,即23=3EF , ∴EF=92. 故答案为:92. 【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例. 18.225【分析】依据菱形的面积即可得到AH=48进而得出BH 的长再根据相似三角形的对应边成比例即可得到BE 的长进而得出OE 的长【详解】解:∵菱形ABCD 的对角线ACBD 相交于点OOB =4∴BD =8又∵解析:2.25【分析】依据菱形的面积,即可得到AH=4.8,进而得出BH 的长,再根据相似三角形的对应边成比例,即可得到BE 的长,进而得出OE 的长.【详解】解:∵菱形ABCD 的对角线AC ,BD 相交于点O ,OB =4,∴BD =8,又∵S 菱形ABCD =24, ∴2241BD AC ,∴AC =6,CO =3,∴Rt △BCO 中,BC =5,又∵AH ⊥BC ,∴24BC AH,∴ 4.8AH , ∴Rt ABH 中,2222548 1.4BHAB AH ., ∵∠EBH =∠CBO ,∠BHE =∠BOC =90°, ∴△BEH ∽△BCO , ∴BHBE BO BC ,即1.445BE , ∴ 1.75BE, ∴4 1.75 2.25EO BO BE ,故答案为:2.25.【点睛】本题主要考查了菱形的性质以及相似三角形的判定与性质,利用相似三角形的性质是解决问题的关键.19.12【分析】过点A 作AD ⊥y 轴于D 则△ADC ∽△BOC 由线段的比例关系求得△AOC 和△ACD 的面积再根据反比例函数的k 的几何意义得结果【详解】过点A 作AD ⊥y 轴于D 则△ADC ∽△BOC ∴∵△AOB 的解析:12【分析】过点A 作AD ⊥y 轴于D ,则△ADC ∽△BOC ,由线段的比例关系求得△AOC 和△ACD 的面积,再根据反比例函数的k 的几何意义得结果.【详解】过点A 作AD ⊥y 轴于D ,则△ADC ∽△BOC ,∴12DC AC OC BC , ∵12AC BC =,△AOB 的面积为12, ∴S △AOC =13S △AOB =4, ∴S △ACD =12S △AOC =2, ∴△AOD 的面积=6, 根据反比例函数k 的几何意义得,12|k|=6, ∴|k|=12,∵k >0,∴k =12.故答案为:12.【点睛】本题主要考查了反比例函数的k 的几何意义的应用,考查了相似三角形的性质与判定,关键是构造相似三角形.20.10【分析】延长BQ 交射线EF 于点M 先证明△BCQ ∽△MEQ 然后可得=根据EM=20即可得出答案【详解】解:如图延长BQ 交射线EF 于点M ∵EF 是ABAC 的中点∴EF 是△ABC 的中位线∴EF ∥BC ∴∠解析:10【分析】延长BQ 交射线EF 于点M ,先证明△BCQ ∽△MEQ ,然后可得EM BC =2EQ CQ=,根据EM=20,即可得出答案.【详解】解:如图,延长BQ 交射线EF 于点M ,∵E ,F 是AB ,AC 的中点,∴EF 是△ABC 的中位线,∴EF ∥BC ,∴∠BME=∠MBC ,∵BQ 平分∠CBP ,∴∠PBM=∠MBC ,∴∠BME=∠PBM ,∴BP=PM ,∴EP+BP=EM=20,∵CQ =13CE , ∴2EQ CQ=, ∵EF ∥BC ,∴△BCQ ∽△MEQ , ∴EM BC =2EQ CQ=, ∵EM=20, ∴202BC=,即BC=10, 故答案为:10.【点睛】 本题考查了相似三角形的判定和性质,三角形中位线定理,判定△BCQ ∽△MEQ 是解题关键.三、解答题21.(I 29II )见解析.【分析】(I )利用勾股定理即可解决问题.(2)连接AP ,想办法在AP 上取一点B′,使得AB′=2时,PB′的值最小.方法:取格点G ,H ,连接GH 交AP 于点B′,由平行线分线段成比例定理可知AB′=2,点B′即为所求.【详解】解:(I )222529AC =+=.故答案为29.(II )如图,点B′即为所求.取格点G ,H ,连接GH 交AP 于点B′,由平行线分线段成比例定理可知AB′=2,点B′即为所求.【点睛】本题考查作图-复杂作图,勾股定理,平行线分线段成比例定理,轴对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题.22.(1)见解析(2)见解析【分析】(1)连接PQ,AB 交点即为所求; (2)找到F 点关于CD 的对称点F’,连接CD,EF’,交点即为所求.【详解】(1)如图,M 点为所求;(2)如图,N 点为所求.【点睛】此题主要考查网格中作图,解题的关键是熟知熟知网格的特点、对称性、全等三角形与相似三角形的判定方法.23.(1)证明见解析;(2)证明见解析.【分析】(1)先根据圆的性质、等腰三角形的性质可得OAD ODA ∠=∠,再根据角平分线的性质可得OAD CAD ∠=∠,从而可得ODA CAD ∠=∠,然后根据平行线的判定即可得证; (2)如图(见解析),先根据圆周角定理可得90ACB ∠=︒,再根据垂直的定义可得90OED ∠=︒,然后根据平行线的性质可得DOE BAC ∠=∠,最后根据相似三角形的判定与性质即可得证.【详解】(1)12OA OD AB ==, OAD ODA ∠=∠∴,AD 平分CAB ∠,OAD CAD ∴∠=∠,ODA CAD ∴∠=∠,//AC OD ∴;(2)如图,连接BC ,由圆周角定理得:90ACB ∠=︒,DE AB ∵⊥,90OED ∴∠=︒,由(1)已证://AC OD ,DOE BAC ∴∠=∠,在DOE △和BAC 中,90OED ACB DOE BAC ∠=∠=︒⎧⎨∠=∠⎩, DOE BAC ∴~,12OE OD AC AB ∴==, 12OE AC ∴=.【点睛】本题考查了圆周角定理、等腰三角形的性质、平行线的判定与性质、相似三角形的判定与性质等知识点,较难的是题(2),通过作辅助线,构造相似三角形是解题关键. 24.(1)画图见解析;(2)11//CD C D【分析】(1)根据位似图形的性质可以得解;(2)根据位似图形的性质可得解.【详解】(1)如图△A 1B 1C 1就是所求作的图形.分别在射线AO 、BO 、CO 上截取1112OA OA OB OB OC OC ===,,,连结 111,,A B C 即得所作图形;(2)∵在(1)中所画的图形中,△ABC 的中线CD 与111A B C 的中线 11C D 是对应线段, ∴由“位似图形中不经过位似中心的对应线段平行”的性质可以得到:CD ∥11C D .【点睛】本题考查位似图形的应用与作图,熟练掌握位似图形的意义和性质是解题关键. 25.24cm【分析】设正方形零件的边长为cm x .则 c m EG EF x ==,由题意易得KD EG x ==,进而可得AEF ABC ∽,然后根据相似三角形的性质可求解.【详解】解:设正方形零件的边长为cm x .则 c m EG EF x ==,由题可知,四边形KEGD 是矩形,∴KD EG x ==,∵AD AK KD =+,40AD =,∴40AK x =-,∵AD BC ⊥,∴90ADB ∠=︒,∵四边形EGHF 为正方形,∴//BC EF ,∴90AKE ∠=︒,∴AK EF ⊥,∵//BC EF ,∴AEF ABC ∽, ∴EF AK BC AD =,∴406040x x -=, 解得24x =.即()24cm EG =,答:正方形零件的边长为24cm .【点睛】本题主要考查相似三角形的应用,熟练掌握相似三角形的性质与判定是解题的关键. 26.(1)图见解析;(3,﹣3);(2)图见解析.【分析】(1)首先找到A 、B 、C 点对应点A 1、B 1、C 1,然后连接即可;(2)利用网格特点和旋转的性质画出A 、B 的对应点A 2、B 2即可【详解】解:(1)如图,△A 1B 1C 1所作,点A 1的坐标为(3,﹣3);(2)如图,△A 2B 2C 2为所作.【点睛】本题考查了作图-位似变换:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.也考查了旋转变换.。
(常考题)人教版初中数学九年级数学下册第二单元《相似》测试卷(有答案解析)(5)
一、选择题1.如图,已知点D ,E 是AB 的三等分点,DF ,EG 将ABC 分成三部分,且////DF EG BC ,图中三部分的面积分别为1S ,2S ,3S ,则123::S S S 的值为( )A .1:2:3B .1:2:4C .1:3:5D .2:3:42.如图,AB 为半圆O 的直径,10AB =,AC 为O 的弦,8AC =,D 为AB 的中点,DM AC ⊥于M ,则DM 的长为( )A .42 B .2C.1D .33.如图,在平行四边形ABCD 中,以对角线AC 为直径的圆O 分别交BC ,CD 于点M ,N ,若13AB =,14BC =,9CM =,则线段MN 的长为( )A .18013B .10C .12613D .14.如图,在ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论:①12DE BC =;②12S S =△DOE △COB ;③AD OE AB OB=;④16ODE ADC S S =△△.其中结论正确的是( ).A .①②B .①③C .①②③D .①③④5.如图所示,一电线杆AB的影子分别落在了地上和墙上,某一时刻,小明竖起1米高的直杆,量得其影长为0.5米,此时,他又量得电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米,小明用这些数据很快算出了电线杆AB的高,请你计算,电线杆AB的高为()A.5米B.6米C.8米D.10米6.下列图形中一定是相似形的是()A.两个等腰三角形B.两个菱形C.两个矩形D.两个正方形7.下列每个选项的两个图形,不是相似图形的是()A. B.C.D.8.如图,在矩形、三角形、正五边形、菱形的外边加一个宽度一样的外框,保证外框的边界与原图形对应边平行,则外框与原图一定相似的有()A.1个B.2个C.3 D.4个9.下列条件中,不能判断△ABC与△DEF相似的是()A.∠A=∠D,∠B=∠F B.BC ACEF DF=且∠B=∠DC.AB BC ACDE EF DF==D.AB ACDE DF=且∠A=∠D10.已知四个数2,3,m3m的值是()A .3B .233C .2D .2311.如图,在矩形OABC 中,点A 和点C 分别在y 轴和x 轴上.AC 与BO 交于点D ,过点C 作CE BD ⊥于点E ,2DE BE =.若5CE =,反比例函数(0,0)ky k x x=>>经过点D ,则k =( )A .2B .352C .36D .3012.已知P 是线段AB 的黄金分割点,且51AB =+,则AP 的长为( ).A .2B .51-C .2或51-D .35-二、填空题13.如图,点О是正方形ABCD 的中心,DE 与О相切于点E ,连接,BE 若10,DE =102BE =,则О的面积是________________.14.如图,矩形ABCD 中,2AB =,E 为CD 的中点,连接AE 、BD 交于点P ,过点P 作PQ BC ⊥于点Q ,则PQ =________.15.如图,△ABC 中,D 在AC 上,且AD :DC=1:n ,E 为BD 的中点,AE 的延长线交BC 于F ,那么FC:BF 的值为______(用含有n 的代数式表示).16.如图所示,在△ABC 中DE ∥BC ,若2EFB EFD S S ∆∆=,则 DE:BC=______.17.如图,在ABC 纸片中,13AB AC ==,24BC =,D 是BC 边上任意一点,将ABD △沿AD 折叠得到AED ,AE 交BC 于点F ,当DEF 是直角三角形时,则BD 的长为________.18.△ABC 的三边长分别为7、6、2,△DEF 的两边分别为1、3,要使△ABC ∽△DEF ,则△DEF 的第三边长为______.19.如图,在ABC 中,点D 是线段BC 的黄金分割点(DC BD >),若ABD △的面积是252-,则ABC 的面积是_______.20.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,过点A 作AH ⊥BC 于点H ,AH 交OB 于点E ,若OB =4,S 菱形ABCD =24,则OE 的长为_____.三、解答题21.如图,在平面直角坐标系中,一次函数122y x =-的图象分别交x 、y 轴于点A 、B ,抛物线2y x bx c =++经过点A 、B ,点P 为第四象限内抛物线上的一个动点.(1)求此抛物线的函数解析式.(2)过点P 作//PM y 轴,分别交直线AB 、x 轴于点C 、D ,若以点P 、B 、C 为顶点的三角形与以点A 、C 、D 为顶点的三角形相似,求点P 的坐标. (3)当2PBA OAB ∠=∠时,求点P 的坐标.22.如图,在每个小正方形的边长为1的网格中,△ABC 的项点A ,B ,C 均落在格点上:(I )AC 的长等于_________;(II )点P 落在格点上,M 是边BC 上任意一点,点B 关于直线AM 的对称点为B ',当PB '最短时,请在如图所示的网格中,用无刻度的直尺,画出点B ',并简要说明点B '的位置是如何找到的.(不要求证明)23.如图,在ABC 中,AB AC =,点D 在BC 上,点E 在AB 上,连结AD ,DE ,12∠=∠.(1)求证:ACD DBE ∽△△;(2)若6BD =,2CD =,5AC =,求AE 的长.24.作图题:如图所示,图中的小方格都是边长为1的正方形,△ABC 与△A 'B 'C '是以点O 为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O ;(2)△A 'B 'C '与△ABC 的位似比是 ;(3)以位似中心O 为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出△A 'B 'C '关于点O 中心对称的△A "B "C ",并直接写出△A "B "C "各顶点的坐标. 25.如图,在等边三角形ABC 中,点D ,E 分别在BC ,AB 上,且60ADE ∠=︒. 求证:ADC ∽DEB .26.如图,ABC 内接于⊙O ,AB AC =,过点C 作AB 的垂线CD ,垂足为点E ,交O 于点F ,连接AD ,并使AD BC ∥.(1)求证:AD 为O 的切线;(2)若5AC =,2BE =,求AD 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C解析:C 【分析】根据题意易得ADFAEGABC ,则有13AD AB =,23AE AB =.进而可求得119ABC S S =,213ABC S S =,359ABCS S =,最后即可求出结果.【详解】 ∵DF ∥EG ∥BC , ∴ADF AEG ABC ,∵D 、E 是AB 的三等分点, ∴13AD AB =,23AE AB =, ∴119ABC S S =,49AEGABCSS =.∵21411993AEG ABCABCABCS S S S S S =-=-=,34599ABC AEGABCABCABCS S SSS S =-=-=.∴123115::::1:3:5939ABCABCABCS S S S S S ==.故选C . 【点睛】本题主要考查相似三角形的判定与性质,掌握面积比等于相似比的平方是解题的关键.2.C解析:C 【分析】如图,连接OD 交AC 于H ,连接BC .利用勾股定理求出BC ,再利用相似三角形的性质求出OH ,AH ,DH ,证明△DMH ∽△AOH ,构建关系式即可解决问题. 【详解】解:如图,连接OD 交AC 于H ,连接BC .∵AB 是直径, ∴∠ACB=90°, ∴226BC AB AC -=,∵AD DB =, ∴OD ⊥AB ,∵∠OAH=∠CAB ,∠AOH=∠ACB=90°, ∴△AOH ∽△ACB , ∴OH OA AHBC AC AB== ∴56810OH AH== ∴1525,44OH AH ==, ∵DH=OD-OH=155544-=, ∵DM ⊥AC ,∵∠DMH=∠AOH=90°,∠DHM=∠AHO , ∴△DMH ∽△AOH , ∴DM DHAO AH=, ∴542554DM=, ∴DM=1, 故选:C . 【点睛】本题考查勾股定理,圆周角定理,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识.3.A解析:A 【分析】连结AM ,AN ,根据圆周角定理可知△ABM 是直角三角形,利用勾股定理即可求出AC 的长;易证△AMN ∽△ACD ,根据相似三角形的性质即可求出MN 的长. 【详解】解:连结AM ,AN ,∵AC 是⊙O 的直径, ∴∠AMC=90°,∠ANC=90°,∵AB=13,BM=5, ∴, ∵CM=9, ∴AC=15,∵∠MCA=∠MNA ,∠MCA=∠CAD , ∴∠MNA=∠CAD , ∵∠AMN=∠ACN , ∴∠AMN=∠ACN , ∵△NMA ∽△ACD , ∴AM :MN=CD :AC , ∴12:MN=13:15, ∴MN=18013. 故选:A . 【点睛】本题考查了圆周角定理运用、勾股定理的运用、相似三角形的判定和性质,题目的综合性较强,难度中等,解题的关键是添加辅助线构造相似三角形.4.D解析:D 【分析】先判断DE 为ABC 的中位线,则根据三角形中位线性质得到//DE BC ,12DE BC =,于是可对①进行判断;证明DOE △∽COB △,利用相似比得到12OE DE OD OB BC OC ===,14DOE COB S S =△△,则可对②进行判断;加上12AD AB =,则可对③进行判断;利用三角形面积公式得到13ODE DCE S S =△△,12DCE ADC S S =△△,则可对④进行判断. 【详解】解:∵BE 、CD 为ABC 的中线, ∴DE 为ABC 的中位线, ∴//DE BC ,12DE BC =,所以①正确; ∵//DE BC , ∴DOE △∽COB △,∴12OE DE OD OB BC OC ===,214DOE COB S DE S CB ⎛⎫== ⎪⎝⎭△△,所以②错误;∵12AD AB =, ∴AD OEAB OB=,所以③正确; ∵:1:2OD OC =,∴13ODE DCE S S =△△, ∵AE CE =,∴12DCE ADC S S =△△, ∴16ODE ADC S S =△△,所以④正确. 故选D . 【点睛】本题考查相似三角形的性质和判定,解题的关键是熟练运用相似三角形的性质和判定定理.5.C解析:C 【分析】根据同一时刻,物体的实际高度和影长成正比例列出比例式即可解答. 【详解】解:如图,假设没有墙,电线杆AB 的影子落在E 处,∵同一时刻,物体的实际高度和影长成正比例, ∴CD :DE=1:0.5=2:1, ∴AB :BE=2:1, ∵CD=2,BE=BD+DE , ∴BE=3+1=4, ∴AB :4=2:1,∴AB=8,即电线杆AB 的高为8米, 故选:C . 【点睛】本题考查了相似三角形的应用、比例的性质,解答的关键是理解题意,将实际问题转化为相似三角形中,利用同一时刻,物体的实际高度和影长成正比例列出方程求解.6.D解析:D【分析】根据对应角相等,对应边成比例的两个图形,叫做相似图形进行判断即可.【详解】A、两个等腰三角形,三个角不一定相等,因此不一定相似,故本选项错误,不符合题意.B、两个菱形对应角不一定相等,故本选项不符合题意;C、两个矩形的边不一定成比例,故不一定相似,故本选项错误,不符合题意.D、两个正方形四个角相等,各边一定对应成比例,所以一定相似,故本选项正确,符合题意;故选:D.【点睛】本题考查了相似图形的判定,掌握对应角相等,对应边成比例的两个图形,叫做相似图形是解题的关键.7.D解析:D【分析】根据相似图形的定义,对选项进行一一分析,排除错误答案.【详解】解:A、形状相同,但大小不同,符合相似形的定义,故不符合题意;B、形状相同,但大小不同,符合相似形的定义,故不符合题意;C、形状相同,但大小不同,符合相似形的定义,故不符合题意;D、形状不相同,不符合相似形的定义,故符合题意;故选:D.【点睛】本题考查的是相似形的定义,是基础题.8.C解析:C【分析】根据相似多边形的判定定理对各个选项进行分析,从而确定最后答案.【详解】矩形的原图与外框不相似,因为其对应角的度数一定相同,但对应边的比值不一定相等,不符合相似的条件;锐角三角形的原图与外框相似,因为其对应角均相等,对应边均对应成比例,符合相似的条件;正五边形相似,因为它们的边长都对应成比例、对应角都相等,符合相似的条件;菱形的原图与外框相似,因为其对应角均相等,对应边均对应成比例,符合相似的条件.综上,外框与原图一定相似的有3个,故选:C .【点睛】本题主要考查了相似图形的概念,注意边数相同、各角对应相等、各边对应成比例的两个多边形是相似多边形.9.B解析:B【分析】直接根据三角形相似的判定方法分别判断得出答案.【详解】解:A 、A D ∠=∠,B F ∠=∠,根据有两组角对应相等的两个三角形相似,可以得出ABC DFE ∽△△,故此选项不合题意;B 、BC AC EF DF=,且B D ∠=∠,不是两边成比例且夹角相等,故此选项符合题意; C 、AB BC AC DE EF DF==,根据三组对应边的比相等的两个三角形相似,可以得出ABC DEF ∽△△,故此选项不合题意;D 、AB AC DE DF=且A D ∠=∠,根据两组对应边的比相等且夹角对应相等的两个三角形相似,可以得出ABC DEF ∽△△,故此选项不合题意;故选:B .【点睛】此题主要考查了相似三角形的判定,关键是掌握三角形相似的判定方法:(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似. 10.B解析:B【分析】利用比例线段的定义得到23m =:m 即可.【详解】根据题意得23m =:所以3m =,所以m =. 故选:B .【点睛】本题考查了比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如 a :b=c :d (即ad=bc ),我们就说这四条线段是成比例线段,简称比例线段.11.B解析:B【分析】作DF ⊥OC 于F ,根据矩形的性质和相似三角形的性质求得OD=3,OE=5,根据勾股定理求得30OC =,然后通过三角形相似求得DF 和OF ,从而求得D 的坐标,代入解析式即可求得k 的值.【详解】解:作DF ⊥OC 于F ,在矩形OABC 中,∠OCB=90°,OD=BD ,90,OCE BCE ∴∠+∠=︒∵CE ⊥OB ,90,CEO BEC ∴∠=∠=︒90,OCE COE ∴∠+∠=︒,COE BCE ∴∠=∠,COE BCE ∴∽,CE OE BE CE∴= ∴2,CE BE OE =∵2DE BE =,5,CE = 设,BE x =则DE=2x ,3,OD BD x ==∴OE=5x ,∴255,x x =解得,x=1(负根舍去),∴OD=3,OE=5,∴()22225530,OC OE CE =+=+= ∵∠OFD=∠OEC=90°,∠DOF=∠EOC ,∴△DOF ∽△COE ,∴,DF OF OD CE OE OC==5OF ==∴OF DF ==∴D 的坐标为⎝⎭, ∵反比例函数k y x =(k >0,x >0)经过点D ,∴k == 故选:B .【点睛】本题考查了矩形的性质,勾股定理,三角形相似的判定和性质,反比例函数图象上点的坐标特征,求得D 的坐标是解题的关键.12.C解析:C【分析】若点P 是靠近点B 的黄金分割点,则12AP AB =,然后代入数据计算即可;若点P 是靠近点A 的黄金分割点,先求出BP ,再利用线段的和差即可求出AP .【详解】解:若P 是靠近点B 的黄金分割点,则)111222AP AB ==⨯=;若P 是靠近点A 的黄金分割点,则)111222BP AB ==⨯=,∴121AP AB BP =-=-=;故选:C .【点睛】本题主要考查了黄金分割,熟练掌握黄金分割比为12是解题的关键. 二、填空题13.25【分析】连接EO 可知EO ⊥ED 延长DE 到点F 作BF ⊥DF 根据题意可知△DEO ∽△DFB 在△EFB 中根据勾股定理求解得出半径的长然后再根据圆的面积公式求解即可;【详解】如图:连接EO 可知EO ⊥ED解析:25π【分析】连接EO ,可知EO ⊥ED ,延长DE 到点F ,作BF ⊥DF ,根据题意可知△DEO ∽△DFB ,在△EFB 中,222EB EF FB =+,根据勾股定理求解得出半径的长,然后再根据圆的面积公式求解即可;【详解】如图:连接EO ,可知EO ⊥ED ,延长DE 到点F ,作BF ⊥DF ,∵∠FDB=∠EDO ,∠DEO=∠DFB ,∴△DEO ∽△DFB ,∵EO=r ,ED=10,EB=102, ∵DO=OB ,∴12DO EO DE DB FB DF===, ∴EF=10,FB=2r , 在△EFB 中,222EB EF FB =+,()22102=1004r +,∴ r=5,∴ 圆的面积为225r ππ=,故答案为:25π【点睛】本题考查了圆的面积公式、相似三角形的判定、勾股定理等知识,熟练掌握这些公式是解题的关键;14.【分析】根据矩形的性质得到AB ∥CDAB=CDAD=BC ∠BAD=90°根据线段中点的定义得到DE=CD=AB 根据相似三角形的性质即可得到结论【详解】解:∵四边形ABCD 是矩形∴AB ∥CDAB=CD解析:43【分析】根据矩形的性质得到AB ∥CD ,AB=CD ,AD=BC ,∠BAD=90°,根据线段中点的定义得到DE=12CD=12AB ,根据相似三角形的性质即可得到结论. 【详解】解:∵四边形ABCD 是矩形,∴AB ∥CD ,AB=CD ,AD=BC ,∠BAD=90°,∵E 为CD 的中点,∴DE=12CD=12AB , ∴△ABP ∽△EDP ,∴AB PB DE PD =, ∴21PB PD = , ∴23PB BD = , ∵PQ ⊥BC ,∴PQ ∥CD , ∴△BPQ ∽△DBC ,∴23PQ BP CD BD ==, ∵CD=2, ∴PQ=43, 故答案为:43.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,正确的识别图形是解题的关键. 15.n+1【分析】作DG 平行于AF 交BC 于G 由平行线分线段成比例定理比例的性质求得;然后根据三角形中位线的定义知BF=FG 所以由等量代换证得结论【详解】证明:如图作交BC 于G ∵AD :DC=1:n ∴AD :解析:n+1【分析】作DG 平行于AF 交BC 于G .由平行线分线段成比例定理、比例的性质求得1AC FC n AD FG==+;然后根据三角形中位线的定义知BF=FG ,所以由等量代换证得结论. 【详解】证明:如图,作//DG AF 交BC 于G∵AD :DC=1:n ,∴AD :AC=1:(n+1).∵//DG AF , ∴AC FC CD GC=, 根据比例的性质知,1AC FC n AD FG ==+, 又E 是BD 的中点,∴EF 是△BGD 的中位线,∴BF=FG .∴FC:BF=FC BF =1FC n FG=+. 故填:n+1.【点睛】 本题考查了平行线分线段成比例.列比例式时,一定要找准对应线段,以防错解. 16.1:2【分析】由可得DF :FB=1:2又由DE ∥BC 可得△DFE 和△BFC 相似确定DE:BC 【详解】解:设为1则为2∵∴DF :FB=1:2又∵DE ∥BC ∴△DFE ∽△BFC ∴DE:BC=DF:FB=解析:1:2【分析】由2EFB EFD S S ∆∆=,可得DF :FB=1:2,又由DE ∥BC ,可得△DFE 和△BFC 相似,确定DE:BC.【详解】解:设EFD S ∆为1,则EFB S ∆为2,∵2EFB EFD S S ∆∆=,∴DF :FB=1:2,又∵DE ∥BC ,∴△DFE ∽△BFC ,∴DE:BC=DF:FB=1:2故答案为1:2【点睛】本题考查了相似三角形的性质和判定,解题的关键在于根据面积比确定边长的比. 17.或7【分析】是直角三角形时有两种情况:∠EDF=90°或∠EFD=90°通过找相似三角形然后利用对应边成比例即可得到结果【详解】解:如图当∠EDF=90°时过A 作AG ⊥BC 于G 则DE ∥AG ∵AG ⊥B 解析:263或7. 【分析】 DEF 是直角三角形时,有两种情况:∠EDF=90°或∠EFD=90°,通过找相似三角形,然后利用对应边成比例即可得到结果. 【详解】解:如图,当∠EDF=90°时,过A 作AG ⊥BC 于G ,则DE ∥AG ,∵13AB AC ==,24BC =,AG ⊥BC ,∴1122BG BC ==, 在直角三角形ABG 中,2213125AG -=,由折叠可知∠B=∠E ,BD=ED ,AE=AB=13,∵DE ∥AG ,∴∠FAG=∠E=∠B ,∴Rt △AFG ∽Rt △BAG ,∴AB BG AF AG =,即13125AF =, ∴6512AF = ∴6591131212EF =-=, 由∠B=∠E ,∠EDF=∠ABG=90°,可知△ABG ∽△FED ,∴AB BG EF DE =,即13129112DE =, ∴7DE =,即7BD =;如图,当∠EFD=90°时,由折叠可知∠B=∠E ,BD=ED ,AE=AB=13,由于∠EFD=90°,因此AF ⊥BC ,在直角三角形ABF 中,2213125AF =-=,∴1358EF =-=,∵∠B=∠E ,∠AFB=∠EFD=90°,∴△ABF ∽△DEF , ∴AB BF DE EF =,即13128DE =, ∴263DE =,即263BD =; 综上,263BD =或7BD =, 故答案为:263或7. 【点睛】 本题考查了相似三角形的性质和判定以及折叠问题,找到相似三角形是解题的关键,要注意分类讨论.18.35【分析】根据△ABC ∽△DEF 得到结合△ABC 的三边长分别为762△DEF 的两边分别为13可以得到△DEF 的两边13分别与△ABC 的两边26是对应边得到两三角形相似比为可以求出△DEF 的第三边【解析:3.5【分析】根据△ABC ∽△DEF ,得到AB AC BC DE DF EF==,结合△ABC 的三边长分别为7、6、2,△DEF 的两边分别为1、3,可以得到△DEF 的两边1、3分别与△ABC 的两边2,6是对应边,得到两三角形相似比为12,可以求出△DEF 的第三边. 【详解】解:∵要使△ABC ∽△DEF ,需AB AC BC DE DF EF==,∵△ABC 的三边长分别为7、6、2,△DEF 的两边分别为1、3,∴△DEF 的两边1、3分别与△ABC 的两边2,6是对应边,∴两三角形相似比为12, ∴△DEF 的第三边长为:7×12=3.5. 故答案为:3.5.【点睛】本题考查了相似三角形的性质,根据两三角形相似,结合两三角形的线段长求出相似比是解题的关键.19.【分析】根据黄金分割的定义以及等高的两个三角形面积之比等于底之比即可求出的面积【详解】解:∵在中点是线段的黄金分割点()∴∵的面积是∴的面积故答案为:【点睛】本题考查了黄金分割的概念也考查了三角形的解析:2【分析】根据黄金分割的定义,以及等高的两个三角形面积之比等于底之比,即可求出ABC 的面积.【详解】解:∵在ABC 中,点D 是线段BC 的黄金分割点(DC BD >),∴13BD BC 122=-=: ∵ABD △的面积是2∴ABC的面积()22==故答案为:2.【点睛】本题考查了黄金分割的概念,也考查了三角形的面积公式,解题的关键是正确理解黄金分割的概念.20.225【分析】依据菱形的面积即可得到AH=48进而得出BH 的长再根据相似三角形的对应边成比例即可得到BE 的长进而得出OE 的长【详解】解:∵菱形ABCD 的对角线ACBD 相交于点OOB =4∴BD =8又∵解析:2.25【分析】依据菱形的面积,即可得到AH=4.8,进而得出BH 的长,再根据相似三角形的对应边成比例,即可得到BE 的长,进而得出OE 的长.【详解】解:∵菱形ABCD 的对角线AC ,BD 相交于点O ,OB =4,∴BD =8,又∵S 菱形ABCD =24, ∴2241BD AC ,∴AC =6,CO =3,∴Rt △BCO 中,BC =5,又∵AH ⊥BC ,∴24BC AH,∴ 4.8AH , ∴Rt ABH 中,2222548 1.4BHAB AH ., ∵∠EBH =∠CBO ,∠BHE =∠BOC =90°, ∴△BEH ∽△BCO , ∴BHBE BO BC ,即1.445BE , ∴ 1.75BE, ∴4 1.75 2.25EO BO BE ,故答案为:2.25.【点睛】 本题主要考查了菱形的性质以及相似三角形的判定与性质,利用相似三角形的性质是解决问题的关键.三、解答题21.(1)2722y x x =--;(2)3,52⎛⎫- ⎪⎝⎭或7,22⎛⎫- ⎪⎝⎭;(3)73,2⎛⎫- ⎪⎝⎭. 【分析】(1)本题所求二次函数的解析式含有两个待定字母,一般需要两个点的坐标建立方程组,现在可求A 、B 点坐标,代入列方程组可解答;(2)根据∠ADC=90°,∠ACD=∠BCP ,可知相似存在两种情况:①当∠CBP=90°时,如图1,过P 作PN ⊥y 轴于N ,证明△AOB ∽△BNP ,列比例式可得结论;②当∠CPB=90°时,如图2,则B 和P 是对称点,可得P 的纵坐标为-2,代入抛物线的解析式可得结论;(3)设点A 关于y 轴的对称点为A′,求出直线A′B 的解析式,再联立抛物线的解析式解答即可.【详解】解:(1)令0x =,得1222y x =-=-,则()0,2B -, 令0y =,得1022x =-,解得4x =, 则()4,0A ,把()4,0A ,()0,2B -代入()20y ax bx c a =++≠中,得16402b c c ++=⎧⎨=-⎩, 解得722b c ⎧=-⎪⎨⎪=-⎩,∴抛物线的解析式为:2722y x x =--. (2)∵//PM y 轴,∴90ADC ∠=︒,∵ACD BCP ∠=∠,∴以点P 、B 、C 为顶点的三角形与以点A 、C 、D 为顶点的三角形相似,存在两种情况:①当90CBP ∠=︒时,如图,过P 作PN y ⊥轴于N ,∵90ABO PBN ABO OAB ∠+∠=∠+∠=︒,∴PBN OAB ∠=∠,∵90AOB BNP ∠=∠=︒,∴Rt PBNRt BAO △△, ∴PN BN BO AO=. 设27,22P x x x ⎛⎫-- ⎪⎝⎭. ∴2722224x x x ⎛⎫---- ⎪⎝⎭=,化简得2302x x -=. 解得0x =(舍去)或32x =. 当32x =时,2273732252222y x x ⎛⎫=--=-⨯-=- ⎪⎝⎭. ∴3,52P ⎛⎫- ⎪⎝⎭;②当90CPB ∠=︒时,如下图,则//PB x 轴,所以B 和P 是对称点,所以当2y =-时,27222xx --=-,解得0x =(舍去)或72x =. ∴7,22P ⎛⎫- ⎪⎝⎭. 综上,点P 的坐标是3,52⎛⎫- ⎪⎝⎭或7,22⎛⎫- ⎪⎝⎭.(3)设点A 关于y 轴的对称点为'A ,则'A B AB =.∴'BAO B AO ∠=∠.直线'A B 交抛物线于P .∴'2PBA BAO BA O BAO ∠=∠+∠=∠.∵()4,0A ,∴()'4,0A -.设直线'A B 的解析式为()0y kx b k =+≠.∵()0,2B -.∴4002k b k b -+=⎧⎨⋅+=-⎩. 解得122k b ⎧=-⎪⎨⎪=-⎩.∴直线'A B 的解析式为122y x =--,由方程组2122722y x y x x ⎧=--⎪⎪⎨⎪=--⎪⎩,得230x x -=. 解得0x =(舍去)或3x =.当3x =时,117232222y x =--=-⨯-=-. 所以点P 的坐标是73,2⎛⎫-⎪⎝⎭. 【点睛】 此题是二次函数的综合题,是中考的压轴题,难度较大,计算量也大,主要考查了待定系数法求解析式,还考查了三角形的面积,相似三角形的性质与判定,并学会构造相似三角形解决问题.22.(I )29;(II )见解析.【分析】(I )利用勾股定理即可解决问题.(2)连接AP ,想办法在AP 上取一点B′,使得AB′=2时,PB′的值最小.方法:取格点G ,H ,连接GH 交AP 于点B′,由平行线分线段成比例定理可知AB′=2,点B′即为所求.【详解】解:(I )222529AC =+=.故答案为29.(II )如图,点B′即为所求.取格点G ,H ,连接GH 交AP 于点B′,由平行线分线段成比例定理可知AB′=2,点B′即为所求.【点睛】本题考查作图-复杂作图,勾股定理,平行线分线段成比例定理,轴对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题.23.(1)见解析;(2)135AE =【分析】(1)利用等腰三角形的性质证明∠C=∠B ,即可证明ACD DBE ∽△△;(2)利用相似三角形的性质求得BE 的长,再利用等腰三角形的定义求解即可.【详解】(1)∵AB AC =,∴∠C=∠B ,∵12∠=∠,∴ACD DBE ∽△△;(2)∵ACD DBE ∽△△, ∴AC CD BD BE=, ∵6BD =,2CD =,5AC =, ∴526BE=, ∴125BE =, ∵5AB AC ==, ∴1213555AE AB BE =-=-=. 【点睛】本题考查了相似三角形的判定和性质,等腰三角形的性质,熟练掌握相似三角形的判定和性质是解题的关键.24.(1)画图见解析;(2)1:2;(3)画图见解析;A "(6,0),B "(3,-2),C "(4,-4)【分析】(1)连接CC′并延长,连接BB′并延长,两延长线交于点O ;(2)由OB=2OB′,即可得出△A′B′C′与△ABC 的位似比为1:2;(3),连接B′O 并延长,使OB″=OB′,延长A ′O 并延长,使OA″=OA′,C′O 并延长,使OC″=OC′,连接A″B″,A″C″,B″C″,则△A″B″C″为所求,从网格中即可得出△A″B″C″各顶点的坐标.【详解】解:(1)图中点O 为所求;(2)△A′B′C′与△ABC 的位似比等于1:2;故答案为:1:2;(3)△A″B″C″为所求;A″(6,0);B″(3,-2); C″(4,-4).【点睛】此题考查了作图-位似变换,画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.25.见解析【分析】根据ABC 是等边三角形,即可得到60B C ∠=∠=︒,再根据 CAD BDE ∠=∠,即可判定~ADC DEB △△.【详解】证明:∵ABC 是等边三角形, ∴60B C ∠=∠=︒, ∴60ADB CAD C CAD ∠=∠+∠=∠+︒, ∵60ADE ∠=︒, ∴60ADB BDE ∠=∠+︒,∴CAD BDE ∠=∠,∴ADC DEB △△.【点睛】本题考察了相似三角形的判定与性质,解题的关键是掌握三角形相似的判定条件. 26.(1)证明见解析;(2)35【分析】(1)连接AO 后交DC 于点H ,交BC 于点G ,由垂径定理可知AG ⊥BC ,然后根据互余关系得到∠HAE=∠HCG ,然后利用平行关系得到∠ADE=∠HCG=∠HAE ,等量代换后可得∠HAE +∠EAD=90°;(2)根据AC 和BE 可算出AE ,然后在Rt △AEC 中算出EC ,然后证明△AED ∽△BEC ,然后利用比例关系算出DE ,在Rt △AED 中计算AD 即可.【详解】解:(1)如图,连接AO交DC于点H,交BC于点G,则AG⊥BC∵AG⊥BC,AB⊥DC,∠AHE=∠CHG∴∠HAE=∠HCG∵AB⊥DC∴∠ADE+∠EAD=90°∵AD∥BC∴∠ADE=∠HCG=∠HAE∴∠HAE +∠EAD=90°∴AD为O的切线(2)∵AC=AB,AC=5,BE=2∴AE=3在Rt△AEC由勾股定理可得:22-==4EC AC AE∵AD∥BC∴△AED∽△BEC∴BE EC=AE DE∴DE=6在Rt△AED由勾股定理可得:22DE AE+=AD=35【点睛】本题主要考查圆的相关定理,掌握切线的证明方法,灵活转化角关系是证明切线的关键,在圆中计算线段长度,找准相似三角形,结合勾股定理,是解题的关键.。
(常考题)人教版初中数学九年级数学下册第二单元《相似》检测卷(包含答案解析)
一、选择题1.如图,在平行四边形ABCD 中,点E ,F 分别为,AB BC 的中点,则三角形BEF 与多边形EFCDA 的面积之比为( )A .1∶4B .1∶5C .1∶7D .1∶8 2.如图,在平行四边形ABCD 中,:2:1AE BE =,F 是AD 的中点,射线EF 与AC 交于点G ,与CD 的延长线交于点P ,则AG GC 的值为( ).A .5:8B .3:8C .3:5D .2:5 3.如图,ABC 和CDE △都是等边三角形,点G 在CA 的延长线上,GB GE =,若10BE CG +=,32AG BE =,则AF 的长为( )A .1B .43C .95D .24.如图,点D 在ABC 的边AC 上,添加下列哪个条件后,仍无法判定ABC ADB ∽△△( )A .C ABD ∠=∠B .CBA ADB ∠=∠C .AB AD AC AB = D .AB BC AC BD = 5.如图,点D 、E 分别在CA 、BA 中的延长线上,若DE ∥BC ,AD =5,AC =10,DE =6,则BC 的值为( )A .10B .11C .12D .13 6.若点C 为线段AB 的黄金分割点,且AC BC >,则下列各式中不正确的是( ). A .::AB AC AC BC =B .352BC AB -= C .51AC AB +=D .0.618AC AB ≈7.如图,比例规是伽利略发明的一种画图工具,使用它可以把线段按一定比例伸长或缩短,它是由长度相等的两脚AD 和BC 交叉构成的.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使3OA OD =,3OB OC =),然后张开两脚,使A 、B 两个尖端分别在线段I 的两个端点上.若12AB cm =,则CD 的长是( )A .3cmB .4cmC .6cmD .8cm8.如图,已知△ABC 和△EDC 是以点C 为位似中心的位似图形,且△ABC 和△EDC 的周长之比为1:2,点C 的坐标为(﹣2,0),若点A 的坐标为(﹣4,3),则点E 的坐标为( )A .(52,﹣6)B .(4,﹣6)C .(2,﹣6)D .3(,6)2- 9.如图,AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D 点,CD =BD ,∠C =70°,现给出以下四个结论:①∠A =45°;②AC =AB ;③AE =BE ;④2CE •AB =BC 2,其中正.确.结论有( )A .1个B .2个C .3个D .4个10.如图,在ABC ,AB AC a ==,点D 是边BC 上的一点,且BD a =,1AD DC ==,则a 等于( )A .51+ B .51- C .1 D .2 11.如图,四边形ABCD 是正方形,E 是BC 的中点,连接AE 与对角线BD 相交于点G ,连接CG 并延长,交AB 于点F ,连接DE 交CF 于点H .以下结论:①CDE BAE ∠=∠;②CF DE ⊥;③AF BF =;④22CE CH CF =⋅.其中正确结论的个数有( )A .1B .2C .3D .412.如图,△ABC 中,DE ∥BC ,25AD AB =,DE =3,则BC 的长为( )A .7.5B .4.5C .8D .6二、填空题13.如图,D 是AC 上一点,//BE AC ,BE AD =,AE 分别交BD 、BC 于点F 、G ,12∠=∠.若8DF =,4FG =,则GE =________.14.如图,矩形ABCD 中,2AB =,E 为CD 的中点,连接AE 、BD 交于点P ,过点P 作PQ BC ⊥于点Q ,则PQ =________.15.如图,在△ABO 的顶点A 在函数k y x=(x >0)的图像上∠ABO=90°,过AO 边的三等分点M 、N 分别作x 轴的平行线交AB 于点P 、Q .若四边形MNQP 的面积为3,则k 的值为________.16.如图,⊙O 的直径为5,在⊙O 上位于直径AB 的异侧有定点C 和动点P ,已知BC :CA =4:3,点P 在半圆弧AB 上运动(不与A ,B 重合),过C 作CP 的垂线CD 交PB 的延长线于D 点.则△PCD 的面积最大为______________.17.如图,已知△ABC 中,∠B =90°,BC =3,AB =4,D 是边AB 上一点,DE ∥BC 交AC 于点E ,将△ADE 沿DE 翻折得到△A ′DE ,若△A ′EC 是直角三角形,则AD 长为_____.18.如图,AB 是⊙O 的直径,AB =20cm ,弦BC =12cm ,F 是弦BC 的中点.若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,设运动时间为t (s )(0≤t≤10),连接EF ,当△BEF 是直角三角形时,t (s )的值为_______.19.如果23a c b d ==,其中20b d +≠,那么22a c b d +=+________. 20.如图,P 为△ABC 的重心,连结AB 并延长BC 于点D ,过点P 作EF ∥BC 分别交AB ,AB 于点E ,F .若△ABC 的面积为36,则△AEF 的面积为____.三、解答题21.已知,如图1在矩形ABCD 中,8AB =,6BC =,点E 是线段AB 上的动点,连接CE ,作FC CE ⊥,交AD 的延长线于点F ,连接EF 交CD 于G ,设BE m =. (1)求证:FDC EBC ∽△△.(2)若EGC 是等腰三角形,求m 的值.(3)取EF 的中点O ,连接OA ,若//OA CE ,求CEF △的面积.(4)如图2作AEF 的外接圆,点A 关于EF 的对称点A '落在圆上,当A '恰好落在CEB △内部(不包括边界),直接写出m 的取值范围______.22.如图,在平面直角坐标系xoy 中,直线2y x b =+经过点()2,0A -,与y 轴交于点B ,与反比例函数()0k y x x =>的图象交于点C(m ,6),过B 作BD y ⊥轴,交反比例函数()0k y x x=>的图象于点D ,连接AD ,CD . (1)求b ,k 的值;(2)求△ACD 的面积;(3)在坐标轴上是否存在点E(除点O 外),使得△ABE 与△AOB 相似,若存在,请求出点E 的坐标;若不存在,请说明理由.23.在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,2A -,()2,1B -,()4,3C -. (1)画出ABC 关于x 轴对称的111A B C △;(2)以点O 为位似中心,在网格中画出111A B C △的位似图形222A B C △,使222A B C △与111A B C △的相似比为2:1;(3)设点(),P a b 为ABC 内一点,则依上述两次变换后点P 在222A B C △内的对应点2P 的坐标是______.24.如图,正方形ABCD 的边长为4,E 是CD 中点,点P 在射线AB 上,过点P 作线段AE的垂线段,垂足为F .(1)求证:PAF AED △∽△;(2)连接PE ,若存在点P 使PEF 与AED 相似,直接写出PA 的长____.25.如图,点F 是ABC 中AC 边的中点,//AD BC ,DF 交AB 于点E ,交BC 延长线于点G .(1)若:3:1BE AE =,8BC =,求BG 的长;(2)若12∠=∠,求证:2FC EF FD =⋅.26.四边形ABCD 内接于,O AB 是直径,延长AD BC 、交于点E ;若AB BE =.(1)求证:DC DE =(2)若6,43DE CE ==,求AB 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】连接AC ,根据中位线定理得//EF AC ,12EF AC =,即可由BEF BAC ,根据相似比求出面积比,设BEF Sk =,则4BAC S k =,再用k 表示出多边形EFCDA 的面积,即可求出结果.【详解】解:如图,连接AC ,∵E 、F 分别是AB 和BC 的中点,∴//EF AC ,12EF AC =, ∴BEF BAC , ∴221124BEF BAC S EF S AC ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 设BEF S k =,则4BAC Sk =, ∴3AEFC BAC BEF S SS k =-=, ∵四边形ABCD 是平行四边形, ∴4ACD BAC S S k ==,∴7EFCDA AEFC ACD S S S k =+=, ∴::71:7BEF EFCDA S S k k ==.故选:C .【点睛】本题考查相似三角形的性质,解题的关键是掌握相似三角形面积比等于相似比的平方的性质.2.D解析:D【分析】证明AFE △≌△()DFP AAS ,推出=AE DP ,由:2:1AE BE =,设BE k =,2AE k =,推出3AB CD k ==,5PC k =,由//AE BC ,可得AG AE GC CP=的值. 【详解】∵四边形ABCD 是平行四边形,∴//AB PC ,AB CD =,∴AEF P ∠=∠,∵AFE DFP ∠=∠,AF DF =,∴AFE △≌△()DFP AAS ,∴=AE DP ,∵:2:1AE BE =,设BE k =,2AE k =,∴3AB CD k ==,5PC k =,∵//AE BC , ∴2255AG AE k GC CP k ===, 故选:D .【点睛】 本题考查了平行四边形的性质,全等三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是学会利用已知条件证明三角形全等、利用参数解决问题,属于中考常考题型.3.C解析:C【分析】过点G 作GH ⊥BE ,垂足为点H ,设BE =2x ,进而可表示出相关线段长,再根据CH =12CG 列出方程求得x =1,最后再根据GAF GDE △∽△可得AF AG DE DG=,进而可求得AF 的长.【详解】解:过点G 作GH ⊥BE ,垂足为点H ,设BE =2x ,∵10BE CG +=,32AG BE =, ∴CG =10-2x ,AG =3x ,∴AC =CG -AG =10-5x , ∵ABC 和CDE △都是等边三角形,∴BC =AC =10-5x ,CD =DE =CE =BC -BE =10-7x ,∠ABC =∠DEC =∠C =60°, ∵GB =GE ,GH ⊥BE ,∴BH =HE =x ,∴CH =CE +HE =10-6x ,∵∠GHC =90°,∠C =60°,∴∠HGC=30°,∴CH=12CG,∴10-6x=12(10-2x),解得:x=1,∴AG=3x=3,CG=10-2x=8,CD=DE=10-7x=3,∴GD=CG-CD=5,∵∠ABC=∠DEC,∴AB//DE,∴GAF GDE∽,∴AF AGDE DG=,即3 35 AF=,解得95 AF=,故选:C.【点睛】本题考查了等边三角形的性质,含30°的直角三角形的性质,相似三角形的判定及性质,设BE=2x,利用含30°的直角三角形的性质列出方程是解决本题的关键.4.D解析:D【分析】根据三角形相似的判定方法一一判断即可.【详解】解:A、根据两角对应相等两三角形相似,可以判定△ABC∽△ADB;B、根据两角对应相等两三角形相似,可以判定△ABC∽△ADB;C、根据两边成比例夹角相等两三角形相似即可判定△ABC∽△ADB;D、无法判断三角形相似.故选:D.【点睛】本题考查相似三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.5.C解析:C【分析】根据平行线的性质得出∠E=∠B,∠D=∠C,根据相似三角形的判定定理得出△EAD∽△BCA,根据相似三角形的性质求出即可【详解】解:∵DE ∥BC ,∴∠E=∠B ,∠D=∠C ,∴△EAD ∽△CAB ,∴AC :AD=BC :DE ,∵AD =5,AC =10,DE =6,∴10:5=BC :6.∴BC=12.故选:C .【点睛】本题考查了平行线的性质,相似三角形的性质和判定的应用,能推出△EAD ∽△BAC 是解此题的关键.6.C解析:C【分析】根据黄金分割点的定义逐项排除即可.【详解】解:∵点C 为线段AB 的黄金分割点,且AC BC >,∴2AC BC AB =⋅,∴::AB AC AC BC =,则选项A 正确;∵点C 为线段AB 的黄金分割点,且AC BC >,∴0.618AC AB =≈,则选项C 错误;选项D 正确;1322BC AB AC AB AB AB =-=-=,则选项B 正确. 故选:C .【点睛】 本题考查了成比例线段,熟练掌握黄金分割的定义成为解答本题关键.7.B解析:B【分析】首先根据题意利用两组对边的比相等且夹角相等的三角形是相似三角形判定相似,然后利用相似三角形的性质求解.【详解】∵OA =3OD ,OB =3OC , ∴3OA OB OD OC==, ∵AD 与BC 相交于点O ,∴∠AOB =∠DOC ,∴△AOB ∽△DOC ,∴3AB OA DC OD==, ∵12AB cm =∴CD=12433AB ==cm, 故选B.【点睛】 本题考查相似三角形的应用,解题的关键是熟练掌握相似三角形的判定方法,学会利用相似三角形的性质解决问题,属于中考常考题型.8.C解析:C【分析】先利用位似的性质得到△ABC 和△EDC 的位似比为1:2,然后利用平移的方法把位似中心平移到原点解决问题.【详解】∵△ABC 和△EDC 是以点C 为位似中心的位似图形,而△ABC 和△EDC 的周长之比为1:2,∴△ABC 和△EDC 的位似比为1:2,把C 点向右平移2个单位到原点,则A 点向右平移2个单位的对应点的坐标为(-2,3), 点(-2,3)以原点为位似中心的对应点的坐标为(4,-6),把点(4,-6)向左平移2个单位得到(2,-6),∴E 点坐标为(2,-6).故选:C .【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k .也考查了转化的思想.9.B解析:B【分析】连结AD 、BE ,DE ,如图,根据圆周角定理得∠ADB=90°,则AD ⊥BC ,加上CD=BD ,根据等腰三角形的判定即可得到AC =AB ;再根据等腰三角形的性质和三角形内角和定理可计算出∠BAC=40°;由AB 为直径得到∠AEB=90°,则∠ABE=50°,根据圆周角定理可判断AE BE ≠;接着证明△CED ∽△CBA ,利用相似比得到CD CE AC BC=,然后利用等线段代换即可判断④.【详解】解:连接AD ,∵AB是⊙O的直径,∴∠ADB=90°.∵CD=BD,∴AD是BC的垂直平分线,∴AC=AB,故②正确;∵AC=AB,∴∠ABC=∠C=70°,∴∠BAC=40°,故①错误;连接BE,DE,∵AB为⊙O的直径,∴∠AEB=90°,∵∠BAC=40°,∴∠ABE=50°,∴∠BAC≠∠ABE,∴AE≠BE,∴AE BE≠,故③错误;∵四边形ABDE是圆内接四边形,∴∠CDE=∠CAB,∴△CDE∽△CAB,∴CD CE=,AC BC∴CE•AC=CD·BC,∴CE•AB=1BC·BC,2∴2CE•AB=BC2,故④正确.故选B.【点睛】本题考查了相似三角形的判定和性质,圆周角定理,根据题意作出辅助线,构造出圆周角是解题的关键.10.A解析:A【分析】证明△ABC ∽△DAC 得AB BC DA AC=,然后列方程求解即可. 【详解】 解:∵AB AC a ==,∴∠B=∠C又∵1AD DC ==,∴∠C=∠DAC∴△ABC ∽△DAC ∴AB BC DA AC= ∴11a a a +=解得,a =152a (舍去) 故选:A【点睛】本题考查了相似三角形的判定与性质,解题的关键是理解题意,灵活运用所学知识解决问题. 11.D解析:D【分析】证明△ABE ≌△DCE ,可得结论①正确;由正方形的性质可得AB=AD=BC=CD ,BE=CE ,∠DCE=∠ABE=90°,∠ABD=∠CBD=45°,可证△ABE ≌△DCE ,△ABG ≌△CBG ,可得∠BCF=∠CDE ,由余角的性质可得结论②;证明△DCE ≌△CBF 可得结论③,证明△CHF ∽△CBF 即可得结论④正确.【详解】解:∵四边形ABCD 是正方形,点E 是BC 的中点,∴AB=AD=BC=CD ,BE=CE ,∠DCE=∠ABE=90°,∠ABD=∠CBD=45°,∴△ABE ≌△DCE (SAS )∴∠DEC=∠AEB ,∠BAE=∠CDE ,DE=AE ,故①正确,∵AB=BC ,∠ABG=∠CBG ,BG=BG ,∴△ABG ≌△CBG (SAS )∴∠BAE=∠BCF ,∴∠BCF=∠CDE ,且∠CDE+∠CED=90°,∴∠BCF+∠CED=90°,∴∠CHE=90°,∴CF ⊥DE ,故②正确,∵∠CDE=∠BCF ,DC=BC ,∠DCE=∠CBF=90°,∴△DCE ≌△CBF (ASA ),∴CE=BF ,∵CE=12BC=12AB , ∴BF=12AB , ∴AF=BF ,故③正确,∵∠BCF+∠BFC=90°,∠DEC=∠BFC∴∠BCF+∠DECC=90°,∴∠CHE=90°∴∠CHE=∠FBC又∠DEC=∠BFC∴△CHF ∽△CBF ∴CH CE BC CF= ∵BC=2CE , ∴2BC CE CE CE CH CF CF== ∴22CE CH CF =⋅故选:D .【点睛】本题考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,熟练运用这些性质进行推理是本题的关键.12.A解析:A【分析】先判断△ADE ∽△ABC ,然后利用相似比求BC 的长.【详解】解:∵DE ∥BC , ∴△ADE ∽△ABC ,∴25DE AD BC AB ==, ∴5515.3222BC DE ==⨯=. 故选:A .【点睛】 本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了等腰三角形的性质.二、填空题13.12【分析】利用AAS 判定△FEB ≌△FAD 得BF=DF 根据有两组角对应相等的两个三角形相似可得到△BFG ∽△EFB 根据相似三角形的对应边成比例即可得到BF2=FG•EF 由条件可求出EF 长则GE 长可解析:12【分析】利用AAS 判定△FEB ≌△FAD ,得BF=DF ,根据有两组角对应相等的两个三角形相似,可得到△BFG ∽△EFB ,根据相似三角形的对应边成比例即可得到BF 2=FG•EF ,由条件可求出EF 长,则GE 长可求出.【详解】解:∵AD//BE ,∴∠1=∠E .在△FEB 和△FAD 中1E EFB AFD BE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△FEB ≌△FAD ;∴BF=DF ,∵∠1=∠E ,∠1=∠2,∴∠2=∠E .又∵∠GFB=∠BFE ,∴△BFG ∽△EFB , ∴BF FG EF BF=, ∴BF 2=FG•EF ,∴DF 2=FG•EF ,∵DF=8,FG=4,∴EF=16,∴GE=EF-FG=16-4=12.故答案为:12.【点睛】本题考查了三角形全等、相似的性质和判定,熟练掌握全等三角形的判定及相似三角形的判定是关键.14.【分析】根据矩形的性质得到AB ∥CDAB=CDAD=BC ∠BAD=90°根据线段中点的定义得到DE=CD=AB 根据相似三角形的性质即可得到结论【详解】解:∵四边形ABCD 是矩形∴AB ∥CDAB=CD解析:43 【分析】 根据矩形的性质得到AB ∥CD ,AB=CD ,AD=BC ,∠BAD=90°,根据线段中点的定义得到DE=12CD=12AB ,根据相似三角形的性质即可得到结论. 【详解】解:∵四边形ABCD 是矩形,∴AB ∥CD ,AB=CD ,AD=BC ,∠BAD=90°,∵E 为CD 的中点,∴DE=12CD=12AB , ∴△ABP ∽△EDP ,∴AB PB DE PD =, ∴21PB PD = , ∴23PB BD = , ∵PQ ⊥BC ,∴PQ ∥CD ,∴△BPQ ∽△DBC ,∴23PQ BP CD BD ==, ∵CD=2, ∴PQ=43, 故答案为:43.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,正确的识别图形是解题的关键. 15.【分析】易证△ANQ ∽△AMP ∽△AOB 由相似三角形的性质:面积比等于相似比的平方可求出△ANQ 的面积进而可求出△AOB 的面积则k 的值也可求出【详解】∵NQ ∥MP ∥OB ∴△ANQ ∽△AMP ∽△AOB解析:18【分析】易证△ANQ ∽△AMP ∽△AOB ,由相似三角形的性质:面积比等于相似比的平方可求出△ANQ 的面积,进而可求出△AOB 的面积,则k 的值也可求出.【详解】∵NQ ∥MP ∥OB ,∴△ANQ ∽△AMP ∽△AOB ,∵M 、N 是OA 的三等分点, ∴11,23AN AN AM AO ==, ∴14ANQ AMP SS =, ∵四边形MNQP 的面积为3, ∴314ANQ ANQ S S =+, ∴S △ANQ =1,∵2119AOB AN S AO ⎛⎫== ⎪⎝⎭, ∴S △AOB =9,∴k =2S △AOB =18,故答案为:18.【点睛】本题考查了相似三角形的判定和性质以及反比例函数k 的几何意义,正确的求出S △ANQ =1是解题的关键.16.【分析】由圆周角定理可知再由可证明最后根据相似三角形对应边成比例及已知条件BC :CA =4:3结合三角形面积公式解题即可【详解】为直径又BC :CA =4:3当点P 在弧AB 上运动时当PC 最大时取得最大值而解析:503【分析】由圆周角定理可知A P ∠=∠,再由90ACB PCD ∠=∠=︒可证明~ACB PDC ,最后根据相似三角形对应边成比例,及已知条件BC :CA =4:3,结合三角形面积公式解题即可.【详解】AB 为直径,90ACB ∴∠=︒PC CD ⊥,90PCD ∴∠=︒又CAB CPD ∠=∠~ACB PDC ∴AC BC CP CD∴= BC :CA =4:3,43CD PC ∴= 当点P 在弧AB 上运动时, 12PCD S PC CD =⋅△ 2142233PCD S PC PC PC ∴=⨯⋅= 当PC 最大时,PCD S 取得最大值而当PC 为直径时最大,22505=33PCD S ∴=⨯. 【点睛】本题考查圆周角定理、三角形面积、相似三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.17.或【分析】先根据勾股定理得到AC =5再根据平行线分线段成比例得到AD :AE =AB :AC =4:5设AD =x 则AE =A′E =xEC =5﹣xA′B =2x ﹣4在Rt △A′BC 中根据勾股定理得到A′C 再根据△ 解析:78或258 【分析】 先根据勾股定理得到AC =5,再根据平行线分线段成比例得到AD :AE =AB :AC =4:5,设AD =x ,则AE =A ′E =54x ,EC =5﹣54x ,A ′B =2x ﹣4,在Rt △A ′BC 中,根据勾股定理得到A ′C ,再根据△A ′EC 是直角三角形,根据勾股定理得到关于x 的方程,解方程即可求解.【详解】解:在△ABC 中,∠B =90°,BC =3,AB =4,∴AC =5,∵DE ∥BC ,∴AD :AB =AE :AC ,即AD :AE =AB :AC =4:5,设AD =x ,则AE =A ′E =54x ,EC =5﹣54x ,A ′B =24x ﹣, 在Rt △A ′BC 中,A ′C =22(24)3x -+,∵△A ′EC 是直角三角形,∴①当A '落在边AB 上时,∠EA ′C =90°,∠BA ′C =∠ACB ,A ′B =3×cot ∠ACB =39344⨯=, ∴AD =1974248⎛⎫-= ⎪⎝⎭;②点A 在线段AB 的延长线上(22(24)3x -+)2+(5﹣54x )2=(54x )2, 解得x 1=4(不合题意舍去),x 2=258.故AD 长为78或258. 故答案为:78或258. 【点晴】 本题考查了勾股定理和平行线等分线段成比例定理,掌握相关知识是解决问题的关键. 18.5或82【分析】求出BF 和AO 的长分为两种情况①∠EFB=90°②∠FEB=90°分别利用三角形中位线的性质以及相似三角形的判定和性质求出AE的长再求出t即可【详解】∵AB是⊙O的直径∴∠C=90°解析:5或8.2【分析】求出BF和AO的长,分为两种情况,①∠EFB=90°,②∠FEB=90°,分别利用三角形中位线的性质以及相似三角形的判定和性质求出AE的长,再求出t即可.【详解】∵AB是⊙O的直径,∴∠C=90°,∵AB=20cm,弦BC=12cm,F是弦BC的中点,∴BF=1BC=6cm,2有两种情况:①当∠EFB=90°时,如图:∵AB是⊙O的直径,∴∠C=90°,∵∠EFB=90°,∴AC∥EF,∵F为BC的中点,∴E为AB的中点,即E和O重合,∵AB=20cm,∴AE=AO=1AB=10cm,2∴105t==;2②当∠FEB=90°时,如图:∵∠B=∠B,∠FEB=∠C=90°,∴△FEB∽△ACB,∴BE BF BC AB =, ∴61220BE =, 解得:BE=3.6(cm ),∵AB=20cm ,∴AE=AB-BE=16.4cm , ∴16.48.22t ==; 故答案为:5或8.2.【点睛】本题考查了圆周角定理,三角形中位线定理,相似三角形的性质和判定等知识点,分类讨论是解此题的关键.19.【分析】根据已知条件得出再根据b+2d≠0即可得出答案【详解】解:∵∴∵b+2d≠0∴;故答案为:【点睛】本题考查了比例的性质熟练掌握比例的性质是解题的关键 解析:23【分析】 根据已知条件得出2223a c b d ==,再根据b+2d≠0,即可得出答案. 【详解】解:∵23a c b d ==, ∴2223a cb d ==, ∵b+2d≠0, ∴2223a cb d +=+; 故答案为:23. 【点睛】本题考查了比例的性质,熟练掌握比例的性质是解题的关键.20.16【分析】先根据重心性质得再证明最后根据相似三角形的性质求解即可【详解】解:∵P 为△ABC 重心∴∵∴∴∴故答案为16【点睛】本题考查了三角形的重心的性质和相似三角形的判定与性质重心到顶点的距离与重 解析:16【分析】先根据重心性质得223AP AP PD AD ==,,再证明AEF ABC ∽,最后根据相似三角形的性质求解即可.【详解】 解:∵P 为△ABC 重心, ∴223AP AP PD AD ==, ∵//EF BC∴AEF ABC ∽ ∴23AE AF AB AC == ∴22()163AEF ABC S S ==△△ 故答案为16.【点睛】 本题考查了三角形的重心的性质和相似三角形的判定与性质,重心到顶点的距离与重心到对边中点的距离之比为2:1是解答本题的关键.三、解答题21.(1)见解析;(2)3m =;(3)30;(4)744m << 【分析】(1)由四边形ABCD 为矩形,易知FDC EBC ,△△为Rt △,由FC CE ⊥,得出∠FCD+∠DCD=90°,从而得出∠FCD=ECB ,有两个角相等证明相似.(2)过点E 作EH ⊥CD ,由等腰三角形EGC 易知CH=BE=m ,AE=8-m ,由(1)得FDC EBC ∽△△,求出43FD m =.再由FAE EHG ∽△△找到对应边的比值列出等量关系,求出m 即可. (3)由平行边形的判定得出四边AOCE 为平行四边形,得出OA=CE ,在Rt △△AEF 中,由斜边的中线等于斜边的一半得出12OA EF OE ==,由(2)中得出m=3,分别求出CE 、CF 的值即可求出CEF △的面积.(4)有A 关于EF 对称点为A ',得出8AE EA m '==-,因为∠FAE=∠FCE=90°,所有由直径所对的圆周角为90°得出EF 为圆的直径,要使A '恰好落在CEB △内部得出EB EA EC '<<,解除关于m 的不等式即可.【详解】(1)证明:∵四边形ABCD 为矩形,∴∠DCB=∠DCE+∠BCE=90°,∵FC CE ⊥∴∠FCD+∠DCD=90°∴∠FCD=ECB又∵∠FDC=∠B=90°∴FDC EBC ∽△△(2)过点E 作EH ⊥CD 交CD 于点H ,如图∵EGC 是等腰三角形,∴GH=HC∵GE=m∴HC=HG=m ,AE=8-m∠AFE=∠GEH∠A=∠DHE∴FAE EHG ∽△△∵FDC EBC ∽△△ ∴68BE m FD FD == ∴43FD m = ∴FAE EHG ∽△△∴GH HE AE AF= ∴64863m m m =-+ 整理的()()1230m m +-=112m =-(舍去),23m =∴m 的值为3.(3)∵OA//CE ,OC//AE∴四边AOCE 为平行四边形,OA=CE∵O 为EF 的中点,△AEF 为直角三角形 ∴12OA EF OE == ∴OE=CE ,△OEC 为等腰三角形由(2)问可知,m=3∴FD=4,22166445CF FD CD =+=+= 2293635CE BE CB =+=+= ∴13545302CEF S ∆=⨯⨯= (4)连接EA '∵A 关于EF 对称点为A ',∴8AE EA m '==-∵∠FAE=∠FCE=90°∴FE 为圆的直径∴C 始终在圆上,要使A '落在CEB △内部∴EB EA EC '<<即2286m m m <-<+解得:744m << 故答案为:744m << 【点睛】 本题考查了相似三角形性质和判定、等腰三角形的性质、平行四边形的判定、矩形的性质、勾股定理以及圆的相关知识,熟悉相关知识并能灵活运用是解题关键.22.(1)4,6;(2)4.5;(3)存在,理由见解析.【分析】(1)把A(-2,0),代入y =2x +b 得到b 的值,再把C(m ,6)代入y =2x +b ,求出m 的值,进而即可得到答案;(2)先求出B 的坐标,再求出点 D 的纵坐标,根据S △ACD =S △ABD +S △BCD ,进而即可求解;(3)分两种情况①△AOB ∽△EAB ,②△AOB ∽△ABE ,分别列出比例式,进而即可求解【详解】(1)∵直线y =2x +b 经过点A(-2,0),∴-4+b =0,∴b =4,∴直线y =2x +4.把C(m ,6)代入y =2x +4中,得6=2m +4,解得m =1,∴C(1,6).把C(1,6)代入反比例函数()0k y x x=>中,得k =6. (2)令x =0,得y =2x +4=4,∴B(0,4).∵BD ⊥y 轴于B ,∴D 点的纵坐标为4,把y =4代入反比例函数y =6x 中,得x =32, ∴D (32,4), ∴BD =32, ∴S △ACD =S △ABD +S △BCD =4.5;(3)存在.当∠BAE =90°时,如图①,∵∠BAE =∠BOA =90°,∠ABE =∠OBA ,∴△AOB ∽△EAB , ∴AB BO EB BA=, ∵=∴BE =5,∴OE =1,∴E(0,-1);当∠ABE =90°时,如图②,∵∠ABE =∠AOB =90°,∠OAB =∠BAE ,∴△AOB ∽△ABE , ∴AB AO AE BA= ∴AE =2AB AO=10, ∴OE =AE -AO =10-2=8,∴E(8,0).∴存在点E(除点O 外),使得△ABE 与△AOB 相似,其坐标为(8,0)或(0,-1).① ②【点睛】本题主要考查一次函数与反比例函数的综合以及相似三角形的判定和性质,掌握待定系数法以及相似三角形的性质,是解题的关键.23.(1)见解析;(2)见解析;(3)()2,2a b -.【分析】(1)先根据关于x 轴对称的点的坐标特征描出A 1、B 1、C 1,然后再顺次连接即可; (2)先根据关于原点为位似中心的对应点的坐标之间的关系,把点A 1、B 1、C 1的横纵坐标都扩大2倍得到A 2、B 2、C 2的坐标,然后描点,最后顺次连接即可;(3)利用(1)、(2)中的坐标变换规律求解即可.【详解】解:(1)如图,△A 1B 1C 1即为所求图形;(2)如图,△A 2B 2C 2即为所求图形;(3)根据(1)(2)的变换规律可得:2P (2a ,-2b ).【点睛】本题主要考查了轴对称变换和位似变换,掌握作轴对称图形和位似图形的的步骤成为解答本题的关键.24.(1)见解析;(2)2或5【分析】(1)根据两角对应相等两三角形相似证明即可.(2)分两种情形:当PA=PB=2时,易知PE ∥AD ,此时∠DAE=∠PEF ,∠D=∠PFE=90°,可得△PEF ∽△EAD .当∠AED=∠PEF ,∠D=∠PFE 时,△ADE ∽△PFE ,分别求解即可.【详解】(1)证明:在正方形ABCD 中,90D ∠=︒,//CD AB ,∴DEA PAE ∠=∠.∵PF AE ⊥,∴D AFP ∠=∠.∴PAF AED △∽△.(2)当PA=PB=2时,∵DE=EC ,AP=PB ,∴PE ∥AD ,此时∠DAE=∠PEF ,∠D=∠PFE=90°,可得△PEF ∽△EAD .当∠AED=∠PEF ,∠D=∠PFE 时,△ADE ∽△PFE ,∵CD ∥AB ,∴∠AED=∠EAP=∠AEP ,∴PA=PE ,∵PF ⊥AE ,∴AF=FE ,∵AD=4,DE=EC=2,∠D=90°, ∴===AE ∴AF =∵△PAF ∽△AED , ∴PA AF AE DE =,∴= ∴PA=5,综上所述,满足条件的PA 的值为2或5.故答案为:2或5.【点睛】本题考查相似三角形的判定和性质,正方形的性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.25.(1)BG=12,;(2)证明见解析【分析】(1)根据AD ∥BC ,点F 是AC 边上的中点,可证△ADF ≌△CGF ,得AD=CG ,再由BE :AE=3:1及AD ∥BC ,得BG=3AD ,BC=2AD=8,得AD=4,可求BG ;(2)由∠1=∠2,根据邻补角的性质得∠AEF=∠FCG ,又对顶角∠AFE=∠GFC ,可证△AFE ∽△GFC ,利用相似比证题.【详解】(1)解:∵AD ∥BC ,∴∠D=∠G ,又∠AFD=∠CFG ,AF=FC ,在△ADF 和△CGF 中D G AFD CFG AF FC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△CGF(AAS),∴AD=CG ,FG=FD ,又∵AD ∥BC∴△ADE ∽△BGE ∴BE BG AE DA= 又BE :AE=3:1,∴BG=3AD ,又AD=CG∴BC=2AD=8,解得AD=4,∴BG=3AD=12;(2)证明:∵∠1=∠2,∴180°-∠1=180°-∠2,即∠AEF=∠FCG ,又∵∠AFE=∠GFC ,∴△AFE ∽△GFC ,EF AF FC FG=, 又AF=CF ,DF=GF ,即EF CF CF FD=, ∴FC 2=FE•FD .【点睛】本题考查了相似三角形的判断与性质,全等三角形的判定与性质.关键是利用平行线,中点,等角的补角相等,推出全等和相似三角形.26.(1)见详解;(2)63【分析】(1)根据四边形ABCD 内接于O ,∠BCD+∠ECD=180°,得出∠BAD=∠ECD ,再根据AB=EB,可得∠BED=∠ECD,即可得证;(2)连接OD,先求出AE,然后证明△BAE∽△DCE,根据CEAE=DEBE,即CE AE =DEBC+CE,求出BC,即可求出答案.【详解】(1)∵四边形ABCD内接于O,∴∠BAD+∠BCD=180°,∵∠BCD+∠ECD=180°,∴∠BAD=∠ECD,∵AB=EB,∴∠BAD=∠BED,∴∠BED=∠ECD,∴DC=DE;(2)连接OD,∵OA=OD,∴∠OAD=∠ODA,又∵∠BAE=∠E,∴∠ODA=∠E,∴OD∥BE,∵O是AB中点,∴D为AE中点,∴DA=DE=6,∴AE=12,∵∠BAD=∠ECD,∠E=∠E,∴△BAE∽△DCE,∴CEAE =DE BE,∴CEAE =DEBC+CE,43BC+43解得BC=23∴BE=BC+CE=∴AB=BE=【点睛】本题考查了等腰三角形的性质,圆的内接四边形的性质,相似三角形的判定和性质,中位线的性质,掌握这些知识点灵活运用是解题关键.。
(常考题)人教版初中数学九年级数学下册第二单元《相似》检测题(有答案解析)
一、选择题1.如图,在平行四边形ABCD 中,点E ,F 分别为,AB BC 的中点,则三角形BEF 与多边形EFCDA 的面积之比为( )A .1∶4B .1∶5C .1∶7D .1∶8 2.如图,在四边形ABCD 中,//AD BC ,如果添加下列条件,不能使得△ABC ∽△DCA 成立的是( )A .∠BAC =∠ADCB .∠B =∠ACDC .AC 2=AD •BC D .DC AB AC BC = 3.如图,AB 为半圆O 的直径,10AB =,AC 为O 的弦,8AC =,D 为AB 的中点,DM AC ⊥于M ,则DM 的长为( )A .42B .2C .1D .34.如图,ABC 和CDE △都是等边三角形,点G 在CA 的延长线上,GB GE =,若10BE CG +=,32AG BE =,则AF 的长为( )A .1B .43C .95D .25.下列每个选项的两个图形,不是相似图形的是( )A .B .C .D .6.如图,点D 、E 分别在CA 、BA 中的延长线上,若DE ∥BC ,AD =5,AC =10,DE =6,则BC 的值为( )A .10B .11C .12D .137.若点C 为线段AB 的黄金分割点,且AC BC >,则下列各式中不正确的是( ). A .::AB AC AC BC =B .352BC AB -= C .512AC AB +=D .0.618AC AB ≈8.如图,已知在ABC 中,D 为BC 上一点,//EG BC ,分别交AB ,AD ,AC 于点E ,F ,G ,则下列比例式正确的是( )A .AE EF BE BD =B .EF AF DC AD=C .AC FG CG DC =D .AE FG AB DC= 9.如图,正方形ABCD 中,ABC 绕点A 逆时针旋转到AB C ''△,AB '、AC '分别交对角线BD 于点E 、F ,若4AE =,则EF ED ⋅的值为( )A .4B .6C .8D .1610.如图,直线12//l l ,:2:3AF FB =,:2:1BC CD =,则:AE EC 是( )A .1:2B .1:4C .2:1D .3:211.如图,已知在ABC ∆中,点D 、E 分别是AB 和AC 的中点,BE 、CD 相交于点O ,若2DOE S ∆=,则BOC S ∆=( )A .4B .6C .8D .10 12.已知两个三角形相似,其中一个三角形的两个内角分别为72,63︒︒,则另一个三角形的最小内角为( )A .72︒B .63︒C .45︒D .不能确定二、填空题13.已知::3:2:1x y z =,则x y z x y z+--+的值为________. 14.如图,矩形ABCD 中,2AB =,E 为CD 的中点,连接AE 、BD 交于点P ,过点P 作PQ BC ⊥于点Q ,则PQ =________.15.已知a c b d ==12020(b +d ≠0),则a c b d ++的值为_______ . 16.如图,为估算某河的宽度,在河对岸边选定一个目标点A ,在近岸取点B ,C ,D ,使得AB BC ⊥,CD BC ⊥,点E 在BC 上,并且点A ,E ,D 在同一条直线上.若测得20BE m =,10EC m =,20CD m =,则河的宽度AB 等于_______.17.如图,在正方形ABCD 中,15AB =,点,E F 分别为AB ,DC 上的点,将正方形沿EF 折叠,使点A 落在A '处,点D 落在D 处,FD '交BC 于点G ,A D ''交BC 于点H ,若10DF =,203CG =,则BH 的长为___________.18.如图,在平行四边形ABCD 中,点E 在边BC 上,EC =2BE ,连接AE 交BD 于点F ,若△BFE 的面积为2,则△AFD 的面积为_____.19.如图是用卡钳测量容器内径的示意图,现量得卡钳上A ,D 两个端点之间的距离为10cm ,23AO DO BO CO ==,则容器的内径是______.20.如图,P 为△ABC 的重心,连结AB 并延长BC 于点D ,过点P 作EF ∥BC 分别交AB ,AB 于点E ,F .若△ABC 的面积为36,则△AEF 的面积为____.三、解答题21.作图题:如图所示,图中的小方格都是边长为1的正方形,△ABC 与△A 'B 'C '是以点O 为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O ;(2)△A 'B 'C '与△ABC 的位似比是 ;(3)以位似中心O 为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出△A 'B 'C '关于点O 中心对称的△A "B "C ",并直接写出△A "B "C "各顶点的坐标. 22.如图,建筑物BC 上有一个旗杆AB ,小明和数学兴趣小组的同学计划用学过的知识测量该建筑物的高度,他们制订了测量方案,并利用课余时间完成了实地测量,测量方法如下:在该建筑物底部所在的平地上有一棵小树ED ,小明沿CD 后退,发现地面上的点F 、树顶E 、旗杆顶端A 恰好在一条直线上,继续后退,发现地面上的点G 、树顶E 、建筑物顶端B 恰好在一条直线上,已知旗杆3AB =米,4DE =米,5DF =米,1.5FG =米,点、、A B C 在一条直线上,点C D F G 、、、在一条直线上,AC ED 、均垂直于CG ,根据以上信息,请求出这座建筑物的高BC .23.如图,ABC ∆中,∠C =90°,AC =3cm ,BC =4cm ,动点P 从点B 出发以2cm/s 速度向点C 移动,同时动点Q 从C 出发以1cm/s 的速度向点A 移动,设它们的运动时间为t 秒.(1)根据题意知:CQ = cm ,CP = cm ;(用含t 的代数式表示) (2)t 为何值时,CPQ ∆与ABC ∆相似.24.如图,在等边ABC 中,点D ,E 分别在AB ,AC 上,连接DE ,DC (E ,C 两点不重合),当AED DCB ∠=∠时,我们把AE EC称为AD DB 的“类似比”,(1)若12AD DB =,则“类似比”AE EC =___________; (2)若(1)AD k k DB =<时,求“类似比”AE EC的值(用含k 的代数式表示); (3)直接写出AED ∠和“类似比”AE EC的取值范围. 25.△ABC 在边长为1的正方形网格中如图所示. (1)以点C 为位似中心,作出△ABC 的位似图形△A 1B 1C 1,使其位似比为1:2.且△A 1B 1C 1位于点C 的异侧,并表示出A 1的坐标.(2)作出△ABC 绕点C 顺时针旋转90°后的图形△A 2B 2C 2.26.如图,在ABC 中,D 为BC 上一点,BAD C ∠=∠.(1)求证:C ABD BA ∽△△.(2)若6,3AB BD ==,求CD 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】连接AC ,根据中位线定理得//EF AC ,12EF AC =,即可由BEF BAC ,根据相似比求出面积比,设BEF Sk =,则4BAC S k =,再用k 表示出多边形EFCDA 的面积,即可求出结果.【详解】解:如图,连接AC ,∵E 、F 分别是AB 和BC 的中点,∴//EF AC ,12EF AC =, ∴BEF BAC , ∴221124BEF BAC S EF S AC ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 设BEF S k =,则4BAC Sk =, ∴3AEFC BAC BEF S SS k =-=, ∵四边形ABCD 是平行四边形, ∴4ACD BAC S S k ==,∴7EFCDA AEFC ACD S S S k =+=, ∴::71:7BEF EFCDA S S k k ==.故选:C .【点睛】本题考查相似三角形的性质,解题的关键是掌握相似三角形面积比等于相似比的平方的性质.2.D解析:D【分析】利用相似三角形的判定定理,在AD ∥BC ,得∠DAC =∠BCA 的前提下,需添加一角或夹这角的两边对应成比例进行排查即可.【详解】解:A .∵AD ∥BC ,∴∠DAC =∠BCA ,当∠BAC =∠ADC 时,则△ABC ∽△DCA ;B .∵AD ∥BC ,∴∠DAC =∠BCA ,当∠B =∠ACD 时,则△ABC ∽△DCA ; C .∵AD ∥BC ,∴∠DAC =∠BCA ,由AC 2=AD •BC 变形为AC AD BC AC =,则△ABC ∽△DCA ; D .∵AD ∥BC ,∴∠DAC =∠BCA ,当DC AB AC BC=时,不能判断△ABC ∽△DCA . 故选择:D .【第讲】本题考查三角形相似问题,掌握相似三角形的判定定理,会根据判定定理进行添加条件使三角形相似解题关键.3.C解析:C【分析】如图,连接OD 交AC 于H ,连接BC .利用勾股定理求出BC ,再利用相似三角形的性质求出OH ,AH ,DH ,证明△DMH ∽△AOH ,构建关系式即可解决问题.【详解】解:如图,连接OD 交AC 于H ,连接BC .∵AB 是直径,∴∠ACB=90°, ∴226BC AB AC -=,∵AD DB =,∴OD ⊥AB ,∵∠OAH=∠CAB ,∠AOH=∠ACB=90°,∴△AOH ∽△ACB , ∴OH OA AH BC AC AB== ∴56810OH AH == ∴1525,44OH AH ==, ∵DH=OD-OH=155544-=, ∵DM ⊥AC ,∵∠DMH=∠AOH=90°,∠DHM=∠AHO ,∴△DMH ∽△AOH , ∴DM DH AO AH=, ∴542554DM =, ∴DM=1,故选:C .【点睛】本题考查勾股定理,圆周角定理,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识.4.C解析:C【分析】过点G 作GH ⊥BE ,垂足为点H ,设BE =2x ,进而可表示出相关线段长,再根据CH =12CG 列出方程求得x =1,最后再根据GAF GDE △∽△可得AF AG DE DG =,进而可求得AF 的长.【详解】解:过点G 作GH ⊥BE ,垂足为点H ,设BE =2x ,∵10BE CG +=,32AG BE =, ∴CG =10-2x ,AG =3x ,∴AC =CG -AG =10-5x , ∵ABC 和CDE △都是等边三角形,∴BC =AC =10-5x ,CD =DE =CE =BC -BE =10-7x ,∠ABC =∠DEC =∠C =60°, ∵GB =GE ,GH ⊥BE ,∴BH =HE =x ,∴CH =CE +HE =10-6x ,∵∠GHC =90°,∠C =60°,∴∠HGC =30°,∴CH =12CG , ∴10-6x =12(10-2x ), 解得:x =1,∴AG =3x =3,CG =10-2x =8,CD =DE =10-7x =3,∴GD =CG -CD =5,∵∠ABC =∠DEC ,∴AB//DE ,∴GAF GDE∽,∴AF AGDE DG=,即3 35 AF=,解得95 AF=,故选:C.【点睛】本题考查了等边三角形的性质,含30°的直角三角形的性质,相似三角形的判定及性质,设BE=2x,利用含30°的直角三角形的性质列出方程是解决本题的关键.5.D解析:D【分析】根据相似图形的定义,对选项进行一一分析,排除错误答案.【详解】解:A、形状相同,但大小不同,符合相似形的定义,故不符合题意;B、形状相同,但大小不同,符合相似形的定义,故不符合题意;C、形状相同,但大小不同,符合相似形的定义,故不符合题意;D、形状不相同,不符合相似形的定义,故符合题意;故选:D.【点睛】本题考查的是相似形的定义,是基础题.6.C解析:C【分析】根据平行线的性质得出∠E=∠B,∠D=∠C,根据相似三角形的判定定理得出△EAD∽△BCA,根据相似三角形的性质求出即可【详解】解:∵DE∥BC,∴∠E=∠B,∠D=∠C,∴△EAD∽△CAB,∴AC:AD=BC:DE,∵AD=5,AC=10,DE=6,∴10:5=BC:6.∴BC=12.故选:C.【点睛】本题考查了平行线的性质,相似三角形的性质和判定的应用,能推出△EAD∽△BAC是解此题的关键.7.C解析:C【分析】根据黄金分割点的定义逐项排除即可.【详解】解:∵点C 为线段AB 的黄金分割点,且AC BC >,∴2AC BC AB =⋅,∴::AB AC AC BC =,则选项A 正确;∵点C 为线段AB 的黄金分割点,且AC BC >,∴0.618AC AB =≈,则选项C 错误;选项D 正确;1322BC AB AC AB AB AB =-=-=,则选项B 正确. 故选:C .【点睛】 本题考查了成比例线段,熟练掌握黄金分割的定义成为解答本题关键.8.D解析:D【分析】根据相似三角形的判定推出△AEF ∽△ABD ,△AFG ∽△ADC ,△AEG ∽△ABC ,再根据相似三角形的性质得出比例式即可.【详解】A 、∵EG ∥BC ,即EF ∥BD ,∴△AEF ∽△ABD , ∴AE EF AB BD=, ∵AB BE ≠,故本选项不符合题意;B 、∵EF ∥BD ,∴△AEF ∽△ABD , ∴EF AF BD AD=, ∵BD ≠DC ,故本选项不符合题意;C 、∵EG ∥BC ,即FG ∥DC ,∴△AFG ∽△ADC , ∴AG FG AC DC =, ∵AG AC AC CG≠,故本选项不符合题意;D 、∵EG ∥BC ,∴△AEG ∽△ABC , ∴AE AG AB AC=, ∵FG ∥DC , ∴△AFG ∽△ADC , ∴AG FG AC DC =, ∴AE FG AB DC=,故本选项符合题意; 故选:D【点睛】本题考查了相似三角形的性质和判定,能正确的识别图形、灵活运用定理进行推理是解此题的关键.9.D解析:D【分析】先根据正方形的性质、旋转的性质可得45EAF EDA ∠=∠=︒,再根据相似三角形的判定与性质即可得.【详解】四边形ABCD 是正方形,45BAC EDA ∴∠=∠=︒,由旋转的性质得:B AC BAC ''∠=∠,B AC EDA ''∴∠=∠,即EAF EDA ∠=∠,在AEF 和DEA △中,EAF EDA AEF DEA ∠=∠⎧⎨∠=∠⎩, AEF DEA ∴~,EF AE AE DE ∴=,即44EF DE=, 16EF DE ∴⋅=,故选:D .【点睛】本题考查了正方形的性质、旋转的性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.10.C解析:C【分析】为了便于计算,可设AF =2x ,BF =3x ,BC =2y ,CD =y ,利用AG ∥BD ,可得△AGF ∽△BDF ,从而可求出AG ,那么就可求出AE :EC 的值.【详解】解:如图所示,∵AF :FB =2:3,BC :CD =2:1∴设AF =2x ,BF =3x ,BC =2y ,CD =y∵12//l l ,∴△AGF ∽△BDF , ∴AG BD =AF BF ∴3AG y =23∴AG =2y∴AE :EC =AG :CD =2y :y =2:1故选:C .【点睛】根据三角形相似,找到各对相似三角形的共公边,建立起不同三角形之间的联系,是解答此题的关键.11.C解析:C【分析】根据三角形中位线定理得到DE=12BC ,DE ∥BC ,得到△DOE ∽△COB ,根据相似三角形的面积比等于相似比的平方计算,得到答案.【详解】 ∵D 、E 分别是AB 和AC 的中点, ∴12DE BC =,//DE BC , ∴DOE COB ∆∆∽, ∴2DOE COB S DE S BC ∆∆⎛⎫= ⎪⎝⎭,即BOC214S ∆=, 解得,8BOC S ∆=,故选:C .【点睛】本题考查了相似三角形的判定和性质、三角形中位线定理,掌握相似三角形的判定定理和性质定理是解题的关键.12.C解析:C【分析】根据相似三角形的性质、三角形的内角和定理可得出另一个三角形的三个内角度数,由此即可得.【详解】由相似三角形的性质得:另一个三角形的两个内角分别为72,63︒︒,则另一个三角形的第三个内角为180726345︒-︒-︒=︒,因此,另一个三角形的最小内角为45︒,故选:C .【点睛】本题考查了相似三角形的性质、三角形的内角和定理,熟练掌握相似三角形的性质是解题关键.二、填空题13.2【分析】根据可设代入原式即可求解【详解】∵∴设∴故答案为:2【点睛】本题考查了比例的性质利用设k 法表示出xyz 求解更简便解析:2【分析】根据::3:2:1x y z =,可设3x k =,2y k =,z k =,代入原式,即可求解.【详解】∵::3:2:1x y z =,∴设3x k =,2y k =,z k =, ∴3242322x y z k k k k x y z k k k k+-+-===-+-+. 故答案为:2.【点睛】本题考查了比例的性质,利用“设k 法”表示出x 、y 、z 求解更简便.14.【分析】根据矩形的性质得到AB ∥CDAB=CDAD=BC ∠BAD=90°根据线段中点的定义得到DE=CD=AB 根据相似三角形的性质即可得到结论【详解】解:∵四边形ABCD 是矩形∴AB ∥CDAB=CD 解析:43【分析】根据矩形的性质得到AB ∥CD ,AB=CD ,AD=BC ,∠BAD=90°,根据线段中点的定义得到DE=12CD=12AB ,根据相似三角形的性质即可得到结论.【详解】解:∵四边形ABCD 是矩形,∴AB ∥CD ,AB=CD ,AD=BC ,∠BAD=90°,∵E 为CD 的中点,∴DE=12CD=12AB , ∴△ABP ∽△EDP ,∴AB PB DE PD =, ∴21PB PD = , ∴23PB BD = , ∵PQ ⊥BC ,∴PQ ∥CD ,∴△BPQ ∽△DBC ,∴23PQ BP CD BD ==, ∵CD=2, ∴PQ=43, 故答案为:43.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,正确的识别图形是解题的关键. 15.【分析】根据已知条件求出abcd 之间的关系再代入计算即可【详解】∵=∴∴故答案为【点睛】本题考查比例的性质熟练根据比例性质把比例式转换成乘积式是解题的关键解析:12020【分析】根据已知条件求出ab 、cd 之间的关系,再代入计算即可.【详解】∵a cb d ==12020∴2020,2020b a d c == ∴1202020202020()2020a c a c a cb d ac a c +++===+++ 故答案为12020 【点睛】本题考查比例的性质。
最新人教版初中数学九年级数学下册第二单元《相似》测试卷(含答案解析)(1)
一、选择题1.如图,已知点D ,E 是AB 的三等分点,DF ,EG 将ABC 分成三部分,且////DF EG BC ,图中三部分的面积分别为1S ,2S ,3S ,则123::S S S 的值为( )A .1:2:3B .1:2:4C .1:3:5D .2:3:42.下列四个选项中的三角形,与图中的三角形相似的是( )A .B .C .D .3.如图,在Rt ABC 中,90C ∠=︒,7AC =,24BC =,将它绕着BC 中点D 顺时针旋转一定角度后到A B C ''',恰好使//B C AB '',A C ''与边AB 交于点E ,则A E '的长为( )A .72B .4924C .8425D .91254.如图,ABC 中,DE ∥BC ,AD:BD=1:3,则OE :OB=( )A.1:3 B.1:4 C.1:5 D.1:65.如图,练习本中的横格线都平行且相邻两条横格线间的距离都相等,同一条直线上的三个点A,B,C都在横格线上.若线段AB=6,则线段AC的长为()A.12 B.18 C.24 D.306.如图,在矩形、三角形、正五边形、菱形的外边加一个宽度一样的外框,保证外框的边界与原图形对应边平行,则外框与原图一定相似的有()A.1个B.2个C.3 D.4个7.如图,在边长为2的正方形ABCD中,对角线AC与BD相交于点O,点P是BD上的一个动点,过点P作EF∥AC,分别交正方形的两条边于点E,F,连接OE,OF,设BP=x,△OEF的面积为y,则能大致反映y与x之间的函数关系的图像为()A .B .C .D .8.已知P ,Q 是线段AB 的两个黄金分割点,且AB=10,则PQ 长为( ) A .5(5-1)B .5(5+1)C .10(5-2) -D .5(3-5)9.已知四个数2,3,m ,3成比例的线段,那么m 的值是( ) A .3B .233C .2D .2310.已知P 是线段AB 的黄金分割点,且51AB =+,则AP 的长为( ).A .2B .51-C .2或51-D .35-11.如图,在△ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,延长至点G ,连接BG ,过点A 作AF ⊥BG ,垂足为F ,AF 交CD 于点E ,则下列错误的是( )A .AD ACAC AB= B .AD CD CD BD = C .DE CDCD DG = D .EG BDEF BG= 12.如图,要使ABCACD ∆∆,需补充的条件不能是( )A .ADC ACB ∠=∠ B .ABC ACD ∠=∠ C .AD ACAC AB= D .AD BC AC DC ⋅=⋅二、填空题13.已知::3:2:1x y z =,则x y zx y z+--+的值为________.14.如图,D 是AC 上一点,//BE AC ,BE AD =,AE 分别交BD 、BC 于点F 、G ,12∠=∠.若8DF =,4FG =,则GE =________.15.如图,在Rt ACB 中,90C ∠=︒,30ABC ∠=︒,4AC =,N 是斜边AB 上方一点,连接BN ,点D 是BC 的中点,DM 垂直平分BN ,交AB 于点E ,连接DN ,交AB 于点F ,当ANF 为直角三角形时,线段AE 的长为________.16.下列五组图形中,①两个等腰三角形;②两个等边三形;③两个菱形;④两个矩形;⑤两个正方形.一定相似的有_______(填序号)17.如图,ED 为△ABC 的中位线,点G 是AD 和CE 的交点,过点G 作GF ∥BC 交AC 于点F ,如果GF =4,那么线段BC 的长是________.18.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,过点A 作AH ⊥BC 于点H ,AH 交OB 于点E ,若OB =4,S 菱形ABCD =24,则OE 的长为_____.19.如图,点A 在反比例函数ky x=(k≠0)的图像上,点B 在x 轴的负半轴上,直线AB 交y 轴与点C ,若12AC BC =,△AOB 的面积为12,则k 的值为_______.20.若2a c eb d f===,且4b d f ++=,则a c e ++=_______. 三、解答题21.作图题:如图所示,图中的小方格都是边长为1的正方形,△ABC 与△A 'B 'C '是以点O 为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O ;(2)△A 'B 'C '与△ABC 的位似比是 ;(3)以位似中心O 为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出△A 'B 'C '关于点O 中心对称的△A "B "C ",并直接写出△A "B "C "各顶点的坐标. 22.如图,在ABC 中,BA BC =,以AB 为直径的O 分别交AC 、BC 于点D 、E ,BC的延长线与O 的切线AF 交于点F .(1)求证:2ABC CAF ∠=∠;(2)若210AC =,:1:4CE EB =,求AF 的长.23.如图,在ABCD 中,DE AC ⊥于点O ,交BC 于点E ,,//=EG EC GF AD 交DE 于点F ,连接CF ,点H 为线段AO 上一点,连接HD 、HF .(1)判断四边形GECF 的形状,并说明理由.(2)当∠=∠DHFHAD 时,求证:⋅=⋅AH CH EC AD .24.如图,在等边ABC ∆中,点D 是边AC 上一动点(不与点,A C 重合),连接BD ,作AH BD ⊥于点H ,将线段AH 绕点A 逆时针旋转60︒至线段AE ,连接CE (1)①补全图形;②判断线段BH 与线段CE 的数量关系,并证明; (2)已知4AB =,点M 在边AB 上,且1BM =,作直线HE .①是否存在一个定点P ,使得对于任意的点D ,点P 总在直线HE 上,若存在,请指出点P 的位置,若不存在,请说明理由; ②直接写出点M 到直线HE 的距离的最大值.25.如图1,在矩形ABCD 中,AD =2,点E 是AD 的中点,连接BE ,且BE ⊥AC 交AC 于点F .(1)求证:△EAB ∽△ABC ; (2)求AB ,EF 的长;(3)如图2,连接DF ,BD,求DFBD的值.26.如图,在ABC ∆中,点D 、E 、F 分别在AB 、AC 、BC 上,DE //BC ,EF //AB .(1)求证:ADE ∆∽EFC ∆;(2)如果6AB =,4=AD ,求ADEEFCS S ∆∆的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据题意易得ADFAEG ABC ,则有13AD AB =,23AE AB =.进而可求得119ABC S S=,213ABC S S =,359ABCS S =,最后即可求出结果.【详解】 ∵DF ∥EG ∥BC , ∴ADF AEG ABC ,∵D 、E 是AB 的三等分点, ∴13AD AB =,23AE AB =,∴119ABC S S =,49AEGABCSS =.∵21411993AEG ABCABCABCS S S S S S =-=-=,34599ABC AEGABCABC ABCS S SSS S =-=-=.∴123115::::1:3:5939ABCABCABCS S S S S S ==.故选C . 【点睛】本题主要考查相似三角形的判定与性质,掌握面积比等于相似比的平方是解题的关键.2.B解析:B 【分析】由于已知三角形和选择项的三角形都放在小正方形的网格中,设正方形的边长为1,所以每一个三角形的边长都是可以表示出,然后根据三角形的对应边成比例即可判定选择项. 【详解】解:设小正方形的边长为1,那么已知三角形的三边长分别为,,所以三边之比为1:2A 、三角形的三边分别为2,,三边之比为3,故本选项错误;B 、三角形的三边分别为2,4,1:2C 、三角形的三边分别为2,32:3D 44,故本选项错误. 故选:B . 【点睛】此题主要考查了相似三角形的判定,属于基础题,掌握三边对应成比例的两个三角形相似是解答本题的关键,难度一般.3.D解析:D 【分析】过点D 作DF ⊥AB 于F ,易证四边形EFDC´是矩形,可得C´E=DF ,由勾股定理求得AB 的长,根据已知和相似三角形的判定可证明△ACB ∽△DFB ,可得AC ABDF BD=,J 进而求得DF 值,由A´E=A´C´﹣C´即可求解. 【详解】解:过点D 作DF ⊥AB 于F ,则∠DFB=90°,∵△ABC 绕着BC 中点D 顺时针旋转一定角度后到A B C ''',恰好使//B C AB '',∴∠C=∠C´=∠A´EB=90°,AC=A´C´=7,CD=BD=12, ∴四边形EFDC´为矩形, ∴C´E=DF ,∵在Rt △ACB 中,∠C=90°,AC=7,BC=24, ∴222272425AC BC +=+=, ∵∠C=∠DFE ,∠B=∠B , ∴△ACB ∽△DFB , ∴AC AB DF BD =即72512DF =,∴DF=8425=C´E ,∴A´E=A´C´﹣C´E=7﹣8425=9125,故选:D . 【点睛】本题考查了旋转的性质、矩形的判定与性质、相似三角形的判定与性质、勾股定理等知识,熟练掌握这些知识的灵活运用,添加恰当的辅助线是解答的关键.4.B解析:B 【分析】先根据DE ∥BC ,得出ADE ∽ABC ,进而得出1=4AD DE AB BC = ,再根据DE ∥BC ,得到ODE ∽OCB ,进而得到1=1:44OE DE OB CB ==. 【详解】 解:∵DE ∥BC , ∴ADE ∽ABC , ∴=AD DEAB BC, 又∵1=3AD BD , ∴1=4AD DE AB BC =,∵DE ∥BC , ∴ODE ∽OCB ,∴1=1:44OE DE OB CB ==. 故选:B . 【点睛】本题主要考查了相似三角形的判定与性质,平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似.5.C解析:C 【分析】根据已知图形构造相似三角形,进而得出△ABD ∽△ACE ,即可求出AC 的长. 【详解】 解:如图所示:过点A 作平行线的垂线,交点分别为D ,E ,可得: △ABD ∽△ACE , 则AB ADAC AE=, 即628AC =, 解得:AC=24, 故选:C . 【点睛】此题主要考查了相似三角形的应用,根据题意得出△ABD ∽△ACE 是解题关键.6.C解析:C 【分析】根据相似多边形的判定定理对各个选项进行分析,从而确定最后答案. 【详解】矩形的原图与外框不相似,因为其对应角的度数一定相同,但对应边的比值不一定相等,不符合相似的条件;锐角三角形的原图与外框相似,因为其对应角均相等,对应边均对应成比例,符合相似的条件;正五边形相似,因为它们的边长都对应成比例、对应角都相等,符合相似的条件;菱形的原图与外框相似,因为其对应角均相等,对应边均对应成比例,符合相似的条件. 综上,外框与原图一定相似的有3个,故选:C .【点睛】本题主要考查了相似图形的概念,注意边数相同、各角对应相等、各边对应成比例的两个多边形是相似多边形.7.C解析:C【分析】根据题意易得BO =EF 与x 的关系,进而分两种情况,依情况来判断函数图像即可.【详解】解:∵四边形ABCD 是正方形,边长为2,∴AC BD ==12BO OD BD ===①当P 在OB 上时,即0x ≤≤∵EF ∥AC ,∴△BEF ∽△BAC , ∴EF BP AC OB=, ∴22EF BP x ==, ∵OP x =,∴)2122y x x x =⨯⨯=-+;②当P 在OD x <≤∵EF ∥AC ,∴△DEF ∽△DAC , ∴EF DP AC OD =,=,∴)2EF x =,∵BP=x , ∴OP x =∴()()2122223242y x x x x =-⋅-=-+-, 这是一个二次函数,根据二次函数的性质可知:二次函数的图像是一条抛物线,开口向下,故选C .【点睛】 本题主要考查相似三角形的性质与判定、二次函数的图像与性质及正方形的性质,关键是利用三角形相似和面积来列出二次函数的解析式,进而求解.8.C解析:C【分析】画出图像,根据黄金分割的概念写出对应线段的比值,求出AQ 、PB 的长度,再根据PQ =AQ +PB -AB 即可求出PQ 的长度.【详解】解:如图,根据黄金分割点的概念,可知51PB AQ AB AB -== ∴AQ =PB ,AB =10,∴AQ =PB =51105552⨯=, ∴PQ =AQ +PB -AB =555555101052010(52)+-==.故选:C .【点睛】本题主要考查黄金分割的概念,熟记黄金分割的概念并根据黄金分割的比值列式是解题关键.9.B解析:B【分析】利用比例线段的定义得到233m =::m 即可.【详解】根据题意得233m =::所以33m =,所以233m =. 故选:B .【点睛】本题考查了比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如 a :b=c :d (即ad=bc ),我们就说这四条线段是成比例线段,简称比例线段.10.C解析:C【分析】若点P 是靠近点B 的黄金分割点,则12AP AB =,然后代入数据计算即可;若点P 是靠近点A 的黄金分割点,先求出BP ,再利用线段的和差即可求出AP .【详解】解:若P 是靠近点B 的黄金分割点,则)12AP AB ===;若P 是靠近点A 的黄金分割点,则)12BP AB ===,∴121AP AB BP =-=-=;故选:C .【点睛】是解题的关键. 11.D解析:D【分析】通过证明△ACD ∽△ABC ,可得AD AC AC AB =,通过证明△ACD ∽△CBD ,可得AD CD CD BD =,通过△ADE ∽△GDB ,△ACD ∽△CBD ,可得DE CD CD DG=,通过证明△GEF ∽△GBD ,可得=EG BG EF BD,即可求解. 【详解】解:∵CD ⊥AB ,∴∠ADC =∠CDB =90°,∴∠BCD +∠ABC =90°,∵∠ACB =90°,∴∠ACD +∠BCD =90°,∴∠ACD =∠ABC ,又∵∠ACB =∠ADC =90°,∴△ACD ∽△ABC ,∴AD AC AC AB=, 故A 选项不合题意;∵∠ACD =∠ABC ,∠ADC =∠BDC ,∴△ACD ∽△CBD , ∴AD CD CD BD= 故B 选项不合题意;∵AF ⊥BG ,∴∠AFB =90°,∴∠FAB +∠GBA =90°,∵∠GDB =90°,∴∠G +∠GBA =90°,∴∠G =∠FAB ,又∵∠ADE =∠GDB =90°,∴△ADE ∽△GDB , ∴=AD DE GD BD, ∴AD •BD =DE •DG ,∵△ACD ∽△CBD , ∴=AD CD CD BD, ∴CD 2=AD •BD ,∴CD 2=DE •DG , ∴DE CD CD DG=, 故C 选项不合题意;∵∠G =∠G ,∠EFG =∠GDB =90°,∴△GEF ∽△GBD , ∴=EG BG EF BD故D 选项符合题意,故选:D .【点睛】本题主要考查相似三角形的判定及其性质,解题的关键是熟练掌握相似三角形的判定方法及其性质.12.D解析:D【分析】要使两三角形相似,已知有一组公共角,则可以再添加一组角相等或添加该角的两边对应成比例.【详解】∵∠DAC=∠CAB∴当∠ACD=∠ABC 或∠ADC=∠ACB 或AD :AC=AC :AB 时,△ABC ∽△ACD .故选:D【点睛】本题考查相似三角形的判定方法的开放性的题,相似三角形的判定方法:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.平行于三角形一边的直线截另两边或另两边的延长线所组成的三角形与原三角形相似.二、填空题13.2【分析】根据可设代入原式即可求解【详解】∵∴设∴故答案为:2【点睛】本题考查了比例的性质利用设k 法表示出xyz 求解更简便解析:2【分析】根据::3:2:1x y z =,可设3x k =,2y k =,z k =,代入原式,即可求解.【详解】∵::3:2:1x y z =,∴设3x k =,2y k =,z k =, ∴3242322x y z k k k k x y z k k k k+-+-===-+-+. 故答案为:2.【点睛】本题考查了比例的性质,利用“设k 法”表示出x 、y 、z 求解更简便.14.12【分析】利用AAS 判定△FEB ≌△FAD 得BF=DF 根据有两组角对应相等的两个三角形相似可得到△BFG ∽△EFB 根据相似三角形的对应边成比例即可得到BF2=FG•EF 由条件可求出EF 长则GE 长可解析:12【分析】利用AAS 判定△FEB ≌△FAD ,得BF=DF ,根据有两组角对应相等的两个三角形相似,可得到△BFG ∽△EFB ,根据相似三角形的对应边成比例即可得到BF 2=FG•EF ,由条件可求出EF 长,则GE 长可求出.【详解】解:∵AD//BE ,∴∠1=∠E .在△FEB 和△FAD 中1E EFB AFD BE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△FEB ≌△FAD ;∴BF=DF ,∵∠1=∠E ,∠1=∠2,∴∠2=∠E .又∵∠GFB=∠BFE ,∴△BFG ∽△EFB , ∴BF FG EF BF=, ∴BF 2=FG•EF ,∴DF 2=FG•EF ,∵DF=8,FG=4,∴EF=16,∴GE=EF-FG=16-4=12.故答案为:12.【点睛】本题考查了三角形全等、相似的性质和判定,熟练掌握全等三角形的判定及相似三角形的判定是关键.15.或【分析】(1)分别在中应用含角的直角三角形的性质以及勾股定理求得再根据垂直平分线的性质等边三角形的判定和性质等腰三角形的判定求得最后利用线段的和差即可求得答案;根据垂直平分线的性质全等三角形的判定 解析:6或285 【分析】(1)分别在Rt ACB ∆、Rt BDF ∆、Rt DEF ∆中应用含30角的直角三角形的性质以及勾股定理求得1EF =,2DE =,再根据垂直平分线的性质、等边三角形的判定和性质、等腰三角形的判定求得2BE =,最后利用线段的和差即可求得答案;根据垂直平分线的性质、全等三角形的判定和性质、分线段成比例定理可证得//DM CN ,然后根据平行线的性质、相似三角形的判定和性质列出方程,解方程即可求得125BE =,最后利用线段的和差即可求得答案.【详解】解:①当90AFN ∠=︒时,如图1:∵在Rt ACB ∆中,90C ∠=︒,4AC =,30ABC ∠=︒∴28AB AC == ∴2243BC AB AC∵90AFN DFB ∠=∠=︒,30ABC ∠=︒∴60FDB ∠=︒∵23==CD DB∴132DF BD == ∴ 在Rt DEF △中,设EF x =,则22DE EF x == ∵222EF DF DE +=∴()()22223x x -= ∴1x =∴1EF =,2DE =∵DM 垂直平分线段BN∴DBDN ∵60FDB ∠=︒ ∴BDN 是等边三角形∴30FDM EDB EBD ∠=∠=∠=︒∴2BE DE ==∴826=-=-=AE AB BE ;②当90ANF ∠=︒时,连接AD 、CN 交于点O ,过点E 作⊥EH DB 于H ,如图2:设EH x =,则3BH x =,233DH x = ∵DM 垂直平分线段BN ,点D 是BC 的中点∴CD DN BD ==∵AD AD =∴()Rt ACD Rt AND HL ≌∵AC AN =∵CD DN =∴AD 垂直平分线段CN∴90AON ∠=︒∵CD DB =,MN BM =∴//DM CN∴90ADM AON ∠=∠=︒∵90ACD EHD ∠=∠=︒∴90ADC EDH ∠+∠=︒,90EDH DEH ∠+∠=︒∴∠=∠ADC DEH∴ACD DHE ∽ ∴AC CD DH EH =∴=x ∴65x =∴1225==BE x ∴1228855=-=-=AE AB BE . ∴综上所述,满足条件的AE 的值为6或285. 故答案是:6或285【点睛】 本题考查了垂直平分线的性质和判定、含30角的直角三角形的性质、勾股定理、全等三角形的判定和性质、平行线的判定和性质、相似三角形的判定和性质、等边三角形的判定和性质等,渗透了逻辑推理的核心素养以及分类讨论的数学思想.16.②⑤【分析】根据相似图形的性质对各个选项逐个分析即可得到答案【详解】两个等腰三角形的顶角不一定相等故不一定相似;两个等边三角形一定相似;两个菱形的内角不一定相等故不一定相似;两个矩形的相邻边长比例不解析:②⑤【分析】根据相似图形的性质对各个选项逐个分析,即可得到答案.两个等腰三角形的顶角不一定相等,故不一定相似;两个等边三角形一定相似;两个菱形的内角不一定相等,故不一定相似;两个矩形的相邻边长比例不一定相等,故不一定相似;两个正方形一定相似;故答案为:②⑤.【点睛】本题考查了图形相似的知识;解题的关键是熟练掌握相似图形的性质,从而完成求解. 17.12【分析】先判断点G 为△ABC 的重心得到AG=2GD 再证明△AGF ∽△ADC 然后利用相似比求出CD 的长从而得到BC 的长【详解】解:∵ED 为△ABC 的中位线∴DE//ACDE=ADCE 为△ABC 的中解析:12.【分析】先判断点G 为△ABC 的重心得到AG=2GD ,再证明△AGF ∽△ADC ,然后利用相似比求出CD 的长,从而得到BC 的长.【详解】解:∵ED 为△ABC 的中位线,∴DE//AC ,DE=12AC ,AD 、CE 为△ABC 的中线, ∴△DEG ∽△ACG ∴12DG DE AG AC == ∴AG=2GD ,∵GF ∥BC ,∴△AGF ∽△ADC , ∴23GF AG CD AD ==, ∴CD=32GF=32×4=6, ∴BC=2CD=12.故答案为12.【点睛】 本题考查了重心的性质:重心到顶点的距离与重心到对边中点的距离之比为2:1. 也考查了三角形中位线和相似三角形的判定与性质.18.225【分析】依据菱形的面积即可得到AH=48进而得出BH 的长再根据相似三角形的对应边成比例即可得到BE 的长进而得出OE 的长【详解】解:∵菱形ABCD 的对角线ACBD 相交于点OOB =4∴BD =8又∵【分析】依据菱形的面积,即可得到AH=4.8,进而得出BH的长,再根据相似三角形的对应边成比例,即可得到BE的长,进而得出OE的长.【详解】解:∵菱形ABCD的对角线AC,BD相交于点O,OB=4,∴BD=8,又∵S菱形ABCD=24,∴2 241BD AC,∴AC=6,CO=3,∴Rt△BCO中,BC=5,又∵AH⊥BC,∴24BC AH,∴ 4.8AH,∴Rt ABH中,2222548 1.4BH AB AH.,∵∠EBH=∠CBO,∠BHE=∠BOC=90°,∴△BEH∽△BCO,∴BH BEBO BC ,即1.445BE,∴ 1.75BE,∴4 1.75 2.25EO BO BE,故答案为:2.25.【点睛】本题主要考查了菱形的性质以及相似三角形的判定与性质,利用相似三角形的性质是解决问题的关键.19.12【分析】过点A作AD⊥y轴于D则△ADC∽△BOC由线段的比例关系求得△AOC和△ACD的面积再根据反比例函数的k的几何意义得结果【详解】过点A作AD⊥y轴于D则△ADC∽△BOC∴∵△AOB的解析:12【分析】过点A作AD⊥y轴于D,则△ADC∽△BOC,由线段的比例关系求得△AOC和△ACD的面积,再根据反比例函数的k的几何意义得结果.【详解】过点A作AD⊥y轴于D,则△ADC∽△BOC,∴12DC AC OC BC , ∵12AC BC =,△AOB 的面积为12, ∴S △AOC =13S △AOB =4, ∴S △ACD =12S △AOC =2, ∴△AOD 的面积=6, 根据反比例函数k 的几何意义得,12|k|=6, ∴|k|=12,∵k >0,∴k =12.故答案为:12.【点睛】本题主要考查了反比例函数的k 的几何意义的应用,考查了相似三角形的性质与判定,关键是构造相似三角形.20.8【分析】根据等比性质可得答案【详解】由等比性质得所以故答案为:8【点睛】本题考查了比例的性质利用了等比性质解析:8 【分析】根据等比性质,可得答案.【详解】2a c e b d f ===, 由等比性质,得24a c e a c eb d f ++++==++, 所以8ac e ++=.故答案为:8.【点睛】本题考查了比例的性质,利用了等比性质.三、解答题21.(1)画图见解析;(2)1:2;(3)画图见解析;A "(6,0),B "(3,-2),C "(4,-4)【分析】(1)连接CC′并延长,连接BB′并延长,两延长线交于点O ;(2)由OB=2OB′,即可得出△A′B′C′与△ABC 的位似比为1:2;(3),连接B′O 并延长,使OB″=OB′,延长A′O 并延长,使OA″=OA′,C′O 并延长,使OC″=OC′,连接A″B″,A″C″,B″C″,则△A″B″C″为所求,从网格中即可得出△A″B″C″各顶点的坐标.【详解】解:(1)图中点O 为所求;(2)△A′B′C′与△ABC 的位似比等于1:2;故答案为:1:2;(3)△A″B″C″为所求;A″(6,0);B″(3,-2); C″(4,-4).【点睛】此题考查了作图-位似变换,画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.22.(1)见解析;(2)152【分析】(1)根据切线性质可知90CAB CAF ∠+∠=︒,所得等式两边同乘2可得22180CAB CAF ∠+∠=︒,在等腰三角形ABC 中,2180CAB ABC ∠+∠=︒,联立两个等式即可证明.(2)连接AE ,设CE x =,根据等腰三角形性质及勾股定理可得3AE x =,在Rt AEC 中运用勾股定理得出CE 、AE 的值,再根据AEF BEA ∽△△计算得出AF 的值.【详解】(1)证明:∵AB 为O 的直径,AF 是O 的切线,∴AF AB ⊥,90CAB CAF ∠+∠=︒,等式两边同乘2可得:22180CAB CAF ∠+∠=︒①;∵BA=BC ,∴CAB ACB ∠=∠,∴在ABC 中,2180CAB ABC ∠+∠=︒②,联立①和②可得:222CAB CAF CAB ABC ∠+∠=∠+∠,∴2ABC CAF ∠=∠.(2)解:连接AE ,如图:∵:1:4CE EB =,BA=BC ,设CE x =,90AEB =︒∠(直径所对圆周角是直角), ∴在Rt AEB 中,45AB CE EB x x x =+=+=,4BE x =,22=(5)(4)3AE x x x -=,∵在Rt AEC 中,222AE CE AC +=,即()(222321040x x +==,∴解得:2x =,AE=6,AB=10,∵AE ⊥BF ,FAE ABE ∠=∠(弦切角度数等于它所夹弧度所对圆周角度数),∴FAE ABE ∽, ∴FA AB AE BE =,即1068FA =, 解得:152FA =. 【点睛】 本题考查切线性质的综合运用,用勾股定理解三角形,灵活运用切线性质和勾股定理是解题关键.23.(1)四边形GECF 是菱形,理由见解析;(2)证明见解析过程.【分析】(1)由线段垂直平分线的性质可得GO=CO ,由“AAS”可证△GFO ≌△CEO ,可得GF=EC ,由菱形的判定可证四边形GECF 是菱形;(2)通过证明△ADH ∽△CHF 可得AD AH HC CF=,可得结论. 【详解】解:(1)四边形GECF 是菱形,理由:∵EG=EC ,DE ⊥AC ,∴GO=CO ,∵GF∥AD,AD∥BC,∴GF∥BC,∴∠FGO=∠ECO,∠GFO=∠CEO,∴△GFO≌△CEO(AAS),∴GF=EC,∴四边形GFCE是平行四边形,又∵EG=EC,∴平行四边形GFCE是菱形;(2)∵∠DHC=∠DAH+∠ADH=∠DHF+∠FHC,∠DHF=∠HAD,∴∠ADH=∠FHC,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAH=∠ACB,∵四边形GFCE是菱形,∴CE=CF,∠HCF=∠ACB,∴∠HCF=∠DAH,∴△ADH∽△CHF,∴AD AH=,HC CF∴AH•CH=AD•EC.【点睛】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,平行四边形的性质,菱形的判定和性质等知识,证明△ADH∽△CHF是解题的关键.=,证明见解析;(2)①存在,点P是边BC的中24.(1)①见解析;②BH CE点;②3【分析】(1)①按要求画出图形即可;②根据全等三角形对应边相等来回答;(2)①点P为直线HE与BC的交点;②通过△BPM∽△BAP问题可解;【详解】(1)①如图;②BH CE =证明ABH ACE ∆≅∆即可(2)①存在点P 是边BC 的中点,理由:设直线HE 与边BC 交于点P可由60ACB AEP ︒∠=∠=得点,,,A E C P 共圆,因为90AEC ︒∠=,所以90APC ︒∠=,即P 是BC 的中点.②如图, 当MP ⊥HE 时,MP 最大,理由:4,2,1AB BP BM ===, BM BP BP AB ∴=, B B ∠∠=,∴△BPM ∽△BAP ,∴∠BMP=∠BPA=90︒ ,2222213BP BP BP ∴=-=-=【点睛】 本题考查等腰三角形的性质,全等三角形的判定和性质,点到直线的距离,旋转,相似三角形的判定和性质,勾股定理和圆的有关知识知识,综合性较强.25.(1)见解析;(2)2AB =3EF =;(33【分析】 (1)根据矩形的性质得出90EAB ABC ∠=∠=︒和∠AEB =∠BAC ,即可证明结论; (2)由(1)的结论,得AB EA BC AB=,即可求出AB 的长,再由勾股定理求出BE 的长,再由△AEF ∽△CBF ,即可求出EF 的长; (3)由△AFE ∽△CFB 得12EF AE BF CB ==,证明3ED EF BE ED==,则△DEF ∽△BED ,即可求出结果.解:(1)∵四边形ABCD 为矩形,∴90BAE CBA ∠=∠=︒ ,AD ∥BC ,AD =BC ,AB ∥CD ,AB =CD ,∴90BAC CAE ∠+∠=︒,∵BE ⊥AC ,∴90CAE AEB ∠+∠=︒,∴∠AEB =∠BAC ,∴△EAB ∽△ABC ;(2)由(1)知△EAB ∽△ABC , ∴AB EA BC AB=, ∵AD =2,点E 是AD 的中点,∴AE =1,BC =2,∴22AB AE BC =⋅=, ∴AB =在Rt △ABE 中,BE =, ∵AD ∥BC ,∴△AEF ∽△CBF , ∴12EF AE BF CB ==,∴13EF BE ==; (3)∵AD ∥BC ,∴△AFE ∽△CFB , ∴12EF AE BF CB ==, ∴3BE EF ==∴ED EF BE ED==, ∵∠DEB =∠FED ,∴△DEF ∽△BED , ∴DF EF BD ED =,∴DF BD = 【点睛】本题考查相似三角形的性质和判定,解题的关键是掌握相似三角形的性质和判定. 26.(1)证明见解析;(2)4.(1)根据平行线的性质可得∠A =∠CEF ,∠AED =∠C ,即可得结论;(2)根据线段的和差关系可得BD 的长,由DE //BC ,EF //AB 可得四边形DBFE 是平行四边形,根据平行四边形的性质可得EF 的长,根据相似三角形的面积比等于相似比的平方即可得答案.【详解】(1)∵DE//BC ,EF//AB ,∴∠A =∠CEF ,∠AED =∠C ,∴△ADE ∽△EFC .(2)∵AB =6,AD =4,∴DB =6-4=2,∵DE//BC ,EF//AB ,∴四边形DBFE 是平行四边形,∴EF =DB=2,∵△ADE ∽△EFC ,224()()42∆∆===ADE EFC S AD S EF . 【点睛】本题考查平行线的性质、平行四边形的判定与性质及相似三角形的判定与性质,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;相似三角形的面积比等于相似比的平方;熟练掌握相关判断定理及性质是解题关键.。
最新人教版初中数学九年级数学下册第二单元《相似》检测(包含答案解析)(1)
一、选择题1.如图,D是△ABC的边BC上一点,AC=4,AD=2,∠DAB=∠C.如果△ACD的面积为15,那么△ABD的面积为()A.15 B.10 C.152D.52.如图,在平行四边形ABCD中,:2:1AE BE ,F是AD的中点,射线EF与AC交于点G,与CD的延长线交于点P,则AGGC的值为().A.5:8B.3:8C.3:5D.2:53.下列四个选项中的三角形,与图中的三角形相似的是()A.B.C.D.4.如图,已知D、E分别为AB、AC上的两点,且DE∥BC,AE=2CE,AB=12,则AD的长为()A .4B .6C .5D .8 5.如图,在正方形ABCD 中,E 为BC 中点,3DF FC . 联结AE AF EF 、、.那么下列结果错误的是( )A .ABE △与ECF 相似B .ABE △与AEF 相似C .ABE △与ADF 相似D .AEF 与ECF 相似6.有下列四种说法:其中说法正确的有( )①两个菱形相似;②两个矩形相似;③两个平行四边形相似;④两个正方形相似. A .4个 B .3个 C .2个 D .1个7.如图,△ABC 是等腰直角三角形,∠ACB =90°,点E 、F 分别是边BC 、AC 的中点,P 是AB 上一点,以PF 为一直角边作等腰直角△PFQ ,且∠FPQ =90°,若AB =12,PB =3,则QE 的值为( )A .2B .4C .2D .38.如图,AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D 点,CD =BD ,∠C =70°,现给出以下四个结论:①∠A =45°;②AC =AB ;③AE =BE ;④2CE •AB =BC 2,其中正.确.结论有( )A .1个B .2个C .3个D .4个9.如图,地面上点A 处有一只兔子,距它10米的B 处有一根高1.6米的木桩,大树、木桩和兔子刚好在一条直线上.一只老鹰在9.6米高的树顶上刚好看见兔子,则大树C 离木桩B( )米.A .60B .50C .40D .4510.如图,ABC 是等边三角形,被一平行于BC 的矩形所截(即:FG ∥BC),若AB 被截成三等分,则图中阴影部分的面积是ABC 的面积的( )A .19B .29C .13D .4911.如图,在ABCD 中,7AB =,3BC =,ABC ∠的平分线交CD 于点F ,交的延长线于点E ,若2BF =,则线段EF 的长为( )A .4B .3C .83D .7412.已知P 是线段AB 的黄金分割点,且51AB =,则AP 的长为( ). A .2 B 51 C .251D .35二、填空题13.如图所示,在ABC ∆中,4BC =,E ,F 分别是AB ,AC 的中点.(1)线段EF 的长为_____;(2)若动点P 在直线EF 上,CBP ∠的平分线交CE 于点Q ,当点Q 把线段EC 分成的两线段之比是1∶2时,线段EP 、BP 之间的数量关系满足EP BP +=_____.14.在梯形ABCD 中,//AD BC ,两条对角线AC 、BD 相交于点O ,:1:9AOD COB S S =,那么BOC DOC S S =△△:__________.15.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”.如图,P 为AB 的黄金分割点()AP PB >,如果AB 的长度为8cm ,那么AP 的长度是_____________.16.如图,在正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后,折痕DE 分别交AB 、AC 于点E ,G ,连接GF ,下列结论中正确的是__________. (填序号)①67.5AGE ∠=︒;②四边形AEFG 是菱形;③2BE OF =;④:21DOG OGEF S S =四边形:△.17.如图,已知CD 为O 的直径,弦AB CD ⊥交CD 于点E ,连接BD ,OB ,AC ,若8AB =,2DE =,则O 的半径为______.18.△ABC 的三边长分别为7、6、2,△DEF 的两边分别为1、3,要使△ABC ∽△DEF ,则△DEF 的第三边长为______.19.如图,在Rt ABC ∆中,90ACB ∠=︒,//CD AB ,ABC ∠的平分线BD 交AC 于点E ,若10AB =,6BC =,则AE =_______.20.若25x y =,则x y y+=____________. 三、解答题21.求证:相似三角形对应边上的角平分线之比等于相似比.要求:①根据给出的ABC 及线段A B '',A '∠(A A ∠'=∠),以线段A B ''为一边,在给出的图形上用尺规作出A B C ''',使得A B C ABC ''''∽△△,不写作法,保留作图痕迹.②在已有的图形上画出一组对应角平分线,并据此写出已知、求证和证明过程.22.如图1,在△ABC 中,AD ⊥BC ,DE ⊥A B ,DF ⊥AC .(1)若AD 2 =BD ·DC ,①求证:∠BAC =90°;②连接EF ,若AB =4,DC =6,求EF .(2)如图2,若AD =4,BD =2,DC =4,求EF .23.如图,在正方形网格中建立平面直角坐标系,已知点()0,0O ,()1,3A -,()4,0B ,连接OA ,OB ,AB .(1)若将OAB 向上平移4个单位长度,再向右平移5个单位长度,得到111O A B △,点O ,A ,B 的对应点分别为1O ,1A ,1B ,画出111O A B △并写出顶点1A 的坐标; (2)画出22OA B △,使22OA B △与OAB 关于原点对称,点A ,B 的对应点分别为2A ,2B ;(3)以点O 为位似中心,在给定的网格中将OAB 放大2倍得到33OA B ,点A ,B 的对应点分别为3A ,3B ,画出33OA B 并直接写出33A B 的长度.24.四边形ABCD 内接于,O AB 是直径,延长AD BC 、交于点E ;若AB BE =.(1)求证:DC DE =(2)若6,43DE CE ==AB 的长.25.阅读下面材料(问题情境)课外兴趣小组活动时,老师提出了如下问题:如图①.在△ABC中,若AB=8,AC=6,求BC边上的中线AD取值范围,小明在组内经过合作交流,得到了如下的解决方法:延长AD 到点E,使DE=AD,请根据小明方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是()A.SSS B.SAS C.AAS D.HL(2)由三角形三边的关系可求得AD长的取值范围是()A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤7(解后感悟)解题时,条件中若出现“中点”“中线”字样可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到一个三角形中.(灵活运用)如图②,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF若EF=4,EC=3,求线段BF的长.26.如图,在△ABC中,AB=AC=10,BC=12,正方形DEFG的顶点D、G分别在AB、AC 上,EF在BC上,AH⊥BC于H,交DG于点M,求正方形DEFG的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】首先证明△ABD ∽△CBA ,由相似三角形的性质可得:△ABD 的面积:△ACB 的面积为1:4,因为△ACD 的面积为15,进而求出△ABD 的面积.【详解】∵∠DAB =∠C ,∠B =∠B ,∴△ABD ∽△CBA ,∵AC =4,AD =2,∴△ABD 的面积:△ACB 的面积=(AD AC)2=1:4, ∴△ABD 的面积:△ACD 的面积=1:3,∵△ACD 的面积为15,∴△ABD 的面积=5.故选:D .【点睛】 本题考查了相似三角形的判定和性质:相似三角形的面积比等于相似比的平方,是中考常见题型.2.D解析:D【分析】证明AFE △≌△()DFP AAS ,推出=AE DP ,由:2:1AE BE =,设BE k =,2AE k =,推出3AB CD k ==,5PC k =,由//AE BC ,可得AG AE GC CP=的值. 【详解】∵四边形ABCD 是平行四边形,∴//AB PC ,AB CD =,∴AEF P ∠=∠,∵AFE DFP ∠=∠,AF DF =,∴AFE △≌△()DFP AAS ,∴=AE DP ,∵:2:1AE BE =,设BE k =,2AE k =,∴3AB CD k ==,5PC k =,∵//AE BC ,∴2255AG AE k GC CP k ===, 故选:D .【点睛】 本题考查了平行四边形的性质,全等三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是学会利用已知条件证明三角形全等、利用参数解决问题,属于中考常考题型.3.B解析:B【分析】由于已知三角形和选择项的三角形都放在小正方形的网格中,设正方形的边长为1,所以每一个三角形的边长都是可以表示出,然后根据三角形的对应边成比例即可判定选择项.【详解】解:设小正方形的边长为1,那么已知三角形的三边长分别为,,所以三边之比为1:2A 、三角形的三边分别为2,,三边之比为3,故本选项错误;B 、三角形的三边分别为2,4,1:2C 、三角形的三边分别为2,32:3D 44,故本选项错误. 故选:B .【点睛】此题主要考查了相似三角形的判定,属于基础题,掌握三边对应成比例的两个三角形相似是解答本题的关键,难度一般.4.D解析:D【分析】先根据平行线分线段成比例定理得出比例式,代入后得出AD=23AB ,代入求出即可. 【详解】解:∵DE ∥BC , ∴AD AE AB AC=, ∵AE=2CE , ∴2223AE CE AC EC EC ==+ 又AB=12, ∴AD=23AB=8,故选:D .【点睛】本题考查了平行线分线段成比例定理,能根据定理得出正确的比例式是解此题的关键. 5.C解析:C【分析】根据正方形的性质及勾股定理逆定理可以判断△AEF 是直角三角形,再根据三角形相似的判定可以选出结果错误的选项.【详解】解:设正方形边长为1 ,则由已知可得:54AE EF AF ======, ∴222552541616AE EF AF +=+==,∴△AEF 是直角三角形, ∴在RT △ABE 、RT △ECF 、RT △ADF 、RT △AEF 中, ∠B=∠C=∠AEF=∠D ,42,3AB EC AE AD BE CF EF DF ====, ∴RT △ABE 、RT △ECF 、RT △AEF 两两相似,但是△ABE 与 △ADF 不相似,∴A 、B 、D 正确,C 错误,故选C .【点睛】本题考查正方形与三角形相似的综合应用,灵活运用正方形的性质和三角形相似的判定是解题关键.6.D解析:D【分析】直接利用相似图形的判定方法分别判断得出答案.【详解】解:①两个菱形不一定相似,因为对应角不一定相等;②两个矩形不一定相似,因为对应边不一定成比例;③两个平行四边形不一定相似,因为形状不一定相同;④两个正方形相似,正确.故选:D .【点睛】本题考查了相似多边形的判定,正确掌握判定方法是解题的关键.7.C解析:C【分析】取AB 的中点D ,连结FD ,根据等腰直角三角形的性质得到AC=BC=62,∠A=45°,根据三角形中位线定理得到EF ∥AB ,EF=12AB=6,DF=12BC=32,证明△FDP ∽△FEQ ,根据相似三角形的性质列出比例式,代入计算,得到答案.【详解】解:如图,取AB 的中点D ,连结FD ,∵△ABC 为等腰直角三角形,AB=12,∴2∠A=45°,∵点D 、E 、F 分别是△ABC 三边的中点,AB=12,PB=3,∴AD=BD=6,DP=DB-PB=6-3=3,EF 、DF 为△ABC 的中位线,∴EF ∥AB ,EF=12AB=6,DF=122,∠EFP=∠FPD , ∴∠FDA=45°,322DF EF ==, ∴∠DFP+∠DPF=45°,∵△PQF 为等腰直角三角形, ∴∠PFE+∠EFQ=45°,FP=PQ ,∴∠DFP=∠EFQ ,∵△PFQ 是等腰直角三角形, ∴22PF FQ =, ∴DF PF EF FQ =, ∵DF PF EF FQ=,∠DFP=∠EFQ , ∴△FDP ∽△FEQ ,∴2QE EF DP DF ==,即23QE =, 解得,2,故选:C .【点睛】本题考查了等腰直角三角形,相似三角形的判定和性质,根据题意作出辅助线,构造出三角形的中位线是解题的关键.8.B解析:B【分析】连结AD、BE,DE,如图,根据圆周角定理得∠ADB=90°,则AD⊥BC,加上CD=BD,根据等腰三角形的判定即可得到AC=AB;再根据等腰三角形的性质和三角形内角和定理可计算出∠BAC=40°;由AB为直径得到∠AEB=90°,则∠ABE=50°,根据圆周角定理可判断AE BE≠;接着证明△CED∽△CBA,利用相似比得到CD CEAC BC=,然后利用等线段代换即可判断④.【详解】解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°.∵CD=BD,∴AD是BC的垂直平分线,∴AC=AB,故②正确;∵AC=AB,∴∠ABC=∠C=70°,∴∠BAC=40°,故①错误;连接BE,DE,∵AB为⊙O的直径,∴∠AEB=90°,∵∠BAC=40°,∴∠ABE=50°,∴∠BAC≠∠ABE,∴AE≠BE,∴AE BE≠,故③错误;∵四边形ABDE是圆内接四边形,∴∠CDE=∠CAB,∴△CDE∽△CAB,∴CD CEAC BC=,∴CE•AC=CD·BC,∴CE•AB=12BC·BC,∴2CE•AB=BC2,故④正确.故选B.【点睛】本题考查了相似三角形的判定和性质,圆周角定理,根据题意作出辅助线,构造出圆周角是解题的关键.9.B解析:B【分析】如图,证明△ABE∽△ACD,根据相似三角形的性质列式求解即可.【详解】解:如图,根据题意得,△ABE∽△ACD,∴AB BEAC CD∵AB=10m,BE=1.6m,CD=9.6m∴10 1.6=9.6AC∴AC=60m∴BC=AC-AB=60-10=50m故选:B.【点睛】此题主要考查了相似三角形的应用,善于观察题目的信息是解题以及学好数学的关键.10.C解析:C【分析】AB被截成三等分,可得AB=3AE,AF=2AE,由EH∥FG∥BC,可得△AEH∽△AFG∽△ABC,则S△AEH:S△AFG:S△ABC=AE2:AF2:AB2,S阴影= S△AFG- S△AEH =13S△ABC.【详解】∵AB被截成三等分,∴AB=3AE,AF=2AE,∵EH∥FG∥BC,∴△AEH ∽△AFG ∽△ABC ,∴S △AEH :S △AFG :S △ABC =AE 2:AF 2:AB 2=AE 2:(2AE )2:(3AE )2=1:4:9,∴S △AEH =19S △ABC , S △AFG =4 S △AEH , S 阴影= S △AFG - S △AEH =3 S △AEH =3×19 S △ABC =13S △ABC . 故选择:C .【点睛】 本题考查阴影部分面积问题,关键是利用相似三角形的面积比等于相似比的平方,找到阴影面积与△AEH 的关系,由△AEH 与△ABC 的关系来转化解决问题.11.C解析:C【分析】平行四边形的对边相等且平行,利用平行四边形的性质以及平行线的基本性质求解.【详解】解:∵平行四边形ABCD∴AD ∥CB ,AD=BC=4.∴∠CBE=∠AEB∵∠ABC 的平分线交AD 于点E∴∠ABE=∠CBE∴∠ABE=∠AEB∴AE=AB=7∴DE=AE-AD=7-3=4.∵AD ∥CB ,∴△DEF ∽△CBF ∴EF DE BF BC= ∴423EF = 即83EF = 故选:C .【点睛】 本题主要考查了平行四边形的性质和相似三角形的性质和判定,掌握相关知识是解题的关键.12.C解析:C【分析】若点P 是靠近点B 的黄金分割点,则12AP AB =,然后代入数据计算即可;若点P 是靠近点A 的黄金分割点,先求出BP ,再利用线段的和差即可求出AP .【详解】解:若P 是靠近点B 的黄金分割点,则)111222AP AB ==⨯=;若P 是靠近点A 的黄金分割点,则)111222BP AB ==⨯=,∴121AP AB BP =-=-=;故选:C .【点睛】本题主要考查了黄金分割,熟练掌握黄金分割比为12是解题的关键. 二、填空题13.22或8【分析】(1)运用中位线性质求解即可;(2)延长BQ 交射线EF 于M 根据三角形的中位线平行于第三边可得EF ∥BC 根据两直线平行内错角相等可得∠M=∠CBM 再根据角平分线的定义可得∠PBM=∠C解析:2 2或8【分析】(1)运用中位线性质求解即可;(2)延长BQ 交射线EF 于M ,根据三角形的中位线平行于第三边可得EF ∥BC ,根据两直线平行,内错角相等可得∠M=∠CBM ,再根据角平分线的定义可得∠PBM=∠CBM ,从而得到∠M=∠PBM ,根据等角对等边可得BP=PM ,求出EP+BP=EM ,再根据CQ=13CE 求出EQ=2CQ ,然后根据△MEQ 和△BCQ 相似,利用相似三角形对应边成比例列式求解即可.【详解】解:(1)∵E ,F 分别是AB ,AC 的中点 ∴1=2EF BC ∵BC=4∴EF=2;(2)如图,延长BQ 交射线EF 于M ,∵E 、F 分别是AB 、AC 的中点,∴EF ∥BC ,∴∠M=∠CBM ,∵BQ 是∠CBP 的平分线,∴∠PBM=∠CBM ,∴∠M=∠PBM ,∴BP=PM ,∴EP+BP=EP+PM=EM ,∵点Q 把线段EC 分成的两线段之比是1:2,∴CQ=13CE , ∴EQ=2CQ , 由EF ∥BC 得,△MEQ ∽△BCQ , ∴2EM EQ BC CQ==, ∴EM=2BC=2×4=8,即EP+BP=8,当CQ=2EQ 时,同法可得,EM=2,EP+PB=EM=2.故答案为:EP+BP=8或EP+PB=2.故答案为:2;8或2.【点睛】本题考查了三角形中位线定理、相似三角形的判定与性质,角平分线的定义,平行线的性质,延长BQ 构造出相似三角形,求出EP+BP=EM 并得到相似三角形是解题的关键,也是本题的难点.14.3:1【分析】根据在梯形ABCD 中AD ∥BC 易得△AOD ∽△COB 且S △COB :S △AOD=9:1可求=3:1则S △BOC :S △DOC=3:1【详解】解:根据题意AD ∥BC ∴△AOD ∽△COB ∵S △解析:3:1【分析】根据在梯形ABCD 中,AD ∥BC ,易得△AOD ∽△COB ,且S △COB :S △AOD =9:1,可求BO OD=3:1,则S △BOC :S △DOC =3:1.【详解】解:根据题意,AD ∥BC ,∴△AOD ∽△COB ,∵S △AOD :S △COB =1:9, ∴BO OD=3:1, 则S △BOC :S △DOC =3:1,故答案为:3:1.【点睛】本题考查了相似三角形的性质与判定,掌握相似三角形面积的比等于相似比的平方是解题的关键.15.()cm 【分析】利用黄金分割的定义计算出AP 【详解】为的黄金分割点故答案为:()cm 【点睛】此题考查黄金分割的定义黄金分割物体的较大部分等于与整体的解析:(4)cm【分析】利用黄金分割的定义计算出AP .【详解】 P 为AB 的黄金分割点()AP PB >,()84AP AB cm ∴===故答案为:(4)cm.【点睛】. 16.①②③【分析】根据正方形的性质菱形的判定等腰直角三角形的性质相似三角形的性质勾股定理一一判断即可【详解】解:如图∵四边形ABCD 为正方形∴∠AOB=90°∠BAO=∠OAD=∠ODA=45°∵折叠正解析:①②③【分析】根据正方形的性质、菱形的判定、等腰直角三角形的性质,相似三角形的性质,勾股定理一一判断即可.【详解】解:如图∵四边形ABCD 为正方形,∴∠AOB=90°,∠BAO=∠OAD=∠ODA=45°,∵折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的F 重合,∴∠1=∠2=12∠ODA=22.5°,EA=EF ,∠4=∠5,∠EFD=∠EAD=90°, ∴∠3=∠GAD+∠1=45°+22.5°=67.5°,即∠AGE=67.5°;故①正确,∵∠4=90°-∠1=67.5°,∴∠3=∠4=∠5,∴AE=AG=EF ,AG ∥EF ,∴四边形AEFG 为菱形;故②正确,∴GF ∥AB ,EF=GF ,∴∠6=∠7=45°,∴△BEF 和△OGF 都是等腰直角三角形,∴2,2OF ,∴22;故③正确,设OF=a ,则2a ,2a ,∴OB=2+1)a ,∴OD=2+1)a ,DF=DO+OF=(2)a ,∵∠DOG=∠DFE=90°,∴△DOG ∽△DFE ,22(21(),2(22)DOGDFE S DO S DF a ∆∆⎡⎤∴===+ ∴S △DOG :S 四边形OGEF =1:1.故④错误.故答案为①②③【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了正方形和等腰直角三角形的性质. 17.5【分析】设的半径为则由垂径定理得证明根据对应边成比例列式求出r 的值【详解】解:∵∴∵∴∴设的半径为则∵∴∴解得故答案是:5【点睛】本题考查圆的性质和相似三角形的性质和判定解题的关键是掌握圆周角定理解析:5【分析】设O 的半径为r ,则22CE r =-,由垂径定理得142AE BE AB ===,证明AEC DEB ,根据对应边成比例列式求出r 的值.【详解】 解:∵AB CD ⊥,∴90ACE DBE ∠=∠=︒,∵AEC DEB ∠=∠,∴AEC DEB , ∴AE EC DE EB=, 设O 的半径为r ,则22CE r =-,∵AB CD ⊥, ∴142AE BE AB ===, ∴42224r -=,解得=5r . 故答案是:5.【点睛】本题考查圆的性质和相似三角形的性质和判定,解题的关键是掌握圆周角定理和垂径定理,以及相似三角形对应边成比例的性质.18.35【分析】根据△ABC ∽△DEF 得到结合△ABC 的三边长分别为762△DEF 的两边分别为13可以得到△DEF 的两边13分别与△ABC 的两边26是对应边得到两三角形相似比为可以求出△DEF 的第三边【解析:3.5【分析】根据△ABC ∽△DEF ,得到AB AC BC DE DF EF==,结合△ABC 的三边长分别为7、6、2,△DEF 的两边分别为1、3,可以得到△DEF 的两边1、3分别与△ABC 的两边2,6是对应边,得到两三角形相似比为12,可以求出△DEF 的第三边. 【详解】解:∵要使△ABC ∽△DEF ,需AB AC BC DE DF EF==, ∵△ABC 的三边长分别为7、6、2,△DEF 的两边分别为1、3,∴△DEF 的两边1、3分别与△ABC 的两边2,6是对应边,∴两三角形相似比为12,∴△DEF 的第三边长为:7×12=3.5. 故答案为:3.5.【点睛】 本题考查了相似三角形的性质,根据两三角形相似,结合两三角形的线段长求出相似比是解题的关键.19.5【分析】首先由勾股定理求出AC 再证明得到进而列方程求解即可【详解】解析:5【分析】首先由勾股定理求出AC ,再证明~ABE CDE ∆∆,得到AB AE CD CE=,进而列方程求解即可.【详解】 90ACB ∠=︒,10AB =,6BC =,8AC ∴==,∴设AE x =,则8CE x =-, BD 平分ABC ∠,ABD DBC ∴∠=∠,又//AB CD ,ABD BDC ∴∠=∠,DBC BDC ∴∠=∠,6BC CD ∴==,//AB CD ,∴~ABE CDE ∆∆,AB AE CD CE∴= 1068x x∴=- 解得5x =,5AE ∴=故答案为:5.【点睛】此题主要考查了相似三角形和判定与性质,熟练掌握并能灵活运用相似三角形和判定与性质定理是解答此题的关键.20.【分析】由根据比例的性质即可求得的值【详解】解:∵∴=故答案为:【点睛】此题考查了比例的性质此题比较简单注意熟记比例变形解析:75 【分析】 由25x y =,根据比例的性质,即可求得x y y+的值. 【详解】 解:∵25x y = ∴x y y +=2+57=55. 故答案为:75. 【点睛】此题考查了比例的性质,此题比较简单,注意熟记比例变形.三、解答题21.(1)见解析;(2)见解析【分析】(1)根据相似三角形的判定,只需作出∠Bˊ=∠B 即可得到A B C ''';(2)先根据题意写出已知、求证,再根据相似三角形的性质和角平分线定义可证得ACD A C D '''∠=∠,进而可证得ACD A C D '''∽△△,则有CD AC C D A C=''''=k . 【详解】解:(1)如图所示,A B C '''即为所求.(2)已知:如图,ABC A B C '''∽△△,相似比为k ,CD 、C D ''分别平分ACB ∠,A C B '''∠,求证:CD AC k C D A C ==''''. 证明:∵ABC A B C '''∆∆∽,∴A A '∠=∠,ACB A C B '''∠=∠,AC k A C =''∵CD 、C D ''分别平分ACB ∠,A C B '''∠, ∴12ACD ACB ∠=∠,12A B C C D A '∠∠'='''', ∴ACD A C D '''∠=∠,∵A A '∠=∠,∴ACD A C D '''∽△△, ∴CD AC k C D A C ==''''. 【点睛】 本题考查了基本尺规作图-作与已知角相等的角、相似三角形的判定与性质,解答的关键是熟练掌握相似三角形的判定与性质,注意文字叙述性命题的证明格式.22.(1)①见解析;②2【分析】 (1)①依据∠ADB =∠CDA =90°,BD AD AD CD=,即可得到△ABD ∽△CAD ,再根据相似三角形的性质,即可得到∠BAC =90°; ②先判定四边形AEDF 是矩形,得出EF =AD ,再根据射影定理可得BD =2,最后根据勾股定理,求得Rt △ABD 中,AD EF =(2)根据勾股定理得到AC =AB =AE AF AC AB =,∠EAF =∠CAB ,即可判定△AEF ∽△ACB ,进而得出=EF AF BC AB ,即可得到EF =5. 【详解】(1)①证明:∵AD ⊥BC ,∴∠ADB =∠CDA =90°.∵AD 2 =BD ·DC , ∴BD AD AD CD=. ∴△ABD ∽ △CAD .∴∠BAD =∠C .又∵∠B +∠BAD =90° ,∴∠B +∠C =90°.∴∠BAC = 90°.②∵DE ⊥AB ,DF ⊥AC ,∠BAC =90°.∴∠EAF =∠AED =∠AFD =90°.∴四边形AEDF 是矩形.∴EF =AD .∵∠BAC =90°,AD ⊥BC ,∴AB 2=BD ⋅BC .∵AB =4,DC =6,即42=BD ⋅(BD +6).解得BD =2.∴Rt △ABD中,AD∴EF=(2)∵在Rt △ABD 中,AD =4,BD =2,∴AB =∵AD =4,DC =4,DF ⊥AC ,∴AC=.∴AF =12AC = ∵DE ⊥AB ,DF ⊥AC ,AD ⊥BC ,∴AD 2=AE ⋅AB ,AD 2=AF ⋅AC .∴AE ⋅AB =AF ⋅AC . 即AE AF AC AB=. 又∵∠EAF =∠CAB ,∴△AEF ∽△ACB . ∴=EF AF BC AB .∴6EF =.解得EF =5. 【点睛】本题主要考查了相似三角形的判定与性质,解题时注意:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,或依据基本图形对图形进行分解、组合.23.(1)作图见解析,()16,1A ;(2)作图见解析;(3)作图见解析,33A B 的长度为【分析】(1)先根据平移作图画出点111,,O A B ,再顺次连接即可得111O A B △,然后根据点坐标的平移变换规律即可得点1A 的坐标;(2)先根据关于原点对称的点坐标变换规律得出点22,A B 的坐标,再画出点22,A B ,然后顺次连接点22,,O A B 即可得;(3)先根据位似的性质得出33,A B 的坐标,再画出点33,A B ,然后顺次连接点33,,O A B 即可得33OA B ,最后利用两点之间的距离公式即可得33A B 的长度.【详解】(1)先画出点111,,O A B ,再顺次连接即可得111O A B △,如图所示:由点坐标的平移变换规律得:()115,34A +-+,即()16,1A ;(2)关于原点对称的点坐标变换规律:横、纵坐标均互为相反数,()()1,3,4,0A B -,()()221,3,4,0A B ∴--,先画出点22,A B ,再顺次连接点22,,O A B 即可得22OA B △,如图所示:(3)()()1,3,4,0A B -,()()3312,32,42,02A B ⨯-⨯⨯⨯∴,即()()332,6,8,0A B -, 2332(82)(06)62A B ∴=-++=, 先画出点33,A B ,再顺次连接点33,,O A B 即可得33OA B ,如图所示:【点睛】本题考查了平移作图、关于原点对称的点坐标变换规律、位似画图等知识点,熟练掌握各画图方法和点坐标的变换规律是解题关键.24.(1)见详解;(2)63【分析】(1)根据四边形ABCD 内接于O ,∠BCD+∠ECD=180°,得出∠BAD=∠ECD ,再根据AB=EB,可得∠BED=∠ECD,即可得证;(2)连接OD,先求出AE,然后证明△BAE∽△DCE,根据CEAE=DEBE,即CE AE =DEBC+CE,求出BC,即可求出答案.【详解】(1)∵四边形ABCD内接于O,∴∠BAD+∠BCD=180°,∵∠BCD+∠ECD=180°,∴∠BAD=∠ECD,∵AB=EB,∴∠BAD=∠BED,∴∠BED=∠ECD,∴DC=DE;(2)连接OD,∵OA=OD,∴∠OAD=∠ODA,又∵∠BAE=∠E,∴∠ODA=∠E,∴OD∥BE,∵O是AB中点,∴D为AE中点,∴DA=DE=6,∴AE=12,∵∠BAD=∠ECD,∠E=∠E,∴△BAE∽△DCE,∴CEAE =DE BE,∴CEAE =DEBC+CE,43BC+43解得BC=23∴BE=BC+CE=63,∴AB=BE=63.【点睛】本题考查了等腰三角形的性质,圆的内接四边形的性质,相似三角形的判定和性质,中位线的性质,掌握这些知识点灵活运用是解题关键.25.(1)B;(2)C;应用:7.【分析】(1)由已知AD是△ABC的中线,和作图延长AD到点E,使DE=AD,CD=BD, ∠ADC=∠EDB, AD=DE得到△ADC≌△EDB(SAS) 即可,(2) 由△ADC≌△EDB,则BE=AC=6,AE=2AD,AB=8,在ΔABE中,AB-BE<AE<AB+BE,即则2<2AD<14即可,【灵活运用】延长AD到G,使DG=AD,连接BG,由(1)知△ADC≌△GDB,BG=AC=AE+EC=7∠G=∠DAC可以判定BG∥AC,由∠BFG=∠AFE,得ΔGBF∽ΔAEF,由性质BG BF.AE EF【详解】(1)由已知AD是△ABC的中线,和作图延长AD到点E,使DE=AD,CD=BD, ∠ADC=∠EDB, AD=DE得到△ADC≌△EDB(SAS)故选择:B,(2) 由△ADC≌△EDB,则BE=AC=6,AE=2AD,AB=8,在ΔABE中,AB-BE<AE<AB+BE,即AB-BE=8-6=2,AB+BE=14,则2<2AD<14,1<AD<7故选择:C,灵活运用延长AD到G,使DG=AD,连接BG,由(1)知△ADC≌△GDB,BG=AC=AE+EC=7,∠G=∠DAC,BG∥AC,∠BFG=∠AFE,ΔGBF∽ΔAEF,BG BF AE EF =, 744BF =, BF=7.【点睛】本题考查中线加倍问题,由中线加倍,利用SAS 推出三角形全等,把问题转化为三角形中的问题,用三角形的三边关系,确定取值范围,由△ADC ≌△GDB ,∠G=∠DAC 可以判定BG ∥AC ,由∠BFG=∠AFE ,得ΔGBF ∽ΔAEF ,用相似三角形的性质解决问题. 26.23.04【分析】根据正方形的性质得到DG ∥BC ,推出△ADG ∽△ABC ,利用相似三角形对应边上高的比等于相似比,列方程求解即可.【详解】解:设正方形DEFG 的边长为x ,DE =DG =x .∵四边形DEFG 为正方形 ∴DG ∥BC ,∠DEC =90︒∴△ADG ∽△ABC∴12AM AH DG x BC == 又∵ AB =AC =10,BC =12,AH ⊥BC ∴ BH =12BC =6,∠DEC =∠AHC =90︒ 在Rt △ABH 中,根据勾股定理得AH 22221068AB BH -=-=∴AM =AH -MH =AH -DE =8-x∴88AM x AH -= ∴8128x x -=,解得x =4.8∴S正方形DEFG=x2=23.04【点睛】本题考查了相似三角形的判定与性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程.。
(常考题)人教版初中数学九年级数学下册第二单元《相似》测试卷(包含答案解析)
一、选择题1.如图,在△ABC 中,DE ∥BC ,∠ADE =∠EFC ,AD:BD=5:3,CF =6,则DE 的长为( )A .6B .8C .10D .12 2.如图,在四边形ABCD 中,//AD BC ,如果添加下列条件,不能使得△ABC ∽△DCA 成立的是( )A .∠BAC =∠ADCB .∠B =∠ACDC .AC 2=AD •BC D .DC AB AC BC = 3.如图,一次函数y =﹣2x +10的图象与反比例函数y =k x(k >0)的图象相交于A 、B 两点(A 在B 的右侧),直线OA 与此反比例函数图象的另一支交于另一点C ,连接BC 交y 轴于点D ,若52BC BD =,则△ABC 的面积为( )A .12B .10C .9D .84.如图,比例规是伽利略发明的一种画图工具,使用它可以把线段按一定比例伸长或缩短,它是由长度相等的两脚AD 和BC 交叉构成的.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使3OA OD =,3OB OC =),然后张开两脚,使A 、B 两个尖端分别在线段I 的两个端点上.若12AB cm =,则CD 的长是( )A .3cmB .4cmC .6cmD .8cm5.如图,在矩形、三角形、正五边形、菱形的外边加一个宽度一样的外框,保证外框的边界与原图形对应边平行,则外框与原图一定相似的有( )A .1个B .2个C .3D .4个6.如图,在Rt ABC 中,90,ACB AC BC ∠==,点D 、E 在AB 边上,45DCE ∠=,若3,4AD BE ==,则ABC ∣的面积为( )A .20B .24C .32D .367.下列条件中,不能判断△ABC 与△DEF 相似的是( )A .∠A =∠D ,∠B =∠FB .BC AC EF DF =且∠B =∠D C .AB BC AC DE EF DF== D .AB AC DE DF =且∠A =∠D 8.如果两个相似三角形的对应高之比是1:2,那么它们的周长比是( )A .1:2B .1:4C .2D .2:19.如图,地面上点A 处有一只兔子,距它10米的B 处有一根高1.6米的木桩,大树、木桩和兔子刚好在一条直线上.一只老鹰在9.6米高的树顶上刚好看见兔子,则大树C 离木桩B( )米.A .60B .50C .40D .4510.大自然巧夺天工,一片小心树叶也蕴含着“黄金分割”.如图,P 为AB 的黄金分割点(AP >PB ),如果AP 的长度为8cm ,那么AB 的长度是( )A .45-4B .12-45C .12+45D .45+4 11.如图,要使ABC ACD ∆∆,需补充的条件不能是( )A .ADC ACB ∠=∠B .ABC ACD ∠=∠ C .AD AC AC AB= D .AD BC AC DC ⋅=⋅ 12.如图,11AOB 与22A OB 位似,位似中心为O 且11AOB 与22A OB 在原点O 的两侧,若11AOB 与22A OB 的周长之比为1:2,点1A 的坐标为()1,2-,则点1A 的对应点2A 的坐标为( )A .()1,4-B .()2,4-C .()4,2-D .()2,1-二、填空题13.如图所示,在ABC ∆中,4BC =,E ,F 分别是AB ,AC 的中点.(1)线段EF 的长为_____;(2)若动点P 在直线EF 上,CBP ∠的平分线交CE 于点Q ,当点Q 把线段EC 分成的两线段之比是1∶2时,线段EP 、BP 之间的数量关系满足EP BP +=_____.14.如图,在平行四边形ABCD 中,E 在AD 上,21AE ED =,CE 交BD 于F ,则:BCF DCF S S =△△__________.15.如图,在四边形ABCD 中,AC 平分∠BAD ,AD=AC ,以A 为圆心,AB 长为半径画弧,交AC 于点E ,连接DE 、BE ,并延长BE 交CD 于点F ,下列结论:①△BAC ≌ △EAD ,②BC+CF=DE+EF ,③∠ABE+∠ADE=∠BCD ,其中正确的有____(填序号)16.贺哲同学的身高1.86米,影子长3米,同一时刻金老师的影子长2.7米,则金老师的身高为________米(结果保留两位小数)。
(常考题)人教版初中数学九年级数学下册第二单元《相似》测试(含答案解析)(4)
一、选择题1.如图,在四边形ABCD 中,//AD BC ,如果添加下列条件,不能使得△ABC ∽△DCA 成立的是( )A .∠BAC =∠ADCB .∠B =∠ACDC .AC 2=AD •BCD .DC ABAC BC= 2.如图,在平面直角坐标系中,矩形ABCO 的边CO 、OA 分别在x 轴、y 轴上,点E在边BC 上,将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若()0,8A ,4CF =,则点E 的坐标是( )A .()8,4-B .()10,3-C .()10,4-D .()8,3-3.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上.若光源到幻灯片的距离为30cm ,光源到屏幕的距离为90cm ,且幻灯片中的图形的高度为7cm ,则屏幕上图形的高度为( )A .21cmB .14cmC .6cmD .24cm4.如图,在ABC ,AB AC a ==,点D 是边BC 上的一点,且BD a =,1AD DC ==,则a 等于( )A 51+ B 51- C .1D .25.如图,地面上点A 处有一只兔子,距它10米的B 处有一根高1.6米的木桩,大树、木桩和兔子刚好在一条直线上.一只老鹰在9.6米高的树顶上刚好看见兔子,则大树C 离木桩B( )米.A .60B .50C .40D .456.△ABC 与△DBC 如图放置,已知,∠ABC =∠BDC =90°,∠A =60°,BD =CD =22,将△ABC 沿BC 方向平移至△A'B'C'位置,使得A'C 边恰好经过点D ,则平移的距离是( )A .1B .22﹣2C .23﹣2D .26﹣47.如图,直线l 1//l 2//l 3,分别交直线m 、n 于点A 、B 、C 、D 、E 、F .若AB ∶BC =5∶3,DE =15,则EF 的长为( )A .6B .9C .10D .258.如图,正方形ABCD 中,ABC 绕点A 逆时针旋转到AB C ''△,AB '、AC '分别交对角线BD 于点E 、F ,若4AE =,则EF ED ⋅的值为( )A .4B .6C .8D .169.如图,在△ABC 中,AB =AC=5,BC =5O 为△ABC 三条高的交点,则OA 的长度为( )A .352B .253C .5D .35410.已知P 是线段AB 的黄金分割点,且51AB =+,则AP 的长为( ).A .2B .51-C .2或51-D .35-11.下列判断中,不正确的有( ) A .三边对应成比例的两个三角形相似B .两边对应成比例,且有一个角相等的两个三角形相似C .有一个锐角相等的两个直角三角形相似D .有一个角是100°的两个等腰三角形相似 12.如图,在△ABC 中,DE ∥BC ,12AD BD =,则AEEC=( )A .13B .12C .23D .32二、填空题13.如图,在矩形纸片ABCD 中,AB=6,BC=10,点E 在CD 上,将△BCE 沿BE 折 叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,有下列结论:①∠EBG=45°;②△DEF ∽△ABG ;③S △ABG = 1.5 S △FGH ;④AG+DF=FG ;其中正确的是______________.(填写正确结论的序号)14.如图所示,在ABC ∆中,4BC =,E ,F 分别是AB ,AC 的中点.(1)线段EF 的长为_____;(2)若动点P 在直线EF 上,CBP ∠的平分线交CE 于点Q ,当点Q 把线段EC 分成的两线段之比是1∶2时,线段EP 、BP 之间的数量关系满足EP BP +=_____.15.如图,BD 、CE 是锐角ABC 的两条高线,则图中与BOE △相似三角形有______个.16.下列五组图形中,①两个等腰三角形;②两个等边三形;③两个菱形;④两个矩形;⑤两个正方形.一定相似的有_______(填序号)17.如图,直线////a b c ,直线m ,n 分别与a ,b ,c 相交于点A ,B ,C ,D ,E ,F ,若2AB =,3BC =,3DE =,则EF =_______.18.已知梯形的上下两底长度为4和6,将两腰延长交于一点,这个交点到两底边的距离之比是_____.19.如图,在Rt ABC ∆中,90ACB ∠=︒,//CD AB ,ABC ∠的平分线BD 交AC 于点E ,若10AB =,6BC =,则AE =_______.20.若233a b c==,且233a b c ++=,则a b c -+=__________. 三、解答题21.如图在ABCD 中,点E 是BA 延长线上的点,过E 、A 、C 三点作O 分别交BC于点F ,交AD 于点G ,直径EC EB =. (1)证明:EC 平分BCG ∠;(2)若6GC =,3HC EH =,求AG 的长度.22.在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,2A -,()2,1B -,()4,3C -.(1)画出ABC 关于x 轴对称的111A B C △;(2)以点O 为位似中心,在网格中画出111A B C △的位似图形222A B C △,使222A B C △与111A B C △的相似比为2:1;(3)设点(),P a b 为ABC 内一点,则依上述两次变换后点P 在222A B C △内的对应点2P 的坐标是______.23.如图,在△ABC 中,AB =23,AC 43=,点D 在AC 上,且AD =12AB , (1)用尺规作图作出点D(保留作图痕迹,不必写作法); (2)连接BD ,并证明:△ABD ∽△ACB .24.已知平行四边形ABCD 中6AB =,AE 与BC 延长线相交于E 、与CD 相交于F ,2EF AF =, 求FD 的长度.25.如图是一块三角形钢材ABC ,其中边60cm BC =,高40cm AD =,把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB ,AC 上,这个正方形零件的边长是多少?26.定义:有一组对角互补的四边形叫做互补四边形.(1)在互补四边形ABCD 中,A ∠与C ∠是一组对角,若::2:3:4,B C D ∠∠∠=则A ∠= °(2)如图,在ABC 中,点,D E 分别在边,AB BC 上,且,BE BC AB BD ⋅=⋅求证:四边形ADEC 是互补四边形.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用相似三角形的判定定理,在AD ∥BC ,得∠DAC =∠BCA 的前提下,需添加一角或夹这角的两边对应成比例进行排查即可.【详解】 解:A .∵AD ∥BC ,∴∠DAC =∠BCA ,当∠BAC =∠ADC 时,则△ABC ∽△DCA ;B .∵AD ∥BC ,∴∠DAC =∠BCA ,当∠B =∠ACD 时,则△ABC ∽△DCA ; C .∵AD ∥BC ,∴∠DAC =∠BCA ,由AC 2=AD •BC 变形为AC ADBC AC=,则△ABC ∽△DCA ; D .∵AD ∥BC ,∴∠DAC =∠BCA ,当DC ABAC BC=时,不能判断△ABC ∽△DCA . 故选择:D . 【第讲】本题考查三角形相似问题,掌握相似三角形的判定定理,会根据判定定理进行添加条件使三角形相似解题关键.2.B解析:B 【分析】根据题意可求得CE 、OF 的长度,根据点E 在第二象限,从而可以得到点E 的坐标. 【详解】解:∵四边形ABCO 是矩形 ∴90ECF FOA B ∠=∠=∠=︒∵将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若()0,8A ∴90AFE B ∠=∠=︒∴90CEF CFE OFA CFE ∠+∠=∠+∠=︒ ∴CEF OFA ∠=∠ ∴Rt ECF Rt FOA ∽根据题意可设CE x =,则8BE x =-,则8BE x =- ∵4CF =∴在Rt ECF △中,()22248x x +=-∴3x =根据题意可设OF y = ∵Rt ECF Rt FOA ∽ ∴CE CFOF OA= ∴348y = ∴6y = ∴6OF =∴10CO CF OF =+=∴点E 的坐标为()10,3-. 故选:B 【点睛】本题考查了勾股定理、矩形的性质、翻折变换、坐标与图形变化(轴对称)、相似三角形的判定和性质等知识点,解题的关键是明确题意找出所求问题需要的条件,利用数形结合的思想进行解答.3.A解析:A 【分析】根据题意可画出图形,再根据相似三角形的性质对应边成比例解答即可. 【详解】解:如图所示,∵DE ∥BC ,∴△AED ∽△ABC , ∴AE DEAC BC=, 设屏幕上的图形高是x cm ,则30790x=, 解得:x=21.答:屏幕上图形的高度为21cm , 故选:A . 【点睛】本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.4.A解析:A 【分析】证明△ABC ∽△DAC 得AB BCDA AC=,然后列方程求解即可. 【详解】解:∵AB AC a ==, ∴∠B=∠C又∵1AD DC ==, ∴∠C=∠DAC ∴△ABC ∽△DAC∴AB BCDA AC = ∴11a a a+= 解得,152a +=或152a (舍去)故选:A 【点睛】本题考查了相似三角形的判定与性质,解题的关键是理解题意,灵活运用所学知识解决问题.5.B解析:B 【分析】如图,证明△ABE ∽△ACD ,根据相似三角形的性质列式求解即可. 【详解】 解:如图,根据题意得,△ABE ∽△ACD , ∴AB BEAC CD= ∵AB=10m ,BE=1.6m ,CD=9.6m∴10 1.6=9.6AC ∴AC=60m∴BC=AC-AB=60-10=50m 故选:B . 【点睛】此题主要考查了相似三角形的应用,善于观察题目的信息是解题以及学好数学的关键.6.C解析:C 【分析】过点D 作DJ ⊥BC 于J ,根据勾股定理求出BC ,利用等腰直角三角形的性质求出DJ 、BJ 、JC ,利用平行线分线段成比例定理求出JC′即可解决问题. 【详解】解:过点D 作DJ ⊥BC 于J .∵DB =DC =2,∠BDC =90°, ∴BC ()()222222+4,DJ =BJ =JC =2,∵∠ABC =90°,∠A =60°, ∴∠ACB =30°, ∴AC=2AB , ∵AB 2+42=(2AB)2, ∴A′B′=AB 43, ∵DJ//A′B′,∴DJ A B ''=C J C B''', ∴434C J ',∴C′J =3 ∴JB′=4﹣3∴BB′=2﹣(4﹣3=3﹣2. 故选:C . 【点睛】本题考查了平移的性质,直角三角形的性质,等腰三角形的性质,勾股定理,以及平行线分线段成比例定理.7.B解析:B 【分析】根据平行线分线段成比例定理列出比例式,代入计算得到答案. 【详解】解:∵l 1∥l 2∥l 3,DE=15,∴53DE AB EF BC ==,即1553EF =, 解得,EF=9, 故选:B . 【点睛】本题考查了平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键. 8.D解析:D【分析】先根据正方形的性质、旋转的性质可得45EAF EDA ∠=∠=︒,再根据相似三角形的判定与性质即可得.【详解】四边形ABCD 是正方形,45BAC EDA ∴∠=∠=︒,由旋转的性质得:B AC BAC ''∠=∠,B AC EDA ''∴∠=∠,即EAF EDA ∠=∠,在AEF 和DEA △中,EAF EDA AEF DEA ∠=∠⎧⎨∠=∠⎩, AEF DEA ∴~, EF AE AE DE ∴=,即44EF DE=, 16EF DE ∴⋅=,故选:D .【点睛】本题考查了正方形的性质、旋转的性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.9.A解析:A【分析】设BC 边上的高为AD ,结合三角形高线的性质及等腰三角形的性质证明△OBD ∽△BAD ,可得BD:AD=OD:BD ,利用勾股定理可求解AD 的长,进而可求解OD 的长.【详解】解:如图,设BC 边上的高为AD ,∵点O 为△ABC 三条高的交点,∴AD ⊥BC ,BO ⊥AC ,∴∠ADB=90°,∠OBC+∠C=90°,∴∠CAD+∠C=90°,∴∠OBD=∠CAD ,∵AB=AC ,∴D 为BC 的中点,∠BAD=∠CAD ,∴∠OBD=∠BAD ,∴△OBD ∽△BAD ,∴BD:AD=OD:BD ,∵BC=∴在Rt △ABD 中,AB=5,∴==∴OD =,解得∴OA=AD−OD=2=, 故选A .【点睛】 本题主要考查等腰三角形的性质,三角形的高线,相似三角形的性质与判定,勾股定理等知识的综合运用 .10.C解析:C【分析】若点P 是靠近点B 的黄金分割点,则AP AB =,然后代入数据计算即可;若点P 是靠近点A 的黄金分割点,先求出BP ,再利用线段的和差即可求出AP .【详解】解:若P 是靠近点B 的黄金分割点,则)12AP AB ===;若P 是靠近点A 的黄金分割点,则)12BP AB ===,∴121AP AB BP =-=-=;故选:C .【点睛】是解题的关键. 11.B解析:B【分析】由相似三角形的判定依次判断可求解.【详解】解:A 、三边对应成比例的两个三角形相似,故A 选项不合题意;B 、两边对应成比例,且夹角相等的两个三角形相似,故B 选项符合题意;C 、有一个锐角相等的两个直角三角形相似,故C 选项不合题意;D 、有一个角是100°的两个等腰三角形,则它们的底角都是40°,所以有一个角是100°的两个等腰三角形相似,故D 选项不合题意;故选:B .【点睛】本题考查了相似三角形的判定,熟练运用相似三角形的判定是本题的关键.12.B解析:B【分析】直接利用平行线分线段成比例定理得出答案即可.【详解】解:∵DE ∥BC , ∴AE EC =12AD BD =. 故选:B .【点睛】 本题考查了平行线分线段成比例定理,了解定理的内容是解答此题的关键.二、填空题13.①③④【分析】根据矩形的性质和折叠的性质可知DF 的长度利用勾股定理可求出AGGFGHHF 的长度结合题意逐个判断即可【详解】①:根据题意可知∴即故①正确;②:∴∴∴∵∴设AG=x 则GH=xGF=8-x解析:①③④【分析】根据矩形的性质和折叠的性质,可知45EBF GBH ∠+∠=︒,DF 的长度.利用勾股定理可求出AG 、GF 、GH 、HF 的长度,结合题意逐个判断即可.【详解】①:根据题意可知EBC EBF ∠=∠,GBA GBH ∠=∠,90EBC EBF GBA GBH ∠+∠+∠+∠=︒,∴45EBF GBH ∠+∠=︒,即45EBG ∠=︒.故①正确;②:90EFD AFB ∠+∠=︒,90ABF AFB ∠+∠=︒,∴EFD ABF ∠=∠,∴ABF DFE , ∴AB AF DF DE=,∵8AF ===, ∴8463DE AF DF AB ===.设AG =x ,则GH =x ,GF =8-x ,HF =BF -BH =10-6=4.又∵在Rt GHF 中,222GH HF GF +=,∴2224(8)x x +=-解得x =3,即AG =3, ∴623AB AG ==. ∴AB DE AG DF≠ 故DEF 和△ABG 不相似.故②错误;③:由②得GH =3,1163922ABG S AB AG ==⨯⨯=,1134622GFH S GH HF ==⨯⨯=. ∴:9:6 1.5ABG GFH S S ==.故③正确.④:DF =10-8=2,由②可知AG +DF =3+2=5,GF =8-3=5.∴AG +DF =GF .故④正确.故答案为①③④.【点睛】本题考查折叠的性质、矩形的性质、三角形相似的判定和性质结合勾股定理来解题.本题利用勾股定理计算出AG 的长度是解题的关键.14.22或8【分析】(1)运用中位线性质求解即可;(2)延长BQ 交射线EF 于M 根据三角形的中位线平行于第三边可得EF ∥BC 根据两直线平行内错角相等可得∠M=∠CBM 再根据角平分线的定义可得∠PBM=∠C解析:2 2或8【分析】(1)运用中位线性质求解即可;(2)延长BQ 交射线EF 于M ,根据三角形的中位线平行于第三边可得EF ∥BC ,根据两直线平行,内错角相等可得∠M=∠CBM ,再根据角平分线的定义可得∠PBM=∠CBM ,从而得到∠M=∠PBM ,根据等角对等边可得BP=PM ,求出EP+BP=EM ,再根据CQ=13CE 求出EQ=2CQ ,然后根据△MEQ 和△BCQ 相似,利用相似三角形对应边成比例列式求解即可. 【详解】解:(1)∵E ,F 分别是AB ,AC 的中点∴1=2EF BC ∵BC=4∴EF=2;(2)如图,延长BQ 交射线EF 于M ,∵E 、F 分别是AB 、AC 的中点,∴EF ∥BC ,∴∠M=∠CBM ,∵BQ 是∠CBP 的平分线,∴∠PBM=∠CBM ,∴∠M=∠PBM ,∴BP=PM ,∴EP+BP=EP+PM=EM ,∵点Q 把线段EC 分成的两线段之比是1:2,∴CQ=13CE , ∴EQ=2CQ , 由EF ∥BC 得,△MEQ ∽△BCQ , ∴2EM EQ BC CQ==, ∴EM=2BC=2×4=8,即EP+BP=8,当CQ=2EQ 时,同法可得,EM=2,EP+PB=EM=2.故答案为:EP+BP=8或EP+PB=2.故答案为:2;8或2.【点睛】本题考查了三角形中位线定理、相似三角形的判定与性质,角平分线的定义,平行线的性质,延长BQ 构造出相似三角形,求出EP+BP=EM 并得到相似三角形是解题的关键,也是本题的难点.15.3【分析】根据∠BEO=∠CDO=90°可证同理可证从而得出答案;【详解】是的高又∵综上与相似的三角形有3个故答案为:3【点睛】本题考查了相似三角形的判定解题的关键是找出两个对应角相等即可;解析:3【分析】根据∠BEO=∠CDO=90°,BOE COD ∠=∠可证BOE COD ∽△△,同理可证BOE CAE ∽△△,BOE BAD ∽△△,从而得出答案;【详解】 BD ,CE 是ABC 的高,90BEO CEA BDC BDA ∴∠=∠=∠=∠=︒,BEO CDO ∠=∠,BOE COD ∠=∠,BOE COD ∴∽△△,90EBO A ∠+∠=︒,90ACE A ∠+∠=︒,EBO ECA ∴∠=∠,又∵BEO CEA ∠=∠,BOE CAE ∴∽△△,BEO BDA ∠=∠,∠=∠OBE ABD ,BOE BAD ∴∽△△,综上与BOE △相似的三角形有3个.故答案为:3.【点睛】本题考查了相似三角形的判定,解题的关键是找出两个对应角相等即可;16.②⑤【分析】根据相似图形的性质对各个选项逐个分析即可得到答案【详解】两个等腰三角形的顶角不一定相等故不一定相似;两个等边三角形一定相似;两个菱形的内角不一定相等故不一定相似;两个矩形的相邻边长比例不解析:②⑤【分析】根据相似图形的性质对各个选项逐个分析,即可得到答案.【详解】两个等腰三角形的顶角不一定相等,故不一定相似;两个等边三角形一定相似;两个菱形的内角不一定相等,故不一定相似;两个矩形的相邻边长比例不一定相等,故不一定相似;两个正方形一定相似;故答案为:②⑤.【点睛】本题考查了图形相似的知识;解题的关键是熟练掌握相似图形的性质,从而完成求解. 17.【分析】根据平行线分线段成比例定理得到然后根据比例的性质求EF 的长【详解】解:∵直线a ∥b ∥c ∴即∴EF=故答案为:【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线所得的对应线段成比例 解析:92【分析】根据平行线分线段成比例定理得到AB DE BC EF =,然后根据比例的性质求EF 的长. 【详解】解:∵直线a ∥b ∥c ,∴AB DE BC EF=,即23=3EF , ∴EF=92. 故答案为:92. 【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例. 18.2:3【分析】首先根据题意画出图形由题意易得△EAD ∽△EBC 然后由相似三角形对应高的比等于相似比求得答案【详解】解:如图梯形ABCD 中AD ∥BCAD =4BC =6∴△EAD ∽△EBC ∵EN ⊥BC ∴E解析:2:3【分析】首先根据题意画出图形,由题意易得△EAD ∽△EBC ,然后由相似三角形对应高的比等于相似比,求得答案.【详解】解:如图,梯形ABCD 中,AD ∥BC ,AD =4,BC =6,∴△EAD ∽△EBC ,∵EN ⊥BC ,∴EN ⊥AD ,∴EM :EN =AD :BC =4:6=2:3,即这个交点到两底边的距离之比是:2:3.故答案为:2:3.【点睛】本题考查了相似三角形的判断和性质.注意根据题意画出图形,结合图形求解是关键. 19.5【分析】首先由勾股定理求出AC 再证明得到进而列方程求解即可【详解】解析:5【分析】首先由勾股定理求出AC ,再证明~ABE CDE ∆∆,得到AB AE CD CE=,进而列方程求解即可.【详解】 90ACB ∠=︒,10AB =,6BC =,8AC ∴==,∴设AE x =,则8CE x =-, BD 平分ABC ∠,ABD DBC ∴∠=∠,又//AB CD ,ABD BDC ∴∠=∠,DBC BDC ∴∠=∠,6BC CD ∴==,//AB CD ,∴~ABE CDE ∆∆,AB AE CD CE∴= 1068x x∴=- 解得5x =,5AE ∴=故答案为:5.【点睛】此题主要考查了相似三角形和判定与性质,熟练掌握并能灵活运用相似三角形和判定与性质定理是解答此题的关键.20.66【分析】设a=2kb=3kc=3k 代入求出k 值进而求得abc 然后代入所求代数式中求解即可【详解】解:由可设a=2kb=3kc=3k 代入得:4k+3k+3k=33解得:k=33∴a=66b=c=9解析:6.6【分析】设a=2k ,b=3k ,c=3k ,代入233a b c ++=,求出k 值,进而求得a 、b 、c ,然后代入所求代数式中求解即可.【详解】 解:由233a b c ==可设a=2k ,b=3k ,c=3k , 代入233a b c ++=得:4k+3k+3k=33,解得:k=3.3,∴a=6.6,b=c=9.9,∴a b c-+=a=6.6,故答案为:6.6.【点睛】本题考查了比例的性质、代数式求值,熟练掌握比例的性质,巧妙设参是解答的关键.三、解答题21.(1)见详解;(2)9【分析】(1)连接EF,EG,先推出BF=CF=12BC,再证明HF=CF=GC,即证明四边形CFHG为菱形,即可证明结论;(2)根据平行线分线段成比例定理可得1==3EH AHHC HD,由(1)知Rt△EFC≌Rt△EGC,求出AH,根据GH=GC=6,即可得出答案.【详解】(1)连接EF,EG,∵CE是O的直径,∴∠EFC=∠EGC=90°,又∵EC=EB,EF⊥BC,∴F为BC中点,即BF=CF=12BC,连接BH,FH,AC,则∠CAE=90°,即AC⊥EB,由对称可知:BH⊥EC,∴在Rt△BHC中,F为BC中点,∴HF=12BC,∴HF=CF=GC,∴四边形CFHG为菱形,∴CE为∠BCG的平分线;(2)∵AB∥CD,∴1==3 EH AHHC HD,由(1)知Rt△EFC≌Rt△EGC,∴FC=GC=6,∴BC=AD=2FC=12,∴AH=14AD=3, 又GH=GC=6, ∴AG=AH+GH=3+6=9.【点睛】本题考查了菱形的判定,平行线分线段成比例定理,圆的性质,掌握这些知识灵活运用是解题关键.22.(1)见解析;(2)见解析;(3)()2,2a b -.【分析】(1)先根据关于x 轴对称的点的坐标特征描出A 1、B 1、C 1,然后再顺次连接即可; (2)先根据关于原点为位似中心的对应点的坐标之间的关系,把点A 1、B 1、C 1的横纵坐标都扩大2倍得到A 2、B 2、C 2的坐标,然后描点,最后顺次连接即可;(3)利用(1)、(2)中的坐标变换规律求解即可.【详解】解:(1)如图,△A 1B 1C 1即为所求图形;(2)如图,△A 2B 2C 2即为所求图形;(3)根据(1)(2)的变换规律可得:2P (2a ,-2b ).【点睛】本题主要考查了轴对称变换和位似变换,掌握作轴对称图形和位似图形的的步骤成为解答本题的关键.23.(1)见解析;(2)见解析【分析】(1)先尺规作线段AB 的垂直平分线,再以点A 为圆心,以AB 的一半作弧,与AC 的交点即为点D 的位置;(2)根据两边成比例且夹角相等证明即可.【详解】解:(1)点D 的位置如图所示:(2)∵31231,222343AD AB AB AC ====,且∠A=∠A , ∴△ABD ∽△ACB .【点睛】本题考查了线段垂直平分线的尺规作图和相似三角形的判定,熟练掌握上述知识是解题的关键.24.2FD =【分析】先根据平行四边形的性质得出AD ∥BE ,AB=CD=6,再根据平行线的性质得出∠DAE=∠AEB ,∠D=∠ECF ,根据相似三角形的判定定理可知△AFD ∽△EFC ,进而得到FD 的长.【详解】证明:∵四边形ABCD 是平行四边形,∴//AD BE ,6AB CD ==,∴DAE AEB ∠=∠,DCE D ∠=∠,∴ADF ECF , ∴12AF DF FE FC ==, ∴2FD =.【点睛】本题考查的是平行四边形的性质及相似三角形的判定与性质,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合.25.24cm【分析】设正方形零件的边长为cm x .则 c m EG EF x ==,由题意易得KD EG x ==,进而可得AEF ABC ∽,然后根据相似三角形的性质可求解.【详解】解:设正方形零件的边长为cm x .则 c m EG EF x ==,由题可知,四边形KEGD 是矩形,∴KD EG x ==,∵AD AK KD =+,40AD =,∴40AK x =-,∵AD BC ⊥,∴90ADB ∠=︒,∵四边形EGHF 为正方形,∴//BC EF ,∴90AKE ∠=︒,∴AK EF ⊥,∵//BC EF ,∴AEF ABC ∽, ∴EF AK BC AD=, ∴406040x x -=, 解得24x =.即()24cm EG =,答:正方形零件的边长为24cm .【点睛】本题主要考查相似三角形的应用,熟练掌握相似三角形的性质与判定是解题的关键. 26.(1)90;(2)见解析【分析】(1)根据互补四边形的定义得到180A C ∠+∠=︒,由四边形内角和得180B D ∠+∠=︒,根据三个角的比例,列式求出各个角的度数;(2)根据两组对应边成比例且夹角相等,证明BDE BCA ,得到BED A ∠=∠,可以证明180A CED ∠+∠=︒,就可以证明四边形ADEC 是互补四边形.【详解】(1)∵四边形ABCD 是互补四边形,且A ∠与C ∠是一组对角,∴180A C ∠+∠=︒,∵四边形内角和是360︒,∴180B D ∠+∠=︒,∵::2:3:4B C D ∠∠∠=,∴设2B x ∠=,3C x ∠=,4D x ∠=,24180x x +=︒,解得30x =︒,∴390C x ∠==︒,则1809090A ∠=-=︒︒︒,故答案是:90;(2)∵BE BC AB BD ⋅=⋅, ∴BE BD AB BC=,∵B B ∠=∠,∴BDE BCA ,∴BED A ∠=∠, ∴180A CED BED CED ∠+∠=∠+∠=︒, ∴四边形ADEC 是互补四边形.【点睛】 本题考查相似三角形的性质和判定,解题的关键是掌握相似三角形的性质和判定.。
(常考题)人教版初中数学九年级数学下册第二单元《相似》测试卷(答案解析)
一、选择题1.如图,已知点D ,E 是AB 的三等分点,DF ,EG 将ABC 分成三部分,且////DF EG BC ,图中三部分的面积分别为1S ,2S ,3S ,则123::S S S 的值为( )A .1:2:3B .1:2:4C .1:3:5D .2:3:4 2.如图,在△ABC 中,DE ∥BC ,∠ADE =∠EFC ,AD:BD=5:3,CF =6,则DE 的长为( )A .6B .8C .10D .12 3.如图,AB 为半圆O 的直径,10AB =,AC 为O 的弦,8AC =,D 为AB 的中点,DM AC ⊥于M ,则DM 的长为( )A .42B .2C .1D .34.如图,在▱ABCD 中,M 、N 为BD 的三等分点,连接CM 并延长交AB 与点E ,连接EN 并延长交CD 于点F ,则DF :FC 等于( ).A .1:2B .1:3C .2:3D .1:4 5.若234a b c ==,则a b b c+-的值为( )A.5 B.15C.-5 D.-156.如图,在矩形、三角形、正五边形、菱形的外边加一个宽度一样的外框,保证外框的边界与原图形对应边平行,则外框与原图一定相似的有()A.1个B.2个C.3 D.4个7.如图,在□ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则△DEF与四边形EFCO的面积比为()A.1: 4 B.1:5 C.1:6 D.1: 78.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:9,则S△BDE:S△CDE的值是().A.1:2 B.1:3 C.1:4 D.2:59.如图,ABC是等边三角形,被一平行于BC的矩形所截(即:FG∥BC),若AB被截成三等分,则图中阴影部分的面积是ABC的面积的()A.19B.29C.13D.4910.如图,△ABC、△FGH中,D、E两点分别在AB、AC上,F点在DE上,G、H两点在BC上,且DE∥BC,FG∥AB,FH∥AC,若BG:GH:HC=4:6:5,则△ADE与△FGH的面积比为何?()A .2:1B .3:2C .5:2D .9:4第II 卷(非选择题) 请点击修改第II 卷的文字说明参考答案11.如图,正方形ABCD 中,ABC 绕点A 逆时针旋转到AB C ''△,AB '、AC '分别交对角线BD 于点E 、F ,若4AE =,则EF ED ⋅的值为( )A .4B .6C .8D .1612.如图,已知直线////a b c ,直线m 交直线a ,b ,c 于点A ,B ,C ,直线n 交直线a ,b ,c 于点D ,E ,F ,若12AB BC =,则DE EF=( )A .13B .12C .23D .1二、填空题13.如果x :y =3:2,那么x y x-的值是__. 14.如图,在△ABC 中,中线BE ,CD 相交于点G ,则EDG BDG S S ∆∆:=__________.15.如图,矩形ABCD 中,2AB =,E 为CD 的中点,连接AE 、BD 交于点P ,过点P 作PQ BC ⊥于点Q ,则PQ =________.16.如图1,课本中有一道例题:有一块三角形余料ABC ,它的边120BC mm =,高80AD mm =.要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB ,AC 上.设PN xmm =,用x 的代数式表示AE =________mm ,由//PN BC ,可得APN ABC ∽△△,再利用相似三角形对应高的比等于相似比,可求得PN =________mm .拓展:原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图2,此时,PN =________mm .17.如图,在△ABO 的顶点A 在函数k y x=(x >0)的图像上∠ABO=90°,过AO 边的三等分点M 、N 分别作x 轴的平行线交AB 于点P 、Q .若四边形MNQP 的面积为3,则k 的值为________.18.如图,直线////a b c ,直线m ,n 分别与a ,b ,c 相交于点A ,B ,C ,D ,E ,F ,若2AB =,3BC =,3DE =,则EF =_______.19.若()0a b a c b c k k c b a+++===≠, 则k 的值为______. 20.若233a b c ==,且233a b c ++=,则a b c -+=__________. 三、解答题21.如图,在四边形ABCD 中,90A C ∠=∠=︒,DE ,BF 分别平分ADC ∠,ABC ∠,并交线段AB ,CD 于点E ,F (点E ,B 不重合),在线段BF 上取点M ,N (点M 在BN 之间),使2BM FN =.当点P 从点D 匀速运动到点E 时,点Q 恰好从点M 匀速运动到点N ,记QN x =,PD y =,已知5103y x =-+,当Q 为BF 中点时,53y =.(1)判断DE 与BF 的位置关系,并说明理由:(2)求DE ,BF 的长;(3)若30AED ∠=︒①当DP DF =时,通过计算比较BE 与BQ 的大小关系;②连接PQ ,当PQ 所在直线经过四边形ABCD 的一个项点时,求所有满足条件的x 的值. 22.如图,已知ABC 和点A '.(1)以点A '为顶点求作A B C ''',使A B C ABC '''∽,4A B C ABC SS '''=;(尺规作图,保留作图痕迹,不写作法) (2)设D 、E 、F 分别是ABC 三边AB 、BC 、AC 的中点,D '、E '、F '分别是你所作的A B C '''三边A B ''、B C ''、A C ''的中点,求证:DEF D E F '''∽.23.如图,矩形OABC 的顶点A 、C 分别在x 轴和y 轴的正半轴上.双曲线(0)k y x x =>经过BC 边的中点(2,4)D ,与AB 交于点E ,连结DE ,CE .(1)求k 的值及CDE ∠的度数.(2)在直线AB 上找点F ,使得以点A 、D 、F 为顶点的三角形与CDE △相似,求F 点的坐标.24.如图,BCD △内接于O ,且BD CD =,A 是是BD 上的一点,E 在BA 的延长线上,连结AC 交BD 于F ,连结AD .(1)求证:AD 平分E AC ∠;(2)若DA DF =,求证:BCF BDC △△∽.25.在ABC 与DEF 中,若34AB BC CA DE EF FD ===,且ABC 的周长为18cm ,求DEF 的周长.26.如图,△ABC 中,E 、F 分别是边AB 、AC 的中点,EF =a ,动点P 在射线EF 上,BP 交CE 于D ,∠CBP 的平分线交CE 于Q ,(1)当CQ =12CE 时,求EP+BP 的值. (2)当CQ =13CE 时,求EP+BP 的值. (3)当CQ =1nCE 时,直接写出EP+BP 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据题意易得ADF AEG ABC ,则有13AD AB =,23AE AB =.进而可求得119ABC S S =,213ABC S S =,359ABC S S =,最后即可求出结果.【详解】∵DF ∥EG ∥BC ,∴ADF AEG ABC ,∵D 、E 是AB 的三等分点, ∴13AD AB =,23AE AB =, ∴119ABC S S =,49AEG ABC S S =.∵21411993AEG ABC ABC ABC S S S S S S =-=-=,34599ABC AEG ABC ABC ABC S S S S S S =-=-=. ∴123115::::1:3:5939ABC ABC ABC S S S S S S ==. 故选C .【点睛】 本题主要考查相似三角形的判定与性质,掌握面积比等于相似比的平方是解题的关键. 2.C解析:C【分析】由DE //BC 可得出53AD AE BD EC ==,∠AED =∠C ,结合∠ADE =∠EFC 可得出△ADE ∽△EFC ,根据相似三角形的性质可得出53AE DE EC FC ==,再根据CF =6,即可求出DE的长度.【详解】解:∵DE //BC , ∴53AD AE BD EC ==,∠AED =∠C . 又∵∠ADE =∠EFC ,∴△ADE ∽△EFC , ∴53AE DE EC FC ==, ∵CF =6, ∴563DE =, ∴DE =10. 故选C【点睛】 本题考查了相似三角形的判定与性质、平行线分线段成比例定理,根据平行线分线段成比例定理和相似三角形的性质列出比例式是解题的关键.3.C 解析:C【分析】如图,连接OD 交AC 于H ,连接BC .利用勾股定理求出BC ,再利用相似三角形的性质求出OH ,AH ,DH ,证明△DMH ∽△AOH ,构建关系式即可解决问题.【详解】解:如图,连接OD 交AC 于H ,连接BC .∵AB 是直径,∴∠ACB=90°,∴226BC AB AC -=,∵AD DB =,∴OD ⊥AB ,∵∠OAH=∠CAB ,∠AOH=∠ACB=90°,∴△AOH ∽△ACB ,∴OH OA AH BC AC AB == ∴56810OH AH ==∴1525,44OH AH ==, ∵DH=OD-OH=155544-=, ∵DM ⊥AC ,∵∠DMH=∠AOH=90°,∠DHM=∠AHO ,∴△DMH ∽△AOH , ∴DM DH AO AH=, ∴542554DM =, ∴DM=1,故选:C .【点睛】本题考查勾股定理,圆周角定理,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识.4.B解析:B【分析】由题意可得DN=NM=MB ,据此可得DF :BE=DN :NB=1:2,再根据BE :DC=BM :MD=1:2,AB=DC ,故可得出DF :FC 的值.【详解】解:由题意可得DN=NM=MB ,AB//CD ,AB//BC∴△DFN ∽△BEN ,△DMC ∽△BME ,∴DF :BE=DN :NB=1:2,BE :DC=BM :MD=1:2,又∵AB=DC ,∴DF :AB=1:4,∴DF :FC=1:3故选:B .【点睛】本题考查相似三角形的性质,两相似三角形对应线段成比例,要注意比例线段的应用. 5.C解析:C【分析】 设234a b c k ===,则2a k =,3b k =,4c k =,然后代入求值即可. 【详解】解:设234a b c k ===,则2a k =,3b k =,4c k =, ∴a b b c +-=2334k k k k +-=5-k k=﹣5, 故选:C .【点睛】本题考查了比例的性质、分式的求值,设参数求解是解答的关键.6.C解析:C【分析】根据相似多边形的判定定理对各个选项进行分析,从而确定最后答案.【详解】矩形的原图与外框不相似,因为其对应角的度数一定相同,但对应边的比值不一定相等,不符合相似的条件;锐角三角形的原图与外框相似,因为其对应角均相等,对应边均对应成比例,符合相似的条件;正五边形相似,因为它们的边长都对应成比例、对应角都相等,符合相似的条件;菱形的原图与外框相似,因为其对应角均相等,对应边均对应成比例,符合相似的条件. 综上,外框与原图一定相似的有3个,故选:C .【点睛】本题主要考查了相似图形的概念,注意边数相同、各角对应相等、各边对应成比例的两个多边形是相似多边形.7.B解析:B【分析】设△DEF 的面积为S ,分别用S 表示出△AEB ,△AOB ,△DOC 的面积,即可解决问题.【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,设△DEF 的面积为S ,∵DF ∥AB ,DE :EB=1:3,∴△ABE 的面积为9S ,∵EO :BO=1:2,∴△AOB 的面积=△DOC 的面积=6S ,∴四边形FEOC 的面积为6S-S=5S , ∴15DEF S S EFOC =四边形=1:5, 故选:B .【点睛】本题考查了相似三角形的性质、平行四边形的性质等知识,解题的关键是熟练掌握相似三角形的性质.8.A解析:A【分析】根据DE ∥AC 可得到△DOE ∽△COA 和△DBE ∽△ABC ,再根据相似三角形的性质即可得出12BE EC =,再根据同高三角形的面积比等于底之比即可求出. 【详解】∵DE ∥AC∴△DOE ∽△COA ,△DBE ∽△ABC∵S △DOE :S △COA =1:9 ∴13DE AC = ∴13DE BE AC BC == ∴12BE EC = ∴S △BDE :S △CDE =1:2故答案选A .【点睛】本题主要考察了相似三角形的性质,准确记住面积比等于相似比平方是解题关键. 9.C解析:C【分析】AB 被截成三等分,可得AB=3AE ,AF=2AE ,由EH ∥FG ∥BC ,可得△AEH ∽△AFG ∽△ABC ,则S △AEH :S △AFG :S △ABC =AE 2:AF 2:AB 2,S 阴影= S △AFG - S △AEH =13S △ABC . 【详解】∵AB 被截成三等分,∴AB=3AE ,AF=2AE ,∵EH ∥FG ∥BC ,∴△AEH ∽△AFG ∽△ABC ,∴S △AEH :S △AFG :S △ABC =AE 2:AF 2:AB 2=AE 2:(2AE )2:(3AE )2=1:4:9,∴S △AEH =19S △ABC , S △AFG =4 S △AEH , S 阴影= S △AFG - S △AEH =3 S △AEH =3×19 S △ABC =13S △ABC . 故选择:C .【点睛】 本题考查阴影部分面积问题,关键是利用相似三角形的面积比等于相似比的平方,找到阴影面积与△AEH 的关系,由△AEH 与△ABC 的关系来转化解决问题.10.D解析:D【解析】分析:只要证明△ADE ∽△FGH ,可得2⎛⎫= ⎪⎝⎭△△FGH ADE S DE S GH ,由此即可解决问题. 详解:∵BG :GH :HC=4:6:5,可以假设BG=4k ,GH=6k ,HC=5k ,∵DE ∥BC ,FG ∥AB ,FH ∥AC ,∴四边形BGFD 是平行四边形,四边形EFHC 是平行四边形,∴DF=BG=4k ,EF=HC=5k ,DE=DF+EF=9k ,∠FGH=∠B=∠ADE ,∠FHG=∠C=∠AED , ∴△ADE ∽△FGH , ∴2299=64ADE FGH S DE k S GH k ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭. 故选D .点睛:本题考查相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型. 11.D解析:D【分析】先根据正方形的性质、旋转的性质可得45EAF EDA ∠=∠=︒,再根据相似三角形的判定与性质即可得.【详解】四边形ABCD 是正方形,45BAC EDA ∴∠=∠=︒,由旋转的性质得:B AC BAC ''∠=∠,B AC EDA ''∴∠=∠,即EAF EDA ∠=∠,在AEF 和DEA △中,EAF EDA AEF DEA∠=∠⎧⎨∠=∠⎩, AEF DEA ∴~,EF AE AE DE ∴=,即44EF DE=,16EF DE ∴⋅=,故选:D .【点睛】本题考查了正方形的性质、旋转的性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.12.B解析:B【分析】直接根据平行线分线段成比例定理求解.【详解】解:∵a ∥b ∥c , ∴12DE AB EF BC ==. 故选:B .【点睛】 本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.二、填空题13.【分析】根据已知条件得出再把化成然后代值计算即可得出答案【详解】∵∴∴故答案为:【点睛】此题考查了比例的性质熟练掌握比例的性质是解题的关键 解析:13【分析】 根据已知条件得出23y x =,再把x y x -化成1y x -,然后代值计算即可得出答案. 【详解】∵:3:2x y =, ∴23y x =, ∴211133x y y x x -=-=-=. 故答案为:13. 【点睛】此题考查了比例的性质,熟练掌握比例的性质是解题的关键.14.1:2【分析】设△ABC 的面积为1ΔEDG 的面积为xΔBDG 的面积为y 则由题意可得关于xy 的二元一次方程组解方程组得到xy 的值后可得问题解答【详解】解:设△ABC 的面积为1ΔEDG 的面积为xΔBDG解析:1:2【分析】设△ABC 的面积为1,ΔEDG 的面积为x ,ΔBDG 的面积为y ,则由题意可得关于x 、y 的二元一次方程组,解方程组得到x 、y 的值后可得问题解答.【详解】解:设△ABC 的面积为1,ΔEDG 的面积为x ,ΔBDG 的面积为y ,∵DE 为三角形ABE 的中位线,∴三角形DEB 的面积为三角形ABE 面积的一半或者三角形ABC 面积的四分之一, ∴x+y=14, 又由题意可得:△DGE ∽△CGB , ∴214DGE CGB S DE S BC ⎛⎫== ⎪⎝⎭, 即()111442CBD GBD x S S y ⎛⎫=-=- ⎪⎝⎭, ∴ 1184x y =-,所以有: 141184x y x y ⎧+=⎪⎪⎨⎪=-⎪⎩, 解之得: 11216x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴1112126EDG BDG S S x y ===::::, 故答案为1:2.【点睛】本题考查三角形中线、中位线的应用和相似三角形的判定及性质,熟练掌握“三角形中线把三角形分成面积相等的两部分”和相似三角形的判定及性质是解题关键 . 15.【分析】根据矩形的性质得到AB ∥CDAB=CDAD=BC ∠BAD=90°根据线段中点的定义得到DE=CD=AB 根据相似三角形的性质即可得到结论【详解】解:∵四边形ABCD 是矩形∴AB ∥CDAB=CD解析:43【分析】根据矩形的性质得到AB ∥CD ,AB=CD ,AD=BC ,∠BAD=90°,根据线段中点的定义得到DE=12CD=12AB ,根据相似三角形的性质即可得到结论. 【详解】 解:∵四边形ABCD 是矩形,∴AB ∥CD ,AB=CD ,AD=BC ,∠BAD=90°,∵E 为CD 的中点,∴DE=12CD=12AB , ∴△ABP ∽△EDP ,∴AB PB DE PD =, ∴21PB PD = , ∴23PB BD = , ∵PQ ⊥BC ,∴PQ ∥CD ,∴△BPQ ∽△DBC ,∴23PQ BP CD BD ==, ∵CD=2, ∴PQ=43, 故答案为:43.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,正确的识别图形是解题的关键. 16.48【分析】根据相似三角形的性质可得对应高的比等于相似比进行计算然后根据矩形的性质可设则进行求解即可;【详解】设则∵PN ∥BC ∴∴即解得∴拓展:设则∵PN ∥BC ∴∴∴解得∴;故答案是:;48;【点睛解析:80x -48 4807【分析】根据相似三角形的性质可得对应高的比等于相似比进行计算,然后根据矩形的性质可设BQ x =,则2PN x =,80AE x =-,进行求解即可;【详解】设PN xmm =,则PN PQ ED xmm ===,()80AE AD ED x mm =-=-,∵PN ∥BC ,∴APN ABC , ∴PN AE BC AD =, 即8012080x x -=,解得48x =, ∴48PN mm =,拓展:设PQ xmm =,则2PN xmm =,()80AE AD ED x mm =-=-,∵PN ∥BC ,∴APN ABC , ∴PN AE BC AD =, ∴28012080x x -=,解得2407x =, ∴48027PN x ==; 故答案是:80x -;48;4807. 【点睛】 本题主要考查了相似三角形的应用,准确分析计算是解题的关键.17.【分析】易证△ANQ ∽△AMP ∽△AOB 由相似三角形的性质:面积比等于相似比的平方可求出△ANQ 的面积进而可求出△AOB 的面积则k 的值也可求出【详解】∵NQ ∥MP ∥OB ∴△ANQ ∽△AMP ∽△AOB解析:18【分析】易证△ANQ ∽△AMP ∽△AOB ,由相似三角形的性质:面积比等于相似比的平方可求出△ANQ 的面积,进而可求出△AOB 的面积,则k 的值也可求出.【详解】∵NQ ∥MP ∥OB ,∴△ANQ ∽△AMP ∽△AOB ,∵M 、N 是OA 的三等分点, ∴11,23AN AN AM AO ==, ∴14ANQ AMP SS =, ∵四边形MNQP 的面积为3, ∴314ANQ ANQ S S =+, ∴S △ANQ =1,∵2119AOB AN S AO ⎛⎫== ⎪⎝⎭, ∴S △AOB =9,∴k =2S △AOB =18,故答案为:18.【点睛】本题考查了相似三角形的判定和性质以及反比例函数k 的几何意义,正确的求出S △ANQ =1是解题的关键.18.【分析】根据平行线分线段成比例定理得到然后根据比例的性质求EF 的长【详解】解:∵直线a ∥b ∥c ∴即∴EF=故答案为:【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线所得的对应线段成比例解析:92【分析】根据平行线分线段成比例定理得到AB DE BC EF =,然后根据比例的性质求EF 的长. 【详解】解:∵直线a ∥b ∥c ,∴AB DE BC EF=,即23=3EF , ∴EF=92. 故答案为:92. 【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例. 19.或2【分析】根据等式的性质可得2(a+b+c )=k (a+b+c )根据因式分解可得a+b+c=0或k=2根据分式的性质可得答案【详解】解:由得b+c=ak①a+c=bk②a+b=ck③①+②+③得2(解析:1-或2【分析】根据等式的性质,可得2(a+b+c )=k (a+b+c ),根据因式分解,可得a+b+c=0或k=2,根据分式的性质,可得答案.【详解】 解:由()0a b a c b c k k c b a+++===≠,得 b+c=ak ①,a+c=bk ②,a+b=ck ③,①+②+③,得2(a+b+c )=k (a+b+c ),移项,得2(a+b+c )-k (a+b+c )=0,因式分解,得(a+b+c )(2-k )=0a+b+c=0或k=2,当0a b c ++=时,a b c +=-, 1a b c k c c+-===-, ∴1k =-或2.故答案为:1-或2.【点睛】本题考查了比例的性质,利用等式的性质得出2(a+b+c )=k (a+b+c )是解题关键,又利用了分式的性质.20.66【分析】设a=2kb=3kc=3k 代入求出k 值进而求得abc 然后代入所求代数式中求解即可【详解】解:由可设a=2kb=3kc=3k 代入得:4k+3k+3k=33解得:k=33∴a=66b=c=9解析:6.6【分析】设a=2k ,b=3k ,c=3k ,代入233a b c ++=,求出k 值,进而求得a 、b 、c ,然后代入所求代数式中求解即可.【详解】 解:由233a b c ==可设a=2k ,b=3k ,c=3k , 代入233a b c ++=得:4k+3k+3k=33,解得:k=3.3,∴a=6.6,b=c=9.9,∴a b c -+=a =6.6,故答案为:6.6.【点睛】本题考查了比例的性质、代数式求值,熟练掌握比例的性质,巧妙设参是解答的关键.三、解答题21.(1)DE∥BF,见解析;(2)DE=10;BF=18;(3)①BQ<BE;②x=6或x=11 16或x=21 8【分析】(1)推出∠AED=∠ABF,即可得出DE∥BF;(2)求出DE=10,MN=6,把53y=代入5103y x=-+,解得x=5,即NQ=5,得出QM=1,由FQ=QB,BM=2FN,得出FN=4,BM=8,即可得出结果;(3)①连接EM并延长交BC于点H,易证四边形DFME是平行四边形,得出DF=EM,求出∠DEA=∠FBE=∠FBC=30°,∠ADE=∠CDE=∠FME=60°,∠MEB=∠FBE=30°,得出∠EHB=90°,DF=EM=BM=8,MH=4,EH=12,由勾股定理得HB=43,BE=83,当DP=DF时,求出BQ=645,即可得出BQ<BE;②(Ⅰ)当PQ经过点D时,y=0,则x=6;(Ⅱ)当PQ经过点C时,由FQ∥DP,得出△CFQ∽△CDP,则FQ CFDP CD=,即可求出x=1116;(Ⅲ)当PQ经过点A时,由PE∥BQ,得出△APE∽△AQB,则PE AEBQ AB=,求出AE=53,AB=133,即可得出x=218,由图可知,PQ不可能过点B.【详解】解:(1)DE与BF的位置关系为:DE∥BF,理由如下:如图1所示:∵∠A=∠C=90°,∴∠ADC+∠ABC=360°-(∠A+∠C)=180°,∵DE、BF分别平分∠ADC、∠ABC,∴∠ADE=12∠ADC,∠ABF=12∠ABC,∴∠ADE+∠ABF=12×180°=90°,∵∠ADE+∠AED=90°,∴∠AED=∠ABF,∴DE∥BF;(2)令x=0,得y=10,∴DE=10,令y=0,得x=6,∴MN=6,把y=53代入5103y x=-+,解得:x=5,即NQ=5,∴QM=6-5=1,∵Q是BF中点,∴FQ=QB,∵BM=2FN,∴FN+5=1+2FN,解得:FN=4,∴BM=8,∴BF=FN+MN+MB=18;(3)①连接EM并延长交BC于点H,如图2所示:∵FM=4+6=10=DE,DE∥BF,∴四边形DFME是平行四边形,∴DF=EM,EH∥CD,∴∠MHB=∠C=90°,∵∠A=90°,∠AED=30°∴AD=12DE=5,∴∠DEA=∠FBE=∠FBC=30°,∴∠ADE=60°,∴∠ADE=∠CDE=∠FME=60°,∴∠DFM=∠DEM=120°,∴∠MEB=180°-120°-30°=30°,∴∠MEB=∠FBE=30°,∴DF=EM=BM=8,∴MH=12BM=4,∴EH=8+4=12,由勾股定理得:HB=2243BM MH-=,∴BE=2283EH HB+=,当DP=DF时,51083x-+=,解得:x=65,∴BQ=14-x=645,∵645<83,∴BQ<BE;②(Ⅰ)当PQ经过点D时,如图3所示:y=0,则x=6;(Ⅱ)当PQ经过点C时,如图4所示:∵BF=18,∠FCB=90°,∠CBF=30°,∴CF=12BF=9,∴CD=9+8=17,∵FQ∥DP,∴△CFQ∽△CDP,∴FQ CF DP CD=,49517103xx+=-+,解得:x=1116;(Ⅲ)当PQ经过点A时,如图5所示:∵PE∥BQ,∴△APE∽△AQB,∴PE AE BQ AB=,由勾股定理得:2253DE AD-=∴AB=8353133=∴510(10)53314133xx--+=-x=218,由图可知,PQ不可能过点B;综上所述,当x=6或x=1116或x=218时,PQ所在的直线经过四边形ABCD的一个顶点.【点睛】本题是四边形综合题,主要考查了平行四边形的判定与性质、勾股定理、角平分线的性质、平行线的判定与性质、相似三角形的判定与性质、含30°角的直角三角形的性质等知识;本题综合性强,难度较大,熟练掌握平行四边形的判定与性质是解题的关键.22.(1)见解析;(2)见解析.【分析】(1)分别作A'B'=2AB、A'C'=2AC、B'C'=2BC得△A'B'C'即为所求.(2)根据中位线定理易得DE= 12AC,DF=12BC,EF=12AB,D'E'=12A'C'=AC、D'F'=12B'C'=BC、E'F'=12A'B'=AB,于是''2''''DD E D F E FDE F EF===,故可证△DEF∽△D'E'F'.【详解】解:(1)如图1,①作线段A'B'=2AB;②分别以A'、B'为圆心,以2AC、2BC为半径作弧,两弧交于点C';③连接A'C'、 B'C'得△A'B'C'.△A'B'C'即为所求.证明:∵A'B'=2AB 、A'C'=2AC 、B'C'=2BC , ∴''2''''AB A A B A C B C C BC===, ∴△ABC ∽△A′B′C′, ∴2()4A B C ABC S A B S AB'''''∆∆==. (2)证明:如图2,∵D 、E 、F 分别是△ABC 三边AB 、BC 、AC 的中点, ∴DE= 12AC ,DF =12BC ,EF =12AB , ∵D '、E '、F '分别是A B C '''三边A B ''、B C ''、A C ''的中点, ∴D'E'=12 A'C'=AC 、D'F'=12 B'C'=BC 、E'F'=12 A'B'=AB , ∴''2''''D D E D F E F DE F EF===, ∴△DEF ∽△D'E'F'.【点睛】本题考查了相似三角形的判定和性质及三角形的中位线定理,解答本题的关键是掌握相似三角形的判定方法.23.(1)8k,135CDE ∠=︒;(2)点F 的坐标为:(4,10)或(4,2).【分析】(1)把D 点的坐标代入反比例函数可求得k 的值,然后得出B 、E 的坐标,求得BD=BE ,得出BDE 为等腰直角三角形,并用补交的定义求得CDE ∠的度数. (2)连接AD ,得出()SAS BCE BAD ≌△△,进而得出BCE BAD ∠=∠,设(4,)F t ,则AF t =,所以分两种情况讨论①CDE ADF △∽△,②CDE AFD ∽△△,根据相似三角形的性质得出比例式建立方程求解即可.【详解】(1)∵点D 为BC 的中点,(2,4)D ,(0,4)C ∴,(4,4)B ,将点(2,4)D 代入k yx=得:8k , 8y x∴=, ∴四边形OABC 是矩形,(4,0)A ∴,点E 的横坐标为:4,∴当4x =时,2y =,(4,2)E ∴,2BD BE ∴==,又90B ∠=︒BDE ∴为等腰直角三角形,则45BDE ∠=︒,180135CDE BDE ∴∠=︒-∠=︒.(2)如图,连接AD ,(4,4)B ,(4,0)A ,(0,4)C ,4AB BC ∴==, 在BCE 和BAD 中,BC BA CBE ABD BD BE =⎧⎪∠=∠⎨⎪=⎩,()SAS BCE BAD ∴≌△△,BCE BAD ∴∠=∠,(0,4)C ,(2,4)D ,(4,2)E ,(4,0)A ,2CD ∴=,224(24)25CE =+-=22(42)425AD =-+=设(4,)F t ,则AF t =,①CDE ADF △∽△,CD CE AD AF ∴=,2525=, 解得:110t =,(4,10)F ∴,②CDE AFD ∽△△,CD CE AF AD ∴=,22525t =, 解得:22t =,(4,2)F ∴,综上所述,点F 的坐标为:(4,10)或(4,2).【点睛】此题是反比例函数综合题,主要考查了待定系数法,矩形的性质,等腰直角三角形的性质,相似三角形的判定和性质,解题时注意点的坐标与线段长的转化.24.(1)见解析;(2)见解析.【分析】(1)据等边对等角,判定∠DCB=∠DBC ,再据同弧所对圆周角相等,判定∠DAC=∠DBC ,再据圆内接四边形性质判定∠EAD=∠DCB ,最后得证AD 平分E AC ∠;(2)运用等边对等角和同弧所对圆周角相等证得∠CFB=∠DCB ,据△BCF 和△BDC 还有一个公共角,由有两个角对应相等的三角形相似,证得BCF BDC △△∽.【详解】如下图(1)∵BD CD =∴DBC DCB ∠=∠又∵DAC DBC ∠=∠,DAE DCB ∠=∠∴DAE DAC ∠=∠,即AD 平分EAC ∠.(2)∵DA DF =∴DFA DAC ∠=∠又∵CFB DFA ∠=∠,DCB DBC DAC ∠=∠=∠∴CFB DCB ∠=∠又∵CBF DBC ∠=∠∴BCF BDC △△∽.【点睛】此题考查圆周角的相关知识及圆内接四边形的性质.找准图形正确运用相关知识是关键. 25.24cm【分析】根据相似三角形的判定与性质即可得.【详解】 34AB BC CA DE EF FD ===, D F ABC E ~∴,ABC ∴的周长与DEF 的周长之比为3:4, ABC 的周长等于18cm ,DEF ∴的周长为318=244÷cm , 故答案为:24cm .【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键. 26.(1)2a ;(2)4a ;(3)2an ﹣2a .【分析】(1)延长BQ 交EF 的延长线于点G ,根据三角形中位线定理求出BC ,证明△BQC ∽△GQE ,根据相似三角形的性质得到EG=BC=2a ,根据角平分线的定义、平行线的性质得到PB=PG ,得到答案;(2)(3)仿照(1)的解法解答.【详解】解:(1)如图1,延长BQ 交EF 的延长线于点G ,∵E 、F 分别是边AB 、AC 的中点,∴EF 是△ABC 的中位线,∴BC=2EF=2a ,EF ∥BC ,∴△BQC ∽△GQE ,∴1EG EQ BC QC==, ∴EG=BC=2a ,∵BQ 是∠CBP 的平分线,∴∠PBQ=∠CBQ ,∵EF ∥BC ,∴∠EGQ=∠CBQ ,∴∠PBQ=∠EGQ ,∴PB=PG ,∴PE+PB=PE+PG=EG=2a ;(2)如图2,延长BQ 交EF 的延长线于点M ,由(1)可知,△BQC ∽△MQE , ∴1.2BC CQ EM EQ ==, ∴EM=2BC=4a ,∴PE+PB=PE+PM=EM=4a ;(3)如图2,当1CQ CE n=时,则EQ=(n-1)CQ , 由EF ∥BC 得,△MEQ ∽△BCQ , ∴1EM EQ n BC QC==-, ∴EM=(n-1)BC=2a (n-1),即EP+BP=2an-2a .【点睛】本题考查了相似三角形的判定与性质、角平分线的定义、平行线的性质,延长BQ 构造出相似三角形,求出EP+BP=EM 并得到相似三角形是解题的关键.。
(常考题)人教版初中数学九年级数学下册第二单元《相似》测试卷(有答案解析)
一、选择题1.下列各组线段的长度成比例的是( )A .2cm ,4cm ,6cm ,8cmB .10cm ,20cm ,30cm ,40cmC .2.2cm ,3.3cm ,5cm ,8cmD .20cm ,30cm ,60cm ,40cm 2.如图,AB 为半圆O 的直径,10AB =,AC 为O 的弦,8AC =,D 为AB 的中点,DM AC ⊥于M ,则DM 的长为( )A .42B .2C .1D .33.如图,一次函数y =﹣2x +10的图象与反比例函数y =k x(k >0)的图象相交于A 、B 两点(A 在B 的右侧),直线OA 与此反比例函数图象的另一支交于另一点C ,连接BC 交y 轴于点D ,若52BC BD =,则△ABC 的面积为( )A .12B .10C .9D .84.如图,点D 在ABC 的边AC 上,添加下列哪个条件后,仍无法判定ABC ADB ∽△△( )A .C ABD ∠=∠B .CBA ADB ∠=∠C .AB AD AC AB = D .AB BC AC BD = 5.如图所示,一电线杆AB 的影子分别落在了地上和墙上,某一时刻,小明竖起1米高的直杆,量得其影长为0.5米,此时,他又量得电线杆AB 落在地上的影子BD 长3米,落在墙上的影子CD 的高为2米,小明用这些数据很快算出了电线杆AB 的高,请你计算,电线杆AB 的高为( )A .5米B .6米C .8米D .10米 6.若234a b c ==,则a b b c +-的值为( ) A .5 B .15 C .-5 D .-157.如图,在平面直角坐标系中,ABC 的顶点坐标分别是()1,2A ,()1,1B ,()3,1C ,以原点为位似中心,在原点的同侧画DEF ,使DEF 与ABC 成位似图形,且相似比为2:1,则线段DF 的长度为( )A .5B .2C .4D .5 8.已知两个相似三角形一组对应高分别是15和5,面积之差为80,则较大三角形的面积为( )A .90B .180C .270D .36009.下列条件中,不能判断△ABC 与△DEF 相似的是( )A .∠A =∠D ,∠B =∠FB .BC AC EF DF =且∠B =∠D C .AB BC AC DE EF DF== D .AB AC DE DF =且∠A =∠D 10.如图,ABC 是等边三角形,被一平行于BC 的矩形所截(即:FG ∥BC),若AB 被截成三等分,则图中阴影部分的面积是ABC 的面积的( )A .19B .29C .13D .4911.如图,已知在ABC ∆中,点D 、E 分别是AB 和AC 的中点,BE 、CD 相交于点O ,若2DOE S ∆=,则BOC S ∆=( )A .4B .6C .8D .10 12.如图,△ABC 中,DE ∥BC ,25AD AB =,DE =3,则BC 的长为( )A .7.5B .4.5C .8D .6二、填空题13.如图,矩形ABCD 中,2AB =,E 为CD 的中点,连接AE 、BD 交于点P ,过点P 作PQ BC ⊥于点Q ,则PQ =________.14.如图,D 是ABC 的边BC 上一点,4AB =,2AD =,DAC B ∠=∠.如果ABD △的面积为6,那么ACD △的面积为_______.15.如图,AB 是⊙O 的直径,点C 在圆上,直线l 经过点C ,且l ∥AB ,P 为直线l 上一个动点,若AC =4,BC =3,以点P ,A ,C 为顶点的三角形与△ABC 相似,则PC =_____.16.如图4,我国现代数学著作《九章算术》中有“井深几何”问题如下:今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?它的题意可以由如图所示获得,井深BC 为_________尺.17.如图是用卡钳测量容器内径的示意图,现量得卡钳上A ,D 两个端点之间的距离为10cm ,23AO DO BO CO ==,则容器的内径是______.18.如图,在直角三角形ABC 中,90,C AD ︒∠=是BAC ∠的平分线,且35,22CD DB ==,则AB =____.19.在ABC 中,D 为AB 边上一点,且BCD A ∠=∠.已知22BC =3AB =,BD=__________.20.已知b c c a a ba b c+++===k,则k=______.参考答案三、解答题21.已知:△ABC在坐标平面内,三个顶点的坐标为A(0,3)、B(3,4)、C(2,2).(正方形网格中,每个小正方形边长为1个单位长度)(1)画出△ABC向下平移4个单位得到的△A1B1C1;(2)以B为位似中心,在网格中画出△A2BC2,使△A2BC2与△ABC位似,且位似比2:1,直接写出C2点坐标是;(3)△A2BC2的面积是平方单位.22.已知:如图在菱形ABCD中,点E、F分别在边AB、AD上,BE=DF,CE的延长线交DA的延长线于点G,CF的延长线交BA的延长线于点H.求证:△BEC∽△BCH.23.如图,点F是ABC中AC边的中点,//AD BC,DF交AB于点E,交BC延长线于点G.(1)若:3:1BE AE =,8BC =,求BG 的长;(2)若12∠=∠,求证:2FC EF FD =⋅.24.如图,BCD △内接于O ,且BD CD =,A 是是BD 上的一点,E 在BA 的延长线上,连结AC 交BD 于F ,连结AD .(1)求证:AD 平分E AC ∠;(2)若DA DF =,求证:BCF BDC △△∽.25.如图,△ABC 中,E 、F 分别是边AB 、AC 的中点,EF =a ,动点P 在射线EF 上,BP 交CE 于D ,∠CBP 的平分线交CE 于Q ,(1)当CQ =12CE 时,求EP+BP 的值. (2)当CQ =13CE 时,求EP+BP 的值. (3)当CQ =1nCE 时,直接写出EP+BP 的值.26.如图,已知点O 是坐标原点,B 、C 两点的坐标分别为(3,-1),(2,1).(1)以O 点为位似中心在y 轴的左侧将△OBC 放大到原图的2倍(即新图与原图的相似比为2),画出对应的△OB ꞌC ꞌ;(2)若△OBC 内部一点M 的坐标为(a ,b ),则点M 对应点M ′的坐标是 ; (3)求出变化后△OB ꞌC ꞌ的面积 .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段,对每一项进行分析即可.【详解】解:A、2×8≠4×6,故本选项错误;B、10×40≠20×30,故选项错误;C、2.2×8≠3.3×5,故选项错误;D、20×60=30×40,故本选项正确.故选:D.【点睛】此题考查了比例线段,用到的知识点是成比例线段的概念,注意在相乘的时候,最小的和最大的相乘,另外两个相乘,看它们的积是否相等.2.C解析:C【分析】如图,连接OD交AC于H,连接BC.利用勾股定理求出BC,再利用相似三角形的性质求出OH,AH,DH,证明△DMH∽△AOH,构建关系式即可解决问题.【详解】解:如图,连接OD交AC于H,连接BC.∵AB是直径,∴∠ACB=90°,∴226-=,BC AB AC∵AD DB=,∴OD⊥AB,∵∠OAH=∠CAB,∠AOH=∠ACB=90°,∴△AOH∽△ACB,∴OH OA AH BC AC AB == ∴56810OH AH ==∴1525,44OH AH ==, ∵DH=OD-OH=155544-=, ∵DM ⊥AC ,∵∠DMH=∠AOH=90°,∠DHM=∠AHO ,∴△DMH ∽△AOH ,∴DM DH AO AH=, ∴542554DM =, ∴DM=1,故选:C .【点睛】本题考查勾股定理,圆周角定理,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识.3.B解析:B【分析】过点B 作BM y ⊥轴于M ,过点C 作CN y ⊥轴于N ,连接AD ,则//BM CN ,可证得23BM BC CN CD ==,设点2,2k B x x ⎛⎫ ⎪⎝⎭,点3,3k C x x ⎛⎫-- ⎪⎝⎭.根据对称性可得点3,3k A x x ⎛⎫ ⎪⎝⎭,由已知可求得A 、B 、C 的坐标,则可求得直线BC 的解析式,进而求得点D 、F 的坐标,由ABD ADF BDF S S S -=△△△及:2:5ABD ABC S S =△△可求得ABC S.【详解】 过点B 作BM y ⊥轴于M ,过点C 作CN y ⊥轴于N ,连接AD ,如图,则有//BM CN ,∴BMD CND ∽,又52BC BD = ∴23BM BD CN CD ==, 设点2,2k B x x ⎛⎫ ⎪⎝⎭,点3,3k C x x ⎛⎫-- ⎪⎝⎭.根据对称性可得点3,3k A x x ⎛⎫ ⎪⎝⎭. ∵点A ,B 在直线AB 上, ∴2210223103k x x k x x⎧=-⨯+⎪⎪⎨⎪=-⨯+⎪⎩ ∴解得:112x k =⎧⎨=⎩, ∴点()3,4A ,点()2,6B 、点()3,4C --.设直线BC 的解析式为y=mx+n ,则有:2634m n m n +=⎧⎨-+=-⎩, 解得:22m n =⎧⎨=⎩, ∴直线BC 解析式为22y x =+,∴点()0,2D ,∵点F 是直线AB 与y 轴的交点,∴点()0,10F∴()()10232102224ABD ADF BDF S S S -==-⨯÷--⨯÷=△△△又∵:2:5ABD ABC S S =△△, ∴55S 41022ABC ABD S ==⨯=, 故选:B .【点睛】 本题考查了一次函数与反比例函数的图象交点问题、待定系数法求一次函数解析式、相似三角形的判定与性质、直线上点的坐标特征、等高三角形的面积比等于底的比等知识,求出点A 、B 的坐标和作辅助线借助相似三角形解决问题是解答的关键.4.D解析:D【分析】根据三角形相似的判定方法一一判断即可.【详解】解:A 、根据两角对应相等两三角形相似,可以判定△ABC ∽△ADB ;B 、根据两角对应相等两三角形相似,可以判定△ABC ∽△ADB ;C 、根据两边成比例夹角相等两三角形相似即可判定△ABC ∽△ADB ;D 、无法判断三角形相似.故选:D .【点睛】本题考查相似三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型. 5.C解析:C【分析】根据同一时刻,物体的实际高度和影长成正比例列出比例式即可解答.【详解】解:如图,假设没有墙,电线杆AB 的影子落在E 处,∵同一时刻,物体的实际高度和影长成正比例,∴CD :DE=1:0.5=2:1,∴AB :BE=2:1,∵CD=2,BE=BD+DE ,∴BE=3+1=4,∴AB :4=2:1,∴AB=8,即电线杆AB 的高为8米,故选:C .【点睛】本题考查了相似三角形的应用、比例的性质,解答的关键是理解题意,将实际问题转化为相似三角形中,利用同一时刻,物体的实际高度和影长成正比例列出方程求解. 6.C解析:C【分析】 设234a b c k ===,则2a k =,3b k =,4c k =,然后代入求值即可. 【详解】解:设234a b c k ===,则2a k =,3b k =,4c k =, ∴a b b c +-=2334k k k k +-=5-k k=﹣5, 故选:C .【点睛】本题考查了比例的性质、分式的求值,设参数求解是解答的关键.7.A解析:A【分析】根据位似图形的性质可得DF =2AC ,然后根据两点间的距离公式求出AC 即可解决问题.【详解】解:∵DEF 与ABC 是位似图形,且相似比为2:1,∴DF =2AC ,∵AC ==∴DF =故选:A .【点睛】本题考查了位似图形的性质和两点间的距离,熟练掌握位似图形的性质是解题的关键. 8.A解析:A【分析】由两个三角形的高之比可得出两个三角形的相似比,进而得出两个三角形的面积之比,根据两个三角形的面积之比设未知数,列方程,求出较大三角形的面积即可.【详解】由题意得,两个三角形的相似比为:15∶5=3∶1,故面积比为:9∶1,设两个三角形的面积分别为9x ,x ,则9x -x =80,解得:x =10,故较大三角形的面积为:9x =90.故选:A .【点睛】本题主要考查相似三角形的性质,熟记相似三角形的高之比等于相似比,面积之比等于相似比的平方是解题关键.9.B解析:B【分析】直接根据三角形相似的判定方法分别判断得出答案.【详解】解:A 、A D ∠=∠,B F ∠=∠,根据有两组角对应相等的两个三角形相似,可以得出ABC DFE ∽△△,故此选项不合题意;B 、BC AC EF DF=,且B D ∠=∠,不是两边成比例且夹角相等,故此选项符合题意; C 、AB BC AC DE EF DF==,根据三组对应边的比相等的两个三角形相似,可以得出ABC DEF ∽△△,故此选项不合题意;D 、AB AC DE DF=且A D ∠=∠,根据两组对应边的比相等且夹角对应相等的两个三角形相似,可以得出ABC DEF ∽△△,故此选项不合题意;故选:B .【点睛】此题主要考查了相似三角形的判定,关键是掌握三角形相似的判定方法:(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似. 10.C解析:C【分析】AB 被截成三等分,可得AB=3AE ,AF=2AE ,由EH ∥FG ∥BC ,可得△AEH ∽△AFG ∽△ABC ,则S △AEH :S △AFG :S △ABC =AE 2:AF 2:AB 2,S 阴影= S △AFG - S △AEH =13S △ABC . 【详解】∵AB 被截成三等分,∴AB=3AE ,AF=2AE ,∵EH ∥FG ∥BC ,∴△AEH ∽△AFG ∽△ABC ,∴S △AEH :S △AFG :S △ABC =AE 2:AF 2:AB 2=AE 2:(2AE )2:(3AE )2=1:4:9,∴S △AEH =19S △ABC , S △AFG =4 S △AEH , S 阴影= S △AFG - S △AEH =3 S △AEH =3×19 S △ABC =13S △ABC . 故选择:C .【点睛】 本题考查阴影部分面积问题,关键是利用相似三角形的面积比等于相似比的平方,找到阴影面积与△AEH 的关系,由△AEH 与△ABC 的关系来转化解决问题.11.C解析:C【分析】根据三角形中位线定理得到DE=12BC ,DE ∥BC ,得到△DOE ∽△COB ,根据相似三角形的面积比等于相似比的平方计算,得到答案.【详解】 ∵D 、E 分别是AB 和AC 的中点, ∴12DE BC =,//DE BC , ∴DOE COB ∆∆∽, ∴2DOE COB S DE S BC ∆∆⎛⎫= ⎪⎝⎭,即BOC214S ∆=, 解得,8BOC S ∆=,故选:C .【点睛】本题考查了相似三角形的判定和性质、三角形中位线定理,掌握相似三角形的判定定理和性质定理是解题的关键.12.A解析:A【分析】先判断△ADE ∽△ABC ,然后利用相似比求BC 的长.【详解】解:∵DE ∥BC ,∴△ADE ∽△ABC , ∴25DE AD BC AB ==, ∴5515.3222BC DE ==⨯=. 故选:A .【点睛】 本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了等腰三角形的性质.二、填空题13.【分析】根据矩形的性质得到AB ∥CDAB=CDAD=BC ∠BAD=90°根据线段中点的定义得到DE=CD=AB 根据相似三角形的性质即可得到结论【详解】解:∵四边形ABCD 是矩形∴AB ∥CDAB=CD 解析:43 【分析】 根据矩形的性质得到AB ∥CD ,AB=CD ,AD=BC ,∠BAD=90°,根据线段中点的定义得到DE=12CD=12AB ,根据相似三角形的性质即可得到结论. 【详解】解:∵四边形ABCD 是矩形,∴AB ∥CD ,AB=CD ,AD=BC ,∠BAD=90°,∵E 为CD 的中点,∴DE=12CD=12AB , ∴△ABP ∽△EDP ,∴AB PB DE PD =, ∴21PB PD = , ∴23PB BD = , ∵PQ ⊥BC ,∴PQ ∥CD ,∴△BPQ ∽△DBC ,∴23PQ BP CD BD ==, ∵CD=2, ∴PQ=43, 故答案为:43.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,正确的识别图形是解题的关键. 14.【分析】先证明△ACD ∽△BCA 再根据相似三角形的性质得到:△ACD 的面积:△ABC 的面积为1:4再结合△ABD 的面积为6然后求出△ACD 的面积即可【详解】解:∵∠C=∠C ∴△ACD ∽△BCA ∴∴即解析:2【分析】先证明△ACD ∽△BCA ,再根据相似三角形的性质得到:△ACD 的面积:△ABC 的面积为1:4,再结合△ABD 的面积为6,然后求出△ACD 的面积即可.【详解】解:∵DAC B ∠=∠,∠C=∠C∴△ACD ∽△BCA ∴12AD AB = ∴21124ACD ABC S S⎛⎫== ⎪⎝⎭ ,即164ACD ACD ABD ACD ACD S S S S S ∆∆∆∆∆==++,解得:ACD S ∆=2. 故答案为2.【点睛】本题主要考查了相似三角形的判定和性质、掌握相似三角形的面积比等于相似比的平方解答本题的关键.15.32或5【分析】先根据勾股定理求出AB 的长由l ∥AB 可得∠ACP =∠A 所以以点PAC 为顶点的三角形与△ABC 相似只有两种情况或根据对应边成比例列式求出PC 的长【详解】∵AB 是⊙O 的直径∴∠ACB =9解析:3.2或5【分析】先根据勾股定理求出AB 的长,由l ∥AB ,可得∠ACP =∠A ,所以以点P ,A ,C 为顶点的三角形与△ABC 相似只有两种情况,ABCCAP 或ABC CPA ,根据对应边成比例列式求出PC 的长.【详解】∵AB 是⊙O 的直径,∴∠ACB =90°,在Rt △ABC 中,AC =4,BC =3,∴AB =5,∵l ∥AB ,∴∠ACP =∠A ,当以点P ,A ,C 为顶点的三角形与△ABC 相似,①ABC CAP ,∴AB AC CA CP =,则544CP=,解得 3.2CP =, ②ABC CPA ,∴AB AC CP CA =,则544CP =,解得5CP =, 综上可知若△ABC 与△PAC 相似,则PC =3.2或5.故答案为:3.2或5.【点睛】本题考查圆周角定理和相似三角形的存在性问题,解题的关键是利用分类讨论的思想根据相似三角形对应边成比例求出要求的线段长.16.575【分析】由题意可得△AFB ∽△ADC 根据相似三角形的性质和已知条件即可得到井深尺寸【详解】解:由题意可知:△AFB ∽△ADC ∴可设BC=x 则有解之可得:BC=575(尺)故答案为575【点睛】解析:57.5【分析】由题意可得△AFB ∽△ADC ,根据相似三角形的性质和已知条件即可得到井深尺寸.【详解】解:由题意可知:△AFB ∽△ADC ,∴AB FB AC DC =, 可设BC=x ,则有50.455x =+,解之可得:BC=57.5(尺), 故答案为57.5.【点睛】本题考查相似三角形的应用,熟练掌握三角形相似的判定和性质是解题关键 . 17.【分析】连接ADBC 后可知△AOD ∽△BOC 再由相似三角形的性质和已知条件可以得到问题解答【详解】解:如图连接ADBC 则在△AOD 和△BOC 中∴△AOD ∽△BOC (cm )故答案为15cm 【点睛】本题解析:15cm【分析】连接AD 、BC 后可知△AOD ∽△BOC ,再由相似三角形的性质和已知条件可以得到问题解答.【详解】解:如图,连接AD 、BC ,则在△AOD 和△BOC中,AO DOBO CODOA BOC ⎧=⎪⎨⎪∠=∠⎩,∴△AOD ∽△BOC,233,1015322AD AOBC ADBC BO====⨯=(cm),故答案为15cm .【点睛】本题考查相似三角形的应用,熟练掌握相似三角形的判定及性质并灵活运用是解题关键.18.5【分析】过D作DE⊥AB于E根据角平分线的性质得到根据勾股定理得到根据相似三角形的性质即可得到结论【详解】过作于是的平分线故答案为:【点睛】本题考查了角平分线的性质相似三角形的判定和性质勾股定理正解析:5【分析】过D作DE⊥AB于E,根据角平分线的性质得到32CD DE==,根据勾股定理得到22BE BD DE=-2253222⎛⎫⎛⎫=-=⎪ ⎪⎝⎭⎝⎭,根据相似三角形的性质即可得到结论.【详解】过D作DE AE⊥于E,90,C AD︒∠=是BAC∠的平分线32CD DE∴==52DB = 4BC BD CD ∴=+=BE ∴=2== 90,C DEB B B ︒∠=∠=∠=∠ BDE BAC ∴∆∆ BC BE BD AB ∴= 5224AB∴= 故答案为:5【点睛】本题考查了角平分线的性质,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.19.【分析】证明得到对应线段成比例由此即可解决问题【详解】∵且∴∴又∵∴故填:【点睛】本题考查相似三角形的判定和性质解题的关键是熟练掌握相似三角形的判定方法利用相似三角形的性质解决问题属于中考常考题型解析:83【分析】证明C ABC BD ∽△△,得到对应线段成比例,由此即可解决问题.【详解】∵BCD A ∠=∠,且ABC CBD ∠=∠,∴C ABC BD ∽△△, ∴BC AB BD CB ==,又∵BC = ∴83BD =, 故填:83. 【点睛】本题考查相似三角形的判定和性质,解题的关键是熟练掌握相似三角形的判定方法,利用相似三角形的性质解决问题,属于中考常考题型.20.2或-1【分析】此题分情况考虑:①当a+b+c≠0时根据比例的等比性质求得k 的值;②当a+b+c=0时即a+b=-c 求得k 的值【详解】解析:2或-1.【分析】此题分情况考虑:①当a+b+c≠0时,根据比例的等比性质,求得k 的值;②当a+b+c=0时,即a+b=-c ,求得k 的值.【详解】①当a+b+c≠0时,由等比性质得k=2()a b c a b c++++=2; ②当a+b+c=0时,即a+b=-c(或a+c=-b 或b+c=-a),得k=c c-=-1. 故答案为2或-1.【点睛】 此题考查比例的等比性质,解题时要注意等比性质的条件.三、解答题21.(1)图见解析;(2)图见解析,2C (1,0);(3)10【分析】(1)利用平移的性质得出对应点的坐标即可画出平移后的图形;(2)利用位似图形的性质得出对应点的坐标即可画出平移后的图形,进而可得点C 2的坐标;(3)根据所画图形判断出△A 2BC 2为等腰直角三角形,利用三角形的面积公式即可求解.【详解】解:(1)如图所示:△A 1B 1C 1,即为所求;(2)如图所示:△A 2BC 2即为所求,C 2点坐标为(1,0),故答案为:(1,0);(3)∵A 2C 2=BC 2=A 2=∴A 2C 22+BC 22= A 2B 2,∴△A 2BC 2是等腰直角三角形,且∠A 2C 2B=90°,∴△A2BC 2的面积位为:12×(2=10平方单位, 故答案为:10.【点睛】本题考查平移变换和位似变换的性质、勾股定理及其逆定理、三角形的面积公式,掌握变换性质,正确得出变换后的对应点的位置是解答的关键.22.见解析.【分析】由题意可得△CDF≌△CBE,所以可得∠DCF=∠BCE,进一步结合菱形的性质可得∠H=∠BCE,再由∠B=∠B即可得到所证结论成立.【详解】∵四边形ABCD是菱形,∴CD=CB,∠D=∠B,∵DF=BE,∴△CDF≌△CBE(SAS),∴∠DCF=∠BCE,∵CD∥BH,∴∠H=∠DCF,∴∠H=∠BCE,∵∠B=∠B,∴△BEC∽△BCH.【点睛】本题考查菱形的综合应用,综合运用菱形的性质、三角形全等的判定和性质及三角形相似的判定是解题关键.23.(1)BG=12,;(2)证明见解析【分析】(1)根据AD∥BC,点F是AC边上的中点,可证△ADF≌△CGF,得AD=CG,再由BE:AE=3:1及AD∥BC,得BG=3AD,BC=2AD=8,得AD=4,可求BG;(2)由∠1=∠2,根据邻补角的性质得∠AEF=∠FCG,又对顶角∠AFE=∠GFC,可证△AFE∽△GFC,利用相似比证题.【详解】(1)解:∵AD∥BC,∴∠D=∠G,又∠AFD=∠CFG,AF=FC,在△ADF 和△CGF 中D G AFD CFG AF FC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△CGF(AAS),∴AD=CG ,FG=FD ,又∵AD ∥BC∴△ADE ∽△BGE ∴BE BG AE DA= 又BE :AE=3:1,∴BG=3AD ,又AD=CG∴BC=2AD=8,解得AD=4,∴BG=3AD=12;(2)证明:∵∠1=∠2,∴180°-∠1=180°-∠2,即∠AEF=∠FCG ,又∵∠AFE=∠GFC ,∴△AFE ∽△GFC ,EF AF FC FG=, 又AF=CF ,DF=GF ,即EF CF CF FD=, ∴FC 2=FE•FD .【点睛】本题考查了相似三角形的判断与性质,全等三角形的判定与性质.关键是利用平行线,中点,等角的补角相等,推出全等和相似三角形.24.(1)见解析;(2)见解析.【分析】(1)据等边对等角,判定∠DCB=∠DBC ,再据同弧所对圆周角相等,判定∠DAC=∠DBC ,再据圆内接四边形性质判定∠EAD=∠DCB ,最后得证AD 平分E AC ∠;(2)运用等边对等角和同弧所对圆周角相等证得∠CFB=∠DCB ,据△BCF 和△BDC 还有一个公共角,由有两个角对应相等的三角形相似,证得BCF BDC △△∽.【详解】如下图(1)∵BD CD =∴DBC DCB ∠=∠又∵DAC DBC ∠=∠,DAE DCB ∠=∠∴DAE DAC ∠=∠,即AD 平分EAC ∠.(2)∵DA DF =∴DFA DAC ∠=∠又∵CFB DFA ∠=∠,DCB DBC DAC ∠=∠=∠∴CFB DCB ∠=∠又∵CBF DBC ∠=∠∴BCF BDC △△∽.【点睛】此题考查圆周角的相关知识及圆内接四边形的性质.找准图形正确运用相关知识是关键. 25.(1)2a ;(2)4a ;(3)2an ﹣2a .【分析】(1)延长BQ 交EF 的延长线于点G ,根据三角形中位线定理求出BC ,证明△BQC ∽△GQE ,根据相似三角形的性质得到EG=BC=2a ,根据角平分线的定义、平行线的性质得到PB=PG ,得到答案;(2)(3)仿照(1)的解法解答.【详解】解:(1)如图1,延长BQ 交EF 的延长线于点G ,∵E 、F 分别是边AB 、AC 的中点,∴EF 是△ABC 的中位线,∴BC=2EF=2a ,EF ∥BC ,∴△BQC ∽△GQE , ∴1EG EQ BC QC==, ∴EG=BC=2a ,∵BQ 是∠CBP 的平分线,∴∠PBQ=∠CBQ ,∵EF ∥BC ,∴∠EGQ=∠CBQ ,∴∠PBQ=∠EGQ ,∴PB=PG ,∴PE+PB=PE+PG=EG=2a ;(2)如图2,延长BQ 交EF 的延长线于点M ,由(1)可知,△BQC ∽△MQE ,∴1.2BC CQ EM EQ ==, ∴EM=2BC=4a ,∴PE+PB=PE+PM=EM=4a ;(3)如图2,当1CQ CE n=时,则EQ=(n-1)CQ , 由EF ∥BC 得,△MEQ ∽△BCQ , ∴1EM EQ n BC QC==-, ∴EM=(n-1)BC=2a (n-1),即EP+BP=2an-2a .【点睛】本题考查了相似三角形的判定与性质、角平分线的定义、平行线的性质,延长BQ 构造出相似三角形,求出EP+BP=EM 并得到相似三角形是解题的关键.26.(1)见解析;(2)(-2a ,-2b );(3)10【分析】(1)把B 、C 的横纵坐标都乘以-2得到B′、C′的坐标,然后描点即可;(2)利用(1)中对应点的关系求解;(3)先计算△OBC 的面积,然后利用相似的性质把△OBC 的面积乘以4得到△OB ꞌC ꞌ的面积.【详解】(1)如下图,△OB ꞌC ꞌ为所作;(2)点M 对应点M ′的坐标为(-2a ,-2b );(3)''11144(23212131)10222OB C OCB S S ∆∆==⨯⨯-⨯⨯-⨯⨯-⨯⨯=. 【点睛】本题考查了作图、位似变换,熟练应用以原点为位似中心的两位似图形对应点的坐标的关系确定变换后对应点的坐标,然后描点得到变换后的图形.。
最新人教版初中数学九年级数学下册第二单元《相似》测试题(有答案解析)(1)
一、选择题1.如图,在△ABC 中,DE ∥BC ,∠ADE =∠EFC ,AD:BD=5:3,CF =6,则DE 的长为( )A .6B .8C .10D .122.如图,在平行四边形ABCD 中,以对角线AC 为直径的圆O 分别交BC ,CD 于点M ,N ,若13AB =,14BC =,9CM =,则线段MN 的长为( )A .18013B .10C .12613D .13.如图,一次函数y =﹣2x +10的图象与反比例函数y =k x(k >0)的图象相交于A 、B 两点(A 在B 的右侧),直线OA 与此反比例函数图象的另一支交于另一点C ,连接BC 交y 轴于点D ,若52BC BD =,则△ABC 的面积为( )A .12B .10C .9D .84.如图,在平面直角坐标系中,矩形ABCO 的边CO 、OA 分别在x 轴、y 轴上,点E 在边BC 上,将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若()0,8A ,4CF =,则点E 的坐标是( )A .()8,4-B .()10,3-C .()10,4-D .()8,3- 5.如图所示,在矩形ABCD 中,AB =2,BC =2,对角线AC 、BD 相交于点O ,过点O 作OE 垂直AC 交AD 于点E ,则AE 的长是( )A .2B .3C .1D .1.56.如图,△ABC 是等腰直角三角形,∠ACB =90°,点E 、F 分别是边BC 、AC 的中点,P 是AB 上一点,以PF 为一直角边作等腰直角△PFQ ,且∠FPQ =90°,若AB =12,PB =3,则QE 的值为( )A .42B .4C .32D .37.如图,地面上点A 处有一只兔子,距它10米的B 处有一根高1.6米的木桩,大树、木桩和兔子刚好在一条直线上.一只老鹰在9.6米高的树顶上刚好看见兔子,则大树C 离木桩B( )米.A .60B .50C .40D .458.△ABC 与△DBC 如图放置,已知,∠ABC =∠BDC =90°,∠A =60°,BD =CD =2,将△ABC 沿BC 方向平移至△A'B'C'位置,使得A'C 边恰好经过点D ,则平移的距离是( )A .1B .22﹣2C .23﹣2D .26﹣4 9.已知a 3b 4=,则下列变形错误的是( ) A .34a b = B .34a b = C .4a=3b D .43b a = 10.如图,ABC 是等边三角形,被一平行于BC 的矩形所截(即:FG ∥BC),若AB 被截成三等分,则图中阴影部分的面积是ABC 的面积的( )A .19B .29C .13D .4911.如图,正方形ABCD 中,ABC 绕点A 逆时针旋转到AB C ''△,AB '、AC '分别交对角线BD 于点E 、F ,若4AE =,则EF ED ⋅的值为( )A .4B .6C .8D .1612.下列判断中,不正确的有( )A .三边对应成比例的两个三角形相似B .两边对应成比例,且有一个角相等的两个三角形相似C .有一个锐角相等的两个直角三角形相似D .有一个角是100°的两个等腰三角形相似二、填空题13.如图,已知点M 是△ABC 的重心,AB =123MN ∥AB ,则MN =__________14.如图1,课本中有一道例题:有一块三角形余料ABC ,它的边120BC mm =,高80AD mm =.要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB ,AC 上.设PN xmm =,用x 的代数式表示AE =________mm ,由//PN BC ,可得APN ABC ∽△△,再利用相似三角形对应高的比等于相似比,可求得PN =________mm .拓展:原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图2,此时,PN =________mm .15.如图,在△ABO 的顶点A 在函数k y x=(x >0)的图像上∠ABO=90°,过AO 边的三等分点M 、N 分别作x 轴的平行线交AB 于点P 、Q .若四边形MNQP 的面积为3,则k 的值为________.16.如图,把正ABC ∆沿AB 边平移到''A B C '的位置,它们的重叠部分(即图中阴影部分)的面积是ABC ∆的面积的一半,若23AB =,则此三角形平移距离'CC 的长度是_________.17.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”.如图,P 为AB 的黄金分割点()AP PB >,如果AB 的长度为8cm ,那么AP 的长度是_____________.18.如图,ED 为△ABC 的中位线,点G 是AD 和CE 的交点,过点G 作GF ∥BC 交AC 于点F ,如果GF =4,那么线段BC 的长是________.19.如图4,我国现代数学著作《九章算术》中有“井深几何”问题如下:今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?它的题意可以由如图所示获得,井深BC 为_________尺.20.如图,AB 是⊙O 的直径,AB =20cm ,弦BC =12cm ,F 是弦BC 的中点.若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,设运动时间为t (s )(0≤t≤10),连接EF ,当△BEF 是直角三角形时,t (s )的值为_______.三、解答题21.定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“友爱四边形”,这条对角线叫“友爱线”.(1)如图1,在44⨯的正方形网格中,有一个网格Rt ABC △和两个网格四边形ABCD 与四边形ABCE ,其中是被AC 分割成的“友爱四边形”的是______.(2)如图2,四边形ABCD 是“友爱四边形”,对角线AC 是“友爱线”,同时也是BCD ∠的角平分线,若ABC 中,2AB =,3BC =,4AC =,求友爱四边形ABCD 的周长.(3)如图3,在ABC 中,AB BC ≠,60ABC ∠=︒,ABC 的面积为33,点D 是ABC ∠的平分线上一点,连接AD ,CD .若四边形ABCD 是被BD 分割成的“友爱四边形”,求BD 的长.22.求证:相似三角形对应边上的角平分线之比等于相似比.要求:①根据给出的ABC 及线段A B '',A '∠(A A ∠'=∠),以线段A B ''为一边,在给出的图形上用尺规作出A B C ''',使得A B C ABC ''''∽△△,不写作法,保留作图痕迹.②在已有的图形上画出一组对应角平分线,并据此写出已知、求证和证明过程.23.如图,已知O 的半径长为1,AB 、AC 是O 的两条弦,且=AB AC ,BO 的延长线交AC 于点D ,联结OA 、OC .(1)求证:OAD ABD ∽△△.(2)当OCD 是直角三角形时,求B 、C 两点的距离.(3)记AOB 、AOD △、COD △的面积分别为1S 、2S 、3S ,如果2S 是1S 和3S 的比例中项,求OD 的长.24.如图,在等边ABC ∆中,点D 是边AC 上一动点(不与点,A C 重合),连接BD ,作AH BD ⊥于点H ,将线段AH 绕点A 逆时针旋转60︒至线段AE ,连接CE (1)①补全图形;②判断线段BH 与线段CE 的数量关系,并证明;(2)已知4AB =,点M 在边AB 上,且1BM=,作直线HE . ①是否存在一个定点P ,使得对于任意的点D ,点P 总在直线HE 上,若存在,请指出点P 的位置,若不存在,请说明理由;②直接写出点M 到直线HE 的距离的最大值.25.在如图小正方形的边长均为1的正方形网格中,△ABC 的顶点都在格点上.(1)以点O 为位似中心画△ABC 的位似图形△A 1B 1C 1,位似比为1:2.(2)在(1)中所画得图形中,△ABC 的中线CD 与△A 1B 1C 1的中线C 1D 1的位置关系为 .26.如图,ABC 内接于⊙O ,AB AC =,过点C 作AB 的垂线CD ,垂足为点E ,交O 于点F ,连接AD ,并使AD BC ∥.(1)求证:AD 为O 的切线;(2)若5AC =,2BE =,求AD 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由DE //BC 可得出53AD AE BD EC ==,∠AED =∠C ,结合∠ADE =∠EFC 可得出△ADE ∽△EFC ,根据相似三角形的性质可得出53AE DE EC FC ==,再根据CF =6,即可求出DE 的长度.【详解】解:∵DE //BC , ∴53AD AE BD EC ==,∠AED =∠C . 又∵∠ADE =∠EFC ,∴△ADE ∽△EFC , ∴53AE DE EC FC ==, ∵CF =6, ∴563DE =, ∴DE =10.故选C【点睛】 本题考查了相似三角形的判定与性质、平行线分线段成比例定理,根据平行线分线段成比例定理和相似三角形的性质列出比例式是解题的关键.2.A解析:A【分析】连结AM ,AN ,根据圆周角定理可知△ABM 是直角三角形,利用勾股定理即可求出AC 的长;易证△AMN ∽△ACD ,根据相似三角形的性质即可求出MN 的长.【详解】解:连结AM ,AN ,∵AC 是⊙O 的直径,∴∠AMC=90°,∠ANC=90°,∵AB=13,BM=5,∴22AB BM -,∵CM=9,∴AC=15,∵∠MCA=∠MNA ,∠MCA=∠CAD ,∴∠MNA=∠CAD ,∵∠AMN=∠ACN ,∴∠AMN=∠ACN ,∵△NMA ∽△ACD ,∴AM :MN=CD :AC ,∴12:MN=13:15,∴MN=18013. 故选:A .【点睛】本题考查了圆周角定理运用、勾股定理的运用、相似三角形的判定和性质,题目的综合性较强,难度中等,解题的关键是添加辅助线构造相似三角形.3.B解析:B【分析】过点B 作BM y ⊥轴于M ,过点C 作CN y ⊥轴于N ,连接AD ,则//BM CN ,可证得23BM BC CN CD ==,设点2,2k B x x ⎛⎫ ⎪⎝⎭,点3,3k C x x ⎛⎫-- ⎪⎝⎭.根据对称性可得点3,3k A x x ⎛⎫ ⎪⎝⎭,由已知可求得A 、B 、C 的坐标,则可求得直线BC 的解析式,进而求得点D 、F 的坐标,由ABD ADF BDF S S S -=△△△及:2:5ABD ABC S S =△△可求得ABC S .【详解】过点B 作BM y ⊥轴于M ,过点C 作CN y ⊥轴于N ,连接AD ,如图,则有//BM CN ,∴BMD CND ∽,又52BC BD = ∴23BM BD CN CD ==, 设点2,2k B x x ⎛⎫ ⎪⎝⎭,点3,3k C x x ⎛⎫-- ⎪⎝⎭.根据对称性可得点3,3k A x x ⎛⎫ ⎪⎝⎭. ∵点A ,B 在直线AB 上, ∴2210223103k x x k x x⎧=-⨯+⎪⎪⎨⎪=-⨯+⎪⎩ ∴解得:112x k =⎧⎨=⎩, ∴点()3,4A ,点()2,6B 、点()3,4C --. 设直线BC 的解析式为y=mx+n ,则有:2634m n m n +=⎧⎨-+=-⎩, 解得:22m n =⎧⎨=⎩, ∴直线BC 解析式为22y x =+, ∴点()0,2D ,∵点F 是直线AB 与y 轴的交点, ∴点()0,10F∴()()10232102224ABD ADF BDF S S S -==-⨯÷--⨯÷=△△△ 又∵:2:5ABD ABC S S =△△, ∴55S 41022ABC ABD S ==⨯=,【点睛】本题考查了一次函数与反比例函数的图象交点问题、待定系数法求一次函数解析式、相似三角形的判定与性质、直线上点的坐标特征、等高三角形的面积比等于底的比等知识,求出点A 、B 的坐标和作辅助线借助相似三角形解决问题是解答的关键.4.B解析:B【分析】根据题意可求得CE 、OF 的长度,根据点E 在第二象限,从而可以得到点E 的坐标.【详解】解:∵四边形ABCO 是矩形∴90ECF FOA B ∠=∠=∠=︒∵将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若()0,8A∴90AFE B ∠=∠=︒∴90CEF CFE OFA CFE ∠+∠=∠+∠=︒∴CEF OFA ∠=∠∴Rt ECF Rt FOA ∽根据题意可设CE x =,则8BE x =-,则8BE x =-∵4CF =∴在Rt ECF △中,()22248x x +=- ∴3x =根据题意可设OF y =∵Rt ECF Rt FOA ∽ ∴CE CF OF OA= ∴348y = ∴6y =∴6OF =∴10CO CF OF =+=∴点E 的坐标为()10,3-.故选:B【点睛】本题考查了勾股定理、矩形的性质、翻折变换、坐标与图形变化(轴对称)、相似三角形的判定和性质等知识点,解题的关键是明确题意找出所求问题需要的条件,利用数形结合的思想进行解答.5.D【分析】先求出AC ,进而求出OA ,再证明△AOE ∽△ADC ,得到AE OA AC AD =,即可求解. 【详解】解:∵四边形ABCD 是矩形,∴∠ABC =∠ADC =90°,AD =BC =2,CD =ABOA =OC =12AC ,∴AC=∴OA =2, ∵OE ⊥AC , ∴∠AOE =90°,∴∠AOE =∠ADC ,又∵∠OAE =∠DAC ,∴△AOE ∽△ADC , ∴AE OA AC AD=,22=, ∴AE =1.5.故选:D .【点睛】本题考查了矩形的性质,勾股定理,相似三角形的性质与判定等知识,能根据已知条件判定△AOE ∽△ADC 是解题关键.6.C解析:C【分析】取AB 的中点D ,连结FD ,根据等腰直角三角形的性质得到∠A=45°,根据三角形中位线定理得到EF ∥AB ,EF=12AB=6,DF=12,证明△FDP ∽△FEQ ,根据相似三角形的性质列出比例式,代入计算,得到答案.【详解】解:如图,取AB 的中点D ,连结FD ,∵△ABC 为等腰直角三角形,AB=12,∴2∠A=45°,∵点D 、E 、F 分别是△ABC 三边的中点,AB=12,PB=3,∴AD=BD=6,DP=DB-PB=6-3=3,EF 、DF 为△ABC 的中位线,∴EF ∥AB ,EF=12AB=6,DF=122,∠EFP=∠FPD , ∴∠FDA=45°,32262DF EF ==, ∴∠DFP+∠DPF=45°,∵△PQF 为等腰直角三角形,∴∠PFE+∠EFQ=45°,FP=PQ ,∴∠DFP=∠EFQ ,∵△PFQ 是等腰直角三角形, ∴2PF FQ = ∴DF PF EF FQ =, ∵DF PF EF FQ=,∠DFP=∠EFQ , ∴△FDP ∽△FEQ , ∴2QE EF DP DF ==,即23QE =, 解得,2,故选:C .【点睛】本题考查了等腰直角三角形,相似三角形的判定和性质,根据题意作出辅助线,构造出三角形的中位线是解题的关键.7.B解析:B【分析】如图,证明△ABE ∽△ACD ,根据相似三角形的性质列式求解即可.【详解】解:如图,根据题意得,△ABE ∽△ACD , ∴AB BE AC CD= ∵AB=10m ,BE=1.6m ,CD=9.6m ∴10 1.6=9.6AC ∴AC=60m ∴BC=AC-AB=60-10=50m故选:B .【点睛】此题主要考查了相似三角形的应用,善于观察题目的信息是解题以及学好数学的关键. 8.C解析:C【分析】过点D 作DJ ⊥BC 于J ,根据勾股定理求出BC ,利用等腰直角三角形的性质求出DJ 、BJ 、JC ,利用平行线分线段成比例定理求出JC′即可解决问题.【详解】解:过点D 作DJ ⊥BC 于J .∵DB =DC =2,∠BDC =90°,∴BC ()()222222+4,DJ =BJ =JC =2,∵∠ABC =90°,∠A =60°,∴∠ACB =30°,∴AC=2AB ,∵AB 2+42=(2AB)2,∴A′B′=AB 43, ∵DJ//A′B′,∴DJ A B ''=C J C B''',∴34C J',∴C′J=∴JB′=4﹣∴BB′=2﹣(4﹣=﹣2.故选:C.【点睛】本题考查了平移的性质,直角三角形的性质,等腰三角形的性质,勾股定理,以及平行线分线段成比例定理.9.A解析:A【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【详解】解:由34ab=得,4a=3b,A、由等式性质可得:ab=12,原变形错误,故这个选项符合题意;B、由等式性质得到4a=3b,原变形正确,故这个选项不符合题意;C、由等式性质可得:4a=3b,原变形正确,故这个选项不符合题意;D、由等式性质可得:4a=3b,原变形正确,故这个选项不符合题意;故选:A.【点睛】本题考查比例的性质.熟练掌握内项之积等于外项之积是解题的关键.10.C解析:C【分析】AB被截成三等分,可得AB=3AE,AF=2AE,由EH∥FG∥BC,可得△AEH∽△AFG∽△ABC,则S△AEH:S△AFG:S△ABC=AE2:AF2:AB2,S阴影= S△AFG- S△AEH =13S△ABC.【详解】∵AB被截成三等分,∴AB=3AE,AF=2AE,∵EH∥FG∥BC,∴△AEH∽△AFG∽△ABC,∴S△AEH:S△AFG:S△ABC=AE2:AF2:AB2=AE2:(2AE)2:(3AE)2=1:4:9,∴S△AEH=19S△ABC, S△AFG=4 S△AEH,S 阴影= S △AFG - S △AEH =3 S △AEH =3×19 S △ABC =13S △ABC . 故选择:C .【点睛】 本题考查阴影部分面积问题,关键是利用相似三角形的面积比等于相似比的平方,找到阴影面积与△AEH 的关系,由△AEH 与△ABC 的关系来转化解决问题.11.D解析:D【分析】先根据正方形的性质、旋转的性质可得45EAF EDA ∠=∠=︒,再根据相似三角形的判定与性质即可得.【详解】四边形ABCD 是正方形,45BAC EDA ∴∠=∠=︒,由旋转的性质得:B AC BAC ''∠=∠,B AC EDA ''∴∠=∠,即EAF EDA ∠=∠,在AEF 和DEA △中,EAF EDA AEF DEA ∠=∠⎧⎨∠=∠⎩, AEF DEA ∴~,EF AE AE DE ∴=,即44EF DE=, 16EF DE ∴⋅=,故选:D .【点睛】本题考查了正方形的性质、旋转的性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.12.B解析:B【分析】由相似三角形的判定依次判断可求解.【详解】解:A 、三边对应成比例的两个三角形相似,故A 选项不合题意;B 、两边对应成比例,且夹角相等的两个三角形相似,故B 选项符合题意;C 、有一个锐角相等的两个直角三角形相似,故C 选项不合题意;D 、有一个角是100°的两个等腰三角形,则它们的底角都是40°,所以有一个角是100°的两个等腰三角形相似,故D 选项不合题意;故选:B .【点睛】本题考查了相似三角形的判定,熟练运用相似三角形的判定是本题的关键.二、填空题13.【分析】根据三角形重心的性质可得AD=BD=CM :CD=2:3由MN ∥AB 可得△CMN ∽△CDB 再根据相似三角形的性质求解即可【详解】解:∵点M 是△ABC 的重心∴AD=BD=CM :CD=2:3∵MN解析:【分析】根据三角形重心的性质可得AD=BD=12AB =CM :CD=2:3,由MN ∥AB 可得△CMN ∽△CDB ,再根据相似三角形的性质求解即可.【详解】解:∵点M 是△ABC 的重心,∴AD=BD=12AB =CM :CD=2:3, ∵MN ∥AB ,∴△CMN ∽△CDB , ∴23MN CM DB CD ==,23=,解得MN =.故答案为:【点睛】本题考查了三角形的重心和相似三角形的性质,熟练掌握上述知识是解题的关键. 14.48【分析】根据相似三角形的性质可得对应高的比等于相似比进行计算然后根据矩形的性质可设则进行求解即可;【详解】设则∵PN ∥BC ∴∴即解得∴拓展:设则∵PN ∥BC ∴∴∴解得∴;故答案是:;48;【点睛解析:80x -484807 【分析】根据相似三角形的性质可得对应高的比等于相似比进行计算,然后根据矩形的性质可设BQ x =,则2PN x =,80AE x =-,进行求解即可;【详解】设PN xmm =,则PN PQ ED xmm ===,()80AE AD ED x mm =-=-,∵PN ∥BC ,∴APN ABC ,∴PN AE BC AD =, 即8012080x x -=,解得48x =, ∴48PN mm =,拓展:设PQ xmm =,则2PN xmm =,()80AE AD ED x mm =-=-,∵PN ∥BC ,∴APN ABC , ∴PN AE BC AD =, ∴28012080x x -=,解得2407x =, ∴48027PN x ==; 故答案是:80x -;48;4807. 【点睛】 本题主要考查了相似三角形的应用,准确分析计算是解题的关键.15.【分析】易证△ANQ ∽△AMP ∽△AOB 由相似三角形的性质:面积比等于相似比的平方可求出△ANQ 的面积进而可求出△AOB 的面积则k 的值也可求出【详解】∵NQ ∥MP ∥OB ∴△ANQ ∽△AMP ∽△AOB解析:18【分析】易证△ANQ ∽△AMP ∽△AOB ,由相似三角形的性质:面积比等于相似比的平方可求出△ANQ 的面积,进而可求出△AOB 的面积,则k 的值也可求出.【详解】∵NQ ∥MP ∥OB ,∴△ANQ ∽△AMP ∽△AOB ,∵M 、N 是OA 的三等分点, ∴11,23AN AN AM AO ==, ∴14ANQ AMP SS =, ∵四边形MNQP 的面积为3, ∴314ANQ ANQ S S =+,∴S △ANQ =1, ∵2119AOB AN S AO ⎛⎫== ⎪⎝⎭, ∴S △AOB =9,∴k =2S △AOB =18,故答案为:18.【点睛】本题考查了相似三角形的判定和性质以及反比例函数k 的几何意义,正确的求出S △ANQ =1是解题的关键.16.【分析】根据题意可知△ABC 与阴影部分为相似三角形且面积比为2:1所以AB :A′B=:1推出A′B=从而得到AA′的长【详解】解:∵△ABC 沿AB 边平移到△A′B′C′的位置∴AC ∥A′C′∴△AB解析:【分析】根据题意可知△ABC 与阴影部分为相似三角形,且面积比为2:1,所以AB ::1,推出,从而得到AA′的长.【详解】解:∵△ABC 沿AB 边平移到△A′B′C′的位置,∴AC ∥A′C′,∴△ABC ∽△A′BD , ∴21()2A BDABC S A B S AB ''∆∆==, ∴AB ::1,∵AB=∴,∴AA′=.由平移可得' 'CC AA =∴'6CC =故答案为:.【点睛】本题主要考查相似三角形的判定和性质、平移的性质,关键在于求证△ABC 与阴影部分为相似三角形.17.()cm 【分析】利用黄金分割的定义计算出AP 【详解】为的黄金分割点故答案为:()cm 【点睛】此题考查黄金分割的定义黄金分割物体的较大部分等于与整体的解析:(4)cm【分析】利用黄金分割的定义计算出AP .【详解】 P 为AB 的黄金分割点()AP PB >,()84AP AB cm ∴===故答案为:(4)cm.【点睛】此题考查黄金分割的定义,黄金分割物体的较大部分等于与整体的12. 18.12【分析】先判断点G 为△ABC 的重心得到AG=2GD 再证明△AGF ∽△ADC 然后利用相似比求出CD 的长从而得到BC 的长【详解】解:∵ED 为△ABC 的中位线∴DE//ACDE=ADCE 为△ABC 的中解析:12.【分析】先判断点G 为△ABC 的重心得到AG=2GD ,再证明△AGF ∽△ADC ,然后利用相似比求出CD 的长,从而得到BC 的长.【详解】解:∵ED 为△ABC 的中位线,∴DE//AC ,DE=12AC ,AD 、CE 为△ABC 的中线, ∴△DEG ∽△ACG ∴12DG DE AG AC == ∴AG=2GD ,∵GF ∥BC ,∴△AGF ∽△ADC , ∴23GF AG CD AD ==, ∴CD=32GF=32×4=6, ∴BC=2CD=12.故答案为12.【点睛】 本题考查了重心的性质:重心到顶点的距离与重心到对边中点的距离之比为2:1. 也考查了三角形中位线和相似三角形的判定与性质.19.575【分析】由题意可得△AFB ∽△ADC 根据相似三角形的性质和已知条件即可得到井深尺寸【详解】解:由题意可知:△AFB∽△ADC∴可设BC=x则有解之可得:BC=575(尺)故答案为575【点睛】解析:57.5【分析】由题意可得△AFB∽△ADC,根据相似三角形的性质和已知条件即可得到井深尺寸.【详解】解:由题意可知:△AFB∽△ADC,∴AB FB AC DC=,可设BC=x,则有50.455x=+,解之可得:BC=57.5(尺),故答案为57.5.【点睛】本题考查相似三角形的应用,熟练掌握三角形相似的判定和性质是解题关键.20.5或82【分析】求出BF和AO的长分为两种情况①∠EFB=90°②∠FEB=90°分别利用三角形中位线的性质以及相似三角形的判定和性质求出AE的长再求出t即可【详解】∵AB是⊙O的直径∴∠C=90°解析:5或8.2【分析】求出BF和AO的长,分为两种情况,①∠EFB=90°,②∠FEB=90°,分别利用三角形中位线的性质以及相似三角形的判定和性质求出AE的长,再求出t即可.【详解】∵AB是⊙O的直径,∴∠C=90°,∵AB=20cm,弦BC=12cm,F是弦BC的中点,∴BF=12BC=6cm,有两种情况:①当∠EFB=90°时,如图:∵AB是⊙O的直径,∴∠C=90°,∵∠EFB=90°,∴AC∥EF,∵F为BC的中点,∴E 为AB 的中点,即E 和O 重合,∵AB=20cm ,∴AE=AO=12AB=10cm , ∴1052t ==; ②当∠FEB=90°时,如图:∵∠B=∠B ,∠FEB=∠C=90°,∴△FEB ∽△ACB ,∴BE BF BC AB =, ∴61220BE =, 解得:BE=3.6(cm ),∵AB=20cm ,∴AE=AB-BE=16.4cm ,∴16.48.22t ==; 故答案为:5或8.2.【点睛】本题考查了圆周角定理,三角形中位线定理,相似三角形的性质和判定等知识点,分类讨论是解此题的关键.三、解答题21.(1)四边形ABCE ;(2)13或10;(2)3【分析】(1)根据勾股定理分别求出三个三角形的各边长,根据三边对应成比例的三角形相似、“友爱四边形”的定义判断;(2)根据旋转变换的性质、平行线的性质、两角相等的两个三角形相似证明;(3)AM ⊥BC ,根据含30°的直角三角形的特殊性质及勾股定理用AB 表示出AM ,根据三角形的面积公式得到BC ×AB =12,根据相似三角形的性质列式计算,得到答案.【详解】解:(1)∵AB =2,BC =1,AD =4,∴由勾股定理得,ACCDAE =CE 5,∴BC AC =AB AE =AC CE , ∴ABC ∽EAC ,∴四边形ABCE 是“友爱四边形”, ∵BC AC ≠AC CD , ∴ABC 与ACD 不相似,∴四边形ABCD 不是“友爱四边形”,故答案为:四边形ABCE ;(2)∵AC 平分∠BCD ,∴∠ACB=∠ACD ,当∠B=∠DAC 时,ABC ∽DAC , 则BC AC =AB AD =AC CD, ∵2AB =,3BC =,4AC =, ∴34=2AD =4CD, 解得AD =83,CD =163, ∴友爱四边形ABCD 的周长为816321333+++=; 当∠B=∠D 时,ABC ∽ADC , 则BC DC =AB AD =AC AC=1, ∵2AB =,3BC =,4AC =, ∴3DC =2AD=1, 解得AD =2,CD =3,∴友爱四边形ABCD 的周长为233210+++=,综上所述,友爱四边形ABCD 的周长为13或10;(3)如图3,过点A 作AM ⊥BC 于M ,则∠AMB =90°,∵60ABC ∠=︒,∴∠BAM =30°,∴BM =12AB ,∴在Rt △ABM 中,AM =22AB BM - =221()2AB AB - =32AB , ∵ABC 的面积为33, ∴12BC ×32AB =33, ∴BC ×AB =12,∵四边形ABCD 是被BD 分割成的“友爱四边形”,且AB ≠BC ,∴ABD ∽DBC ∴AB BD BD BC=, ∴BD 2=AB ×BC =12,∴BD =12=23.【点睛】本题考查的是相似三角形的判定和性质、旋转变换的性质、三角形的面积计算,掌握相似三角形的判定定理和性质定理、理解“友爱四边形”的定义是解题的关键.22.(1)见解析;(2)见解析【分析】(1)根据相似三角形的判定,只需作出∠Bˊ=∠B 即可得到A B C ''';(2)先根据题意写出已知、求证,再根据相似三角形的性质和角平分线定义可证得ACD A C D '''∠=∠,进而可证得ACD A C D '''∽△△,则有CD AC C D A C=''''=k . 【详解】解:(1)如图所示,A B C '''即为所求.(2)已知:如图,ABC A B C '''∽△△,相似比为k ,CD 、C D ''分别平分ACB ∠,A C B '''∠,求证:CD AC k C D A C ==''''. 证明:∵ABC A B C '''∆∆∽, ∴A A '∠=∠,ACB A C B '''∠=∠,AC k A C ='' ∵CD 、C D ''分别平分ACB ∠,A C B '''∠, ∴12ACD ACB ∠=∠,12A B C C D A '∠∠'='''', ∴ACD A C D '''∠=∠,∵A A '∠=∠,∴ACD A C D '''∽△△, ∴CD AC k C D A C ==''''. 【点睛】 本题考查了基本尺规作图-作与已知角相等的角、相似三角形的判定与性质,解答的关键是熟练掌握相似三角形的判定与性质,注意文字叙述性命题的证明格式.23.(1)见解析;(2)3BC =2;(3)51OD -=. 【分析】(1)由△AOB ≌△AOC ,推出∠C=∠B ,由OA=OC ,推出∠OAC=∠C=∠B ,由∠ADO=∠ADB ,即可证明△OAD ∽△ABD ;(2)如图2中,当△OCD 是直角三角形时,需要分类讨论解决问题;(3)如图3中,作OH ⊥AC 于H ,设OD=x .想办法用x 表示AD 、AB 、CD ,再证明AD 2=AC•CD ,列出方程即可解决问题;【详解】解:(1)在AOB 和AOC △中, OA OA AB AC OB OC =⎧⎪=⎨⎪=⎩,∴AOB AOC △≌△,C B ∴∠=∠,又∵OA OC =,OAC C B ∴∠=∠=∠,而ADO ADB ∠=∠,OAD ABD ∴∽△△.(2)如图:①当90ODC ∠=︒时,BD AC ⊥,OA OC =,AD DC ∴=,BA BC AC ∴==,ABC ∴是等边三角形,在Rt OAD 中,1OA =,30OAD ∠=︒,1122OD OA ∴==, 2232AD OA OD ∴=-=, 23BC AC AD ∴===.②90COD ∠=︒,90BOC ∠=°,22112BC =+=.③OCD ∠显然90≠︒,不需要讨论.综上所述,3BC =或2.(3)如图:作OH AC ⊥于H ,设OD x =,DAO DBA ∽△△,AD OD OA DB AD AB ∴==. 11AD x x AD AB∴==+.AD ∴=,AB =. 又2S 是1S 和3S 的比例中项,2213S S S ∴=⋅, 而212S AD OH =⋅,112OAC S S AC OH ==⋅△,312S CD OH =⋅⨯, 2111222AD OH AC OH CD OH ⎛⎫⎛⎫∴⋅=⋅⋅⋅ ⎪ ⎪⎝⎭⎝⎭, 即2AD AC CD =⋅,又AC AB =,CD AC AD =-=, 代入上式可得:210x x +-=,求得x =,经检验,x =OD ∴=. 【点睛】 本题属于圆的综合题、全等三角形的判定和性质、相似三角形的判定和性质、比例中项等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.24.(1)①见解析;②BH CE =,证明见解析;(2)①存在,点P 是边BC 的中点;【分析】(1)①按要求画出图形即可;②根据全等三角形对应边相等来回答;(2)①点P 为直线HE 与BC 的交点;②通过△BPM ∽△BAP 问题可解;【详解】(1)①如图;②BH CE =证明ABH ACE ∆≅∆即可(2)①存在点P 是边BC 的中点,理由:设直线HE 与边BC 交于点P可由60ACB AEP ︒∠=∠=得点,,,A E C P 共圆,因为90AEC ︒∠=,所以90APC ︒∠=,即P 是BC 的中点.②如图, 当MP ⊥HE 时,MP 最大,理由:4,2,1AB BP BM ===, BM BP BP AB ∴=, B B ∠∠=,∴△BPM ∽△BAP ,∴∠BMP=∠BPA=90︒ ,2222213BP BP BP ∴=-=-=【点睛】本题考查等腰三角形的性质,全等三角形的判定和性质,点到直线的距离,旋转,相似三角形的判定和性质,勾股定理和圆的有关知识知识,综合性较强.25.(1)画图见解析;(2)11//CD C D【分析】(1)根据位似图形的性质可以得解;(2)根据位似图形的性质可得解.【详解】(1)如图△A 1B 1C 1就是所求作的图形.分别在射线AO 、BO 、CO 上截取1112OA OA OB OB OC OC ===,,,连结 111,,A B C 即得所作图形;(2)∵在(1)中所画的图形中,△ABC 的中线CD 与111A B C 的中线 11C D 是对应线段, ∴由“位似图形中不经过位似中心的对应线段平行”的性质可以得到:CD ∥11C D .【点睛】本题考查位似图形的应用与作图,熟练掌握位似图形的意义和性质是解题关键. 26.(1)证明见解析;(2)35【分析】(1)连接AO 后交DC 于点H ,交BC 于点G ,由垂径定理可知AG ⊥BC ,然后根据互余关系得到∠HAE=∠HCG ,然后利用平行关系得到∠ADE=∠HCG=∠HAE ,等量代换后可得∠HAE +∠EAD=90°;(2)根据AC 和BE 可算出AE ,然后在Rt △AEC 中算出EC ,然后证明△AED ∽△BEC ,然后利用比例关系算出DE ,在Rt △AED 中计算AD 即可.【详解】解:(1)如图,连接AO 交DC 于点H ,交BC 于点G ,则AG ⊥BC∵AG ⊥BC ,AB ⊥DC ,∠AHE=∠CHG∴∠HAE=∠HCG∵AB⊥DC∴∠ADE+∠EAD=90°∵AD∥BC∴∠ADE=∠HCG=∠HAE∴∠HAE +∠EAD=90°∴AD为O的切线(2)∵AC=AB,AC=5,BE=2∴AE=3在Rt△AEC由勾股定理可得:4EC=∵AD∥BC∴△AED∽△BEC∴BE EC=AE DE∴DE=6在Rt△AED由勾股定理可得:=【点睛】本题主要考查圆的相关定理,掌握切线的证明方法,灵活转化角关系是证明切线的关键,在圆中计算线段长度,找准相似三角形,结合勾股定理,是解题的关键.。
(人教版)哈尔滨市九年级数学下册第二单元《相似》检测题(有答案解析)
一、选择题1.如图,在△ABC 中,DE ∥BC ,∠ADE =∠EFC ,AD:BD=5:3,CF =6,则DE 的长为( )A .6B .8C .10D .122.如图,直线////a b c ,直线m 分别交直线a ,b ,c 于点A ,B ,C ,直线n 分别交直线a ,b ,c 于点D ,E ,F ,若23=AB BC ,则DE DF 的值为( )A .13B .23C .25D .353.如图,在平面直角坐标系中,矩形ABCO 的边CO 、OA 分别在x 轴、y 轴上,点E 在边BC 上,将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若()0,8A ,4CF =,则点E 的坐标是( )A .()8,4-B .()10,3-C .()10,4-D .()8,3- 4.如图所示,一电线杆AB 的影子分别落在了地上和墙上,某一时刻,小明竖起1米高的直杆,量得其影长为0.5米,此时,他又量得电线杆AB 落在地上的影子BD 长3米,落在墙上的影子CD 的高为2米,小明用这些数据很快算出了电线杆AB 的高,请你计算,电线杆AB 的高为( )A .5米B .6米C .8米D .10米5.有下列四种说法:其中说法正确的有( )①两个菱形相似;②两个矩形相似;③两个平行四边形相似;④两个正方形相似. A .4个 B .3个 C .2个 D .1个6.△ABC 与△DBC 如图放置,已知,∠ABC =∠BDC =90°,∠A =60°,BD =CD =22,将△ABC 沿BC 方向平移至△A'B'C'位置,使得A'C 边恰好经过点D ,则平移的距离是( )A .1B .22﹣2C .23﹣2D .26﹣4 7.已知a 3b 4=,则下列变形错误的是( ) A .34a b= B .34a b = C .4a=3b D .43b a = 8.如图,正方形ABCD 中,ABC 绕点A 逆时针旋转到AB C ''△,AB '、AC '分别交对角线BD 于点E 、F ,若4AE =,则EF ED ⋅的值为( )A .4B .6C .8D .16 9.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与图中△ABC 相似的是( )A .B .C .D .10.已知P 是线段AB 的黄金分割点,且51AB =+,则AP 的长为( ). A .2 B .51- C .2或51-D .35- 11.如图,在△ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,延长至点G ,连接BG ,过点A 作AF ⊥BG ,垂足为F ,AF 交CD 于点E ,则下列错误的是( )A .AD AC AC AB = B .AD CD CD BD =C .DE CD CD DG = D .EG BD EF BG = 12.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,E 为BC 的中点,连接AE 交BD 于点F ,若1OF =,则BD 的长为( )A .5B .6C .7D .8二、填空题13.如图,将△ABC 沿BC 边上的中线AD 平移到A′B′C′的位置,如果点A′恰好是△ABC 的重心,A′B′、A′C′分别于BC 交于点M 、N ,那么△A′MN 面积与△ABC 的面积之比是_____.14.如图,在平行四边形ABCD 中,E 在AD 上,21AE ED =,CE 交BD 于F ,则:BCF DCF S S =△△__________.15.如图,直线////AF BE CD ,直线AC 交BE 于B ,直线FD 交BE 于E ,2AB cm =,1BC cm =, 1.8EF cm =,求DE 的长为______cm .16.如图1,课本中有一道例题:有一块三角形余料ABC ,它的边120BC mm =,高80AD mm =.要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB ,AC 上.设PN xmm =,用x 的代数式表示AE =________mm ,由//PN BC ,可得APN ABC ∽△△,再利用相似三角形对应高的比等于相似比,可求得PN =________mm .拓展:原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图2,此时,PN =________mm .17.如图,把正ABC ∆沿AB 边平移到''A B C '的位置,它们的重叠部分(即图中阴影部分)的面积是ABC ∆的面积的一半,若23AB =,则此三角形平移距离'CC 的长度是_________.18.如图,在ABC 纸片中,13AB AC ==,24BC =,D 是BC 边上任意一点,将ABD △沿AD 折叠得到AED ,AE 交BC 于点F ,当DEF 是直角三角形时,则BD 的长为________.19.如图,已知△ABC 中,∠B =90°,BC =3,AB =4,D 是边AB 上一点,DE ∥BC 交AC 于点E ,将△ADE 沿DE 翻折得到△A ′DE ,若△A ′EC 是直角三角形,则AD 长为_____.20.如图,在直角三角形ABC 中,90,C AD ︒∠=是BAC ∠的平分线,且35,22CD DB ==,则AB =____.三、解答题21.平面直角坐标系中,ABC 的顶点坐标分别为()2,2A -,()3,4B -,()6,3C -.(1)画出将ABC 向上平移6个单位后得到的111A B C △,并写出点1A 的坐标. (2)以点()1,2M 为位似中心,在网格中画出......与111A B C △位似的图形222A B C △,且使得222A B C △与111A B C △的相似比为2:1,并写出点2A 的坐标.22.已知:△ABC 在坐标平面内,三个顶点的坐标为A (0,3)、B (3,4)、C (2,2).(正方形网格中,每个小正方形边长为1个单位长度)(1)画出△ABC 向下平移4个单位得到的△A 1B 1C 1;(2)以B 为位似中心,在网格中画出△A 2BC 2,使△A 2BC 2与△ABC 位似,且位似比2:1,直接写出C 2点坐标是 ;(3)△A 2BC 2的面积是 平方单位.23.如图,AB 是O 的直径,C ,D 是O 上两点,且AD 平分CAB ∠,作DE AB⊥于E .(1)求证://AC OD ;(2)求证:12OE AC =. 24.如图,BCD △内接于O ,且BD CD =,A 是是BD 上的一点,E 在BA 的延长线上,连结AC 交BD 于F ,连结AD .(1)求证:AD 平分E AC ∠;(2)若DA DF =,求证:BCF BDC △△∽.25.如图,Rt △ABC 中,∠C=90°.(1)在斜边AB 上确定一点E ,使点E 到点B 距离和点E 到AC 的距离相等;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若BC=6,点E 到AC 的距离为ED=4,求BD 的长.26.如图,在ABC 中,D 为BC 上一点,BAD C ∠=∠.(1)求证:C ABD BA ∽△△.(2)若6,3AB BD ==,求CD 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由DE //BC 可得出53AD AE BD EC ==,∠AED =∠C ,结合∠ADE =∠EFC 可得出△ADE ∽△EFC ,根据相似三角形的性质可得出53AE DE EC FC ==,再根据CF =6,即可求出DE 的长度.【详解】解:∵DE //BC , ∴53AD AE BD EC ==,∠AED =∠C . 又∵∠ADE =∠EFC ,∴△ADE ∽△EFC ,∴53AE DE EC FC ==, ∵CF =6, ∴563DE =, ∴DE =10.故选C【点睛】 本题考查了相似三角形的判定与性质、平行线分线段成比例定理,根据平行线分线段成比例定理和相似三角形的性质列出比例式是解题的关键.2.C解析:C【分析】 先由23AB BC =得出25AB AC =,再根据平行线分线段成比例定理即可得到结论. 【详解】 ∵23AB BC =, ∴25AB AC =, ∵a ∥b ∥c , ∴25DE AB DF AC ==, 故选:C .【点睛】 本题考查了平行线分线段成比例定理,掌握三条平行线截两条直线,所得的对应线段成比例是解题的关键.3.B解析:B【分析】根据题意可求得CE 、OF 的长度,根据点E 在第二象限,从而可以得到点E 的坐标.【详解】解:∵四边形ABCO 是矩形∴90ECF FOA B ∠=∠=∠=︒∵将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若()0,8A∴90AFE B ∠=∠=︒∴90CEF CFE OFA CFE ∠+∠=∠+∠=︒∴CEF OFA ∠=∠∴Rt ECF Rt FOA ∽根据题意可设CE x =,则8BE x =-,则8BE x =-∵4CF =∴在Rt ECF △中,()22248x x +=- ∴3x =根据题意可设OF y =∵Rt ECF Rt FOA ∽ ∴CE CF OF OA= ∴348y = ∴6y =∴6OF =∴10CO CF OF =+=∴点E 的坐标为()10,3-.故选:B【点睛】本题考查了勾股定理、矩形的性质、翻折变换、坐标与图形变化(轴对称)、相似三角形的判定和性质等知识点,解题的关键是明确题意找出所求问题需要的条件,利用数形结合的思想进行解答.4.C解析:C【分析】根据同一时刻,物体的实际高度和影长成正比例列出比例式即可解答.【详解】解:如图,假设没有墙,电线杆AB 的影子落在E 处,∵同一时刻,物体的实际高度和影长成正比例,∴CD :DE=1:0.5=2:1,∴AB :BE=2:1,∵CD=2,BE=BD+DE ,∴BE=3+1=4,∴AB :4=2:1,∴AB=8,即电线杆AB 的高为8米,故选:C .【点睛】本题考查了相似三角形的应用、比例的性质,解答的关键是理解题意,将实际问题转化为相似三角形中,利用同一时刻,物体的实际高度和影长成正比例列出方程求解. 5.D解析:D【分析】直接利用相似图形的判定方法分别判断得出答案.【详解】解:①两个菱形不一定相似,因为对应角不一定相等;②两个矩形不一定相似,因为对应边不一定成比例;③两个平行四边形不一定相似,因为形状不一定相同;④两个正方形相似,正确.故选:D .【点睛】本题考查了相似多边形的判定,正确掌握判定方法是解题的关键.6.C解析:C【分析】过点D 作DJ ⊥BC 于J ,根据勾股定理求出BC ,利用等腰直角三角形的性质求出DJ 、BJ 、JC ,利用平行线分线段成比例定理求出JC′即可解决问题.【详解】解:过点D 作DJ ⊥BC 于J .∵DB =DC =2,∠BDC =90°,∴BC ()()222222+4,DJ =BJ =JC =2,∵∠ABC =90°,∠A =60°,∴∠ACB =30°,∴AC=2AB ,∵AB 2+42=(2AB)2,∴A′B′=AB 43, ∵DJ//A′B′,∴DJ A B ''=C J C B ''',∴34C J ', ∴C′J =∴JB′=4﹣∴BB′=2﹣(4﹣=﹣2.故选:C .【点睛】本题考查了平移的性质,直角三角形的性质,等腰三角形的性质,勾股定理,以及平行线分线段成比例定理. 7.A解析:A【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【详解】 解:由34a b =得,4a=3b , A 、由等式性质可得:ab=12,原变形错误,故这个选项符合题意;B 、由等式性质得到4a=3b ,原变形正确,故这个选项不符合题意;C 、由等式性质可得:4a=3b ,原变形正确,故这个选项不符合题意;D 、由等式性质可得:4a=3b ,原变形正确,故这个选项不符合题意;故选:A .【点睛】本题考查比例的性质.熟练掌握内项之积等于外项之积是解题的关键.8.D解析:D【分析】先根据正方形的性质、旋转的性质可得45EAF EDA ∠=∠=︒,再根据相似三角形的判定与性质即可得.【详解】四边形ABCD 是正方形,45BAC EDA ∴∠=∠=︒,由旋转的性质得:B AC BAC ''∠=∠,B AC EDA ''∴∠=∠,即EAF EDA ∠=∠,在AEF 和DEA △中,EAF EDA AEF DEA ∠=∠⎧⎨∠=∠⎩, AEF DEA ∴~,EF AE AE DE ∴=,即44EF DE=, 16EF DE ∴⋅=,故选:D .【点睛】本题考查了正方形的性质、旋转的性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.9.B解析:B【分析】本题主要应用两三角形相似判定定理,三边对应成比例,分别对各选项进行分析即可得出答案.【详解】解:由勾股定理得:AB ,BC =2,AC ,∴AC:BC :AB =1A 、三边之比为1,图中的三角形(阴影部分)与△ABC 不相似;B 、三边之比:1△ABC 相似;C 3,图中的三角形(阴影部分)与△ABC 不相似;D 、三边之比为2△ABC 不相似. 故选:B .【点睛】此题考查三角形相似判定定理的应用,解答关键是应用勾股定理求出边长.10.C解析:C【分析】若点P 是靠近点B 的黄金分割点,则AP AB =,然后代入数据计算即可;若点P 是靠近点A 的黄金分割点,先求出BP ,再利用线段的和差即可求出AP .【详解】解:若P 是靠近点B 的黄金分割点,则)12AP AB ===;若P 是靠近点A 的黄金分割点,则)12BP AB ===,∴121AP AB BP =-=-=;故选:C .【点睛】本题主要考查了黄金分割,熟练掌握黄金分割比为12是解题的关键. 11.D解析:D【分析】通过证明△ACD ∽△ABC ,可得AD AC AC AB =,通过证明△ACD ∽△CBD ,可得AD CD CD BD =,通过△ADE ∽△GDB ,△ACD ∽△CBD ,可得DE CD CD DG=,通过证明△GEF ∽△GBD ,可得=EG BG EF BD,即可求解. 【详解】解:∵CD ⊥AB ,∴∠ADC =∠CDB =90°,∴∠BCD +∠ABC =90°,∵∠ACB =90°,∴∠ACD +∠BCD =90°,∴∠ACD =∠ABC ,又∵∠ACB =∠ADC =90°,∴△ACD ∽△ABC , ∴AD AC AC AB=, 故A 选项不合题意;∵∠ACD =∠ABC ,∠ADC =∠BDC ,∴△ACD ∽△CBD , ∴AD CD CD BD= 故B 选项不合题意;∵AF ⊥BG ,∴∠AFB =90°,∴∠FAB +∠GBA =90°,∵∠GDB =90°,∴∠G +∠GBA =90°,∴∠G =∠FAB ,又∵∠ADE =∠GDB =90°,∴△ADE ∽△GDB , ∴=AD DE GD BD, ∴AD •BD =DE •DG ,∵△ACD ∽△CBD , ∴=AD CD CD BD, ∴CD 2=AD •BD ,∴CD 2=DE •DG , ∴DE CD CD DG=, 故C 选项不合题意;∵∠G =∠G ,∠EFG =∠GDB =90°,∴△GEF ∽△GBD , ∴=EG BG EF BD故D 选项符合题意,故选:D .【点睛】本题主要考查相似三角形的判定及其性质,解题的关键是熟练掌握相似三角形的判定方法及其性质.12.B解析:B【分析】根据平行四边形的性质知AD=2BE ,BC ∥AD ,BO=OD ,设BF=a ,得DF=a+2,由BC ∥AD 知△BEF ∽△DAF ,据此得=BF DF 12=BE DA ,得出BF 的长,从而得出BD 的长. 【详解】解:∵点E 是BC 中点,∴BC=2BE ,∵四边形ABCD 是平行四边形,∴BC=AD ,BC ∥AD ,BO=OD ,∴AD=2BE ,设BF=a ,∵OF=1,∴BO=DO=a+1,则DF=a+2,∵BC ∥AD∴△BEF ∽△DAF , 12∴==BF BE DF DA ∴1,22=+a a解得a=2,经检验a=2是原方程的解∴BF=2,∴BO=DO=3,∴BD=6故选:B .【点睛】本题主要考查相似三角形的判定与性质,解题的关键是掌握平行四边形的性质和相似三角形的判定与性质.二、填空题13.【分析】由重心的性质可得AD =AD 由相似三角形的性质可得△A′MN 面积与△ABC 的面积之比=【详解】解:∵点A′恰好是△ABC 的重心∴AD =AD ∵将△ABC 沿BC 边上的中线AD 平移到A′B′C′的位 解析:19【分析】由重心的性质可得A 'D =13AD ,由相似三角形的性质可得△A ′MN 面积与△ABC 的面积之比=21()9A D AD '=. 【详解】解:∵点A′恰好是△ABC 的重心,∴A'D =13AD , ∵将△ABC 沿BC 边上的中线AD 平移到A′B′C′的位置,∴△ABC ∽△A'MN ,∴△A′MN 面积与△ABC 的面积之比=21()9A D AD '=, 故答案为:19. 【点睛】本题考查了相似三角形的判定和性质以及重心的性质,掌握重心的性质是本题的关键. 14.3【分析】证明可得结合三角形面积公式即可求得结果【详解】在平行四边形ABCD 中∵∴∵∴故答案为:3【点睛】本题考查了三角形相似的性质与判定解答本题的关键是熟练运用相似三角形的性质与判定解析:3【分析】证明DEF BCF ,可得31BF CB DF ED ==,结合三角形面积公式即可求得结果. 【详解】 在平行四边形ABCD 中,AD BC =,//AD BC , ∵21AE ED =,AE ED AD +=,∴13ED AD = ∵//AD BC ,13DF ED ED BF BC AD ∴===. ∴3BCF DGF S BF S DF ==. 故答案为:3.【点睛】本题考查了三角形相似的性质与判定,解答本题的关键是熟练运用相似三角形的性质与判定.15.09【分析】直接根据平行线分线段成比例定理求解即可【详解】解:∵∴即:∴DE=09cm 故答案为:09【点睛】此题主要考查了平行线分线段成比例定理熟练运用定理是解答此题的关键解析:0.9【分析】直接根据平行线分线段成比例定理求解即可.【详解】解:∵////AF BE CD ,∴AB EF BC DE= 即:2 1.8=1DE∴DE=0.9cm故答案为:0.9【点睛】 此题主要考查了平行线分线段成比例定理,熟练运用定理是解答此题的关键16.48【分析】根据相似三角形的性质可得对应高的比等于相似比进行计算然后根据矩形的性质可设则进行求解即可;【详解】设则∵PN ∥BC ∴∴即解得∴拓展:设则∵PN ∥BC ∴∴∴解得∴;故答案是:;48;【点睛解析:80x -484807 【分析】根据相似三角形的性质可得对应高的比等于相似比进行计算,然后根据矩形的性质可设BQ x =,则2PN x =,80AE x =-,进行求解即可;【详解】设PN xmm =,则PN PQ ED xmm ===,()80AE AD ED x mm =-=-,∵PN ∥BC ,∴APN ABC , ∴PN AE BC AD =, 即8012080x x -=,解得48x =, ∴48PN mm =,拓展:设PQ xmm =,则2PN xmm =,()80AE AD ED x mm =-=-,∵PN ∥BC ,∴APN ABC , ∴PN AE BC AD =, ∴28012080x x -=,解得2407x =, ∴48027PN x ==; 故答案是:80x -;48;4807. 【点睛】 本题主要考查了相似三角形的应用,准确分析计算是解题的关键.17.【分析】根据题意可知△ABC 与阴影部分为相似三角形且面积比为2:1所以AB :A′B=:1推出A′B=从而得到AA′的长【详解】解:∵△ABC 沿AB 边平移到△A′B′C′的位置∴AC ∥A′C′∴△AB解析:【分析】根据题意可知△ABC 与阴影部分为相似三角形,且面积比为2:1,所以AB ::1,推出,从而得到AA′的长.【详解】解:∵△ABC 沿AB 边平移到△A′B′C′的位置,∴AC ∥A′C′,∴△ABC ∽△A′BD , ∴21()2A BDABC S A B S AB ''∆∆==,∴AB :A′B=2:1, ∵AB=23,∴A′B=6,∴AA ′=23-6.由平移可得' 'CC AA =∴' 236CC =-故答案为:236-.【点睛】本题主要考查相似三角形的判定和性质、平移的性质,关键在于求证△ABC 与阴影部分为相似三角形.18.或7【分析】是直角三角形时有两种情况:∠EDF=90°或∠EFD=90°通过找相似三角形然后利用对应边成比例即可得到结果【详解】解:如图当∠EDF=90°时过A 作AG ⊥BC 于G 则DE ∥AG ∵AG ⊥B解析:263或7. 【分析】 DEF 是直角三角形时,有两种情况:∠EDF=90°或∠EFD=90°,通过找相似三角形,然后利用对应边成比例即可得到结果.【详解】解:如图,当∠EDF=90°时,过A 作AG ⊥BC 于G ,则DE ∥AG ,∵13AB AC ==,24BC =,AG ⊥BC ,∴1122BG BC ==, 在直角三角形ABG 中,2213125AG -=,由折叠可知∠B=∠E ,BD=ED ,AE=AB=13,∵DE ∥AG ,∴∠FAG=∠E=∠B ,∴Rt △AFG ∽Rt △BAG ,∴AB BG AF AG =,即13125AF =,12∴6591131212EF =-=, 由∠B=∠E ,∠EDF=∠ABG=90°,可知△ABG ∽△FED , ∴AB BG EF DE =,即13129112DE =, ∴7DE =,即7BD =;如图,当∠EFD=90°时,由折叠可知∠B=∠E ,BD=ED ,AE=AB=13,由于∠EFD=90°,因此AF ⊥BC ,在直角三角形ABF 中,2213125AF =-=,∴1358EF =-=,∵∠B=∠E ,∠AFB=∠EFD=90°,∴△ABF ∽△DEF ,∴AB BF DE EF =,即13128DE =, ∴263DE =,即263BD =; 综上,263BD =或7BD =, 故答案为:263或7. 【点睛】 本题考查了相似三角形的性质和判定以及折叠问题,找到相似三角形是解题的关键,要注意分类讨论.19.或【分析】先根据勾股定理得到AC =5再根据平行线分线段成比例得到AD :AE =AB :AC =4:5设AD =x 则AE =A′E =xEC =5﹣xA′B =2x ﹣4在Rt △A′BC 中根据勾股定理得到A′C 再根据△88【分析】 先根据勾股定理得到AC =5,再根据平行线分线段成比例得到AD :AE =AB :AC =4:5,设AD =x ,则AE =A ′E =54x ,EC =5﹣54x ,A ′B =2x ﹣4,在Rt △A ′BC 中,根据勾股定理得到A ′C ,再根据△A ′EC 是直角三角形,根据勾股定理得到关于x 的方程,解方程即可求解.【详解】解:在△ABC 中,∠B =90°,BC =3,AB =4,∴AC =5,∵DE ∥BC ,∴AD :AB =AE :AC ,即AD :AE =AB :AC =4:5,设AD =x ,则AE =A ′E =54x ,EC =5﹣54x ,A ′B =24x ﹣, 在Rt △A ′BC 中,A ′C =22(24)3x -+,∵△A ′EC 是直角三角形,∴①当A '落在边AB 上时,∠EA ′C =90°,∠BA ′C =∠ACB ,A ′B =3×cot ∠ACB =39344⨯=, ∴AD =1974248⎛⎫-= ⎪⎝⎭;②点A 在线段AB 22(24)3x -+2+(5﹣54x )2=(54x )2, 解得x 1=4(不合题意舍去),x 2=258.故AD 长为78或258. 故答案为:78或258. 【点晴】 本题考查了勾股定理和平行线等分线段成比例定理,掌握相关知识是解决问题的关键. 20.5【分析】过D 作DE ⊥AB 于E 根据角平分线的性质得到根据勾股定理得到根据相似三角形的性质即可得到结论【详解】过作于是的平分线故答案为:【点睛】本题考查了角平分线的性质相似三角形的判定和性质勾股定理正 解析:5【分析】过D 作DE ⊥AB 于E ,根据角平分线的性质得到32CD DE ==,根据勾股定理得到22BE BD DE =-2253222⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,根据相似三角形的性质即可得到结论. 【详解】过D 作DE AE ⊥于E ,90,C AD ︒∠=是BAC ∠的平分线32CD DE ∴==52DB =4BC BD CD ∴=+=BE ∴=2== 90,C DEB B B ︒∠=∠=∠=∠BDE BAC ∴∆∆ BC BE BD AB∴= 5224AB∴= 故答案为:5【点睛】本题考查了角平分线的性质,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.三、解答题21.(1)画图见解析,()12,4A ;(2)画图见解析,()23,6A. 【分析】(1)利用点平移的坐标变换规律写出A 1、B 1、C 1的坐标,然后描点,再写出点A 1的坐标即可;(2)延长MA 1到A 2使MA 2=2MA 1,延长MB 1到B 2使MB 2=2MB 1,延长MC 1到C 2使MC 2=2MC 1,从而得到△A 2B 2C 2,再写出点A 2的坐标.【详解】(1)∵()2,2A -,()3,4B -,()6,3C -,∴()12,26A -+,()13,46B -+,()16,36C -+,即()12,4A ,()13,2B ,()16,3C ,描点、顺次连接点1A ,1B ,1C 即可得111A B C △,如图所示:(2)由题意得:()2221,422A ⨯-⨯-,()2321,222B ⨯-⨯-,()2621,321C ⨯-⨯-,即()23,6A ,()25,2B ,()211,4C ,描点、顺次连接点2A ,2B ,2C 即可得222A B C △,如图所示.【点睛】本题考查了作图-位似变换:掌握画位似图形的一般步骤为(先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;然后根据位似比,确定能代表所作的位似图形的关键点;最后顺次连接上述各点,得到放大或缩小的图形).也考查了平移变换. 22.(1)图见解析;(2)图见解析,2C (1,0);(3)10【分析】(1)利用平移的性质得出对应点的坐标即可画出平移后的图形;(2)利用位似图形的性质得出对应点的坐标即可画出平移后的图形,进而可得点C 2的坐标;(3)根据所画图形判断出△A 2BC 2为等腰直角三角形,利用三角形的面积公式即可求解.【详解】解:(1)如图所示:△A 1B 1C 1,即为所求;(2)如图所示:△A 2BC 2即为所求,C 2点坐标为(1,0),故答案为:(1,0);(3)∵A 2C 2=BC 2224225+=A 22262210+=∴A 2C 22+BC 22= A 2B 2,∴△A 2BC 2是等腰直角三角形,且∠A 2C 2B=90°,∴△A 2BC 2的面积位为:12×(252=10平方单位, 故答案为:10.【点睛】本题考查平移变换和位似变换的性质、勾股定理及其逆定理、三角形的面积公式,掌握变换性质,正确得出变换后的对应点的位置是解答的关键.23.(1)证明见解析;(2)证明见解析.【分析】(1)先根据圆的性质、等腰三角形的性质可得OAD ODA ∠=∠,再根据角平分线的性质可得OAD CAD ∠=∠,从而可得ODA CAD ∠=∠,然后根据平行线的判定即可得证; (2)如图(见解析),先根据圆周角定理可得90ACB ∠=︒,再根据垂直的定义可得90OED ∠=︒,然后根据平行线的性质可得DOE BAC ∠=∠,最后根据相似三角形的判定与性质即可得证.【详解】(1)12OA OD AB ==, OAD ODA ∠=∠∴, AD 平分CAB ∠,OAD CAD ∴∠=∠,ODA CAD ∴∠=∠,//AC OD ∴;(2)如图,连接BC ,由圆周角定理得:90ACB ∠=︒,DE AB ∵⊥,90OED ∴∠=︒,由(1)已证://AC OD ,DOE BAC ∴∠=∠,在DOE △和BAC 中,90OED ACB DOE BAC∠=∠=︒⎧⎨∠=∠⎩, DOE BAC ∴~,12OE OD AC AB ∴==,12OE AC ∴=.【点睛】本题考查了圆周角定理、等腰三角形的性质、平行线的判定与性质、相似三角形的判定与性质等知识点,较难的是题(2),通过作辅助线,构造相似三角形是解题关键. 24.(1)见解析;(2)见解析.【分析】(1)据等边对等角,判定∠DCB=∠DBC ,再据同弧所对圆周角相等,判定∠DAC=∠DBC ,再据圆内接四边形性质判定∠EAD=∠DCB ,最后得证AD 平分E AC ∠;(2)运用等边对等角和同弧所对圆周角相等证得∠CFB=∠DCB ,据△BCF 和△BDC 还有一个公共角,由有两个角对应相等的三角形相似,证得BCF BDC △△∽.【详解】如下图(1)∵BD CD =∴DBC DCB ∠=∠又∵DAC DBC ∠=∠,DAE DCB ∠=∠∴DAE DAC ∠=∠,即AD 平分EAC ∠.(2)∵DA DF =∴DFA DAC ∠=∠又∵CFB DFA ∠=∠,DCB DBC DAC ∠=∠=∠∴CFB DCB ∠=∠又∵CBF DBC ∠=∠∴BCF BDC △△∽.【点睛】此题考查圆周角的相关知识及圆内接四边形的性质.找准图形正确运用相关知识是关键. 25.(1)见解析;(2)3【分析】(1)先作B 的角平分线,与AC 交于点D ,再以D 为圆心DC 为半径画弧,在AD 上截取DF=DC ,再作CF 的垂直平分线,交AB 于点E ,此时BE=DE ;(2)根据ADE ACB 得DE AE BC AB=,求出AE 的长,再用勾股定理求出AC 和AD 的长,从而得到CD 的长,最后再用勾股定理求出BD 的长.【详解】 解:(1)如图所示,证明过程如下:∵BD 平分B , ∴EBD CBD ∠=∠,∵ED AC ⊥,BC AC ⊥, ∴//ED BC ,∴CBD EDB ∠=∠,∴EBD EDB ∠=∠,∴BE DE =;(2)∵//DE BC ,∴ADE ACB , ∴DE AE BC AB =, ∵4DE =,4AB AE BE AE =+=+,6BC =, ∴464AE AE =+,解得8AE =, ∴8412AB =+=, 根据勾股定理,2263AC AB BC -=2243AD AE DE =-=,∴634323CD =-=∴2243BD CD BC +=【点睛】本题考查尺规作图,勾股定理,相似三角形的性质和判定,解题的关键是掌握尺规作图的方法,以及利用几何的性质定理进行证明求解.26.(1)证明见解析.(2)9.【分析】(1)根据两组角对应相等的两个三角形相似即可得到结论;(2)根据C ABD BA ∽△△求得BC=12,根据DC=BC-BD 即可求出答案.【详解】(1)如图所示:,BAD C B B ∠=∠∠=∠, ∴C ABD BA ∽△△.(2)ABD CBA ∽,AB BD BC AB ∴=,即636BC =, 解得:12BC =,1239DC BC BD ∴=-=-=.【点睛】 此题考查相似三角形的判定及性质,熟记三角形的判定定理是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《相似》单元测试题
(时间:60分钟,共100分)
一、选择题(每小传统3分,共30分)
1.下面图形中,相似的一组是 ( )
2.下面给出的图形中,不是相似的图形的是 ( ) A .刚买的一双手套的左右两只 B .仅仅宽度不同的两快长方形木板 C .一对羽毛球球拍 D .复印出来的两个“春”字
3. (08黄石市)如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中ABC △相似的是( )
4. 如图,下列四组图形中,两个图形不相似的有 ( )
A .1组
B .2组
C .3组
D .4组
5.你看到过哈哈镜吗?哈哈镜中的形象与你本人相似的识 ( )
A B C
D
A .
B .
C .
D .
A
B
6.a、b、c、d是四条线段,下列各组中这四条线段成比例的是( )
A.a=2cm, b=5cm, c=5cm, d=10cm
B.a=5cm, b=3cm, c=5cm, d=3cm
C.a=30cm, b=2cm, c=0.8cm, d=2cm
D.a=5cm, b=0.02cm, c=7cm, d=0.3cm
7.下列图形中一定相似的一组是( )
A.邻边对应成比例的两个平行四边形
B.有一条边相等的两个矩形
C.有一个内角相等的两个菱形
D.底角都是600的两个等腰三角形
8.根据下列各组条件,△ABC与△A1B1C1相似的有()
①∠A=450,AB=12,AC=15,∠A1=450,A1B1=16,A1C1=20
②AB=12,BC=15,AC=24, A1B1=20, A1C1=40,B1C1=25
③∠B=∠B1=750,∠C=500,∠A1=550
④∠C=∠C1=900,AB=10,AC=6,A1B1=15,A1C1=9
A.1个B.2个C.3个D.4个
9.有同一三角形地块的甲乙两张地图,比例尺分别为1:100和1:500,那么甲地图与乙地图表示这一块的三角形面积比是( )
A.25
B.5
C.1:25
D.1:5
10.我们已经学习和掌握了不少在平地上测量建筑物高度的方法,如果在同一个斜坡上,在同一时刻,测得在斜坡上自己的影子和一幢大楼的影子长,那么由自己的身高( ).
A.也能够求出楼高
B.还须知道斜坡的角度,才能求出楼高
C.不能求出楼高
D.只有在光线垂直于斜坡时,才能求出楼高
二、填空题(每小题3分,共24分)
11.同一底片印出来的不同尺寸的照片也是________。
12.放大镜下的图形与原来的图形_____.
13.如果图形A与图形B相似,图形B与图形C相似,那么图形A与图形C____。
图形A 图形B 图形C
14.下列图形中是____与_____相似的.
(1)(2)(3)(4)
15.图中与三角形相似的有_________个.
16. 如果(x-y):y=1:2,那么x:y= .
17.两个相似三角形的周长之比为2:3,则它们的面积之比是 .
18.已知C是线段AB的黄金分割点,AC:AB 0.618,则CB:AC= .
三、解答题((19、20小题各5分,其余各6分,共46分)
19.将下图分割成五个大小相等的图形.
20.请将一个任意三角形分成四个面积相等的三角形.
21.如图左边格点图中有一个四边形,请在右边的格点图中画出一个与该
四边形相似的图形,和你的伙伴交流一下,看看谁的方法又快又好.
22.如图,作线段将长方形分割同样大小的多边形。
请将正方形作同样的分割。
A
23. (08云南省)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:
(1)图形ABCD 与图形1111A B C D 关于直线MN 成轴对称,请在图中画出对称轴并标注上相
应字母M 、N ;
(2)以图中O 点为位似中心,将图形ABCD 放大,得到放大后的图形2222A B C D ,则图形
ABCD 与图形2222A B C D 的对应边的比是多少?(注:只要写出对应边的比即可)
(3)求图形2222A B C D 的面积.
24.在方格纸中,△ABC 与△DEF 是否成位似图形?请说明你的理由。
25.试一试,把下列左边的图形放大到右边的格点图中.
26.请在格点图中任意画两个相似的图形.
A卷参考答案
一、1.D;形状相同
2. B;两个长方形不相似
3.B;
4.B,两组
5.B
6.A;2:5=5:10
7. C;根据相似的定义
8. B;①④
9. C.1:25
10.A.能求出楼高
二、11. 相似图形
12. 相似
13. 相似;相似具有传递性
14.(1)(2)相似
15.4个
16.3:2
17.4:9
18. 0.618
三、19.图形如下
20.本题要求分成面积相等的三角形,因此可以利用“同底等高的三角形面积相等”这一性质来分割.
方法一:将某一边等分成四份,连结各分点与顶点(见左下图).
方法二:画出某一边的中线,然后将中线二等分,连结分点与另两个顶点(见右上图). 方法三:找出三条边上的中点,然后如左下图所示连结.
方法四:将三条边上的中点两两连结(见右上图).
前三种方法可以看成先将三角形分割成面积相等的两部分,然后分别将每部分再分割成面积相等的两部分.本题还有更多的分割方法. 21.本题答案不唯一
22.分割的图形如下
23. 【答案】(1)略(2)对应边的比为1:2(3)2222222211
481622A B C D S B D A C =⨯⨯=⨯⨯=
24. △ABC 与△DEF 是相似图形,△ABC 可以看作△DEF 放大2倍后的图形
25.放大的图形如下
26.两个相似的三角形,答案不唯一。