专题26 平面向量的数量积及平面向量的应用(教学案)-2019年高考数学(理)一轮复习精品资料(原卷版)

合集下载

平面向量的数量积及向量的应用教案

平面向量的数量积及向量的应用教案

平面向量的数量积及向量的应用教案章节一:向量的概念及其表示教学目标:1. 了解向量的定义及其表示方法。

2. 掌握向量的几何表示和坐标表示。

3. 能够正确书写向量的表达式。

教学内容:1. 向量的定义及特点。

2. 向量的几何表示和坐标表示。

3. 向量的运算规则。

教学步骤:1. 引入向量的概念,解释向量的定义及其特点。

2. 通过图形和实例展示向量的几何表示和坐标表示。

3. 讲解向量的运算规则,如加法、减法和数乘。

练习题目:a) (3, 4)b) (3, 4)c) 3d) (3章节二:向量的数量积教学目标:1. 理解向量的数量积的概念及其计算方法。

2. 掌握数量积的性质和运算法则。

3. 能够计算两个向量的数量积。

教学内容:1. 向量的数量积的定义及其计算方法。

2. 数量积的性质和运算法则。

3. 数量积的应用。

教学步骤:1. 引入向量的数量积的概念,解释其定义及其计算方法。

2. 通过图形和实例展示数量积的性质和运算法则。

3. 讲解数量积的应用,如判断两个向量是否垂直。

练习题目:a) (2, 3) ·(1, 2)b) (3, 4) ·(2, 3)c) (1, 0) ·(0, 1)章节三:向量的线性组合教学目标:1. 理解向量的线性组合的概念及其计算方法。

2. 掌握线性组合的性质和运算法则。

3. 能够计算两个向量的线性组合。

教学内容:1. 向量的线性组合的定义及其计算方法。

2. 线性组合的性质和运算法则。

3. 线性组合的应用。

教学步骤:1. 引入向量的线性组合的概念,解释其定义及其计算方法。

2. 通过图形和实例展示线性组合的性质和运算法则。

3. 讲解线性组合的应用,如解线性方程组。

练习题目:a) (2, 3) + (1, 2)b) (3, 4) (1, 2)c) 2(1, 0) 3(0, 1)章节四:向量的投影教学目标:1. 理解向量的投影的概念及其计算方法。

2. 掌握投影的性质和运算法则。

(教案)校级公开课--平面向量的数量积及应用(教案)

(教案)校级公开课--平面向量的数量积及应用(教案)

课题:平面向量的数量积及其应用授课班级:高三(1) 教学目标 1、知识与能力:复习平面向量的数量积及其性质,掌握两向量数量积定义式与坐标式运算,两向量夹角及两向量垂直的充要条件和向量数量积的简单应用. 2、过程与方法:通过对知识归纳整理与回顾,使学生形成知识网络。

通过设置问题,学生参予问题探究,教师引导、点评,师生互动方法实现课堂教学目标的完成。

3、情感态度与价值观通过问题探究,培养学生学习的主动性和合作交流的学习习惯。

树立积极的学习态度,提高学习的自我效能感。

教学重点: 平面向量的数量积及应用。

教学难点:如何灵活运用平面向量的数量积性质解决问题。

教学模式:问题教学法 教学过程:一、知识归纳(1)向量数量积定义式a ·b =︱a ︱·︱b ︱cos θ叫做a 与b 的数量积(或内积)。

(2)向量数量积坐标运算式已知两个向量1122(,),(,)a x y b x y ==,则a ·b =1212x x y y +。

(3)向量b 在a 方向上的投影:︱b ︱cos θ=||a ba ⋅ (4)数量积的几何意义: a ·b 等于a 的长度与b 在a 方向上的投影的乘积。

(5)两向量的夹角范围0︒≤θ≤180︒。

(6)向量数量积的性质①向量的模与平方的关系:22||a a a a ⋅==。

②乘法公式成立()()2222a b a b a b a b +⋅-=-=-; ()2222a b a a b b±=±⋅+222a a b b =±⋅+;③平面向量数量积的运算律交换律成立:a b b a ⋅=⋅;对实数的结合律成立:()()()()a b a b a b R λλλλ⋅=⋅=⋅∈; 分配律成立:()a b c a c b c ±⋅=⋅±⋅()c a b =⋅±。

④向量的夹角:cos θ=cos ,a b a b a b•<>=•=222221212121y x y x y y x x +⋅++。

平面向量的数量积教案

平面向量的数量积教案

平面向量的数量积教案一、教学目标:1. 理解平面向量的数量积的概念及其几何意义。

2. 学会计算平面向量的数量积,并能熟练运用数量积解决实际问题。

3. 掌握平面向量的数量积的性质,并能运用其性质进行向量运算。

二、教学重点:1. 平面向量的数量积的概念及其几何意义。

2. 平面向量的数量积的计算方法。

3. 平面向量的数量积的性质。

三、教学难点:1. 平面向量的数量积的计算方法。

2. 平面向量的数量积的性质的证明。

四、教学准备:1. 教师准备PPT,内容包括平面向量的数量积的概念、计算方法、性质及其应用。

2. 教师准备一些实际问题,用于引导学生运用平面向量的数量积解决实际问题。

五、教学过程:1. 导入(5分钟)教师通过PPT展示一些实际问题,引导学生思考如何运用向量的知识解决这些问题。

2. 讲解平面向量的数量积的概念(10分钟)教师通过PPT讲解平面向量的数量积的概念,并展示其几何意义。

3. 讲解平面向量的数量积的计算方法(15分钟)教师通过PPT讲解平面向量的数量积的计算方法,并给出一些例题进行讲解。

4. 练习平面向量的数量积的计算(10分钟)学生独立完成一些练习题,教师进行解答和讲解。

5. 讲解平面向量的数量积的性质(10分钟)教师通过PPT讲解平面向量的数量积的性质,并给出一些证明。

6. 练习平面向量的数量积的性质(10分钟)学生独立完成一些练习题,教师进行解答和讲解。

7. 应用平面向量的数量积解决实际问题(10分钟)教师给出一些实际问题,引导学生运用平面向量的数量积解决这些问题。

8. 总结(5分钟)教师对本节课的内容进行总结,并强调平面向量的数量积的重要性和应用价值。

9. 布置作业(5分钟)教师布置一些练习题,巩固学生对平面向量的数量积的理解和应用。

10. 课堂反馈(5分钟)教师通过课堂反馈了解学生对平面向量的数量积的掌握情况,为下一步的教学做好准备。

六、教学拓展:1. 教师通过PPT讲解平面向量的数量积与其他向量知识的联系,如向量的模、向量的加减法等。

高中数学_平面向量的数量积与平面向量的应用举例教学设计学情分析教材分析课后反思

高中数学_平面向量的数量积与平面向量的应用举例教学设计学情分析教材分析课后反思

平面向量的数量积与平面向量的应用举例教学目的:①通过物理中“功”等实例,理解平面向量数量积的含义及其物理意义;②体会平面向量的数量积与向量投影的关系;③掌握数量积的坐标表达式,会进行平面向量数量积的运算;④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。

教学重点:平面向量数量积的坐标表示教学难点:平面向量数量积的坐标表示的综合运用授课类型:新授课教具:多媒体、实物投影仪教学过程:一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA=a,OB=b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a||b|cosθ叫a与b的数量积,记作a⋅b,即有a⋅b = |a||b|cosθ,(0≤θ≤π).并规定0与任何向量的数量积为0.3.向量的数量积的几何意义:数量积a⋅b等于a的长度与b在a方向上投影|b|cosθ的乘积.4.两个向量的数量积的性质:设a、b为两个非零向量,e是与b同向的单位向量.1︒e⋅a = a⋅e =|a|cosθ; 2︒a⊥b⇔a⋅b = 03︒当a与b同向时,a⋅b = |a||b|;当a与b反向时,a⋅b = -|a||b|. 特别的a ⋅a = |a |2或a a a ⋅=||4︒ cos θ =||||b a b a ⋅ ;5︒|a ⋅b | ≤ |a ||b | 5.平面向量数量积的运算律交换律:a ⋅ b = b ⋅ a数乘结合律:(λa )⋅b =λ(a ⋅b ) = a ⋅(λb )分配律:(a + b )⋅c = a ⋅c + b ⋅c二、讲解新课:⒈ 平面两向量数量积的坐标表示已知两个非零向量),(11y x a =,),(22y x b =,试用a 和b 的坐标表示b a ⋅. 设i 是x 轴上的单位向量,j 是y 轴上的单位向量,那么j y i x a 11+=,j y i x b 22+=所以))((2211j y i x j y i x b a ++=⋅2211221221j y y j i y x j i y x i x x +⋅+⋅+=又1=⋅i i ,1=⋅j j ,0=⋅=⋅i j j i ,所以b a ⋅2121y y x x +=这就是说:两个向量的数量积等于它们对应坐标的乘积的和.即b a ⋅2121y y x x +=2. 平面内两点间的距离公式一、设),(y x a =,则222||y x a +=或22||y x a +=.(2)如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么221221)()(||y y x x a -+-=(平面内两点间的距离公式)二、向量垂直的判定设),(11y x a =,),(22y x b =,则b a ⊥ ⇔02121=+y y x x三、两向量夹角的余弦(πθ≤≤0)co s θ =||||b a b a ⋅⋅222221212121y x y x y y x x +++=四、讲解范例:五、设a = (5, -7),b = (-6, -4),求a ·b 及a 、b 间的夹角θ(精确到1o )例2 已知A (1, 2),B (2, 3),C (-2, 5),试判断△ABC 的形状,并给出证明. 例3 已知a = (3, -1),b = (1, 2),求满足x ⋅a = 9与x ⋅b = -4的向量x . 解:设x = (t , s ),由⎩⎨⎧-=+=-⇒-=⋅=⋅429349s t s t b x a x ⎩⎨⎧-==⇒32s t ∴x = (2, -3) 例4 已知a =(1,3),b =(3+1,3-1),则a 与b 的夹角是多少? 分析:为求a 与b 夹角,需先求a ·b 及|a |·|b |,再结合夹角θ的范围确定其值.解:由a =(1,3),b =(3+1,3-1)有a ·b =3+1+3(3-1)=4,|a |=2,|b |=22. 记a 与b 的夹角为θ,则cosθ=22=⋅⋅b a b a 又∵0≤θ≤π,∴θ=4π 评述:已知三角形函数值求角时,应注重角的范围的确定.例5 如图,以原点和A (5, 2)为顶点作等腰直角△OAB ,使∠B = 90︒,求点B 和向量AB 的坐标.解:设B 点坐标(x , y ),则OB = (x , y ),AB = (x -5, y -2) ∵OB ⊥AB ∴x (x -5) + y (y -2) = 0即:x 2 + y 2 -5x - 2y = 0又∵|OB | = |AB | ∴x 2 + y 2 = (x -5)2 + (y -2)2即:10x + 4y = 29 由⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧==-==⇒⎩⎨⎧=+=--+2723232729410025221122y x y x y x y x y x 或 ∴B 点坐标)23,27(-或)27,23(;AB =)27,23(--或)23,27(- 例6 在△ABC 中,AB =(2, 3),AC =(1, k ),且△ABC 的一个内角为直角,求k 值.解:当A = 90︒时,AB ⋅AC = 0,∴2×1 +3×k = 0 ∴k =23- 当B = 90︒时,AB ⋅BC = 0,BC =AC -AB = (1-2, k -3) = (-1, k -3) ∴2×(-1) +3×(k -3) = 0 ∴k =311 当C = 90︒时,AC ⋅BC = 0,∴-1 + k (k -3) = 0 ∴k =2133± 六、课堂练习:1.若a =(-4,3),b =(5,6),则3|a |2-4a ·b =( )A.23 B .57 C.63 D.832.已知A (1,2),B (2,3),C (-2,5),则△ABC 为( ) A.直角三角形 B .锐角三角形 C.钝角三角形 D.不等边三角形3.已知a =(4,3),向量b 是垂直a 的单位向量,则b 等于( )A.)54,53(或)53,54( B .)54,53(或)54,53(-- C.)54,53(-或)53,54(- D.)54,53(-或)54,53(- 4.a =(2,3),b =(-2,4),则(a +b )·(a -b )= .5.已知A (3,2),B (-1,-1),若点P (x ,-21)在线段AB 的中垂线上,则x = .6.已知A(1,0),B(3,1),C(2,0),且a=BC,b=CA,则a与b的夹角为 .7、对点练习:(2014重庆高考)已知向量a与向量b的夹角为60°,且a=(-2,-6),1b1=√10,则a. b=_______.8、对点练习:已知A(1,2),B(2,3),C(-2,5),试判断△ABC的形状,并给出证明。

2019-2020年高三数学总复习 平面向量的数量积教案 理

2019-2020年高三数学总复习 平面向量的数量积教案 理

2019-2020年高三数学总复习平面向量的数量积教案理教材分析两个向量的数量积是中学代数以往内容中从未遇到过的一种新的乘法,它区别于数的乘法.这篇案例从学生熟知的功的概念出发,引出平面向量数量积的概念和性质及其几何意义,介绍向量数量积的运算律及坐标表示.向量的数量积把向量的长度和三角函数联系在一起,这为解决三角形的有关问题提供了方便,特别是能有效解决线段的垂直等问题.这节内容是整个向量部分的重要内容之一,对它的理解与掌握将直接影响向量其他内容的学习.这节内容的教学难点是对平面向量数量积的定义及运算律的理解和对平面向量数量积的应用.教学目标1. 理解并掌握平面向量的数量积、几何意义和数量积的坐标表示,会初步使用平面向量的数量积来处理有关长度、角度和垂直的问题,掌握向量垂直的条件.2. 通过对数量积的引入和应用,初步体会知识发生、发展的过程和运用过程,培养学生的科学思维习惯.任务分析两个向量的数量积从形式和实质上都与数的乘法有区别,这就给理解和掌握这个概念带来了一些困难.在学习时,要充分让学生理解、明白两个向量的数量积是一个数量,而不是向量.两个向量的数量积的值是这两个向量的模与两个向量夹角余弦的乘积,其符号由夹角余弦值的正负而确定.两向量的数量积“a·b”不同于两实数之积“ab”.通过实例理解a·b=b·c与a=c的关系,a·b=0与a=0或b=0的关系,以及(a·b)c=a(b·c)与(ab)c=a(bc)的不同.教学设计一、问题情景如图40-1所示,一个力f作用于一个物体,使该物体发生了位移s,如何计算这个力所做的功.由于图示的力f的方向与前进方向有一个夹角θ,真正使物体前进的力是f在物体前进方向上的分力,这个分力与物体位移的乘积才是力f做的功.即力f使物体位移x所做的功W可用下式计算.W=|s||f|cosθ.其中|f|cosθ就是f在物体前进方向上的分量,也就是力f在物体前进方向上正射影的数量.问题:像功这样的数量值,它由力和位移两个向量来确定.我们能否从中得到启发,把“功”看成这两个向量的一种运算的结果呢?二、建立模型1. 引导学生从“功”的模型中得到如下概念:已知两个非零向量a与b,把数量|a||b|cosθ叫a与b的数量积(内积),记作a·b =|a||b|cosθ.其中θ是a与b夹角,|a|cosθ(|b|cosθ)叫a在b方向上(b 在a方向上)的投影.规定0与任一向量的数量积为0.由上述定义可知,两个向量a与b的数量积是一个实数.说明:向量a与b的夹角θ是指把a,b起点平移到一起所成的夹角,其中0≤θ≤π.当θ=时,称a和b垂直,记作a⊥b.为方便起见,a与b的夹角记作〈a,b〉.2. 引导学生思考讨论根据向量数量积的定义,可以得出(1)设e是单位向量,a·e=|a|cos〈a,e〉.(2)设a·b是非零向量,则a⊥ba·b=0.(3)a·a=|a|2,于是|a|=.(4)cos〈a,b〉=.(5)|a·b|≤|a||b|(这与实数|ab|=|a||b|不同).三、解释应用[例题]已知|a|=5,|b|=4,〈a,b〉=120°,求a·b.解:a·b=|a||b|cos〈a,b〉=5×4×cos120°=-10.[练习]1. 已知|a|=3,b在a上的投影为-2,求:(1)a·b.(2)a在b上的投影.2. 已知:在△ABC中,a=5,b=8,c=60°,求·.四、建立向量数量积的运算律1. 出示问题:从数学的角度考虑,我们希望向量的数量积运算,也能像数量乘法那样满足某些运算律,这样数量积运算才更富有意义.回忆实数的运算律,你能类比和归纳出向量数量积的一些运算律吗?它们成立吗?为什么?2. 运算律及其推导已知:向量a,b,c和λ∈R,则(1)a·b=b·a(交换律).证明:左=|a||b|cosθ=右.(2)(λa)·b=λ(a·b)=a·(λb)(数乘结合律).证明:设a,b夹角为θ,当λ>0时,λa与b的夹角为θ,∴(λa)·b=(λa)·|b|cosθ=λ|a||b|cosθ=λ(a·b);当λ<0时,λa与b的夹角为(π-θ),∴(λa)·b=|λa||b|cos(π-θ)=-λ|a||b|(-cosθ)=λ|a||b|cosθ=λ(a·b);当λ=0时,(λa)·b=0·b=0=λ(a·b).总之,(λa)·b=λ(a·b);同理a·(λb)=λ(a·b).(3)(a+b)·c=a·c+b·c(乘法对加法的分配律).证明:如图40-2,任取一点O,作=a,=b,=c.∵a+b(即)在c方向上的投影等于a,b在c方向上的投影的和,即|a+b|cosθ=|a|cosθ1+|b|cosθ2,∴|c||a+b|cosθ=|c|(|a|cosθ1+|b|cosθ2)=|c||a|cosθ1+|c||b|cosθ2=c·a+c·b,∴(a+b)·c=a·c+b·c.思考:(1)向量的数量积满足结合律,即(a·b)c=a(b·c)吗?(2)向量的数量积满足消去律,即如果a·b=c·b,那么a=c吗?五、应用与深化[例题]1. 对实数a,b,有(a+b)2=a2+2ab+b2,(a+b)(a-b)=a2-b2.类似地,对任意向量a,b,也有类似结论吗?为什么?解:类比完全平方和公式与平方差公式,有(a+b)2=a2+2a·b+b2,(a+b)·(a-b)=a2-b2.其证明是:(a+b)2=(a+b)·(a+b)=a·a+a·b+b·a+b·b=a2+2a·b+b2,(a+b)·(a-b)=a·a-a·b+b·a-b·b=a2-b2.∴有类似结论.2. 已知|a|=6,|b|=4,〈a,b〉=60°,求(a+2b)·(a-3b).解:(a+2b)·(a-3b)=a2-3a·b+2b·a-6b2=|a|2-|a||b|cos60°-6|b|2=-72.3. 已知|a|=3,|b|=4,且a与b不共线.当k为何值时,(a+kb)⊥(a-kb)?解:(a+kb)⊥(a-kb),即(a+kb)·(a-kb)=0,即a2-k2b2=0,即9-k2×16=0,k=±.因此,当k=±时,有(a+kb)⊥(a-kb).4. 已知:正方形ABCD的边长为1,并且=a,=b,=c,求|a+b+c|.解法1:∵a+b+c=++=2,∴|a+b+c|=2=2.解法2:|a+b+c|2=(a+b+c)2=a2+b2+c2+2a·b+2a·c+2b·c=1+1+2+2×1×1×cos90°+2×1× ×+2×1××=8,∴|a+b+c|=2.[练习]1. |a|=4,|b|=3,(2a-3b)·(2a+b)=61,求a与b的夹角θ.2. 在边长为2的正三角形ABC中,求·+·+·.六、拓展延伸1. 当向量a,b的夹角为锐角时,你能说明a·b的几何意义吗?如图40-3,a·b,即以b在a上射影的长和a的长为两邻边的矩形面积(OA=OA1).2. 平行四边形是表示向量加法与减法的几何模型,如图40-4,=+,=-.试说明平行四边形对角线的长度与两条邻边长度之间的关系.3. 三个单位向量a,b,c有相同终点且a+b+c=0,问:它们的起点连成怎样的三角形?解法1:如图40-5,∵|a|=|b|=|c|=1,a+b+c=0,∴a+b=-c,∴(a+b)2=(-c)2,∴a2+b2+2a·b=c2,∴2|a|·|b|cos∠AOC=-1,cos∠AOC=,∠AOC=120°.同理∠BOC=∠AOC=120°,故△AOB,△BOC,△BOC全等,∴AB=AC=BC,即该△ABC为等边三角形.解法2:如图40-6,=c,=-a,=-b,由a+b+c=0,即=+.∵|a|=|b|=1,∴OADB为菱形.又||=1,∴∠AOB=120°.同理∠AOC=∠BOC=120°,…4. 在△ABC中,·=·=·,问:O点在△ABC的什么位置?解:由·=·,即·(-)=0,即·=0,∴⊥,同理⊥,⊥.故O是△ABC的垂心.点评这篇案例的一个突出特点是使用类比方法,即在研究向量的数量积的性质及运算律时,经常以实数为对象进行类比.以物理学中的力对物体做功的实例,引入数量积的过程比较自然,学生容易接受.在“拓展延伸”中,较多地展示了向量的综合应用.这都充分体现了向量是数形结合的重要载体.运用向量方法解决与向量有关的综合问题,越来越成为考查学生数学思维能力的一个重要方面.认识向量并会使用向量是这一部分的基础,也是重点.总之,这篇案例较好地实现了教学目标,同时,关注类比方法的运用,以及学生数学思维水平的提高.美中不足的是,对学生的自主探究的引导似乎有所欠缺.2019-2020年高三数学总复习平面向量的正交分解与坐标运算教案理教材分析这节课通过建立直角坐标系,结合平面向量基本定理,给出了向量的另一种表示———坐标表示,这样使平面中的向量与它的坐标建立起了一一对应关系,然后导出了向量的加法、减法及实数与向量的积的坐标运算,这就为利用“数”的运算处理“形”的问题搭起了桥梁,更突出也更简化了向量的应用.所以,一定要让学生重点掌握向量的坐标运算,以利于掌握坐标形式下的向量的一些关系式及运用.教学难点是让学生建立起平面向量的坐标概念.教学目标1. 理解平面向量坐标概念,领会它的引入过程,进一步体会一一对应的思想意识.2. 理解平面向量的坐标的概念,掌握平面向量的坐标运算,并能应用坐标运算解决一些问题.3. 增强数形结合意识,领会“没有运算,向量只是一个‘路标’,因为有了运算,向量的力量无限”的说法.任务分析1. 有了平面向量的基本定理,就不难有平面向量的正交分解,有了坐标系下点与坐标的一一对应关系,也就容易有在直角坐标平面内的向量与坐标的一一对应.2. 可以从两个角度来理解平面向量的坐标表示:(1)设i,j为x,y轴方向上的单位向量,则任一向量a可唯一地表示为xi+yj,即唯一对应数对(x,y),所以可以说a=(x,y).(2)任一向量a可平移成,一一对应点A(x,y),从而可说a=(x,y).3. 在接触过xOy平面内一点到它的坐标的这种形、数过渡的基础上,容易接受由向量到坐标的这种代数化的过渡.教学设计一、问题情景1. 光滑斜面上的木块所受重力可以分解为平行斜面使木块下滑的力F1和木块产生的垂直于斜面的压力F2(如图).一个向量也可以分解为两个互相垂直的向量的线性表达,这种情形叫向量的正交分解.以后可以看到,在正交分解下,许多有关向量问题将变得较为简单.2. 在平面直角坐标系中,每一个点可用一对有序实数(即它的坐标)表示,那么对平面直角坐标内的每一个向量,可否用实数对来表示?又如何表示呢?二、建立模型1. 如图,在直角坐标系中,先分别取与x轴、y轴方向相同的两个单位向量i,j作为基底.对于平面上一个向量a,由平面向量的基本定理,知有且只有一对实数x,y使a=xi+yj,这样平面内任一向量a都可由x,y唯一确定,(x,y)叫a的坐标,记作a=(x,y).显然,i=(1,0),j=(0,1),0=(0,0).若把a的起点平移到坐标原点,即a=,则点A的位置由a唯一确定.设=xi+yj,则的坐标就是点A的坐标;反过来,点A的坐标(x,y)也就是的坐标.因此,在平面直角坐标系内,每一个平面向量都可以用一对实数(即坐标)唯一表示.2. 学生思考讨论已知a=(x1,y1),b=(x2,y2),你能得出a+b,a-b,λa的坐标吗?∵a=(x1,y1),b=(x2,y2),∴a=x1i+y1j,b=x2i+y2j.∴a+b=(x1+x2)i+(y1+y2)j,∴a+b=(x1+x2,y1+y2).同理a+b=(x1-x2,y1-y2),λa=(λx1,λy1).上述结论可表述为:两个向量和(差)的坐标分别等于这两个向量相应坐标的和(差);实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.三、解释应用[例题]1. 已知A(x1,y1),B(x2,y2),求AB→的坐标.解:如图39-3,AB→=-=(x2,y2)-(x1,y1)=(x2-x1,y2-y1).总结:一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点坐标.思考:能在图中标出坐标为(x2-x1,y2-y1)的P点吗?平移到,则P(x2-x1,y2-y1).2. 已知A(-2,1),B(-1,3),C(3,4).(1)求-的坐标.(2)求ABCD中D点的坐标.放开思考,展开讨论,看学生们有哪些不同方法.(1)解法1:∵=(1,2),=(5,3),∴-=(1,2)-(5,3)=(-4,-1).解法2:-==(-4,-1).(2)解法1:设D(x,y),=,即(1,2)=(3-x,4-y),∴x=y=2,D(2,2).思考:你能比较出对(2)的两种解法在思想方法上的异同点吗?(解法1是间接的思想,即方程的思想,解法2是直接的思想)3. 在直角坐标系xOy中,已知点A(3,2),点B(-2,4),求向量+的方向和长度.解:由已知,得=(3,2),=(-2,4).设=+,则=+=(3,2)+(-2,4)=(1,6).由两点的距离公式,得设相对x轴正向的转角为α,则查表或使用计算器,得α=80°32′.答:向量的方向偏离x轴正向约为80°32′,长度等于,向量的方向偏离x轴正向约为116°34′,长度等于2.[练习]1. 已知a=(2,1),b=(-3,4),求3a+4b的坐标.2. 设a+b=(-4,-3),a-b=(2,1),求a,b.解法1:∵2a=(-4,-3)+(2,1)=(-2,-2),2b=(-4,-3)-(2,1)=(-6,-4),∴a=(-1,-1),b=(-3,-2).解法2:设a=(x1,y1),b=(x2,y2),则3. 已知a=(1,1),b=(1,-1),c=(-1,2),试以a,b为基底来表示c.解:设c=k1a+k2a,即(-1,2)=k1(1,1)+k2(1,-1),即(-1,2)=(k1+k2,k1-k2),四、拓展延伸1. 在直角坐标系xOy中,已知A(x1,y1),B(x2,y2),求线段AB中点的坐标.解:设点M(x,y)是线段AB的中点(如图39-5),则=(+).将上式换为向量的坐标,得(x,y)=[(x1,y1)+(x2,y2)].即.这里得到的公式叫作线段中点的坐标计算公式,简称中点公式.2. 对于向量a,b,c,若存在不全为0的实数k1,k2,k3,使k1a+k2b+k3c=0,则称a,b,c三个向量线性相关,试研究三个向量=(3,5),=(0,-1),=(-3,-4)是否线性相关.解法1:显然有++=0,∴三者线性相关.解法2:由k1+k2+k3=0,即k1(3,5)+k2(0,-1)+k3(-3,-4)=0,即(3k1-3k3,5k1-k2-4k3)=(0,0),取k1=k2=k3=1,则++=0,故三个向量线性相关.点评这篇案例设计完整,思路自然.由斜边上物体所受重力的分解,联想到向量应有常见的正交分解;由点的坐标表示,结合平面向量基本定理联想到向量也有坐标形式.这为锻炼学生的类比联想能力,增强数学地提出问题、解决问题的能力提供了平台.向量用坐标表示即把向量代数化,增强了学生数形结合的意识,也增强了一一对应的意识,为提高学生的数学素质打下了良好的基础.。

高考数学总复习 平面向量的数量积及应用(基础)知识梳理教案

高考数学总复习 平面向量的数量积及应用(基础)知识梳理教案

平面向量的数量积及应用【考纲要求】1.理解平面向量数量积的含义及其物理意义,了解平面向量的数量积与向量投影的关系,掌握数量积的坐标表达式,会进行平面向量数量积的运算,能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.2.会用向量方法解决某些简单的平面几何问题,会用向量方法解决简单的力学问题与其他一些实际问题. 【知识网络】【考点梳理】 考点一、向量的数量积 1. 定义:已知两个非零向量 a 和 b ,它们的夹角为 ,我们把数量||||cos θa b 叫做 a 和 b 的数量积(或内积),记作⋅ a b ,即||||cos ⋅=θa b a b .规定:零向量与任一向量的数量积为0. 要点诠释:(1)两向量的数量积,其结果是个数量,而不是向量,它的值为两向量的模与余弦值决定 .(2)在运用数量积公式解题时,一定注意两向量夹角范围0 ≤ ≤180 .此外,由于向量具有方向性,一定要找准 是哪个角. 2. 平面向量的数量积的几何意义平面向量数量积及应用平面向量的数量积平面向量的应用平面向量的坐标运算我们规定||cos θ b 叫做向量 b 在 a 方向上的投影,当 为锐角时,||cos θb 为正值;当 为钝角时,||cos θ b 为负值;当 =0 时,||cos ||θ= b b ;当 =90 时,||cos 0θ=b ;当 =180 时,||cos ||θ=- b b .⋅ a b 的几何意义:数量积⋅ a b 等于 a 的长度|| a 与 b 在 a 方向上的投影||cos θb 的乘积. 要点诠释:b 在a 方向上的投影是一个数量,它可正、可负,也可以等于0.3. 性质:(1) 0⊥⇔⋅=a b a b(2) 当 a 与 b 同向时,||||⋅= a b a b ;当 a 与 b 反向时,||||⋅=- a b a b .特别地2||||⋅== ,即a a a a(3) cos ||||⋅θ= a ba b(4) ||||⋅≤ a b a b4. 运算律设已知向量 a 、 b 、c 和实数λ,则向量的数量积满足下列运算律: (1) ⋅=⋅a b b a (交换律)(2) ()()()λ⋅=λ⋅=⋅λ a b a b a b (3) ()+⋅=⋅+⋅ a b c a c b c要点诠释:①当0≠ a 时,由0⋅= a b 不一定能推出0= b ,这是因为对任何一个与a 垂直的向量b ,都有0⋅= a b ;当0≠ a 时,⋅=⋅ a b ac 也不一定能推出=b c ,因为由⋅=⋅ a b a c ,得()0⋅-= a b c ,即 a 与()-b c 垂直.也就是向量的数量积运算不满足消去律.②对于实数,,a b c ,有()()a b c a b c ⋅=⋅,但对于向量来说,()()⋅⋅=⋅⋅a b c a b c 不一定相等,这是因为()⋅⋅ a b c 表示一个与 c 共线的向量,而()⋅⋅a b c 表示一个与 a 共线的向量,而 a 与 c 不一定共线,所以()⋅⋅ a b c 与()⋅⋅a b c 不一定相等.5. 向量的数量积的坐标运算①已知两个非零向量11(x ,y )= a ,22(x ,y )= b ,那么1212x x y y ⋅=+a b ;②若(,)x y = a,则222,x y ⋅==+= a a a a③若1122(,),(,)x y x y ==A B ,则AB == AB ,这就是平面内两点间的距离公式;④若1122(,),(,)x y x y == a b ,则12120x x y y 0⊥⇔⋅=⇔+=a b a b6. 重要不等式若1122(,),(,)x y x y == a b ,则||||||||-≤⋅≤ a b a b a b1212x x y y ⇔≤+≤ 考点二、向量的应用(1)向量在几何中的应用①证明线段平行,包括相似问题,常用向量平行(共线)的充要条件;1221//x y x y 0⇔=λ⇔-=a b a b (0→≠ b )②证明垂直问题,常用垂直的充要条件;12120x x y y 0⊥⇔⋅=⇔+=a b a b③求夹角问题;利用夹角公式:cos cos ,||||θ⋅=<>==⋅a ba b a b 平面向量,a b 的夹角[0]θπ∈,④求线段的长度,可以用向量的线性运算,向量的模== a或AB == AB (2)向量在物理中的应用①向量的加法与减法在力的分解与合成中的应用; ②向量在速度的分解与合成中的应用. 【典型例题】类型一、数量积的概念例1.已知||4= a ,||3= b ,分别满足下列条件,求⋅ a b 与||+a b .(1) // a b ; (2)⊥ a b ; (3) 与a b 夹角为060【解析】(1) 当//a b 时,分两种情况:①若 与a b 同向,则00θ=, ∴||||cos 43cos012⋅=⋅θ=⨯⨯=a b a b 。

《平面向量数量积》教案

《平面向量数量积》教案

《平面向量数量积》教案教案:平面向量数量积一、教学目标:1.理解平面向量的数量积的概念和性质。

2.掌握平面向量的数量积的运算法则。

3.能够利用平面向量的数量积解决实际问题。

二、教学内容:1.平面向量的数量积的概念和性质。

2.平面向量的数量积的运算法则。

3.平面向量数量积的应用。

三、教学步骤:1.引入平面向量的数量积的概念。

首先通过提问和示例,引导学生思考两个平面向量的乘积是否有意义,以及该乘积有什么特殊的性质。

然后给出平面向量的数量积的定义:设有两个非零向量a和b,数量积定义为,a,·,b,·cosθ,其中,a,和,b,分别表示向量a和b的模长,θ表示向量a和b之间的夹角。

2.平面向量的数量积的性质。

通过具体的例子,讲解平面向量数量积的性质:(1)数量积的结果是一个数。

(2)数量积满足交换律、分配律。

(3)数量积的结果为0时,表示两个向量垂直,即cosθ=0。

(4)数量积的结果为正数时,表示两个向量同向,即θ为锐角。

(5)数量积的结果为负数时,表示两个向量反向,即θ为钝角。

3.平面向量的数量积的运算法则。

通过示例演算,教导学生具体的运算法则:(1)计算向量的模长:,a,=√(a1²+a2²)。

(2)计算向量的数量积:a·b = ,a,·,b,·cosθ。

(3)计算两个向量的夹角:cosθ = (a·b) / (,a,·,b,)。

(4)根据数量积的定义,解方程组:a·b=0,求出向量a与向量b 互相垂直的条件。

4.平面向量数量积的应用。

通过实际问题解决的例子,帮助学生将平面向量数量积的概念和运算法则应用到实际问题的解决中。

例如:已知有三个向量a、b和c,其中a·b=30,a·c=40,求b与c的夹角。

五、教学反思:在教学过程中,可以通过举一些具体的实际问题,提高学生的兴趣和参与度。

《平面向量数量积》教案

《平面向量数量积》教案

《平面向量数量积》教案一、教学目标1. 理解平面向量的概念,掌握向量的表示方法。

2. 掌握向量的数量积运算,了解数量积的性质和运算规律。

3. 能够运用数量积解决实际问题,提高数学应用能力。

二、教学内容1. 向量的概念及表示方法2. 向量的数量积定义及计算公式3. 数量积的性质和运算规律4. 数量积在坐标系中的运算5. 数量积的应用三、教学重点与难点1. 重点:向量的概念,数量积的计算公式,数量积的性质和运算规律。

2. 难点:数量积在坐标系中的运算,数量积的应用。

四、教学方法1. 采用讲授法,讲解向量及数量积的基本概念、性质和运算规律。

2. 利用案例分析法,分析数量积在实际问题中的应用。

3. 利用数形结合法,直观展示数量积在坐标系中的运算。

4. 引导学生通过小组讨论、探究,提高学生的参与度和自主学习能力。

五、教学安排1. 第一课时:向量的概念及表示方法2. 第二课时:向量的数量积定义及计算公式3. 第三课时:数量积的性质和运算规律4. 第四课时:数量积在坐标系中的运算5. 第五课时:数量积的应用六、教学过程1. 导入:通过复习实数乘法的分配律,引导学生思考向量数量积的定义。

2. 讲解向量的概念,向量的表示方法,向量的几何直观。

3. 引入向量数量积的概念,讲解数量积的计算公式。

4. 通过实例,演示数量积的运算过程,让学生感受数量积的意义。

5. 总结数量积的性质和运算规律,引导学生发现数量积与向量坐标的关系。

七、案例分析1. 利用数量积解释物理学中的力的合成与分解。

2. 利用数量积解决几何问题,如求解平行四边形的对角线长度。

3. 利用数量积判断两个向量是否垂直。

八、数量积在坐标系中的运算1. 讲解坐标系中向量的表示方法,向量的坐标运算。

2. 推导数量积在坐标系中的运算公式。

3. 通过实例,演示数量积在坐标系中的运算过程。

4. 引导学生掌握数量积在坐标系中的运算方法,提高运算能力。

九、数量积的应用1. 利用数量积解决线性方程组。

平面向量的数量积与应用教案

平面向量的数量积与应用教案

平面向量的数量积与应用教案一、引言平面向量是数学中重要的概念之一,它在几何、物理等领域具有广泛的应用。

其中,数量积作为平面向量的一种运算方式,被广泛运用于解决多种实际问题。

本教案旨在通过介绍平面向量的数量积及其应用,帮助学生掌握相关的概念和运算方法。

二、数量积的定义数量积,也称为点积或内积,是两个向量之间进行的一种运算。

对于两个平面向量a 和 b,它们的数量积可以表示为a·b,即:a·b = |a| |b| cosθ其中,|a| 和 |b| 分别表示向量 a 和 b 的模,θ表示向量 a 和 b 之间的夹角。

三、数量积的运算性质1. 交换律:a·b = b·a2. 分配律:(a+b)·c = a·c + b·c3. 数量积为零的条件:若 a·b = 0,则 a 和 b 两向量垂直。

四、数量积的几何意义数量积有着重要的几何意义。

当两个向量的数量积为正时,表示它们的方向较为接近;当数量积为负时,表示它们的方向较为背离;当数量积为零时,表示它们垂直。

五、数量积的应用数量积在几何、物理等领域有着广泛的应用。

以下是其中几个常见的应用场景:1. 判断两个向量的关系:通过计算两个向量的数量积,可以判断它们的夹角大小,从而了解两个向量之间的关系,比如是否垂直或平行。

2. 求向量在某一方向上的投影:通过数量积的计算,可以求得一个向量在另一个向量上的投影长度,从而进一步计算出向量在某一方向上的投影。

3. 计算力的功:在物理学中,力的功可以通过计算力和位移之间的数量积得到。

功等于力乘以移动的距离和夹角的余弦值。

4. 计算三角形的面积:数量积还可以用来计算三角形的面积。

当给定两条边和它们之间的夹角时,可以通过数量积公式计算出三角形的面积。

六、教学活动为了帮助学生更好地理解和应用数量积,以下是一些教学活动的建议:1. 理论讲解:教师可以通过简洁明了的语言,结合实际例子,向学生讲解数量积的定义、运算性质和几何意义。

平面向量的数量积教案

平面向量的数量积教案

平面向量的数量积教案一、教学目标:1. 理解平面向量的数量积的定义及其几何意义。

2. 掌握平面向量的数量积的计算公式及运算性质。

3. 学会运用平面向量的数量积解决实际问题。

二、教学内容:1. 平面向量的数量积的定义向量的数量积又称点积,是指两个向量在数量上的乘积。

对于平面向量a和b,它们的数量积定义为:a·b = |a||b|cosθ,其中|a|和|b|分别表示向量a和b的模长,θ表示向量a和b之间的夹角。

2. 平面向量的数量积的几何意义(1)向量a和b的夹角为θ时,它们的数量积|a||b|cosθ表示在平行四边形法则下,向量a和b共同作用于某一点产生的合力的大小。

(2)向量a和b的夹角为90°时,它们的数量积为0,表示向量a和b垂直。

3. 平面向量的数量积的计算公式及运算性质(1)计算公式:a·b = |a||b|cosθ(2)运算性质:①交换律:a·b = b·a②分配律:a·(b+c) = a·b + a·c③数乘律:λa·b = (λa)·b = λ(a·b)三、教学重点与难点:1. 教学重点:平面向量的数量积的定义、几何意义、计算公式及运算性质。

2. 教学难点:平面向量的数量积的几何意义的理解及应用。

四、教学方法:1. 采用讲授法,讲解平面向量的数量积的定义、几何意义、计算公式及运算性质。

2. 利用多媒体课件,展示平面向量的数量积的图形演示,增强学生的直观感受。

3. 结合例题,引导学生运用平面向量的数量积解决实际问题。

五、课后作业:1. 理解并掌握平面向量的数量积的定义、几何意义、计算公式及运算性质。

2. 完成课后练习题,巩固所学知识。

3. 思考如何运用平面向量的数量积解决实际问题。

六、教学案例与分析:1. 案例一:在平面直角坐标系中,有两个向量a = (3, 2)和b = (4, -1),求向量a和b的数量积。

高三数学一轮复习平面向量的数量积及应用教案

高三数学一轮复习平面向量的数量积及应用教案
命题走向
本讲以选择题、填空题考察本章的基本概念和性质,重点考察平面向量的数量积的概念及应用。重点体会向量为代数几何的结合体,此类题难度不大,分值5~9分。
平面向量的综合问题是“新热点”题型,其形式为与直线、圆锥曲线、三角函数等联系,解决角度、垂直、共线等问题,以解答题为主。
预测2017年高考:
(1)一道选择题和填空题,重点考察平行、垂直关系的判定或夹角、长度问题;属于中档题目。
法二: · = ·( + )
= ·( + + )
=2 · + ·
=2| |·| |·cos ,
=2×| |·| |·
=2×| |2=2×32=18.
(1)C (2) 18
由题悟法
平面向量数量积问题的类型及求法
(1)已知向量a,b的模及夹角θ,利用公式a·b=|a||b|·cosθ求解;
(2)已知向量a,b的坐标,利用数量积的坐标形式求解.
以题试法
2.(1)设向量a=(x-1,1),b=(-x+1,3),则a⊥(a-b)的一个充分不必要条件是( )
A.x=0或2 B.x=2
C.x=1 D.x=±2
(2)已知向量a=(1,0),b=(0,1),c=a+λb(λ∈R),向量d如图所示,则( )
A.存在λ>0,使得向量c与向量d垂直
B.存在λ>0,使得向量c与向量d夹角为60°
2.向量的应用
(1)向量在几何中的应用;
(2)向量在物理中的应用。
二.典例分析
(1)若向量a=(1, 1),b=(2,5),c=(3,x)满足条件(8a-b)·c=30,则x=( )
A.6B.5
C.4D.3
(2) (2012·湖南高考)如图,在平行四边形ABCD中,AP⊥BD,垂足为P,且AP=3,则 · =________.

高中数学教学备课教案平面向量的数量积与几何应用

高中数学教学备课教案平面向量的数量积与几何应用

高中数学教学备课教案平面向量的数量积与几何应用高中数学教学备课教案平面向量的数量积与几何应用一、引言在高中数学的学习中,平面向量是一个重要的概念。

它不仅可以用来描述实际问题中的物理量,还可以应用于解决几何问题。

本教案将围绕平面向量的数量积展开,介绍数量积的定义、性质以及在几何中的应用。

二、数量积的定义与性质1. 数量积的定义数量积又称为点积或内积,是两个向量之间的一种运算。

给定两个向量a和b,数量积的定义为:a·b = |a|·|b|·cosθ,其中|a|表示向量a的长度,|b|表示向量b的长度,θ表示两个向量的夹角。

2. 数量积的计算计算数量积的方法有两种:几何方法和代数方法。

(1)几何方法:通过绘制向量图形,利用三角函数的性质来计算。

(2)代数方法:利用向量的分量来计算数量积。

设向量a的分量为(a₁, a₂),向量b的分量为(b₁, b₂),则a·b = a₁b₁ + a₂b₂。

3. 数量积的性质数量积具有以下性质:(1)交换律:a·b = b·a(2)分配律:(a+b)·c = a·c + b·c(3)数量积为0的条件:若a·b = 0,则a与b垂直。

三、数量积的几何应用1. 平面向量的夹角利用数量积的定义,可以得到两个向量的夹角的余弦值,从而求出夹角的大小。

根据夹角的余弦值的范围来判断向量的方向关系,如锐角、直角、钝角等。

2. 平面向量的共线与垂直利用数量积的性质,我们可以判断两个向量是否共线、垂直。

若a·b = |a|·|b|,则向量a与向量b共线;若a·b = 0,则向量a与向量b垂直。

3. 平面向量的投影给定向量a和向量b,利用数量积可以计算向量a在向量b上的投影的大小。

投影可以理解为一个向量在另一个向量方向上的投影长度,用于解决实际问题中的投影计算。

4. 平面向量的面积利用数量积的性质,我们可以计算平行四边形的面积。

平面向量的数量积教案精品

平面向量的数量积教案精品

平面向量的数量积教案精品教学目标:1.理解平面向量的数量积的概念和性质。

2.学会计算平面向量的数量积。

3.掌握平面向量数量积的几何意义,了解数量积与向量夹角之间的关系。

4.能够应用平面向量的数量积解决实际问题。

教学重点:1.平面向量的数量积的计算。

2.平面向量的数量积与向量夹角的关系。

教学难点:1.平面向量的数量积与向量夹角的几何意义的理解与应用。

2.数量积计算过程中的代数化简。

教学准备:1.平面向量的定义和基本运算。

2.数学几何工具,如直尺、曲尺和圆规等。

教学过程:第一步:引入1.讲师简要介绍平面向量的基本概念和性质。

2.抛出问题:如何计算两个向量的乘积?这种乘积有什么特点?第二步:引出数量积的定义和性质1. 讲师给出数量积的定义: 设有两个向量a和b,它们的数量积记作a·b,定义为,a,b,·cosθ,其中,a,和,b,分别表示向量a和b的模长,θ表示两个向量夹角的大小。

2.讲师讲解数量积的几何意义:数量积a·b的值等于向量a在向量b 上的投影的长度乘以b的模长,也等于向量b在向量a上的投影的长度乘以a的模长。

3.讲师给出数量积的性质:a.a·b=b·a,数量积满足交换律。

b.a·a=,a,^2,即向量自身的数量积等于其模长的平方。

c.若a·b=0,则称向量a和b垂直或正交。

d.若a·b=,a,b,则称向量a和b同向或共线。

第三步:数量积的计算1.讲师给出数量积的计算公式:a·b=a1b1+a2b2,其中a=(a1,a2),b=(b1,b2)。

2.讲师通过例题演示如何计算数量积,引导学生掌握计算方法。

第四步:数量积与夹角的关系1.讲师引导学生思考:设向量a和b夹角为θ,如何利用数量积计算夹角θ的大小?2. 讲师给出数量积与夹角的关系: a·b = ,a,b,·cosθ,可解出cosθ = (a·b) / (,a,b,)。

平面向量的数量积教案精品

平面向量的数量积教案精品

平面向量的数量积教案精品教学目标:1.理解平面向量的数量积的概念和性质。

2.学会计算平面向量的数量积。

3.解决与平面向量的数量积相关的问题。

教学重点:1.平面向量的数量积的定义和性质。

2.使用平面向量的数量积计算向量的模长和夹角。

教学难点:1.运用平面向量的数量积解决实际问题。

2.掌握平面向量的数量积的计算方法。

教学准备:1.教师准备黑板、彩笔和相关教学资料。

2.学生准备课本、作业本、笔等。

教学过程:Step 1 引入教师用黑板上画两个平行且相等长的向量,并引出向量积的概念。

简单介绍向量的数量积和叉积,并引出本节课的内容是向量的数量积。

Step 2 讲解1. 向量的数量积的定义:向量a(x1, y1)和向量b(x2, y2)的数量积,记作a·b,等于,a,·,b,·cosθ,其中,a,和,b,分别表示向量a和向量b的模长,θ表示向量a和向量b的夹角。

2.向量的数量积的性质:a·b=b·a交换律a·(kb)=k(a·b) 数量积与数的结合a·a=,a,^2向量与自己的数量积等于向量的模长的平方a·b=0两个向量的数量积为0,表示两个向量垂直Step 3 讲解教师做一道具体的例题,先引入概念,并导出计算公式。

例题:已知向量a(3,2)和向量b(1,-4),求向量a和向量b的数量积。

解:根据定义公式,a·b, = ,a,·,b,·cosθ代入向量a和向量b的数值,得到3*1+2*(-4)=3+(-8)=-5Step 4 讲解教师通过例题引导学生讨论下面的性质并证明之。

向量a·b = ,a,·,b,·cosθ其中,0≤θ≤π。

当0≤θ≤π/2时,cosθ > 0;当π/2≤θ≤π时,cosθ<0。

Step 5 练习由简单到复杂给学生练习一些数量积的计算题目,并检查答案。

教案标题平面向量的数量积与应用

教案标题平面向量的数量积与应用
2.计算方法
当给定向量的坐标表示时,可以通过坐标推导计算数量积。若向量a的坐标表示为(a₁,a₂),向量b的坐标表示为(b₁,b₂),则a·b = a₁b₁ + a₂b₂。
3.性质
-数量积满足交换律ቤተ መጻሕፍቲ ባይዱ即a·b = b·a。
-数量积与向量的模长有关,当其中一个向量为零向量时,其数量积为0。
-若两个向量的数量积为0,则它们垂直。
教案标题平面向量的数量积与应用
教案标题:平面向量的数量积与应用
一、引言
平面向量是解决几何问题的重要工具之一,其中数量积是一个常见而重要的概念。本教案将介绍平面向量的数量积以及其应用。
二、平面向量的数量积
1.定义与表示
平面向量的数量积,也称点乘或内积,用符号"·"表示,对于平面上的两个向量a和b,其数量积定义为a·b = |a||b|cosθ,其中|a|和|b|分别表示向量a和b的模长,θ表示这两个向量的夹角。
a = (1, 2, -1),b = (2, -1, 3)
2.根据给定条件,判断两个向量的夹角:
a = (1, 2),b = (-3, 4)
a = (2, -1, 3),b = (3, -2, 1)
3.计算向量a在向量b上的投影:
a = (4, -1),b = (-2, 3)
4.利用数量积的性质,判断以下三角形的形状:
三角形ABC,AB = (3, 1),BC = (-2, 4),CA = (5, -5)
五、总结
本教案介绍了平面向量的数量积以及其应用。数量积可以用于判断两个向量的夹角,判断三角形形状,计算向量投影等。学生可以通过练习题来巩固所学的知识,并应用到实际问题中。通过本课的学习,学生将能够更好地理解平面向量的数量积及其应用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题26 平面向量的数量积及平面向量的应用(教学案)2019年高考数学(理)一轮复习精品资料1.理解平面向量数量积的含义及其物理意义.了解平面向量的数量积与向量投影的关系.2.掌握数量积的坐标表达式,会进行平面向量数量积的运算.3.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.4.会用向量方法解决某些简单的平面几何问题.会用向量方法解决简单的力学问题与其他一些实际问题.1.平面向量的数量积(1)定义:已知两个非零向量a与b,它们的夹角为θ,则数量|a||b|cos__θ叫作a与b的数量积(或内积),记作a·b,即a·b=|a||b|cos__θ,规定零向量与任一向量的数量积为0,即0·a=0.(2)几何意义:数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cos__θ的乘积.2.平面向量数量积的性质及其坐标表示设向量a=(x1,y1),b=(x2,y2),θ为向量a,b的夹角.(1)数量积:a·b=|a||b|cos θ=x1x2+y1y2.(2)模:|a|=a·a=x21+y21.(3)夹角:cos θ=a·b|a||b|=x1x2+y1y2x21+y21·x22+y22.(4)两非零向量a⊥b的充要条件:a·b=0⇔x1x2+y1y2=0.(5)|a·b|≤|a||b|(当且仅当a∥b时等号成立)⇔|x1x2+y1y2|≤ x21+y21·x22+y22.3.平面向量数量积的运算律(1)a·b=b·a(交换律).(2)λa·b=λ(a·b)=a·(λb)(结合律).(3)(a+b)·c=a·c+b·c(分配律).4.向量在平面几何中的应用向量在平面几何中的应用主要是用向量的线性运算及数量积解决平面几何中的平行、垂直、平移、全等、相似、长度、夹角等问题.(1)证明线段平行或点共线问题,包括相似问题,常用共线向量定理:a∥b(b≠0)⇔a=λb⇔x1y2-x2y1=0.(2)证明垂直问题,常用数量积的运算性质a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0(a ,b 均为非零向量). (3)求夹角问题,利用夹角公式cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22(θ为a 与b 的夹角). 5.向量在三角函数中的应用与三角函数相结合考查向量的数量积的坐标运算及其应用是高考热点题型.解答此类问题,除了要熟练掌握向量数量积的坐标运算公式、向量模、向量夹角的坐标运算公式外,还应掌握三角恒等变换的相关知识.6.向量在解析几何中的应用向量在解析几何中的应用,是以解析几何中的坐标为背景的一种向量描述.它主要强调向量的坐标问题,进而利用直线和圆锥曲线的位置关系的相关知识来解答,坐标的运算是考查的主体.高频考点一 平面向量数量积的运算例1、(1)(2015·四川)设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4,若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →等于( )A .20 B.15 C .9 D .6(2)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________.【感悟提升】(1)求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.(2)解决涉及几何图形的向量数量积运算问题时,可先利用向量的加、减运算或数量积的运算律化简再运算,但一定要注意向量的夹角与已知平面角的关系是相等还是互补.【变式探究】(1)如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP →=2,则AB →·AD →=________.(2)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE →·BD →=________. 高频考点二 用数量积求向量的模、夹角例2、(1)已知向量a ,b 均为单位向量,它们的夹角为π3,则|a +b |等于( )A .1 B. 2 C. 3D .2(2)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________.【变式探究】(1)(2015·重庆)若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A.π4 B.π2 C.3π4D .π(2)若向量a =(k,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.【感悟提升】(1)根据平面向量数量积的定义,可以求向量的模、夹角,解决垂直、夹角问题;两向量夹角θ为锐角的充要条件是cos θ>0且两向量不共线;(2)求向量模的最值(范围)的方法:①代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;②几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.【举一反三】(1)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.(2)在△ABC 中,若A =120°,AB →·AC →=-1,则|BC →|的最小值是( ) A. 2 B .2 C. 6D .6高频考点三 平面向量与三角函数例3、(2015·广东)在平面直角坐标系xOy 中,已知向量m =⎝⎛⎭⎫22,-22,n =(sin x ,cos x ),x ∈⎝⎛⎭⎫0,π2. (1)若m ⊥n ,求tan x 的值;(2)若m 与n 的夹角为π3,求x 的值.【感悟提升】平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.【变式探究】已知O 为坐标原点,向量OA →=(3sin α,cos α),OB →=(2sin α,5sin α-4cos α),α∈⎝⎛⎭⎫3π2,2π,且OA →⊥OB →,则tan α的值为( )A .-43B .-45C.45D.34高频考点四 向量在平面几何中的应用例4、已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP →=OA →+λ(AB →+AC →),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的( )A .内心B .外心C .重心D .垂心【感悟提升】解决向量与平面几何综合问题,可先利用基向量或坐标系建立向量与平面图形的联系,然后通过向量运算研究几何元素之间的关系.【变式探究】(1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB =________.(2)平面四边形ABCD 中,AB →+CD →=0,(AB →-AD →)·AC →=0,则四边形ABCD 是( ) A .矩形 B .梯形 C .正方形D .菱形高频考点五、 向量在解析几何中的应用例5、(1)已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),且A 、B 、C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________.(2)设O 为坐标原点,C 为圆(x -2)2+y 2=3的圆心,且圆上有一点M (x ,y )满足OM →·CM →=0,则y x =______.【感悟提升】向量在解析几何中的作用:(1)载体作用,向量在解析几何问题中出现,多用于“包装”,解决此类问题关键是利用向量的意义、运算,脱去“向量外衣”;(2)工具作用,利用a ⊥b ⇔a ·b =0;a ∥b ⇔a =λb (b ≠0),可解决垂直、平行问题.【变式探究】已知圆C :(x -2)2+y 2=4,圆M :(x -2-5cos θ)2+(y -5sin θ)2=1(θ∈R ),过圆M 上任意一点P 作圆C 的两条切线PE ,PF ,切点分别为E ,F ,则PE →·PF →的最小值是( )A .5B .6C .10D .12高频考点六 向量的综合应用 例6、(1)已知x ,y 满足⎩⎪⎨⎪⎧y ≥x ,x +y ≤2,x ≥a ,若OA →=(x,1),OB →=(2,y ),且OA →·OB →的最大值是最小值的8倍,则实数a 的值是( )A .1 B.13 C.14D.18(2)函数y =sin(ωx +φ)在一个周期内的图象如图所示,M 、N 分别是最高点、最低点,O 为坐标原点,且OM →·ON →=0,则函数f (x )的最小正周期是________.【感悟提升】利用向量的载体作用,可以将向量与三角函数、不等式结合起来,解题时通过定义或坐标运算进行转化,使问题的条件结论明晰化.【变式探究】在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA →|=|OB →|=OA →·OB →=2,则点集{P |OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R }所表示的区域面积是( )A .2 2B .2 3C .4 2D .4 31.【2016高考江苏卷】如图,在ABC ∆中,D 是BC 的中点,,E F 是,A D 上的两个三等分点,4BC CA ⋅=,1BF CF ⋅=- ,则BE CE ⋅ 的值是 ▲ .【2015高考山东,理4】已知菱形ABCD 的边长为a ,60ABC ∠= ,则BD CD ⋅=( ) (A )232a -(B )234a - (C ) 234a 错误!未找到引用源。

(D )232a 错误!未找到引用源。

【2015高考陕西,理7】对任意向量,a b ,下列关系式中不恒成立的是( ) A .||||||a b a b ⋅≤ B .||||||||a b a b -≤-C .22()||a b a b +=+ D .22()()a b a b a b +-=-【2015高考四川,理7】设四边形ABCD 为平行四边形,6AB =,4AD =.若点M ,N 满足3BM MC =,2DN NC =,则AM NM ⋅=( )(A )20 (B )15 (C )9 (D )6【2015高考安徽,理8】C ∆AB 是边长为2的等边三角形,已知向量a ,b 满足2a AB =,C 2a b A =+,则下列结论正确的是( )(A )1b = (B )a b ⊥ (C )1a b ⋅= (D )()4C a b +⊥B【2015高考福建,理9】已知1,,AB AC AB AC t t⊥== ,若P 点是ABC ∆ 所在平面内一点,且4AB AC AP ABAC=+,则PB PC ⋅ 的最大值等于( )A .13B .15C .19D .21【2015高考天津,理14】在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ==则AE AF ⋅的最小值为 . 1,9DF DC λ=12DC AB =,119199918CF DF DC DC DC DC AB λλλλλ--=-=-==,1.(2014·北京卷)已知向量a ,b 满足|a |=1,b =(2,1),且λa +b =0(λ∈R ),则|λ|=________. 2.(2014·湖北卷)设向量a =(3,3),b =(1,-1).若(a +λb )⊥(a -λb ),则实数λ=________. 3.(2014·江西卷)已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________..4.(2014·全国卷)若向量a ,b 满足:=1,(a +b )⊥a ,(+b )⊥b ,则|=( ) A .2 B. 2 C .1 D.225.(2014·新课标全国卷Ⅱ] 设向量a ,b 满足|a +b |=10,|a -b |=6,则=( ) A .1 B .2 C .3 D .56.(2014·山东卷)在△ABC 中,已知AB →·AC →=tan A ,当A =π6时,△A BC 的面积为______.7.(2014·天津卷)已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BE =λBC ,DF =μDC .若AE →·AF →=1,CE →·CF →=-23,则λ+μ=( )A.12B.23C.56D.7128.(2013年高考湖北卷)已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量AB →在CD →方向上的投影为( )A.322B.3152C .-322D .-31529.(2013年高考湖南卷)已知a ,b 是单位向量,a ·b =0.若向量c 满足|c -a -b |=1,则|c |的取值范围是( ) A .[2-1,2+1] B.[]2-1,2+2 C .[1,2+1] D .[1,2+2]10.(2013年高考辽宁卷)设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈⎣⎡⎦⎤0,π2. (1)若|a |=|b |,求x 的值;(2)设函数f (x )=a·b ,求f (x )的最大值.11.(2013年高考陕西卷)已知向量a =⎝⎛⎭⎫cos x ,-12,b =(3sin x ,cos 2x ),x ∈R ,设函数f (x )=a·b . (1)求f (x )的最小正周期;(2)求f (x )在⎣⎡⎦⎤0,π2上的最大值和最小值.1.若向量a ,b 满足|a |=|b |=2,a 与b 的夹角为60°,则|a +b |等于( )A .22+ 3B .2 3C .4D .122.已知向量a =(1,3),b =(3,m ).若向量a ,b 的夹角为π6,则实数m 等于( )A .2 3 B. 3 C .0D .- 33.设e 1,e 2,e 3为单位向量,且e 3=12e 1+k e 2(k >0),若以向量e 1,e 2为邻边的三角形的面积为12,则k的值为( )A.32 B.22 C.52 D.724.若O 为△ABC 所在平面内任一点,且满足(OB →-OC →)·(OB →+OC →-2OA →)=0,则△ABC 的形状为( ) A .正三角形 B .直角三角形 C .等腰三角形D .等腰直角三角形5.在△ABC 中,如图,若|AB →+AC →|=|AB →-AC →|,AB =2,AC =1,E ,F 为BC 边的三等分点,则AE →·AF →等于( )A.89B.109C.259D.269。

相关文档
最新文档